Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2023 Intel Corporation
9 */
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/netdevice.h>
14#include <linux/wireless.h>
15#include <linux/nl80211.h>
16#include <linux/etherdevice.h>
17#include <linux/crc32.h>
18#include <linux/bitfield.h>
19#include <net/arp.h>
20#include <net/cfg80211.h>
21#include <net/cfg80211-wext.h>
22#include <net/iw_handler.h>
23#include <kunit/visibility.h>
24#include "core.h"
25#include "nl80211.h"
26#include "wext-compat.h"
27#include "rdev-ops.h"
28
29/**
30 * DOC: BSS tree/list structure
31 *
32 * At the top level, the BSS list is kept in both a list in each
33 * registered device (@bss_list) as well as an RB-tree for faster
34 * lookup. In the RB-tree, entries can be looked up using their
35 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36 * for other BSSes.
37 *
38 * Due to the possibility of hidden SSIDs, there's a second level
39 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40 * The hidden_list connects all BSSes belonging to a single AP
41 * that has a hidden SSID, and connects beacon and probe response
42 * entries. For a probe response entry for a hidden SSID, the
43 * hidden_beacon_bss pointer points to the BSS struct holding the
44 * beacon's information.
45 *
46 * Reference counting is done for all these references except for
47 * the hidden_list, so that a beacon BSS struct that is otherwise
48 * not referenced has one reference for being on the bss_list and
49 * one for each probe response entry that points to it using the
50 * hidden_beacon_bss pointer. When a BSS struct that has such a
51 * pointer is get/put, the refcount update is also propagated to
52 * the referenced struct, this ensure that it cannot get removed
53 * while somebody is using the probe response version.
54 *
55 * Note that the hidden_beacon_bss pointer never changes, due to
56 * the reference counting. Therefore, no locking is needed for
57 * it.
58 *
59 * Also note that the hidden_beacon_bss pointer is only relevant
60 * if the driver uses something other than the IEs, e.g. private
61 * data stored in the BSS struct, since the beacon IEs are
62 * also linked into the probe response struct.
63 */
64
65/*
66 * Limit the number of BSS entries stored in mac80211. Each one is
67 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68 * If somebody wants to really attack this though, they'd likely
69 * use small beacons, and only one type of frame, limiting each of
70 * the entries to a much smaller size (in order to generate more
71 * entries in total, so overhead is bigger.)
72 */
73static int bss_entries_limit = 1000;
74module_param(bss_entries_limit, int, 0644);
75MODULE_PARM_DESC(bss_entries_limit,
76 "limit to number of scan BSS entries (per wiphy, default 1000)");
77
78#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
79
80/**
81 * struct cfg80211_colocated_ap - colocated AP information
82 *
83 * @list: linked list to all colocated aPS
84 * @bssid: BSSID of the reported AP
85 * @ssid: SSID of the reported AP
86 * @ssid_len: length of the ssid
87 * @center_freq: frequency the reported AP is on
88 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
89 * that operate in the same channel as the reported AP and that might be
90 * detected by a STA receiving this frame, are transmitting unsolicited
91 * Probe Response frames every 20 TUs
92 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
93 * @same_ssid: the reported AP has the same SSID as the reporting AP
94 * @multi_bss: the reported AP is part of a multiple BSSID set
95 * @transmitted_bssid: the reported AP is the transmitting BSSID
96 * @colocated_ess: all the APs that share the same ESS as the reported AP are
97 * colocated and can be discovered via legacy bands.
98 * @short_ssid_valid: short_ssid is valid and can be used
99 * @short_ssid: the short SSID for this SSID
100 * @psd_20: The 20MHz PSD EIRP of the primary 20MHz channel for the reported AP
101 */
102struct cfg80211_colocated_ap {
103 struct list_head list;
104 u8 bssid[ETH_ALEN];
105 u8 ssid[IEEE80211_MAX_SSID_LEN];
106 size_t ssid_len;
107 u32 short_ssid;
108 u32 center_freq;
109 u8 unsolicited_probe:1,
110 oct_recommended:1,
111 same_ssid:1,
112 multi_bss:1,
113 transmitted_bssid:1,
114 colocated_ess:1,
115 short_ssid_valid:1;
116 s8 psd_20;
117};
118
119static void bss_free(struct cfg80211_internal_bss *bss)
120{
121 struct cfg80211_bss_ies *ies;
122
123 if (WARN_ON(atomic_read(&bss->hold)))
124 return;
125
126 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
127 if (ies && !bss->pub.hidden_beacon_bss)
128 kfree_rcu(ies, rcu_head);
129 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
130 if (ies)
131 kfree_rcu(ies, rcu_head);
132
133 /*
134 * This happens when the module is removed, it doesn't
135 * really matter any more save for completeness
136 */
137 if (!list_empty(&bss->hidden_list))
138 list_del(&bss->hidden_list);
139
140 kfree(bss);
141}
142
143static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
144 struct cfg80211_internal_bss *bss)
145{
146 lockdep_assert_held(&rdev->bss_lock);
147
148 bss->refcount++;
149
150 if (bss->pub.hidden_beacon_bss)
151 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
152
153 if (bss->pub.transmitted_bss)
154 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
155}
156
157static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
158 struct cfg80211_internal_bss *bss)
159{
160 lockdep_assert_held(&rdev->bss_lock);
161
162 if (bss->pub.hidden_beacon_bss) {
163 struct cfg80211_internal_bss *hbss;
164
165 hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
166 hbss->refcount--;
167 if (hbss->refcount == 0)
168 bss_free(hbss);
169 }
170
171 if (bss->pub.transmitted_bss) {
172 struct cfg80211_internal_bss *tbss;
173
174 tbss = bss_from_pub(bss->pub.transmitted_bss);
175 tbss->refcount--;
176 if (tbss->refcount == 0)
177 bss_free(tbss);
178 }
179
180 bss->refcount--;
181 if (bss->refcount == 0)
182 bss_free(bss);
183}
184
185static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
186 struct cfg80211_internal_bss *bss)
187{
188 lockdep_assert_held(&rdev->bss_lock);
189
190 if (!list_empty(&bss->hidden_list)) {
191 /*
192 * don't remove the beacon entry if it has
193 * probe responses associated with it
194 */
195 if (!bss->pub.hidden_beacon_bss)
196 return false;
197 /*
198 * if it's a probe response entry break its
199 * link to the other entries in the group
200 */
201 list_del_init(&bss->hidden_list);
202 }
203
204 list_del_init(&bss->list);
205 list_del_init(&bss->pub.nontrans_list);
206 rb_erase(&bss->rbn, &rdev->bss_tree);
207 rdev->bss_entries--;
208 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
209 "rdev bss entries[%d]/list[empty:%d] corruption\n",
210 rdev->bss_entries, list_empty(&rdev->bss_list));
211 bss_ref_put(rdev, bss);
212 return true;
213}
214
215bool cfg80211_is_element_inherited(const struct element *elem,
216 const struct element *non_inherit_elem)
217{
218 u8 id_len, ext_id_len, i, loop_len, id;
219 const u8 *list;
220
221 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
222 return false;
223
224 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
225 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
226 return false;
227
228 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
229 return true;
230
231 /*
232 * non inheritance element format is:
233 * ext ID (56) | IDs list len | list | extension IDs list len | list
234 * Both lists are optional. Both lengths are mandatory.
235 * This means valid length is:
236 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
237 */
238 id_len = non_inherit_elem->data[1];
239 if (non_inherit_elem->datalen < 3 + id_len)
240 return true;
241
242 ext_id_len = non_inherit_elem->data[2 + id_len];
243 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
244 return true;
245
246 if (elem->id == WLAN_EID_EXTENSION) {
247 if (!ext_id_len)
248 return true;
249 loop_len = ext_id_len;
250 list = &non_inherit_elem->data[3 + id_len];
251 id = elem->data[0];
252 } else {
253 if (!id_len)
254 return true;
255 loop_len = id_len;
256 list = &non_inherit_elem->data[2];
257 id = elem->id;
258 }
259
260 for (i = 0; i < loop_len; i++) {
261 if (list[i] == id)
262 return false;
263 }
264
265 return true;
266}
267EXPORT_SYMBOL(cfg80211_is_element_inherited);
268
269static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
270 const u8 *ie, size_t ie_len,
271 u8 **pos, u8 *buf, size_t buf_len)
272{
273 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
274 elem->data + elem->datalen > ie + ie_len))
275 return 0;
276
277 if (elem->datalen + 2 > buf + buf_len - *pos)
278 return 0;
279
280 memcpy(*pos, elem, elem->datalen + 2);
281 *pos += elem->datalen + 2;
282
283 /* Finish if it is not fragmented */
284 if (elem->datalen != 255)
285 return *pos - buf;
286
287 ie_len = ie + ie_len - elem->data - elem->datalen;
288 ie = (const u8 *)elem->data + elem->datalen;
289
290 for_each_element(elem, ie, ie_len) {
291 if (elem->id != WLAN_EID_FRAGMENT)
292 break;
293
294 if (elem->datalen + 2 > buf + buf_len - *pos)
295 return 0;
296
297 memcpy(*pos, elem, elem->datalen + 2);
298 *pos += elem->datalen + 2;
299
300 if (elem->datalen != 255)
301 break;
302 }
303
304 return *pos - buf;
305}
306
307VISIBLE_IF_CFG80211_KUNIT size_t
308cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
309 const u8 *subie, size_t subie_len,
310 u8 *new_ie, size_t new_ie_len)
311{
312 const struct element *non_inherit_elem, *parent, *sub;
313 u8 *pos = new_ie;
314 u8 id, ext_id;
315 unsigned int match_len;
316
317 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
318 subie, subie_len);
319
320 /* We copy the elements one by one from the parent to the generated
321 * elements.
322 * If they are not inherited (included in subie or in the non
323 * inheritance element), then we copy all occurrences the first time
324 * we see this element type.
325 */
326 for_each_element(parent, ie, ielen) {
327 if (parent->id == WLAN_EID_FRAGMENT)
328 continue;
329
330 if (parent->id == WLAN_EID_EXTENSION) {
331 if (parent->datalen < 1)
332 continue;
333
334 id = WLAN_EID_EXTENSION;
335 ext_id = parent->data[0];
336 match_len = 1;
337 } else {
338 id = parent->id;
339 match_len = 0;
340 }
341
342 /* Find first occurrence in subie */
343 sub = cfg80211_find_elem_match(id, subie, subie_len,
344 &ext_id, match_len, 0);
345
346 /* Copy from parent if not in subie and inherited */
347 if (!sub &&
348 cfg80211_is_element_inherited(parent, non_inherit_elem)) {
349 if (!cfg80211_copy_elem_with_frags(parent,
350 ie, ielen,
351 &pos, new_ie,
352 new_ie_len))
353 return 0;
354
355 continue;
356 }
357
358 /* Already copied if an earlier element had the same type */
359 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
360 &ext_id, match_len, 0))
361 continue;
362
363 /* Not inheriting, copy all similar elements from subie */
364 while (sub) {
365 if (!cfg80211_copy_elem_with_frags(sub,
366 subie, subie_len,
367 &pos, new_ie,
368 new_ie_len))
369 return 0;
370
371 sub = cfg80211_find_elem_match(id,
372 sub->data + sub->datalen,
373 subie_len + subie -
374 (sub->data +
375 sub->datalen),
376 &ext_id, match_len, 0);
377 }
378 }
379
380 /* The above misses elements that are included in subie but not in the
381 * parent, so do a pass over subie and append those.
382 * Skip the non-tx BSSID caps and non-inheritance element.
383 */
384 for_each_element(sub, subie, subie_len) {
385 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
386 continue;
387
388 if (sub->id == WLAN_EID_FRAGMENT)
389 continue;
390
391 if (sub->id == WLAN_EID_EXTENSION) {
392 if (sub->datalen < 1)
393 continue;
394
395 id = WLAN_EID_EXTENSION;
396 ext_id = sub->data[0];
397 match_len = 1;
398
399 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
400 continue;
401 } else {
402 id = sub->id;
403 match_len = 0;
404 }
405
406 /* Processed if one was included in the parent */
407 if (cfg80211_find_elem_match(id, ie, ielen,
408 &ext_id, match_len, 0))
409 continue;
410
411 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
412 &pos, new_ie, new_ie_len))
413 return 0;
414 }
415
416 return pos - new_ie;
417}
418EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
419
420static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
421 const u8 *ssid, size_t ssid_len)
422{
423 const struct cfg80211_bss_ies *ies;
424 const struct element *ssid_elem;
425
426 if (bssid && !ether_addr_equal(a->bssid, bssid))
427 return false;
428
429 if (!ssid)
430 return true;
431
432 ies = rcu_access_pointer(a->ies);
433 if (!ies)
434 return false;
435 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
436 if (!ssid_elem)
437 return false;
438 if (ssid_elem->datalen != ssid_len)
439 return false;
440 return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
441}
442
443static int
444cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
445 struct cfg80211_bss *nontrans_bss)
446{
447 const struct element *ssid_elem;
448 struct cfg80211_bss *bss = NULL;
449
450 rcu_read_lock();
451 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
452 if (!ssid_elem) {
453 rcu_read_unlock();
454 return -EINVAL;
455 }
456
457 /* check if nontrans_bss is in the list */
458 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
459 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
460 ssid_elem->datalen)) {
461 rcu_read_unlock();
462 return 0;
463 }
464 }
465
466 rcu_read_unlock();
467
468 /*
469 * This is a bit weird - it's not on the list, but already on another
470 * one! The only way that could happen is if there's some BSSID/SSID
471 * shared by multiple APs in their multi-BSSID profiles, potentially
472 * with hidden SSID mixed in ... ignore it.
473 */
474 if (!list_empty(&nontrans_bss->nontrans_list))
475 return -EINVAL;
476
477 /* add to the list */
478 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
479 return 0;
480}
481
482static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
483 unsigned long expire_time)
484{
485 struct cfg80211_internal_bss *bss, *tmp;
486 bool expired = false;
487
488 lockdep_assert_held(&rdev->bss_lock);
489
490 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
491 if (atomic_read(&bss->hold))
492 continue;
493 if (!time_after(expire_time, bss->ts))
494 continue;
495
496 if (__cfg80211_unlink_bss(rdev, bss))
497 expired = true;
498 }
499
500 if (expired)
501 rdev->bss_generation++;
502}
503
504static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
505{
506 struct cfg80211_internal_bss *bss, *oldest = NULL;
507 bool ret;
508
509 lockdep_assert_held(&rdev->bss_lock);
510
511 list_for_each_entry(bss, &rdev->bss_list, list) {
512 if (atomic_read(&bss->hold))
513 continue;
514
515 if (!list_empty(&bss->hidden_list) &&
516 !bss->pub.hidden_beacon_bss)
517 continue;
518
519 if (oldest && time_before(oldest->ts, bss->ts))
520 continue;
521 oldest = bss;
522 }
523
524 if (WARN_ON(!oldest))
525 return false;
526
527 /*
528 * The callers make sure to increase rdev->bss_generation if anything
529 * gets removed (and a new entry added), so there's no need to also do
530 * it here.
531 */
532
533 ret = __cfg80211_unlink_bss(rdev, oldest);
534 WARN_ON(!ret);
535 return ret;
536}
537
538static u8 cfg80211_parse_bss_param(u8 data,
539 struct cfg80211_colocated_ap *coloc_ap)
540{
541 coloc_ap->oct_recommended =
542 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
543 coloc_ap->same_ssid =
544 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
545 coloc_ap->multi_bss =
546 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
547 coloc_ap->transmitted_bssid =
548 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
549 coloc_ap->unsolicited_probe =
550 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
551 coloc_ap->colocated_ess =
552 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
553
554 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
555}
556
557static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
558 const struct element **elem, u32 *s_ssid)
559{
560
561 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
562 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
563 return -EINVAL;
564
565 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
566 return 0;
567}
568
569static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
570{
571 struct cfg80211_colocated_ap *ap, *tmp_ap;
572
573 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
574 list_del(&ap->list);
575 kfree(ap);
576 }
577}
578
579static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
580 const u8 *pos, u8 length,
581 const struct element *ssid_elem,
582 u32 s_ssid_tmp)
583{
584 u8 bss_params;
585
586 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
587
588 /* The length is already verified by the caller to contain bss_params */
589 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
590 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
591
592 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
593 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
594 entry->short_ssid_valid = true;
595
596 bss_params = tbtt_info->bss_params;
597
598 /* Ignore disabled links */
599 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
600 if (le16_get_bits(tbtt_info->mld_params.params,
601 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
602 return -EINVAL;
603 }
604
605 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
606 psd_20))
607 entry->psd_20 = tbtt_info->psd_20;
608 } else {
609 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
610
611 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
612
613 bss_params = tbtt_info->bss_params;
614
615 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
616 psd_20))
617 entry->psd_20 = tbtt_info->psd_20;
618 }
619
620 /* ignore entries with invalid BSSID */
621 if (!is_valid_ether_addr(entry->bssid))
622 return -EINVAL;
623
624 /* skip non colocated APs */
625 if (!cfg80211_parse_bss_param(bss_params, entry))
626 return -EINVAL;
627
628 /* no information about the short ssid. Consider the entry valid
629 * for now. It would later be dropped in case there are explicit
630 * SSIDs that need to be matched
631 */
632 if (!entry->same_ssid && !entry->short_ssid_valid)
633 return 0;
634
635 if (entry->same_ssid) {
636 entry->short_ssid = s_ssid_tmp;
637 entry->short_ssid_valid = true;
638
639 /*
640 * This is safe because we validate datalen in
641 * cfg80211_parse_colocated_ap(), before calling this
642 * function.
643 */
644 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
645 entry->ssid_len = ssid_elem->datalen;
646 }
647
648 return 0;
649}
650
651static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
652 struct list_head *list)
653{
654 struct ieee80211_neighbor_ap_info *ap_info;
655 const struct element *elem, *ssid_elem;
656 const u8 *pos, *end;
657 u32 s_ssid_tmp;
658 int n_coloc = 0, ret;
659 LIST_HEAD(ap_list);
660
661 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
662 if (ret)
663 return 0;
664
665 for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
666 ies->data, ies->len) {
667 pos = elem->data;
668 end = elem->data + elem->datalen;
669
670 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
671 while (pos + sizeof(*ap_info) <= end) {
672 enum nl80211_band band;
673 int freq;
674 u8 length, i, count;
675
676 ap_info = (void *)pos;
677 count = u8_get_bits(ap_info->tbtt_info_hdr,
678 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
679 length = ap_info->tbtt_info_len;
680
681 pos += sizeof(*ap_info);
682
683 if (!ieee80211_operating_class_to_band(ap_info->op_class,
684 &band))
685 break;
686
687 freq = ieee80211_channel_to_frequency(ap_info->channel,
688 band);
689
690 if (end - pos < count * length)
691 break;
692
693 if (u8_get_bits(ap_info->tbtt_info_hdr,
694 IEEE80211_AP_INFO_TBTT_HDR_TYPE) !=
695 IEEE80211_TBTT_INFO_TYPE_TBTT) {
696 pos += count * length;
697 continue;
698 }
699
700 /* TBTT info must include bss param + BSSID +
701 * (short SSID or same_ssid bit to be set).
702 * ignore other options, and move to the
703 * next AP info
704 */
705 if (band != NL80211_BAND_6GHZ ||
706 !(length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
707 bss_params) ||
708 length == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
709 length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
710 bss_params))) {
711 pos += count * length;
712 continue;
713 }
714
715 for (i = 0; i < count; i++) {
716 struct cfg80211_colocated_ap *entry;
717
718 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
719 GFP_ATOMIC);
720
721 if (!entry)
722 goto error;
723
724 entry->center_freq = freq;
725
726 if (!cfg80211_parse_ap_info(entry, pos, length,
727 ssid_elem,
728 s_ssid_tmp)) {
729 n_coloc++;
730 list_add_tail(&entry->list, &ap_list);
731 } else {
732 kfree(entry);
733 }
734
735 pos += length;
736 }
737 }
738
739error:
740 if (pos != end) {
741 cfg80211_free_coloc_ap_list(&ap_list);
742 return 0;
743 }
744 }
745
746 list_splice_tail(&ap_list, list);
747 return n_coloc;
748}
749
750static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
751 struct ieee80211_channel *chan,
752 bool add_to_6ghz)
753{
754 int i;
755 u32 n_channels = request->n_channels;
756 struct cfg80211_scan_6ghz_params *params =
757 &request->scan_6ghz_params[request->n_6ghz_params];
758
759 for (i = 0; i < n_channels; i++) {
760 if (request->channels[i] == chan) {
761 if (add_to_6ghz)
762 params->channel_idx = i;
763 return;
764 }
765 }
766
767 request->channels[n_channels] = chan;
768 if (add_to_6ghz)
769 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
770 n_channels;
771
772 request->n_channels++;
773}
774
775static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
776 struct cfg80211_scan_request *request)
777{
778 int i;
779 u32 s_ssid;
780
781 for (i = 0; i < request->n_ssids; i++) {
782 /* wildcard ssid in the scan request */
783 if (!request->ssids[i].ssid_len) {
784 if (ap->multi_bss && !ap->transmitted_bssid)
785 continue;
786
787 return true;
788 }
789
790 if (ap->ssid_len &&
791 ap->ssid_len == request->ssids[i].ssid_len) {
792 if (!memcmp(request->ssids[i].ssid, ap->ssid,
793 ap->ssid_len))
794 return true;
795 } else if (ap->short_ssid_valid) {
796 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
797 request->ssids[i].ssid_len);
798
799 if (ap->short_ssid == s_ssid)
800 return true;
801 }
802 }
803
804 return false;
805}
806
807static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
808{
809 u8 i;
810 struct cfg80211_colocated_ap *ap;
811 int n_channels, count = 0, err;
812 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
813 LIST_HEAD(coloc_ap_list);
814 bool need_scan_psc = true;
815 const struct ieee80211_sband_iftype_data *iftd;
816
817 rdev_req->scan_6ghz = true;
818
819 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
820 return -EOPNOTSUPP;
821
822 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
823 rdev_req->wdev->iftype);
824 if (!iftd || !iftd->he_cap.has_he)
825 return -EOPNOTSUPP;
826
827 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
828
829 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
830 struct cfg80211_internal_bss *intbss;
831
832 spin_lock_bh(&rdev->bss_lock);
833 list_for_each_entry(intbss, &rdev->bss_list, list) {
834 struct cfg80211_bss *res = &intbss->pub;
835 const struct cfg80211_bss_ies *ies;
836 const struct element *ssid_elem;
837 struct cfg80211_colocated_ap *entry;
838 u32 s_ssid_tmp;
839 int ret;
840
841 ies = rcu_access_pointer(res->ies);
842 count += cfg80211_parse_colocated_ap(ies,
843 &coloc_ap_list);
844
845 /* In case the scan request specified a specific BSSID
846 * and the BSS is found and operating on 6GHz band then
847 * add this AP to the collocated APs list.
848 * This is relevant for ML probe requests when the lower
849 * band APs have not been discovered.
850 */
851 if (is_broadcast_ether_addr(rdev_req->bssid) ||
852 !ether_addr_equal(rdev_req->bssid, res->bssid) ||
853 res->channel->band != NL80211_BAND_6GHZ)
854 continue;
855
856 ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
857 &s_ssid_tmp);
858 if (ret)
859 continue;
860
861 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
862 GFP_ATOMIC);
863
864 if (!entry)
865 continue;
866
867 memcpy(entry->bssid, res->bssid, ETH_ALEN);
868 entry->short_ssid = s_ssid_tmp;
869 memcpy(entry->ssid, ssid_elem->data,
870 ssid_elem->datalen);
871 entry->ssid_len = ssid_elem->datalen;
872 entry->short_ssid_valid = true;
873 entry->center_freq = res->channel->center_freq;
874
875 list_add_tail(&entry->list, &coloc_ap_list);
876 count++;
877 }
878 spin_unlock_bh(&rdev->bss_lock);
879 }
880
881 request = kzalloc(struct_size(request, channels, n_channels) +
882 sizeof(*request->scan_6ghz_params) * count +
883 sizeof(*request->ssids) * rdev_req->n_ssids,
884 GFP_KERNEL);
885 if (!request) {
886 cfg80211_free_coloc_ap_list(&coloc_ap_list);
887 return -ENOMEM;
888 }
889
890 *request = *rdev_req;
891 request->n_channels = 0;
892 request->scan_6ghz_params =
893 (void *)&request->channels[n_channels];
894
895 /*
896 * PSC channels should not be scanned in case of direct scan with 1 SSID
897 * and at least one of the reported co-located APs with same SSID
898 * indicating that all APs in the same ESS are co-located
899 */
900 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
901 list_for_each_entry(ap, &coloc_ap_list, list) {
902 if (ap->colocated_ess &&
903 cfg80211_find_ssid_match(ap, request)) {
904 need_scan_psc = false;
905 break;
906 }
907 }
908 }
909
910 /*
911 * add to the scan request the channels that need to be scanned
912 * regardless of the collocated APs (PSC channels or all channels
913 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
914 */
915 for (i = 0; i < rdev_req->n_channels; i++) {
916 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
917 ((need_scan_psc &&
918 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
919 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
920 cfg80211_scan_req_add_chan(request,
921 rdev_req->channels[i],
922 false);
923 }
924 }
925
926 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
927 goto skip;
928
929 list_for_each_entry(ap, &coloc_ap_list, list) {
930 bool found = false;
931 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
932 &request->scan_6ghz_params[request->n_6ghz_params];
933 struct ieee80211_channel *chan =
934 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
935
936 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
937 continue;
938
939 for (i = 0; i < rdev_req->n_channels; i++) {
940 if (rdev_req->channels[i] == chan)
941 found = true;
942 }
943
944 if (!found)
945 continue;
946
947 if (request->n_ssids > 0 &&
948 !cfg80211_find_ssid_match(ap, request))
949 continue;
950
951 if (!is_broadcast_ether_addr(request->bssid) &&
952 !ether_addr_equal(request->bssid, ap->bssid))
953 continue;
954
955 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
956 continue;
957
958 cfg80211_scan_req_add_chan(request, chan, true);
959 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
960 scan_6ghz_params->short_ssid = ap->short_ssid;
961 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
962 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
963 scan_6ghz_params->psd_20 = ap->psd_20;
964
965 /*
966 * If a PSC channel is added to the scan and 'need_scan_psc' is
967 * set to false, then all the APs that the scan logic is
968 * interested with on the channel are collocated and thus there
969 * is no need to perform the initial PSC channel listen.
970 */
971 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
972 scan_6ghz_params->psc_no_listen = true;
973
974 request->n_6ghz_params++;
975 }
976
977skip:
978 cfg80211_free_coloc_ap_list(&coloc_ap_list);
979
980 if (request->n_channels) {
981 struct cfg80211_scan_request *old = rdev->int_scan_req;
982 rdev->int_scan_req = request;
983
984 /*
985 * Add the ssids from the parent scan request to the new scan
986 * request, so the driver would be able to use them in its
987 * probe requests to discover hidden APs on PSC channels.
988 */
989 request->ssids = (void *)&request->channels[request->n_channels];
990 request->n_ssids = rdev_req->n_ssids;
991 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
992 request->n_ssids);
993
994 /*
995 * If this scan follows a previous scan, save the scan start
996 * info from the first part of the scan
997 */
998 if (old)
999 rdev->int_scan_req->info = old->info;
1000
1001 err = rdev_scan(rdev, request);
1002 if (err) {
1003 rdev->int_scan_req = old;
1004 kfree(request);
1005 } else {
1006 kfree(old);
1007 }
1008
1009 return err;
1010 }
1011
1012 kfree(request);
1013 return -EINVAL;
1014}
1015
1016int cfg80211_scan(struct cfg80211_registered_device *rdev)
1017{
1018 struct cfg80211_scan_request *request;
1019 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1020 u32 n_channels = 0, idx, i;
1021
1022 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1023 return rdev_scan(rdev, rdev_req);
1024
1025 for (i = 0; i < rdev_req->n_channels; i++) {
1026 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1027 n_channels++;
1028 }
1029
1030 if (!n_channels)
1031 return cfg80211_scan_6ghz(rdev);
1032
1033 request = kzalloc(struct_size(request, channels, n_channels),
1034 GFP_KERNEL);
1035 if (!request)
1036 return -ENOMEM;
1037
1038 *request = *rdev_req;
1039 request->n_channels = n_channels;
1040
1041 for (i = idx = 0; i < rdev_req->n_channels; i++) {
1042 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1043 request->channels[idx++] = rdev_req->channels[i];
1044 }
1045
1046 rdev_req->scan_6ghz = false;
1047 rdev->int_scan_req = request;
1048 return rdev_scan(rdev, request);
1049}
1050
1051void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1052 bool send_message)
1053{
1054 struct cfg80211_scan_request *request, *rdev_req;
1055 struct wireless_dev *wdev;
1056 struct sk_buff *msg;
1057#ifdef CONFIG_CFG80211_WEXT
1058 union iwreq_data wrqu;
1059#endif
1060
1061 lockdep_assert_held(&rdev->wiphy.mtx);
1062
1063 if (rdev->scan_msg) {
1064 nl80211_send_scan_msg(rdev, rdev->scan_msg);
1065 rdev->scan_msg = NULL;
1066 return;
1067 }
1068
1069 rdev_req = rdev->scan_req;
1070 if (!rdev_req)
1071 return;
1072
1073 wdev = rdev_req->wdev;
1074 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1075
1076 if (wdev_running(wdev) &&
1077 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1078 !rdev_req->scan_6ghz && !request->info.aborted &&
1079 !cfg80211_scan_6ghz(rdev))
1080 return;
1081
1082 /*
1083 * This must be before sending the other events!
1084 * Otherwise, wpa_supplicant gets completely confused with
1085 * wext events.
1086 */
1087 if (wdev->netdev)
1088 cfg80211_sme_scan_done(wdev->netdev);
1089
1090 if (!request->info.aborted &&
1091 request->flags & NL80211_SCAN_FLAG_FLUSH) {
1092 /* flush entries from previous scans */
1093 spin_lock_bh(&rdev->bss_lock);
1094 __cfg80211_bss_expire(rdev, request->scan_start);
1095 spin_unlock_bh(&rdev->bss_lock);
1096 }
1097
1098 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1099
1100#ifdef CONFIG_CFG80211_WEXT
1101 if (wdev->netdev && !request->info.aborted) {
1102 memset(&wrqu, 0, sizeof(wrqu));
1103
1104 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1105 }
1106#endif
1107
1108 dev_put(wdev->netdev);
1109
1110 kfree(rdev->int_scan_req);
1111 rdev->int_scan_req = NULL;
1112
1113 kfree(rdev->scan_req);
1114 rdev->scan_req = NULL;
1115
1116 if (!send_message)
1117 rdev->scan_msg = msg;
1118 else
1119 nl80211_send_scan_msg(rdev, msg);
1120}
1121
1122void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1123{
1124 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1125}
1126
1127void cfg80211_scan_done(struct cfg80211_scan_request *request,
1128 struct cfg80211_scan_info *info)
1129{
1130 struct cfg80211_scan_info old_info = request->info;
1131
1132 trace_cfg80211_scan_done(request, info);
1133 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1134 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1135
1136 request->info = *info;
1137
1138 /*
1139 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1140 * be of the first part. In such a case old_info.scan_start_tsf should
1141 * be non zero.
1142 */
1143 if (request->scan_6ghz && old_info.scan_start_tsf) {
1144 request->info.scan_start_tsf = old_info.scan_start_tsf;
1145 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1146 sizeof(request->info.tsf_bssid));
1147 }
1148
1149 request->notified = true;
1150 wiphy_work_queue(request->wiphy,
1151 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1152}
1153EXPORT_SYMBOL(cfg80211_scan_done);
1154
1155void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1156 struct cfg80211_sched_scan_request *req)
1157{
1158 lockdep_assert_held(&rdev->wiphy.mtx);
1159
1160 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1161}
1162
1163static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1164 struct cfg80211_sched_scan_request *req)
1165{
1166 lockdep_assert_held(&rdev->wiphy.mtx);
1167
1168 list_del_rcu(&req->list);
1169 kfree_rcu(req, rcu_head);
1170}
1171
1172static struct cfg80211_sched_scan_request *
1173cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1174{
1175 struct cfg80211_sched_scan_request *pos;
1176
1177 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1178 lockdep_is_held(&rdev->wiphy.mtx)) {
1179 if (pos->reqid == reqid)
1180 return pos;
1181 }
1182 return NULL;
1183}
1184
1185/*
1186 * Determines if a scheduled scan request can be handled. When a legacy
1187 * scheduled scan is running no other scheduled scan is allowed regardless
1188 * whether the request is for legacy or multi-support scan. When a multi-support
1189 * scheduled scan is running a request for legacy scan is not allowed. In this
1190 * case a request for multi-support scan can be handled if resources are
1191 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1192 */
1193int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1194 bool want_multi)
1195{
1196 struct cfg80211_sched_scan_request *pos;
1197 int i = 0;
1198
1199 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1200 /* request id zero means legacy in progress */
1201 if (!i && !pos->reqid)
1202 return -EINPROGRESS;
1203 i++;
1204 }
1205
1206 if (i) {
1207 /* no legacy allowed when multi request(s) are active */
1208 if (!want_multi)
1209 return -EINPROGRESS;
1210
1211 /* resource limit reached */
1212 if (i == rdev->wiphy.max_sched_scan_reqs)
1213 return -ENOSPC;
1214 }
1215 return 0;
1216}
1217
1218void cfg80211_sched_scan_results_wk(struct work_struct *work)
1219{
1220 struct cfg80211_registered_device *rdev;
1221 struct cfg80211_sched_scan_request *req, *tmp;
1222
1223 rdev = container_of(work, struct cfg80211_registered_device,
1224 sched_scan_res_wk);
1225
1226 wiphy_lock(&rdev->wiphy);
1227 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1228 if (req->report_results) {
1229 req->report_results = false;
1230 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1231 /* flush entries from previous scans */
1232 spin_lock_bh(&rdev->bss_lock);
1233 __cfg80211_bss_expire(rdev, req->scan_start);
1234 spin_unlock_bh(&rdev->bss_lock);
1235 req->scan_start = jiffies;
1236 }
1237 nl80211_send_sched_scan(req,
1238 NL80211_CMD_SCHED_SCAN_RESULTS);
1239 }
1240 }
1241 wiphy_unlock(&rdev->wiphy);
1242}
1243
1244void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1245{
1246 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1247 struct cfg80211_sched_scan_request *request;
1248
1249 trace_cfg80211_sched_scan_results(wiphy, reqid);
1250 /* ignore if we're not scanning */
1251
1252 rcu_read_lock();
1253 request = cfg80211_find_sched_scan_req(rdev, reqid);
1254 if (request) {
1255 request->report_results = true;
1256 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1257 }
1258 rcu_read_unlock();
1259}
1260EXPORT_SYMBOL(cfg80211_sched_scan_results);
1261
1262void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1263{
1264 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1265
1266 lockdep_assert_held(&wiphy->mtx);
1267
1268 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1269
1270 __cfg80211_stop_sched_scan(rdev, reqid, true);
1271}
1272EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1273
1274void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1275{
1276 wiphy_lock(wiphy);
1277 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1278 wiphy_unlock(wiphy);
1279}
1280EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1281
1282int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1283 struct cfg80211_sched_scan_request *req,
1284 bool driver_initiated)
1285{
1286 lockdep_assert_held(&rdev->wiphy.mtx);
1287
1288 if (!driver_initiated) {
1289 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1290 if (err)
1291 return err;
1292 }
1293
1294 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1295
1296 cfg80211_del_sched_scan_req(rdev, req);
1297
1298 return 0;
1299}
1300
1301int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1302 u64 reqid, bool driver_initiated)
1303{
1304 struct cfg80211_sched_scan_request *sched_scan_req;
1305
1306 lockdep_assert_held(&rdev->wiphy.mtx);
1307
1308 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1309 if (!sched_scan_req)
1310 return -ENOENT;
1311
1312 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1313 driver_initiated);
1314}
1315
1316void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1317 unsigned long age_secs)
1318{
1319 struct cfg80211_internal_bss *bss;
1320 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1321
1322 spin_lock_bh(&rdev->bss_lock);
1323 list_for_each_entry(bss, &rdev->bss_list, list)
1324 bss->ts -= age_jiffies;
1325 spin_unlock_bh(&rdev->bss_lock);
1326}
1327
1328void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1329{
1330 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1331}
1332
1333void cfg80211_bss_flush(struct wiphy *wiphy)
1334{
1335 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1336
1337 spin_lock_bh(&rdev->bss_lock);
1338 __cfg80211_bss_expire(rdev, jiffies);
1339 spin_unlock_bh(&rdev->bss_lock);
1340}
1341EXPORT_SYMBOL(cfg80211_bss_flush);
1342
1343const struct element *
1344cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1345 const u8 *match, unsigned int match_len,
1346 unsigned int match_offset)
1347{
1348 const struct element *elem;
1349
1350 for_each_element_id(elem, eid, ies, len) {
1351 if (elem->datalen >= match_offset + match_len &&
1352 !memcmp(elem->data + match_offset, match, match_len))
1353 return elem;
1354 }
1355
1356 return NULL;
1357}
1358EXPORT_SYMBOL(cfg80211_find_elem_match);
1359
1360const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1361 const u8 *ies,
1362 unsigned int len)
1363{
1364 const struct element *elem;
1365 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1366 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1367
1368 if (WARN_ON(oui_type > 0xff))
1369 return NULL;
1370
1371 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1372 match, match_len, 0);
1373
1374 if (!elem || elem->datalen < 4)
1375 return NULL;
1376
1377 return elem;
1378}
1379EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1380
1381/**
1382 * enum bss_compare_mode - BSS compare mode
1383 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1384 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1385 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1386 */
1387enum bss_compare_mode {
1388 BSS_CMP_REGULAR,
1389 BSS_CMP_HIDE_ZLEN,
1390 BSS_CMP_HIDE_NUL,
1391};
1392
1393static int cmp_bss(struct cfg80211_bss *a,
1394 struct cfg80211_bss *b,
1395 enum bss_compare_mode mode)
1396{
1397 const struct cfg80211_bss_ies *a_ies, *b_ies;
1398 const u8 *ie1 = NULL;
1399 const u8 *ie2 = NULL;
1400 int i, r;
1401
1402 if (a->channel != b->channel)
1403 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1404 (a->channel->center_freq * 1000 + a->channel->freq_offset);
1405
1406 a_ies = rcu_access_pointer(a->ies);
1407 if (!a_ies)
1408 return -1;
1409 b_ies = rcu_access_pointer(b->ies);
1410 if (!b_ies)
1411 return 1;
1412
1413 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1414 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1415 a_ies->data, a_ies->len);
1416 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1417 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1418 b_ies->data, b_ies->len);
1419 if (ie1 && ie2) {
1420 int mesh_id_cmp;
1421
1422 if (ie1[1] == ie2[1])
1423 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1424 else
1425 mesh_id_cmp = ie2[1] - ie1[1];
1426
1427 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1428 a_ies->data, a_ies->len);
1429 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1430 b_ies->data, b_ies->len);
1431 if (ie1 && ie2) {
1432 if (mesh_id_cmp)
1433 return mesh_id_cmp;
1434 if (ie1[1] != ie2[1])
1435 return ie2[1] - ie1[1];
1436 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1437 }
1438 }
1439
1440 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1441 if (r)
1442 return r;
1443
1444 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1445 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1446
1447 if (!ie1 && !ie2)
1448 return 0;
1449
1450 /*
1451 * Note that with "hide_ssid", the function returns a match if
1452 * the already-present BSS ("b") is a hidden SSID beacon for
1453 * the new BSS ("a").
1454 */
1455
1456 /* sort missing IE before (left of) present IE */
1457 if (!ie1)
1458 return -1;
1459 if (!ie2)
1460 return 1;
1461
1462 switch (mode) {
1463 case BSS_CMP_HIDE_ZLEN:
1464 /*
1465 * In ZLEN mode we assume the BSS entry we're
1466 * looking for has a zero-length SSID. So if
1467 * the one we're looking at right now has that,
1468 * return 0. Otherwise, return the difference
1469 * in length, but since we're looking for the
1470 * 0-length it's really equivalent to returning
1471 * the length of the one we're looking at.
1472 *
1473 * No content comparison is needed as we assume
1474 * the content length is zero.
1475 */
1476 return ie2[1];
1477 case BSS_CMP_REGULAR:
1478 default:
1479 /* sort by length first, then by contents */
1480 if (ie1[1] != ie2[1])
1481 return ie2[1] - ie1[1];
1482 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1483 case BSS_CMP_HIDE_NUL:
1484 if (ie1[1] != ie2[1])
1485 return ie2[1] - ie1[1];
1486 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1487 for (i = 0; i < ie2[1]; i++)
1488 if (ie2[i + 2])
1489 return -1;
1490 return 0;
1491 }
1492}
1493
1494static bool cfg80211_bss_type_match(u16 capability,
1495 enum nl80211_band band,
1496 enum ieee80211_bss_type bss_type)
1497{
1498 bool ret = true;
1499 u16 mask, val;
1500
1501 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1502 return ret;
1503
1504 if (band == NL80211_BAND_60GHZ) {
1505 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1506 switch (bss_type) {
1507 case IEEE80211_BSS_TYPE_ESS:
1508 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1509 break;
1510 case IEEE80211_BSS_TYPE_PBSS:
1511 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1512 break;
1513 case IEEE80211_BSS_TYPE_IBSS:
1514 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1515 break;
1516 default:
1517 return false;
1518 }
1519 } else {
1520 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1521 switch (bss_type) {
1522 case IEEE80211_BSS_TYPE_ESS:
1523 val = WLAN_CAPABILITY_ESS;
1524 break;
1525 case IEEE80211_BSS_TYPE_IBSS:
1526 val = WLAN_CAPABILITY_IBSS;
1527 break;
1528 case IEEE80211_BSS_TYPE_MBSS:
1529 val = 0;
1530 break;
1531 default:
1532 return false;
1533 }
1534 }
1535
1536 ret = ((capability & mask) == val);
1537 return ret;
1538}
1539
1540/* Returned bss is reference counted and must be cleaned up appropriately. */
1541struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1542 struct ieee80211_channel *channel,
1543 const u8 *bssid,
1544 const u8 *ssid, size_t ssid_len,
1545 enum ieee80211_bss_type bss_type,
1546 enum ieee80211_privacy privacy,
1547 u32 use_for)
1548{
1549 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1550 struct cfg80211_internal_bss *bss, *res = NULL;
1551 unsigned long now = jiffies;
1552 int bss_privacy;
1553
1554 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1555 privacy);
1556
1557 spin_lock_bh(&rdev->bss_lock);
1558
1559 list_for_each_entry(bss, &rdev->bss_list, list) {
1560 if (!cfg80211_bss_type_match(bss->pub.capability,
1561 bss->pub.channel->band, bss_type))
1562 continue;
1563
1564 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1565 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1566 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1567 continue;
1568 if (channel && bss->pub.channel != channel)
1569 continue;
1570 if (!is_valid_ether_addr(bss->pub.bssid))
1571 continue;
1572 if ((bss->pub.use_for & use_for) != use_for)
1573 continue;
1574 /* Don't get expired BSS structs */
1575 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1576 !atomic_read(&bss->hold))
1577 continue;
1578 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1579 res = bss;
1580 bss_ref_get(rdev, res);
1581 break;
1582 }
1583 }
1584
1585 spin_unlock_bh(&rdev->bss_lock);
1586 if (!res)
1587 return NULL;
1588 trace_cfg80211_return_bss(&res->pub);
1589 return &res->pub;
1590}
1591EXPORT_SYMBOL(__cfg80211_get_bss);
1592
1593static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1594 struct cfg80211_internal_bss *bss)
1595{
1596 struct rb_node **p = &rdev->bss_tree.rb_node;
1597 struct rb_node *parent = NULL;
1598 struct cfg80211_internal_bss *tbss;
1599 int cmp;
1600
1601 while (*p) {
1602 parent = *p;
1603 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1604
1605 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1606
1607 if (WARN_ON(!cmp)) {
1608 /* will sort of leak this BSS */
1609 return;
1610 }
1611
1612 if (cmp < 0)
1613 p = &(*p)->rb_left;
1614 else
1615 p = &(*p)->rb_right;
1616 }
1617
1618 rb_link_node(&bss->rbn, parent, p);
1619 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1620}
1621
1622static struct cfg80211_internal_bss *
1623rb_find_bss(struct cfg80211_registered_device *rdev,
1624 struct cfg80211_internal_bss *res,
1625 enum bss_compare_mode mode)
1626{
1627 struct rb_node *n = rdev->bss_tree.rb_node;
1628 struct cfg80211_internal_bss *bss;
1629 int r;
1630
1631 while (n) {
1632 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1633 r = cmp_bss(&res->pub, &bss->pub, mode);
1634
1635 if (r == 0)
1636 return bss;
1637 else if (r < 0)
1638 n = n->rb_left;
1639 else
1640 n = n->rb_right;
1641 }
1642
1643 return NULL;
1644}
1645
1646static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1647 struct cfg80211_internal_bss *new)
1648{
1649 const struct cfg80211_bss_ies *ies;
1650 struct cfg80211_internal_bss *bss;
1651 const u8 *ie;
1652 int i, ssidlen;
1653 u8 fold = 0;
1654 u32 n_entries = 0;
1655
1656 ies = rcu_access_pointer(new->pub.beacon_ies);
1657 if (WARN_ON(!ies))
1658 return false;
1659
1660 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1661 if (!ie) {
1662 /* nothing to do */
1663 return true;
1664 }
1665
1666 ssidlen = ie[1];
1667 for (i = 0; i < ssidlen; i++)
1668 fold |= ie[2 + i];
1669
1670 if (fold) {
1671 /* not a hidden SSID */
1672 return true;
1673 }
1674
1675 /* This is the bad part ... */
1676
1677 list_for_each_entry(bss, &rdev->bss_list, list) {
1678 /*
1679 * we're iterating all the entries anyway, so take the
1680 * opportunity to validate the list length accounting
1681 */
1682 n_entries++;
1683
1684 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1685 continue;
1686 if (bss->pub.channel != new->pub.channel)
1687 continue;
1688 if (rcu_access_pointer(bss->pub.beacon_ies))
1689 continue;
1690 ies = rcu_access_pointer(bss->pub.ies);
1691 if (!ies)
1692 continue;
1693 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1694 if (!ie)
1695 continue;
1696 if (ssidlen && ie[1] != ssidlen)
1697 continue;
1698 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1699 continue;
1700 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1701 list_del(&bss->hidden_list);
1702 /* combine them */
1703 list_add(&bss->hidden_list, &new->hidden_list);
1704 bss->pub.hidden_beacon_bss = &new->pub;
1705 new->refcount += bss->refcount;
1706 rcu_assign_pointer(bss->pub.beacon_ies,
1707 new->pub.beacon_ies);
1708 }
1709
1710 WARN_ONCE(n_entries != rdev->bss_entries,
1711 "rdev bss entries[%d]/list[len:%d] corruption\n",
1712 rdev->bss_entries, n_entries);
1713
1714 return true;
1715}
1716
1717static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1718 const struct cfg80211_bss_ies *new_ies,
1719 const struct cfg80211_bss_ies *old_ies)
1720{
1721 struct cfg80211_internal_bss *bss;
1722
1723 /* Assign beacon IEs to all sub entries */
1724 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1725 const struct cfg80211_bss_ies *ies;
1726
1727 ies = rcu_access_pointer(bss->pub.beacon_ies);
1728 WARN_ON(ies != old_ies);
1729
1730 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1731 }
1732}
1733
1734static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1735 struct cfg80211_internal_bss *known,
1736 const struct cfg80211_bss_ies *old)
1737{
1738 const struct ieee80211_ext_chansw_ie *ecsa;
1739 const struct element *elem_new, *elem_old;
1740 const struct cfg80211_bss_ies *new, *bcn;
1741
1742 if (known->pub.proberesp_ecsa_stuck)
1743 return;
1744
1745 new = rcu_dereference_protected(known->pub.proberesp_ies,
1746 lockdep_is_held(&rdev->bss_lock));
1747 if (WARN_ON(!new))
1748 return;
1749
1750 if (new->tsf - old->tsf < USEC_PER_SEC)
1751 return;
1752
1753 elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1754 old->data, old->len);
1755 if (!elem_old)
1756 return;
1757
1758 elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1759 new->data, new->len);
1760 if (!elem_new)
1761 return;
1762
1763 bcn = rcu_dereference_protected(known->pub.beacon_ies,
1764 lockdep_is_held(&rdev->bss_lock));
1765 if (bcn &&
1766 cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1767 bcn->data, bcn->len))
1768 return;
1769
1770 if (elem_new->datalen != elem_old->datalen)
1771 return;
1772 if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1773 return;
1774 if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
1775 return;
1776
1777 ecsa = (void *)elem_new->data;
1778
1779 if (!ecsa->mode)
1780 return;
1781
1782 if (ecsa->new_ch_num !=
1783 ieee80211_frequency_to_channel(known->pub.channel->center_freq))
1784 return;
1785
1786 known->pub.proberesp_ecsa_stuck = 1;
1787}
1788
1789static bool
1790cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1791 struct cfg80211_internal_bss *known,
1792 struct cfg80211_internal_bss *new,
1793 bool signal_valid)
1794{
1795 lockdep_assert_held(&rdev->bss_lock);
1796
1797 /* Update IEs */
1798 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1799 const struct cfg80211_bss_ies *old;
1800
1801 old = rcu_access_pointer(known->pub.proberesp_ies);
1802
1803 rcu_assign_pointer(known->pub.proberesp_ies,
1804 new->pub.proberesp_ies);
1805 /* Override possible earlier Beacon frame IEs */
1806 rcu_assign_pointer(known->pub.ies,
1807 new->pub.proberesp_ies);
1808 if (old) {
1809 cfg80211_check_stuck_ecsa(rdev, known, old);
1810 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1811 }
1812 }
1813
1814 if (rcu_access_pointer(new->pub.beacon_ies)) {
1815 const struct cfg80211_bss_ies *old;
1816
1817 if (known->pub.hidden_beacon_bss &&
1818 !list_empty(&known->hidden_list)) {
1819 const struct cfg80211_bss_ies *f;
1820
1821 /* The known BSS struct is one of the probe
1822 * response members of a group, but we're
1823 * receiving a beacon (beacon_ies in the new
1824 * bss is used). This can only mean that the
1825 * AP changed its beacon from not having an
1826 * SSID to showing it, which is confusing so
1827 * drop this information.
1828 */
1829
1830 f = rcu_access_pointer(new->pub.beacon_ies);
1831 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1832 return false;
1833 }
1834
1835 old = rcu_access_pointer(known->pub.beacon_ies);
1836
1837 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1838
1839 /* Override IEs if they were from a beacon before */
1840 if (old == rcu_access_pointer(known->pub.ies))
1841 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1842
1843 cfg80211_update_hidden_bsses(known,
1844 rcu_access_pointer(new->pub.beacon_ies),
1845 old);
1846
1847 if (old)
1848 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1849 }
1850
1851 known->pub.beacon_interval = new->pub.beacon_interval;
1852
1853 /* don't update the signal if beacon was heard on
1854 * adjacent channel.
1855 */
1856 if (signal_valid)
1857 known->pub.signal = new->pub.signal;
1858 known->pub.capability = new->pub.capability;
1859 known->ts = new->ts;
1860 known->ts_boottime = new->ts_boottime;
1861 known->parent_tsf = new->parent_tsf;
1862 known->pub.chains = new->pub.chains;
1863 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1864 IEEE80211_MAX_CHAINS);
1865 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1866 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1867 known->pub.bssid_index = new->pub.bssid_index;
1868 known->pub.use_for &= new->pub.use_for;
1869 known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1870
1871 return true;
1872}
1873
1874/* Returned bss is reference counted and must be cleaned up appropriately. */
1875static struct cfg80211_internal_bss *
1876__cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1877 struct cfg80211_internal_bss *tmp,
1878 bool signal_valid, unsigned long ts)
1879{
1880 struct cfg80211_internal_bss *found = NULL;
1881 struct cfg80211_bss_ies *ies;
1882
1883 if (WARN_ON(!tmp->pub.channel))
1884 goto free_ies;
1885
1886 tmp->ts = ts;
1887
1888 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1889 goto free_ies;
1890
1891 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1892
1893 if (found) {
1894 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1895 return NULL;
1896 } else {
1897 struct cfg80211_internal_bss *new;
1898 struct cfg80211_internal_bss *hidden;
1899
1900 /*
1901 * create a copy -- the "res" variable that is passed in
1902 * is allocated on the stack since it's not needed in the
1903 * more common case of an update
1904 */
1905 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1906 GFP_ATOMIC);
1907 if (!new)
1908 goto free_ies;
1909 memcpy(new, tmp, sizeof(*new));
1910 new->refcount = 1;
1911 INIT_LIST_HEAD(&new->hidden_list);
1912 INIT_LIST_HEAD(&new->pub.nontrans_list);
1913 /* we'll set this later if it was non-NULL */
1914 new->pub.transmitted_bss = NULL;
1915
1916 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1917 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1918 if (!hidden)
1919 hidden = rb_find_bss(rdev, tmp,
1920 BSS_CMP_HIDE_NUL);
1921 if (hidden) {
1922 new->pub.hidden_beacon_bss = &hidden->pub;
1923 list_add(&new->hidden_list,
1924 &hidden->hidden_list);
1925 hidden->refcount++;
1926
1927 ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1928 rcu_assign_pointer(new->pub.beacon_ies,
1929 hidden->pub.beacon_ies);
1930 if (ies)
1931 kfree_rcu(ies, rcu_head);
1932 }
1933 } else {
1934 /*
1935 * Ok so we found a beacon, and don't have an entry. If
1936 * it's a beacon with hidden SSID, we might be in for an
1937 * expensive search for any probe responses that should
1938 * be grouped with this beacon for updates ...
1939 */
1940 if (!cfg80211_combine_bsses(rdev, new)) {
1941 bss_ref_put(rdev, new);
1942 return NULL;
1943 }
1944 }
1945
1946 if (rdev->bss_entries >= bss_entries_limit &&
1947 !cfg80211_bss_expire_oldest(rdev)) {
1948 bss_ref_put(rdev, new);
1949 return NULL;
1950 }
1951
1952 /* This must be before the call to bss_ref_get */
1953 if (tmp->pub.transmitted_bss) {
1954 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1955 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1956 }
1957
1958 list_add_tail(&new->list, &rdev->bss_list);
1959 rdev->bss_entries++;
1960 rb_insert_bss(rdev, new);
1961 found = new;
1962 }
1963
1964 rdev->bss_generation++;
1965 bss_ref_get(rdev, found);
1966
1967 return found;
1968
1969free_ies:
1970 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1971 if (ies)
1972 kfree_rcu(ies, rcu_head);
1973 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1974 if (ies)
1975 kfree_rcu(ies, rcu_head);
1976
1977 return NULL;
1978}
1979
1980struct cfg80211_internal_bss *
1981cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1982 struct cfg80211_internal_bss *tmp,
1983 bool signal_valid, unsigned long ts)
1984{
1985 struct cfg80211_internal_bss *res;
1986
1987 spin_lock_bh(&rdev->bss_lock);
1988 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
1989 spin_unlock_bh(&rdev->bss_lock);
1990
1991 return res;
1992}
1993
1994int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1995 enum nl80211_band band)
1996{
1997 const struct element *tmp;
1998
1999 if (band == NL80211_BAND_6GHZ) {
2000 struct ieee80211_he_operation *he_oper;
2001
2002 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
2003 ielen);
2004 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
2005 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
2006 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2007
2008 he_oper = (void *)&tmp->data[1];
2009
2010 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2011 if (!he_6ghz_oper)
2012 return -1;
2013
2014 return he_6ghz_oper->primary;
2015 }
2016 } else if (band == NL80211_BAND_S1GHZ) {
2017 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
2018 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
2019 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
2020
2021 return s1gop->oper_ch;
2022 }
2023 } else {
2024 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
2025 if (tmp && tmp->datalen == 1)
2026 return tmp->data[0];
2027
2028 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
2029 if (tmp &&
2030 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2031 struct ieee80211_ht_operation *htop = (void *)tmp->data;
2032
2033 return htop->primary_chan;
2034 }
2035 }
2036
2037 return -1;
2038}
2039EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2040
2041/*
2042 * Update RX channel information based on the available frame payload
2043 * information. This is mainly for the 2.4 GHz band where frames can be received
2044 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2045 * element to indicate the current (transmitting) channel, but this might also
2046 * be needed on other bands if RX frequency does not match with the actual
2047 * operating channel of a BSS, or if the AP reports a different primary channel.
2048 */
2049static struct ieee80211_channel *
2050cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2051 struct ieee80211_channel *channel)
2052{
2053 u32 freq;
2054 int channel_number;
2055 struct ieee80211_channel *alt_channel;
2056
2057 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2058 channel->band);
2059
2060 if (channel_number < 0) {
2061 /* No channel information in frame payload */
2062 return channel;
2063 }
2064
2065 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2066
2067 /*
2068 * Frame info (beacon/prob res) is the same as received channel,
2069 * no need for further processing.
2070 */
2071 if (freq == ieee80211_channel_to_khz(channel))
2072 return channel;
2073
2074 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2075 if (!alt_channel) {
2076 if (channel->band == NL80211_BAND_2GHZ ||
2077 channel->band == NL80211_BAND_6GHZ) {
2078 /*
2079 * Better not allow unexpected channels when that could
2080 * be going beyond the 1-11 range (e.g., discovering
2081 * BSS on channel 12 when radio is configured for
2082 * channel 11) or beyond the 6 GHz channel range.
2083 */
2084 return NULL;
2085 }
2086
2087 /* No match for the payload channel number - ignore it */
2088 return channel;
2089 }
2090
2091 /*
2092 * Use the channel determined through the payload channel number
2093 * instead of the RX channel reported by the driver.
2094 */
2095 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2096 return NULL;
2097 return alt_channel;
2098}
2099
2100struct cfg80211_inform_single_bss_data {
2101 struct cfg80211_inform_bss *drv_data;
2102 enum cfg80211_bss_frame_type ftype;
2103 struct ieee80211_channel *channel;
2104 u8 bssid[ETH_ALEN];
2105 u64 tsf;
2106 u16 capability;
2107 u16 beacon_interval;
2108 const u8 *ie;
2109 size_t ielen;
2110
2111 enum {
2112 BSS_SOURCE_DIRECT = 0,
2113 BSS_SOURCE_MBSSID,
2114 BSS_SOURCE_STA_PROFILE,
2115 } bss_source;
2116 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2117 struct cfg80211_bss *source_bss;
2118 u8 max_bssid_indicator;
2119 u8 bssid_index;
2120
2121 u8 use_for;
2122 u64 cannot_use_reasons;
2123};
2124
2125/* Returned bss is reference counted and must be cleaned up appropriately. */
2126static struct cfg80211_bss *
2127cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2128 struct cfg80211_inform_single_bss_data *data,
2129 gfp_t gfp)
2130{
2131 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2132 struct cfg80211_inform_bss *drv_data = data->drv_data;
2133 struct cfg80211_bss_ies *ies;
2134 struct ieee80211_channel *channel;
2135 struct cfg80211_internal_bss tmp = {}, *res;
2136 int bss_type;
2137 bool signal_valid;
2138 unsigned long ts;
2139
2140 if (WARN_ON(!wiphy))
2141 return NULL;
2142
2143 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2144 (drv_data->signal < 0 || drv_data->signal > 100)))
2145 return NULL;
2146
2147 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2148 return NULL;
2149
2150 channel = data->channel;
2151 if (!channel)
2152 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2153 drv_data->chan);
2154 if (!channel)
2155 return NULL;
2156
2157 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2158 tmp.pub.channel = channel;
2159 if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2160 tmp.pub.signal = drv_data->signal;
2161 else
2162 tmp.pub.signal = 0;
2163 tmp.pub.beacon_interval = data->beacon_interval;
2164 tmp.pub.capability = data->capability;
2165 tmp.ts_boottime = drv_data->boottime_ns;
2166 tmp.parent_tsf = drv_data->parent_tsf;
2167 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2168 tmp.pub.use_for = data->use_for;
2169 tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2170
2171 if (data->bss_source != BSS_SOURCE_DIRECT) {
2172 tmp.pub.transmitted_bss = data->source_bss;
2173 ts = bss_from_pub(data->source_bss)->ts;
2174 tmp.pub.bssid_index = data->bssid_index;
2175 tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2176 } else {
2177 ts = jiffies;
2178
2179 if (channel->band == NL80211_BAND_60GHZ) {
2180 bss_type = data->capability &
2181 WLAN_CAPABILITY_DMG_TYPE_MASK;
2182 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2183 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2184 regulatory_hint_found_beacon(wiphy, channel,
2185 gfp);
2186 } else {
2187 if (data->capability & WLAN_CAPABILITY_ESS)
2188 regulatory_hint_found_beacon(wiphy, channel,
2189 gfp);
2190 }
2191 }
2192
2193 /*
2194 * If we do not know here whether the IEs are from a Beacon or Probe
2195 * Response frame, we need to pick one of the options and only use it
2196 * with the driver that does not provide the full Beacon/Probe Response
2197 * frame. Use Beacon frame pointer to avoid indicating that this should
2198 * override the IEs pointer should we have received an earlier
2199 * indication of Probe Response data.
2200 */
2201 ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2202 if (!ies)
2203 return NULL;
2204 ies->len = data->ielen;
2205 ies->tsf = data->tsf;
2206 ies->from_beacon = false;
2207 memcpy(ies->data, data->ie, data->ielen);
2208
2209 switch (data->ftype) {
2210 case CFG80211_BSS_FTYPE_BEACON:
2211 ies->from_beacon = true;
2212 fallthrough;
2213 case CFG80211_BSS_FTYPE_UNKNOWN:
2214 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2215 break;
2216 case CFG80211_BSS_FTYPE_PRESP:
2217 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2218 break;
2219 }
2220 rcu_assign_pointer(tmp.pub.ies, ies);
2221
2222 signal_valid = drv_data->chan == channel;
2223 spin_lock_bh(&rdev->bss_lock);
2224 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2225 if (!res)
2226 goto drop;
2227
2228 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2229
2230 if (data->bss_source == BSS_SOURCE_MBSSID) {
2231 /* this is a nontransmitting bss, we need to add it to
2232 * transmitting bss' list if it is not there
2233 */
2234 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2235 if (__cfg80211_unlink_bss(rdev, res)) {
2236 rdev->bss_generation++;
2237 res = NULL;
2238 }
2239 }
2240
2241 if (!res)
2242 goto drop;
2243 }
2244 spin_unlock_bh(&rdev->bss_lock);
2245
2246 trace_cfg80211_return_bss(&res->pub);
2247 /* __cfg80211_bss_update gives us a referenced result */
2248 return &res->pub;
2249
2250drop:
2251 spin_unlock_bh(&rdev->bss_lock);
2252 return NULL;
2253}
2254
2255static const struct element
2256*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2257 const struct element *mbssid_elem,
2258 const struct element *sub_elem)
2259{
2260 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2261 const struct element *next_mbssid;
2262 const struct element *next_sub;
2263
2264 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2265 mbssid_end,
2266 ielen - (mbssid_end - ie));
2267
2268 /*
2269 * If it is not the last subelement in current MBSSID IE or there isn't
2270 * a next MBSSID IE - profile is complete.
2271 */
2272 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2273 !next_mbssid)
2274 return NULL;
2275
2276 /* For any length error, just return NULL */
2277
2278 if (next_mbssid->datalen < 4)
2279 return NULL;
2280
2281 next_sub = (void *)&next_mbssid->data[1];
2282
2283 if (next_mbssid->data + next_mbssid->datalen <
2284 next_sub->data + next_sub->datalen)
2285 return NULL;
2286
2287 if (next_sub->id != 0 || next_sub->datalen < 2)
2288 return NULL;
2289
2290 /*
2291 * Check if the first element in the next sub element is a start
2292 * of a new profile
2293 */
2294 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2295 NULL : next_mbssid;
2296}
2297
2298size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2299 const struct element *mbssid_elem,
2300 const struct element *sub_elem,
2301 u8 *merged_ie, size_t max_copy_len)
2302{
2303 size_t copied_len = sub_elem->datalen;
2304 const struct element *next_mbssid;
2305
2306 if (sub_elem->datalen > max_copy_len)
2307 return 0;
2308
2309 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2310
2311 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2312 mbssid_elem,
2313 sub_elem))) {
2314 const struct element *next_sub = (void *)&next_mbssid->data[1];
2315
2316 if (copied_len + next_sub->datalen > max_copy_len)
2317 break;
2318 memcpy(merged_ie + copied_len, next_sub->data,
2319 next_sub->datalen);
2320 copied_len += next_sub->datalen;
2321 }
2322
2323 return copied_len;
2324}
2325EXPORT_SYMBOL(cfg80211_merge_profile);
2326
2327static void
2328cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2329 struct cfg80211_inform_single_bss_data *tx_data,
2330 struct cfg80211_bss *source_bss,
2331 gfp_t gfp)
2332{
2333 struct cfg80211_inform_single_bss_data data = {
2334 .drv_data = tx_data->drv_data,
2335 .ftype = tx_data->ftype,
2336 .tsf = tx_data->tsf,
2337 .beacon_interval = tx_data->beacon_interval,
2338 .source_bss = source_bss,
2339 .bss_source = BSS_SOURCE_MBSSID,
2340 .use_for = tx_data->use_for,
2341 .cannot_use_reasons = tx_data->cannot_use_reasons,
2342 };
2343 const u8 *mbssid_index_ie;
2344 const struct element *elem, *sub;
2345 u8 *new_ie, *profile;
2346 u64 seen_indices = 0;
2347 struct cfg80211_bss *bss;
2348
2349 if (!source_bss)
2350 return;
2351 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2352 tx_data->ie, tx_data->ielen))
2353 return;
2354 if (!wiphy->support_mbssid)
2355 return;
2356 if (wiphy->support_only_he_mbssid &&
2357 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2358 tx_data->ie, tx_data->ielen))
2359 return;
2360
2361 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2362 if (!new_ie)
2363 return;
2364
2365 profile = kmalloc(tx_data->ielen, gfp);
2366 if (!profile)
2367 goto out;
2368
2369 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2370 tx_data->ie, tx_data->ielen) {
2371 if (elem->datalen < 4)
2372 continue;
2373 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2374 continue;
2375 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2376 u8 profile_len;
2377
2378 if (sub->id != 0 || sub->datalen < 4) {
2379 /* not a valid BSS profile */
2380 continue;
2381 }
2382
2383 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2384 sub->data[1] != 2) {
2385 /* The first element within the Nontransmitted
2386 * BSSID Profile is not the Nontransmitted
2387 * BSSID Capability element.
2388 */
2389 continue;
2390 }
2391
2392 memset(profile, 0, tx_data->ielen);
2393 profile_len = cfg80211_merge_profile(tx_data->ie,
2394 tx_data->ielen,
2395 elem,
2396 sub,
2397 profile,
2398 tx_data->ielen);
2399
2400 /* found a Nontransmitted BSSID Profile */
2401 mbssid_index_ie = cfg80211_find_ie
2402 (WLAN_EID_MULTI_BSSID_IDX,
2403 profile, profile_len);
2404 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2405 mbssid_index_ie[2] == 0 ||
2406 mbssid_index_ie[2] > 46) {
2407 /* No valid Multiple BSSID-Index element */
2408 continue;
2409 }
2410
2411 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2412 /* We don't support legacy split of a profile */
2413 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2414 mbssid_index_ie[2]);
2415
2416 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2417
2418 data.bssid_index = mbssid_index_ie[2];
2419 data.max_bssid_indicator = elem->data[0];
2420
2421 cfg80211_gen_new_bssid(tx_data->bssid,
2422 data.max_bssid_indicator,
2423 data.bssid_index,
2424 data.bssid);
2425
2426 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2427 data.ie = new_ie;
2428 data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2429 tx_data->ielen,
2430 profile,
2431 profile_len,
2432 new_ie,
2433 IEEE80211_MAX_DATA_LEN);
2434 if (!data.ielen)
2435 continue;
2436
2437 data.capability = get_unaligned_le16(profile + 2);
2438 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2439 if (!bss)
2440 break;
2441 cfg80211_put_bss(wiphy, bss);
2442 }
2443 }
2444
2445out:
2446 kfree(new_ie);
2447 kfree(profile);
2448}
2449
2450ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2451 size_t ieslen, u8 *data, size_t data_len,
2452 u8 frag_id)
2453{
2454 const struct element *next;
2455 ssize_t copied;
2456 u8 elem_datalen;
2457
2458 if (!elem)
2459 return -EINVAL;
2460
2461 /* elem might be invalid after the memmove */
2462 next = (void *)(elem->data + elem->datalen);
2463 elem_datalen = elem->datalen;
2464
2465 if (elem->id == WLAN_EID_EXTENSION) {
2466 copied = elem->datalen - 1;
2467 if (copied > data_len)
2468 return -ENOSPC;
2469
2470 memmove(data, elem->data + 1, copied);
2471 } else {
2472 copied = elem->datalen;
2473 if (copied > data_len)
2474 return -ENOSPC;
2475
2476 memmove(data, elem->data, copied);
2477 }
2478
2479 /* Fragmented elements must have 255 bytes */
2480 if (elem_datalen < 255)
2481 return copied;
2482
2483 for (elem = next;
2484 elem->data < ies + ieslen &&
2485 elem->data + elem->datalen <= ies + ieslen;
2486 elem = next) {
2487 /* elem might be invalid after the memmove */
2488 next = (void *)(elem->data + elem->datalen);
2489
2490 if (elem->id != frag_id)
2491 break;
2492
2493 elem_datalen = elem->datalen;
2494
2495 if (copied + elem_datalen > data_len)
2496 return -ENOSPC;
2497
2498 memmove(data + copied, elem->data, elem_datalen);
2499 copied += elem_datalen;
2500
2501 /* Only the last fragment may be short */
2502 if (elem_datalen != 255)
2503 break;
2504 }
2505
2506 return copied;
2507}
2508EXPORT_SYMBOL(cfg80211_defragment_element);
2509
2510struct cfg80211_mle {
2511 struct ieee80211_multi_link_elem *mle;
2512 struct ieee80211_mle_per_sta_profile
2513 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2514 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2515
2516 u8 data[];
2517};
2518
2519static struct cfg80211_mle *
2520cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2521 gfp_t gfp)
2522{
2523 const struct element *elem;
2524 struct cfg80211_mle *res;
2525 size_t buf_len;
2526 ssize_t mle_len;
2527 u8 common_size, idx;
2528
2529 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2530 return NULL;
2531
2532 /* Required length for first defragmentation */
2533 buf_len = mle->datalen - 1;
2534 for_each_element(elem, mle->data + mle->datalen,
2535 ielen - sizeof(*mle) + mle->datalen) {
2536 if (elem->id != WLAN_EID_FRAGMENT)
2537 break;
2538
2539 buf_len += elem->datalen;
2540 }
2541
2542 res = kzalloc(struct_size(res, data, buf_len), gfp);
2543 if (!res)
2544 return NULL;
2545
2546 mle_len = cfg80211_defragment_element(mle, ie, ielen,
2547 res->data, buf_len,
2548 WLAN_EID_FRAGMENT);
2549 if (mle_len < 0)
2550 goto error;
2551
2552 res->mle = (void *)res->data;
2553
2554 /* Find the sub-element area in the buffer */
2555 common_size = ieee80211_mle_common_size((u8 *)res->mle);
2556 ie = res->data + common_size;
2557 ielen = mle_len - common_size;
2558
2559 idx = 0;
2560 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2561 ie, ielen) {
2562 res->sta_prof[idx] = (void *)elem->data;
2563 res->sta_prof_len[idx] = elem->datalen;
2564
2565 idx++;
2566 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2567 break;
2568 }
2569 if (!for_each_element_completed(elem, ie, ielen))
2570 goto error;
2571
2572 /* Defragment sta_info in-place */
2573 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2574 idx++) {
2575 if (res->sta_prof_len[idx] < 255)
2576 continue;
2577
2578 elem = (void *)res->sta_prof[idx] - 2;
2579
2580 if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2581 res->sta_prof[idx + 1])
2582 buf_len = (u8 *)res->sta_prof[idx + 1] -
2583 (u8 *)res->sta_prof[idx];
2584 else
2585 buf_len = ielen + ie - (u8 *)elem;
2586
2587 res->sta_prof_len[idx] =
2588 cfg80211_defragment_element(elem,
2589 (u8 *)elem, buf_len,
2590 (u8 *)res->sta_prof[idx],
2591 buf_len,
2592 IEEE80211_MLE_SUBELEM_FRAGMENT);
2593 if (res->sta_prof_len[idx] < 0)
2594 goto error;
2595 }
2596
2597 return res;
2598
2599error:
2600 kfree(res);
2601 return NULL;
2602}
2603
2604static u8
2605cfg80211_tbtt_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2606 const struct ieee80211_neighbor_ap_info **ap_info,
2607 const u8 **tbtt_info)
2608{
2609 const struct ieee80211_neighbor_ap_info *info;
2610 const struct element *rnr;
2611 const u8 *pos, *end;
2612
2613 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) {
2614 pos = rnr->data;
2615 end = rnr->data + rnr->datalen;
2616
2617 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
2618 while (sizeof(*info) <= end - pos) {
2619 const struct ieee80211_rnr_mld_params *mld_params;
2620 u16 params;
2621 u8 length, i, count, mld_params_offset;
2622 u8 type, lid;
2623 u32 use_for;
2624
2625 info = (void *)pos;
2626 count = u8_get_bits(info->tbtt_info_hdr,
2627 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
2628 length = info->tbtt_info_len;
2629
2630 pos += sizeof(*info);
2631
2632 if (count * length > end - pos)
2633 return 0;
2634
2635 type = u8_get_bits(info->tbtt_info_hdr,
2636 IEEE80211_AP_INFO_TBTT_HDR_TYPE);
2637
2638 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2639 length >=
2640 offsetofend(struct ieee80211_tbtt_info_ge_11,
2641 mld_params)) {
2642 mld_params_offset =
2643 offsetof(struct ieee80211_tbtt_info_ge_11, mld_params);
2644 use_for = NL80211_BSS_USE_FOR_ALL;
2645 } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2646 length >= sizeof(struct ieee80211_rnr_mld_params)) {
2647 mld_params_offset = 0;
2648 use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2649 } else {
2650 pos += count * length;
2651 continue;
2652 }
2653
2654 for (i = 0; i < count; i++) {
2655 mld_params = (void *)pos + mld_params_offset;
2656 params = le16_to_cpu(mld_params->params);
2657
2658 lid = u16_get_bits(params,
2659 IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2660
2661 if (mld_id == mld_params->mld_id &&
2662 link_id == lid) {
2663 *ap_info = info;
2664 *tbtt_info = pos;
2665
2666 return use_for;
2667 }
2668
2669 pos += length;
2670 }
2671 }
2672 }
2673
2674 return 0;
2675}
2676
2677static void
2678cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2679 struct cfg80211_inform_single_bss_data *tx_data,
2680 struct cfg80211_bss *source_bss,
2681 const struct element *elem,
2682 gfp_t gfp)
2683{
2684 struct cfg80211_inform_single_bss_data data = {
2685 .drv_data = tx_data->drv_data,
2686 .ftype = tx_data->ftype,
2687 .source_bss = source_bss,
2688 .bss_source = BSS_SOURCE_STA_PROFILE,
2689 };
2690 struct ieee80211_multi_link_elem *ml_elem;
2691 struct cfg80211_mle *mle;
2692 u16 control;
2693 u8 ml_common_len;
2694 u8 *new_ie;
2695 struct cfg80211_bss *bss;
2696 int mld_id;
2697 u16 seen_links = 0;
2698 const u8 *pos;
2699 u8 i;
2700
2701 if (!ieee80211_mle_size_ok(elem->data + 1, elem->datalen - 1))
2702 return;
2703
2704 ml_elem = (void *)elem->data + 1;
2705 control = le16_to_cpu(ml_elem->control);
2706 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) !=
2707 IEEE80211_ML_CONTROL_TYPE_BASIC)
2708 return;
2709
2710 /* Must be present when transmitted by an AP (in a probe response) */
2711 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2712 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2713 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2714 return;
2715
2716 ml_common_len = ml_elem->variable[0];
2717
2718 /* length + MLD MAC address + link ID info + BSS Params Change Count */
2719 pos = ml_elem->variable + 1 + 6 + 1 + 1;
2720
2721 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
2722 pos += 2;
2723 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_EML_CAPA))
2724 pos += 2;
2725
2726 /* MLD capabilities and operations */
2727 pos += 2;
2728
2729 /*
2730 * The MLD ID of the reporting AP is always zero. It is set if the AP
2731 * is part of an MBSSID set and will be non-zero for ML Elements
2732 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2733 * Draft P802.11be_D3.2, 35.3.4.2)
2734 */
2735 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) {
2736 mld_id = *pos;
2737 pos += 1;
2738 } else {
2739 mld_id = 0;
2740 }
2741
2742 /* Extended MLD capabilities and operations */
2743 pos += 2;
2744
2745 /* Fully defrag the ML element for sta information/profile iteration */
2746 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2747 if (!mle)
2748 return;
2749
2750 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2751 if (!new_ie)
2752 goto out;
2753
2754 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2755 const struct ieee80211_neighbor_ap_info *ap_info;
2756 enum nl80211_band band;
2757 u32 freq;
2758 const u8 *profile;
2759 const u8 *tbtt_info;
2760 ssize_t profile_len;
2761 u8 link_id, use_for;
2762
2763 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2764 mle->sta_prof_len[i]))
2765 continue;
2766
2767 control = le16_to_cpu(mle->sta_prof[i]->control);
2768
2769 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2770 continue;
2771
2772 link_id = u16_get_bits(control,
2773 IEEE80211_MLE_STA_CONTROL_LINK_ID);
2774 if (seen_links & BIT(link_id))
2775 break;
2776 seen_links |= BIT(link_id);
2777
2778 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2779 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2780 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2781 continue;
2782
2783 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
2784 data.beacon_interval =
2785 get_unaligned_le16(mle->sta_prof[i]->variable + 6);
2786 data.tsf = tx_data->tsf +
2787 get_unaligned_le64(mle->sta_prof[i]->variable + 8);
2788
2789 /* sta_info_len counts itself */
2790 profile = mle->sta_prof[i]->variable +
2791 mle->sta_prof[i]->sta_info_len - 1;
2792 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
2793 profile;
2794
2795 if (profile_len < 2)
2796 continue;
2797
2798 data.capability = get_unaligned_le16(profile);
2799 profile += 2;
2800 profile_len -= 2;
2801
2802 /* Find in RNR to look up channel information */
2803 use_for = cfg80211_tbtt_info_for_mld_ap(tx_data->ie,
2804 tx_data->ielen,
2805 mld_id, link_id,
2806 &ap_info, &tbtt_info);
2807 if (!use_for)
2808 continue;
2809
2810 /* We could sanity check the BSSID is included */
2811
2812 if (!ieee80211_operating_class_to_band(ap_info->op_class,
2813 &band))
2814 continue;
2815
2816 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
2817 data.channel = ieee80211_get_channel_khz(wiphy, freq);
2818
2819 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
2820 !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
2821 use_for = 0;
2822 data.cannot_use_reasons =
2823 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
2824 }
2825 data.use_for = use_for;
2826
2827 /* Generate new elements */
2828 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2829 data.ie = new_ie;
2830 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
2831 profile, profile_len,
2832 new_ie,
2833 IEEE80211_MAX_DATA_LEN);
2834 if (!data.ielen)
2835 continue;
2836
2837 /* The generated elements do not contain:
2838 * - Basic ML element
2839 * - A TBTT entry in the RNR for the transmitting AP
2840 *
2841 * This information is needed both internally and in userspace
2842 * as such, we should append it here.
2843 */
2844 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
2845 IEEE80211_MAX_DATA_LEN)
2846 continue;
2847
2848 /* Copy the Basic Multi-Link element including the common
2849 * information, and then fix up the link ID.
2850 * Note that the ML element length has been verified and we
2851 * also checked that it contains the link ID.
2852 */
2853 new_ie[data.ielen++] = WLAN_EID_EXTENSION;
2854 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
2855 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
2856 memcpy(new_ie + data.ielen, ml_elem,
2857 sizeof(*ml_elem) + ml_common_len);
2858
2859 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
2860
2861 data.ielen += sizeof(*ml_elem) + ml_common_len;
2862
2863 /* TODO: Add an RNR containing only the reporting AP */
2864
2865 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2866 if (!bss)
2867 break;
2868 cfg80211_put_bss(wiphy, bss);
2869 }
2870
2871out:
2872 kfree(new_ie);
2873 kfree(mle);
2874}
2875
2876static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
2877 struct cfg80211_inform_single_bss_data *tx_data,
2878 struct cfg80211_bss *source_bss,
2879 gfp_t gfp)
2880{
2881 const struct element *elem;
2882
2883 if (!source_bss)
2884 return;
2885
2886 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
2887 return;
2888
2889 for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
2890 tx_data->ie, tx_data->ielen)
2891 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
2892 elem, gfp);
2893}
2894
2895struct cfg80211_bss *
2896cfg80211_inform_bss_data(struct wiphy *wiphy,
2897 struct cfg80211_inform_bss *data,
2898 enum cfg80211_bss_frame_type ftype,
2899 const u8 *bssid, u64 tsf, u16 capability,
2900 u16 beacon_interval, const u8 *ie, size_t ielen,
2901 gfp_t gfp)
2902{
2903 struct cfg80211_inform_single_bss_data inform_data = {
2904 .drv_data = data,
2905 .ftype = ftype,
2906 .tsf = tsf,
2907 .capability = capability,
2908 .beacon_interval = beacon_interval,
2909 .ie = ie,
2910 .ielen = ielen,
2911 .use_for = data->restrict_use ?
2912 data->use_for :
2913 NL80211_BSS_USE_FOR_ALL,
2914 .cannot_use_reasons = data->cannot_use_reasons,
2915 };
2916 struct cfg80211_bss *res;
2917
2918 memcpy(inform_data.bssid, bssid, ETH_ALEN);
2919
2920 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
2921 if (!res)
2922 return NULL;
2923
2924 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
2925
2926 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
2927
2928 return res;
2929}
2930EXPORT_SYMBOL(cfg80211_inform_bss_data);
2931
2932static bool cfg80211_uhb_power_type_valid(const u8 *ie,
2933 size_t ielen,
2934 const u32 flags)
2935{
2936 const struct element *tmp;
2937 struct ieee80211_he_operation *he_oper;
2938
2939 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, ielen);
2940 if (tmp && tmp->datalen >= sizeof(*he_oper) + 1) {
2941 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2942
2943 he_oper = (void *)&tmp->data[1];
2944 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2945
2946 if (!he_6ghz_oper)
2947 return false;
2948
2949 switch (u8_get_bits(he_6ghz_oper->control,
2950 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
2951 case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
2952 return true;
2953 case IEEE80211_6GHZ_CTRL_REG_SP_AP:
2954 return !(flags & IEEE80211_CHAN_NO_UHB_AFC_CLIENT);
2955 case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
2956 return !(flags & IEEE80211_CHAN_NO_UHB_VLP_CLIENT);
2957 }
2958 }
2959 return false;
2960}
2961
2962/* cfg80211_inform_bss_width_frame helper */
2963static struct cfg80211_bss *
2964cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2965 struct cfg80211_inform_bss *data,
2966 struct ieee80211_mgmt *mgmt, size_t len,
2967 gfp_t gfp)
2968{
2969 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2970 struct cfg80211_internal_bss tmp = {}, *res;
2971 struct cfg80211_bss_ies *ies;
2972 struct ieee80211_channel *channel;
2973 bool signal_valid;
2974 struct ieee80211_ext *ext = NULL;
2975 u8 *bssid, *variable;
2976 u16 capability, beacon_int;
2977 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2978 u.probe_resp.variable);
2979 int bss_type;
2980
2981 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2982 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2983
2984 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2985
2986 if (WARN_ON(!mgmt))
2987 return NULL;
2988
2989 if (WARN_ON(!wiphy))
2990 return NULL;
2991
2992 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2993 (data->signal < 0 || data->signal > 100)))
2994 return NULL;
2995
2996 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2997 ext = (void *) mgmt;
2998 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2999 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3000 min_hdr_len = offsetof(struct ieee80211_ext,
3001 u.s1g_short_beacon.variable);
3002 }
3003
3004 if (WARN_ON(len < min_hdr_len))
3005 return NULL;
3006
3007 ielen = len - min_hdr_len;
3008 variable = mgmt->u.probe_resp.variable;
3009 if (ext) {
3010 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3011 variable = ext->u.s1g_short_beacon.variable;
3012 else
3013 variable = ext->u.s1g_beacon.variable;
3014 }
3015
3016 channel = cfg80211_get_bss_channel(wiphy, variable, ielen, data->chan);
3017 if (!channel)
3018 return NULL;
3019
3020 if (channel->band == NL80211_BAND_6GHZ &&
3021 !cfg80211_uhb_power_type_valid(variable, ielen, channel->flags)) {
3022 data->restrict_use = 1;
3023 data->use_for = 0;
3024 data->cannot_use_reasons =
3025 NL80211_BSS_CANNOT_USE_UHB_PWR_MISMATCH;
3026 }
3027
3028 if (ext) {
3029 const struct ieee80211_s1g_bcn_compat_ie *compat;
3030 const struct element *elem;
3031
3032 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
3033 variable, ielen);
3034 if (!elem)
3035 return NULL;
3036 if (elem->datalen < sizeof(*compat))
3037 return NULL;
3038 compat = (void *)elem->data;
3039 bssid = ext->u.s1g_beacon.sa;
3040 capability = le16_to_cpu(compat->compat_info);
3041 beacon_int = le16_to_cpu(compat->beacon_int);
3042 } else {
3043 bssid = mgmt->bssid;
3044 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3045 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3046 }
3047
3048 if (channel->band == NL80211_BAND_60GHZ) {
3049 bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
3050 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
3051 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
3052 regulatory_hint_found_beacon(wiphy, channel, gfp);
3053 } else {
3054 if (capability & WLAN_CAPABILITY_ESS)
3055 regulatory_hint_found_beacon(wiphy, channel, gfp);
3056 }
3057
3058 ies = kzalloc(sizeof(*ies) + ielen, gfp);
3059 if (!ies)
3060 return NULL;
3061 ies->len = ielen;
3062 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3063 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
3064 ieee80211_is_s1g_beacon(mgmt->frame_control);
3065 memcpy(ies->data, variable, ielen);
3066
3067 if (ieee80211_is_probe_resp(mgmt->frame_control))
3068 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
3069 else
3070 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
3071 rcu_assign_pointer(tmp.pub.ies, ies);
3072
3073 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
3074 tmp.pub.beacon_interval = beacon_int;
3075 tmp.pub.capability = capability;
3076 tmp.pub.channel = channel;
3077 tmp.pub.signal = data->signal;
3078 tmp.ts_boottime = data->boottime_ns;
3079 tmp.parent_tsf = data->parent_tsf;
3080 tmp.pub.chains = data->chains;
3081 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
3082 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
3083 tmp.pub.use_for = data->restrict_use ?
3084 data->use_for :
3085 NL80211_BSS_USE_FOR_ALL;
3086 tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
3087
3088 signal_valid = data->chan == channel;
3089 spin_lock_bh(&rdev->bss_lock);
3090 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, jiffies);
3091 if (!res)
3092 goto drop;
3093
3094 rdev_inform_bss(rdev, &res->pub, ies, data->drv_data);
3095
3096 spin_unlock_bh(&rdev->bss_lock);
3097
3098 trace_cfg80211_return_bss(&res->pub);
3099 /* __cfg80211_bss_update gives us a referenced result */
3100 return &res->pub;
3101
3102drop:
3103 spin_unlock_bh(&rdev->bss_lock);
3104 return NULL;
3105}
3106
3107struct cfg80211_bss *
3108cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3109 struct cfg80211_inform_bss *data,
3110 struct ieee80211_mgmt *mgmt, size_t len,
3111 gfp_t gfp)
3112{
3113 struct cfg80211_inform_single_bss_data inform_data = {
3114 .drv_data = data,
3115 .ie = mgmt->u.probe_resp.variable,
3116 .ielen = len - offsetof(struct ieee80211_mgmt,
3117 u.probe_resp.variable),
3118 .use_for = data->restrict_use ?
3119 data->use_for :
3120 NL80211_BSS_USE_FOR_ALL,
3121 .cannot_use_reasons = data->cannot_use_reasons,
3122 };
3123 struct cfg80211_bss *res;
3124
3125 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
3126 len, gfp);
3127 if (!res)
3128 return NULL;
3129
3130 /* don't do any further MBSSID/ML handling for S1G */
3131 if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3132 return res;
3133
3134 inform_data.ftype = ieee80211_is_beacon(mgmt->frame_control) ?
3135 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
3136 memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN);
3137 inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3138 inform_data.beacon_interval =
3139 le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3140
3141 /* process each non-transmitting bss */
3142 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3143
3144 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3145
3146 return res;
3147}
3148EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3149
3150void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3151{
3152 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3153
3154 if (!pub)
3155 return;
3156
3157 spin_lock_bh(&rdev->bss_lock);
3158 bss_ref_get(rdev, bss_from_pub(pub));
3159 spin_unlock_bh(&rdev->bss_lock);
3160}
3161EXPORT_SYMBOL(cfg80211_ref_bss);
3162
3163void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3164{
3165 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3166
3167 if (!pub)
3168 return;
3169
3170 spin_lock_bh(&rdev->bss_lock);
3171 bss_ref_put(rdev, bss_from_pub(pub));
3172 spin_unlock_bh(&rdev->bss_lock);
3173}
3174EXPORT_SYMBOL(cfg80211_put_bss);
3175
3176void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3177{
3178 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3179 struct cfg80211_internal_bss *bss, *tmp1;
3180 struct cfg80211_bss *nontrans_bss, *tmp;
3181
3182 if (WARN_ON(!pub))
3183 return;
3184
3185 bss = bss_from_pub(pub);
3186
3187 spin_lock_bh(&rdev->bss_lock);
3188 if (list_empty(&bss->list))
3189 goto out;
3190
3191 list_for_each_entry_safe(nontrans_bss, tmp,
3192 &pub->nontrans_list,
3193 nontrans_list) {
3194 tmp1 = bss_from_pub(nontrans_bss);
3195 if (__cfg80211_unlink_bss(rdev, tmp1))
3196 rdev->bss_generation++;
3197 }
3198
3199 if (__cfg80211_unlink_bss(rdev, bss))
3200 rdev->bss_generation++;
3201out:
3202 spin_unlock_bh(&rdev->bss_lock);
3203}
3204EXPORT_SYMBOL(cfg80211_unlink_bss);
3205
3206void cfg80211_bss_iter(struct wiphy *wiphy,
3207 struct cfg80211_chan_def *chandef,
3208 void (*iter)(struct wiphy *wiphy,
3209 struct cfg80211_bss *bss,
3210 void *data),
3211 void *iter_data)
3212{
3213 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3214 struct cfg80211_internal_bss *bss;
3215
3216 spin_lock_bh(&rdev->bss_lock);
3217
3218 list_for_each_entry(bss, &rdev->bss_list, list) {
3219 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3220 false))
3221 iter(wiphy, &bss->pub, iter_data);
3222 }
3223
3224 spin_unlock_bh(&rdev->bss_lock);
3225}
3226EXPORT_SYMBOL(cfg80211_bss_iter);
3227
3228void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3229 unsigned int link_id,
3230 struct ieee80211_channel *chan)
3231{
3232 struct wiphy *wiphy = wdev->wiphy;
3233 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3234 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3235 struct cfg80211_internal_bss *new = NULL;
3236 struct cfg80211_internal_bss *bss;
3237 struct cfg80211_bss *nontrans_bss;
3238 struct cfg80211_bss *tmp;
3239
3240 spin_lock_bh(&rdev->bss_lock);
3241
3242 /*
3243 * Some APs use CSA also for bandwidth changes, i.e., without actually
3244 * changing the control channel, so no need to update in such a case.
3245 */
3246 if (cbss->pub.channel == chan)
3247 goto done;
3248
3249 /* use transmitting bss */
3250 if (cbss->pub.transmitted_bss)
3251 cbss = bss_from_pub(cbss->pub.transmitted_bss);
3252
3253 cbss->pub.channel = chan;
3254
3255 list_for_each_entry(bss, &rdev->bss_list, list) {
3256 if (!cfg80211_bss_type_match(bss->pub.capability,
3257 bss->pub.channel->band,
3258 wdev->conn_bss_type))
3259 continue;
3260
3261 if (bss == cbss)
3262 continue;
3263
3264 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3265 new = bss;
3266 break;
3267 }
3268 }
3269
3270 if (new) {
3271 /* to save time, update IEs for transmitting bss only */
3272 cfg80211_update_known_bss(rdev, cbss, new, false);
3273 new->pub.proberesp_ies = NULL;
3274 new->pub.beacon_ies = NULL;
3275
3276 list_for_each_entry_safe(nontrans_bss, tmp,
3277 &new->pub.nontrans_list,
3278 nontrans_list) {
3279 bss = bss_from_pub(nontrans_bss);
3280 if (__cfg80211_unlink_bss(rdev, bss))
3281 rdev->bss_generation++;
3282 }
3283
3284 WARN_ON(atomic_read(&new->hold));
3285 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3286 rdev->bss_generation++;
3287 }
3288
3289 rb_erase(&cbss->rbn, &rdev->bss_tree);
3290 rb_insert_bss(rdev, cbss);
3291 rdev->bss_generation++;
3292
3293 list_for_each_entry_safe(nontrans_bss, tmp,
3294 &cbss->pub.nontrans_list,
3295 nontrans_list) {
3296 bss = bss_from_pub(nontrans_bss);
3297 bss->pub.channel = chan;
3298 rb_erase(&bss->rbn, &rdev->bss_tree);
3299 rb_insert_bss(rdev, bss);
3300 rdev->bss_generation++;
3301 }
3302
3303done:
3304 spin_unlock_bh(&rdev->bss_lock);
3305}
3306
3307#ifdef CONFIG_CFG80211_WEXT
3308static struct cfg80211_registered_device *
3309cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3310{
3311 struct cfg80211_registered_device *rdev;
3312 struct net_device *dev;
3313
3314 ASSERT_RTNL();
3315
3316 dev = dev_get_by_index(net, ifindex);
3317 if (!dev)
3318 return ERR_PTR(-ENODEV);
3319 if (dev->ieee80211_ptr)
3320 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3321 else
3322 rdev = ERR_PTR(-ENODEV);
3323 dev_put(dev);
3324 return rdev;
3325}
3326
3327int cfg80211_wext_siwscan(struct net_device *dev,
3328 struct iw_request_info *info,
3329 union iwreq_data *wrqu, char *extra)
3330{
3331 struct cfg80211_registered_device *rdev;
3332 struct wiphy *wiphy;
3333 struct iw_scan_req *wreq = NULL;
3334 struct cfg80211_scan_request *creq;
3335 int i, err, n_channels = 0;
3336 enum nl80211_band band;
3337
3338 if (!netif_running(dev))
3339 return -ENETDOWN;
3340
3341 if (wrqu->data.length == sizeof(struct iw_scan_req))
3342 wreq = (struct iw_scan_req *)extra;
3343
3344 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3345
3346 if (IS_ERR(rdev))
3347 return PTR_ERR(rdev);
3348
3349 if (rdev->scan_req || rdev->scan_msg)
3350 return -EBUSY;
3351
3352 wiphy = &rdev->wiphy;
3353
3354 /* Determine number of channels, needed to allocate creq */
3355 if (wreq && wreq->num_channels)
3356 n_channels = wreq->num_channels;
3357 else
3358 n_channels = ieee80211_get_num_supported_channels(wiphy);
3359
3360 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
3361 n_channels * sizeof(void *),
3362 GFP_ATOMIC);
3363 if (!creq)
3364 return -ENOMEM;
3365
3366 creq->wiphy = wiphy;
3367 creq->wdev = dev->ieee80211_ptr;
3368 /* SSIDs come after channels */
3369 creq->ssids = (void *)&creq->channels[n_channels];
3370 creq->n_channels = n_channels;
3371 creq->n_ssids = 1;
3372 creq->scan_start = jiffies;
3373
3374 /* translate "Scan on frequencies" request */
3375 i = 0;
3376 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3377 int j;
3378
3379 if (!wiphy->bands[band])
3380 continue;
3381
3382 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3383 /* ignore disabled channels */
3384 if (wiphy->bands[band]->channels[j].flags &
3385 IEEE80211_CHAN_DISABLED)
3386 continue;
3387
3388 /* If we have a wireless request structure and the
3389 * wireless request specifies frequencies, then search
3390 * for the matching hardware channel.
3391 */
3392 if (wreq && wreq->num_channels) {
3393 int k;
3394 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3395 for (k = 0; k < wreq->num_channels; k++) {
3396 struct iw_freq *freq =
3397 &wreq->channel_list[k];
3398 int wext_freq =
3399 cfg80211_wext_freq(freq);
3400
3401 if (wext_freq == wiphy_freq)
3402 goto wext_freq_found;
3403 }
3404 goto wext_freq_not_found;
3405 }
3406
3407 wext_freq_found:
3408 creq->channels[i] = &wiphy->bands[band]->channels[j];
3409 i++;
3410 wext_freq_not_found: ;
3411 }
3412 }
3413 /* No channels found? */
3414 if (!i) {
3415 err = -EINVAL;
3416 goto out;
3417 }
3418
3419 /* Set real number of channels specified in creq->channels[] */
3420 creq->n_channels = i;
3421
3422 /* translate "Scan for SSID" request */
3423 if (wreq) {
3424 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3425 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3426 err = -EINVAL;
3427 goto out;
3428 }
3429 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3430 creq->ssids[0].ssid_len = wreq->essid_len;
3431 }
3432 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
3433 creq->n_ssids = 0;
3434 }
3435
3436 for (i = 0; i < NUM_NL80211_BANDS; i++)
3437 if (wiphy->bands[i])
3438 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3439
3440 eth_broadcast_addr(creq->bssid);
3441
3442 wiphy_lock(&rdev->wiphy);
3443
3444 rdev->scan_req = creq;
3445 err = rdev_scan(rdev, creq);
3446 if (err) {
3447 rdev->scan_req = NULL;
3448 /* creq will be freed below */
3449 } else {
3450 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3451 /* creq now owned by driver */
3452 creq = NULL;
3453 dev_hold(dev);
3454 }
3455 wiphy_unlock(&rdev->wiphy);
3456 out:
3457 kfree(creq);
3458 return err;
3459}
3460EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3461
3462static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3463 const struct cfg80211_bss_ies *ies,
3464 char *current_ev, char *end_buf)
3465{
3466 const u8 *pos, *end, *next;
3467 struct iw_event iwe;
3468
3469 if (!ies)
3470 return current_ev;
3471
3472 /*
3473 * If needed, fragment the IEs buffer (at IE boundaries) into short
3474 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3475 */
3476 pos = ies->data;
3477 end = pos + ies->len;
3478
3479 while (end - pos > IW_GENERIC_IE_MAX) {
3480 next = pos + 2 + pos[1];
3481 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3482 next = next + 2 + next[1];
3483
3484 memset(&iwe, 0, sizeof(iwe));
3485 iwe.cmd = IWEVGENIE;
3486 iwe.u.data.length = next - pos;
3487 current_ev = iwe_stream_add_point_check(info, current_ev,
3488 end_buf, &iwe,
3489 (void *)pos);
3490 if (IS_ERR(current_ev))
3491 return current_ev;
3492 pos = next;
3493 }
3494
3495 if (end > pos) {
3496 memset(&iwe, 0, sizeof(iwe));
3497 iwe.cmd = IWEVGENIE;
3498 iwe.u.data.length = end - pos;
3499 current_ev = iwe_stream_add_point_check(info, current_ev,
3500 end_buf, &iwe,
3501 (void *)pos);
3502 if (IS_ERR(current_ev))
3503 return current_ev;
3504 }
3505
3506 return current_ev;
3507}
3508
3509static char *
3510ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3511 struct cfg80211_internal_bss *bss, char *current_ev,
3512 char *end_buf)
3513{
3514 const struct cfg80211_bss_ies *ies;
3515 struct iw_event iwe;
3516 const u8 *ie;
3517 u8 buf[50];
3518 u8 *cfg, *p, *tmp;
3519 int rem, i, sig;
3520 bool ismesh = false;
3521
3522 memset(&iwe, 0, sizeof(iwe));
3523 iwe.cmd = SIOCGIWAP;
3524 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3525 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3526 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3527 IW_EV_ADDR_LEN);
3528 if (IS_ERR(current_ev))
3529 return current_ev;
3530
3531 memset(&iwe, 0, sizeof(iwe));
3532 iwe.cmd = SIOCGIWFREQ;
3533 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3534 iwe.u.freq.e = 0;
3535 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3536 IW_EV_FREQ_LEN);
3537 if (IS_ERR(current_ev))
3538 return current_ev;
3539
3540 memset(&iwe, 0, sizeof(iwe));
3541 iwe.cmd = SIOCGIWFREQ;
3542 iwe.u.freq.m = bss->pub.channel->center_freq;
3543 iwe.u.freq.e = 6;
3544 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3545 IW_EV_FREQ_LEN);
3546 if (IS_ERR(current_ev))
3547 return current_ev;
3548
3549 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3550 memset(&iwe, 0, sizeof(iwe));
3551 iwe.cmd = IWEVQUAL;
3552 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3553 IW_QUAL_NOISE_INVALID |
3554 IW_QUAL_QUAL_UPDATED;
3555 switch (wiphy->signal_type) {
3556 case CFG80211_SIGNAL_TYPE_MBM:
3557 sig = bss->pub.signal / 100;
3558 iwe.u.qual.level = sig;
3559 iwe.u.qual.updated |= IW_QUAL_DBM;
3560 if (sig < -110) /* rather bad */
3561 sig = -110;
3562 else if (sig > -40) /* perfect */
3563 sig = -40;
3564 /* will give a range of 0 .. 70 */
3565 iwe.u.qual.qual = sig + 110;
3566 break;
3567 case CFG80211_SIGNAL_TYPE_UNSPEC:
3568 iwe.u.qual.level = bss->pub.signal;
3569 /* will give range 0 .. 100 */
3570 iwe.u.qual.qual = bss->pub.signal;
3571 break;
3572 default:
3573 /* not reached */
3574 break;
3575 }
3576 current_ev = iwe_stream_add_event_check(info, current_ev,
3577 end_buf, &iwe,
3578 IW_EV_QUAL_LEN);
3579 if (IS_ERR(current_ev))
3580 return current_ev;
3581 }
3582
3583 memset(&iwe, 0, sizeof(iwe));
3584 iwe.cmd = SIOCGIWENCODE;
3585 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3586 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3587 else
3588 iwe.u.data.flags = IW_ENCODE_DISABLED;
3589 iwe.u.data.length = 0;
3590 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3591 &iwe, "");
3592 if (IS_ERR(current_ev))
3593 return current_ev;
3594
3595 rcu_read_lock();
3596 ies = rcu_dereference(bss->pub.ies);
3597 rem = ies->len;
3598 ie = ies->data;
3599
3600 while (rem >= 2) {
3601 /* invalid data */
3602 if (ie[1] > rem - 2)
3603 break;
3604
3605 switch (ie[0]) {
3606 case WLAN_EID_SSID:
3607 memset(&iwe, 0, sizeof(iwe));
3608 iwe.cmd = SIOCGIWESSID;
3609 iwe.u.data.length = ie[1];
3610 iwe.u.data.flags = 1;
3611 current_ev = iwe_stream_add_point_check(info,
3612 current_ev,
3613 end_buf, &iwe,
3614 (u8 *)ie + 2);
3615 if (IS_ERR(current_ev))
3616 goto unlock;
3617 break;
3618 case WLAN_EID_MESH_ID:
3619 memset(&iwe, 0, sizeof(iwe));
3620 iwe.cmd = SIOCGIWESSID;
3621 iwe.u.data.length = ie[1];
3622 iwe.u.data.flags = 1;
3623 current_ev = iwe_stream_add_point_check(info,
3624 current_ev,
3625 end_buf, &iwe,
3626 (u8 *)ie + 2);
3627 if (IS_ERR(current_ev))
3628 goto unlock;
3629 break;
3630 case WLAN_EID_MESH_CONFIG:
3631 ismesh = true;
3632 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3633 break;
3634 cfg = (u8 *)ie + 2;
3635 memset(&iwe, 0, sizeof(iwe));
3636 iwe.cmd = IWEVCUSTOM;
3637 iwe.u.data.length = sprintf(buf,
3638 "Mesh Network Path Selection Protocol ID: 0x%02X",
3639 cfg[0]);
3640 current_ev = iwe_stream_add_point_check(info,
3641 current_ev,
3642 end_buf,
3643 &iwe, buf);
3644 if (IS_ERR(current_ev))
3645 goto unlock;
3646 iwe.u.data.length = sprintf(buf,
3647 "Path Selection Metric ID: 0x%02X",
3648 cfg[1]);
3649 current_ev = iwe_stream_add_point_check(info,
3650 current_ev,
3651 end_buf,
3652 &iwe, buf);
3653 if (IS_ERR(current_ev))
3654 goto unlock;
3655 iwe.u.data.length = sprintf(buf,
3656 "Congestion Control Mode ID: 0x%02X",
3657 cfg[2]);
3658 current_ev = iwe_stream_add_point_check(info,
3659 current_ev,
3660 end_buf,
3661 &iwe, buf);
3662 if (IS_ERR(current_ev))
3663 goto unlock;
3664 iwe.u.data.length = sprintf(buf,
3665 "Synchronization ID: 0x%02X",
3666 cfg[3]);
3667 current_ev = iwe_stream_add_point_check(info,
3668 current_ev,
3669 end_buf,
3670 &iwe, buf);
3671 if (IS_ERR(current_ev))
3672 goto unlock;
3673 iwe.u.data.length = sprintf(buf,
3674 "Authentication ID: 0x%02X",
3675 cfg[4]);
3676 current_ev = iwe_stream_add_point_check(info,
3677 current_ev,
3678 end_buf,
3679 &iwe, buf);
3680 if (IS_ERR(current_ev))
3681 goto unlock;
3682 iwe.u.data.length = sprintf(buf,
3683 "Formation Info: 0x%02X",
3684 cfg[5]);
3685 current_ev = iwe_stream_add_point_check(info,
3686 current_ev,
3687 end_buf,
3688 &iwe, buf);
3689 if (IS_ERR(current_ev))
3690 goto unlock;
3691 iwe.u.data.length = sprintf(buf,
3692 "Capabilities: 0x%02X",
3693 cfg[6]);
3694 current_ev = iwe_stream_add_point_check(info,
3695 current_ev,
3696 end_buf,
3697 &iwe, buf);
3698 if (IS_ERR(current_ev))
3699 goto unlock;
3700 break;
3701 case WLAN_EID_SUPP_RATES:
3702 case WLAN_EID_EXT_SUPP_RATES:
3703 /* display all supported rates in readable format */
3704 p = current_ev + iwe_stream_lcp_len(info);
3705
3706 memset(&iwe, 0, sizeof(iwe));
3707 iwe.cmd = SIOCGIWRATE;
3708 /* Those two flags are ignored... */
3709 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3710
3711 for (i = 0; i < ie[1]; i++) {
3712 iwe.u.bitrate.value =
3713 ((ie[i + 2] & 0x7f) * 500000);
3714 tmp = p;
3715 p = iwe_stream_add_value(info, current_ev, p,
3716 end_buf, &iwe,
3717 IW_EV_PARAM_LEN);
3718 if (p == tmp) {
3719 current_ev = ERR_PTR(-E2BIG);
3720 goto unlock;
3721 }
3722 }
3723 current_ev = p;
3724 break;
3725 }
3726 rem -= ie[1] + 2;
3727 ie += ie[1] + 2;
3728 }
3729
3730 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3731 ismesh) {
3732 memset(&iwe, 0, sizeof(iwe));
3733 iwe.cmd = SIOCGIWMODE;
3734 if (ismesh)
3735 iwe.u.mode = IW_MODE_MESH;
3736 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3737 iwe.u.mode = IW_MODE_MASTER;
3738 else
3739 iwe.u.mode = IW_MODE_ADHOC;
3740 current_ev = iwe_stream_add_event_check(info, current_ev,
3741 end_buf, &iwe,
3742 IW_EV_UINT_LEN);
3743 if (IS_ERR(current_ev))
3744 goto unlock;
3745 }
3746
3747 memset(&iwe, 0, sizeof(iwe));
3748 iwe.cmd = IWEVCUSTOM;
3749 iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3750 (unsigned long long)(ies->tsf));
3751 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3752 &iwe, buf);
3753 if (IS_ERR(current_ev))
3754 goto unlock;
3755 memset(&iwe, 0, sizeof(iwe));
3756 iwe.cmd = IWEVCUSTOM;
3757 iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3758 elapsed_jiffies_msecs(bss->ts));
3759 current_ev = iwe_stream_add_point_check(info, current_ev,
3760 end_buf, &iwe, buf);
3761 if (IS_ERR(current_ev))
3762 goto unlock;
3763
3764 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3765
3766 unlock:
3767 rcu_read_unlock();
3768 return current_ev;
3769}
3770
3771
3772static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3773 struct iw_request_info *info,
3774 char *buf, size_t len)
3775{
3776 char *current_ev = buf;
3777 char *end_buf = buf + len;
3778 struct cfg80211_internal_bss *bss;
3779 int err = 0;
3780
3781 spin_lock_bh(&rdev->bss_lock);
3782 cfg80211_bss_expire(rdev);
3783
3784 list_for_each_entry(bss, &rdev->bss_list, list) {
3785 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3786 err = -E2BIG;
3787 break;
3788 }
3789 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3790 current_ev, end_buf);
3791 if (IS_ERR(current_ev)) {
3792 err = PTR_ERR(current_ev);
3793 break;
3794 }
3795 }
3796 spin_unlock_bh(&rdev->bss_lock);
3797
3798 if (err)
3799 return err;
3800 return current_ev - buf;
3801}
3802
3803
3804int cfg80211_wext_giwscan(struct net_device *dev,
3805 struct iw_request_info *info,
3806 union iwreq_data *wrqu, char *extra)
3807{
3808 struct iw_point *data = &wrqu->data;
3809 struct cfg80211_registered_device *rdev;
3810 int res;
3811
3812 if (!netif_running(dev))
3813 return -ENETDOWN;
3814
3815 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3816
3817 if (IS_ERR(rdev))
3818 return PTR_ERR(rdev);
3819
3820 if (rdev->scan_req || rdev->scan_msg)
3821 return -EAGAIN;
3822
3823 res = ieee80211_scan_results(rdev, info, extra, data->length);
3824 data->length = 0;
3825 if (res >= 0) {
3826 data->length = res;
3827 res = 0;
3828 }
3829
3830 return res;
3831}
3832EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3833#endif
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2019 Intel Corporation
9 */
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/netdevice.h>
14#include <linux/wireless.h>
15#include <linux/nl80211.h>
16#include <linux/etherdevice.h>
17#include <net/arp.h>
18#include <net/cfg80211.h>
19#include <net/cfg80211-wext.h>
20#include <net/iw_handler.h>
21#include "core.h"
22#include "nl80211.h"
23#include "wext-compat.h"
24#include "rdev-ops.h"
25
26/**
27 * DOC: BSS tree/list structure
28 *
29 * At the top level, the BSS list is kept in both a list in each
30 * registered device (@bss_list) as well as an RB-tree for faster
31 * lookup. In the RB-tree, entries can be looked up using their
32 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
33 * for other BSSes.
34 *
35 * Due to the possibility of hidden SSIDs, there's a second level
36 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
37 * The hidden_list connects all BSSes belonging to a single AP
38 * that has a hidden SSID, and connects beacon and probe response
39 * entries. For a probe response entry for a hidden SSID, the
40 * hidden_beacon_bss pointer points to the BSS struct holding the
41 * beacon's information.
42 *
43 * Reference counting is done for all these references except for
44 * the hidden_list, so that a beacon BSS struct that is otherwise
45 * not referenced has one reference for being on the bss_list and
46 * one for each probe response entry that points to it using the
47 * hidden_beacon_bss pointer. When a BSS struct that has such a
48 * pointer is get/put, the refcount update is also propagated to
49 * the referenced struct, this ensure that it cannot get removed
50 * while somebody is using the probe response version.
51 *
52 * Note that the hidden_beacon_bss pointer never changes, due to
53 * the reference counting. Therefore, no locking is needed for
54 * it.
55 *
56 * Also note that the hidden_beacon_bss pointer is only relevant
57 * if the driver uses something other than the IEs, e.g. private
58 * data stored stored in the BSS struct, since the beacon IEs are
59 * also linked into the probe response struct.
60 */
61
62/*
63 * Limit the number of BSS entries stored in mac80211. Each one is
64 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
65 * If somebody wants to really attack this though, they'd likely
66 * use small beacons, and only one type of frame, limiting each of
67 * the entries to a much smaller size (in order to generate more
68 * entries in total, so overhead is bigger.)
69 */
70static int bss_entries_limit = 1000;
71module_param(bss_entries_limit, int, 0644);
72MODULE_PARM_DESC(bss_entries_limit,
73 "limit to number of scan BSS entries (per wiphy, default 1000)");
74
75#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
76
77static void bss_free(struct cfg80211_internal_bss *bss)
78{
79 struct cfg80211_bss_ies *ies;
80
81 if (WARN_ON(atomic_read(&bss->hold)))
82 return;
83
84 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
85 if (ies && !bss->pub.hidden_beacon_bss)
86 kfree_rcu(ies, rcu_head);
87 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
88 if (ies)
89 kfree_rcu(ies, rcu_head);
90
91 /*
92 * This happens when the module is removed, it doesn't
93 * really matter any more save for completeness
94 */
95 if (!list_empty(&bss->hidden_list))
96 list_del(&bss->hidden_list);
97
98 kfree(bss);
99}
100
101static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
102 struct cfg80211_internal_bss *bss)
103{
104 lockdep_assert_held(&rdev->bss_lock);
105
106 bss->refcount++;
107 if (bss->pub.hidden_beacon_bss) {
108 bss = container_of(bss->pub.hidden_beacon_bss,
109 struct cfg80211_internal_bss,
110 pub);
111 bss->refcount++;
112 }
113 if (bss->pub.transmitted_bss) {
114 bss = container_of(bss->pub.transmitted_bss,
115 struct cfg80211_internal_bss,
116 pub);
117 bss->refcount++;
118 }
119}
120
121static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
122 struct cfg80211_internal_bss *bss)
123{
124 lockdep_assert_held(&rdev->bss_lock);
125
126 if (bss->pub.hidden_beacon_bss) {
127 struct cfg80211_internal_bss *hbss;
128 hbss = container_of(bss->pub.hidden_beacon_bss,
129 struct cfg80211_internal_bss,
130 pub);
131 hbss->refcount--;
132 if (hbss->refcount == 0)
133 bss_free(hbss);
134 }
135
136 if (bss->pub.transmitted_bss) {
137 struct cfg80211_internal_bss *tbss;
138
139 tbss = container_of(bss->pub.transmitted_bss,
140 struct cfg80211_internal_bss,
141 pub);
142 tbss->refcount--;
143 if (tbss->refcount == 0)
144 bss_free(tbss);
145 }
146
147 bss->refcount--;
148 if (bss->refcount == 0)
149 bss_free(bss);
150}
151
152static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
153 struct cfg80211_internal_bss *bss)
154{
155 lockdep_assert_held(&rdev->bss_lock);
156
157 if (!list_empty(&bss->hidden_list)) {
158 /*
159 * don't remove the beacon entry if it has
160 * probe responses associated with it
161 */
162 if (!bss->pub.hidden_beacon_bss)
163 return false;
164 /*
165 * if it's a probe response entry break its
166 * link to the other entries in the group
167 */
168 list_del_init(&bss->hidden_list);
169 }
170
171 list_del_init(&bss->list);
172 list_del_init(&bss->pub.nontrans_list);
173 rb_erase(&bss->rbn, &rdev->bss_tree);
174 rdev->bss_entries--;
175 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
176 "rdev bss entries[%d]/list[empty:%d] corruption\n",
177 rdev->bss_entries, list_empty(&rdev->bss_list));
178 bss_ref_put(rdev, bss);
179 return true;
180}
181
182bool cfg80211_is_element_inherited(const struct element *elem,
183 const struct element *non_inherit_elem)
184{
185 u8 id_len, ext_id_len, i, loop_len, id;
186 const u8 *list;
187
188 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
189 return false;
190
191 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
192 return true;
193
194 /*
195 * non inheritance element format is:
196 * ext ID (56) | IDs list len | list | extension IDs list len | list
197 * Both lists are optional. Both lengths are mandatory.
198 * This means valid length is:
199 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
200 */
201 id_len = non_inherit_elem->data[1];
202 if (non_inherit_elem->datalen < 3 + id_len)
203 return true;
204
205 ext_id_len = non_inherit_elem->data[2 + id_len];
206 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
207 return true;
208
209 if (elem->id == WLAN_EID_EXTENSION) {
210 if (!ext_id_len)
211 return true;
212 loop_len = ext_id_len;
213 list = &non_inherit_elem->data[3 + id_len];
214 id = elem->data[0];
215 } else {
216 if (!id_len)
217 return true;
218 loop_len = id_len;
219 list = &non_inherit_elem->data[2];
220 id = elem->id;
221 }
222
223 for (i = 0; i < loop_len; i++) {
224 if (list[i] == id)
225 return false;
226 }
227
228 return true;
229}
230EXPORT_SYMBOL(cfg80211_is_element_inherited);
231
232static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
233 const u8 *subelement, size_t subie_len,
234 u8 *new_ie, gfp_t gfp)
235{
236 u8 *pos, *tmp;
237 const u8 *tmp_old, *tmp_new;
238 const struct element *non_inherit_elem;
239 u8 *sub_copy;
240
241 /* copy subelement as we need to change its content to
242 * mark an ie after it is processed.
243 */
244 sub_copy = kmemdup(subelement, subie_len, gfp);
245 if (!sub_copy)
246 return 0;
247
248 pos = &new_ie[0];
249
250 /* set new ssid */
251 tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
252 if (tmp_new) {
253 memcpy(pos, tmp_new, tmp_new[1] + 2);
254 pos += (tmp_new[1] + 2);
255 }
256
257 /* get non inheritance list if exists */
258 non_inherit_elem =
259 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
260 sub_copy, subie_len);
261
262 /* go through IEs in ie (skip SSID) and subelement,
263 * merge them into new_ie
264 */
265 tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
266 tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
267
268 while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
269 if (tmp_old[0] == 0) {
270 tmp_old++;
271 continue;
272 }
273
274 if (tmp_old[0] == WLAN_EID_EXTENSION)
275 tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
276 subie_len);
277 else
278 tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
279 subie_len);
280
281 if (!tmp) {
282 const struct element *old_elem = (void *)tmp_old;
283
284 /* ie in old ie but not in subelement */
285 if (cfg80211_is_element_inherited(old_elem,
286 non_inherit_elem)) {
287 memcpy(pos, tmp_old, tmp_old[1] + 2);
288 pos += tmp_old[1] + 2;
289 }
290 } else {
291 /* ie in transmitting ie also in subelement,
292 * copy from subelement and flag the ie in subelement
293 * as copied (by setting eid field to WLAN_EID_SSID,
294 * which is skipped anyway).
295 * For vendor ie, compare OUI + type + subType to
296 * determine if they are the same ie.
297 */
298 if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
299 if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
300 /* same vendor ie, copy from
301 * subelement
302 */
303 memcpy(pos, tmp, tmp[1] + 2);
304 pos += tmp[1] + 2;
305 tmp[0] = WLAN_EID_SSID;
306 } else {
307 memcpy(pos, tmp_old, tmp_old[1] + 2);
308 pos += tmp_old[1] + 2;
309 }
310 } else {
311 /* copy ie from subelement into new ie */
312 memcpy(pos, tmp, tmp[1] + 2);
313 pos += tmp[1] + 2;
314 tmp[0] = WLAN_EID_SSID;
315 }
316 }
317
318 if (tmp_old + tmp_old[1] + 2 - ie == ielen)
319 break;
320
321 tmp_old += tmp_old[1] + 2;
322 }
323
324 /* go through subelement again to check if there is any ie not
325 * copied to new ie, skip ssid, capability, bssid-index ie
326 */
327 tmp_new = sub_copy;
328 while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
329 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
330 tmp_new[0] == WLAN_EID_SSID)) {
331 memcpy(pos, tmp_new, tmp_new[1] + 2);
332 pos += tmp_new[1] + 2;
333 }
334 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
335 break;
336 tmp_new += tmp_new[1] + 2;
337 }
338
339 kfree(sub_copy);
340 return pos - new_ie;
341}
342
343static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
344 const u8 *ssid, size_t ssid_len)
345{
346 const struct cfg80211_bss_ies *ies;
347 const u8 *ssidie;
348
349 if (bssid && !ether_addr_equal(a->bssid, bssid))
350 return false;
351
352 if (!ssid)
353 return true;
354
355 ies = rcu_access_pointer(a->ies);
356 if (!ies)
357 return false;
358 ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
359 if (!ssidie)
360 return false;
361 if (ssidie[1] != ssid_len)
362 return false;
363 return memcmp(ssidie + 2, ssid, ssid_len) == 0;
364}
365
366static int
367cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
368 struct cfg80211_bss *nontrans_bss)
369{
370 const u8 *ssid;
371 size_t ssid_len;
372 struct cfg80211_bss *bss = NULL;
373
374 rcu_read_lock();
375 ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
376 if (!ssid) {
377 rcu_read_unlock();
378 return -EINVAL;
379 }
380 ssid_len = ssid[1];
381 ssid = ssid + 2;
382 rcu_read_unlock();
383
384 /* check if nontrans_bss is in the list */
385 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
386 if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len))
387 return 0;
388 }
389
390 /* add to the list */
391 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
392 return 0;
393}
394
395static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
396 unsigned long expire_time)
397{
398 struct cfg80211_internal_bss *bss, *tmp;
399 bool expired = false;
400
401 lockdep_assert_held(&rdev->bss_lock);
402
403 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
404 if (atomic_read(&bss->hold))
405 continue;
406 if (!time_after(expire_time, bss->ts))
407 continue;
408
409 if (__cfg80211_unlink_bss(rdev, bss))
410 expired = true;
411 }
412
413 if (expired)
414 rdev->bss_generation++;
415}
416
417static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
418{
419 struct cfg80211_internal_bss *bss, *oldest = NULL;
420 bool ret;
421
422 lockdep_assert_held(&rdev->bss_lock);
423
424 list_for_each_entry(bss, &rdev->bss_list, list) {
425 if (atomic_read(&bss->hold))
426 continue;
427
428 if (!list_empty(&bss->hidden_list) &&
429 !bss->pub.hidden_beacon_bss)
430 continue;
431
432 if (oldest && time_before(oldest->ts, bss->ts))
433 continue;
434 oldest = bss;
435 }
436
437 if (WARN_ON(!oldest))
438 return false;
439
440 /*
441 * The callers make sure to increase rdev->bss_generation if anything
442 * gets removed (and a new entry added), so there's no need to also do
443 * it here.
444 */
445
446 ret = __cfg80211_unlink_bss(rdev, oldest);
447 WARN_ON(!ret);
448 return ret;
449}
450
451void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
452 bool send_message)
453{
454 struct cfg80211_scan_request *request;
455 struct wireless_dev *wdev;
456 struct sk_buff *msg;
457#ifdef CONFIG_CFG80211_WEXT
458 union iwreq_data wrqu;
459#endif
460
461 ASSERT_RTNL();
462
463 if (rdev->scan_msg) {
464 nl80211_send_scan_msg(rdev, rdev->scan_msg);
465 rdev->scan_msg = NULL;
466 return;
467 }
468
469 request = rdev->scan_req;
470 if (!request)
471 return;
472
473 wdev = request->wdev;
474
475 /*
476 * This must be before sending the other events!
477 * Otherwise, wpa_supplicant gets completely confused with
478 * wext events.
479 */
480 if (wdev->netdev)
481 cfg80211_sme_scan_done(wdev->netdev);
482
483 if (!request->info.aborted &&
484 request->flags & NL80211_SCAN_FLAG_FLUSH) {
485 /* flush entries from previous scans */
486 spin_lock_bh(&rdev->bss_lock);
487 __cfg80211_bss_expire(rdev, request->scan_start);
488 spin_unlock_bh(&rdev->bss_lock);
489 }
490
491 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
492
493#ifdef CONFIG_CFG80211_WEXT
494 if (wdev->netdev && !request->info.aborted) {
495 memset(&wrqu, 0, sizeof(wrqu));
496
497 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
498 }
499#endif
500
501 if (wdev->netdev)
502 dev_put(wdev->netdev);
503
504 rdev->scan_req = NULL;
505 kfree(request);
506
507 if (!send_message)
508 rdev->scan_msg = msg;
509 else
510 nl80211_send_scan_msg(rdev, msg);
511}
512
513void __cfg80211_scan_done(struct work_struct *wk)
514{
515 struct cfg80211_registered_device *rdev;
516
517 rdev = container_of(wk, struct cfg80211_registered_device,
518 scan_done_wk);
519
520 rtnl_lock();
521 ___cfg80211_scan_done(rdev, true);
522 rtnl_unlock();
523}
524
525void cfg80211_scan_done(struct cfg80211_scan_request *request,
526 struct cfg80211_scan_info *info)
527{
528 trace_cfg80211_scan_done(request, info);
529 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req);
530
531 request->info = *info;
532 request->notified = true;
533 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
534}
535EXPORT_SYMBOL(cfg80211_scan_done);
536
537void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
538 struct cfg80211_sched_scan_request *req)
539{
540 ASSERT_RTNL();
541
542 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
543}
544
545static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
546 struct cfg80211_sched_scan_request *req)
547{
548 ASSERT_RTNL();
549
550 list_del_rcu(&req->list);
551 kfree_rcu(req, rcu_head);
552}
553
554static struct cfg80211_sched_scan_request *
555cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
556{
557 struct cfg80211_sched_scan_request *pos;
558
559 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
560
561 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list) {
562 if (pos->reqid == reqid)
563 return pos;
564 }
565 return NULL;
566}
567
568/*
569 * Determines if a scheduled scan request can be handled. When a legacy
570 * scheduled scan is running no other scheduled scan is allowed regardless
571 * whether the request is for legacy or multi-support scan. When a multi-support
572 * scheduled scan is running a request for legacy scan is not allowed. In this
573 * case a request for multi-support scan can be handled if resources are
574 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
575 */
576int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
577 bool want_multi)
578{
579 struct cfg80211_sched_scan_request *pos;
580 int i = 0;
581
582 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
583 /* request id zero means legacy in progress */
584 if (!i && !pos->reqid)
585 return -EINPROGRESS;
586 i++;
587 }
588
589 if (i) {
590 /* no legacy allowed when multi request(s) are active */
591 if (!want_multi)
592 return -EINPROGRESS;
593
594 /* resource limit reached */
595 if (i == rdev->wiphy.max_sched_scan_reqs)
596 return -ENOSPC;
597 }
598 return 0;
599}
600
601void cfg80211_sched_scan_results_wk(struct work_struct *work)
602{
603 struct cfg80211_registered_device *rdev;
604 struct cfg80211_sched_scan_request *req, *tmp;
605
606 rdev = container_of(work, struct cfg80211_registered_device,
607 sched_scan_res_wk);
608
609 rtnl_lock();
610 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
611 if (req->report_results) {
612 req->report_results = false;
613 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
614 /* flush entries from previous scans */
615 spin_lock_bh(&rdev->bss_lock);
616 __cfg80211_bss_expire(rdev, req->scan_start);
617 spin_unlock_bh(&rdev->bss_lock);
618 req->scan_start = jiffies;
619 }
620 nl80211_send_sched_scan(req,
621 NL80211_CMD_SCHED_SCAN_RESULTS);
622 }
623 }
624 rtnl_unlock();
625}
626
627void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
628{
629 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
630 struct cfg80211_sched_scan_request *request;
631
632 trace_cfg80211_sched_scan_results(wiphy, reqid);
633 /* ignore if we're not scanning */
634
635 rcu_read_lock();
636 request = cfg80211_find_sched_scan_req(rdev, reqid);
637 if (request) {
638 request->report_results = true;
639 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
640 }
641 rcu_read_unlock();
642}
643EXPORT_SYMBOL(cfg80211_sched_scan_results);
644
645void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy, u64 reqid)
646{
647 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
648
649 ASSERT_RTNL();
650
651 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
652
653 __cfg80211_stop_sched_scan(rdev, reqid, true);
654}
655EXPORT_SYMBOL(cfg80211_sched_scan_stopped_rtnl);
656
657void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
658{
659 rtnl_lock();
660 cfg80211_sched_scan_stopped_rtnl(wiphy, reqid);
661 rtnl_unlock();
662}
663EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
664
665int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
666 struct cfg80211_sched_scan_request *req,
667 bool driver_initiated)
668{
669 ASSERT_RTNL();
670
671 if (!driver_initiated) {
672 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
673 if (err)
674 return err;
675 }
676
677 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
678
679 cfg80211_del_sched_scan_req(rdev, req);
680
681 return 0;
682}
683
684int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
685 u64 reqid, bool driver_initiated)
686{
687 struct cfg80211_sched_scan_request *sched_scan_req;
688
689 ASSERT_RTNL();
690
691 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
692 if (!sched_scan_req)
693 return -ENOENT;
694
695 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
696 driver_initiated);
697}
698
699void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
700 unsigned long age_secs)
701{
702 struct cfg80211_internal_bss *bss;
703 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
704
705 spin_lock_bh(&rdev->bss_lock);
706 list_for_each_entry(bss, &rdev->bss_list, list)
707 bss->ts -= age_jiffies;
708 spin_unlock_bh(&rdev->bss_lock);
709}
710
711void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
712{
713 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
714}
715
716const struct element *
717cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
718 const u8 *match, unsigned int match_len,
719 unsigned int match_offset)
720{
721 const struct element *elem;
722
723 for_each_element_id(elem, eid, ies, len) {
724 if (elem->datalen >= match_offset + match_len &&
725 !memcmp(elem->data + match_offset, match, match_len))
726 return elem;
727 }
728
729 return NULL;
730}
731EXPORT_SYMBOL(cfg80211_find_elem_match);
732
733const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
734 const u8 *ies,
735 unsigned int len)
736{
737 const struct element *elem;
738 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
739 int match_len = (oui_type < 0) ? 3 : sizeof(match);
740
741 if (WARN_ON(oui_type > 0xff))
742 return NULL;
743
744 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
745 match, match_len, 0);
746
747 if (!elem || elem->datalen < 4)
748 return NULL;
749
750 return elem;
751}
752EXPORT_SYMBOL(cfg80211_find_vendor_elem);
753
754/**
755 * enum bss_compare_mode - BSS compare mode
756 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
757 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
758 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
759 */
760enum bss_compare_mode {
761 BSS_CMP_REGULAR,
762 BSS_CMP_HIDE_ZLEN,
763 BSS_CMP_HIDE_NUL,
764};
765
766static int cmp_bss(struct cfg80211_bss *a,
767 struct cfg80211_bss *b,
768 enum bss_compare_mode mode)
769{
770 const struct cfg80211_bss_ies *a_ies, *b_ies;
771 const u8 *ie1 = NULL;
772 const u8 *ie2 = NULL;
773 int i, r;
774
775 if (a->channel != b->channel)
776 return b->channel->center_freq - a->channel->center_freq;
777
778 a_ies = rcu_access_pointer(a->ies);
779 if (!a_ies)
780 return -1;
781 b_ies = rcu_access_pointer(b->ies);
782 if (!b_ies)
783 return 1;
784
785 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
786 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
787 a_ies->data, a_ies->len);
788 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
789 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
790 b_ies->data, b_ies->len);
791 if (ie1 && ie2) {
792 int mesh_id_cmp;
793
794 if (ie1[1] == ie2[1])
795 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
796 else
797 mesh_id_cmp = ie2[1] - ie1[1];
798
799 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
800 a_ies->data, a_ies->len);
801 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
802 b_ies->data, b_ies->len);
803 if (ie1 && ie2) {
804 if (mesh_id_cmp)
805 return mesh_id_cmp;
806 if (ie1[1] != ie2[1])
807 return ie2[1] - ie1[1];
808 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
809 }
810 }
811
812 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
813 if (r)
814 return r;
815
816 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
817 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
818
819 if (!ie1 && !ie2)
820 return 0;
821
822 /*
823 * Note that with "hide_ssid", the function returns a match if
824 * the already-present BSS ("b") is a hidden SSID beacon for
825 * the new BSS ("a").
826 */
827
828 /* sort missing IE before (left of) present IE */
829 if (!ie1)
830 return -1;
831 if (!ie2)
832 return 1;
833
834 switch (mode) {
835 case BSS_CMP_HIDE_ZLEN:
836 /*
837 * In ZLEN mode we assume the BSS entry we're
838 * looking for has a zero-length SSID. So if
839 * the one we're looking at right now has that,
840 * return 0. Otherwise, return the difference
841 * in length, but since we're looking for the
842 * 0-length it's really equivalent to returning
843 * the length of the one we're looking at.
844 *
845 * No content comparison is needed as we assume
846 * the content length is zero.
847 */
848 return ie2[1];
849 case BSS_CMP_REGULAR:
850 default:
851 /* sort by length first, then by contents */
852 if (ie1[1] != ie2[1])
853 return ie2[1] - ie1[1];
854 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
855 case BSS_CMP_HIDE_NUL:
856 if (ie1[1] != ie2[1])
857 return ie2[1] - ie1[1];
858 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
859 for (i = 0; i < ie2[1]; i++)
860 if (ie2[i + 2])
861 return -1;
862 return 0;
863 }
864}
865
866static bool cfg80211_bss_type_match(u16 capability,
867 enum nl80211_band band,
868 enum ieee80211_bss_type bss_type)
869{
870 bool ret = true;
871 u16 mask, val;
872
873 if (bss_type == IEEE80211_BSS_TYPE_ANY)
874 return ret;
875
876 if (band == NL80211_BAND_60GHZ) {
877 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
878 switch (bss_type) {
879 case IEEE80211_BSS_TYPE_ESS:
880 val = WLAN_CAPABILITY_DMG_TYPE_AP;
881 break;
882 case IEEE80211_BSS_TYPE_PBSS:
883 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
884 break;
885 case IEEE80211_BSS_TYPE_IBSS:
886 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
887 break;
888 default:
889 return false;
890 }
891 } else {
892 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
893 switch (bss_type) {
894 case IEEE80211_BSS_TYPE_ESS:
895 val = WLAN_CAPABILITY_ESS;
896 break;
897 case IEEE80211_BSS_TYPE_IBSS:
898 val = WLAN_CAPABILITY_IBSS;
899 break;
900 case IEEE80211_BSS_TYPE_MBSS:
901 val = 0;
902 break;
903 default:
904 return false;
905 }
906 }
907
908 ret = ((capability & mask) == val);
909 return ret;
910}
911
912/* Returned bss is reference counted and must be cleaned up appropriately. */
913struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
914 struct ieee80211_channel *channel,
915 const u8 *bssid,
916 const u8 *ssid, size_t ssid_len,
917 enum ieee80211_bss_type bss_type,
918 enum ieee80211_privacy privacy)
919{
920 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
921 struct cfg80211_internal_bss *bss, *res = NULL;
922 unsigned long now = jiffies;
923 int bss_privacy;
924
925 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
926 privacy);
927
928 spin_lock_bh(&rdev->bss_lock);
929
930 list_for_each_entry(bss, &rdev->bss_list, list) {
931 if (!cfg80211_bss_type_match(bss->pub.capability,
932 bss->pub.channel->band, bss_type))
933 continue;
934
935 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
936 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
937 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
938 continue;
939 if (channel && bss->pub.channel != channel)
940 continue;
941 if (!is_valid_ether_addr(bss->pub.bssid))
942 continue;
943 /* Don't get expired BSS structs */
944 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
945 !atomic_read(&bss->hold))
946 continue;
947 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
948 res = bss;
949 bss_ref_get(rdev, res);
950 break;
951 }
952 }
953
954 spin_unlock_bh(&rdev->bss_lock);
955 if (!res)
956 return NULL;
957 trace_cfg80211_return_bss(&res->pub);
958 return &res->pub;
959}
960EXPORT_SYMBOL(cfg80211_get_bss);
961
962static void rb_insert_bss(struct cfg80211_registered_device *rdev,
963 struct cfg80211_internal_bss *bss)
964{
965 struct rb_node **p = &rdev->bss_tree.rb_node;
966 struct rb_node *parent = NULL;
967 struct cfg80211_internal_bss *tbss;
968 int cmp;
969
970 while (*p) {
971 parent = *p;
972 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
973
974 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
975
976 if (WARN_ON(!cmp)) {
977 /* will sort of leak this BSS */
978 return;
979 }
980
981 if (cmp < 0)
982 p = &(*p)->rb_left;
983 else
984 p = &(*p)->rb_right;
985 }
986
987 rb_link_node(&bss->rbn, parent, p);
988 rb_insert_color(&bss->rbn, &rdev->bss_tree);
989}
990
991static struct cfg80211_internal_bss *
992rb_find_bss(struct cfg80211_registered_device *rdev,
993 struct cfg80211_internal_bss *res,
994 enum bss_compare_mode mode)
995{
996 struct rb_node *n = rdev->bss_tree.rb_node;
997 struct cfg80211_internal_bss *bss;
998 int r;
999
1000 while (n) {
1001 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1002 r = cmp_bss(&res->pub, &bss->pub, mode);
1003
1004 if (r == 0)
1005 return bss;
1006 else if (r < 0)
1007 n = n->rb_left;
1008 else
1009 n = n->rb_right;
1010 }
1011
1012 return NULL;
1013}
1014
1015static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1016 struct cfg80211_internal_bss *new)
1017{
1018 const struct cfg80211_bss_ies *ies;
1019 struct cfg80211_internal_bss *bss;
1020 const u8 *ie;
1021 int i, ssidlen;
1022 u8 fold = 0;
1023 u32 n_entries = 0;
1024
1025 ies = rcu_access_pointer(new->pub.beacon_ies);
1026 if (WARN_ON(!ies))
1027 return false;
1028
1029 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1030 if (!ie) {
1031 /* nothing to do */
1032 return true;
1033 }
1034
1035 ssidlen = ie[1];
1036 for (i = 0; i < ssidlen; i++)
1037 fold |= ie[2 + i];
1038
1039 if (fold) {
1040 /* not a hidden SSID */
1041 return true;
1042 }
1043
1044 /* This is the bad part ... */
1045
1046 list_for_each_entry(bss, &rdev->bss_list, list) {
1047 /*
1048 * we're iterating all the entries anyway, so take the
1049 * opportunity to validate the list length accounting
1050 */
1051 n_entries++;
1052
1053 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1054 continue;
1055 if (bss->pub.channel != new->pub.channel)
1056 continue;
1057 if (bss->pub.scan_width != new->pub.scan_width)
1058 continue;
1059 if (rcu_access_pointer(bss->pub.beacon_ies))
1060 continue;
1061 ies = rcu_access_pointer(bss->pub.ies);
1062 if (!ies)
1063 continue;
1064 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1065 if (!ie)
1066 continue;
1067 if (ssidlen && ie[1] != ssidlen)
1068 continue;
1069 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1070 continue;
1071 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1072 list_del(&bss->hidden_list);
1073 /* combine them */
1074 list_add(&bss->hidden_list, &new->hidden_list);
1075 bss->pub.hidden_beacon_bss = &new->pub;
1076 new->refcount += bss->refcount;
1077 rcu_assign_pointer(bss->pub.beacon_ies,
1078 new->pub.beacon_ies);
1079 }
1080
1081 WARN_ONCE(n_entries != rdev->bss_entries,
1082 "rdev bss entries[%d]/list[len:%d] corruption\n",
1083 rdev->bss_entries, n_entries);
1084
1085 return true;
1086}
1087
1088struct cfg80211_non_tx_bss {
1089 struct cfg80211_bss *tx_bss;
1090 u8 max_bssid_indicator;
1091 u8 bssid_index;
1092};
1093
1094static bool
1095cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1096 struct cfg80211_internal_bss *known,
1097 struct cfg80211_internal_bss *new,
1098 bool signal_valid)
1099{
1100 lockdep_assert_held(&rdev->bss_lock);
1101
1102 /* Update IEs */
1103 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1104 const struct cfg80211_bss_ies *old;
1105
1106 old = rcu_access_pointer(known->pub.proberesp_ies);
1107
1108 rcu_assign_pointer(known->pub.proberesp_ies,
1109 new->pub.proberesp_ies);
1110 /* Override possible earlier Beacon frame IEs */
1111 rcu_assign_pointer(known->pub.ies,
1112 new->pub.proberesp_ies);
1113 if (old)
1114 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1115 } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1116 const struct cfg80211_bss_ies *old;
1117 struct cfg80211_internal_bss *bss;
1118
1119 if (known->pub.hidden_beacon_bss &&
1120 !list_empty(&known->hidden_list)) {
1121 const struct cfg80211_bss_ies *f;
1122
1123 /* The known BSS struct is one of the probe
1124 * response members of a group, but we're
1125 * receiving a beacon (beacon_ies in the new
1126 * bss is used). This can only mean that the
1127 * AP changed its beacon from not having an
1128 * SSID to showing it, which is confusing so
1129 * drop this information.
1130 */
1131
1132 f = rcu_access_pointer(new->pub.beacon_ies);
1133 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1134 return false;
1135 }
1136
1137 old = rcu_access_pointer(known->pub.beacon_ies);
1138
1139 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1140
1141 /* Override IEs if they were from a beacon before */
1142 if (old == rcu_access_pointer(known->pub.ies))
1143 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1144
1145 /* Assign beacon IEs to all sub entries */
1146 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1147 const struct cfg80211_bss_ies *ies;
1148
1149 ies = rcu_access_pointer(bss->pub.beacon_ies);
1150 WARN_ON(ies != old);
1151
1152 rcu_assign_pointer(bss->pub.beacon_ies,
1153 new->pub.beacon_ies);
1154 }
1155
1156 if (old)
1157 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1158 }
1159
1160 known->pub.beacon_interval = new->pub.beacon_interval;
1161
1162 /* don't update the signal if beacon was heard on
1163 * adjacent channel.
1164 */
1165 if (signal_valid)
1166 known->pub.signal = new->pub.signal;
1167 known->pub.capability = new->pub.capability;
1168 known->ts = new->ts;
1169 known->ts_boottime = new->ts_boottime;
1170 known->parent_tsf = new->parent_tsf;
1171 known->pub.chains = new->pub.chains;
1172 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1173 IEEE80211_MAX_CHAINS);
1174 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1175 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1176 known->pub.bssid_index = new->pub.bssid_index;
1177
1178 return true;
1179}
1180
1181/* Returned bss is reference counted and must be cleaned up appropriately. */
1182struct cfg80211_internal_bss *
1183cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1184 struct cfg80211_internal_bss *tmp,
1185 bool signal_valid, unsigned long ts)
1186{
1187 struct cfg80211_internal_bss *found = NULL;
1188
1189 if (WARN_ON(!tmp->pub.channel))
1190 return NULL;
1191
1192 tmp->ts = ts;
1193
1194 spin_lock_bh(&rdev->bss_lock);
1195
1196 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1197 spin_unlock_bh(&rdev->bss_lock);
1198 return NULL;
1199 }
1200
1201 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1202
1203 if (found) {
1204 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1205 goto drop;
1206 } else {
1207 struct cfg80211_internal_bss *new;
1208 struct cfg80211_internal_bss *hidden;
1209 struct cfg80211_bss_ies *ies;
1210
1211 /*
1212 * create a copy -- the "res" variable that is passed in
1213 * is allocated on the stack since it's not needed in the
1214 * more common case of an update
1215 */
1216 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1217 GFP_ATOMIC);
1218 if (!new) {
1219 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1220 if (ies)
1221 kfree_rcu(ies, rcu_head);
1222 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1223 if (ies)
1224 kfree_rcu(ies, rcu_head);
1225 goto drop;
1226 }
1227 memcpy(new, tmp, sizeof(*new));
1228 new->refcount = 1;
1229 INIT_LIST_HEAD(&new->hidden_list);
1230 INIT_LIST_HEAD(&new->pub.nontrans_list);
1231
1232 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1233 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1234 if (!hidden)
1235 hidden = rb_find_bss(rdev, tmp,
1236 BSS_CMP_HIDE_NUL);
1237 if (hidden) {
1238 new->pub.hidden_beacon_bss = &hidden->pub;
1239 list_add(&new->hidden_list,
1240 &hidden->hidden_list);
1241 hidden->refcount++;
1242 rcu_assign_pointer(new->pub.beacon_ies,
1243 hidden->pub.beacon_ies);
1244 }
1245 } else {
1246 /*
1247 * Ok so we found a beacon, and don't have an entry. If
1248 * it's a beacon with hidden SSID, we might be in for an
1249 * expensive search for any probe responses that should
1250 * be grouped with this beacon for updates ...
1251 */
1252 if (!cfg80211_combine_bsses(rdev, new)) {
1253 kfree(new);
1254 goto drop;
1255 }
1256 }
1257
1258 if (rdev->bss_entries >= bss_entries_limit &&
1259 !cfg80211_bss_expire_oldest(rdev)) {
1260 kfree(new);
1261 goto drop;
1262 }
1263
1264 /* This must be before the call to bss_ref_get */
1265 if (tmp->pub.transmitted_bss) {
1266 struct cfg80211_internal_bss *pbss =
1267 container_of(tmp->pub.transmitted_bss,
1268 struct cfg80211_internal_bss,
1269 pub);
1270
1271 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1272 bss_ref_get(rdev, pbss);
1273 }
1274
1275 list_add_tail(&new->list, &rdev->bss_list);
1276 rdev->bss_entries++;
1277 rb_insert_bss(rdev, new);
1278 found = new;
1279 }
1280
1281 rdev->bss_generation++;
1282 bss_ref_get(rdev, found);
1283 spin_unlock_bh(&rdev->bss_lock);
1284
1285 return found;
1286 drop:
1287 spin_unlock_bh(&rdev->bss_lock);
1288 return NULL;
1289}
1290
1291/*
1292 * Update RX channel information based on the available frame payload
1293 * information. This is mainly for the 2.4 GHz band where frames can be received
1294 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1295 * element to indicate the current (transmitting) channel, but this might also
1296 * be needed on other bands if RX frequency does not match with the actual
1297 * operating channel of a BSS.
1298 */
1299static struct ieee80211_channel *
1300cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1301 struct ieee80211_channel *channel,
1302 enum nl80211_bss_scan_width scan_width)
1303{
1304 const u8 *tmp;
1305 u32 freq;
1306 int channel_number = -1;
1307 struct ieee80211_channel *alt_channel;
1308
1309 tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1310 if (tmp && tmp[1] == 1) {
1311 channel_number = tmp[2];
1312 } else {
1313 tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1314 if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1315 struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1316
1317 channel_number = htop->primary_chan;
1318 }
1319 }
1320
1321 if (channel_number < 0) {
1322 /* No channel information in frame payload */
1323 return channel;
1324 }
1325
1326 freq = ieee80211_channel_to_frequency(channel_number, channel->band);
1327 alt_channel = ieee80211_get_channel(wiphy, freq);
1328 if (!alt_channel) {
1329 if (channel->band == NL80211_BAND_2GHZ) {
1330 /*
1331 * Better not allow unexpected channels when that could
1332 * be going beyond the 1-11 range (e.g., discovering
1333 * BSS on channel 12 when radio is configured for
1334 * channel 11.
1335 */
1336 return NULL;
1337 }
1338
1339 /* No match for the payload channel number - ignore it */
1340 return channel;
1341 }
1342
1343 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1344 scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1345 /*
1346 * Ignore channel number in 5 and 10 MHz channels where there
1347 * may not be an n:1 or 1:n mapping between frequencies and
1348 * channel numbers.
1349 */
1350 return channel;
1351 }
1352
1353 /*
1354 * Use the channel determined through the payload channel number
1355 * instead of the RX channel reported by the driver.
1356 */
1357 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1358 return NULL;
1359 return alt_channel;
1360}
1361
1362/* Returned bss is reference counted and must be cleaned up appropriately. */
1363static struct cfg80211_bss *
1364cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1365 struct cfg80211_inform_bss *data,
1366 enum cfg80211_bss_frame_type ftype,
1367 const u8 *bssid, u64 tsf, u16 capability,
1368 u16 beacon_interval, const u8 *ie, size_t ielen,
1369 struct cfg80211_non_tx_bss *non_tx_data,
1370 gfp_t gfp)
1371{
1372 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1373 struct cfg80211_bss_ies *ies;
1374 struct ieee80211_channel *channel;
1375 struct cfg80211_internal_bss tmp = {}, *res;
1376 int bss_type;
1377 bool signal_valid;
1378 unsigned long ts;
1379
1380 if (WARN_ON(!wiphy))
1381 return NULL;
1382
1383 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1384 (data->signal < 0 || data->signal > 100)))
1385 return NULL;
1386
1387 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1388 data->scan_width);
1389 if (!channel)
1390 return NULL;
1391
1392 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1393 tmp.pub.channel = channel;
1394 tmp.pub.scan_width = data->scan_width;
1395 tmp.pub.signal = data->signal;
1396 tmp.pub.beacon_interval = beacon_interval;
1397 tmp.pub.capability = capability;
1398 tmp.ts_boottime = data->boottime_ns;
1399 if (non_tx_data) {
1400 tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1401 ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1402 tmp.pub.bssid_index = non_tx_data->bssid_index;
1403 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1404 } else {
1405 ts = jiffies;
1406 }
1407
1408 /*
1409 * If we do not know here whether the IEs are from a Beacon or Probe
1410 * Response frame, we need to pick one of the options and only use it
1411 * with the driver that does not provide the full Beacon/Probe Response
1412 * frame. Use Beacon frame pointer to avoid indicating that this should
1413 * override the IEs pointer should we have received an earlier
1414 * indication of Probe Response data.
1415 */
1416 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1417 if (!ies)
1418 return NULL;
1419 ies->len = ielen;
1420 ies->tsf = tsf;
1421 ies->from_beacon = false;
1422 memcpy(ies->data, ie, ielen);
1423
1424 switch (ftype) {
1425 case CFG80211_BSS_FTYPE_BEACON:
1426 ies->from_beacon = true;
1427 /* fall through */
1428 case CFG80211_BSS_FTYPE_UNKNOWN:
1429 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1430 break;
1431 case CFG80211_BSS_FTYPE_PRESP:
1432 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1433 break;
1434 }
1435 rcu_assign_pointer(tmp.pub.ies, ies);
1436
1437 signal_valid = abs(data->chan->center_freq - channel->center_freq) <=
1438 wiphy->max_adj_channel_rssi_comp;
1439 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
1440 if (!res)
1441 return NULL;
1442
1443 if (channel->band == NL80211_BAND_60GHZ) {
1444 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1445 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1446 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1447 regulatory_hint_found_beacon(wiphy, channel, gfp);
1448 } else {
1449 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1450 regulatory_hint_found_beacon(wiphy, channel, gfp);
1451 }
1452
1453 if (non_tx_data) {
1454 /* this is a nontransmitting bss, we need to add it to
1455 * transmitting bss' list if it is not there
1456 */
1457 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1458 &res->pub)) {
1459 if (__cfg80211_unlink_bss(rdev, res))
1460 rdev->bss_generation++;
1461 }
1462 }
1463
1464 trace_cfg80211_return_bss(&res->pub);
1465 /* cfg80211_bss_update gives us a referenced result */
1466 return &res->pub;
1467}
1468
1469static const struct element
1470*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
1471 const struct element *mbssid_elem,
1472 const struct element *sub_elem)
1473{
1474 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
1475 const struct element *next_mbssid;
1476 const struct element *next_sub;
1477
1478 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
1479 mbssid_end,
1480 ielen - (mbssid_end - ie));
1481
1482 /*
1483 * If is is not the last subelement in current MBSSID IE or there isn't
1484 * a next MBSSID IE - profile is complete.
1485 */
1486 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
1487 !next_mbssid)
1488 return NULL;
1489
1490 /* For any length error, just return NULL */
1491
1492 if (next_mbssid->datalen < 4)
1493 return NULL;
1494
1495 next_sub = (void *)&next_mbssid->data[1];
1496
1497 if (next_mbssid->data + next_mbssid->datalen <
1498 next_sub->data + next_sub->datalen)
1499 return NULL;
1500
1501 if (next_sub->id != 0 || next_sub->datalen < 2)
1502 return NULL;
1503
1504 /*
1505 * Check if the first element in the next sub element is a start
1506 * of a new profile
1507 */
1508 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
1509 NULL : next_mbssid;
1510}
1511
1512size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
1513 const struct element *mbssid_elem,
1514 const struct element *sub_elem,
1515 u8 *merged_ie, size_t max_copy_len)
1516{
1517 size_t copied_len = sub_elem->datalen;
1518 const struct element *next_mbssid;
1519
1520 if (sub_elem->datalen > max_copy_len)
1521 return 0;
1522
1523 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
1524
1525 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
1526 mbssid_elem,
1527 sub_elem))) {
1528 const struct element *next_sub = (void *)&next_mbssid->data[1];
1529
1530 if (copied_len + next_sub->datalen > max_copy_len)
1531 break;
1532 memcpy(merged_ie + copied_len, next_sub->data,
1533 next_sub->datalen);
1534 copied_len += next_sub->datalen;
1535 }
1536
1537 return copied_len;
1538}
1539EXPORT_SYMBOL(cfg80211_merge_profile);
1540
1541static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
1542 struct cfg80211_inform_bss *data,
1543 enum cfg80211_bss_frame_type ftype,
1544 const u8 *bssid, u64 tsf,
1545 u16 beacon_interval, const u8 *ie,
1546 size_t ielen,
1547 struct cfg80211_non_tx_bss *non_tx_data,
1548 gfp_t gfp)
1549{
1550 const u8 *mbssid_index_ie;
1551 const struct element *elem, *sub;
1552 size_t new_ie_len;
1553 u8 new_bssid[ETH_ALEN];
1554 u8 *new_ie, *profile;
1555 u64 seen_indices = 0;
1556 u16 capability;
1557 struct cfg80211_bss *bss;
1558
1559 if (!non_tx_data)
1560 return;
1561 if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
1562 return;
1563 if (!wiphy->support_mbssid)
1564 return;
1565 if (wiphy->support_only_he_mbssid &&
1566 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
1567 return;
1568
1569 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
1570 if (!new_ie)
1571 return;
1572
1573 profile = kmalloc(ielen, gfp);
1574 if (!profile)
1575 goto out;
1576
1577 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
1578 if (elem->datalen < 4)
1579 continue;
1580 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
1581 u8 profile_len;
1582
1583 if (sub->id != 0 || sub->datalen < 4) {
1584 /* not a valid BSS profile */
1585 continue;
1586 }
1587
1588 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
1589 sub->data[1] != 2) {
1590 /* The first element within the Nontransmitted
1591 * BSSID Profile is not the Nontransmitted
1592 * BSSID Capability element.
1593 */
1594 continue;
1595 }
1596
1597 memset(profile, 0, ielen);
1598 profile_len = cfg80211_merge_profile(ie, ielen,
1599 elem,
1600 sub,
1601 profile,
1602 ielen);
1603
1604 /* found a Nontransmitted BSSID Profile */
1605 mbssid_index_ie = cfg80211_find_ie
1606 (WLAN_EID_MULTI_BSSID_IDX,
1607 profile, profile_len);
1608 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
1609 mbssid_index_ie[2] == 0 ||
1610 mbssid_index_ie[2] > 46) {
1611 /* No valid Multiple BSSID-Index element */
1612 continue;
1613 }
1614
1615 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
1616 /* We don't support legacy split of a profile */
1617 net_dbg_ratelimited("Partial info for BSSID index %d\n",
1618 mbssid_index_ie[2]);
1619
1620 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
1621
1622 non_tx_data->bssid_index = mbssid_index_ie[2];
1623 non_tx_data->max_bssid_indicator = elem->data[0];
1624
1625 cfg80211_gen_new_bssid(bssid,
1626 non_tx_data->max_bssid_indicator,
1627 non_tx_data->bssid_index,
1628 new_bssid);
1629 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
1630 new_ie_len = cfg80211_gen_new_ie(ie, ielen,
1631 profile,
1632 profile_len, new_ie,
1633 gfp);
1634 if (!new_ie_len)
1635 continue;
1636
1637 capability = get_unaligned_le16(profile + 2);
1638 bss = cfg80211_inform_single_bss_data(wiphy, data,
1639 ftype,
1640 new_bssid, tsf,
1641 capability,
1642 beacon_interval,
1643 new_ie,
1644 new_ie_len,
1645 non_tx_data,
1646 gfp);
1647 if (!bss)
1648 break;
1649 cfg80211_put_bss(wiphy, bss);
1650 }
1651 }
1652
1653out:
1654 kfree(new_ie);
1655 kfree(profile);
1656}
1657
1658struct cfg80211_bss *
1659cfg80211_inform_bss_data(struct wiphy *wiphy,
1660 struct cfg80211_inform_bss *data,
1661 enum cfg80211_bss_frame_type ftype,
1662 const u8 *bssid, u64 tsf, u16 capability,
1663 u16 beacon_interval, const u8 *ie, size_t ielen,
1664 gfp_t gfp)
1665{
1666 struct cfg80211_bss *res;
1667 struct cfg80211_non_tx_bss non_tx_data;
1668
1669 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
1670 capability, beacon_interval, ie,
1671 ielen, NULL, gfp);
1672 if (!res)
1673 return NULL;
1674 non_tx_data.tx_bss = res;
1675 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
1676 beacon_interval, ie, ielen, &non_tx_data,
1677 gfp);
1678 return res;
1679}
1680EXPORT_SYMBOL(cfg80211_inform_bss_data);
1681
1682static void
1683cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
1684 struct cfg80211_inform_bss *data,
1685 struct ieee80211_mgmt *mgmt, size_t len,
1686 struct cfg80211_non_tx_bss *non_tx_data,
1687 gfp_t gfp)
1688{
1689 enum cfg80211_bss_frame_type ftype;
1690 const u8 *ie = mgmt->u.probe_resp.variable;
1691 size_t ielen = len - offsetof(struct ieee80211_mgmt,
1692 u.probe_resp.variable);
1693
1694 ftype = ieee80211_is_beacon(mgmt->frame_control) ?
1695 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
1696
1697 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
1698 le64_to_cpu(mgmt->u.probe_resp.timestamp),
1699 le16_to_cpu(mgmt->u.probe_resp.beacon_int),
1700 ie, ielen, non_tx_data, gfp);
1701}
1702
1703static void
1704cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
1705 struct cfg80211_bss *nontrans_bss,
1706 struct ieee80211_mgmt *mgmt, size_t len)
1707{
1708 u8 *ie, *new_ie, *pos;
1709 const u8 *nontrans_ssid, *trans_ssid, *mbssid;
1710 size_t ielen = len - offsetof(struct ieee80211_mgmt,
1711 u.probe_resp.variable);
1712 size_t new_ie_len;
1713 struct cfg80211_bss_ies *new_ies;
1714 const struct cfg80211_bss_ies *old;
1715 u8 cpy_len;
1716
1717 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
1718
1719 ie = mgmt->u.probe_resp.variable;
1720
1721 new_ie_len = ielen;
1722 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
1723 if (!trans_ssid)
1724 return;
1725 new_ie_len -= trans_ssid[1];
1726 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
1727 /*
1728 * It's not valid to have the MBSSID element before SSID
1729 * ignore if that happens - the code below assumes it is
1730 * after (while copying things inbetween).
1731 */
1732 if (!mbssid || mbssid < trans_ssid)
1733 return;
1734 new_ie_len -= mbssid[1];
1735
1736 nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
1737 if (!nontrans_ssid)
1738 return;
1739
1740 new_ie_len += nontrans_ssid[1];
1741
1742 /* generate new ie for nontrans BSS
1743 * 1. replace SSID with nontrans BSS' SSID
1744 * 2. skip MBSSID IE
1745 */
1746 new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
1747 if (!new_ie)
1748 return;
1749
1750 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
1751 if (!new_ies)
1752 goto out_free;
1753
1754 pos = new_ie;
1755
1756 /* copy the nontransmitted SSID */
1757 cpy_len = nontrans_ssid[1] + 2;
1758 memcpy(pos, nontrans_ssid, cpy_len);
1759 pos += cpy_len;
1760 /* copy the IEs between SSID and MBSSID */
1761 cpy_len = trans_ssid[1] + 2;
1762 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
1763 pos += (mbssid - (trans_ssid + cpy_len));
1764 /* copy the IEs after MBSSID */
1765 cpy_len = mbssid[1] + 2;
1766 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
1767
1768 /* update ie */
1769 new_ies->len = new_ie_len;
1770 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
1771 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
1772 memcpy(new_ies->data, new_ie, new_ie_len);
1773 if (ieee80211_is_probe_resp(mgmt->frame_control)) {
1774 old = rcu_access_pointer(nontrans_bss->proberesp_ies);
1775 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
1776 rcu_assign_pointer(nontrans_bss->ies, new_ies);
1777 if (old)
1778 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1779 } else {
1780 old = rcu_access_pointer(nontrans_bss->beacon_ies);
1781 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
1782 rcu_assign_pointer(nontrans_bss->ies, new_ies);
1783 if (old)
1784 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1785 }
1786
1787out_free:
1788 kfree(new_ie);
1789}
1790
1791/* cfg80211_inform_bss_width_frame helper */
1792static struct cfg80211_bss *
1793cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
1794 struct cfg80211_inform_bss *data,
1795 struct ieee80211_mgmt *mgmt, size_t len,
1796 gfp_t gfp)
1797{
1798 struct cfg80211_internal_bss tmp = {}, *res;
1799 struct cfg80211_bss_ies *ies;
1800 struct ieee80211_channel *channel;
1801 bool signal_valid;
1802 size_t ielen = len - offsetof(struct ieee80211_mgmt,
1803 u.probe_resp.variable);
1804 int bss_type;
1805
1806 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
1807 offsetof(struct ieee80211_mgmt, u.beacon.variable));
1808
1809 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
1810
1811 if (WARN_ON(!mgmt))
1812 return NULL;
1813
1814 if (WARN_ON(!wiphy))
1815 return NULL;
1816
1817 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1818 (data->signal < 0 || data->signal > 100)))
1819 return NULL;
1820
1821 if (WARN_ON(len < offsetof(struct ieee80211_mgmt, u.probe_resp.variable)))
1822 return NULL;
1823
1824 channel = cfg80211_get_bss_channel(wiphy, mgmt->u.beacon.variable,
1825 ielen, data->chan, data->scan_width);
1826 if (!channel)
1827 return NULL;
1828
1829 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1830 if (!ies)
1831 return NULL;
1832 ies->len = ielen;
1833 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
1834 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
1835 memcpy(ies->data, mgmt->u.probe_resp.variable, ielen);
1836
1837 if (ieee80211_is_probe_resp(mgmt->frame_control))
1838 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1839 else
1840 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1841 rcu_assign_pointer(tmp.pub.ies, ies);
1842
1843 memcpy(tmp.pub.bssid, mgmt->bssid, ETH_ALEN);
1844 tmp.pub.channel = channel;
1845 tmp.pub.scan_width = data->scan_width;
1846 tmp.pub.signal = data->signal;
1847 tmp.pub.beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
1848 tmp.pub.capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
1849 tmp.ts_boottime = data->boottime_ns;
1850 tmp.parent_tsf = data->parent_tsf;
1851 tmp.pub.chains = data->chains;
1852 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
1853 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1854
1855 signal_valid = abs(data->chan->center_freq - channel->center_freq) <=
1856 wiphy->max_adj_channel_rssi_comp;
1857 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
1858 jiffies);
1859 if (!res)
1860 return NULL;
1861
1862 if (channel->band == NL80211_BAND_60GHZ) {
1863 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1864 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1865 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1866 regulatory_hint_found_beacon(wiphy, channel, gfp);
1867 } else {
1868 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1869 regulatory_hint_found_beacon(wiphy, channel, gfp);
1870 }
1871
1872 trace_cfg80211_return_bss(&res->pub);
1873 /* cfg80211_bss_update gives us a referenced result */
1874 return &res->pub;
1875}
1876
1877struct cfg80211_bss *
1878cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
1879 struct cfg80211_inform_bss *data,
1880 struct ieee80211_mgmt *mgmt, size_t len,
1881 gfp_t gfp)
1882{
1883 struct cfg80211_bss *res, *tmp_bss;
1884 const u8 *ie = mgmt->u.probe_resp.variable;
1885 const struct cfg80211_bss_ies *ies1, *ies2;
1886 size_t ielen = len - offsetof(struct ieee80211_mgmt,
1887 u.probe_resp.variable);
1888 struct cfg80211_non_tx_bss non_tx_data;
1889
1890 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
1891 len, gfp);
1892 if (!res || !wiphy->support_mbssid ||
1893 !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
1894 return res;
1895 if (wiphy->support_only_he_mbssid &&
1896 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
1897 return res;
1898
1899 non_tx_data.tx_bss = res;
1900 /* process each non-transmitting bss */
1901 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
1902 &non_tx_data, gfp);
1903
1904 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
1905
1906 /* check if the res has other nontransmitting bss which is not
1907 * in MBSSID IE
1908 */
1909 ies1 = rcu_access_pointer(res->ies);
1910
1911 /* go through nontrans_list, if the timestamp of the BSS is
1912 * earlier than the timestamp of the transmitting BSS then
1913 * update it
1914 */
1915 list_for_each_entry(tmp_bss, &res->nontrans_list,
1916 nontrans_list) {
1917 ies2 = rcu_access_pointer(tmp_bss->ies);
1918 if (ies2->tsf < ies1->tsf)
1919 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
1920 mgmt, len);
1921 }
1922 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
1923
1924 return res;
1925}
1926EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
1927
1928void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1929{
1930 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1931 struct cfg80211_internal_bss *bss;
1932
1933 if (!pub)
1934 return;
1935
1936 bss = container_of(pub, struct cfg80211_internal_bss, pub);
1937
1938 spin_lock_bh(&rdev->bss_lock);
1939 bss_ref_get(rdev, bss);
1940 spin_unlock_bh(&rdev->bss_lock);
1941}
1942EXPORT_SYMBOL(cfg80211_ref_bss);
1943
1944void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1945{
1946 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1947 struct cfg80211_internal_bss *bss;
1948
1949 if (!pub)
1950 return;
1951
1952 bss = container_of(pub, struct cfg80211_internal_bss, pub);
1953
1954 spin_lock_bh(&rdev->bss_lock);
1955 bss_ref_put(rdev, bss);
1956 spin_unlock_bh(&rdev->bss_lock);
1957}
1958EXPORT_SYMBOL(cfg80211_put_bss);
1959
1960void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1961{
1962 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1963 struct cfg80211_internal_bss *bss, *tmp1;
1964 struct cfg80211_bss *nontrans_bss, *tmp;
1965
1966 if (WARN_ON(!pub))
1967 return;
1968
1969 bss = container_of(pub, struct cfg80211_internal_bss, pub);
1970
1971 spin_lock_bh(&rdev->bss_lock);
1972 if (list_empty(&bss->list))
1973 goto out;
1974
1975 list_for_each_entry_safe(nontrans_bss, tmp,
1976 &pub->nontrans_list,
1977 nontrans_list) {
1978 tmp1 = container_of(nontrans_bss,
1979 struct cfg80211_internal_bss, pub);
1980 if (__cfg80211_unlink_bss(rdev, tmp1))
1981 rdev->bss_generation++;
1982 }
1983
1984 if (__cfg80211_unlink_bss(rdev, bss))
1985 rdev->bss_generation++;
1986out:
1987 spin_unlock_bh(&rdev->bss_lock);
1988}
1989EXPORT_SYMBOL(cfg80211_unlink_bss);
1990
1991void cfg80211_bss_iter(struct wiphy *wiphy,
1992 struct cfg80211_chan_def *chandef,
1993 void (*iter)(struct wiphy *wiphy,
1994 struct cfg80211_bss *bss,
1995 void *data),
1996 void *iter_data)
1997{
1998 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1999 struct cfg80211_internal_bss *bss;
2000
2001 spin_lock_bh(&rdev->bss_lock);
2002
2003 list_for_each_entry(bss, &rdev->bss_list, list) {
2004 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
2005 iter(wiphy, &bss->pub, iter_data);
2006 }
2007
2008 spin_unlock_bh(&rdev->bss_lock);
2009}
2010EXPORT_SYMBOL(cfg80211_bss_iter);
2011
2012void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2013 struct ieee80211_channel *chan)
2014{
2015 struct wiphy *wiphy = wdev->wiphy;
2016 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2017 struct cfg80211_internal_bss *cbss = wdev->current_bss;
2018 struct cfg80211_internal_bss *new = NULL;
2019 struct cfg80211_internal_bss *bss;
2020 struct cfg80211_bss *nontrans_bss;
2021 struct cfg80211_bss *tmp;
2022
2023 spin_lock_bh(&rdev->bss_lock);
2024
2025 if (WARN_ON(cbss->pub.channel == chan))
2026 goto done;
2027
2028 /* use transmitting bss */
2029 if (cbss->pub.transmitted_bss)
2030 cbss = container_of(cbss->pub.transmitted_bss,
2031 struct cfg80211_internal_bss,
2032 pub);
2033
2034 cbss->pub.channel = chan;
2035
2036 list_for_each_entry(bss, &rdev->bss_list, list) {
2037 if (!cfg80211_bss_type_match(bss->pub.capability,
2038 bss->pub.channel->band,
2039 wdev->conn_bss_type))
2040 continue;
2041
2042 if (bss == cbss)
2043 continue;
2044
2045 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2046 new = bss;
2047 break;
2048 }
2049 }
2050
2051 if (new) {
2052 /* to save time, update IEs for transmitting bss only */
2053 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2054 new->pub.proberesp_ies = NULL;
2055 new->pub.beacon_ies = NULL;
2056 }
2057
2058 list_for_each_entry_safe(nontrans_bss, tmp,
2059 &new->pub.nontrans_list,
2060 nontrans_list) {
2061 bss = container_of(nontrans_bss,
2062 struct cfg80211_internal_bss, pub);
2063 if (__cfg80211_unlink_bss(rdev, bss))
2064 rdev->bss_generation++;
2065 }
2066
2067 WARN_ON(atomic_read(&new->hold));
2068 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2069 rdev->bss_generation++;
2070 }
2071
2072 rb_erase(&cbss->rbn, &rdev->bss_tree);
2073 rb_insert_bss(rdev, cbss);
2074 rdev->bss_generation++;
2075
2076 list_for_each_entry_safe(nontrans_bss, tmp,
2077 &cbss->pub.nontrans_list,
2078 nontrans_list) {
2079 bss = container_of(nontrans_bss,
2080 struct cfg80211_internal_bss, pub);
2081 bss->pub.channel = chan;
2082 rb_erase(&bss->rbn, &rdev->bss_tree);
2083 rb_insert_bss(rdev, bss);
2084 rdev->bss_generation++;
2085 }
2086
2087done:
2088 spin_unlock_bh(&rdev->bss_lock);
2089}
2090
2091#ifdef CONFIG_CFG80211_WEXT
2092static struct cfg80211_registered_device *
2093cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2094{
2095 struct cfg80211_registered_device *rdev;
2096 struct net_device *dev;
2097
2098 ASSERT_RTNL();
2099
2100 dev = dev_get_by_index(net, ifindex);
2101 if (!dev)
2102 return ERR_PTR(-ENODEV);
2103 if (dev->ieee80211_ptr)
2104 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2105 else
2106 rdev = ERR_PTR(-ENODEV);
2107 dev_put(dev);
2108 return rdev;
2109}
2110
2111int cfg80211_wext_siwscan(struct net_device *dev,
2112 struct iw_request_info *info,
2113 union iwreq_data *wrqu, char *extra)
2114{
2115 struct cfg80211_registered_device *rdev;
2116 struct wiphy *wiphy;
2117 struct iw_scan_req *wreq = NULL;
2118 struct cfg80211_scan_request *creq = NULL;
2119 int i, err, n_channels = 0;
2120 enum nl80211_band band;
2121
2122 if (!netif_running(dev))
2123 return -ENETDOWN;
2124
2125 if (wrqu->data.length == sizeof(struct iw_scan_req))
2126 wreq = (struct iw_scan_req *)extra;
2127
2128 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2129
2130 if (IS_ERR(rdev))
2131 return PTR_ERR(rdev);
2132
2133 if (rdev->scan_req || rdev->scan_msg) {
2134 err = -EBUSY;
2135 goto out;
2136 }
2137
2138 wiphy = &rdev->wiphy;
2139
2140 /* Determine number of channels, needed to allocate creq */
2141 if (wreq && wreq->num_channels)
2142 n_channels = wreq->num_channels;
2143 else
2144 n_channels = ieee80211_get_num_supported_channels(wiphy);
2145
2146 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2147 n_channels * sizeof(void *),
2148 GFP_ATOMIC);
2149 if (!creq) {
2150 err = -ENOMEM;
2151 goto out;
2152 }
2153
2154 creq->wiphy = wiphy;
2155 creq->wdev = dev->ieee80211_ptr;
2156 /* SSIDs come after channels */
2157 creq->ssids = (void *)&creq->channels[n_channels];
2158 creq->n_channels = n_channels;
2159 creq->n_ssids = 1;
2160 creq->scan_start = jiffies;
2161
2162 /* translate "Scan on frequencies" request */
2163 i = 0;
2164 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2165 int j;
2166
2167 if (!wiphy->bands[band])
2168 continue;
2169
2170 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2171 /* ignore disabled channels */
2172 if (wiphy->bands[band]->channels[j].flags &
2173 IEEE80211_CHAN_DISABLED)
2174 continue;
2175
2176 /* If we have a wireless request structure and the
2177 * wireless request specifies frequencies, then search
2178 * for the matching hardware channel.
2179 */
2180 if (wreq && wreq->num_channels) {
2181 int k;
2182 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2183 for (k = 0; k < wreq->num_channels; k++) {
2184 struct iw_freq *freq =
2185 &wreq->channel_list[k];
2186 int wext_freq =
2187 cfg80211_wext_freq(freq);
2188
2189 if (wext_freq == wiphy_freq)
2190 goto wext_freq_found;
2191 }
2192 goto wext_freq_not_found;
2193 }
2194
2195 wext_freq_found:
2196 creq->channels[i] = &wiphy->bands[band]->channels[j];
2197 i++;
2198 wext_freq_not_found: ;
2199 }
2200 }
2201 /* No channels found? */
2202 if (!i) {
2203 err = -EINVAL;
2204 goto out;
2205 }
2206
2207 /* Set real number of channels specified in creq->channels[] */
2208 creq->n_channels = i;
2209
2210 /* translate "Scan for SSID" request */
2211 if (wreq) {
2212 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2213 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2214 err = -EINVAL;
2215 goto out;
2216 }
2217 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2218 creq->ssids[0].ssid_len = wreq->essid_len;
2219 }
2220 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2221 creq->n_ssids = 0;
2222 }
2223
2224 for (i = 0; i < NUM_NL80211_BANDS; i++)
2225 if (wiphy->bands[i])
2226 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2227
2228 eth_broadcast_addr(creq->bssid);
2229
2230 rdev->scan_req = creq;
2231 err = rdev_scan(rdev, creq);
2232 if (err) {
2233 rdev->scan_req = NULL;
2234 /* creq will be freed below */
2235 } else {
2236 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2237 /* creq now owned by driver */
2238 creq = NULL;
2239 dev_hold(dev);
2240 }
2241 out:
2242 kfree(creq);
2243 return err;
2244}
2245EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2246
2247static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2248 const struct cfg80211_bss_ies *ies,
2249 char *current_ev, char *end_buf)
2250{
2251 const u8 *pos, *end, *next;
2252 struct iw_event iwe;
2253
2254 if (!ies)
2255 return current_ev;
2256
2257 /*
2258 * If needed, fragment the IEs buffer (at IE boundaries) into short
2259 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2260 */
2261 pos = ies->data;
2262 end = pos + ies->len;
2263
2264 while (end - pos > IW_GENERIC_IE_MAX) {
2265 next = pos + 2 + pos[1];
2266 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2267 next = next + 2 + next[1];
2268
2269 memset(&iwe, 0, sizeof(iwe));
2270 iwe.cmd = IWEVGENIE;
2271 iwe.u.data.length = next - pos;
2272 current_ev = iwe_stream_add_point_check(info, current_ev,
2273 end_buf, &iwe,
2274 (void *)pos);
2275 if (IS_ERR(current_ev))
2276 return current_ev;
2277 pos = next;
2278 }
2279
2280 if (end > pos) {
2281 memset(&iwe, 0, sizeof(iwe));
2282 iwe.cmd = IWEVGENIE;
2283 iwe.u.data.length = end - pos;
2284 current_ev = iwe_stream_add_point_check(info, current_ev,
2285 end_buf, &iwe,
2286 (void *)pos);
2287 if (IS_ERR(current_ev))
2288 return current_ev;
2289 }
2290
2291 return current_ev;
2292}
2293
2294static char *
2295ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2296 struct cfg80211_internal_bss *bss, char *current_ev,
2297 char *end_buf)
2298{
2299 const struct cfg80211_bss_ies *ies;
2300 struct iw_event iwe;
2301 const u8 *ie;
2302 u8 buf[50];
2303 u8 *cfg, *p, *tmp;
2304 int rem, i, sig;
2305 bool ismesh = false;
2306
2307 memset(&iwe, 0, sizeof(iwe));
2308 iwe.cmd = SIOCGIWAP;
2309 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2310 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2311 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2312 IW_EV_ADDR_LEN);
2313 if (IS_ERR(current_ev))
2314 return current_ev;
2315
2316 memset(&iwe, 0, sizeof(iwe));
2317 iwe.cmd = SIOCGIWFREQ;
2318 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2319 iwe.u.freq.e = 0;
2320 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2321 IW_EV_FREQ_LEN);
2322 if (IS_ERR(current_ev))
2323 return current_ev;
2324
2325 memset(&iwe, 0, sizeof(iwe));
2326 iwe.cmd = SIOCGIWFREQ;
2327 iwe.u.freq.m = bss->pub.channel->center_freq;
2328 iwe.u.freq.e = 6;
2329 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2330 IW_EV_FREQ_LEN);
2331 if (IS_ERR(current_ev))
2332 return current_ev;
2333
2334 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2335 memset(&iwe, 0, sizeof(iwe));
2336 iwe.cmd = IWEVQUAL;
2337 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2338 IW_QUAL_NOISE_INVALID |
2339 IW_QUAL_QUAL_UPDATED;
2340 switch (wiphy->signal_type) {
2341 case CFG80211_SIGNAL_TYPE_MBM:
2342 sig = bss->pub.signal / 100;
2343 iwe.u.qual.level = sig;
2344 iwe.u.qual.updated |= IW_QUAL_DBM;
2345 if (sig < -110) /* rather bad */
2346 sig = -110;
2347 else if (sig > -40) /* perfect */
2348 sig = -40;
2349 /* will give a range of 0 .. 70 */
2350 iwe.u.qual.qual = sig + 110;
2351 break;
2352 case CFG80211_SIGNAL_TYPE_UNSPEC:
2353 iwe.u.qual.level = bss->pub.signal;
2354 /* will give range 0 .. 100 */
2355 iwe.u.qual.qual = bss->pub.signal;
2356 break;
2357 default:
2358 /* not reached */
2359 break;
2360 }
2361 current_ev = iwe_stream_add_event_check(info, current_ev,
2362 end_buf, &iwe,
2363 IW_EV_QUAL_LEN);
2364 if (IS_ERR(current_ev))
2365 return current_ev;
2366 }
2367
2368 memset(&iwe, 0, sizeof(iwe));
2369 iwe.cmd = SIOCGIWENCODE;
2370 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2371 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2372 else
2373 iwe.u.data.flags = IW_ENCODE_DISABLED;
2374 iwe.u.data.length = 0;
2375 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2376 &iwe, "");
2377 if (IS_ERR(current_ev))
2378 return current_ev;
2379
2380 rcu_read_lock();
2381 ies = rcu_dereference(bss->pub.ies);
2382 rem = ies->len;
2383 ie = ies->data;
2384
2385 while (rem >= 2) {
2386 /* invalid data */
2387 if (ie[1] > rem - 2)
2388 break;
2389
2390 switch (ie[0]) {
2391 case WLAN_EID_SSID:
2392 memset(&iwe, 0, sizeof(iwe));
2393 iwe.cmd = SIOCGIWESSID;
2394 iwe.u.data.length = ie[1];
2395 iwe.u.data.flags = 1;
2396 current_ev = iwe_stream_add_point_check(info,
2397 current_ev,
2398 end_buf, &iwe,
2399 (u8 *)ie + 2);
2400 if (IS_ERR(current_ev))
2401 goto unlock;
2402 break;
2403 case WLAN_EID_MESH_ID:
2404 memset(&iwe, 0, sizeof(iwe));
2405 iwe.cmd = SIOCGIWESSID;
2406 iwe.u.data.length = ie[1];
2407 iwe.u.data.flags = 1;
2408 current_ev = iwe_stream_add_point_check(info,
2409 current_ev,
2410 end_buf, &iwe,
2411 (u8 *)ie + 2);
2412 if (IS_ERR(current_ev))
2413 goto unlock;
2414 break;
2415 case WLAN_EID_MESH_CONFIG:
2416 ismesh = true;
2417 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2418 break;
2419 cfg = (u8 *)ie + 2;
2420 memset(&iwe, 0, sizeof(iwe));
2421 iwe.cmd = IWEVCUSTOM;
2422 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2423 "0x%02X", cfg[0]);
2424 iwe.u.data.length = strlen(buf);
2425 current_ev = iwe_stream_add_point_check(info,
2426 current_ev,
2427 end_buf,
2428 &iwe, buf);
2429 if (IS_ERR(current_ev))
2430 goto unlock;
2431 sprintf(buf, "Path Selection Metric ID: 0x%02X",
2432 cfg[1]);
2433 iwe.u.data.length = strlen(buf);
2434 current_ev = iwe_stream_add_point_check(info,
2435 current_ev,
2436 end_buf,
2437 &iwe, buf);
2438 if (IS_ERR(current_ev))
2439 goto unlock;
2440 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
2441 cfg[2]);
2442 iwe.u.data.length = strlen(buf);
2443 current_ev = iwe_stream_add_point_check(info,
2444 current_ev,
2445 end_buf,
2446 &iwe, buf);
2447 if (IS_ERR(current_ev))
2448 goto unlock;
2449 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
2450 iwe.u.data.length = strlen(buf);
2451 current_ev = iwe_stream_add_point_check(info,
2452 current_ev,
2453 end_buf,
2454 &iwe, buf);
2455 if (IS_ERR(current_ev))
2456 goto unlock;
2457 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
2458 iwe.u.data.length = strlen(buf);
2459 current_ev = iwe_stream_add_point_check(info,
2460 current_ev,
2461 end_buf,
2462 &iwe, buf);
2463 if (IS_ERR(current_ev))
2464 goto unlock;
2465 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
2466 iwe.u.data.length = strlen(buf);
2467 current_ev = iwe_stream_add_point_check(info,
2468 current_ev,
2469 end_buf,
2470 &iwe, buf);
2471 if (IS_ERR(current_ev))
2472 goto unlock;
2473 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
2474 iwe.u.data.length = strlen(buf);
2475 current_ev = iwe_stream_add_point_check(info,
2476 current_ev,
2477 end_buf,
2478 &iwe, buf);
2479 if (IS_ERR(current_ev))
2480 goto unlock;
2481 break;
2482 case WLAN_EID_SUPP_RATES:
2483 case WLAN_EID_EXT_SUPP_RATES:
2484 /* display all supported rates in readable format */
2485 p = current_ev + iwe_stream_lcp_len(info);
2486
2487 memset(&iwe, 0, sizeof(iwe));
2488 iwe.cmd = SIOCGIWRATE;
2489 /* Those two flags are ignored... */
2490 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
2491
2492 for (i = 0; i < ie[1]; i++) {
2493 iwe.u.bitrate.value =
2494 ((ie[i + 2] & 0x7f) * 500000);
2495 tmp = p;
2496 p = iwe_stream_add_value(info, current_ev, p,
2497 end_buf, &iwe,
2498 IW_EV_PARAM_LEN);
2499 if (p == tmp) {
2500 current_ev = ERR_PTR(-E2BIG);
2501 goto unlock;
2502 }
2503 }
2504 current_ev = p;
2505 break;
2506 }
2507 rem -= ie[1] + 2;
2508 ie += ie[1] + 2;
2509 }
2510
2511 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
2512 ismesh) {
2513 memset(&iwe, 0, sizeof(iwe));
2514 iwe.cmd = SIOCGIWMODE;
2515 if (ismesh)
2516 iwe.u.mode = IW_MODE_MESH;
2517 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
2518 iwe.u.mode = IW_MODE_MASTER;
2519 else
2520 iwe.u.mode = IW_MODE_ADHOC;
2521 current_ev = iwe_stream_add_event_check(info, current_ev,
2522 end_buf, &iwe,
2523 IW_EV_UINT_LEN);
2524 if (IS_ERR(current_ev))
2525 goto unlock;
2526 }
2527
2528 memset(&iwe, 0, sizeof(iwe));
2529 iwe.cmd = IWEVCUSTOM;
2530 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
2531 iwe.u.data.length = strlen(buf);
2532 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2533 &iwe, buf);
2534 if (IS_ERR(current_ev))
2535 goto unlock;
2536 memset(&iwe, 0, sizeof(iwe));
2537 iwe.cmd = IWEVCUSTOM;
2538 sprintf(buf, " Last beacon: %ums ago",
2539 elapsed_jiffies_msecs(bss->ts));
2540 iwe.u.data.length = strlen(buf);
2541 current_ev = iwe_stream_add_point_check(info, current_ev,
2542 end_buf, &iwe, buf);
2543 if (IS_ERR(current_ev))
2544 goto unlock;
2545
2546 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
2547
2548 unlock:
2549 rcu_read_unlock();
2550 return current_ev;
2551}
2552
2553
2554static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
2555 struct iw_request_info *info,
2556 char *buf, size_t len)
2557{
2558 char *current_ev = buf;
2559 char *end_buf = buf + len;
2560 struct cfg80211_internal_bss *bss;
2561 int err = 0;
2562
2563 spin_lock_bh(&rdev->bss_lock);
2564 cfg80211_bss_expire(rdev);
2565
2566 list_for_each_entry(bss, &rdev->bss_list, list) {
2567 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
2568 err = -E2BIG;
2569 break;
2570 }
2571 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
2572 current_ev, end_buf);
2573 if (IS_ERR(current_ev)) {
2574 err = PTR_ERR(current_ev);
2575 break;
2576 }
2577 }
2578 spin_unlock_bh(&rdev->bss_lock);
2579
2580 if (err)
2581 return err;
2582 return current_ev - buf;
2583}
2584
2585
2586int cfg80211_wext_giwscan(struct net_device *dev,
2587 struct iw_request_info *info,
2588 struct iw_point *data, char *extra)
2589{
2590 struct cfg80211_registered_device *rdev;
2591 int res;
2592
2593 if (!netif_running(dev))
2594 return -ENETDOWN;
2595
2596 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2597
2598 if (IS_ERR(rdev))
2599 return PTR_ERR(rdev);
2600
2601 if (rdev->scan_req || rdev->scan_msg)
2602 return -EAGAIN;
2603
2604 res = ieee80211_scan_results(rdev, info, extra, data->length);
2605 data->length = 0;
2606 if (res >= 0) {
2607 data->length = res;
2608 res = 0;
2609 }
2610
2611 return res;
2612}
2613EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
2614#endif