Linux Audio

Check our new training course

Loading...
  1#ifndef _ASM_IA64_PROCESSOR_H
  2#define _ASM_IA64_PROCESSOR_H
  3
  4/*
  5 * Copyright (C) 1998-2004 Hewlett-Packard Co
  6 *	David Mosberger-Tang <davidm@hpl.hp.com>
  7 *	Stephane Eranian <eranian@hpl.hp.com>
  8 * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com>
  9 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
 10 *
 11 * 11/24/98	S.Eranian	added ia64_set_iva()
 12 * 12/03/99	D. Mosberger	implement thread_saved_pc() via kernel unwind API
 13 * 06/16/00	A. Mallick	added csd/ssd/tssd for ia32 support
 14 */
 15
 16
 17#include <asm/intrinsics.h>
 18#include <asm/kregs.h>
 19#include <asm/ptrace.h>
 20#include <asm/ustack.h>
 21
 22#define __ARCH_WANT_UNLOCKED_CTXSW
 23#define ARCH_HAS_PREFETCH_SWITCH_STACK
 24
 25#define IA64_NUM_PHYS_STACK_REG	96
 26#define IA64_NUM_DBG_REGS	8
 27
 28#define DEFAULT_MAP_BASE	__IA64_UL_CONST(0x2000000000000000)
 29#define DEFAULT_TASK_SIZE	__IA64_UL_CONST(0xa000000000000000)
 30
 31/*
 32 * TASK_SIZE really is a mis-named.  It really is the maximum user
 33 * space address (plus one).  On IA-64, there are five regions of 2TB
 34 * each (assuming 8KB page size), for a total of 8TB of user virtual
 35 * address space.
 36 */
 37#define TASK_SIZE       	DEFAULT_TASK_SIZE
 38
 39/*
 40 * This decides where the kernel will search for a free chunk of vm
 41 * space during mmap's.
 42 */
 43#define TASK_UNMAPPED_BASE	(current->thread.map_base)
 44
 45#define IA64_THREAD_FPH_VALID	(__IA64_UL(1) << 0)	/* floating-point high state valid? */
 46#define IA64_THREAD_DBG_VALID	(__IA64_UL(1) << 1)	/* debug registers valid? */
 47#define IA64_THREAD_PM_VALID	(__IA64_UL(1) << 2)	/* performance registers valid? */
 48#define IA64_THREAD_UAC_NOPRINT	(__IA64_UL(1) << 3)	/* don't log unaligned accesses */
 49#define IA64_THREAD_UAC_SIGBUS	(__IA64_UL(1) << 4)	/* generate SIGBUS on unaligned acc. */
 50#define IA64_THREAD_MIGRATION	(__IA64_UL(1) << 5)	/* require migration
 51							   sync at ctx sw */
 52#define IA64_THREAD_FPEMU_NOPRINT (__IA64_UL(1) << 6)	/* don't log any fpswa faults */
 53#define IA64_THREAD_FPEMU_SIGFPE  (__IA64_UL(1) << 7)	/* send a SIGFPE for fpswa faults */
 54
 55#define IA64_THREAD_UAC_SHIFT	3
 56#define IA64_THREAD_UAC_MASK	(IA64_THREAD_UAC_NOPRINT | IA64_THREAD_UAC_SIGBUS)
 57#define IA64_THREAD_FPEMU_SHIFT	6
 58#define IA64_THREAD_FPEMU_MASK	(IA64_THREAD_FPEMU_NOPRINT | IA64_THREAD_FPEMU_SIGFPE)
 59
 60
 61/*
 62 * This shift should be large enough to be able to represent 1000000000/itc_freq with good
 63 * accuracy while being small enough to fit 10*1000000000<<IA64_NSEC_PER_CYC_SHIFT in 64 bits
 64 * (this will give enough slack to represent 10 seconds worth of time as a scaled number).
 65 */
 66#define IA64_NSEC_PER_CYC_SHIFT	30
 67
 68#ifndef __ASSEMBLY__
 69
 70#include <linux/cache.h>
 71#include <linux/compiler.h>
 72#include <linux/threads.h>
 73#include <linux/types.h>
 74
 75#include <asm/fpu.h>
 76#include <asm/page.h>
 77#include <asm/percpu.h>
 78#include <asm/rse.h>
 79#include <asm/unwind.h>
 80#include <linux/atomic.h>
 81#ifdef CONFIG_NUMA
 82#include <asm/nodedata.h>
 83#endif
 84
 85/* like above but expressed as bitfields for more efficient access: */
 86struct ia64_psr {
 87	__u64 reserved0 : 1;
 88	__u64 be : 1;
 89	__u64 up : 1;
 90	__u64 ac : 1;
 91	__u64 mfl : 1;
 92	__u64 mfh : 1;
 93	__u64 reserved1 : 7;
 94	__u64 ic : 1;
 95	__u64 i : 1;
 96	__u64 pk : 1;
 97	__u64 reserved2 : 1;
 98	__u64 dt : 1;
 99	__u64 dfl : 1;
100	__u64 dfh : 1;
101	__u64 sp : 1;
102	__u64 pp : 1;
103	__u64 di : 1;
104	__u64 si : 1;
105	__u64 db : 1;
106	__u64 lp : 1;
107	__u64 tb : 1;
108	__u64 rt : 1;
109	__u64 reserved3 : 4;
110	__u64 cpl : 2;
111	__u64 is : 1;
112	__u64 mc : 1;
113	__u64 it : 1;
114	__u64 id : 1;
115	__u64 da : 1;
116	__u64 dd : 1;
117	__u64 ss : 1;
118	__u64 ri : 2;
119	__u64 ed : 1;
120	__u64 bn : 1;
121	__u64 reserved4 : 19;
122};
123
124union ia64_isr {
125	__u64  val;
126	struct {
127		__u64 code : 16;
128		__u64 vector : 8;
129		__u64 reserved1 : 8;
130		__u64 x : 1;
131		__u64 w : 1;
132		__u64 r : 1;
133		__u64 na : 1;
134		__u64 sp : 1;
135		__u64 rs : 1;
136		__u64 ir : 1;
137		__u64 ni : 1;
138		__u64 so : 1;
139		__u64 ei : 2;
140		__u64 ed : 1;
141		__u64 reserved2 : 20;
142	};
143};
144
145union ia64_lid {
146	__u64 val;
147	struct {
148		__u64  rv  : 16;
149		__u64  eid : 8;
150		__u64  id  : 8;
151		__u64  ig  : 32;
152	};
153};
154
155union ia64_tpr {
156	__u64 val;
157	struct {
158		__u64 ig0 : 4;
159		__u64 mic : 4;
160		__u64 rsv : 8;
161		__u64 mmi : 1;
162		__u64 ig1 : 47;
163	};
164};
165
166union ia64_itir {
167	__u64 val;
168	struct {
169		__u64 rv3  :  2; /* 0-1 */
170		__u64 ps   :  6; /* 2-7 */
171		__u64 key  : 24; /* 8-31 */
172		__u64 rv4  : 32; /* 32-63 */
173	};
174};
175
176union  ia64_rr {
177	__u64 val;
178	struct {
179		__u64  ve	:  1;  /* enable hw walker */
180		__u64  reserved0:  1;  /* reserved */
181		__u64  ps	:  6;  /* log page size */
182		__u64  rid	: 24;  /* region id */
183		__u64  reserved1: 32;  /* reserved */
184	};
185};
186
187/*
188 * CPU type, hardware bug flags, and per-CPU state.  Frequently used
189 * state comes earlier:
190 */
191struct cpuinfo_ia64 {
192	unsigned int softirq_pending;
193	unsigned long itm_delta;	/* # of clock cycles between clock ticks */
194	unsigned long itm_next;		/* interval timer mask value to use for next clock tick */
195	unsigned long nsec_per_cyc;	/* (1000000000<<IA64_NSEC_PER_CYC_SHIFT)/itc_freq */
196	unsigned long unimpl_va_mask;	/* mask of unimplemented virtual address bits (from PAL) */
197	unsigned long unimpl_pa_mask;	/* mask of unimplemented physical address bits (from PAL) */
198	unsigned long itc_freq;		/* frequency of ITC counter */
199	unsigned long proc_freq;	/* frequency of processor */
200	unsigned long cyc_per_usec;	/* itc_freq/1000000 */
201	unsigned long ptce_base;
202	unsigned int ptce_count[2];
203	unsigned int ptce_stride[2];
204	struct task_struct *ksoftirqd;	/* kernel softirq daemon for this CPU */
205
206#ifdef CONFIG_SMP
207	unsigned long loops_per_jiffy;
208	int cpu;
209	unsigned int socket_id;	/* physical processor socket id */
210	unsigned short core_id;	/* core id */
211	unsigned short thread_id; /* thread id */
212	unsigned short num_log;	/* Total number of logical processors on
213				 * this socket that were successfully booted */
214	unsigned char cores_per_socket;	/* Cores per processor socket */
215	unsigned char threads_per_core;	/* Threads per core */
216#endif
217
218	/* CPUID-derived information: */
219	unsigned long ppn;
220	unsigned long features;
221	unsigned char number;
222	unsigned char revision;
223	unsigned char model;
224	unsigned char family;
225	unsigned char archrev;
226	char vendor[16];
227	char *model_name;
228
229#ifdef CONFIG_NUMA
230	struct ia64_node_data *node_data;
231#endif
232};
233
234DECLARE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
235
236/*
237 * The "local" data variable.  It refers to the per-CPU data of the currently executing
238 * CPU, much like "current" points to the per-task data of the currently executing task.
239 * Do not use the address of local_cpu_data, since it will be different from
240 * cpu_data(smp_processor_id())!
241 */
242#define local_cpu_data		(&__ia64_per_cpu_var(ia64_cpu_info))
243#define cpu_data(cpu)		(&per_cpu(ia64_cpu_info, cpu))
244
245extern void print_cpu_info (struct cpuinfo_ia64 *);
246
247typedef struct {
248	unsigned long seg;
249} mm_segment_t;
250
251#define SET_UNALIGN_CTL(task,value)								\
252({												\
253	(task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_UAC_MASK)			\
254				| (((value) << IA64_THREAD_UAC_SHIFT) & IA64_THREAD_UAC_MASK));	\
255	0;											\
256})
257#define GET_UNALIGN_CTL(task,addr)								\
258({												\
259	put_user(((task)->thread.flags & IA64_THREAD_UAC_MASK) >> IA64_THREAD_UAC_SHIFT,	\
260		 (int __user *) (addr));							\
261})
262
263#define SET_FPEMU_CTL(task,value)								\
264({												\
265	(task)->thread.flags = (((task)->thread.flags & ~IA64_THREAD_FPEMU_MASK)		\
266			  | (((value) << IA64_THREAD_FPEMU_SHIFT) & IA64_THREAD_FPEMU_MASK));	\
267	0;											\
268})
269#define GET_FPEMU_CTL(task,addr)								\
270({												\
271	put_user(((task)->thread.flags & IA64_THREAD_FPEMU_MASK) >> IA64_THREAD_FPEMU_SHIFT,	\
272		 (int __user *) (addr));							\
273})
274
275struct thread_struct {
276	__u32 flags;			/* various thread flags (see IA64_THREAD_*) */
277	/* writing on_ustack is performance-critical, so it's worth spending 8 bits on it... */
278	__u8 on_ustack;			/* executing on user-stacks? */
279	__u8 pad[3];
280	__u64 ksp;			/* kernel stack pointer */
281	__u64 map_base;			/* base address for get_unmapped_area() */
282	__u64 rbs_bot;			/* the base address for the RBS */
283	int last_fph_cpu;		/* CPU that may hold the contents of f32-f127 */
284
285#ifdef CONFIG_PERFMON
286	void *pfm_context;		     /* pointer to detailed PMU context */
287	unsigned long pfm_needs_checking;    /* when >0, pending perfmon work on kernel exit */
288# define INIT_THREAD_PM		.pfm_context =		NULL,     \
289				.pfm_needs_checking =	0UL,
290#else
291# define INIT_THREAD_PM
292#endif
293	unsigned long dbr[IA64_NUM_DBG_REGS];
294	unsigned long ibr[IA64_NUM_DBG_REGS];
295	struct ia64_fpreg fph[96];	/* saved/loaded on demand */
296};
297
298#define INIT_THREAD {						\
299	.flags =	0,					\
300	.on_ustack =	0,					\
301	.ksp =		0,					\
302	.map_base =	DEFAULT_MAP_BASE,			\
303	.rbs_bot =	STACK_TOP - DEFAULT_USER_STACK_SIZE,	\
304	.last_fph_cpu =  -1,					\
305	INIT_THREAD_PM						\
306	.dbr =		{0, },					\
307	.ibr =		{0, },					\
308	.fph =		{{{{0}}}, }				\
309}
310
311#define start_thread(regs,new_ip,new_sp) do {							\
312	regs->cr_ipsr = ((regs->cr_ipsr | (IA64_PSR_BITS_TO_SET | IA64_PSR_CPL))		\
313			 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_RI | IA64_PSR_IS));		\
314	regs->cr_iip = new_ip;									\
315	regs->ar_rsc = 0xf;		/* eager mode, privilege level 3 */			\
316	regs->ar_rnat = 0;									\
317	regs->ar_bspstore = current->thread.rbs_bot;						\
318	regs->ar_fpsr = FPSR_DEFAULT;								\
319	regs->loadrs = 0;									\
320	regs->r8 = get_dumpable(current->mm);	/* set "don't zap registers" flag */		\
321	regs->r12 = new_sp - 16;	/* allocate 16 byte scratch area */			\
322	if (unlikely(!get_dumpable(current->mm))) {							\
323		/*										\
324		 * Zap scratch regs to avoid leaking bits between processes with different	\
325		 * uid/privileges.								\
326		 */										\
327		regs->ar_pfs = 0; regs->b0 = 0; regs->pr = 0;					\
328		regs->r1 = 0; regs->r9  = 0; regs->r11 = 0; regs->r13 = 0; regs->r15 = 0;	\
329	}											\
330} while (0)
331
332/* Forward declarations, a strange C thing... */
333struct mm_struct;
334struct task_struct;
335
336/*
337 * Free all resources held by a thread. This is called after the
338 * parent of DEAD_TASK has collected the exit status of the task via
339 * wait().
340 */
341#define release_thread(dead_task)
342
343/*
344 * This is the mechanism for creating a new kernel thread.
345 *
346 * NOTE 1: Only a kernel-only process (ie the swapper or direct
347 * descendants who haven't done an "execve()") should use this: it
348 * will work within a system call from a "real" process, but the
349 * process memory space will not be free'd until both the parent and
350 * the child have exited.
351 *
352 * NOTE 2: This MUST NOT be an inlined function.  Otherwise, we get
353 * into trouble in init/main.c when the child thread returns to
354 * do_basic_setup() and the timing is such that free_initmem() has
355 * been called already.
356 */
357extern pid_t kernel_thread (int (*fn)(void *), void *arg, unsigned long flags);
358
359/* Get wait channel for task P.  */
360extern unsigned long get_wchan (struct task_struct *p);
361
362/* Return instruction pointer of blocked task TSK.  */
363#define KSTK_EIP(tsk)					\
364  ({							\
365	struct pt_regs *_regs = task_pt_regs(tsk);	\
366	_regs->cr_iip + ia64_psr(_regs)->ri;		\
367  })
368
369/* Return stack pointer of blocked task TSK.  */
370#define KSTK_ESP(tsk)  ((tsk)->thread.ksp)
371
372extern void ia64_getreg_unknown_kr (void);
373extern void ia64_setreg_unknown_kr (void);
374
375#define ia64_get_kr(regnum)					\
376({								\
377	unsigned long r = 0;					\
378								\
379	switch (regnum) {					\
380	    case 0: r = ia64_getreg(_IA64_REG_AR_KR0); break;	\
381	    case 1: r = ia64_getreg(_IA64_REG_AR_KR1); break;	\
382	    case 2: r = ia64_getreg(_IA64_REG_AR_KR2); break;	\
383	    case 3: r = ia64_getreg(_IA64_REG_AR_KR3); break;	\
384	    case 4: r = ia64_getreg(_IA64_REG_AR_KR4); break;	\
385	    case 5: r = ia64_getreg(_IA64_REG_AR_KR5); break;	\
386	    case 6: r = ia64_getreg(_IA64_REG_AR_KR6); break;	\
387	    case 7: r = ia64_getreg(_IA64_REG_AR_KR7); break;	\
388	    default: ia64_getreg_unknown_kr(); break;		\
389	}							\
390	r;							\
391})
392
393#define ia64_set_kr(regnum, r) 					\
394({								\
395	switch (regnum) {					\
396	    case 0: ia64_setreg(_IA64_REG_AR_KR0, r); break;	\
397	    case 1: ia64_setreg(_IA64_REG_AR_KR1, r); break;	\
398	    case 2: ia64_setreg(_IA64_REG_AR_KR2, r); break;	\
399	    case 3: ia64_setreg(_IA64_REG_AR_KR3, r); break;	\
400	    case 4: ia64_setreg(_IA64_REG_AR_KR4, r); break;	\
401	    case 5: ia64_setreg(_IA64_REG_AR_KR5, r); break;	\
402	    case 6: ia64_setreg(_IA64_REG_AR_KR6, r); break;	\
403	    case 7: ia64_setreg(_IA64_REG_AR_KR7, r); break;	\
404	    default: ia64_setreg_unknown_kr(); break;		\
405	}							\
406})
407
408/*
409 * The following three macros can't be inline functions because we don't have struct
410 * task_struct at this point.
411 */
412
413/*
414 * Return TRUE if task T owns the fph partition of the CPU we're running on.
415 * Must be called from code that has preemption disabled.
416 */
417#define ia64_is_local_fpu_owner(t)								\
418({												\
419	struct task_struct *__ia64_islfo_task = (t);						\
420	(__ia64_islfo_task->thread.last_fph_cpu == smp_processor_id()				\
421	 && __ia64_islfo_task == (struct task_struct *) ia64_get_kr(IA64_KR_FPU_OWNER));	\
422})
423
424/*
425 * Mark task T as owning the fph partition of the CPU we're running on.
426 * Must be called from code that has preemption disabled.
427 */
428#define ia64_set_local_fpu_owner(t) do {						\
429	struct task_struct *__ia64_slfo_task = (t);					\
430	__ia64_slfo_task->thread.last_fph_cpu = smp_processor_id();			\
431	ia64_set_kr(IA64_KR_FPU_OWNER, (unsigned long) __ia64_slfo_task);		\
432} while (0)
433
434/* Mark the fph partition of task T as being invalid on all CPUs.  */
435#define ia64_drop_fpu(t)	((t)->thread.last_fph_cpu = -1)
436
437extern void __ia64_init_fpu (void);
438extern void __ia64_save_fpu (struct ia64_fpreg *fph);
439extern void __ia64_load_fpu (struct ia64_fpreg *fph);
440extern void ia64_save_debug_regs (unsigned long *save_area);
441extern void ia64_load_debug_regs (unsigned long *save_area);
442
443#define ia64_fph_enable()	do { ia64_rsm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
444#define ia64_fph_disable()	do { ia64_ssm(IA64_PSR_DFH); ia64_srlz_d(); } while (0)
445
446/* load fp 0.0 into fph */
447static inline void
448ia64_init_fpu (void) {
449	ia64_fph_enable();
450	__ia64_init_fpu();
451	ia64_fph_disable();
452}
453
454/* save f32-f127 at FPH */
455static inline void
456ia64_save_fpu (struct ia64_fpreg *fph) {
457	ia64_fph_enable();
458	__ia64_save_fpu(fph);
459	ia64_fph_disable();
460}
461
462/* load f32-f127 from FPH */
463static inline void
464ia64_load_fpu (struct ia64_fpreg *fph) {
465	ia64_fph_enable();
466	__ia64_load_fpu(fph);
467	ia64_fph_disable();
468}
469
470static inline __u64
471ia64_clear_ic (void)
472{
473	__u64 psr;
474	psr = ia64_getreg(_IA64_REG_PSR);
475	ia64_stop();
476	ia64_rsm(IA64_PSR_I | IA64_PSR_IC);
477	ia64_srlz_i();
478	return psr;
479}
480
481/*
482 * Restore the psr.
483 */
484static inline void
485ia64_set_psr (__u64 psr)
486{
487	ia64_stop();
488	ia64_setreg(_IA64_REG_PSR_L, psr);
489	ia64_srlz_i();
490}
491
492/*
493 * Insert a translation into an instruction and/or data translation
494 * register.
495 */
496static inline void
497ia64_itr (__u64 target_mask, __u64 tr_num,
498	  __u64 vmaddr, __u64 pte,
499	  __u64 log_page_size)
500{
501	ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
502	ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
503	ia64_stop();
504	if (target_mask & 0x1)
505		ia64_itri(tr_num, pte);
506	if (target_mask & 0x2)
507		ia64_itrd(tr_num, pte);
508}
509
510/*
511 * Insert a translation into the instruction and/or data translation
512 * cache.
513 */
514static inline void
515ia64_itc (__u64 target_mask, __u64 vmaddr, __u64 pte,
516	  __u64 log_page_size)
517{
518	ia64_setreg(_IA64_REG_CR_ITIR, (log_page_size << 2));
519	ia64_setreg(_IA64_REG_CR_IFA, vmaddr);
520	ia64_stop();
521	/* as per EAS2.6, itc must be the last instruction in an instruction group */
522	if (target_mask & 0x1)
523		ia64_itci(pte);
524	if (target_mask & 0x2)
525		ia64_itcd(pte);
526}
527
528/*
529 * Purge a range of addresses from instruction and/or data translation
530 * register(s).
531 */
532static inline void
533ia64_ptr (__u64 target_mask, __u64 vmaddr, __u64 log_size)
534{
535	if (target_mask & 0x1)
536		ia64_ptri(vmaddr, (log_size << 2));
537	if (target_mask & 0x2)
538		ia64_ptrd(vmaddr, (log_size << 2));
539}
540
541/* Set the interrupt vector address.  The address must be suitably aligned (32KB).  */
542static inline void
543ia64_set_iva (void *ivt_addr)
544{
545	ia64_setreg(_IA64_REG_CR_IVA, (__u64) ivt_addr);
546	ia64_srlz_i();
547}
548
549/* Set the page table address and control bits.  */
550static inline void
551ia64_set_pta (__u64 pta)
552{
553	/* Note: srlz.i implies srlz.d */
554	ia64_setreg(_IA64_REG_CR_PTA, pta);
555	ia64_srlz_i();
556}
557
558static inline void
559ia64_eoi (void)
560{
561	ia64_setreg(_IA64_REG_CR_EOI, 0);
562	ia64_srlz_d();
563}
564
565#define cpu_relax()	ia64_hint(ia64_hint_pause)
566
567static inline int
568ia64_get_irr(unsigned int vector)
569{
570	unsigned int reg = vector / 64;
571	unsigned int bit = vector % 64;
572	u64 irr;
573
574	switch (reg) {
575	case 0: irr = ia64_getreg(_IA64_REG_CR_IRR0); break;
576	case 1: irr = ia64_getreg(_IA64_REG_CR_IRR1); break;
577	case 2: irr = ia64_getreg(_IA64_REG_CR_IRR2); break;
578	case 3: irr = ia64_getreg(_IA64_REG_CR_IRR3); break;
579	}
580
581	return test_bit(bit, &irr);
582}
583
584static inline void
585ia64_set_lrr0 (unsigned long val)
586{
587	ia64_setreg(_IA64_REG_CR_LRR0, val);
588	ia64_srlz_d();
589}
590
591static inline void
592ia64_set_lrr1 (unsigned long val)
593{
594	ia64_setreg(_IA64_REG_CR_LRR1, val);
595	ia64_srlz_d();
596}
597
598
599/*
600 * Given the address to which a spill occurred, return the unat bit
601 * number that corresponds to this address.
602 */
603static inline __u64
604ia64_unat_pos (void *spill_addr)
605{
606	return ((__u64) spill_addr >> 3) & 0x3f;
607}
608
609/*
610 * Set the NaT bit of an integer register which was spilled at address
611 * SPILL_ADDR.  UNAT is the mask to be updated.
612 */
613static inline void
614ia64_set_unat (__u64 *unat, void *spill_addr, unsigned long nat)
615{
616	__u64 bit = ia64_unat_pos(spill_addr);
617	__u64 mask = 1UL << bit;
618
619	*unat = (*unat & ~mask) | (nat << bit);
620}
621
622/*
623 * Return saved PC of a blocked thread.
624 * Note that the only way T can block is through a call to schedule() -> switch_to().
625 */
626static inline unsigned long
627thread_saved_pc (struct task_struct *t)
628{
629	struct unw_frame_info info;
630	unsigned long ip;
631
632	unw_init_from_blocked_task(&info, t);
633	if (unw_unwind(&info) < 0)
634		return 0;
635	unw_get_ip(&info, &ip);
636	return ip;
637}
638
639/*
640 * Get the current instruction/program counter value.
641 */
642#define current_text_addr() \
643	({ void *_pc; _pc = (void *)ia64_getreg(_IA64_REG_IP); _pc; })
644
645static inline __u64
646ia64_get_ivr (void)
647{
648	__u64 r;
649	ia64_srlz_d();
650	r = ia64_getreg(_IA64_REG_CR_IVR);
651	ia64_srlz_d();
652	return r;
653}
654
655static inline void
656ia64_set_dbr (__u64 regnum, __u64 value)
657{
658	__ia64_set_dbr(regnum, value);
659#ifdef CONFIG_ITANIUM
660	ia64_srlz_d();
661#endif
662}
663
664static inline __u64
665ia64_get_dbr (__u64 regnum)
666{
667	__u64 retval;
668
669	retval = __ia64_get_dbr(regnum);
670#ifdef CONFIG_ITANIUM
671	ia64_srlz_d();
672#endif
673	return retval;
674}
675
676static inline __u64
677ia64_rotr (__u64 w, __u64 n)
678{
679	return (w >> n) | (w << (64 - n));
680}
681
682#define ia64_rotl(w,n)	ia64_rotr((w), (64) - (n))
683
684/*
685 * Take a mapped kernel address and return the equivalent address
686 * in the region 7 identity mapped virtual area.
687 */
688static inline void *
689ia64_imva (void *addr)
690{
691	void *result;
692	result = (void *) ia64_tpa(addr);
693	return __va(result);
694}
695
696#define ARCH_HAS_PREFETCH
697#define ARCH_HAS_PREFETCHW
698#define ARCH_HAS_SPINLOCK_PREFETCH
699#define PREFETCH_STRIDE			L1_CACHE_BYTES
700
701static inline void
702prefetch (const void *x)
703{
704	 ia64_lfetch(ia64_lfhint_none, x);
705}
706
707static inline void
708prefetchw (const void *x)
709{
710	ia64_lfetch_excl(ia64_lfhint_none, x);
711}
712
713#define spin_lock_prefetch(x)	prefetchw(x)
714
715extern unsigned long boot_option_idle_override;
716
717enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_FORCE_MWAIT,
718			 IDLE_NOMWAIT, IDLE_POLL};
719
720void default_idle(void);
721
722#define ia64_platform_is(x) (strcmp(x, platform_name) == 0)
723
724#endif /* !__ASSEMBLY__ */
725
726#endif /* _ASM_IA64_PROCESSOR_H */