Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2023 Intel Corporation
9 */
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/netdevice.h>
14#include <linux/wireless.h>
15#include <linux/nl80211.h>
16#include <linux/etherdevice.h>
17#include <linux/crc32.h>
18#include <linux/bitfield.h>
19#include <net/arp.h>
20#include <net/cfg80211.h>
21#include <net/cfg80211-wext.h>
22#include <net/iw_handler.h>
23#include <kunit/visibility.h>
24#include "core.h"
25#include "nl80211.h"
26#include "wext-compat.h"
27#include "rdev-ops.h"
28
29/**
30 * DOC: BSS tree/list structure
31 *
32 * At the top level, the BSS list is kept in both a list in each
33 * registered device (@bss_list) as well as an RB-tree for faster
34 * lookup. In the RB-tree, entries can be looked up using their
35 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36 * for other BSSes.
37 *
38 * Due to the possibility of hidden SSIDs, there's a second level
39 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40 * The hidden_list connects all BSSes belonging to a single AP
41 * that has a hidden SSID, and connects beacon and probe response
42 * entries. For a probe response entry for a hidden SSID, the
43 * hidden_beacon_bss pointer points to the BSS struct holding the
44 * beacon's information.
45 *
46 * Reference counting is done for all these references except for
47 * the hidden_list, so that a beacon BSS struct that is otherwise
48 * not referenced has one reference for being on the bss_list and
49 * one for each probe response entry that points to it using the
50 * hidden_beacon_bss pointer. When a BSS struct that has such a
51 * pointer is get/put, the refcount update is also propagated to
52 * the referenced struct, this ensure that it cannot get removed
53 * while somebody is using the probe response version.
54 *
55 * Note that the hidden_beacon_bss pointer never changes, due to
56 * the reference counting. Therefore, no locking is needed for
57 * it.
58 *
59 * Also note that the hidden_beacon_bss pointer is only relevant
60 * if the driver uses something other than the IEs, e.g. private
61 * data stored in the BSS struct, since the beacon IEs are
62 * also linked into the probe response struct.
63 */
64
65/*
66 * Limit the number of BSS entries stored in mac80211. Each one is
67 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68 * If somebody wants to really attack this though, they'd likely
69 * use small beacons, and only one type of frame, limiting each of
70 * the entries to a much smaller size (in order to generate more
71 * entries in total, so overhead is bigger.)
72 */
73static int bss_entries_limit = 1000;
74module_param(bss_entries_limit, int, 0644);
75MODULE_PARM_DESC(bss_entries_limit,
76 "limit to number of scan BSS entries (per wiphy, default 1000)");
77
78#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
79
80/**
81 * struct cfg80211_colocated_ap - colocated AP information
82 *
83 * @list: linked list to all colocated aPS
84 * @bssid: BSSID of the reported AP
85 * @ssid: SSID of the reported AP
86 * @ssid_len: length of the ssid
87 * @center_freq: frequency the reported AP is on
88 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
89 * that operate in the same channel as the reported AP and that might be
90 * detected by a STA receiving this frame, are transmitting unsolicited
91 * Probe Response frames every 20 TUs
92 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
93 * @same_ssid: the reported AP has the same SSID as the reporting AP
94 * @multi_bss: the reported AP is part of a multiple BSSID set
95 * @transmitted_bssid: the reported AP is the transmitting BSSID
96 * @colocated_ess: all the APs that share the same ESS as the reported AP are
97 * colocated and can be discovered via legacy bands.
98 * @short_ssid_valid: short_ssid is valid and can be used
99 * @short_ssid: the short SSID for this SSID
100 * @psd_20: The 20MHz PSD EIRP of the primary 20MHz channel for the reported AP
101 */
102struct cfg80211_colocated_ap {
103 struct list_head list;
104 u8 bssid[ETH_ALEN];
105 u8 ssid[IEEE80211_MAX_SSID_LEN];
106 size_t ssid_len;
107 u32 short_ssid;
108 u32 center_freq;
109 u8 unsolicited_probe:1,
110 oct_recommended:1,
111 same_ssid:1,
112 multi_bss:1,
113 transmitted_bssid:1,
114 colocated_ess:1,
115 short_ssid_valid:1;
116 s8 psd_20;
117};
118
119static void bss_free(struct cfg80211_internal_bss *bss)
120{
121 struct cfg80211_bss_ies *ies;
122
123 if (WARN_ON(atomic_read(&bss->hold)))
124 return;
125
126 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
127 if (ies && !bss->pub.hidden_beacon_bss)
128 kfree_rcu(ies, rcu_head);
129 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
130 if (ies)
131 kfree_rcu(ies, rcu_head);
132
133 /*
134 * This happens when the module is removed, it doesn't
135 * really matter any more save for completeness
136 */
137 if (!list_empty(&bss->hidden_list))
138 list_del(&bss->hidden_list);
139
140 kfree(bss);
141}
142
143static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
144 struct cfg80211_internal_bss *bss)
145{
146 lockdep_assert_held(&rdev->bss_lock);
147
148 bss->refcount++;
149
150 if (bss->pub.hidden_beacon_bss)
151 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
152
153 if (bss->pub.transmitted_bss)
154 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
155}
156
157static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
158 struct cfg80211_internal_bss *bss)
159{
160 lockdep_assert_held(&rdev->bss_lock);
161
162 if (bss->pub.hidden_beacon_bss) {
163 struct cfg80211_internal_bss *hbss;
164
165 hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
166 hbss->refcount--;
167 if (hbss->refcount == 0)
168 bss_free(hbss);
169 }
170
171 if (bss->pub.transmitted_bss) {
172 struct cfg80211_internal_bss *tbss;
173
174 tbss = bss_from_pub(bss->pub.transmitted_bss);
175 tbss->refcount--;
176 if (tbss->refcount == 0)
177 bss_free(tbss);
178 }
179
180 bss->refcount--;
181 if (bss->refcount == 0)
182 bss_free(bss);
183}
184
185static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
186 struct cfg80211_internal_bss *bss)
187{
188 lockdep_assert_held(&rdev->bss_lock);
189
190 if (!list_empty(&bss->hidden_list)) {
191 /*
192 * don't remove the beacon entry if it has
193 * probe responses associated with it
194 */
195 if (!bss->pub.hidden_beacon_bss)
196 return false;
197 /*
198 * if it's a probe response entry break its
199 * link to the other entries in the group
200 */
201 list_del_init(&bss->hidden_list);
202 }
203
204 list_del_init(&bss->list);
205 list_del_init(&bss->pub.nontrans_list);
206 rb_erase(&bss->rbn, &rdev->bss_tree);
207 rdev->bss_entries--;
208 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
209 "rdev bss entries[%d]/list[empty:%d] corruption\n",
210 rdev->bss_entries, list_empty(&rdev->bss_list));
211 bss_ref_put(rdev, bss);
212 return true;
213}
214
215bool cfg80211_is_element_inherited(const struct element *elem,
216 const struct element *non_inherit_elem)
217{
218 u8 id_len, ext_id_len, i, loop_len, id;
219 const u8 *list;
220
221 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
222 return false;
223
224 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
225 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
226 return false;
227
228 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
229 return true;
230
231 /*
232 * non inheritance element format is:
233 * ext ID (56) | IDs list len | list | extension IDs list len | list
234 * Both lists are optional. Both lengths are mandatory.
235 * This means valid length is:
236 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
237 */
238 id_len = non_inherit_elem->data[1];
239 if (non_inherit_elem->datalen < 3 + id_len)
240 return true;
241
242 ext_id_len = non_inherit_elem->data[2 + id_len];
243 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
244 return true;
245
246 if (elem->id == WLAN_EID_EXTENSION) {
247 if (!ext_id_len)
248 return true;
249 loop_len = ext_id_len;
250 list = &non_inherit_elem->data[3 + id_len];
251 id = elem->data[0];
252 } else {
253 if (!id_len)
254 return true;
255 loop_len = id_len;
256 list = &non_inherit_elem->data[2];
257 id = elem->id;
258 }
259
260 for (i = 0; i < loop_len; i++) {
261 if (list[i] == id)
262 return false;
263 }
264
265 return true;
266}
267EXPORT_SYMBOL(cfg80211_is_element_inherited);
268
269static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
270 const u8 *ie, size_t ie_len,
271 u8 **pos, u8 *buf, size_t buf_len)
272{
273 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
274 elem->data + elem->datalen > ie + ie_len))
275 return 0;
276
277 if (elem->datalen + 2 > buf + buf_len - *pos)
278 return 0;
279
280 memcpy(*pos, elem, elem->datalen + 2);
281 *pos += elem->datalen + 2;
282
283 /* Finish if it is not fragmented */
284 if (elem->datalen != 255)
285 return *pos - buf;
286
287 ie_len = ie + ie_len - elem->data - elem->datalen;
288 ie = (const u8 *)elem->data + elem->datalen;
289
290 for_each_element(elem, ie, ie_len) {
291 if (elem->id != WLAN_EID_FRAGMENT)
292 break;
293
294 if (elem->datalen + 2 > buf + buf_len - *pos)
295 return 0;
296
297 memcpy(*pos, elem, elem->datalen + 2);
298 *pos += elem->datalen + 2;
299
300 if (elem->datalen != 255)
301 break;
302 }
303
304 return *pos - buf;
305}
306
307VISIBLE_IF_CFG80211_KUNIT size_t
308cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
309 const u8 *subie, size_t subie_len,
310 u8 *new_ie, size_t new_ie_len)
311{
312 const struct element *non_inherit_elem, *parent, *sub;
313 u8 *pos = new_ie;
314 u8 id, ext_id;
315 unsigned int match_len;
316
317 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
318 subie, subie_len);
319
320 /* We copy the elements one by one from the parent to the generated
321 * elements.
322 * If they are not inherited (included in subie or in the non
323 * inheritance element), then we copy all occurrences the first time
324 * we see this element type.
325 */
326 for_each_element(parent, ie, ielen) {
327 if (parent->id == WLAN_EID_FRAGMENT)
328 continue;
329
330 if (parent->id == WLAN_EID_EXTENSION) {
331 if (parent->datalen < 1)
332 continue;
333
334 id = WLAN_EID_EXTENSION;
335 ext_id = parent->data[0];
336 match_len = 1;
337 } else {
338 id = parent->id;
339 match_len = 0;
340 }
341
342 /* Find first occurrence in subie */
343 sub = cfg80211_find_elem_match(id, subie, subie_len,
344 &ext_id, match_len, 0);
345
346 /* Copy from parent if not in subie and inherited */
347 if (!sub &&
348 cfg80211_is_element_inherited(parent, non_inherit_elem)) {
349 if (!cfg80211_copy_elem_with_frags(parent,
350 ie, ielen,
351 &pos, new_ie,
352 new_ie_len))
353 return 0;
354
355 continue;
356 }
357
358 /* Already copied if an earlier element had the same type */
359 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
360 &ext_id, match_len, 0))
361 continue;
362
363 /* Not inheriting, copy all similar elements from subie */
364 while (sub) {
365 if (!cfg80211_copy_elem_with_frags(sub,
366 subie, subie_len,
367 &pos, new_ie,
368 new_ie_len))
369 return 0;
370
371 sub = cfg80211_find_elem_match(id,
372 sub->data + sub->datalen,
373 subie_len + subie -
374 (sub->data +
375 sub->datalen),
376 &ext_id, match_len, 0);
377 }
378 }
379
380 /* The above misses elements that are included in subie but not in the
381 * parent, so do a pass over subie and append those.
382 * Skip the non-tx BSSID caps and non-inheritance element.
383 */
384 for_each_element(sub, subie, subie_len) {
385 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
386 continue;
387
388 if (sub->id == WLAN_EID_FRAGMENT)
389 continue;
390
391 if (sub->id == WLAN_EID_EXTENSION) {
392 if (sub->datalen < 1)
393 continue;
394
395 id = WLAN_EID_EXTENSION;
396 ext_id = sub->data[0];
397 match_len = 1;
398
399 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
400 continue;
401 } else {
402 id = sub->id;
403 match_len = 0;
404 }
405
406 /* Processed if one was included in the parent */
407 if (cfg80211_find_elem_match(id, ie, ielen,
408 &ext_id, match_len, 0))
409 continue;
410
411 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
412 &pos, new_ie, new_ie_len))
413 return 0;
414 }
415
416 return pos - new_ie;
417}
418EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
419
420static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
421 const u8 *ssid, size_t ssid_len)
422{
423 const struct cfg80211_bss_ies *ies;
424 const struct element *ssid_elem;
425
426 if (bssid && !ether_addr_equal(a->bssid, bssid))
427 return false;
428
429 if (!ssid)
430 return true;
431
432 ies = rcu_access_pointer(a->ies);
433 if (!ies)
434 return false;
435 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
436 if (!ssid_elem)
437 return false;
438 if (ssid_elem->datalen != ssid_len)
439 return false;
440 return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
441}
442
443static int
444cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
445 struct cfg80211_bss *nontrans_bss)
446{
447 const struct element *ssid_elem;
448 struct cfg80211_bss *bss = NULL;
449
450 rcu_read_lock();
451 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
452 if (!ssid_elem) {
453 rcu_read_unlock();
454 return -EINVAL;
455 }
456
457 /* check if nontrans_bss is in the list */
458 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
459 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
460 ssid_elem->datalen)) {
461 rcu_read_unlock();
462 return 0;
463 }
464 }
465
466 rcu_read_unlock();
467
468 /*
469 * This is a bit weird - it's not on the list, but already on another
470 * one! The only way that could happen is if there's some BSSID/SSID
471 * shared by multiple APs in their multi-BSSID profiles, potentially
472 * with hidden SSID mixed in ... ignore it.
473 */
474 if (!list_empty(&nontrans_bss->nontrans_list))
475 return -EINVAL;
476
477 /* add to the list */
478 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
479 return 0;
480}
481
482static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
483 unsigned long expire_time)
484{
485 struct cfg80211_internal_bss *bss, *tmp;
486 bool expired = false;
487
488 lockdep_assert_held(&rdev->bss_lock);
489
490 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
491 if (atomic_read(&bss->hold))
492 continue;
493 if (!time_after(expire_time, bss->ts))
494 continue;
495
496 if (__cfg80211_unlink_bss(rdev, bss))
497 expired = true;
498 }
499
500 if (expired)
501 rdev->bss_generation++;
502}
503
504static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
505{
506 struct cfg80211_internal_bss *bss, *oldest = NULL;
507 bool ret;
508
509 lockdep_assert_held(&rdev->bss_lock);
510
511 list_for_each_entry(bss, &rdev->bss_list, list) {
512 if (atomic_read(&bss->hold))
513 continue;
514
515 if (!list_empty(&bss->hidden_list) &&
516 !bss->pub.hidden_beacon_bss)
517 continue;
518
519 if (oldest && time_before(oldest->ts, bss->ts))
520 continue;
521 oldest = bss;
522 }
523
524 if (WARN_ON(!oldest))
525 return false;
526
527 /*
528 * The callers make sure to increase rdev->bss_generation if anything
529 * gets removed (and a new entry added), so there's no need to also do
530 * it here.
531 */
532
533 ret = __cfg80211_unlink_bss(rdev, oldest);
534 WARN_ON(!ret);
535 return ret;
536}
537
538static u8 cfg80211_parse_bss_param(u8 data,
539 struct cfg80211_colocated_ap *coloc_ap)
540{
541 coloc_ap->oct_recommended =
542 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
543 coloc_ap->same_ssid =
544 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
545 coloc_ap->multi_bss =
546 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
547 coloc_ap->transmitted_bssid =
548 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
549 coloc_ap->unsolicited_probe =
550 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
551 coloc_ap->colocated_ess =
552 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
553
554 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
555}
556
557static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
558 const struct element **elem, u32 *s_ssid)
559{
560
561 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
562 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
563 return -EINVAL;
564
565 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
566 return 0;
567}
568
569static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
570{
571 struct cfg80211_colocated_ap *ap, *tmp_ap;
572
573 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
574 list_del(&ap->list);
575 kfree(ap);
576 }
577}
578
579static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
580 const u8 *pos, u8 length,
581 const struct element *ssid_elem,
582 u32 s_ssid_tmp)
583{
584 u8 bss_params;
585
586 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
587
588 /* The length is already verified by the caller to contain bss_params */
589 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
590 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
591
592 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
593 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
594 entry->short_ssid_valid = true;
595
596 bss_params = tbtt_info->bss_params;
597
598 /* Ignore disabled links */
599 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
600 if (le16_get_bits(tbtt_info->mld_params.params,
601 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
602 return -EINVAL;
603 }
604
605 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
606 psd_20))
607 entry->psd_20 = tbtt_info->psd_20;
608 } else {
609 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
610
611 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
612
613 bss_params = tbtt_info->bss_params;
614
615 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
616 psd_20))
617 entry->psd_20 = tbtt_info->psd_20;
618 }
619
620 /* ignore entries with invalid BSSID */
621 if (!is_valid_ether_addr(entry->bssid))
622 return -EINVAL;
623
624 /* skip non colocated APs */
625 if (!cfg80211_parse_bss_param(bss_params, entry))
626 return -EINVAL;
627
628 /* no information about the short ssid. Consider the entry valid
629 * for now. It would later be dropped in case there are explicit
630 * SSIDs that need to be matched
631 */
632 if (!entry->same_ssid && !entry->short_ssid_valid)
633 return 0;
634
635 if (entry->same_ssid) {
636 entry->short_ssid = s_ssid_tmp;
637 entry->short_ssid_valid = true;
638
639 /*
640 * This is safe because we validate datalen in
641 * cfg80211_parse_colocated_ap(), before calling this
642 * function.
643 */
644 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
645 entry->ssid_len = ssid_elem->datalen;
646 }
647
648 return 0;
649}
650
651static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
652 struct list_head *list)
653{
654 struct ieee80211_neighbor_ap_info *ap_info;
655 const struct element *elem, *ssid_elem;
656 const u8 *pos, *end;
657 u32 s_ssid_tmp;
658 int n_coloc = 0, ret;
659 LIST_HEAD(ap_list);
660
661 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
662 if (ret)
663 return 0;
664
665 for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
666 ies->data, ies->len) {
667 pos = elem->data;
668 end = elem->data + elem->datalen;
669
670 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
671 while (pos + sizeof(*ap_info) <= end) {
672 enum nl80211_band band;
673 int freq;
674 u8 length, i, count;
675
676 ap_info = (void *)pos;
677 count = u8_get_bits(ap_info->tbtt_info_hdr,
678 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
679 length = ap_info->tbtt_info_len;
680
681 pos += sizeof(*ap_info);
682
683 if (!ieee80211_operating_class_to_band(ap_info->op_class,
684 &band))
685 break;
686
687 freq = ieee80211_channel_to_frequency(ap_info->channel,
688 band);
689
690 if (end - pos < count * length)
691 break;
692
693 if (u8_get_bits(ap_info->tbtt_info_hdr,
694 IEEE80211_AP_INFO_TBTT_HDR_TYPE) !=
695 IEEE80211_TBTT_INFO_TYPE_TBTT) {
696 pos += count * length;
697 continue;
698 }
699
700 /* TBTT info must include bss param + BSSID +
701 * (short SSID or same_ssid bit to be set).
702 * ignore other options, and move to the
703 * next AP info
704 */
705 if (band != NL80211_BAND_6GHZ ||
706 !(length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
707 bss_params) ||
708 length == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
709 length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
710 bss_params))) {
711 pos += count * length;
712 continue;
713 }
714
715 for (i = 0; i < count; i++) {
716 struct cfg80211_colocated_ap *entry;
717
718 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
719 GFP_ATOMIC);
720
721 if (!entry)
722 goto error;
723
724 entry->center_freq = freq;
725
726 if (!cfg80211_parse_ap_info(entry, pos, length,
727 ssid_elem,
728 s_ssid_tmp)) {
729 n_coloc++;
730 list_add_tail(&entry->list, &ap_list);
731 } else {
732 kfree(entry);
733 }
734
735 pos += length;
736 }
737 }
738
739error:
740 if (pos != end) {
741 cfg80211_free_coloc_ap_list(&ap_list);
742 return 0;
743 }
744 }
745
746 list_splice_tail(&ap_list, list);
747 return n_coloc;
748}
749
750static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
751 struct ieee80211_channel *chan,
752 bool add_to_6ghz)
753{
754 int i;
755 u32 n_channels = request->n_channels;
756 struct cfg80211_scan_6ghz_params *params =
757 &request->scan_6ghz_params[request->n_6ghz_params];
758
759 for (i = 0; i < n_channels; i++) {
760 if (request->channels[i] == chan) {
761 if (add_to_6ghz)
762 params->channel_idx = i;
763 return;
764 }
765 }
766
767 request->channels[n_channels] = chan;
768 if (add_to_6ghz)
769 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
770 n_channels;
771
772 request->n_channels++;
773}
774
775static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
776 struct cfg80211_scan_request *request)
777{
778 int i;
779 u32 s_ssid;
780
781 for (i = 0; i < request->n_ssids; i++) {
782 /* wildcard ssid in the scan request */
783 if (!request->ssids[i].ssid_len) {
784 if (ap->multi_bss && !ap->transmitted_bssid)
785 continue;
786
787 return true;
788 }
789
790 if (ap->ssid_len &&
791 ap->ssid_len == request->ssids[i].ssid_len) {
792 if (!memcmp(request->ssids[i].ssid, ap->ssid,
793 ap->ssid_len))
794 return true;
795 } else if (ap->short_ssid_valid) {
796 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
797 request->ssids[i].ssid_len);
798
799 if (ap->short_ssid == s_ssid)
800 return true;
801 }
802 }
803
804 return false;
805}
806
807static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
808{
809 u8 i;
810 struct cfg80211_colocated_ap *ap;
811 int n_channels, count = 0, err;
812 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
813 LIST_HEAD(coloc_ap_list);
814 bool need_scan_psc = true;
815 const struct ieee80211_sband_iftype_data *iftd;
816
817 rdev_req->scan_6ghz = true;
818
819 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
820 return -EOPNOTSUPP;
821
822 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
823 rdev_req->wdev->iftype);
824 if (!iftd || !iftd->he_cap.has_he)
825 return -EOPNOTSUPP;
826
827 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
828
829 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
830 struct cfg80211_internal_bss *intbss;
831
832 spin_lock_bh(&rdev->bss_lock);
833 list_for_each_entry(intbss, &rdev->bss_list, list) {
834 struct cfg80211_bss *res = &intbss->pub;
835 const struct cfg80211_bss_ies *ies;
836 const struct element *ssid_elem;
837 struct cfg80211_colocated_ap *entry;
838 u32 s_ssid_tmp;
839 int ret;
840
841 ies = rcu_access_pointer(res->ies);
842 count += cfg80211_parse_colocated_ap(ies,
843 &coloc_ap_list);
844
845 /* In case the scan request specified a specific BSSID
846 * and the BSS is found and operating on 6GHz band then
847 * add this AP to the collocated APs list.
848 * This is relevant for ML probe requests when the lower
849 * band APs have not been discovered.
850 */
851 if (is_broadcast_ether_addr(rdev_req->bssid) ||
852 !ether_addr_equal(rdev_req->bssid, res->bssid) ||
853 res->channel->band != NL80211_BAND_6GHZ)
854 continue;
855
856 ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
857 &s_ssid_tmp);
858 if (ret)
859 continue;
860
861 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
862 GFP_ATOMIC);
863
864 if (!entry)
865 continue;
866
867 memcpy(entry->bssid, res->bssid, ETH_ALEN);
868 entry->short_ssid = s_ssid_tmp;
869 memcpy(entry->ssid, ssid_elem->data,
870 ssid_elem->datalen);
871 entry->ssid_len = ssid_elem->datalen;
872 entry->short_ssid_valid = true;
873 entry->center_freq = res->channel->center_freq;
874
875 list_add_tail(&entry->list, &coloc_ap_list);
876 count++;
877 }
878 spin_unlock_bh(&rdev->bss_lock);
879 }
880
881 request = kzalloc(struct_size(request, channels, n_channels) +
882 sizeof(*request->scan_6ghz_params) * count +
883 sizeof(*request->ssids) * rdev_req->n_ssids,
884 GFP_KERNEL);
885 if (!request) {
886 cfg80211_free_coloc_ap_list(&coloc_ap_list);
887 return -ENOMEM;
888 }
889
890 *request = *rdev_req;
891 request->n_channels = 0;
892 request->scan_6ghz_params =
893 (void *)&request->channels[n_channels];
894
895 /*
896 * PSC channels should not be scanned in case of direct scan with 1 SSID
897 * and at least one of the reported co-located APs with same SSID
898 * indicating that all APs in the same ESS are co-located
899 */
900 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
901 list_for_each_entry(ap, &coloc_ap_list, list) {
902 if (ap->colocated_ess &&
903 cfg80211_find_ssid_match(ap, request)) {
904 need_scan_psc = false;
905 break;
906 }
907 }
908 }
909
910 /*
911 * add to the scan request the channels that need to be scanned
912 * regardless of the collocated APs (PSC channels or all channels
913 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
914 */
915 for (i = 0; i < rdev_req->n_channels; i++) {
916 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
917 ((need_scan_psc &&
918 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
919 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
920 cfg80211_scan_req_add_chan(request,
921 rdev_req->channels[i],
922 false);
923 }
924 }
925
926 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
927 goto skip;
928
929 list_for_each_entry(ap, &coloc_ap_list, list) {
930 bool found = false;
931 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
932 &request->scan_6ghz_params[request->n_6ghz_params];
933 struct ieee80211_channel *chan =
934 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
935
936 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
937 continue;
938
939 for (i = 0; i < rdev_req->n_channels; i++) {
940 if (rdev_req->channels[i] == chan)
941 found = true;
942 }
943
944 if (!found)
945 continue;
946
947 if (request->n_ssids > 0 &&
948 !cfg80211_find_ssid_match(ap, request))
949 continue;
950
951 if (!is_broadcast_ether_addr(request->bssid) &&
952 !ether_addr_equal(request->bssid, ap->bssid))
953 continue;
954
955 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
956 continue;
957
958 cfg80211_scan_req_add_chan(request, chan, true);
959 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
960 scan_6ghz_params->short_ssid = ap->short_ssid;
961 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
962 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
963 scan_6ghz_params->psd_20 = ap->psd_20;
964
965 /*
966 * If a PSC channel is added to the scan and 'need_scan_psc' is
967 * set to false, then all the APs that the scan logic is
968 * interested with on the channel are collocated and thus there
969 * is no need to perform the initial PSC channel listen.
970 */
971 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
972 scan_6ghz_params->psc_no_listen = true;
973
974 request->n_6ghz_params++;
975 }
976
977skip:
978 cfg80211_free_coloc_ap_list(&coloc_ap_list);
979
980 if (request->n_channels) {
981 struct cfg80211_scan_request *old = rdev->int_scan_req;
982 rdev->int_scan_req = request;
983
984 /*
985 * Add the ssids from the parent scan request to the new scan
986 * request, so the driver would be able to use them in its
987 * probe requests to discover hidden APs on PSC channels.
988 */
989 request->ssids = (void *)&request->channels[request->n_channels];
990 request->n_ssids = rdev_req->n_ssids;
991 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
992 request->n_ssids);
993
994 /*
995 * If this scan follows a previous scan, save the scan start
996 * info from the first part of the scan
997 */
998 if (old)
999 rdev->int_scan_req->info = old->info;
1000
1001 err = rdev_scan(rdev, request);
1002 if (err) {
1003 rdev->int_scan_req = old;
1004 kfree(request);
1005 } else {
1006 kfree(old);
1007 }
1008
1009 return err;
1010 }
1011
1012 kfree(request);
1013 return -EINVAL;
1014}
1015
1016int cfg80211_scan(struct cfg80211_registered_device *rdev)
1017{
1018 struct cfg80211_scan_request *request;
1019 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1020 u32 n_channels = 0, idx, i;
1021
1022 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1023 return rdev_scan(rdev, rdev_req);
1024
1025 for (i = 0; i < rdev_req->n_channels; i++) {
1026 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1027 n_channels++;
1028 }
1029
1030 if (!n_channels)
1031 return cfg80211_scan_6ghz(rdev);
1032
1033 request = kzalloc(struct_size(request, channels, n_channels),
1034 GFP_KERNEL);
1035 if (!request)
1036 return -ENOMEM;
1037
1038 *request = *rdev_req;
1039 request->n_channels = n_channels;
1040
1041 for (i = idx = 0; i < rdev_req->n_channels; i++) {
1042 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1043 request->channels[idx++] = rdev_req->channels[i];
1044 }
1045
1046 rdev_req->scan_6ghz = false;
1047 rdev->int_scan_req = request;
1048 return rdev_scan(rdev, request);
1049}
1050
1051void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1052 bool send_message)
1053{
1054 struct cfg80211_scan_request *request, *rdev_req;
1055 struct wireless_dev *wdev;
1056 struct sk_buff *msg;
1057#ifdef CONFIG_CFG80211_WEXT
1058 union iwreq_data wrqu;
1059#endif
1060
1061 lockdep_assert_held(&rdev->wiphy.mtx);
1062
1063 if (rdev->scan_msg) {
1064 nl80211_send_scan_msg(rdev, rdev->scan_msg);
1065 rdev->scan_msg = NULL;
1066 return;
1067 }
1068
1069 rdev_req = rdev->scan_req;
1070 if (!rdev_req)
1071 return;
1072
1073 wdev = rdev_req->wdev;
1074 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1075
1076 if (wdev_running(wdev) &&
1077 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1078 !rdev_req->scan_6ghz && !request->info.aborted &&
1079 !cfg80211_scan_6ghz(rdev))
1080 return;
1081
1082 /*
1083 * This must be before sending the other events!
1084 * Otherwise, wpa_supplicant gets completely confused with
1085 * wext events.
1086 */
1087 if (wdev->netdev)
1088 cfg80211_sme_scan_done(wdev->netdev);
1089
1090 if (!request->info.aborted &&
1091 request->flags & NL80211_SCAN_FLAG_FLUSH) {
1092 /* flush entries from previous scans */
1093 spin_lock_bh(&rdev->bss_lock);
1094 __cfg80211_bss_expire(rdev, request->scan_start);
1095 spin_unlock_bh(&rdev->bss_lock);
1096 }
1097
1098 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1099
1100#ifdef CONFIG_CFG80211_WEXT
1101 if (wdev->netdev && !request->info.aborted) {
1102 memset(&wrqu, 0, sizeof(wrqu));
1103
1104 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1105 }
1106#endif
1107
1108 dev_put(wdev->netdev);
1109
1110 kfree(rdev->int_scan_req);
1111 rdev->int_scan_req = NULL;
1112
1113 kfree(rdev->scan_req);
1114 rdev->scan_req = NULL;
1115
1116 if (!send_message)
1117 rdev->scan_msg = msg;
1118 else
1119 nl80211_send_scan_msg(rdev, msg);
1120}
1121
1122void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1123{
1124 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1125}
1126
1127void cfg80211_scan_done(struct cfg80211_scan_request *request,
1128 struct cfg80211_scan_info *info)
1129{
1130 struct cfg80211_scan_info old_info = request->info;
1131
1132 trace_cfg80211_scan_done(request, info);
1133 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1134 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1135
1136 request->info = *info;
1137
1138 /*
1139 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1140 * be of the first part. In such a case old_info.scan_start_tsf should
1141 * be non zero.
1142 */
1143 if (request->scan_6ghz && old_info.scan_start_tsf) {
1144 request->info.scan_start_tsf = old_info.scan_start_tsf;
1145 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1146 sizeof(request->info.tsf_bssid));
1147 }
1148
1149 request->notified = true;
1150 wiphy_work_queue(request->wiphy,
1151 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1152}
1153EXPORT_SYMBOL(cfg80211_scan_done);
1154
1155void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1156 struct cfg80211_sched_scan_request *req)
1157{
1158 lockdep_assert_held(&rdev->wiphy.mtx);
1159
1160 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1161}
1162
1163static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1164 struct cfg80211_sched_scan_request *req)
1165{
1166 lockdep_assert_held(&rdev->wiphy.mtx);
1167
1168 list_del_rcu(&req->list);
1169 kfree_rcu(req, rcu_head);
1170}
1171
1172static struct cfg80211_sched_scan_request *
1173cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1174{
1175 struct cfg80211_sched_scan_request *pos;
1176
1177 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1178 lockdep_is_held(&rdev->wiphy.mtx)) {
1179 if (pos->reqid == reqid)
1180 return pos;
1181 }
1182 return NULL;
1183}
1184
1185/*
1186 * Determines if a scheduled scan request can be handled. When a legacy
1187 * scheduled scan is running no other scheduled scan is allowed regardless
1188 * whether the request is for legacy or multi-support scan. When a multi-support
1189 * scheduled scan is running a request for legacy scan is not allowed. In this
1190 * case a request for multi-support scan can be handled if resources are
1191 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1192 */
1193int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1194 bool want_multi)
1195{
1196 struct cfg80211_sched_scan_request *pos;
1197 int i = 0;
1198
1199 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1200 /* request id zero means legacy in progress */
1201 if (!i && !pos->reqid)
1202 return -EINPROGRESS;
1203 i++;
1204 }
1205
1206 if (i) {
1207 /* no legacy allowed when multi request(s) are active */
1208 if (!want_multi)
1209 return -EINPROGRESS;
1210
1211 /* resource limit reached */
1212 if (i == rdev->wiphy.max_sched_scan_reqs)
1213 return -ENOSPC;
1214 }
1215 return 0;
1216}
1217
1218void cfg80211_sched_scan_results_wk(struct work_struct *work)
1219{
1220 struct cfg80211_registered_device *rdev;
1221 struct cfg80211_sched_scan_request *req, *tmp;
1222
1223 rdev = container_of(work, struct cfg80211_registered_device,
1224 sched_scan_res_wk);
1225
1226 wiphy_lock(&rdev->wiphy);
1227 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1228 if (req->report_results) {
1229 req->report_results = false;
1230 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1231 /* flush entries from previous scans */
1232 spin_lock_bh(&rdev->bss_lock);
1233 __cfg80211_bss_expire(rdev, req->scan_start);
1234 spin_unlock_bh(&rdev->bss_lock);
1235 req->scan_start = jiffies;
1236 }
1237 nl80211_send_sched_scan(req,
1238 NL80211_CMD_SCHED_SCAN_RESULTS);
1239 }
1240 }
1241 wiphy_unlock(&rdev->wiphy);
1242}
1243
1244void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1245{
1246 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1247 struct cfg80211_sched_scan_request *request;
1248
1249 trace_cfg80211_sched_scan_results(wiphy, reqid);
1250 /* ignore if we're not scanning */
1251
1252 rcu_read_lock();
1253 request = cfg80211_find_sched_scan_req(rdev, reqid);
1254 if (request) {
1255 request->report_results = true;
1256 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1257 }
1258 rcu_read_unlock();
1259}
1260EXPORT_SYMBOL(cfg80211_sched_scan_results);
1261
1262void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1263{
1264 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1265
1266 lockdep_assert_held(&wiphy->mtx);
1267
1268 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1269
1270 __cfg80211_stop_sched_scan(rdev, reqid, true);
1271}
1272EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1273
1274void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1275{
1276 wiphy_lock(wiphy);
1277 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1278 wiphy_unlock(wiphy);
1279}
1280EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1281
1282int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1283 struct cfg80211_sched_scan_request *req,
1284 bool driver_initiated)
1285{
1286 lockdep_assert_held(&rdev->wiphy.mtx);
1287
1288 if (!driver_initiated) {
1289 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1290 if (err)
1291 return err;
1292 }
1293
1294 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1295
1296 cfg80211_del_sched_scan_req(rdev, req);
1297
1298 return 0;
1299}
1300
1301int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1302 u64 reqid, bool driver_initiated)
1303{
1304 struct cfg80211_sched_scan_request *sched_scan_req;
1305
1306 lockdep_assert_held(&rdev->wiphy.mtx);
1307
1308 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1309 if (!sched_scan_req)
1310 return -ENOENT;
1311
1312 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1313 driver_initiated);
1314}
1315
1316void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1317 unsigned long age_secs)
1318{
1319 struct cfg80211_internal_bss *bss;
1320 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1321
1322 spin_lock_bh(&rdev->bss_lock);
1323 list_for_each_entry(bss, &rdev->bss_list, list)
1324 bss->ts -= age_jiffies;
1325 spin_unlock_bh(&rdev->bss_lock);
1326}
1327
1328void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1329{
1330 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1331}
1332
1333void cfg80211_bss_flush(struct wiphy *wiphy)
1334{
1335 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1336
1337 spin_lock_bh(&rdev->bss_lock);
1338 __cfg80211_bss_expire(rdev, jiffies);
1339 spin_unlock_bh(&rdev->bss_lock);
1340}
1341EXPORT_SYMBOL(cfg80211_bss_flush);
1342
1343const struct element *
1344cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1345 const u8 *match, unsigned int match_len,
1346 unsigned int match_offset)
1347{
1348 const struct element *elem;
1349
1350 for_each_element_id(elem, eid, ies, len) {
1351 if (elem->datalen >= match_offset + match_len &&
1352 !memcmp(elem->data + match_offset, match, match_len))
1353 return elem;
1354 }
1355
1356 return NULL;
1357}
1358EXPORT_SYMBOL(cfg80211_find_elem_match);
1359
1360const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1361 const u8 *ies,
1362 unsigned int len)
1363{
1364 const struct element *elem;
1365 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1366 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1367
1368 if (WARN_ON(oui_type > 0xff))
1369 return NULL;
1370
1371 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1372 match, match_len, 0);
1373
1374 if (!elem || elem->datalen < 4)
1375 return NULL;
1376
1377 return elem;
1378}
1379EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1380
1381/**
1382 * enum bss_compare_mode - BSS compare mode
1383 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1384 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1385 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1386 */
1387enum bss_compare_mode {
1388 BSS_CMP_REGULAR,
1389 BSS_CMP_HIDE_ZLEN,
1390 BSS_CMP_HIDE_NUL,
1391};
1392
1393static int cmp_bss(struct cfg80211_bss *a,
1394 struct cfg80211_bss *b,
1395 enum bss_compare_mode mode)
1396{
1397 const struct cfg80211_bss_ies *a_ies, *b_ies;
1398 const u8 *ie1 = NULL;
1399 const u8 *ie2 = NULL;
1400 int i, r;
1401
1402 if (a->channel != b->channel)
1403 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1404 (a->channel->center_freq * 1000 + a->channel->freq_offset);
1405
1406 a_ies = rcu_access_pointer(a->ies);
1407 if (!a_ies)
1408 return -1;
1409 b_ies = rcu_access_pointer(b->ies);
1410 if (!b_ies)
1411 return 1;
1412
1413 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1414 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1415 a_ies->data, a_ies->len);
1416 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1417 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1418 b_ies->data, b_ies->len);
1419 if (ie1 && ie2) {
1420 int mesh_id_cmp;
1421
1422 if (ie1[1] == ie2[1])
1423 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1424 else
1425 mesh_id_cmp = ie2[1] - ie1[1];
1426
1427 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1428 a_ies->data, a_ies->len);
1429 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1430 b_ies->data, b_ies->len);
1431 if (ie1 && ie2) {
1432 if (mesh_id_cmp)
1433 return mesh_id_cmp;
1434 if (ie1[1] != ie2[1])
1435 return ie2[1] - ie1[1];
1436 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1437 }
1438 }
1439
1440 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1441 if (r)
1442 return r;
1443
1444 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1445 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1446
1447 if (!ie1 && !ie2)
1448 return 0;
1449
1450 /*
1451 * Note that with "hide_ssid", the function returns a match if
1452 * the already-present BSS ("b") is a hidden SSID beacon for
1453 * the new BSS ("a").
1454 */
1455
1456 /* sort missing IE before (left of) present IE */
1457 if (!ie1)
1458 return -1;
1459 if (!ie2)
1460 return 1;
1461
1462 switch (mode) {
1463 case BSS_CMP_HIDE_ZLEN:
1464 /*
1465 * In ZLEN mode we assume the BSS entry we're
1466 * looking for has a zero-length SSID. So if
1467 * the one we're looking at right now has that,
1468 * return 0. Otherwise, return the difference
1469 * in length, but since we're looking for the
1470 * 0-length it's really equivalent to returning
1471 * the length of the one we're looking at.
1472 *
1473 * No content comparison is needed as we assume
1474 * the content length is zero.
1475 */
1476 return ie2[1];
1477 case BSS_CMP_REGULAR:
1478 default:
1479 /* sort by length first, then by contents */
1480 if (ie1[1] != ie2[1])
1481 return ie2[1] - ie1[1];
1482 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1483 case BSS_CMP_HIDE_NUL:
1484 if (ie1[1] != ie2[1])
1485 return ie2[1] - ie1[1];
1486 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1487 for (i = 0; i < ie2[1]; i++)
1488 if (ie2[i + 2])
1489 return -1;
1490 return 0;
1491 }
1492}
1493
1494static bool cfg80211_bss_type_match(u16 capability,
1495 enum nl80211_band band,
1496 enum ieee80211_bss_type bss_type)
1497{
1498 bool ret = true;
1499 u16 mask, val;
1500
1501 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1502 return ret;
1503
1504 if (band == NL80211_BAND_60GHZ) {
1505 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1506 switch (bss_type) {
1507 case IEEE80211_BSS_TYPE_ESS:
1508 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1509 break;
1510 case IEEE80211_BSS_TYPE_PBSS:
1511 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1512 break;
1513 case IEEE80211_BSS_TYPE_IBSS:
1514 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1515 break;
1516 default:
1517 return false;
1518 }
1519 } else {
1520 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1521 switch (bss_type) {
1522 case IEEE80211_BSS_TYPE_ESS:
1523 val = WLAN_CAPABILITY_ESS;
1524 break;
1525 case IEEE80211_BSS_TYPE_IBSS:
1526 val = WLAN_CAPABILITY_IBSS;
1527 break;
1528 case IEEE80211_BSS_TYPE_MBSS:
1529 val = 0;
1530 break;
1531 default:
1532 return false;
1533 }
1534 }
1535
1536 ret = ((capability & mask) == val);
1537 return ret;
1538}
1539
1540/* Returned bss is reference counted and must be cleaned up appropriately. */
1541struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1542 struct ieee80211_channel *channel,
1543 const u8 *bssid,
1544 const u8 *ssid, size_t ssid_len,
1545 enum ieee80211_bss_type bss_type,
1546 enum ieee80211_privacy privacy,
1547 u32 use_for)
1548{
1549 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1550 struct cfg80211_internal_bss *bss, *res = NULL;
1551 unsigned long now = jiffies;
1552 int bss_privacy;
1553
1554 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1555 privacy);
1556
1557 spin_lock_bh(&rdev->bss_lock);
1558
1559 list_for_each_entry(bss, &rdev->bss_list, list) {
1560 if (!cfg80211_bss_type_match(bss->pub.capability,
1561 bss->pub.channel->band, bss_type))
1562 continue;
1563
1564 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1565 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1566 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1567 continue;
1568 if (channel && bss->pub.channel != channel)
1569 continue;
1570 if (!is_valid_ether_addr(bss->pub.bssid))
1571 continue;
1572 if ((bss->pub.use_for & use_for) != use_for)
1573 continue;
1574 /* Don't get expired BSS structs */
1575 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1576 !atomic_read(&bss->hold))
1577 continue;
1578 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1579 res = bss;
1580 bss_ref_get(rdev, res);
1581 break;
1582 }
1583 }
1584
1585 spin_unlock_bh(&rdev->bss_lock);
1586 if (!res)
1587 return NULL;
1588 trace_cfg80211_return_bss(&res->pub);
1589 return &res->pub;
1590}
1591EXPORT_SYMBOL(__cfg80211_get_bss);
1592
1593static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1594 struct cfg80211_internal_bss *bss)
1595{
1596 struct rb_node **p = &rdev->bss_tree.rb_node;
1597 struct rb_node *parent = NULL;
1598 struct cfg80211_internal_bss *tbss;
1599 int cmp;
1600
1601 while (*p) {
1602 parent = *p;
1603 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1604
1605 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1606
1607 if (WARN_ON(!cmp)) {
1608 /* will sort of leak this BSS */
1609 return;
1610 }
1611
1612 if (cmp < 0)
1613 p = &(*p)->rb_left;
1614 else
1615 p = &(*p)->rb_right;
1616 }
1617
1618 rb_link_node(&bss->rbn, parent, p);
1619 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1620}
1621
1622static struct cfg80211_internal_bss *
1623rb_find_bss(struct cfg80211_registered_device *rdev,
1624 struct cfg80211_internal_bss *res,
1625 enum bss_compare_mode mode)
1626{
1627 struct rb_node *n = rdev->bss_tree.rb_node;
1628 struct cfg80211_internal_bss *bss;
1629 int r;
1630
1631 while (n) {
1632 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1633 r = cmp_bss(&res->pub, &bss->pub, mode);
1634
1635 if (r == 0)
1636 return bss;
1637 else if (r < 0)
1638 n = n->rb_left;
1639 else
1640 n = n->rb_right;
1641 }
1642
1643 return NULL;
1644}
1645
1646static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1647 struct cfg80211_internal_bss *new)
1648{
1649 const struct cfg80211_bss_ies *ies;
1650 struct cfg80211_internal_bss *bss;
1651 const u8 *ie;
1652 int i, ssidlen;
1653 u8 fold = 0;
1654 u32 n_entries = 0;
1655
1656 ies = rcu_access_pointer(new->pub.beacon_ies);
1657 if (WARN_ON(!ies))
1658 return false;
1659
1660 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1661 if (!ie) {
1662 /* nothing to do */
1663 return true;
1664 }
1665
1666 ssidlen = ie[1];
1667 for (i = 0; i < ssidlen; i++)
1668 fold |= ie[2 + i];
1669
1670 if (fold) {
1671 /* not a hidden SSID */
1672 return true;
1673 }
1674
1675 /* This is the bad part ... */
1676
1677 list_for_each_entry(bss, &rdev->bss_list, list) {
1678 /*
1679 * we're iterating all the entries anyway, so take the
1680 * opportunity to validate the list length accounting
1681 */
1682 n_entries++;
1683
1684 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1685 continue;
1686 if (bss->pub.channel != new->pub.channel)
1687 continue;
1688 if (rcu_access_pointer(bss->pub.beacon_ies))
1689 continue;
1690 ies = rcu_access_pointer(bss->pub.ies);
1691 if (!ies)
1692 continue;
1693 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1694 if (!ie)
1695 continue;
1696 if (ssidlen && ie[1] != ssidlen)
1697 continue;
1698 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1699 continue;
1700 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1701 list_del(&bss->hidden_list);
1702 /* combine them */
1703 list_add(&bss->hidden_list, &new->hidden_list);
1704 bss->pub.hidden_beacon_bss = &new->pub;
1705 new->refcount += bss->refcount;
1706 rcu_assign_pointer(bss->pub.beacon_ies,
1707 new->pub.beacon_ies);
1708 }
1709
1710 WARN_ONCE(n_entries != rdev->bss_entries,
1711 "rdev bss entries[%d]/list[len:%d] corruption\n",
1712 rdev->bss_entries, n_entries);
1713
1714 return true;
1715}
1716
1717static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1718 const struct cfg80211_bss_ies *new_ies,
1719 const struct cfg80211_bss_ies *old_ies)
1720{
1721 struct cfg80211_internal_bss *bss;
1722
1723 /* Assign beacon IEs to all sub entries */
1724 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1725 const struct cfg80211_bss_ies *ies;
1726
1727 ies = rcu_access_pointer(bss->pub.beacon_ies);
1728 WARN_ON(ies != old_ies);
1729
1730 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1731 }
1732}
1733
1734static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1735 struct cfg80211_internal_bss *known,
1736 const struct cfg80211_bss_ies *old)
1737{
1738 const struct ieee80211_ext_chansw_ie *ecsa;
1739 const struct element *elem_new, *elem_old;
1740 const struct cfg80211_bss_ies *new, *bcn;
1741
1742 if (known->pub.proberesp_ecsa_stuck)
1743 return;
1744
1745 new = rcu_dereference_protected(known->pub.proberesp_ies,
1746 lockdep_is_held(&rdev->bss_lock));
1747 if (WARN_ON(!new))
1748 return;
1749
1750 if (new->tsf - old->tsf < USEC_PER_SEC)
1751 return;
1752
1753 elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1754 old->data, old->len);
1755 if (!elem_old)
1756 return;
1757
1758 elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1759 new->data, new->len);
1760 if (!elem_new)
1761 return;
1762
1763 bcn = rcu_dereference_protected(known->pub.beacon_ies,
1764 lockdep_is_held(&rdev->bss_lock));
1765 if (bcn &&
1766 cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1767 bcn->data, bcn->len))
1768 return;
1769
1770 if (elem_new->datalen != elem_old->datalen)
1771 return;
1772 if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1773 return;
1774 if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
1775 return;
1776
1777 ecsa = (void *)elem_new->data;
1778
1779 if (!ecsa->mode)
1780 return;
1781
1782 if (ecsa->new_ch_num !=
1783 ieee80211_frequency_to_channel(known->pub.channel->center_freq))
1784 return;
1785
1786 known->pub.proberesp_ecsa_stuck = 1;
1787}
1788
1789static bool
1790cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1791 struct cfg80211_internal_bss *known,
1792 struct cfg80211_internal_bss *new,
1793 bool signal_valid)
1794{
1795 lockdep_assert_held(&rdev->bss_lock);
1796
1797 /* Update IEs */
1798 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1799 const struct cfg80211_bss_ies *old;
1800
1801 old = rcu_access_pointer(known->pub.proberesp_ies);
1802
1803 rcu_assign_pointer(known->pub.proberesp_ies,
1804 new->pub.proberesp_ies);
1805 /* Override possible earlier Beacon frame IEs */
1806 rcu_assign_pointer(known->pub.ies,
1807 new->pub.proberesp_ies);
1808 if (old) {
1809 cfg80211_check_stuck_ecsa(rdev, known, old);
1810 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1811 }
1812 }
1813
1814 if (rcu_access_pointer(new->pub.beacon_ies)) {
1815 const struct cfg80211_bss_ies *old;
1816
1817 if (known->pub.hidden_beacon_bss &&
1818 !list_empty(&known->hidden_list)) {
1819 const struct cfg80211_bss_ies *f;
1820
1821 /* The known BSS struct is one of the probe
1822 * response members of a group, but we're
1823 * receiving a beacon (beacon_ies in the new
1824 * bss is used). This can only mean that the
1825 * AP changed its beacon from not having an
1826 * SSID to showing it, which is confusing so
1827 * drop this information.
1828 */
1829
1830 f = rcu_access_pointer(new->pub.beacon_ies);
1831 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1832 return false;
1833 }
1834
1835 old = rcu_access_pointer(known->pub.beacon_ies);
1836
1837 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1838
1839 /* Override IEs if they were from a beacon before */
1840 if (old == rcu_access_pointer(known->pub.ies))
1841 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1842
1843 cfg80211_update_hidden_bsses(known,
1844 rcu_access_pointer(new->pub.beacon_ies),
1845 old);
1846
1847 if (old)
1848 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1849 }
1850
1851 known->pub.beacon_interval = new->pub.beacon_interval;
1852
1853 /* don't update the signal if beacon was heard on
1854 * adjacent channel.
1855 */
1856 if (signal_valid)
1857 known->pub.signal = new->pub.signal;
1858 known->pub.capability = new->pub.capability;
1859 known->ts = new->ts;
1860 known->ts_boottime = new->ts_boottime;
1861 known->parent_tsf = new->parent_tsf;
1862 known->pub.chains = new->pub.chains;
1863 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1864 IEEE80211_MAX_CHAINS);
1865 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1866 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1867 known->pub.bssid_index = new->pub.bssid_index;
1868 known->pub.use_for &= new->pub.use_for;
1869 known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1870
1871 return true;
1872}
1873
1874/* Returned bss is reference counted and must be cleaned up appropriately. */
1875static struct cfg80211_internal_bss *
1876__cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1877 struct cfg80211_internal_bss *tmp,
1878 bool signal_valid, unsigned long ts)
1879{
1880 struct cfg80211_internal_bss *found = NULL;
1881 struct cfg80211_bss_ies *ies;
1882
1883 if (WARN_ON(!tmp->pub.channel))
1884 goto free_ies;
1885
1886 tmp->ts = ts;
1887
1888 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1889 goto free_ies;
1890
1891 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1892
1893 if (found) {
1894 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1895 return NULL;
1896 } else {
1897 struct cfg80211_internal_bss *new;
1898 struct cfg80211_internal_bss *hidden;
1899
1900 /*
1901 * create a copy -- the "res" variable that is passed in
1902 * is allocated on the stack since it's not needed in the
1903 * more common case of an update
1904 */
1905 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1906 GFP_ATOMIC);
1907 if (!new)
1908 goto free_ies;
1909 memcpy(new, tmp, sizeof(*new));
1910 new->refcount = 1;
1911 INIT_LIST_HEAD(&new->hidden_list);
1912 INIT_LIST_HEAD(&new->pub.nontrans_list);
1913 /* we'll set this later if it was non-NULL */
1914 new->pub.transmitted_bss = NULL;
1915
1916 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1917 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1918 if (!hidden)
1919 hidden = rb_find_bss(rdev, tmp,
1920 BSS_CMP_HIDE_NUL);
1921 if (hidden) {
1922 new->pub.hidden_beacon_bss = &hidden->pub;
1923 list_add(&new->hidden_list,
1924 &hidden->hidden_list);
1925 hidden->refcount++;
1926
1927 ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1928 rcu_assign_pointer(new->pub.beacon_ies,
1929 hidden->pub.beacon_ies);
1930 if (ies)
1931 kfree_rcu(ies, rcu_head);
1932 }
1933 } else {
1934 /*
1935 * Ok so we found a beacon, and don't have an entry. If
1936 * it's a beacon with hidden SSID, we might be in for an
1937 * expensive search for any probe responses that should
1938 * be grouped with this beacon for updates ...
1939 */
1940 if (!cfg80211_combine_bsses(rdev, new)) {
1941 bss_ref_put(rdev, new);
1942 return NULL;
1943 }
1944 }
1945
1946 if (rdev->bss_entries >= bss_entries_limit &&
1947 !cfg80211_bss_expire_oldest(rdev)) {
1948 bss_ref_put(rdev, new);
1949 return NULL;
1950 }
1951
1952 /* This must be before the call to bss_ref_get */
1953 if (tmp->pub.transmitted_bss) {
1954 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1955 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1956 }
1957
1958 list_add_tail(&new->list, &rdev->bss_list);
1959 rdev->bss_entries++;
1960 rb_insert_bss(rdev, new);
1961 found = new;
1962 }
1963
1964 rdev->bss_generation++;
1965 bss_ref_get(rdev, found);
1966
1967 return found;
1968
1969free_ies:
1970 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1971 if (ies)
1972 kfree_rcu(ies, rcu_head);
1973 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1974 if (ies)
1975 kfree_rcu(ies, rcu_head);
1976
1977 return NULL;
1978}
1979
1980struct cfg80211_internal_bss *
1981cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1982 struct cfg80211_internal_bss *tmp,
1983 bool signal_valid, unsigned long ts)
1984{
1985 struct cfg80211_internal_bss *res;
1986
1987 spin_lock_bh(&rdev->bss_lock);
1988 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
1989 spin_unlock_bh(&rdev->bss_lock);
1990
1991 return res;
1992}
1993
1994int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1995 enum nl80211_band band)
1996{
1997 const struct element *tmp;
1998
1999 if (band == NL80211_BAND_6GHZ) {
2000 struct ieee80211_he_operation *he_oper;
2001
2002 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
2003 ielen);
2004 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
2005 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
2006 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2007
2008 he_oper = (void *)&tmp->data[1];
2009
2010 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2011 if (!he_6ghz_oper)
2012 return -1;
2013
2014 return he_6ghz_oper->primary;
2015 }
2016 } else if (band == NL80211_BAND_S1GHZ) {
2017 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
2018 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
2019 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
2020
2021 return s1gop->oper_ch;
2022 }
2023 } else {
2024 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
2025 if (tmp && tmp->datalen == 1)
2026 return tmp->data[0];
2027
2028 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
2029 if (tmp &&
2030 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2031 struct ieee80211_ht_operation *htop = (void *)tmp->data;
2032
2033 return htop->primary_chan;
2034 }
2035 }
2036
2037 return -1;
2038}
2039EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2040
2041/*
2042 * Update RX channel information based on the available frame payload
2043 * information. This is mainly for the 2.4 GHz band where frames can be received
2044 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2045 * element to indicate the current (transmitting) channel, but this might also
2046 * be needed on other bands if RX frequency does not match with the actual
2047 * operating channel of a BSS, or if the AP reports a different primary channel.
2048 */
2049static struct ieee80211_channel *
2050cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2051 struct ieee80211_channel *channel)
2052{
2053 u32 freq;
2054 int channel_number;
2055 struct ieee80211_channel *alt_channel;
2056
2057 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2058 channel->band);
2059
2060 if (channel_number < 0) {
2061 /* No channel information in frame payload */
2062 return channel;
2063 }
2064
2065 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2066
2067 /*
2068 * Frame info (beacon/prob res) is the same as received channel,
2069 * no need for further processing.
2070 */
2071 if (freq == ieee80211_channel_to_khz(channel))
2072 return channel;
2073
2074 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2075 if (!alt_channel) {
2076 if (channel->band == NL80211_BAND_2GHZ ||
2077 channel->band == NL80211_BAND_6GHZ) {
2078 /*
2079 * Better not allow unexpected channels when that could
2080 * be going beyond the 1-11 range (e.g., discovering
2081 * BSS on channel 12 when radio is configured for
2082 * channel 11) or beyond the 6 GHz channel range.
2083 */
2084 return NULL;
2085 }
2086
2087 /* No match for the payload channel number - ignore it */
2088 return channel;
2089 }
2090
2091 /*
2092 * Use the channel determined through the payload channel number
2093 * instead of the RX channel reported by the driver.
2094 */
2095 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2096 return NULL;
2097 return alt_channel;
2098}
2099
2100struct cfg80211_inform_single_bss_data {
2101 struct cfg80211_inform_bss *drv_data;
2102 enum cfg80211_bss_frame_type ftype;
2103 struct ieee80211_channel *channel;
2104 u8 bssid[ETH_ALEN];
2105 u64 tsf;
2106 u16 capability;
2107 u16 beacon_interval;
2108 const u8 *ie;
2109 size_t ielen;
2110
2111 enum {
2112 BSS_SOURCE_DIRECT = 0,
2113 BSS_SOURCE_MBSSID,
2114 BSS_SOURCE_STA_PROFILE,
2115 } bss_source;
2116 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2117 struct cfg80211_bss *source_bss;
2118 u8 max_bssid_indicator;
2119 u8 bssid_index;
2120
2121 u8 use_for;
2122 u64 cannot_use_reasons;
2123};
2124
2125/* Returned bss is reference counted and must be cleaned up appropriately. */
2126static struct cfg80211_bss *
2127cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2128 struct cfg80211_inform_single_bss_data *data,
2129 gfp_t gfp)
2130{
2131 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2132 struct cfg80211_inform_bss *drv_data = data->drv_data;
2133 struct cfg80211_bss_ies *ies;
2134 struct ieee80211_channel *channel;
2135 struct cfg80211_internal_bss tmp = {}, *res;
2136 int bss_type;
2137 bool signal_valid;
2138 unsigned long ts;
2139
2140 if (WARN_ON(!wiphy))
2141 return NULL;
2142
2143 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2144 (drv_data->signal < 0 || drv_data->signal > 100)))
2145 return NULL;
2146
2147 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2148 return NULL;
2149
2150 channel = data->channel;
2151 if (!channel)
2152 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2153 drv_data->chan);
2154 if (!channel)
2155 return NULL;
2156
2157 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2158 tmp.pub.channel = channel;
2159 if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2160 tmp.pub.signal = drv_data->signal;
2161 else
2162 tmp.pub.signal = 0;
2163 tmp.pub.beacon_interval = data->beacon_interval;
2164 tmp.pub.capability = data->capability;
2165 tmp.ts_boottime = drv_data->boottime_ns;
2166 tmp.parent_tsf = drv_data->parent_tsf;
2167 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2168 tmp.pub.use_for = data->use_for;
2169 tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2170
2171 if (data->bss_source != BSS_SOURCE_DIRECT) {
2172 tmp.pub.transmitted_bss = data->source_bss;
2173 ts = bss_from_pub(data->source_bss)->ts;
2174 tmp.pub.bssid_index = data->bssid_index;
2175 tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2176 } else {
2177 ts = jiffies;
2178
2179 if (channel->band == NL80211_BAND_60GHZ) {
2180 bss_type = data->capability &
2181 WLAN_CAPABILITY_DMG_TYPE_MASK;
2182 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2183 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2184 regulatory_hint_found_beacon(wiphy, channel,
2185 gfp);
2186 } else {
2187 if (data->capability & WLAN_CAPABILITY_ESS)
2188 regulatory_hint_found_beacon(wiphy, channel,
2189 gfp);
2190 }
2191 }
2192
2193 /*
2194 * If we do not know here whether the IEs are from a Beacon or Probe
2195 * Response frame, we need to pick one of the options and only use it
2196 * with the driver that does not provide the full Beacon/Probe Response
2197 * frame. Use Beacon frame pointer to avoid indicating that this should
2198 * override the IEs pointer should we have received an earlier
2199 * indication of Probe Response data.
2200 */
2201 ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2202 if (!ies)
2203 return NULL;
2204 ies->len = data->ielen;
2205 ies->tsf = data->tsf;
2206 ies->from_beacon = false;
2207 memcpy(ies->data, data->ie, data->ielen);
2208
2209 switch (data->ftype) {
2210 case CFG80211_BSS_FTYPE_BEACON:
2211 ies->from_beacon = true;
2212 fallthrough;
2213 case CFG80211_BSS_FTYPE_UNKNOWN:
2214 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2215 break;
2216 case CFG80211_BSS_FTYPE_PRESP:
2217 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2218 break;
2219 }
2220 rcu_assign_pointer(tmp.pub.ies, ies);
2221
2222 signal_valid = drv_data->chan == channel;
2223 spin_lock_bh(&rdev->bss_lock);
2224 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2225 if (!res)
2226 goto drop;
2227
2228 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2229
2230 if (data->bss_source == BSS_SOURCE_MBSSID) {
2231 /* this is a nontransmitting bss, we need to add it to
2232 * transmitting bss' list if it is not there
2233 */
2234 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2235 if (__cfg80211_unlink_bss(rdev, res)) {
2236 rdev->bss_generation++;
2237 res = NULL;
2238 }
2239 }
2240
2241 if (!res)
2242 goto drop;
2243 }
2244 spin_unlock_bh(&rdev->bss_lock);
2245
2246 trace_cfg80211_return_bss(&res->pub);
2247 /* __cfg80211_bss_update gives us a referenced result */
2248 return &res->pub;
2249
2250drop:
2251 spin_unlock_bh(&rdev->bss_lock);
2252 return NULL;
2253}
2254
2255static const struct element
2256*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2257 const struct element *mbssid_elem,
2258 const struct element *sub_elem)
2259{
2260 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2261 const struct element *next_mbssid;
2262 const struct element *next_sub;
2263
2264 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2265 mbssid_end,
2266 ielen - (mbssid_end - ie));
2267
2268 /*
2269 * If it is not the last subelement in current MBSSID IE or there isn't
2270 * a next MBSSID IE - profile is complete.
2271 */
2272 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2273 !next_mbssid)
2274 return NULL;
2275
2276 /* For any length error, just return NULL */
2277
2278 if (next_mbssid->datalen < 4)
2279 return NULL;
2280
2281 next_sub = (void *)&next_mbssid->data[1];
2282
2283 if (next_mbssid->data + next_mbssid->datalen <
2284 next_sub->data + next_sub->datalen)
2285 return NULL;
2286
2287 if (next_sub->id != 0 || next_sub->datalen < 2)
2288 return NULL;
2289
2290 /*
2291 * Check if the first element in the next sub element is a start
2292 * of a new profile
2293 */
2294 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2295 NULL : next_mbssid;
2296}
2297
2298size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2299 const struct element *mbssid_elem,
2300 const struct element *sub_elem,
2301 u8 *merged_ie, size_t max_copy_len)
2302{
2303 size_t copied_len = sub_elem->datalen;
2304 const struct element *next_mbssid;
2305
2306 if (sub_elem->datalen > max_copy_len)
2307 return 0;
2308
2309 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2310
2311 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2312 mbssid_elem,
2313 sub_elem))) {
2314 const struct element *next_sub = (void *)&next_mbssid->data[1];
2315
2316 if (copied_len + next_sub->datalen > max_copy_len)
2317 break;
2318 memcpy(merged_ie + copied_len, next_sub->data,
2319 next_sub->datalen);
2320 copied_len += next_sub->datalen;
2321 }
2322
2323 return copied_len;
2324}
2325EXPORT_SYMBOL(cfg80211_merge_profile);
2326
2327static void
2328cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2329 struct cfg80211_inform_single_bss_data *tx_data,
2330 struct cfg80211_bss *source_bss,
2331 gfp_t gfp)
2332{
2333 struct cfg80211_inform_single_bss_data data = {
2334 .drv_data = tx_data->drv_data,
2335 .ftype = tx_data->ftype,
2336 .tsf = tx_data->tsf,
2337 .beacon_interval = tx_data->beacon_interval,
2338 .source_bss = source_bss,
2339 .bss_source = BSS_SOURCE_MBSSID,
2340 .use_for = tx_data->use_for,
2341 .cannot_use_reasons = tx_data->cannot_use_reasons,
2342 };
2343 const u8 *mbssid_index_ie;
2344 const struct element *elem, *sub;
2345 u8 *new_ie, *profile;
2346 u64 seen_indices = 0;
2347 struct cfg80211_bss *bss;
2348
2349 if (!source_bss)
2350 return;
2351 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2352 tx_data->ie, tx_data->ielen))
2353 return;
2354 if (!wiphy->support_mbssid)
2355 return;
2356 if (wiphy->support_only_he_mbssid &&
2357 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2358 tx_data->ie, tx_data->ielen))
2359 return;
2360
2361 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2362 if (!new_ie)
2363 return;
2364
2365 profile = kmalloc(tx_data->ielen, gfp);
2366 if (!profile)
2367 goto out;
2368
2369 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2370 tx_data->ie, tx_data->ielen) {
2371 if (elem->datalen < 4)
2372 continue;
2373 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2374 continue;
2375 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2376 u8 profile_len;
2377
2378 if (sub->id != 0 || sub->datalen < 4) {
2379 /* not a valid BSS profile */
2380 continue;
2381 }
2382
2383 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2384 sub->data[1] != 2) {
2385 /* The first element within the Nontransmitted
2386 * BSSID Profile is not the Nontransmitted
2387 * BSSID Capability element.
2388 */
2389 continue;
2390 }
2391
2392 memset(profile, 0, tx_data->ielen);
2393 profile_len = cfg80211_merge_profile(tx_data->ie,
2394 tx_data->ielen,
2395 elem,
2396 sub,
2397 profile,
2398 tx_data->ielen);
2399
2400 /* found a Nontransmitted BSSID Profile */
2401 mbssid_index_ie = cfg80211_find_ie
2402 (WLAN_EID_MULTI_BSSID_IDX,
2403 profile, profile_len);
2404 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2405 mbssid_index_ie[2] == 0 ||
2406 mbssid_index_ie[2] > 46) {
2407 /* No valid Multiple BSSID-Index element */
2408 continue;
2409 }
2410
2411 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2412 /* We don't support legacy split of a profile */
2413 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2414 mbssid_index_ie[2]);
2415
2416 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2417
2418 data.bssid_index = mbssid_index_ie[2];
2419 data.max_bssid_indicator = elem->data[0];
2420
2421 cfg80211_gen_new_bssid(tx_data->bssid,
2422 data.max_bssid_indicator,
2423 data.bssid_index,
2424 data.bssid);
2425
2426 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2427 data.ie = new_ie;
2428 data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2429 tx_data->ielen,
2430 profile,
2431 profile_len,
2432 new_ie,
2433 IEEE80211_MAX_DATA_LEN);
2434 if (!data.ielen)
2435 continue;
2436
2437 data.capability = get_unaligned_le16(profile + 2);
2438 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2439 if (!bss)
2440 break;
2441 cfg80211_put_bss(wiphy, bss);
2442 }
2443 }
2444
2445out:
2446 kfree(new_ie);
2447 kfree(profile);
2448}
2449
2450ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2451 size_t ieslen, u8 *data, size_t data_len,
2452 u8 frag_id)
2453{
2454 const struct element *next;
2455 ssize_t copied;
2456 u8 elem_datalen;
2457
2458 if (!elem)
2459 return -EINVAL;
2460
2461 /* elem might be invalid after the memmove */
2462 next = (void *)(elem->data + elem->datalen);
2463 elem_datalen = elem->datalen;
2464
2465 if (elem->id == WLAN_EID_EXTENSION) {
2466 copied = elem->datalen - 1;
2467 if (copied > data_len)
2468 return -ENOSPC;
2469
2470 memmove(data, elem->data + 1, copied);
2471 } else {
2472 copied = elem->datalen;
2473 if (copied > data_len)
2474 return -ENOSPC;
2475
2476 memmove(data, elem->data, copied);
2477 }
2478
2479 /* Fragmented elements must have 255 bytes */
2480 if (elem_datalen < 255)
2481 return copied;
2482
2483 for (elem = next;
2484 elem->data < ies + ieslen &&
2485 elem->data + elem->datalen <= ies + ieslen;
2486 elem = next) {
2487 /* elem might be invalid after the memmove */
2488 next = (void *)(elem->data + elem->datalen);
2489
2490 if (elem->id != frag_id)
2491 break;
2492
2493 elem_datalen = elem->datalen;
2494
2495 if (copied + elem_datalen > data_len)
2496 return -ENOSPC;
2497
2498 memmove(data + copied, elem->data, elem_datalen);
2499 copied += elem_datalen;
2500
2501 /* Only the last fragment may be short */
2502 if (elem_datalen != 255)
2503 break;
2504 }
2505
2506 return copied;
2507}
2508EXPORT_SYMBOL(cfg80211_defragment_element);
2509
2510struct cfg80211_mle {
2511 struct ieee80211_multi_link_elem *mle;
2512 struct ieee80211_mle_per_sta_profile
2513 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2514 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2515
2516 u8 data[];
2517};
2518
2519static struct cfg80211_mle *
2520cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2521 gfp_t gfp)
2522{
2523 const struct element *elem;
2524 struct cfg80211_mle *res;
2525 size_t buf_len;
2526 ssize_t mle_len;
2527 u8 common_size, idx;
2528
2529 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2530 return NULL;
2531
2532 /* Required length for first defragmentation */
2533 buf_len = mle->datalen - 1;
2534 for_each_element(elem, mle->data + mle->datalen,
2535 ielen - sizeof(*mle) + mle->datalen) {
2536 if (elem->id != WLAN_EID_FRAGMENT)
2537 break;
2538
2539 buf_len += elem->datalen;
2540 }
2541
2542 res = kzalloc(struct_size(res, data, buf_len), gfp);
2543 if (!res)
2544 return NULL;
2545
2546 mle_len = cfg80211_defragment_element(mle, ie, ielen,
2547 res->data, buf_len,
2548 WLAN_EID_FRAGMENT);
2549 if (mle_len < 0)
2550 goto error;
2551
2552 res->mle = (void *)res->data;
2553
2554 /* Find the sub-element area in the buffer */
2555 common_size = ieee80211_mle_common_size((u8 *)res->mle);
2556 ie = res->data + common_size;
2557 ielen = mle_len - common_size;
2558
2559 idx = 0;
2560 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2561 ie, ielen) {
2562 res->sta_prof[idx] = (void *)elem->data;
2563 res->sta_prof_len[idx] = elem->datalen;
2564
2565 idx++;
2566 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2567 break;
2568 }
2569 if (!for_each_element_completed(elem, ie, ielen))
2570 goto error;
2571
2572 /* Defragment sta_info in-place */
2573 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2574 idx++) {
2575 if (res->sta_prof_len[idx] < 255)
2576 continue;
2577
2578 elem = (void *)res->sta_prof[idx] - 2;
2579
2580 if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2581 res->sta_prof[idx + 1])
2582 buf_len = (u8 *)res->sta_prof[idx + 1] -
2583 (u8 *)res->sta_prof[idx];
2584 else
2585 buf_len = ielen + ie - (u8 *)elem;
2586
2587 res->sta_prof_len[idx] =
2588 cfg80211_defragment_element(elem,
2589 (u8 *)elem, buf_len,
2590 (u8 *)res->sta_prof[idx],
2591 buf_len,
2592 IEEE80211_MLE_SUBELEM_FRAGMENT);
2593 if (res->sta_prof_len[idx] < 0)
2594 goto error;
2595 }
2596
2597 return res;
2598
2599error:
2600 kfree(res);
2601 return NULL;
2602}
2603
2604static u8
2605cfg80211_tbtt_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2606 const struct ieee80211_neighbor_ap_info **ap_info,
2607 const u8 **tbtt_info)
2608{
2609 const struct ieee80211_neighbor_ap_info *info;
2610 const struct element *rnr;
2611 const u8 *pos, *end;
2612
2613 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) {
2614 pos = rnr->data;
2615 end = rnr->data + rnr->datalen;
2616
2617 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
2618 while (sizeof(*info) <= end - pos) {
2619 const struct ieee80211_rnr_mld_params *mld_params;
2620 u16 params;
2621 u8 length, i, count, mld_params_offset;
2622 u8 type, lid;
2623 u32 use_for;
2624
2625 info = (void *)pos;
2626 count = u8_get_bits(info->tbtt_info_hdr,
2627 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
2628 length = info->tbtt_info_len;
2629
2630 pos += sizeof(*info);
2631
2632 if (count * length > end - pos)
2633 return 0;
2634
2635 type = u8_get_bits(info->tbtt_info_hdr,
2636 IEEE80211_AP_INFO_TBTT_HDR_TYPE);
2637
2638 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2639 length >=
2640 offsetofend(struct ieee80211_tbtt_info_ge_11,
2641 mld_params)) {
2642 mld_params_offset =
2643 offsetof(struct ieee80211_tbtt_info_ge_11, mld_params);
2644 use_for = NL80211_BSS_USE_FOR_ALL;
2645 } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2646 length >= sizeof(struct ieee80211_rnr_mld_params)) {
2647 mld_params_offset = 0;
2648 use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2649 } else {
2650 pos += count * length;
2651 continue;
2652 }
2653
2654 for (i = 0; i < count; i++) {
2655 mld_params = (void *)pos + mld_params_offset;
2656 params = le16_to_cpu(mld_params->params);
2657
2658 lid = u16_get_bits(params,
2659 IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2660
2661 if (mld_id == mld_params->mld_id &&
2662 link_id == lid) {
2663 *ap_info = info;
2664 *tbtt_info = pos;
2665
2666 return use_for;
2667 }
2668
2669 pos += length;
2670 }
2671 }
2672 }
2673
2674 return 0;
2675}
2676
2677static void
2678cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2679 struct cfg80211_inform_single_bss_data *tx_data,
2680 struct cfg80211_bss *source_bss,
2681 const struct element *elem,
2682 gfp_t gfp)
2683{
2684 struct cfg80211_inform_single_bss_data data = {
2685 .drv_data = tx_data->drv_data,
2686 .ftype = tx_data->ftype,
2687 .source_bss = source_bss,
2688 .bss_source = BSS_SOURCE_STA_PROFILE,
2689 };
2690 struct ieee80211_multi_link_elem *ml_elem;
2691 struct cfg80211_mle *mle;
2692 u16 control;
2693 u8 ml_common_len;
2694 u8 *new_ie;
2695 struct cfg80211_bss *bss;
2696 int mld_id;
2697 u16 seen_links = 0;
2698 const u8 *pos;
2699 u8 i;
2700
2701 if (!ieee80211_mle_size_ok(elem->data + 1, elem->datalen - 1))
2702 return;
2703
2704 ml_elem = (void *)elem->data + 1;
2705 control = le16_to_cpu(ml_elem->control);
2706 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) !=
2707 IEEE80211_ML_CONTROL_TYPE_BASIC)
2708 return;
2709
2710 /* Must be present when transmitted by an AP (in a probe response) */
2711 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2712 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2713 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2714 return;
2715
2716 ml_common_len = ml_elem->variable[0];
2717
2718 /* length + MLD MAC address + link ID info + BSS Params Change Count */
2719 pos = ml_elem->variable + 1 + 6 + 1 + 1;
2720
2721 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
2722 pos += 2;
2723 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_EML_CAPA))
2724 pos += 2;
2725
2726 /* MLD capabilities and operations */
2727 pos += 2;
2728
2729 /*
2730 * The MLD ID of the reporting AP is always zero. It is set if the AP
2731 * is part of an MBSSID set and will be non-zero for ML Elements
2732 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2733 * Draft P802.11be_D3.2, 35.3.4.2)
2734 */
2735 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) {
2736 mld_id = *pos;
2737 pos += 1;
2738 } else {
2739 mld_id = 0;
2740 }
2741
2742 /* Extended MLD capabilities and operations */
2743 pos += 2;
2744
2745 /* Fully defrag the ML element for sta information/profile iteration */
2746 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2747 if (!mle)
2748 return;
2749
2750 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2751 if (!new_ie)
2752 goto out;
2753
2754 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2755 const struct ieee80211_neighbor_ap_info *ap_info;
2756 enum nl80211_band band;
2757 u32 freq;
2758 const u8 *profile;
2759 const u8 *tbtt_info;
2760 ssize_t profile_len;
2761 u8 link_id, use_for;
2762
2763 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2764 mle->sta_prof_len[i]))
2765 continue;
2766
2767 control = le16_to_cpu(mle->sta_prof[i]->control);
2768
2769 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2770 continue;
2771
2772 link_id = u16_get_bits(control,
2773 IEEE80211_MLE_STA_CONTROL_LINK_ID);
2774 if (seen_links & BIT(link_id))
2775 break;
2776 seen_links |= BIT(link_id);
2777
2778 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2779 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2780 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2781 continue;
2782
2783 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
2784 data.beacon_interval =
2785 get_unaligned_le16(mle->sta_prof[i]->variable + 6);
2786 data.tsf = tx_data->tsf +
2787 get_unaligned_le64(mle->sta_prof[i]->variable + 8);
2788
2789 /* sta_info_len counts itself */
2790 profile = mle->sta_prof[i]->variable +
2791 mle->sta_prof[i]->sta_info_len - 1;
2792 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
2793 profile;
2794
2795 if (profile_len < 2)
2796 continue;
2797
2798 data.capability = get_unaligned_le16(profile);
2799 profile += 2;
2800 profile_len -= 2;
2801
2802 /* Find in RNR to look up channel information */
2803 use_for = cfg80211_tbtt_info_for_mld_ap(tx_data->ie,
2804 tx_data->ielen,
2805 mld_id, link_id,
2806 &ap_info, &tbtt_info);
2807 if (!use_for)
2808 continue;
2809
2810 /* We could sanity check the BSSID is included */
2811
2812 if (!ieee80211_operating_class_to_band(ap_info->op_class,
2813 &band))
2814 continue;
2815
2816 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
2817 data.channel = ieee80211_get_channel_khz(wiphy, freq);
2818
2819 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
2820 !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
2821 use_for = 0;
2822 data.cannot_use_reasons =
2823 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
2824 }
2825 data.use_for = use_for;
2826
2827 /* Generate new elements */
2828 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2829 data.ie = new_ie;
2830 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
2831 profile, profile_len,
2832 new_ie,
2833 IEEE80211_MAX_DATA_LEN);
2834 if (!data.ielen)
2835 continue;
2836
2837 /* The generated elements do not contain:
2838 * - Basic ML element
2839 * - A TBTT entry in the RNR for the transmitting AP
2840 *
2841 * This information is needed both internally and in userspace
2842 * as such, we should append it here.
2843 */
2844 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
2845 IEEE80211_MAX_DATA_LEN)
2846 continue;
2847
2848 /* Copy the Basic Multi-Link element including the common
2849 * information, and then fix up the link ID.
2850 * Note that the ML element length has been verified and we
2851 * also checked that it contains the link ID.
2852 */
2853 new_ie[data.ielen++] = WLAN_EID_EXTENSION;
2854 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
2855 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
2856 memcpy(new_ie + data.ielen, ml_elem,
2857 sizeof(*ml_elem) + ml_common_len);
2858
2859 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
2860
2861 data.ielen += sizeof(*ml_elem) + ml_common_len;
2862
2863 /* TODO: Add an RNR containing only the reporting AP */
2864
2865 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2866 if (!bss)
2867 break;
2868 cfg80211_put_bss(wiphy, bss);
2869 }
2870
2871out:
2872 kfree(new_ie);
2873 kfree(mle);
2874}
2875
2876static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
2877 struct cfg80211_inform_single_bss_data *tx_data,
2878 struct cfg80211_bss *source_bss,
2879 gfp_t gfp)
2880{
2881 const struct element *elem;
2882
2883 if (!source_bss)
2884 return;
2885
2886 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
2887 return;
2888
2889 for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
2890 tx_data->ie, tx_data->ielen)
2891 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
2892 elem, gfp);
2893}
2894
2895struct cfg80211_bss *
2896cfg80211_inform_bss_data(struct wiphy *wiphy,
2897 struct cfg80211_inform_bss *data,
2898 enum cfg80211_bss_frame_type ftype,
2899 const u8 *bssid, u64 tsf, u16 capability,
2900 u16 beacon_interval, const u8 *ie, size_t ielen,
2901 gfp_t gfp)
2902{
2903 struct cfg80211_inform_single_bss_data inform_data = {
2904 .drv_data = data,
2905 .ftype = ftype,
2906 .tsf = tsf,
2907 .capability = capability,
2908 .beacon_interval = beacon_interval,
2909 .ie = ie,
2910 .ielen = ielen,
2911 .use_for = data->restrict_use ?
2912 data->use_for :
2913 NL80211_BSS_USE_FOR_ALL,
2914 .cannot_use_reasons = data->cannot_use_reasons,
2915 };
2916 struct cfg80211_bss *res;
2917
2918 memcpy(inform_data.bssid, bssid, ETH_ALEN);
2919
2920 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
2921 if (!res)
2922 return NULL;
2923
2924 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
2925
2926 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
2927
2928 return res;
2929}
2930EXPORT_SYMBOL(cfg80211_inform_bss_data);
2931
2932static bool cfg80211_uhb_power_type_valid(const u8 *ie,
2933 size_t ielen,
2934 const u32 flags)
2935{
2936 const struct element *tmp;
2937 struct ieee80211_he_operation *he_oper;
2938
2939 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, ielen);
2940 if (tmp && tmp->datalen >= sizeof(*he_oper) + 1) {
2941 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2942
2943 he_oper = (void *)&tmp->data[1];
2944 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2945
2946 if (!he_6ghz_oper)
2947 return false;
2948
2949 switch (u8_get_bits(he_6ghz_oper->control,
2950 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
2951 case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
2952 return true;
2953 case IEEE80211_6GHZ_CTRL_REG_SP_AP:
2954 return !(flags & IEEE80211_CHAN_NO_UHB_AFC_CLIENT);
2955 case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
2956 return !(flags & IEEE80211_CHAN_NO_UHB_VLP_CLIENT);
2957 }
2958 }
2959 return false;
2960}
2961
2962/* cfg80211_inform_bss_width_frame helper */
2963static struct cfg80211_bss *
2964cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2965 struct cfg80211_inform_bss *data,
2966 struct ieee80211_mgmt *mgmt, size_t len,
2967 gfp_t gfp)
2968{
2969 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2970 struct cfg80211_internal_bss tmp = {}, *res;
2971 struct cfg80211_bss_ies *ies;
2972 struct ieee80211_channel *channel;
2973 bool signal_valid;
2974 struct ieee80211_ext *ext = NULL;
2975 u8 *bssid, *variable;
2976 u16 capability, beacon_int;
2977 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2978 u.probe_resp.variable);
2979 int bss_type;
2980
2981 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2982 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2983
2984 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2985
2986 if (WARN_ON(!mgmt))
2987 return NULL;
2988
2989 if (WARN_ON(!wiphy))
2990 return NULL;
2991
2992 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2993 (data->signal < 0 || data->signal > 100)))
2994 return NULL;
2995
2996 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2997 ext = (void *) mgmt;
2998 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2999 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3000 min_hdr_len = offsetof(struct ieee80211_ext,
3001 u.s1g_short_beacon.variable);
3002 }
3003
3004 if (WARN_ON(len < min_hdr_len))
3005 return NULL;
3006
3007 ielen = len - min_hdr_len;
3008 variable = mgmt->u.probe_resp.variable;
3009 if (ext) {
3010 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3011 variable = ext->u.s1g_short_beacon.variable;
3012 else
3013 variable = ext->u.s1g_beacon.variable;
3014 }
3015
3016 channel = cfg80211_get_bss_channel(wiphy, variable, ielen, data->chan);
3017 if (!channel)
3018 return NULL;
3019
3020 if (channel->band == NL80211_BAND_6GHZ &&
3021 !cfg80211_uhb_power_type_valid(variable, ielen, channel->flags)) {
3022 data->restrict_use = 1;
3023 data->use_for = 0;
3024 data->cannot_use_reasons =
3025 NL80211_BSS_CANNOT_USE_UHB_PWR_MISMATCH;
3026 }
3027
3028 if (ext) {
3029 const struct ieee80211_s1g_bcn_compat_ie *compat;
3030 const struct element *elem;
3031
3032 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
3033 variable, ielen);
3034 if (!elem)
3035 return NULL;
3036 if (elem->datalen < sizeof(*compat))
3037 return NULL;
3038 compat = (void *)elem->data;
3039 bssid = ext->u.s1g_beacon.sa;
3040 capability = le16_to_cpu(compat->compat_info);
3041 beacon_int = le16_to_cpu(compat->beacon_int);
3042 } else {
3043 bssid = mgmt->bssid;
3044 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3045 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3046 }
3047
3048 if (channel->band == NL80211_BAND_60GHZ) {
3049 bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
3050 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
3051 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
3052 regulatory_hint_found_beacon(wiphy, channel, gfp);
3053 } else {
3054 if (capability & WLAN_CAPABILITY_ESS)
3055 regulatory_hint_found_beacon(wiphy, channel, gfp);
3056 }
3057
3058 ies = kzalloc(sizeof(*ies) + ielen, gfp);
3059 if (!ies)
3060 return NULL;
3061 ies->len = ielen;
3062 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3063 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
3064 ieee80211_is_s1g_beacon(mgmt->frame_control);
3065 memcpy(ies->data, variable, ielen);
3066
3067 if (ieee80211_is_probe_resp(mgmt->frame_control))
3068 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
3069 else
3070 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
3071 rcu_assign_pointer(tmp.pub.ies, ies);
3072
3073 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
3074 tmp.pub.beacon_interval = beacon_int;
3075 tmp.pub.capability = capability;
3076 tmp.pub.channel = channel;
3077 tmp.pub.signal = data->signal;
3078 tmp.ts_boottime = data->boottime_ns;
3079 tmp.parent_tsf = data->parent_tsf;
3080 tmp.pub.chains = data->chains;
3081 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
3082 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
3083 tmp.pub.use_for = data->restrict_use ?
3084 data->use_for :
3085 NL80211_BSS_USE_FOR_ALL;
3086 tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
3087
3088 signal_valid = data->chan == channel;
3089 spin_lock_bh(&rdev->bss_lock);
3090 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, jiffies);
3091 if (!res)
3092 goto drop;
3093
3094 rdev_inform_bss(rdev, &res->pub, ies, data->drv_data);
3095
3096 spin_unlock_bh(&rdev->bss_lock);
3097
3098 trace_cfg80211_return_bss(&res->pub);
3099 /* __cfg80211_bss_update gives us a referenced result */
3100 return &res->pub;
3101
3102drop:
3103 spin_unlock_bh(&rdev->bss_lock);
3104 return NULL;
3105}
3106
3107struct cfg80211_bss *
3108cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3109 struct cfg80211_inform_bss *data,
3110 struct ieee80211_mgmt *mgmt, size_t len,
3111 gfp_t gfp)
3112{
3113 struct cfg80211_inform_single_bss_data inform_data = {
3114 .drv_data = data,
3115 .ie = mgmt->u.probe_resp.variable,
3116 .ielen = len - offsetof(struct ieee80211_mgmt,
3117 u.probe_resp.variable),
3118 .use_for = data->restrict_use ?
3119 data->use_for :
3120 NL80211_BSS_USE_FOR_ALL,
3121 .cannot_use_reasons = data->cannot_use_reasons,
3122 };
3123 struct cfg80211_bss *res;
3124
3125 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
3126 len, gfp);
3127 if (!res)
3128 return NULL;
3129
3130 /* don't do any further MBSSID/ML handling for S1G */
3131 if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3132 return res;
3133
3134 inform_data.ftype = ieee80211_is_beacon(mgmt->frame_control) ?
3135 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
3136 memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN);
3137 inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3138 inform_data.beacon_interval =
3139 le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3140
3141 /* process each non-transmitting bss */
3142 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3143
3144 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3145
3146 return res;
3147}
3148EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3149
3150void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3151{
3152 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3153
3154 if (!pub)
3155 return;
3156
3157 spin_lock_bh(&rdev->bss_lock);
3158 bss_ref_get(rdev, bss_from_pub(pub));
3159 spin_unlock_bh(&rdev->bss_lock);
3160}
3161EXPORT_SYMBOL(cfg80211_ref_bss);
3162
3163void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3164{
3165 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3166
3167 if (!pub)
3168 return;
3169
3170 spin_lock_bh(&rdev->bss_lock);
3171 bss_ref_put(rdev, bss_from_pub(pub));
3172 spin_unlock_bh(&rdev->bss_lock);
3173}
3174EXPORT_SYMBOL(cfg80211_put_bss);
3175
3176void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3177{
3178 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3179 struct cfg80211_internal_bss *bss, *tmp1;
3180 struct cfg80211_bss *nontrans_bss, *tmp;
3181
3182 if (WARN_ON(!pub))
3183 return;
3184
3185 bss = bss_from_pub(pub);
3186
3187 spin_lock_bh(&rdev->bss_lock);
3188 if (list_empty(&bss->list))
3189 goto out;
3190
3191 list_for_each_entry_safe(nontrans_bss, tmp,
3192 &pub->nontrans_list,
3193 nontrans_list) {
3194 tmp1 = bss_from_pub(nontrans_bss);
3195 if (__cfg80211_unlink_bss(rdev, tmp1))
3196 rdev->bss_generation++;
3197 }
3198
3199 if (__cfg80211_unlink_bss(rdev, bss))
3200 rdev->bss_generation++;
3201out:
3202 spin_unlock_bh(&rdev->bss_lock);
3203}
3204EXPORT_SYMBOL(cfg80211_unlink_bss);
3205
3206void cfg80211_bss_iter(struct wiphy *wiphy,
3207 struct cfg80211_chan_def *chandef,
3208 void (*iter)(struct wiphy *wiphy,
3209 struct cfg80211_bss *bss,
3210 void *data),
3211 void *iter_data)
3212{
3213 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3214 struct cfg80211_internal_bss *bss;
3215
3216 spin_lock_bh(&rdev->bss_lock);
3217
3218 list_for_each_entry(bss, &rdev->bss_list, list) {
3219 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3220 false))
3221 iter(wiphy, &bss->pub, iter_data);
3222 }
3223
3224 spin_unlock_bh(&rdev->bss_lock);
3225}
3226EXPORT_SYMBOL(cfg80211_bss_iter);
3227
3228void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3229 unsigned int link_id,
3230 struct ieee80211_channel *chan)
3231{
3232 struct wiphy *wiphy = wdev->wiphy;
3233 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3234 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3235 struct cfg80211_internal_bss *new = NULL;
3236 struct cfg80211_internal_bss *bss;
3237 struct cfg80211_bss *nontrans_bss;
3238 struct cfg80211_bss *tmp;
3239
3240 spin_lock_bh(&rdev->bss_lock);
3241
3242 /*
3243 * Some APs use CSA also for bandwidth changes, i.e., without actually
3244 * changing the control channel, so no need to update in such a case.
3245 */
3246 if (cbss->pub.channel == chan)
3247 goto done;
3248
3249 /* use transmitting bss */
3250 if (cbss->pub.transmitted_bss)
3251 cbss = bss_from_pub(cbss->pub.transmitted_bss);
3252
3253 cbss->pub.channel = chan;
3254
3255 list_for_each_entry(bss, &rdev->bss_list, list) {
3256 if (!cfg80211_bss_type_match(bss->pub.capability,
3257 bss->pub.channel->band,
3258 wdev->conn_bss_type))
3259 continue;
3260
3261 if (bss == cbss)
3262 continue;
3263
3264 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3265 new = bss;
3266 break;
3267 }
3268 }
3269
3270 if (new) {
3271 /* to save time, update IEs for transmitting bss only */
3272 cfg80211_update_known_bss(rdev, cbss, new, false);
3273 new->pub.proberesp_ies = NULL;
3274 new->pub.beacon_ies = NULL;
3275
3276 list_for_each_entry_safe(nontrans_bss, tmp,
3277 &new->pub.nontrans_list,
3278 nontrans_list) {
3279 bss = bss_from_pub(nontrans_bss);
3280 if (__cfg80211_unlink_bss(rdev, bss))
3281 rdev->bss_generation++;
3282 }
3283
3284 WARN_ON(atomic_read(&new->hold));
3285 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3286 rdev->bss_generation++;
3287 }
3288
3289 rb_erase(&cbss->rbn, &rdev->bss_tree);
3290 rb_insert_bss(rdev, cbss);
3291 rdev->bss_generation++;
3292
3293 list_for_each_entry_safe(nontrans_bss, tmp,
3294 &cbss->pub.nontrans_list,
3295 nontrans_list) {
3296 bss = bss_from_pub(nontrans_bss);
3297 bss->pub.channel = chan;
3298 rb_erase(&bss->rbn, &rdev->bss_tree);
3299 rb_insert_bss(rdev, bss);
3300 rdev->bss_generation++;
3301 }
3302
3303done:
3304 spin_unlock_bh(&rdev->bss_lock);
3305}
3306
3307#ifdef CONFIG_CFG80211_WEXT
3308static struct cfg80211_registered_device *
3309cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3310{
3311 struct cfg80211_registered_device *rdev;
3312 struct net_device *dev;
3313
3314 ASSERT_RTNL();
3315
3316 dev = dev_get_by_index(net, ifindex);
3317 if (!dev)
3318 return ERR_PTR(-ENODEV);
3319 if (dev->ieee80211_ptr)
3320 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3321 else
3322 rdev = ERR_PTR(-ENODEV);
3323 dev_put(dev);
3324 return rdev;
3325}
3326
3327int cfg80211_wext_siwscan(struct net_device *dev,
3328 struct iw_request_info *info,
3329 union iwreq_data *wrqu, char *extra)
3330{
3331 struct cfg80211_registered_device *rdev;
3332 struct wiphy *wiphy;
3333 struct iw_scan_req *wreq = NULL;
3334 struct cfg80211_scan_request *creq;
3335 int i, err, n_channels = 0;
3336 enum nl80211_band band;
3337
3338 if (!netif_running(dev))
3339 return -ENETDOWN;
3340
3341 if (wrqu->data.length == sizeof(struct iw_scan_req))
3342 wreq = (struct iw_scan_req *)extra;
3343
3344 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3345
3346 if (IS_ERR(rdev))
3347 return PTR_ERR(rdev);
3348
3349 if (rdev->scan_req || rdev->scan_msg)
3350 return -EBUSY;
3351
3352 wiphy = &rdev->wiphy;
3353
3354 /* Determine number of channels, needed to allocate creq */
3355 if (wreq && wreq->num_channels)
3356 n_channels = wreq->num_channels;
3357 else
3358 n_channels = ieee80211_get_num_supported_channels(wiphy);
3359
3360 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
3361 n_channels * sizeof(void *),
3362 GFP_ATOMIC);
3363 if (!creq)
3364 return -ENOMEM;
3365
3366 creq->wiphy = wiphy;
3367 creq->wdev = dev->ieee80211_ptr;
3368 /* SSIDs come after channels */
3369 creq->ssids = (void *)&creq->channels[n_channels];
3370 creq->n_channels = n_channels;
3371 creq->n_ssids = 1;
3372 creq->scan_start = jiffies;
3373
3374 /* translate "Scan on frequencies" request */
3375 i = 0;
3376 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3377 int j;
3378
3379 if (!wiphy->bands[band])
3380 continue;
3381
3382 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3383 /* ignore disabled channels */
3384 if (wiphy->bands[band]->channels[j].flags &
3385 IEEE80211_CHAN_DISABLED)
3386 continue;
3387
3388 /* If we have a wireless request structure and the
3389 * wireless request specifies frequencies, then search
3390 * for the matching hardware channel.
3391 */
3392 if (wreq && wreq->num_channels) {
3393 int k;
3394 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3395 for (k = 0; k < wreq->num_channels; k++) {
3396 struct iw_freq *freq =
3397 &wreq->channel_list[k];
3398 int wext_freq =
3399 cfg80211_wext_freq(freq);
3400
3401 if (wext_freq == wiphy_freq)
3402 goto wext_freq_found;
3403 }
3404 goto wext_freq_not_found;
3405 }
3406
3407 wext_freq_found:
3408 creq->channels[i] = &wiphy->bands[band]->channels[j];
3409 i++;
3410 wext_freq_not_found: ;
3411 }
3412 }
3413 /* No channels found? */
3414 if (!i) {
3415 err = -EINVAL;
3416 goto out;
3417 }
3418
3419 /* Set real number of channels specified in creq->channels[] */
3420 creq->n_channels = i;
3421
3422 /* translate "Scan for SSID" request */
3423 if (wreq) {
3424 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3425 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3426 err = -EINVAL;
3427 goto out;
3428 }
3429 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3430 creq->ssids[0].ssid_len = wreq->essid_len;
3431 }
3432 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
3433 creq->n_ssids = 0;
3434 }
3435
3436 for (i = 0; i < NUM_NL80211_BANDS; i++)
3437 if (wiphy->bands[i])
3438 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3439
3440 eth_broadcast_addr(creq->bssid);
3441
3442 wiphy_lock(&rdev->wiphy);
3443
3444 rdev->scan_req = creq;
3445 err = rdev_scan(rdev, creq);
3446 if (err) {
3447 rdev->scan_req = NULL;
3448 /* creq will be freed below */
3449 } else {
3450 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3451 /* creq now owned by driver */
3452 creq = NULL;
3453 dev_hold(dev);
3454 }
3455 wiphy_unlock(&rdev->wiphy);
3456 out:
3457 kfree(creq);
3458 return err;
3459}
3460EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3461
3462static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3463 const struct cfg80211_bss_ies *ies,
3464 char *current_ev, char *end_buf)
3465{
3466 const u8 *pos, *end, *next;
3467 struct iw_event iwe;
3468
3469 if (!ies)
3470 return current_ev;
3471
3472 /*
3473 * If needed, fragment the IEs buffer (at IE boundaries) into short
3474 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3475 */
3476 pos = ies->data;
3477 end = pos + ies->len;
3478
3479 while (end - pos > IW_GENERIC_IE_MAX) {
3480 next = pos + 2 + pos[1];
3481 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3482 next = next + 2 + next[1];
3483
3484 memset(&iwe, 0, sizeof(iwe));
3485 iwe.cmd = IWEVGENIE;
3486 iwe.u.data.length = next - pos;
3487 current_ev = iwe_stream_add_point_check(info, current_ev,
3488 end_buf, &iwe,
3489 (void *)pos);
3490 if (IS_ERR(current_ev))
3491 return current_ev;
3492 pos = next;
3493 }
3494
3495 if (end > pos) {
3496 memset(&iwe, 0, sizeof(iwe));
3497 iwe.cmd = IWEVGENIE;
3498 iwe.u.data.length = end - pos;
3499 current_ev = iwe_stream_add_point_check(info, current_ev,
3500 end_buf, &iwe,
3501 (void *)pos);
3502 if (IS_ERR(current_ev))
3503 return current_ev;
3504 }
3505
3506 return current_ev;
3507}
3508
3509static char *
3510ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3511 struct cfg80211_internal_bss *bss, char *current_ev,
3512 char *end_buf)
3513{
3514 const struct cfg80211_bss_ies *ies;
3515 struct iw_event iwe;
3516 const u8 *ie;
3517 u8 buf[50];
3518 u8 *cfg, *p, *tmp;
3519 int rem, i, sig;
3520 bool ismesh = false;
3521
3522 memset(&iwe, 0, sizeof(iwe));
3523 iwe.cmd = SIOCGIWAP;
3524 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3525 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3526 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3527 IW_EV_ADDR_LEN);
3528 if (IS_ERR(current_ev))
3529 return current_ev;
3530
3531 memset(&iwe, 0, sizeof(iwe));
3532 iwe.cmd = SIOCGIWFREQ;
3533 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3534 iwe.u.freq.e = 0;
3535 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3536 IW_EV_FREQ_LEN);
3537 if (IS_ERR(current_ev))
3538 return current_ev;
3539
3540 memset(&iwe, 0, sizeof(iwe));
3541 iwe.cmd = SIOCGIWFREQ;
3542 iwe.u.freq.m = bss->pub.channel->center_freq;
3543 iwe.u.freq.e = 6;
3544 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3545 IW_EV_FREQ_LEN);
3546 if (IS_ERR(current_ev))
3547 return current_ev;
3548
3549 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3550 memset(&iwe, 0, sizeof(iwe));
3551 iwe.cmd = IWEVQUAL;
3552 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3553 IW_QUAL_NOISE_INVALID |
3554 IW_QUAL_QUAL_UPDATED;
3555 switch (wiphy->signal_type) {
3556 case CFG80211_SIGNAL_TYPE_MBM:
3557 sig = bss->pub.signal / 100;
3558 iwe.u.qual.level = sig;
3559 iwe.u.qual.updated |= IW_QUAL_DBM;
3560 if (sig < -110) /* rather bad */
3561 sig = -110;
3562 else if (sig > -40) /* perfect */
3563 sig = -40;
3564 /* will give a range of 0 .. 70 */
3565 iwe.u.qual.qual = sig + 110;
3566 break;
3567 case CFG80211_SIGNAL_TYPE_UNSPEC:
3568 iwe.u.qual.level = bss->pub.signal;
3569 /* will give range 0 .. 100 */
3570 iwe.u.qual.qual = bss->pub.signal;
3571 break;
3572 default:
3573 /* not reached */
3574 break;
3575 }
3576 current_ev = iwe_stream_add_event_check(info, current_ev,
3577 end_buf, &iwe,
3578 IW_EV_QUAL_LEN);
3579 if (IS_ERR(current_ev))
3580 return current_ev;
3581 }
3582
3583 memset(&iwe, 0, sizeof(iwe));
3584 iwe.cmd = SIOCGIWENCODE;
3585 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3586 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3587 else
3588 iwe.u.data.flags = IW_ENCODE_DISABLED;
3589 iwe.u.data.length = 0;
3590 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3591 &iwe, "");
3592 if (IS_ERR(current_ev))
3593 return current_ev;
3594
3595 rcu_read_lock();
3596 ies = rcu_dereference(bss->pub.ies);
3597 rem = ies->len;
3598 ie = ies->data;
3599
3600 while (rem >= 2) {
3601 /* invalid data */
3602 if (ie[1] > rem - 2)
3603 break;
3604
3605 switch (ie[0]) {
3606 case WLAN_EID_SSID:
3607 memset(&iwe, 0, sizeof(iwe));
3608 iwe.cmd = SIOCGIWESSID;
3609 iwe.u.data.length = ie[1];
3610 iwe.u.data.flags = 1;
3611 current_ev = iwe_stream_add_point_check(info,
3612 current_ev,
3613 end_buf, &iwe,
3614 (u8 *)ie + 2);
3615 if (IS_ERR(current_ev))
3616 goto unlock;
3617 break;
3618 case WLAN_EID_MESH_ID:
3619 memset(&iwe, 0, sizeof(iwe));
3620 iwe.cmd = SIOCGIWESSID;
3621 iwe.u.data.length = ie[1];
3622 iwe.u.data.flags = 1;
3623 current_ev = iwe_stream_add_point_check(info,
3624 current_ev,
3625 end_buf, &iwe,
3626 (u8 *)ie + 2);
3627 if (IS_ERR(current_ev))
3628 goto unlock;
3629 break;
3630 case WLAN_EID_MESH_CONFIG:
3631 ismesh = true;
3632 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3633 break;
3634 cfg = (u8 *)ie + 2;
3635 memset(&iwe, 0, sizeof(iwe));
3636 iwe.cmd = IWEVCUSTOM;
3637 iwe.u.data.length = sprintf(buf,
3638 "Mesh Network Path Selection Protocol ID: 0x%02X",
3639 cfg[0]);
3640 current_ev = iwe_stream_add_point_check(info,
3641 current_ev,
3642 end_buf,
3643 &iwe, buf);
3644 if (IS_ERR(current_ev))
3645 goto unlock;
3646 iwe.u.data.length = sprintf(buf,
3647 "Path Selection Metric ID: 0x%02X",
3648 cfg[1]);
3649 current_ev = iwe_stream_add_point_check(info,
3650 current_ev,
3651 end_buf,
3652 &iwe, buf);
3653 if (IS_ERR(current_ev))
3654 goto unlock;
3655 iwe.u.data.length = sprintf(buf,
3656 "Congestion Control Mode ID: 0x%02X",
3657 cfg[2]);
3658 current_ev = iwe_stream_add_point_check(info,
3659 current_ev,
3660 end_buf,
3661 &iwe, buf);
3662 if (IS_ERR(current_ev))
3663 goto unlock;
3664 iwe.u.data.length = sprintf(buf,
3665 "Synchronization ID: 0x%02X",
3666 cfg[3]);
3667 current_ev = iwe_stream_add_point_check(info,
3668 current_ev,
3669 end_buf,
3670 &iwe, buf);
3671 if (IS_ERR(current_ev))
3672 goto unlock;
3673 iwe.u.data.length = sprintf(buf,
3674 "Authentication ID: 0x%02X",
3675 cfg[4]);
3676 current_ev = iwe_stream_add_point_check(info,
3677 current_ev,
3678 end_buf,
3679 &iwe, buf);
3680 if (IS_ERR(current_ev))
3681 goto unlock;
3682 iwe.u.data.length = sprintf(buf,
3683 "Formation Info: 0x%02X",
3684 cfg[5]);
3685 current_ev = iwe_stream_add_point_check(info,
3686 current_ev,
3687 end_buf,
3688 &iwe, buf);
3689 if (IS_ERR(current_ev))
3690 goto unlock;
3691 iwe.u.data.length = sprintf(buf,
3692 "Capabilities: 0x%02X",
3693 cfg[6]);
3694 current_ev = iwe_stream_add_point_check(info,
3695 current_ev,
3696 end_buf,
3697 &iwe, buf);
3698 if (IS_ERR(current_ev))
3699 goto unlock;
3700 break;
3701 case WLAN_EID_SUPP_RATES:
3702 case WLAN_EID_EXT_SUPP_RATES:
3703 /* display all supported rates in readable format */
3704 p = current_ev + iwe_stream_lcp_len(info);
3705
3706 memset(&iwe, 0, sizeof(iwe));
3707 iwe.cmd = SIOCGIWRATE;
3708 /* Those two flags are ignored... */
3709 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3710
3711 for (i = 0; i < ie[1]; i++) {
3712 iwe.u.bitrate.value =
3713 ((ie[i + 2] & 0x7f) * 500000);
3714 tmp = p;
3715 p = iwe_stream_add_value(info, current_ev, p,
3716 end_buf, &iwe,
3717 IW_EV_PARAM_LEN);
3718 if (p == tmp) {
3719 current_ev = ERR_PTR(-E2BIG);
3720 goto unlock;
3721 }
3722 }
3723 current_ev = p;
3724 break;
3725 }
3726 rem -= ie[1] + 2;
3727 ie += ie[1] + 2;
3728 }
3729
3730 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3731 ismesh) {
3732 memset(&iwe, 0, sizeof(iwe));
3733 iwe.cmd = SIOCGIWMODE;
3734 if (ismesh)
3735 iwe.u.mode = IW_MODE_MESH;
3736 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3737 iwe.u.mode = IW_MODE_MASTER;
3738 else
3739 iwe.u.mode = IW_MODE_ADHOC;
3740 current_ev = iwe_stream_add_event_check(info, current_ev,
3741 end_buf, &iwe,
3742 IW_EV_UINT_LEN);
3743 if (IS_ERR(current_ev))
3744 goto unlock;
3745 }
3746
3747 memset(&iwe, 0, sizeof(iwe));
3748 iwe.cmd = IWEVCUSTOM;
3749 iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3750 (unsigned long long)(ies->tsf));
3751 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3752 &iwe, buf);
3753 if (IS_ERR(current_ev))
3754 goto unlock;
3755 memset(&iwe, 0, sizeof(iwe));
3756 iwe.cmd = IWEVCUSTOM;
3757 iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3758 elapsed_jiffies_msecs(bss->ts));
3759 current_ev = iwe_stream_add_point_check(info, current_ev,
3760 end_buf, &iwe, buf);
3761 if (IS_ERR(current_ev))
3762 goto unlock;
3763
3764 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3765
3766 unlock:
3767 rcu_read_unlock();
3768 return current_ev;
3769}
3770
3771
3772static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3773 struct iw_request_info *info,
3774 char *buf, size_t len)
3775{
3776 char *current_ev = buf;
3777 char *end_buf = buf + len;
3778 struct cfg80211_internal_bss *bss;
3779 int err = 0;
3780
3781 spin_lock_bh(&rdev->bss_lock);
3782 cfg80211_bss_expire(rdev);
3783
3784 list_for_each_entry(bss, &rdev->bss_list, list) {
3785 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3786 err = -E2BIG;
3787 break;
3788 }
3789 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3790 current_ev, end_buf);
3791 if (IS_ERR(current_ev)) {
3792 err = PTR_ERR(current_ev);
3793 break;
3794 }
3795 }
3796 spin_unlock_bh(&rdev->bss_lock);
3797
3798 if (err)
3799 return err;
3800 return current_ev - buf;
3801}
3802
3803
3804int cfg80211_wext_giwscan(struct net_device *dev,
3805 struct iw_request_info *info,
3806 union iwreq_data *wrqu, char *extra)
3807{
3808 struct iw_point *data = &wrqu->data;
3809 struct cfg80211_registered_device *rdev;
3810 int res;
3811
3812 if (!netif_running(dev))
3813 return -ENETDOWN;
3814
3815 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3816
3817 if (IS_ERR(rdev))
3818 return PTR_ERR(rdev);
3819
3820 if (rdev->scan_req || rdev->scan_msg)
3821 return -EAGAIN;
3822
3823 res = ieee80211_scan_results(rdev, info, extra, data->length);
3824 data->length = 0;
3825 if (res >= 0) {
3826 data->length = res;
3827 res = 0;
3828 }
3829
3830 return res;
3831}
3832EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3833#endif
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2024 Intel Corporation
9 */
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/netdevice.h>
14#include <linux/wireless.h>
15#include <linux/nl80211.h>
16#include <linux/etherdevice.h>
17#include <linux/crc32.h>
18#include <linux/bitfield.h>
19#include <net/arp.h>
20#include <net/cfg80211.h>
21#include <net/cfg80211-wext.h>
22#include <net/iw_handler.h>
23#include <kunit/visibility.h>
24#include "core.h"
25#include "nl80211.h"
26#include "wext-compat.h"
27#include "rdev-ops.h"
28
29/**
30 * DOC: BSS tree/list structure
31 *
32 * At the top level, the BSS list is kept in both a list in each
33 * registered device (@bss_list) as well as an RB-tree for faster
34 * lookup. In the RB-tree, entries can be looked up using their
35 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36 * for other BSSes.
37 *
38 * Due to the possibility of hidden SSIDs, there's a second level
39 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40 * The hidden_list connects all BSSes belonging to a single AP
41 * that has a hidden SSID, and connects beacon and probe response
42 * entries. For a probe response entry for a hidden SSID, the
43 * hidden_beacon_bss pointer points to the BSS struct holding the
44 * beacon's information.
45 *
46 * Reference counting is done for all these references except for
47 * the hidden_list, so that a beacon BSS struct that is otherwise
48 * not referenced has one reference for being on the bss_list and
49 * one for each probe response entry that points to it using the
50 * hidden_beacon_bss pointer. When a BSS struct that has such a
51 * pointer is get/put, the refcount update is also propagated to
52 * the referenced struct, this ensure that it cannot get removed
53 * while somebody is using the probe response version.
54 *
55 * Note that the hidden_beacon_bss pointer never changes, due to
56 * the reference counting. Therefore, no locking is needed for
57 * it.
58 *
59 * Also note that the hidden_beacon_bss pointer is only relevant
60 * if the driver uses something other than the IEs, e.g. private
61 * data stored in the BSS struct, since the beacon IEs are
62 * also linked into the probe response struct.
63 */
64
65/*
66 * Limit the number of BSS entries stored in mac80211. Each one is
67 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68 * If somebody wants to really attack this though, they'd likely
69 * use small beacons, and only one type of frame, limiting each of
70 * the entries to a much smaller size (in order to generate more
71 * entries in total, so overhead is bigger.)
72 */
73static int bss_entries_limit = 1000;
74module_param(bss_entries_limit, int, 0644);
75MODULE_PARM_DESC(bss_entries_limit,
76 "limit to number of scan BSS entries (per wiphy, default 1000)");
77
78#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
79
80static void bss_free(struct cfg80211_internal_bss *bss)
81{
82 struct cfg80211_bss_ies *ies;
83
84 if (WARN_ON(atomic_read(&bss->hold)))
85 return;
86
87 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
88 if (ies && !bss->pub.hidden_beacon_bss)
89 kfree_rcu(ies, rcu_head);
90 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
91 if (ies)
92 kfree_rcu(ies, rcu_head);
93
94 /*
95 * This happens when the module is removed, it doesn't
96 * really matter any more save for completeness
97 */
98 if (!list_empty(&bss->hidden_list))
99 list_del(&bss->hidden_list);
100
101 kfree(bss);
102}
103
104static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
105 struct cfg80211_internal_bss *bss)
106{
107 lockdep_assert_held(&rdev->bss_lock);
108
109 bss->refcount++;
110
111 if (bss->pub.hidden_beacon_bss)
112 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
113
114 if (bss->pub.transmitted_bss)
115 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
116}
117
118static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
119 struct cfg80211_internal_bss *bss)
120{
121 lockdep_assert_held(&rdev->bss_lock);
122
123 if (bss->pub.hidden_beacon_bss) {
124 struct cfg80211_internal_bss *hbss;
125
126 hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
127 hbss->refcount--;
128 if (hbss->refcount == 0)
129 bss_free(hbss);
130 }
131
132 if (bss->pub.transmitted_bss) {
133 struct cfg80211_internal_bss *tbss;
134
135 tbss = bss_from_pub(bss->pub.transmitted_bss);
136 tbss->refcount--;
137 if (tbss->refcount == 0)
138 bss_free(tbss);
139 }
140
141 bss->refcount--;
142 if (bss->refcount == 0)
143 bss_free(bss);
144}
145
146static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
147 struct cfg80211_internal_bss *bss)
148{
149 lockdep_assert_held(&rdev->bss_lock);
150
151 if (!list_empty(&bss->hidden_list)) {
152 /*
153 * don't remove the beacon entry if it has
154 * probe responses associated with it
155 */
156 if (!bss->pub.hidden_beacon_bss)
157 return false;
158 /*
159 * if it's a probe response entry break its
160 * link to the other entries in the group
161 */
162 list_del_init(&bss->hidden_list);
163 }
164
165 list_del_init(&bss->list);
166 list_del_init(&bss->pub.nontrans_list);
167 rb_erase(&bss->rbn, &rdev->bss_tree);
168 rdev->bss_entries--;
169 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
170 "rdev bss entries[%d]/list[empty:%d] corruption\n",
171 rdev->bss_entries, list_empty(&rdev->bss_list));
172 bss_ref_put(rdev, bss);
173 return true;
174}
175
176bool cfg80211_is_element_inherited(const struct element *elem,
177 const struct element *non_inherit_elem)
178{
179 u8 id_len, ext_id_len, i, loop_len, id;
180 const u8 *list;
181
182 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
183 return false;
184
185 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
186 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
187 return false;
188
189 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
190 return true;
191
192 /*
193 * non inheritance element format is:
194 * ext ID (56) | IDs list len | list | extension IDs list len | list
195 * Both lists are optional. Both lengths are mandatory.
196 * This means valid length is:
197 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
198 */
199 id_len = non_inherit_elem->data[1];
200 if (non_inherit_elem->datalen < 3 + id_len)
201 return true;
202
203 ext_id_len = non_inherit_elem->data[2 + id_len];
204 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
205 return true;
206
207 if (elem->id == WLAN_EID_EXTENSION) {
208 if (!ext_id_len)
209 return true;
210 loop_len = ext_id_len;
211 list = &non_inherit_elem->data[3 + id_len];
212 id = elem->data[0];
213 } else {
214 if (!id_len)
215 return true;
216 loop_len = id_len;
217 list = &non_inherit_elem->data[2];
218 id = elem->id;
219 }
220
221 for (i = 0; i < loop_len; i++) {
222 if (list[i] == id)
223 return false;
224 }
225
226 return true;
227}
228EXPORT_SYMBOL(cfg80211_is_element_inherited);
229
230static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
231 const u8 *ie, size_t ie_len,
232 u8 **pos, u8 *buf, size_t buf_len)
233{
234 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
235 elem->data + elem->datalen > ie + ie_len))
236 return 0;
237
238 if (elem->datalen + 2 > buf + buf_len - *pos)
239 return 0;
240
241 memcpy(*pos, elem, elem->datalen + 2);
242 *pos += elem->datalen + 2;
243
244 /* Finish if it is not fragmented */
245 if (elem->datalen != 255)
246 return *pos - buf;
247
248 ie_len = ie + ie_len - elem->data - elem->datalen;
249 ie = (const u8 *)elem->data + elem->datalen;
250
251 for_each_element(elem, ie, ie_len) {
252 if (elem->id != WLAN_EID_FRAGMENT)
253 break;
254
255 if (elem->datalen + 2 > buf + buf_len - *pos)
256 return 0;
257
258 memcpy(*pos, elem, elem->datalen + 2);
259 *pos += elem->datalen + 2;
260
261 if (elem->datalen != 255)
262 break;
263 }
264
265 return *pos - buf;
266}
267
268VISIBLE_IF_CFG80211_KUNIT size_t
269cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
270 const u8 *subie, size_t subie_len,
271 u8 *new_ie, size_t new_ie_len)
272{
273 const struct element *non_inherit_elem, *parent, *sub;
274 u8 *pos = new_ie;
275 u8 id, ext_id;
276 unsigned int match_len;
277
278 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
279 subie, subie_len);
280
281 /* We copy the elements one by one from the parent to the generated
282 * elements.
283 * If they are not inherited (included in subie or in the non
284 * inheritance element), then we copy all occurrences the first time
285 * we see this element type.
286 */
287 for_each_element(parent, ie, ielen) {
288 if (parent->id == WLAN_EID_FRAGMENT)
289 continue;
290
291 if (parent->id == WLAN_EID_EXTENSION) {
292 if (parent->datalen < 1)
293 continue;
294
295 id = WLAN_EID_EXTENSION;
296 ext_id = parent->data[0];
297 match_len = 1;
298 } else {
299 id = parent->id;
300 match_len = 0;
301 }
302
303 /* Find first occurrence in subie */
304 sub = cfg80211_find_elem_match(id, subie, subie_len,
305 &ext_id, match_len, 0);
306
307 /* Copy from parent if not in subie and inherited */
308 if (!sub &&
309 cfg80211_is_element_inherited(parent, non_inherit_elem)) {
310 if (!cfg80211_copy_elem_with_frags(parent,
311 ie, ielen,
312 &pos, new_ie,
313 new_ie_len))
314 return 0;
315
316 continue;
317 }
318
319 /* Already copied if an earlier element had the same type */
320 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
321 &ext_id, match_len, 0))
322 continue;
323
324 /* Not inheriting, copy all similar elements from subie */
325 while (sub) {
326 if (!cfg80211_copy_elem_with_frags(sub,
327 subie, subie_len,
328 &pos, new_ie,
329 new_ie_len))
330 return 0;
331
332 sub = cfg80211_find_elem_match(id,
333 sub->data + sub->datalen,
334 subie_len + subie -
335 (sub->data +
336 sub->datalen),
337 &ext_id, match_len, 0);
338 }
339 }
340
341 /* The above misses elements that are included in subie but not in the
342 * parent, so do a pass over subie and append those.
343 * Skip the non-tx BSSID caps and non-inheritance element.
344 */
345 for_each_element(sub, subie, subie_len) {
346 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
347 continue;
348
349 if (sub->id == WLAN_EID_FRAGMENT)
350 continue;
351
352 if (sub->id == WLAN_EID_EXTENSION) {
353 if (sub->datalen < 1)
354 continue;
355
356 id = WLAN_EID_EXTENSION;
357 ext_id = sub->data[0];
358 match_len = 1;
359
360 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
361 continue;
362 } else {
363 id = sub->id;
364 match_len = 0;
365 }
366
367 /* Processed if one was included in the parent */
368 if (cfg80211_find_elem_match(id, ie, ielen,
369 &ext_id, match_len, 0))
370 continue;
371
372 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
373 &pos, new_ie, new_ie_len))
374 return 0;
375 }
376
377 return pos - new_ie;
378}
379EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
380
381static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
382 const u8 *ssid, size_t ssid_len)
383{
384 const struct cfg80211_bss_ies *ies;
385 const struct element *ssid_elem;
386
387 if (bssid && !ether_addr_equal(a->bssid, bssid))
388 return false;
389
390 if (!ssid)
391 return true;
392
393 ies = rcu_access_pointer(a->ies);
394 if (!ies)
395 return false;
396 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
397 if (!ssid_elem)
398 return false;
399 if (ssid_elem->datalen != ssid_len)
400 return false;
401 return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
402}
403
404static int
405cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
406 struct cfg80211_bss *nontrans_bss)
407{
408 const struct element *ssid_elem;
409 struct cfg80211_bss *bss = NULL;
410
411 rcu_read_lock();
412 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
413 if (!ssid_elem) {
414 rcu_read_unlock();
415 return -EINVAL;
416 }
417
418 /* check if nontrans_bss is in the list */
419 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
420 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
421 ssid_elem->datalen)) {
422 rcu_read_unlock();
423 return 0;
424 }
425 }
426
427 rcu_read_unlock();
428
429 /*
430 * This is a bit weird - it's not on the list, but already on another
431 * one! The only way that could happen is if there's some BSSID/SSID
432 * shared by multiple APs in their multi-BSSID profiles, potentially
433 * with hidden SSID mixed in ... ignore it.
434 */
435 if (!list_empty(&nontrans_bss->nontrans_list))
436 return -EINVAL;
437
438 /* add to the list */
439 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
440 return 0;
441}
442
443static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
444 unsigned long expire_time)
445{
446 struct cfg80211_internal_bss *bss, *tmp;
447 bool expired = false;
448
449 lockdep_assert_held(&rdev->bss_lock);
450
451 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
452 if (atomic_read(&bss->hold))
453 continue;
454 if (!time_after(expire_time, bss->ts))
455 continue;
456
457 if (__cfg80211_unlink_bss(rdev, bss))
458 expired = true;
459 }
460
461 if (expired)
462 rdev->bss_generation++;
463}
464
465static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
466{
467 struct cfg80211_internal_bss *bss, *oldest = NULL;
468 bool ret;
469
470 lockdep_assert_held(&rdev->bss_lock);
471
472 list_for_each_entry(bss, &rdev->bss_list, list) {
473 if (atomic_read(&bss->hold))
474 continue;
475
476 if (!list_empty(&bss->hidden_list) &&
477 !bss->pub.hidden_beacon_bss)
478 continue;
479
480 if (oldest && time_before(oldest->ts, bss->ts))
481 continue;
482 oldest = bss;
483 }
484
485 if (WARN_ON(!oldest))
486 return false;
487
488 /*
489 * The callers make sure to increase rdev->bss_generation if anything
490 * gets removed (and a new entry added), so there's no need to also do
491 * it here.
492 */
493
494 ret = __cfg80211_unlink_bss(rdev, oldest);
495 WARN_ON(!ret);
496 return ret;
497}
498
499static u8 cfg80211_parse_bss_param(u8 data,
500 struct cfg80211_colocated_ap *coloc_ap)
501{
502 coloc_ap->oct_recommended =
503 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
504 coloc_ap->same_ssid =
505 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
506 coloc_ap->multi_bss =
507 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
508 coloc_ap->transmitted_bssid =
509 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
510 coloc_ap->unsolicited_probe =
511 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
512 coloc_ap->colocated_ess =
513 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
514
515 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
516}
517
518static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
519 const struct element **elem, u32 *s_ssid)
520{
521
522 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
523 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
524 return -EINVAL;
525
526 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
527 return 0;
528}
529
530VISIBLE_IF_CFG80211_KUNIT void
531cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
532{
533 struct cfg80211_colocated_ap *ap, *tmp_ap;
534
535 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
536 list_del(&ap->list);
537 kfree(ap);
538 }
539}
540EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list);
541
542static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
543 const u8 *pos, u8 length,
544 const struct element *ssid_elem,
545 u32 s_ssid_tmp)
546{
547 u8 bss_params;
548
549 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
550
551 /* The length is already verified by the caller to contain bss_params */
552 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
553 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
554
555 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
556 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
557 entry->short_ssid_valid = true;
558
559 bss_params = tbtt_info->bss_params;
560
561 /* Ignore disabled links */
562 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
563 if (le16_get_bits(tbtt_info->mld_params.params,
564 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
565 return -EINVAL;
566 }
567
568 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
569 psd_20))
570 entry->psd_20 = tbtt_info->psd_20;
571 } else {
572 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
573
574 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
575
576 bss_params = tbtt_info->bss_params;
577
578 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
579 psd_20))
580 entry->psd_20 = tbtt_info->psd_20;
581 }
582
583 /* ignore entries with invalid BSSID */
584 if (!is_valid_ether_addr(entry->bssid))
585 return -EINVAL;
586
587 /* skip non colocated APs */
588 if (!cfg80211_parse_bss_param(bss_params, entry))
589 return -EINVAL;
590
591 /* no information about the short ssid. Consider the entry valid
592 * for now. It would later be dropped in case there are explicit
593 * SSIDs that need to be matched
594 */
595 if (!entry->same_ssid && !entry->short_ssid_valid)
596 return 0;
597
598 if (entry->same_ssid) {
599 entry->short_ssid = s_ssid_tmp;
600 entry->short_ssid_valid = true;
601
602 /*
603 * This is safe because we validate datalen in
604 * cfg80211_parse_colocated_ap(), before calling this
605 * function.
606 */
607 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
608 entry->ssid_len = ssid_elem->datalen;
609 }
610
611 return 0;
612}
613
614bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
615 enum cfg80211_rnr_iter_ret
616 (*iter)(void *data, u8 type,
617 const struct ieee80211_neighbor_ap_info *info,
618 const u8 *tbtt_info, u8 tbtt_info_len),
619 void *iter_data)
620{
621 const struct element *rnr;
622 const u8 *pos, *end;
623
624 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
625 elems, elems_len) {
626 const struct ieee80211_neighbor_ap_info *info;
627
628 pos = rnr->data;
629 end = rnr->data + rnr->datalen;
630
631 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
632 while (sizeof(*info) <= end - pos) {
633 u8 length, i, count;
634 u8 type;
635
636 info = (void *)pos;
637 count = u8_get_bits(info->tbtt_info_hdr,
638 IEEE80211_AP_INFO_TBTT_HDR_COUNT) +
639 1;
640 length = info->tbtt_info_len;
641
642 pos += sizeof(*info);
643
644 if (count * length > end - pos)
645 return false;
646
647 type = u8_get_bits(info->tbtt_info_hdr,
648 IEEE80211_AP_INFO_TBTT_HDR_TYPE);
649
650 for (i = 0; i < count; i++) {
651 switch (iter(iter_data, type, info,
652 pos, length)) {
653 case RNR_ITER_CONTINUE:
654 break;
655 case RNR_ITER_BREAK:
656 return true;
657 case RNR_ITER_ERROR:
658 return false;
659 }
660
661 pos += length;
662 }
663 }
664
665 if (pos != end)
666 return false;
667 }
668
669 return true;
670}
671EXPORT_SYMBOL_GPL(cfg80211_iter_rnr);
672
673struct colocated_ap_data {
674 const struct element *ssid_elem;
675 struct list_head ap_list;
676 u32 s_ssid_tmp;
677 int n_coloc;
678};
679
680static enum cfg80211_rnr_iter_ret
681cfg80211_parse_colocated_ap_iter(void *_data, u8 type,
682 const struct ieee80211_neighbor_ap_info *info,
683 const u8 *tbtt_info, u8 tbtt_info_len)
684{
685 struct colocated_ap_data *data = _data;
686 struct cfg80211_colocated_ap *entry;
687 enum nl80211_band band;
688
689 if (type != IEEE80211_TBTT_INFO_TYPE_TBTT)
690 return RNR_ITER_CONTINUE;
691
692 if (!ieee80211_operating_class_to_band(info->op_class, &band))
693 return RNR_ITER_CONTINUE;
694
695 /* TBTT info must include bss param + BSSID + (short SSID or
696 * same_ssid bit to be set). Ignore other options, and move to
697 * the next AP info
698 */
699 if (band != NL80211_BAND_6GHZ ||
700 !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9,
701 bss_params) ||
702 tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
703 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
704 bss_params)))
705 return RNR_ITER_CONTINUE;
706
707 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, GFP_ATOMIC);
708 if (!entry)
709 return RNR_ITER_ERROR;
710
711 entry->center_freq =
712 ieee80211_channel_to_frequency(info->channel, band);
713
714 if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len,
715 data->ssid_elem, data->s_ssid_tmp)) {
716 data->n_coloc++;
717 list_add_tail(&entry->list, &data->ap_list);
718 } else {
719 kfree(entry);
720 }
721
722 return RNR_ITER_CONTINUE;
723}
724
725VISIBLE_IF_CFG80211_KUNIT int
726cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
727 struct list_head *list)
728{
729 struct colocated_ap_data data = {};
730 int ret;
731
732 INIT_LIST_HEAD(&data.ap_list);
733
734 ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp);
735 if (ret)
736 return 0;
737
738 if (!cfg80211_iter_rnr(ies->data, ies->len,
739 cfg80211_parse_colocated_ap_iter, &data)) {
740 cfg80211_free_coloc_ap_list(&data.ap_list);
741 return 0;
742 }
743
744 list_splice_tail(&data.ap_list, list);
745 return data.n_coloc;
746}
747EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap);
748
749static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
750 struct ieee80211_channel *chan,
751 bool add_to_6ghz)
752{
753 int i;
754 u32 n_channels = request->n_channels;
755 struct cfg80211_scan_6ghz_params *params =
756 &request->scan_6ghz_params[request->n_6ghz_params];
757
758 for (i = 0; i < n_channels; i++) {
759 if (request->channels[i] == chan) {
760 if (add_to_6ghz)
761 params->channel_idx = i;
762 return;
763 }
764 }
765
766 request->n_channels++;
767 request->channels[n_channels] = chan;
768 if (add_to_6ghz)
769 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
770 n_channels;
771}
772
773static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
774 struct cfg80211_scan_request *request)
775{
776 int i;
777 u32 s_ssid;
778
779 for (i = 0; i < request->n_ssids; i++) {
780 /* wildcard ssid in the scan request */
781 if (!request->ssids[i].ssid_len) {
782 if (ap->multi_bss && !ap->transmitted_bssid)
783 continue;
784
785 return true;
786 }
787
788 if (ap->ssid_len &&
789 ap->ssid_len == request->ssids[i].ssid_len) {
790 if (!memcmp(request->ssids[i].ssid, ap->ssid,
791 ap->ssid_len))
792 return true;
793 } else if (ap->short_ssid_valid) {
794 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
795 request->ssids[i].ssid_len);
796
797 if (ap->short_ssid == s_ssid)
798 return true;
799 }
800 }
801
802 return false;
803}
804
805static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
806{
807 u8 i;
808 struct cfg80211_colocated_ap *ap;
809 int n_channels, count = 0, err;
810 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
811 LIST_HEAD(coloc_ap_list);
812 bool need_scan_psc = true;
813 const struct ieee80211_sband_iftype_data *iftd;
814 size_t size, offs_ssids, offs_6ghz_params, offs_ies;
815
816 rdev_req->scan_6ghz = true;
817
818 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
819 return -EOPNOTSUPP;
820
821 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
822 rdev_req->wdev->iftype);
823 if (!iftd || !iftd->he_cap.has_he)
824 return -EOPNOTSUPP;
825
826 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
827
828 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
829 struct cfg80211_internal_bss *intbss;
830
831 spin_lock_bh(&rdev->bss_lock);
832 list_for_each_entry(intbss, &rdev->bss_list, list) {
833 struct cfg80211_bss *res = &intbss->pub;
834 const struct cfg80211_bss_ies *ies;
835 const struct element *ssid_elem;
836 struct cfg80211_colocated_ap *entry;
837 u32 s_ssid_tmp;
838 int ret;
839
840 ies = rcu_access_pointer(res->ies);
841 count += cfg80211_parse_colocated_ap(ies,
842 &coloc_ap_list);
843
844 /* In case the scan request specified a specific BSSID
845 * and the BSS is found and operating on 6GHz band then
846 * add this AP to the collocated APs list.
847 * This is relevant for ML probe requests when the lower
848 * band APs have not been discovered.
849 */
850 if (is_broadcast_ether_addr(rdev_req->bssid) ||
851 !ether_addr_equal(rdev_req->bssid, res->bssid) ||
852 res->channel->band != NL80211_BAND_6GHZ)
853 continue;
854
855 ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
856 &s_ssid_tmp);
857 if (ret)
858 continue;
859
860 entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
861 if (!entry)
862 continue;
863
864 memcpy(entry->bssid, res->bssid, ETH_ALEN);
865 entry->short_ssid = s_ssid_tmp;
866 memcpy(entry->ssid, ssid_elem->data,
867 ssid_elem->datalen);
868 entry->ssid_len = ssid_elem->datalen;
869 entry->short_ssid_valid = true;
870 entry->center_freq = res->channel->center_freq;
871
872 list_add_tail(&entry->list, &coloc_ap_list);
873 count++;
874 }
875 spin_unlock_bh(&rdev->bss_lock);
876 }
877
878 size = struct_size(request, channels, n_channels);
879 offs_ssids = size;
880 size += sizeof(*request->ssids) * rdev_req->n_ssids;
881 offs_6ghz_params = size;
882 size += sizeof(*request->scan_6ghz_params) * count;
883 offs_ies = size;
884 size += rdev_req->ie_len;
885
886 request = kzalloc(size, GFP_KERNEL);
887 if (!request) {
888 cfg80211_free_coloc_ap_list(&coloc_ap_list);
889 return -ENOMEM;
890 }
891
892 *request = *rdev_req;
893 request->n_channels = 0;
894 request->n_6ghz_params = 0;
895 if (rdev_req->n_ssids) {
896 /*
897 * Add the ssids from the parent scan request to the new
898 * scan request, so the driver would be able to use them
899 * in its probe requests to discover hidden APs on PSC
900 * channels.
901 */
902 request->ssids = (void *)request + offs_ssids;
903 memcpy(request->ssids, rdev_req->ssids,
904 sizeof(*request->ssids) * request->n_ssids);
905 }
906 request->scan_6ghz_params = (void *)request + offs_6ghz_params;
907
908 if (rdev_req->ie_len) {
909 void *ie = (void *)request + offs_ies;
910
911 memcpy(ie, rdev_req->ie, rdev_req->ie_len);
912 request->ie = ie;
913 }
914
915 /*
916 * PSC channels should not be scanned in case of direct scan with 1 SSID
917 * and at least one of the reported co-located APs with same SSID
918 * indicating that all APs in the same ESS are co-located
919 */
920 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
921 list_for_each_entry(ap, &coloc_ap_list, list) {
922 if (ap->colocated_ess &&
923 cfg80211_find_ssid_match(ap, request)) {
924 need_scan_psc = false;
925 break;
926 }
927 }
928 }
929
930 /*
931 * add to the scan request the channels that need to be scanned
932 * regardless of the collocated APs (PSC channels or all channels
933 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
934 */
935 for (i = 0; i < rdev_req->n_channels; i++) {
936 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
937 ((need_scan_psc &&
938 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
939 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
940 cfg80211_scan_req_add_chan(request,
941 rdev_req->channels[i],
942 false);
943 }
944 }
945
946 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
947 goto skip;
948
949 list_for_each_entry(ap, &coloc_ap_list, list) {
950 bool found = false;
951 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
952 &request->scan_6ghz_params[request->n_6ghz_params];
953 struct ieee80211_channel *chan =
954 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
955
956 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED ||
957 !cfg80211_wdev_channel_allowed(rdev_req->wdev, chan))
958 continue;
959
960 for (i = 0; i < rdev_req->n_channels; i++) {
961 if (rdev_req->channels[i] == chan)
962 found = true;
963 }
964
965 if (!found)
966 continue;
967
968 if (request->n_ssids > 0 &&
969 !cfg80211_find_ssid_match(ap, request))
970 continue;
971
972 if (!is_broadcast_ether_addr(request->bssid) &&
973 !ether_addr_equal(request->bssid, ap->bssid))
974 continue;
975
976 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
977 continue;
978
979 cfg80211_scan_req_add_chan(request, chan, true);
980 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
981 scan_6ghz_params->short_ssid = ap->short_ssid;
982 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
983 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
984 scan_6ghz_params->psd_20 = ap->psd_20;
985
986 /*
987 * If a PSC channel is added to the scan and 'need_scan_psc' is
988 * set to false, then all the APs that the scan logic is
989 * interested with on the channel are collocated and thus there
990 * is no need to perform the initial PSC channel listen.
991 */
992 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
993 scan_6ghz_params->psc_no_listen = true;
994
995 request->n_6ghz_params++;
996 }
997
998skip:
999 cfg80211_free_coloc_ap_list(&coloc_ap_list);
1000
1001 if (request->n_channels) {
1002 struct cfg80211_scan_request *old = rdev->int_scan_req;
1003
1004 rdev->int_scan_req = request;
1005
1006 /*
1007 * If this scan follows a previous scan, save the scan start
1008 * info from the first part of the scan
1009 */
1010 if (old)
1011 rdev->int_scan_req->info = old->info;
1012
1013 err = rdev_scan(rdev, request);
1014 if (err) {
1015 rdev->int_scan_req = old;
1016 kfree(request);
1017 } else {
1018 kfree(old);
1019 }
1020
1021 return err;
1022 }
1023
1024 kfree(request);
1025 return -EINVAL;
1026}
1027
1028int cfg80211_scan(struct cfg80211_registered_device *rdev)
1029{
1030 struct cfg80211_scan_request *request;
1031 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1032 u32 n_channels = 0, idx, i;
1033
1034 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1035 return rdev_scan(rdev, rdev_req);
1036
1037 for (i = 0; i < rdev_req->n_channels; i++) {
1038 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1039 n_channels++;
1040 }
1041
1042 if (!n_channels)
1043 return cfg80211_scan_6ghz(rdev);
1044
1045 request = kzalloc(struct_size(request, channels, n_channels),
1046 GFP_KERNEL);
1047 if (!request)
1048 return -ENOMEM;
1049
1050 *request = *rdev_req;
1051 request->n_channels = n_channels;
1052
1053 for (i = idx = 0; i < rdev_req->n_channels; i++) {
1054 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1055 request->channels[idx++] = rdev_req->channels[i];
1056 }
1057
1058 rdev_req->scan_6ghz = false;
1059 rdev->int_scan_req = request;
1060 return rdev_scan(rdev, request);
1061}
1062
1063void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1064 bool send_message)
1065{
1066 struct cfg80211_scan_request *request, *rdev_req;
1067 struct wireless_dev *wdev;
1068 struct sk_buff *msg;
1069#ifdef CONFIG_CFG80211_WEXT
1070 union iwreq_data wrqu;
1071#endif
1072
1073 lockdep_assert_held(&rdev->wiphy.mtx);
1074
1075 if (rdev->scan_msg) {
1076 nl80211_send_scan_msg(rdev, rdev->scan_msg);
1077 rdev->scan_msg = NULL;
1078 return;
1079 }
1080
1081 rdev_req = rdev->scan_req;
1082 if (!rdev_req)
1083 return;
1084
1085 wdev = rdev_req->wdev;
1086 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1087
1088 if (wdev_running(wdev) &&
1089 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1090 !rdev_req->scan_6ghz && !request->info.aborted &&
1091 !cfg80211_scan_6ghz(rdev))
1092 return;
1093
1094 /*
1095 * This must be before sending the other events!
1096 * Otherwise, wpa_supplicant gets completely confused with
1097 * wext events.
1098 */
1099 if (wdev->netdev)
1100 cfg80211_sme_scan_done(wdev->netdev);
1101
1102 if (!request->info.aborted &&
1103 request->flags & NL80211_SCAN_FLAG_FLUSH) {
1104 /* flush entries from previous scans */
1105 spin_lock_bh(&rdev->bss_lock);
1106 __cfg80211_bss_expire(rdev, request->scan_start);
1107 spin_unlock_bh(&rdev->bss_lock);
1108 }
1109
1110 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1111
1112#ifdef CONFIG_CFG80211_WEXT
1113 if (wdev->netdev && !request->info.aborted) {
1114 memset(&wrqu, 0, sizeof(wrqu));
1115
1116 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1117 }
1118#endif
1119
1120 dev_put(wdev->netdev);
1121
1122 kfree(rdev->int_scan_req);
1123 rdev->int_scan_req = NULL;
1124
1125 kfree(rdev->scan_req);
1126 rdev->scan_req = NULL;
1127
1128 if (!send_message)
1129 rdev->scan_msg = msg;
1130 else
1131 nl80211_send_scan_msg(rdev, msg);
1132}
1133
1134void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1135{
1136 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1137}
1138
1139void cfg80211_scan_done(struct cfg80211_scan_request *request,
1140 struct cfg80211_scan_info *info)
1141{
1142 struct cfg80211_scan_info old_info = request->info;
1143
1144 trace_cfg80211_scan_done(request, info);
1145 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1146 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1147
1148 request->info = *info;
1149
1150 /*
1151 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1152 * be of the first part. In such a case old_info.scan_start_tsf should
1153 * be non zero.
1154 */
1155 if (request->scan_6ghz && old_info.scan_start_tsf) {
1156 request->info.scan_start_tsf = old_info.scan_start_tsf;
1157 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1158 sizeof(request->info.tsf_bssid));
1159 }
1160
1161 request->notified = true;
1162 wiphy_work_queue(request->wiphy,
1163 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1164}
1165EXPORT_SYMBOL(cfg80211_scan_done);
1166
1167void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1168 struct cfg80211_sched_scan_request *req)
1169{
1170 lockdep_assert_held(&rdev->wiphy.mtx);
1171
1172 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1173}
1174
1175static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1176 struct cfg80211_sched_scan_request *req)
1177{
1178 lockdep_assert_held(&rdev->wiphy.mtx);
1179
1180 list_del_rcu(&req->list);
1181 kfree_rcu(req, rcu_head);
1182}
1183
1184static struct cfg80211_sched_scan_request *
1185cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1186{
1187 struct cfg80211_sched_scan_request *pos;
1188
1189 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1190 lockdep_is_held(&rdev->wiphy.mtx)) {
1191 if (pos->reqid == reqid)
1192 return pos;
1193 }
1194 return NULL;
1195}
1196
1197/*
1198 * Determines if a scheduled scan request can be handled. When a legacy
1199 * scheduled scan is running no other scheduled scan is allowed regardless
1200 * whether the request is for legacy or multi-support scan. When a multi-support
1201 * scheduled scan is running a request for legacy scan is not allowed. In this
1202 * case a request for multi-support scan can be handled if resources are
1203 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1204 */
1205int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1206 bool want_multi)
1207{
1208 struct cfg80211_sched_scan_request *pos;
1209 int i = 0;
1210
1211 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1212 /* request id zero means legacy in progress */
1213 if (!i && !pos->reqid)
1214 return -EINPROGRESS;
1215 i++;
1216 }
1217
1218 if (i) {
1219 /* no legacy allowed when multi request(s) are active */
1220 if (!want_multi)
1221 return -EINPROGRESS;
1222
1223 /* resource limit reached */
1224 if (i == rdev->wiphy.max_sched_scan_reqs)
1225 return -ENOSPC;
1226 }
1227 return 0;
1228}
1229
1230void cfg80211_sched_scan_results_wk(struct work_struct *work)
1231{
1232 struct cfg80211_registered_device *rdev;
1233 struct cfg80211_sched_scan_request *req, *tmp;
1234
1235 rdev = container_of(work, struct cfg80211_registered_device,
1236 sched_scan_res_wk);
1237
1238 wiphy_lock(&rdev->wiphy);
1239 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1240 if (req->report_results) {
1241 req->report_results = false;
1242 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1243 /* flush entries from previous scans */
1244 spin_lock_bh(&rdev->bss_lock);
1245 __cfg80211_bss_expire(rdev, req->scan_start);
1246 spin_unlock_bh(&rdev->bss_lock);
1247 req->scan_start = jiffies;
1248 }
1249 nl80211_send_sched_scan(req,
1250 NL80211_CMD_SCHED_SCAN_RESULTS);
1251 }
1252 }
1253 wiphy_unlock(&rdev->wiphy);
1254}
1255
1256void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1257{
1258 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1259 struct cfg80211_sched_scan_request *request;
1260
1261 trace_cfg80211_sched_scan_results(wiphy, reqid);
1262 /* ignore if we're not scanning */
1263
1264 rcu_read_lock();
1265 request = cfg80211_find_sched_scan_req(rdev, reqid);
1266 if (request) {
1267 request->report_results = true;
1268 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1269 }
1270 rcu_read_unlock();
1271}
1272EXPORT_SYMBOL(cfg80211_sched_scan_results);
1273
1274void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1275{
1276 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1277
1278 lockdep_assert_held(&wiphy->mtx);
1279
1280 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1281
1282 __cfg80211_stop_sched_scan(rdev, reqid, true);
1283}
1284EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1285
1286void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1287{
1288 wiphy_lock(wiphy);
1289 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1290 wiphy_unlock(wiphy);
1291}
1292EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1293
1294int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1295 struct cfg80211_sched_scan_request *req,
1296 bool driver_initiated)
1297{
1298 lockdep_assert_held(&rdev->wiphy.mtx);
1299
1300 if (!driver_initiated) {
1301 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1302 if (err)
1303 return err;
1304 }
1305
1306 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1307
1308 cfg80211_del_sched_scan_req(rdev, req);
1309
1310 return 0;
1311}
1312
1313int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1314 u64 reqid, bool driver_initiated)
1315{
1316 struct cfg80211_sched_scan_request *sched_scan_req;
1317
1318 lockdep_assert_held(&rdev->wiphy.mtx);
1319
1320 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1321 if (!sched_scan_req)
1322 return -ENOENT;
1323
1324 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1325 driver_initiated);
1326}
1327
1328void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1329 unsigned long age_secs)
1330{
1331 struct cfg80211_internal_bss *bss;
1332 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1333
1334 spin_lock_bh(&rdev->bss_lock);
1335 list_for_each_entry(bss, &rdev->bss_list, list)
1336 bss->ts -= age_jiffies;
1337 spin_unlock_bh(&rdev->bss_lock);
1338}
1339
1340void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1341{
1342 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1343}
1344
1345void cfg80211_bss_flush(struct wiphy *wiphy)
1346{
1347 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1348
1349 spin_lock_bh(&rdev->bss_lock);
1350 __cfg80211_bss_expire(rdev, jiffies);
1351 spin_unlock_bh(&rdev->bss_lock);
1352}
1353EXPORT_SYMBOL(cfg80211_bss_flush);
1354
1355const struct element *
1356cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1357 const u8 *match, unsigned int match_len,
1358 unsigned int match_offset)
1359{
1360 const struct element *elem;
1361
1362 for_each_element_id(elem, eid, ies, len) {
1363 if (elem->datalen >= match_offset + match_len &&
1364 !memcmp(elem->data + match_offset, match, match_len))
1365 return elem;
1366 }
1367
1368 return NULL;
1369}
1370EXPORT_SYMBOL(cfg80211_find_elem_match);
1371
1372const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1373 const u8 *ies,
1374 unsigned int len)
1375{
1376 const struct element *elem;
1377 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1378 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1379
1380 if (WARN_ON(oui_type > 0xff))
1381 return NULL;
1382
1383 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1384 match, match_len, 0);
1385
1386 if (!elem || elem->datalen < 4)
1387 return NULL;
1388
1389 return elem;
1390}
1391EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1392
1393/**
1394 * enum bss_compare_mode - BSS compare mode
1395 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1396 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1397 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1398 */
1399enum bss_compare_mode {
1400 BSS_CMP_REGULAR,
1401 BSS_CMP_HIDE_ZLEN,
1402 BSS_CMP_HIDE_NUL,
1403};
1404
1405static int cmp_bss(struct cfg80211_bss *a,
1406 struct cfg80211_bss *b,
1407 enum bss_compare_mode mode)
1408{
1409 const struct cfg80211_bss_ies *a_ies, *b_ies;
1410 const u8 *ie1 = NULL;
1411 const u8 *ie2 = NULL;
1412 int i, r;
1413
1414 if (a->channel != b->channel)
1415 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1416 (a->channel->center_freq * 1000 + a->channel->freq_offset);
1417
1418 a_ies = rcu_access_pointer(a->ies);
1419 if (!a_ies)
1420 return -1;
1421 b_ies = rcu_access_pointer(b->ies);
1422 if (!b_ies)
1423 return 1;
1424
1425 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1426 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1427 a_ies->data, a_ies->len);
1428 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1429 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1430 b_ies->data, b_ies->len);
1431 if (ie1 && ie2) {
1432 int mesh_id_cmp;
1433
1434 if (ie1[1] == ie2[1])
1435 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1436 else
1437 mesh_id_cmp = ie2[1] - ie1[1];
1438
1439 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1440 a_ies->data, a_ies->len);
1441 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1442 b_ies->data, b_ies->len);
1443 if (ie1 && ie2) {
1444 if (mesh_id_cmp)
1445 return mesh_id_cmp;
1446 if (ie1[1] != ie2[1])
1447 return ie2[1] - ie1[1];
1448 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1449 }
1450 }
1451
1452 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1453 if (r)
1454 return r;
1455
1456 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1457 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1458
1459 if (!ie1 && !ie2)
1460 return 0;
1461
1462 /*
1463 * Note that with "hide_ssid", the function returns a match if
1464 * the already-present BSS ("b") is a hidden SSID beacon for
1465 * the new BSS ("a").
1466 */
1467
1468 /* sort missing IE before (left of) present IE */
1469 if (!ie1)
1470 return -1;
1471 if (!ie2)
1472 return 1;
1473
1474 switch (mode) {
1475 case BSS_CMP_HIDE_ZLEN:
1476 /*
1477 * In ZLEN mode we assume the BSS entry we're
1478 * looking for has a zero-length SSID. So if
1479 * the one we're looking at right now has that,
1480 * return 0. Otherwise, return the difference
1481 * in length, but since we're looking for the
1482 * 0-length it's really equivalent to returning
1483 * the length of the one we're looking at.
1484 *
1485 * No content comparison is needed as we assume
1486 * the content length is zero.
1487 */
1488 return ie2[1];
1489 case BSS_CMP_REGULAR:
1490 default:
1491 /* sort by length first, then by contents */
1492 if (ie1[1] != ie2[1])
1493 return ie2[1] - ie1[1];
1494 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1495 case BSS_CMP_HIDE_NUL:
1496 if (ie1[1] != ie2[1])
1497 return ie2[1] - ie1[1];
1498 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1499 for (i = 0; i < ie2[1]; i++)
1500 if (ie2[i + 2])
1501 return -1;
1502 return 0;
1503 }
1504}
1505
1506static bool cfg80211_bss_type_match(u16 capability,
1507 enum nl80211_band band,
1508 enum ieee80211_bss_type bss_type)
1509{
1510 bool ret = true;
1511 u16 mask, val;
1512
1513 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1514 return ret;
1515
1516 if (band == NL80211_BAND_60GHZ) {
1517 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1518 switch (bss_type) {
1519 case IEEE80211_BSS_TYPE_ESS:
1520 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1521 break;
1522 case IEEE80211_BSS_TYPE_PBSS:
1523 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1524 break;
1525 case IEEE80211_BSS_TYPE_IBSS:
1526 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1527 break;
1528 default:
1529 return false;
1530 }
1531 } else {
1532 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1533 switch (bss_type) {
1534 case IEEE80211_BSS_TYPE_ESS:
1535 val = WLAN_CAPABILITY_ESS;
1536 break;
1537 case IEEE80211_BSS_TYPE_IBSS:
1538 val = WLAN_CAPABILITY_IBSS;
1539 break;
1540 case IEEE80211_BSS_TYPE_MBSS:
1541 val = 0;
1542 break;
1543 default:
1544 return false;
1545 }
1546 }
1547
1548 ret = ((capability & mask) == val);
1549 return ret;
1550}
1551
1552/* Returned bss is reference counted and must be cleaned up appropriately. */
1553struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1554 struct ieee80211_channel *channel,
1555 const u8 *bssid,
1556 const u8 *ssid, size_t ssid_len,
1557 enum ieee80211_bss_type bss_type,
1558 enum ieee80211_privacy privacy,
1559 u32 use_for)
1560{
1561 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1562 struct cfg80211_internal_bss *bss, *res = NULL;
1563 unsigned long now = jiffies;
1564 int bss_privacy;
1565
1566 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1567 privacy);
1568
1569 spin_lock_bh(&rdev->bss_lock);
1570
1571 list_for_each_entry(bss, &rdev->bss_list, list) {
1572 if (!cfg80211_bss_type_match(bss->pub.capability,
1573 bss->pub.channel->band, bss_type))
1574 continue;
1575
1576 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1577 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1578 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1579 continue;
1580 if (channel && bss->pub.channel != channel)
1581 continue;
1582 if (!is_valid_ether_addr(bss->pub.bssid))
1583 continue;
1584 if ((bss->pub.use_for & use_for) != use_for)
1585 continue;
1586 /* Don't get expired BSS structs */
1587 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1588 !atomic_read(&bss->hold))
1589 continue;
1590 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1591 res = bss;
1592 bss_ref_get(rdev, res);
1593 break;
1594 }
1595 }
1596
1597 spin_unlock_bh(&rdev->bss_lock);
1598 if (!res)
1599 return NULL;
1600 trace_cfg80211_return_bss(&res->pub);
1601 return &res->pub;
1602}
1603EXPORT_SYMBOL(__cfg80211_get_bss);
1604
1605static bool rb_insert_bss(struct cfg80211_registered_device *rdev,
1606 struct cfg80211_internal_bss *bss)
1607{
1608 struct rb_node **p = &rdev->bss_tree.rb_node;
1609 struct rb_node *parent = NULL;
1610 struct cfg80211_internal_bss *tbss;
1611 int cmp;
1612
1613 while (*p) {
1614 parent = *p;
1615 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1616
1617 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1618
1619 if (WARN_ON(!cmp)) {
1620 /* will sort of leak this BSS */
1621 return false;
1622 }
1623
1624 if (cmp < 0)
1625 p = &(*p)->rb_left;
1626 else
1627 p = &(*p)->rb_right;
1628 }
1629
1630 rb_link_node(&bss->rbn, parent, p);
1631 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1632 return true;
1633}
1634
1635static struct cfg80211_internal_bss *
1636rb_find_bss(struct cfg80211_registered_device *rdev,
1637 struct cfg80211_internal_bss *res,
1638 enum bss_compare_mode mode)
1639{
1640 struct rb_node *n = rdev->bss_tree.rb_node;
1641 struct cfg80211_internal_bss *bss;
1642 int r;
1643
1644 while (n) {
1645 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1646 r = cmp_bss(&res->pub, &bss->pub, mode);
1647
1648 if (r == 0)
1649 return bss;
1650 else if (r < 0)
1651 n = n->rb_left;
1652 else
1653 n = n->rb_right;
1654 }
1655
1656 return NULL;
1657}
1658
1659static void cfg80211_insert_bss(struct cfg80211_registered_device *rdev,
1660 struct cfg80211_internal_bss *bss)
1661{
1662 lockdep_assert_held(&rdev->bss_lock);
1663
1664 if (!rb_insert_bss(rdev, bss))
1665 return;
1666 list_add_tail(&bss->list, &rdev->bss_list);
1667 rdev->bss_entries++;
1668}
1669
1670static void cfg80211_rehash_bss(struct cfg80211_registered_device *rdev,
1671 struct cfg80211_internal_bss *bss)
1672{
1673 lockdep_assert_held(&rdev->bss_lock);
1674
1675 rb_erase(&bss->rbn, &rdev->bss_tree);
1676 if (!rb_insert_bss(rdev, bss)) {
1677 list_del(&bss->list);
1678 if (!list_empty(&bss->hidden_list))
1679 list_del_init(&bss->hidden_list);
1680 if (!list_empty(&bss->pub.nontrans_list))
1681 list_del_init(&bss->pub.nontrans_list);
1682 rdev->bss_entries--;
1683 }
1684 rdev->bss_generation++;
1685}
1686
1687static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1688 struct cfg80211_internal_bss *new)
1689{
1690 const struct cfg80211_bss_ies *ies;
1691 struct cfg80211_internal_bss *bss;
1692 const u8 *ie;
1693 int i, ssidlen;
1694 u8 fold = 0;
1695 u32 n_entries = 0;
1696
1697 ies = rcu_access_pointer(new->pub.beacon_ies);
1698 if (WARN_ON(!ies))
1699 return false;
1700
1701 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1702 if (!ie) {
1703 /* nothing to do */
1704 return true;
1705 }
1706
1707 ssidlen = ie[1];
1708 for (i = 0; i < ssidlen; i++)
1709 fold |= ie[2 + i];
1710
1711 if (fold) {
1712 /* not a hidden SSID */
1713 return true;
1714 }
1715
1716 /* This is the bad part ... */
1717
1718 list_for_each_entry(bss, &rdev->bss_list, list) {
1719 /*
1720 * we're iterating all the entries anyway, so take the
1721 * opportunity to validate the list length accounting
1722 */
1723 n_entries++;
1724
1725 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1726 continue;
1727 if (bss->pub.channel != new->pub.channel)
1728 continue;
1729 if (rcu_access_pointer(bss->pub.beacon_ies))
1730 continue;
1731 ies = rcu_access_pointer(bss->pub.ies);
1732 if (!ies)
1733 continue;
1734 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1735 if (!ie)
1736 continue;
1737 if (ssidlen && ie[1] != ssidlen)
1738 continue;
1739 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1740 continue;
1741 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1742 list_del(&bss->hidden_list);
1743 /* combine them */
1744 list_add(&bss->hidden_list, &new->hidden_list);
1745 bss->pub.hidden_beacon_bss = &new->pub;
1746 new->refcount += bss->refcount;
1747 rcu_assign_pointer(bss->pub.beacon_ies,
1748 new->pub.beacon_ies);
1749 }
1750
1751 WARN_ONCE(n_entries != rdev->bss_entries,
1752 "rdev bss entries[%d]/list[len:%d] corruption\n",
1753 rdev->bss_entries, n_entries);
1754
1755 return true;
1756}
1757
1758static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1759 const struct cfg80211_bss_ies *new_ies,
1760 const struct cfg80211_bss_ies *old_ies)
1761{
1762 struct cfg80211_internal_bss *bss;
1763
1764 /* Assign beacon IEs to all sub entries */
1765 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1766 const struct cfg80211_bss_ies *ies;
1767
1768 ies = rcu_access_pointer(bss->pub.beacon_ies);
1769 WARN_ON(ies != old_ies);
1770
1771 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1772 }
1773}
1774
1775static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1776 struct cfg80211_internal_bss *known,
1777 const struct cfg80211_bss_ies *old)
1778{
1779 const struct ieee80211_ext_chansw_ie *ecsa;
1780 const struct element *elem_new, *elem_old;
1781 const struct cfg80211_bss_ies *new, *bcn;
1782
1783 if (known->pub.proberesp_ecsa_stuck)
1784 return;
1785
1786 new = rcu_dereference_protected(known->pub.proberesp_ies,
1787 lockdep_is_held(&rdev->bss_lock));
1788 if (WARN_ON(!new))
1789 return;
1790
1791 if (new->tsf - old->tsf < USEC_PER_SEC)
1792 return;
1793
1794 elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1795 old->data, old->len);
1796 if (!elem_old)
1797 return;
1798
1799 elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1800 new->data, new->len);
1801 if (!elem_new)
1802 return;
1803
1804 bcn = rcu_dereference_protected(known->pub.beacon_ies,
1805 lockdep_is_held(&rdev->bss_lock));
1806 if (bcn &&
1807 cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1808 bcn->data, bcn->len))
1809 return;
1810
1811 if (elem_new->datalen != elem_old->datalen)
1812 return;
1813 if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1814 return;
1815 if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
1816 return;
1817
1818 ecsa = (void *)elem_new->data;
1819
1820 if (!ecsa->mode)
1821 return;
1822
1823 if (ecsa->new_ch_num !=
1824 ieee80211_frequency_to_channel(known->pub.channel->center_freq))
1825 return;
1826
1827 known->pub.proberesp_ecsa_stuck = 1;
1828}
1829
1830static bool
1831cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1832 struct cfg80211_internal_bss *known,
1833 struct cfg80211_internal_bss *new,
1834 bool signal_valid)
1835{
1836 lockdep_assert_held(&rdev->bss_lock);
1837
1838 /* Update IEs */
1839 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1840 const struct cfg80211_bss_ies *old;
1841
1842 old = rcu_access_pointer(known->pub.proberesp_ies);
1843
1844 rcu_assign_pointer(known->pub.proberesp_ies,
1845 new->pub.proberesp_ies);
1846 /* Override possible earlier Beacon frame IEs */
1847 rcu_assign_pointer(known->pub.ies,
1848 new->pub.proberesp_ies);
1849 if (old) {
1850 cfg80211_check_stuck_ecsa(rdev, known, old);
1851 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1852 }
1853 }
1854
1855 if (rcu_access_pointer(new->pub.beacon_ies)) {
1856 const struct cfg80211_bss_ies *old;
1857
1858 if (known->pub.hidden_beacon_bss &&
1859 !list_empty(&known->hidden_list)) {
1860 const struct cfg80211_bss_ies *f;
1861
1862 /* The known BSS struct is one of the probe
1863 * response members of a group, but we're
1864 * receiving a beacon (beacon_ies in the new
1865 * bss is used). This can only mean that the
1866 * AP changed its beacon from not having an
1867 * SSID to showing it, which is confusing so
1868 * drop this information.
1869 */
1870
1871 f = rcu_access_pointer(new->pub.beacon_ies);
1872 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1873 return false;
1874 }
1875
1876 old = rcu_access_pointer(known->pub.beacon_ies);
1877
1878 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1879
1880 /* Override IEs if they were from a beacon before */
1881 if (old == rcu_access_pointer(known->pub.ies))
1882 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1883
1884 cfg80211_update_hidden_bsses(known,
1885 rcu_access_pointer(new->pub.beacon_ies),
1886 old);
1887
1888 if (old)
1889 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1890 }
1891
1892 known->pub.beacon_interval = new->pub.beacon_interval;
1893
1894 /* don't update the signal if beacon was heard on
1895 * adjacent channel.
1896 */
1897 if (signal_valid)
1898 known->pub.signal = new->pub.signal;
1899 known->pub.capability = new->pub.capability;
1900 known->ts = new->ts;
1901 known->ts_boottime = new->ts_boottime;
1902 known->parent_tsf = new->parent_tsf;
1903 known->pub.chains = new->pub.chains;
1904 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1905 IEEE80211_MAX_CHAINS);
1906 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1907 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1908 known->pub.bssid_index = new->pub.bssid_index;
1909 known->pub.use_for &= new->pub.use_for;
1910 known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1911 known->bss_source = new->bss_source;
1912
1913 return true;
1914}
1915
1916/* Returned bss is reference counted and must be cleaned up appropriately. */
1917static struct cfg80211_internal_bss *
1918__cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1919 struct cfg80211_internal_bss *tmp,
1920 bool signal_valid, unsigned long ts)
1921{
1922 struct cfg80211_internal_bss *found = NULL;
1923 struct cfg80211_bss_ies *ies;
1924
1925 if (WARN_ON(!tmp->pub.channel))
1926 goto free_ies;
1927
1928 tmp->ts = ts;
1929
1930 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1931 goto free_ies;
1932
1933 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1934
1935 if (found) {
1936 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1937 return NULL;
1938 } else {
1939 struct cfg80211_internal_bss *new;
1940 struct cfg80211_internal_bss *hidden;
1941
1942 /*
1943 * create a copy -- the "res" variable that is passed in
1944 * is allocated on the stack since it's not needed in the
1945 * more common case of an update
1946 */
1947 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1948 GFP_ATOMIC);
1949 if (!new)
1950 goto free_ies;
1951 memcpy(new, tmp, sizeof(*new));
1952 new->refcount = 1;
1953 INIT_LIST_HEAD(&new->hidden_list);
1954 INIT_LIST_HEAD(&new->pub.nontrans_list);
1955 /* we'll set this later if it was non-NULL */
1956 new->pub.transmitted_bss = NULL;
1957
1958 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1959 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1960 if (!hidden)
1961 hidden = rb_find_bss(rdev, tmp,
1962 BSS_CMP_HIDE_NUL);
1963 if (hidden) {
1964 new->pub.hidden_beacon_bss = &hidden->pub;
1965 list_add(&new->hidden_list,
1966 &hidden->hidden_list);
1967 hidden->refcount++;
1968
1969 ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1970 rcu_assign_pointer(new->pub.beacon_ies,
1971 hidden->pub.beacon_ies);
1972 if (ies)
1973 kfree_rcu(ies, rcu_head);
1974 }
1975 } else {
1976 /*
1977 * Ok so we found a beacon, and don't have an entry. If
1978 * it's a beacon with hidden SSID, we might be in for an
1979 * expensive search for any probe responses that should
1980 * be grouped with this beacon for updates ...
1981 */
1982 if (!cfg80211_combine_bsses(rdev, new)) {
1983 bss_ref_put(rdev, new);
1984 return NULL;
1985 }
1986 }
1987
1988 if (rdev->bss_entries >= bss_entries_limit &&
1989 !cfg80211_bss_expire_oldest(rdev)) {
1990 bss_ref_put(rdev, new);
1991 return NULL;
1992 }
1993
1994 /* This must be before the call to bss_ref_get */
1995 if (tmp->pub.transmitted_bss) {
1996 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1997 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1998 }
1999
2000 cfg80211_insert_bss(rdev, new);
2001 found = new;
2002 }
2003
2004 rdev->bss_generation++;
2005 bss_ref_get(rdev, found);
2006
2007 return found;
2008
2009free_ies:
2010 ies = (void *)rcu_access_pointer(tmp->pub.beacon_ies);
2011 if (ies)
2012 kfree_rcu(ies, rcu_head);
2013 ies = (void *)rcu_access_pointer(tmp->pub.proberesp_ies);
2014 if (ies)
2015 kfree_rcu(ies, rcu_head);
2016
2017 return NULL;
2018}
2019
2020struct cfg80211_internal_bss *
2021cfg80211_bss_update(struct cfg80211_registered_device *rdev,
2022 struct cfg80211_internal_bss *tmp,
2023 bool signal_valid, unsigned long ts)
2024{
2025 struct cfg80211_internal_bss *res;
2026
2027 spin_lock_bh(&rdev->bss_lock);
2028 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
2029 spin_unlock_bh(&rdev->bss_lock);
2030
2031 return res;
2032}
2033
2034int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
2035 enum nl80211_band band)
2036{
2037 const struct element *tmp;
2038
2039 if (band == NL80211_BAND_6GHZ) {
2040 struct ieee80211_he_operation *he_oper;
2041
2042 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
2043 ielen);
2044 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
2045 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
2046 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2047
2048 he_oper = (void *)&tmp->data[1];
2049
2050 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2051 if (!he_6ghz_oper)
2052 return -1;
2053
2054 return he_6ghz_oper->primary;
2055 }
2056 } else if (band == NL80211_BAND_S1GHZ) {
2057 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
2058 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
2059 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
2060
2061 return s1gop->oper_ch;
2062 }
2063 } else {
2064 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
2065 if (tmp && tmp->datalen == 1)
2066 return tmp->data[0];
2067
2068 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
2069 if (tmp &&
2070 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2071 struct ieee80211_ht_operation *htop = (void *)tmp->data;
2072
2073 return htop->primary_chan;
2074 }
2075 }
2076
2077 return -1;
2078}
2079EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2080
2081/*
2082 * Update RX channel information based on the available frame payload
2083 * information. This is mainly for the 2.4 GHz band where frames can be received
2084 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2085 * element to indicate the current (transmitting) channel, but this might also
2086 * be needed on other bands if RX frequency does not match with the actual
2087 * operating channel of a BSS, or if the AP reports a different primary channel.
2088 */
2089static struct ieee80211_channel *
2090cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2091 struct ieee80211_channel *channel)
2092{
2093 u32 freq;
2094 int channel_number;
2095 struct ieee80211_channel *alt_channel;
2096
2097 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2098 channel->band);
2099
2100 if (channel_number < 0) {
2101 /* No channel information in frame payload */
2102 return channel;
2103 }
2104
2105 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2106
2107 /*
2108 * Frame info (beacon/prob res) is the same as received channel,
2109 * no need for further processing.
2110 */
2111 if (freq == ieee80211_channel_to_khz(channel))
2112 return channel;
2113
2114 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2115 if (!alt_channel) {
2116 if (channel->band == NL80211_BAND_2GHZ ||
2117 channel->band == NL80211_BAND_6GHZ) {
2118 /*
2119 * Better not allow unexpected channels when that could
2120 * be going beyond the 1-11 range (e.g., discovering
2121 * BSS on channel 12 when radio is configured for
2122 * channel 11) or beyond the 6 GHz channel range.
2123 */
2124 return NULL;
2125 }
2126
2127 /* No match for the payload channel number - ignore it */
2128 return channel;
2129 }
2130
2131 /*
2132 * Use the channel determined through the payload channel number
2133 * instead of the RX channel reported by the driver.
2134 */
2135 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2136 return NULL;
2137 return alt_channel;
2138}
2139
2140struct cfg80211_inform_single_bss_data {
2141 struct cfg80211_inform_bss *drv_data;
2142 enum cfg80211_bss_frame_type ftype;
2143 struct ieee80211_channel *channel;
2144 u8 bssid[ETH_ALEN];
2145 u64 tsf;
2146 u16 capability;
2147 u16 beacon_interval;
2148 const u8 *ie;
2149 size_t ielen;
2150
2151 enum bss_source_type bss_source;
2152 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2153 struct cfg80211_bss *source_bss;
2154 u8 max_bssid_indicator;
2155 u8 bssid_index;
2156
2157 u8 use_for;
2158 u64 cannot_use_reasons;
2159};
2160
2161enum ieee80211_ap_reg_power
2162cfg80211_get_6ghz_power_type(const u8 *elems, size_t elems_len)
2163{
2164 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2165 struct ieee80211_he_operation *he_oper;
2166 const struct element *tmp;
2167
2168 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION,
2169 elems, elems_len);
2170 if (!tmp || tmp->datalen < sizeof(*he_oper) + 1 ||
2171 tmp->datalen < ieee80211_he_oper_size(tmp->data + 1))
2172 return IEEE80211_REG_UNSET_AP;
2173
2174 he_oper = (void *)&tmp->data[1];
2175 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2176
2177 if (!he_6ghz_oper)
2178 return IEEE80211_REG_UNSET_AP;
2179
2180 switch (u8_get_bits(he_6ghz_oper->control,
2181 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
2182 case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
2183 case IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP:
2184 return IEEE80211_REG_LPI_AP;
2185 case IEEE80211_6GHZ_CTRL_REG_SP_AP:
2186 case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP:
2187 return IEEE80211_REG_SP_AP;
2188 case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
2189 return IEEE80211_REG_VLP_AP;
2190 default:
2191 return IEEE80211_REG_UNSET_AP;
2192 }
2193}
2194
2195static bool cfg80211_6ghz_power_type_valid(const u8 *elems, size_t elems_len,
2196 const u32 flags)
2197{
2198 switch (cfg80211_get_6ghz_power_type(elems, elems_len)) {
2199 case IEEE80211_REG_LPI_AP:
2200 return true;
2201 case IEEE80211_REG_SP_AP:
2202 return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT);
2203 case IEEE80211_REG_VLP_AP:
2204 return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT);
2205 default:
2206 return false;
2207 }
2208}
2209
2210/* Returned bss is reference counted and must be cleaned up appropriately. */
2211static struct cfg80211_bss *
2212cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2213 struct cfg80211_inform_single_bss_data *data,
2214 gfp_t gfp)
2215{
2216 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2217 struct cfg80211_inform_bss *drv_data = data->drv_data;
2218 struct cfg80211_bss_ies *ies;
2219 struct ieee80211_channel *channel;
2220 struct cfg80211_internal_bss tmp = {}, *res;
2221 int bss_type;
2222 bool signal_valid;
2223 unsigned long ts;
2224
2225 if (WARN_ON(!wiphy))
2226 return NULL;
2227
2228 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2229 (drv_data->signal < 0 || drv_data->signal > 100)))
2230 return NULL;
2231
2232 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2233 return NULL;
2234
2235 channel = data->channel;
2236 if (!channel)
2237 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2238 drv_data->chan);
2239 if (!channel)
2240 return NULL;
2241
2242 if (channel->band == NL80211_BAND_6GHZ &&
2243 !cfg80211_6ghz_power_type_valid(data->ie, data->ielen,
2244 channel->flags)) {
2245 data->use_for = 0;
2246 data->cannot_use_reasons =
2247 NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH;
2248 }
2249
2250 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2251 tmp.pub.channel = channel;
2252 if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2253 tmp.pub.signal = drv_data->signal;
2254 else
2255 tmp.pub.signal = 0;
2256 tmp.pub.beacon_interval = data->beacon_interval;
2257 tmp.pub.capability = data->capability;
2258 tmp.ts_boottime = drv_data->boottime_ns;
2259 tmp.parent_tsf = drv_data->parent_tsf;
2260 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2261 tmp.pub.chains = drv_data->chains;
2262 memcpy(tmp.pub.chain_signal, drv_data->chain_signal,
2263 IEEE80211_MAX_CHAINS);
2264 tmp.pub.use_for = data->use_for;
2265 tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2266 tmp.bss_source = data->bss_source;
2267
2268 switch (data->bss_source) {
2269 case BSS_SOURCE_MBSSID:
2270 tmp.pub.transmitted_bss = data->source_bss;
2271 fallthrough;
2272 case BSS_SOURCE_STA_PROFILE:
2273 ts = bss_from_pub(data->source_bss)->ts;
2274 tmp.pub.bssid_index = data->bssid_index;
2275 tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2276 break;
2277 case BSS_SOURCE_DIRECT:
2278 ts = jiffies;
2279
2280 if (channel->band == NL80211_BAND_60GHZ) {
2281 bss_type = data->capability &
2282 WLAN_CAPABILITY_DMG_TYPE_MASK;
2283 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2284 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2285 regulatory_hint_found_beacon(wiphy, channel,
2286 gfp);
2287 } else {
2288 if (data->capability & WLAN_CAPABILITY_ESS)
2289 regulatory_hint_found_beacon(wiphy, channel,
2290 gfp);
2291 }
2292 break;
2293 }
2294
2295 /*
2296 * If we do not know here whether the IEs are from a Beacon or Probe
2297 * Response frame, we need to pick one of the options and only use it
2298 * with the driver that does not provide the full Beacon/Probe Response
2299 * frame. Use Beacon frame pointer to avoid indicating that this should
2300 * override the IEs pointer should we have received an earlier
2301 * indication of Probe Response data.
2302 */
2303 ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2304 if (!ies)
2305 return NULL;
2306 ies->len = data->ielen;
2307 ies->tsf = data->tsf;
2308 ies->from_beacon = false;
2309 memcpy(ies->data, data->ie, data->ielen);
2310
2311 switch (data->ftype) {
2312 case CFG80211_BSS_FTYPE_BEACON:
2313 case CFG80211_BSS_FTYPE_S1G_BEACON:
2314 ies->from_beacon = true;
2315 fallthrough;
2316 case CFG80211_BSS_FTYPE_UNKNOWN:
2317 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2318 break;
2319 case CFG80211_BSS_FTYPE_PRESP:
2320 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2321 break;
2322 }
2323 rcu_assign_pointer(tmp.pub.ies, ies);
2324
2325 signal_valid = drv_data->chan == channel;
2326 spin_lock_bh(&rdev->bss_lock);
2327 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2328 if (!res)
2329 goto drop;
2330
2331 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2332
2333 if (data->bss_source == BSS_SOURCE_MBSSID) {
2334 /* this is a nontransmitting bss, we need to add it to
2335 * transmitting bss' list if it is not there
2336 */
2337 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2338 if (__cfg80211_unlink_bss(rdev, res)) {
2339 rdev->bss_generation++;
2340 res = NULL;
2341 }
2342 }
2343
2344 if (!res)
2345 goto drop;
2346 }
2347 spin_unlock_bh(&rdev->bss_lock);
2348
2349 trace_cfg80211_return_bss(&res->pub);
2350 /* __cfg80211_bss_update gives us a referenced result */
2351 return &res->pub;
2352
2353drop:
2354 spin_unlock_bh(&rdev->bss_lock);
2355 return NULL;
2356}
2357
2358static const struct element
2359*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2360 const struct element *mbssid_elem,
2361 const struct element *sub_elem)
2362{
2363 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2364 const struct element *next_mbssid;
2365 const struct element *next_sub;
2366
2367 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2368 mbssid_end,
2369 ielen - (mbssid_end - ie));
2370
2371 /*
2372 * If it is not the last subelement in current MBSSID IE or there isn't
2373 * a next MBSSID IE - profile is complete.
2374 */
2375 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2376 !next_mbssid)
2377 return NULL;
2378
2379 /* For any length error, just return NULL */
2380
2381 if (next_mbssid->datalen < 4)
2382 return NULL;
2383
2384 next_sub = (void *)&next_mbssid->data[1];
2385
2386 if (next_mbssid->data + next_mbssid->datalen <
2387 next_sub->data + next_sub->datalen)
2388 return NULL;
2389
2390 if (next_sub->id != 0 || next_sub->datalen < 2)
2391 return NULL;
2392
2393 /*
2394 * Check if the first element in the next sub element is a start
2395 * of a new profile
2396 */
2397 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2398 NULL : next_mbssid;
2399}
2400
2401size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2402 const struct element *mbssid_elem,
2403 const struct element *sub_elem,
2404 u8 *merged_ie, size_t max_copy_len)
2405{
2406 size_t copied_len = sub_elem->datalen;
2407 const struct element *next_mbssid;
2408
2409 if (sub_elem->datalen > max_copy_len)
2410 return 0;
2411
2412 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2413
2414 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2415 mbssid_elem,
2416 sub_elem))) {
2417 const struct element *next_sub = (void *)&next_mbssid->data[1];
2418
2419 if (copied_len + next_sub->datalen > max_copy_len)
2420 break;
2421 memcpy(merged_ie + copied_len, next_sub->data,
2422 next_sub->datalen);
2423 copied_len += next_sub->datalen;
2424 }
2425
2426 return copied_len;
2427}
2428EXPORT_SYMBOL(cfg80211_merge_profile);
2429
2430static void
2431cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2432 struct cfg80211_inform_single_bss_data *tx_data,
2433 struct cfg80211_bss *source_bss,
2434 gfp_t gfp)
2435{
2436 struct cfg80211_inform_single_bss_data data = {
2437 .drv_data = tx_data->drv_data,
2438 .ftype = tx_data->ftype,
2439 .tsf = tx_data->tsf,
2440 .beacon_interval = tx_data->beacon_interval,
2441 .source_bss = source_bss,
2442 .bss_source = BSS_SOURCE_MBSSID,
2443 .use_for = tx_data->use_for,
2444 .cannot_use_reasons = tx_data->cannot_use_reasons,
2445 };
2446 const u8 *mbssid_index_ie;
2447 const struct element *elem, *sub;
2448 u8 *new_ie, *profile;
2449 u64 seen_indices = 0;
2450 struct cfg80211_bss *bss;
2451
2452 if (!source_bss)
2453 return;
2454 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2455 tx_data->ie, tx_data->ielen))
2456 return;
2457 if (!wiphy->support_mbssid)
2458 return;
2459 if (wiphy->support_only_he_mbssid &&
2460 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2461 tx_data->ie, tx_data->ielen))
2462 return;
2463
2464 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2465 if (!new_ie)
2466 return;
2467
2468 profile = kmalloc(tx_data->ielen, gfp);
2469 if (!profile)
2470 goto out;
2471
2472 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2473 tx_data->ie, tx_data->ielen) {
2474 if (elem->datalen < 4)
2475 continue;
2476 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2477 continue;
2478 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2479 u8 profile_len;
2480
2481 if (sub->id != 0 || sub->datalen < 4) {
2482 /* not a valid BSS profile */
2483 continue;
2484 }
2485
2486 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2487 sub->data[1] != 2) {
2488 /* The first element within the Nontransmitted
2489 * BSSID Profile is not the Nontransmitted
2490 * BSSID Capability element.
2491 */
2492 continue;
2493 }
2494
2495 memset(profile, 0, tx_data->ielen);
2496 profile_len = cfg80211_merge_profile(tx_data->ie,
2497 tx_data->ielen,
2498 elem,
2499 sub,
2500 profile,
2501 tx_data->ielen);
2502
2503 /* found a Nontransmitted BSSID Profile */
2504 mbssid_index_ie = cfg80211_find_ie
2505 (WLAN_EID_MULTI_BSSID_IDX,
2506 profile, profile_len);
2507 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2508 mbssid_index_ie[2] == 0 ||
2509 mbssid_index_ie[2] > 46 ||
2510 mbssid_index_ie[2] >= (1 << elem->data[0])) {
2511 /* No valid Multiple BSSID-Index element */
2512 continue;
2513 }
2514
2515 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2516 /* We don't support legacy split of a profile */
2517 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2518 mbssid_index_ie[2]);
2519
2520 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2521
2522 data.bssid_index = mbssid_index_ie[2];
2523 data.max_bssid_indicator = elem->data[0];
2524
2525 cfg80211_gen_new_bssid(tx_data->bssid,
2526 data.max_bssid_indicator,
2527 data.bssid_index,
2528 data.bssid);
2529
2530 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2531 data.ie = new_ie;
2532 data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2533 tx_data->ielen,
2534 profile,
2535 profile_len,
2536 new_ie,
2537 IEEE80211_MAX_DATA_LEN);
2538 if (!data.ielen)
2539 continue;
2540
2541 data.capability = get_unaligned_le16(profile + 2);
2542 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2543 if (!bss)
2544 break;
2545 cfg80211_put_bss(wiphy, bss);
2546 }
2547 }
2548
2549out:
2550 kfree(new_ie);
2551 kfree(profile);
2552}
2553
2554ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2555 size_t ieslen, u8 *data, size_t data_len,
2556 u8 frag_id)
2557{
2558 const struct element *next;
2559 ssize_t copied;
2560 u8 elem_datalen;
2561
2562 if (!elem)
2563 return -EINVAL;
2564
2565 /* elem might be invalid after the memmove */
2566 next = (void *)(elem->data + elem->datalen);
2567 elem_datalen = elem->datalen;
2568
2569 if (elem->id == WLAN_EID_EXTENSION) {
2570 copied = elem->datalen - 1;
2571
2572 if (data) {
2573 if (copied > data_len)
2574 return -ENOSPC;
2575
2576 memmove(data, elem->data + 1, copied);
2577 }
2578 } else {
2579 copied = elem->datalen;
2580
2581 if (data) {
2582 if (copied > data_len)
2583 return -ENOSPC;
2584
2585 memmove(data, elem->data, copied);
2586 }
2587 }
2588
2589 /* Fragmented elements must have 255 bytes */
2590 if (elem_datalen < 255)
2591 return copied;
2592
2593 for (elem = next;
2594 elem->data < ies + ieslen &&
2595 elem->data + elem->datalen <= ies + ieslen;
2596 elem = next) {
2597 /* elem might be invalid after the memmove */
2598 next = (void *)(elem->data + elem->datalen);
2599
2600 if (elem->id != frag_id)
2601 break;
2602
2603 elem_datalen = elem->datalen;
2604
2605 if (data) {
2606 if (copied + elem_datalen > data_len)
2607 return -ENOSPC;
2608
2609 memmove(data + copied, elem->data, elem_datalen);
2610 }
2611
2612 copied += elem_datalen;
2613
2614 /* Only the last fragment may be short */
2615 if (elem_datalen != 255)
2616 break;
2617 }
2618
2619 return copied;
2620}
2621EXPORT_SYMBOL(cfg80211_defragment_element);
2622
2623struct cfg80211_mle {
2624 struct ieee80211_multi_link_elem *mle;
2625 struct ieee80211_mle_per_sta_profile
2626 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2627 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2628
2629 u8 data[];
2630};
2631
2632static struct cfg80211_mle *
2633cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2634 gfp_t gfp)
2635{
2636 const struct element *elem;
2637 struct cfg80211_mle *res;
2638 size_t buf_len;
2639 ssize_t mle_len;
2640 u8 common_size, idx;
2641
2642 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2643 return NULL;
2644
2645 /* Required length for first defragmentation */
2646 buf_len = mle->datalen - 1;
2647 for_each_element(elem, mle->data + mle->datalen,
2648 ielen - sizeof(*mle) + mle->datalen) {
2649 if (elem->id != WLAN_EID_FRAGMENT)
2650 break;
2651
2652 buf_len += elem->datalen;
2653 }
2654
2655 res = kzalloc(struct_size(res, data, buf_len), gfp);
2656 if (!res)
2657 return NULL;
2658
2659 mle_len = cfg80211_defragment_element(mle, ie, ielen,
2660 res->data, buf_len,
2661 WLAN_EID_FRAGMENT);
2662 if (mle_len < 0)
2663 goto error;
2664
2665 res->mle = (void *)res->data;
2666
2667 /* Find the sub-element area in the buffer */
2668 common_size = ieee80211_mle_common_size((u8 *)res->mle);
2669 ie = res->data + common_size;
2670 ielen = mle_len - common_size;
2671
2672 idx = 0;
2673 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2674 ie, ielen) {
2675 res->sta_prof[idx] = (void *)elem->data;
2676 res->sta_prof_len[idx] = elem->datalen;
2677
2678 idx++;
2679 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2680 break;
2681 }
2682 if (!for_each_element_completed(elem, ie, ielen))
2683 goto error;
2684
2685 /* Defragment sta_info in-place */
2686 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2687 idx++) {
2688 if (res->sta_prof_len[idx] < 255)
2689 continue;
2690
2691 elem = (void *)res->sta_prof[idx] - 2;
2692
2693 if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2694 res->sta_prof[idx + 1])
2695 buf_len = (u8 *)res->sta_prof[idx + 1] -
2696 (u8 *)res->sta_prof[idx];
2697 else
2698 buf_len = ielen + ie - (u8 *)elem;
2699
2700 res->sta_prof_len[idx] =
2701 cfg80211_defragment_element(elem,
2702 (u8 *)elem, buf_len,
2703 (u8 *)res->sta_prof[idx],
2704 buf_len,
2705 IEEE80211_MLE_SUBELEM_FRAGMENT);
2706 if (res->sta_prof_len[idx] < 0)
2707 goto error;
2708 }
2709
2710 return res;
2711
2712error:
2713 kfree(res);
2714 return NULL;
2715}
2716
2717struct tbtt_info_iter_data {
2718 const struct ieee80211_neighbor_ap_info *ap_info;
2719 u8 param_ch_count;
2720 u32 use_for;
2721 u8 mld_id, link_id;
2722 bool non_tx;
2723};
2724
2725static enum cfg80211_rnr_iter_ret
2726cfg802121_mld_ap_rnr_iter(void *_data, u8 type,
2727 const struct ieee80211_neighbor_ap_info *info,
2728 const u8 *tbtt_info, u8 tbtt_info_len)
2729{
2730 const struct ieee80211_rnr_mld_params *mld_params;
2731 struct tbtt_info_iter_data *data = _data;
2732 u8 link_id;
2733 bool non_tx = false;
2734
2735 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2736 tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
2737 mld_params)) {
2738 const struct ieee80211_tbtt_info_ge_11 *tbtt_info_ge_11 =
2739 (void *)tbtt_info;
2740
2741 non_tx = (tbtt_info_ge_11->bss_params &
2742 (IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID |
2743 IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID)) ==
2744 IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2745 mld_params = &tbtt_info_ge_11->mld_params;
2746 } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2747 tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params))
2748 mld_params = (void *)tbtt_info;
2749 else
2750 return RNR_ITER_CONTINUE;
2751
2752 link_id = le16_get_bits(mld_params->params,
2753 IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2754
2755 if (data->mld_id != mld_params->mld_id)
2756 return RNR_ITER_CONTINUE;
2757
2758 if (data->link_id != link_id)
2759 return RNR_ITER_CONTINUE;
2760
2761 data->ap_info = info;
2762 data->param_ch_count =
2763 le16_get_bits(mld_params->params,
2764 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2765 data->non_tx = non_tx;
2766
2767 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT)
2768 data->use_for = NL80211_BSS_USE_FOR_ALL;
2769 else
2770 data->use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2771 return RNR_ITER_BREAK;
2772}
2773
2774static u8
2775cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2776 const struct ieee80211_neighbor_ap_info **ap_info,
2777 u8 *param_ch_count, bool *non_tx)
2778{
2779 struct tbtt_info_iter_data data = {
2780 .mld_id = mld_id,
2781 .link_id = link_id,
2782 };
2783
2784 cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data);
2785
2786 *ap_info = data.ap_info;
2787 *param_ch_count = data.param_ch_count;
2788 *non_tx = data.non_tx;
2789
2790 return data.use_for;
2791}
2792
2793static struct element *
2794cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid,
2795 bool same_mld, u8 link_id, u8 bss_change_count,
2796 gfp_t gfp)
2797{
2798 const struct cfg80211_bss_ies *ies;
2799 struct ieee80211_neighbor_ap_info ap_info;
2800 struct ieee80211_tbtt_info_ge_11 tbtt_info;
2801 u32 short_ssid;
2802 const struct element *elem;
2803 struct element *res;
2804
2805 /*
2806 * We only generate the RNR to permit ML lookups. For that we do not
2807 * need an entry for the corresponding transmitting BSS, lets just skip
2808 * it even though it would be easy to add.
2809 */
2810 if (!same_mld)
2811 return NULL;
2812
2813 /* We could use tx_data->ies if we change cfg80211_calc_short_ssid */
2814 rcu_read_lock();
2815 ies = rcu_dereference(source_bss->ies);
2816
2817 ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params);
2818 ap_info.tbtt_info_hdr =
2819 u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT,
2820 IEEE80211_AP_INFO_TBTT_HDR_TYPE) |
2821 u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT);
2822
2823 ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq);
2824
2825 /* operating class */
2826 elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
2827 ies->data, ies->len);
2828 if (elem && elem->datalen >= 1) {
2829 ap_info.op_class = elem->data[0];
2830 } else {
2831 struct cfg80211_chan_def chandef;
2832
2833 /* The AP is not providing us with anything to work with. So
2834 * make up a somewhat reasonable operating class, but don't
2835 * bother with it too much as no one will ever use the
2836 * information.
2837 */
2838 cfg80211_chandef_create(&chandef, source_bss->channel,
2839 NL80211_CHAN_NO_HT);
2840
2841 if (!ieee80211_chandef_to_operating_class(&chandef,
2842 &ap_info.op_class))
2843 goto out_unlock;
2844 }
2845
2846 /* Just set TBTT offset and PSD 20 to invalid/unknown */
2847 tbtt_info.tbtt_offset = 255;
2848 tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
2849
2850 memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN);
2851 if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid))
2852 goto out_unlock;
2853
2854 rcu_read_unlock();
2855
2856 tbtt_info.short_ssid = cpu_to_le32(short_ssid);
2857
2858 tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID;
2859
2860 if (is_mbssid) {
2861 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2862 tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID;
2863 }
2864
2865 tbtt_info.mld_params.mld_id = 0;
2866 tbtt_info.mld_params.params =
2867 le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) |
2868 le16_encode_bits(bss_change_count,
2869 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2870
2871 res = kzalloc(struct_size(res, data,
2872 sizeof(ap_info) + ap_info.tbtt_info_len),
2873 gfp);
2874 if (!res)
2875 return NULL;
2876
2877 /* Copy the data */
2878 res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT;
2879 res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len;
2880 memcpy(res->data, &ap_info, sizeof(ap_info));
2881 memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len);
2882
2883 return res;
2884
2885out_unlock:
2886 rcu_read_unlock();
2887 return NULL;
2888}
2889
2890static void
2891cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2892 struct cfg80211_inform_single_bss_data *tx_data,
2893 struct cfg80211_bss *source_bss,
2894 const struct element *elem,
2895 gfp_t gfp)
2896{
2897 struct cfg80211_inform_single_bss_data data = {
2898 .drv_data = tx_data->drv_data,
2899 .ftype = tx_data->ftype,
2900 .source_bss = source_bss,
2901 .bss_source = BSS_SOURCE_STA_PROFILE,
2902 };
2903 struct element *reporter_rnr = NULL;
2904 struct ieee80211_multi_link_elem *ml_elem;
2905 struct cfg80211_mle *mle;
2906 const struct element *ssid_elem;
2907 const u8 *ssid = NULL;
2908 size_t ssid_len = 0;
2909 u16 control;
2910 u8 ml_common_len;
2911 u8 *new_ie = NULL;
2912 struct cfg80211_bss *bss;
2913 u8 mld_id, reporter_link_id, bss_change_count;
2914 u16 seen_links = 0;
2915 u8 i;
2916
2917 if (!ieee80211_mle_type_ok(elem->data + 1,
2918 IEEE80211_ML_CONTROL_TYPE_BASIC,
2919 elem->datalen - 1))
2920 return;
2921
2922 ml_elem = (void *)(elem->data + 1);
2923 control = le16_to_cpu(ml_elem->control);
2924 ml_common_len = ml_elem->variable[0];
2925
2926 /* Must be present when transmitted by an AP (in a probe response) */
2927 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2928 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2929 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2930 return;
2931
2932 reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1);
2933 bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1);
2934
2935 /*
2936 * The MLD ID of the reporting AP is always zero. It is set if the AP
2937 * is part of an MBSSID set and will be non-zero for ML Elements
2938 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2939 * Draft P802.11be_D3.2, 35.3.4.2)
2940 */
2941 mld_id = ieee80211_mle_get_mld_id(elem->data + 1);
2942
2943 /* Fully defrag the ML element for sta information/profile iteration */
2944 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2945 if (!mle)
2946 return;
2947
2948 /* No point in doing anything if there is no per-STA profile */
2949 if (!mle->sta_prof[0])
2950 goto out;
2951
2952 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2953 if (!new_ie)
2954 goto out;
2955
2956 reporter_rnr = cfg80211_gen_reporter_rnr(source_bss,
2957 u16_get_bits(control,
2958 IEEE80211_MLC_BASIC_PRES_MLD_ID),
2959 mld_id == 0, reporter_link_id,
2960 bss_change_count,
2961 gfp);
2962
2963 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, tx_data->ie,
2964 tx_data->ielen);
2965 if (ssid_elem) {
2966 ssid = ssid_elem->data;
2967 ssid_len = ssid_elem->datalen;
2968 }
2969
2970 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2971 const struct ieee80211_neighbor_ap_info *ap_info;
2972 enum nl80211_band band;
2973 u32 freq;
2974 const u8 *profile;
2975 ssize_t profile_len;
2976 u8 param_ch_count;
2977 u8 link_id, use_for;
2978 bool non_tx;
2979
2980 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2981 mle->sta_prof_len[i]))
2982 continue;
2983
2984 control = le16_to_cpu(mle->sta_prof[i]->control);
2985
2986 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2987 continue;
2988
2989 link_id = u16_get_bits(control,
2990 IEEE80211_MLE_STA_CONTROL_LINK_ID);
2991 if (seen_links & BIT(link_id))
2992 break;
2993 seen_links |= BIT(link_id);
2994
2995 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2996 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2997 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2998 continue;
2999
3000 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
3001 data.beacon_interval =
3002 get_unaligned_le16(mle->sta_prof[i]->variable + 6);
3003 data.tsf = tx_data->tsf +
3004 get_unaligned_le64(mle->sta_prof[i]->variable + 8);
3005
3006 /* sta_info_len counts itself */
3007 profile = mle->sta_prof[i]->variable +
3008 mle->sta_prof[i]->sta_info_len - 1;
3009 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
3010 profile;
3011
3012 if (profile_len < 2)
3013 continue;
3014
3015 data.capability = get_unaligned_le16(profile);
3016 profile += 2;
3017 profile_len -= 2;
3018
3019 /* Find in RNR to look up channel information */
3020 use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie,
3021 tx_data->ielen,
3022 mld_id, link_id,
3023 &ap_info,
3024 ¶m_ch_count,
3025 &non_tx);
3026 if (!use_for)
3027 continue;
3028
3029 /*
3030 * As of 802.11be_D5.0, the specification does not give us any
3031 * way of discovering both the MaxBSSID and the Multiple-BSSID
3032 * Index. It does seem like the Multiple-BSSID Index element
3033 * may be provided, but section 9.4.2.45 explicitly forbids
3034 * including a Multiple-BSSID Element (in this case without any
3035 * subelements).
3036 * Without both pieces of information we cannot calculate the
3037 * reference BSSID, so simply ignore the BSS.
3038 */
3039 if (non_tx)
3040 continue;
3041
3042 /* We could sanity check the BSSID is included */
3043
3044 if (!ieee80211_operating_class_to_band(ap_info->op_class,
3045 &band))
3046 continue;
3047
3048 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
3049 data.channel = ieee80211_get_channel_khz(wiphy, freq);
3050
3051 /* Skip if RNR element specifies an unsupported channel */
3052 if (!data.channel)
3053 continue;
3054
3055 /* Skip if BSS entry generated from MBSSID or DIRECT source
3056 * frame data available already.
3057 */
3058 bss = cfg80211_get_bss(wiphy, data.channel, data.bssid, ssid,
3059 ssid_len, IEEE80211_BSS_TYPE_ANY,
3060 IEEE80211_PRIVACY_ANY);
3061 if (bss) {
3062 struct cfg80211_internal_bss *ibss = bss_from_pub(bss);
3063
3064 if (data.capability == bss->capability &&
3065 ibss->bss_source != BSS_SOURCE_STA_PROFILE) {
3066 cfg80211_put_bss(wiphy, bss);
3067 continue;
3068 }
3069 cfg80211_put_bss(wiphy, bss);
3070 }
3071
3072 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
3073 !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
3074 use_for = 0;
3075 data.cannot_use_reasons =
3076 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
3077 }
3078 data.use_for = use_for;
3079
3080 /* Generate new elements */
3081 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
3082 data.ie = new_ie;
3083 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
3084 profile, profile_len,
3085 new_ie,
3086 IEEE80211_MAX_DATA_LEN);
3087 if (!data.ielen)
3088 continue;
3089
3090 /* The generated elements do not contain:
3091 * - Basic ML element
3092 * - A TBTT entry in the RNR for the transmitting AP
3093 *
3094 * This information is needed both internally and in userspace
3095 * as such, we should append it here.
3096 */
3097 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
3098 IEEE80211_MAX_DATA_LEN)
3099 continue;
3100
3101 /* Copy the Basic Multi-Link element including the common
3102 * information, and then fix up the link ID and BSS param
3103 * change count.
3104 * Note that the ML element length has been verified and we
3105 * also checked that it contains the link ID.
3106 */
3107 new_ie[data.ielen++] = WLAN_EID_EXTENSION;
3108 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
3109 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
3110 memcpy(new_ie + data.ielen, ml_elem,
3111 sizeof(*ml_elem) + ml_common_len);
3112
3113 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
3114 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] =
3115 param_ch_count;
3116
3117 data.ielen += sizeof(*ml_elem) + ml_common_len;
3118
3119 if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) {
3120 if (data.ielen + sizeof(struct element) +
3121 reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN)
3122 continue;
3123
3124 memcpy(new_ie + data.ielen, reporter_rnr,
3125 sizeof(struct element) + reporter_rnr->datalen);
3126 data.ielen += sizeof(struct element) +
3127 reporter_rnr->datalen;
3128 }
3129
3130 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
3131 if (!bss)
3132 break;
3133 cfg80211_put_bss(wiphy, bss);
3134 }
3135
3136out:
3137 kfree(reporter_rnr);
3138 kfree(new_ie);
3139 kfree(mle);
3140}
3141
3142static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
3143 struct cfg80211_inform_single_bss_data *tx_data,
3144 struct cfg80211_bss *source_bss,
3145 gfp_t gfp)
3146{
3147 const struct element *elem;
3148
3149 if (!source_bss)
3150 return;
3151
3152 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
3153 return;
3154
3155 for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
3156 tx_data->ie, tx_data->ielen)
3157 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
3158 elem, gfp);
3159}
3160
3161struct cfg80211_bss *
3162cfg80211_inform_bss_data(struct wiphy *wiphy,
3163 struct cfg80211_inform_bss *data,
3164 enum cfg80211_bss_frame_type ftype,
3165 const u8 *bssid, u64 tsf, u16 capability,
3166 u16 beacon_interval, const u8 *ie, size_t ielen,
3167 gfp_t gfp)
3168{
3169 struct cfg80211_inform_single_bss_data inform_data = {
3170 .drv_data = data,
3171 .ftype = ftype,
3172 .tsf = tsf,
3173 .capability = capability,
3174 .beacon_interval = beacon_interval,
3175 .ie = ie,
3176 .ielen = ielen,
3177 .use_for = data->restrict_use ?
3178 data->use_for :
3179 NL80211_BSS_USE_FOR_ALL,
3180 .cannot_use_reasons = data->cannot_use_reasons,
3181 };
3182 struct cfg80211_bss *res;
3183
3184 memcpy(inform_data.bssid, bssid, ETH_ALEN);
3185
3186 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
3187 if (!res)
3188 return NULL;
3189
3190 /* don't do any further MBSSID/ML handling for S1G */
3191 if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON)
3192 return res;
3193
3194 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3195
3196 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3197
3198 return res;
3199}
3200EXPORT_SYMBOL(cfg80211_inform_bss_data);
3201
3202struct cfg80211_bss *
3203cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3204 struct cfg80211_inform_bss *data,
3205 struct ieee80211_mgmt *mgmt, size_t len,
3206 gfp_t gfp)
3207{
3208 size_t min_hdr_len;
3209 struct ieee80211_ext *ext = NULL;
3210 enum cfg80211_bss_frame_type ftype;
3211 u16 beacon_interval;
3212 const u8 *bssid;
3213 u16 capability;
3214 const u8 *ie;
3215 size_t ielen;
3216 u64 tsf;
3217
3218 if (WARN_ON(!mgmt))
3219 return NULL;
3220
3221 if (WARN_ON(!wiphy))
3222 return NULL;
3223
3224 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
3225 offsetof(struct ieee80211_mgmt, u.beacon.variable));
3226
3227 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
3228
3229 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
3230 ext = (void *) mgmt;
3231 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3232 min_hdr_len = offsetof(struct ieee80211_ext,
3233 u.s1g_short_beacon.variable);
3234 else
3235 min_hdr_len = offsetof(struct ieee80211_ext,
3236 u.s1g_beacon.variable);
3237 } else {
3238 /* same for beacons */
3239 min_hdr_len = offsetof(struct ieee80211_mgmt,
3240 u.probe_resp.variable);
3241 }
3242
3243 if (WARN_ON(len < min_hdr_len))
3244 return NULL;
3245
3246 ielen = len - min_hdr_len;
3247 ie = mgmt->u.probe_resp.variable;
3248 if (ext) {
3249 const struct ieee80211_s1g_bcn_compat_ie *compat;
3250 const struct element *elem;
3251
3252 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3253 ie = ext->u.s1g_short_beacon.variable;
3254 else
3255 ie = ext->u.s1g_beacon.variable;
3256
3257 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen);
3258 if (!elem)
3259 return NULL;
3260 if (elem->datalen < sizeof(*compat))
3261 return NULL;
3262 compat = (void *)elem->data;
3263 bssid = ext->u.s1g_beacon.sa;
3264 capability = le16_to_cpu(compat->compat_info);
3265 beacon_interval = le16_to_cpu(compat->beacon_int);
3266 } else {
3267 bssid = mgmt->bssid;
3268 beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3269 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3270 }
3271
3272 tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3273
3274 if (ieee80211_is_probe_resp(mgmt->frame_control))
3275 ftype = CFG80211_BSS_FTYPE_PRESP;
3276 else if (ext)
3277 ftype = CFG80211_BSS_FTYPE_S1G_BEACON;
3278 else
3279 ftype = CFG80211_BSS_FTYPE_BEACON;
3280
3281 return cfg80211_inform_bss_data(wiphy, data, ftype,
3282 bssid, tsf, capability,
3283 beacon_interval, ie, ielen,
3284 gfp);
3285}
3286EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3287
3288void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3289{
3290 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3291
3292 if (!pub)
3293 return;
3294
3295 spin_lock_bh(&rdev->bss_lock);
3296 bss_ref_get(rdev, bss_from_pub(pub));
3297 spin_unlock_bh(&rdev->bss_lock);
3298}
3299EXPORT_SYMBOL(cfg80211_ref_bss);
3300
3301void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3302{
3303 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3304
3305 if (!pub)
3306 return;
3307
3308 spin_lock_bh(&rdev->bss_lock);
3309 bss_ref_put(rdev, bss_from_pub(pub));
3310 spin_unlock_bh(&rdev->bss_lock);
3311}
3312EXPORT_SYMBOL(cfg80211_put_bss);
3313
3314void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3315{
3316 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3317 struct cfg80211_internal_bss *bss, *tmp1;
3318 struct cfg80211_bss *nontrans_bss, *tmp;
3319
3320 if (WARN_ON(!pub))
3321 return;
3322
3323 bss = bss_from_pub(pub);
3324
3325 spin_lock_bh(&rdev->bss_lock);
3326 if (list_empty(&bss->list))
3327 goto out;
3328
3329 list_for_each_entry_safe(nontrans_bss, tmp,
3330 &pub->nontrans_list,
3331 nontrans_list) {
3332 tmp1 = bss_from_pub(nontrans_bss);
3333 if (__cfg80211_unlink_bss(rdev, tmp1))
3334 rdev->bss_generation++;
3335 }
3336
3337 if (__cfg80211_unlink_bss(rdev, bss))
3338 rdev->bss_generation++;
3339out:
3340 spin_unlock_bh(&rdev->bss_lock);
3341}
3342EXPORT_SYMBOL(cfg80211_unlink_bss);
3343
3344void cfg80211_bss_iter(struct wiphy *wiphy,
3345 struct cfg80211_chan_def *chandef,
3346 void (*iter)(struct wiphy *wiphy,
3347 struct cfg80211_bss *bss,
3348 void *data),
3349 void *iter_data)
3350{
3351 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3352 struct cfg80211_internal_bss *bss;
3353
3354 spin_lock_bh(&rdev->bss_lock);
3355
3356 list_for_each_entry(bss, &rdev->bss_list, list) {
3357 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3358 false))
3359 iter(wiphy, &bss->pub, iter_data);
3360 }
3361
3362 spin_unlock_bh(&rdev->bss_lock);
3363}
3364EXPORT_SYMBOL(cfg80211_bss_iter);
3365
3366void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3367 unsigned int link_id,
3368 struct ieee80211_channel *chan)
3369{
3370 struct wiphy *wiphy = wdev->wiphy;
3371 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3372 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3373 struct cfg80211_internal_bss *new = NULL;
3374 struct cfg80211_internal_bss *bss;
3375 struct cfg80211_bss *nontrans_bss;
3376 struct cfg80211_bss *tmp;
3377
3378 spin_lock_bh(&rdev->bss_lock);
3379
3380 /*
3381 * Some APs use CSA also for bandwidth changes, i.e., without actually
3382 * changing the control channel, so no need to update in such a case.
3383 */
3384 if (cbss->pub.channel == chan)
3385 goto done;
3386
3387 /* use transmitting bss */
3388 if (cbss->pub.transmitted_bss)
3389 cbss = bss_from_pub(cbss->pub.transmitted_bss);
3390
3391 cbss->pub.channel = chan;
3392
3393 list_for_each_entry(bss, &rdev->bss_list, list) {
3394 if (!cfg80211_bss_type_match(bss->pub.capability,
3395 bss->pub.channel->band,
3396 wdev->conn_bss_type))
3397 continue;
3398
3399 if (bss == cbss)
3400 continue;
3401
3402 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3403 new = bss;
3404 break;
3405 }
3406 }
3407
3408 if (new) {
3409 /* to save time, update IEs for transmitting bss only */
3410 cfg80211_update_known_bss(rdev, cbss, new, false);
3411 new->pub.proberesp_ies = NULL;
3412 new->pub.beacon_ies = NULL;
3413
3414 list_for_each_entry_safe(nontrans_bss, tmp,
3415 &new->pub.nontrans_list,
3416 nontrans_list) {
3417 bss = bss_from_pub(nontrans_bss);
3418 if (__cfg80211_unlink_bss(rdev, bss))
3419 rdev->bss_generation++;
3420 }
3421
3422 WARN_ON(atomic_read(&new->hold));
3423 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3424 rdev->bss_generation++;
3425 }
3426 cfg80211_rehash_bss(rdev, cbss);
3427
3428 list_for_each_entry_safe(nontrans_bss, tmp,
3429 &cbss->pub.nontrans_list,
3430 nontrans_list) {
3431 bss = bss_from_pub(nontrans_bss);
3432 bss->pub.channel = chan;
3433 cfg80211_rehash_bss(rdev, bss);
3434 }
3435
3436done:
3437 spin_unlock_bh(&rdev->bss_lock);
3438}
3439
3440#ifdef CONFIG_CFG80211_WEXT
3441static struct cfg80211_registered_device *
3442cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3443{
3444 struct cfg80211_registered_device *rdev;
3445 struct net_device *dev;
3446
3447 ASSERT_RTNL();
3448
3449 dev = dev_get_by_index(net, ifindex);
3450 if (!dev)
3451 return ERR_PTR(-ENODEV);
3452 if (dev->ieee80211_ptr)
3453 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3454 else
3455 rdev = ERR_PTR(-ENODEV);
3456 dev_put(dev);
3457 return rdev;
3458}
3459
3460int cfg80211_wext_siwscan(struct net_device *dev,
3461 struct iw_request_info *info,
3462 union iwreq_data *wrqu, char *extra)
3463{
3464 struct cfg80211_registered_device *rdev;
3465 struct wiphy *wiphy;
3466 struct iw_scan_req *wreq = NULL;
3467 struct cfg80211_scan_request *creq;
3468 int i, err, n_channels = 0;
3469 enum nl80211_band band;
3470
3471 if (!netif_running(dev))
3472 return -ENETDOWN;
3473
3474 if (wrqu->data.length == sizeof(struct iw_scan_req))
3475 wreq = (struct iw_scan_req *)extra;
3476
3477 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3478
3479 if (IS_ERR(rdev))
3480 return PTR_ERR(rdev);
3481
3482 if (rdev->scan_req || rdev->scan_msg)
3483 return -EBUSY;
3484
3485 wiphy = &rdev->wiphy;
3486
3487 /* Determine number of channels, needed to allocate creq */
3488 if (wreq && wreq->num_channels) {
3489 /* Passed from userspace so should be checked */
3490 if (unlikely(wreq->num_channels > IW_MAX_FREQUENCIES))
3491 return -EINVAL;
3492 n_channels = wreq->num_channels;
3493 } else {
3494 n_channels = ieee80211_get_num_supported_channels(wiphy);
3495 }
3496
3497 creq = kzalloc(struct_size(creq, channels, n_channels) +
3498 sizeof(struct cfg80211_ssid),
3499 GFP_ATOMIC);
3500 if (!creq)
3501 return -ENOMEM;
3502
3503 creq->wiphy = wiphy;
3504 creq->wdev = dev->ieee80211_ptr;
3505 /* SSIDs come after channels */
3506 creq->ssids = (void *)creq + struct_size(creq, channels, n_channels);
3507 creq->n_channels = n_channels;
3508 creq->n_ssids = 1;
3509 creq->scan_start = jiffies;
3510
3511 /* translate "Scan on frequencies" request */
3512 i = 0;
3513 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3514 int j;
3515
3516 if (!wiphy->bands[band])
3517 continue;
3518
3519 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3520 struct ieee80211_channel *chan;
3521
3522 /* ignore disabled channels */
3523 chan = &wiphy->bands[band]->channels[j];
3524 if (chan->flags & IEEE80211_CHAN_DISABLED ||
3525 !cfg80211_wdev_channel_allowed(creq->wdev, chan))
3526 continue;
3527
3528 /* If we have a wireless request structure and the
3529 * wireless request specifies frequencies, then search
3530 * for the matching hardware channel.
3531 */
3532 if (wreq && wreq->num_channels) {
3533 int k;
3534 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3535 for (k = 0; k < wreq->num_channels; k++) {
3536 struct iw_freq *freq =
3537 &wreq->channel_list[k];
3538 int wext_freq =
3539 cfg80211_wext_freq(freq);
3540
3541 if (wext_freq == wiphy_freq)
3542 goto wext_freq_found;
3543 }
3544 goto wext_freq_not_found;
3545 }
3546
3547 wext_freq_found:
3548 creq->channels[i] = &wiphy->bands[band]->channels[j];
3549 i++;
3550 wext_freq_not_found: ;
3551 }
3552 }
3553 /* No channels found? */
3554 if (!i) {
3555 err = -EINVAL;
3556 goto out;
3557 }
3558
3559 /* Set real number of channels specified in creq->channels[] */
3560 creq->n_channels = i;
3561
3562 /* translate "Scan for SSID" request */
3563 if (wreq) {
3564 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3565 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3566 err = -EINVAL;
3567 goto out;
3568 }
3569 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3570 creq->ssids[0].ssid_len = wreq->essid_len;
3571 }
3572 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) {
3573 creq->ssids = NULL;
3574 creq->n_ssids = 0;
3575 }
3576 }
3577
3578 for (i = 0; i < NUM_NL80211_BANDS; i++)
3579 if (wiphy->bands[i])
3580 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3581
3582 eth_broadcast_addr(creq->bssid);
3583
3584 wiphy_lock(&rdev->wiphy);
3585
3586 rdev->scan_req = creq;
3587 err = rdev_scan(rdev, creq);
3588 if (err) {
3589 rdev->scan_req = NULL;
3590 /* creq will be freed below */
3591 } else {
3592 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3593 /* creq now owned by driver */
3594 creq = NULL;
3595 dev_hold(dev);
3596 }
3597 wiphy_unlock(&rdev->wiphy);
3598 out:
3599 kfree(creq);
3600 return err;
3601}
3602
3603static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3604 const struct cfg80211_bss_ies *ies,
3605 char *current_ev, char *end_buf)
3606{
3607 const u8 *pos, *end, *next;
3608 struct iw_event iwe;
3609
3610 if (!ies)
3611 return current_ev;
3612
3613 /*
3614 * If needed, fragment the IEs buffer (at IE boundaries) into short
3615 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3616 */
3617 pos = ies->data;
3618 end = pos + ies->len;
3619
3620 while (end - pos > IW_GENERIC_IE_MAX) {
3621 next = pos + 2 + pos[1];
3622 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3623 next = next + 2 + next[1];
3624
3625 memset(&iwe, 0, sizeof(iwe));
3626 iwe.cmd = IWEVGENIE;
3627 iwe.u.data.length = next - pos;
3628 current_ev = iwe_stream_add_point_check(info, current_ev,
3629 end_buf, &iwe,
3630 (void *)pos);
3631 if (IS_ERR(current_ev))
3632 return current_ev;
3633 pos = next;
3634 }
3635
3636 if (end > pos) {
3637 memset(&iwe, 0, sizeof(iwe));
3638 iwe.cmd = IWEVGENIE;
3639 iwe.u.data.length = end - pos;
3640 current_ev = iwe_stream_add_point_check(info, current_ev,
3641 end_buf, &iwe,
3642 (void *)pos);
3643 if (IS_ERR(current_ev))
3644 return current_ev;
3645 }
3646
3647 return current_ev;
3648}
3649
3650static char *
3651ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3652 struct cfg80211_internal_bss *bss, char *current_ev,
3653 char *end_buf)
3654{
3655 const struct cfg80211_bss_ies *ies;
3656 struct iw_event iwe;
3657 const u8 *ie;
3658 u8 buf[50];
3659 u8 *cfg, *p, *tmp;
3660 int rem, i, sig;
3661 bool ismesh = false;
3662
3663 memset(&iwe, 0, sizeof(iwe));
3664 iwe.cmd = SIOCGIWAP;
3665 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3666 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3667 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3668 IW_EV_ADDR_LEN);
3669 if (IS_ERR(current_ev))
3670 return current_ev;
3671
3672 memset(&iwe, 0, sizeof(iwe));
3673 iwe.cmd = SIOCGIWFREQ;
3674 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3675 iwe.u.freq.e = 0;
3676 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3677 IW_EV_FREQ_LEN);
3678 if (IS_ERR(current_ev))
3679 return current_ev;
3680
3681 memset(&iwe, 0, sizeof(iwe));
3682 iwe.cmd = SIOCGIWFREQ;
3683 iwe.u.freq.m = bss->pub.channel->center_freq;
3684 iwe.u.freq.e = 6;
3685 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3686 IW_EV_FREQ_LEN);
3687 if (IS_ERR(current_ev))
3688 return current_ev;
3689
3690 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3691 memset(&iwe, 0, sizeof(iwe));
3692 iwe.cmd = IWEVQUAL;
3693 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3694 IW_QUAL_NOISE_INVALID |
3695 IW_QUAL_QUAL_UPDATED;
3696 switch (wiphy->signal_type) {
3697 case CFG80211_SIGNAL_TYPE_MBM:
3698 sig = bss->pub.signal / 100;
3699 iwe.u.qual.level = sig;
3700 iwe.u.qual.updated |= IW_QUAL_DBM;
3701 if (sig < -110) /* rather bad */
3702 sig = -110;
3703 else if (sig > -40) /* perfect */
3704 sig = -40;
3705 /* will give a range of 0 .. 70 */
3706 iwe.u.qual.qual = sig + 110;
3707 break;
3708 case CFG80211_SIGNAL_TYPE_UNSPEC:
3709 iwe.u.qual.level = bss->pub.signal;
3710 /* will give range 0 .. 100 */
3711 iwe.u.qual.qual = bss->pub.signal;
3712 break;
3713 default:
3714 /* not reached */
3715 break;
3716 }
3717 current_ev = iwe_stream_add_event_check(info, current_ev,
3718 end_buf, &iwe,
3719 IW_EV_QUAL_LEN);
3720 if (IS_ERR(current_ev))
3721 return current_ev;
3722 }
3723
3724 memset(&iwe, 0, sizeof(iwe));
3725 iwe.cmd = SIOCGIWENCODE;
3726 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3727 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3728 else
3729 iwe.u.data.flags = IW_ENCODE_DISABLED;
3730 iwe.u.data.length = 0;
3731 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3732 &iwe, "");
3733 if (IS_ERR(current_ev))
3734 return current_ev;
3735
3736 rcu_read_lock();
3737 ies = rcu_dereference(bss->pub.ies);
3738 rem = ies->len;
3739 ie = ies->data;
3740
3741 while (rem >= 2) {
3742 /* invalid data */
3743 if (ie[1] > rem - 2)
3744 break;
3745
3746 switch (ie[0]) {
3747 case WLAN_EID_SSID:
3748 memset(&iwe, 0, sizeof(iwe));
3749 iwe.cmd = SIOCGIWESSID;
3750 iwe.u.data.length = ie[1];
3751 iwe.u.data.flags = 1;
3752 current_ev = iwe_stream_add_point_check(info,
3753 current_ev,
3754 end_buf, &iwe,
3755 (u8 *)ie + 2);
3756 if (IS_ERR(current_ev))
3757 goto unlock;
3758 break;
3759 case WLAN_EID_MESH_ID:
3760 memset(&iwe, 0, sizeof(iwe));
3761 iwe.cmd = SIOCGIWESSID;
3762 iwe.u.data.length = ie[1];
3763 iwe.u.data.flags = 1;
3764 current_ev = iwe_stream_add_point_check(info,
3765 current_ev,
3766 end_buf, &iwe,
3767 (u8 *)ie + 2);
3768 if (IS_ERR(current_ev))
3769 goto unlock;
3770 break;
3771 case WLAN_EID_MESH_CONFIG:
3772 ismesh = true;
3773 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3774 break;
3775 cfg = (u8 *)ie + 2;
3776 memset(&iwe, 0, sizeof(iwe));
3777 iwe.cmd = IWEVCUSTOM;
3778 iwe.u.data.length = sprintf(buf,
3779 "Mesh Network Path Selection Protocol ID: 0x%02X",
3780 cfg[0]);
3781 current_ev = iwe_stream_add_point_check(info,
3782 current_ev,
3783 end_buf,
3784 &iwe, buf);
3785 if (IS_ERR(current_ev))
3786 goto unlock;
3787 iwe.u.data.length = sprintf(buf,
3788 "Path Selection Metric ID: 0x%02X",
3789 cfg[1]);
3790 current_ev = iwe_stream_add_point_check(info,
3791 current_ev,
3792 end_buf,
3793 &iwe, buf);
3794 if (IS_ERR(current_ev))
3795 goto unlock;
3796 iwe.u.data.length = sprintf(buf,
3797 "Congestion Control Mode ID: 0x%02X",
3798 cfg[2]);
3799 current_ev = iwe_stream_add_point_check(info,
3800 current_ev,
3801 end_buf,
3802 &iwe, buf);
3803 if (IS_ERR(current_ev))
3804 goto unlock;
3805 iwe.u.data.length = sprintf(buf,
3806 "Synchronization ID: 0x%02X",
3807 cfg[3]);
3808 current_ev = iwe_stream_add_point_check(info,
3809 current_ev,
3810 end_buf,
3811 &iwe, buf);
3812 if (IS_ERR(current_ev))
3813 goto unlock;
3814 iwe.u.data.length = sprintf(buf,
3815 "Authentication ID: 0x%02X",
3816 cfg[4]);
3817 current_ev = iwe_stream_add_point_check(info,
3818 current_ev,
3819 end_buf,
3820 &iwe, buf);
3821 if (IS_ERR(current_ev))
3822 goto unlock;
3823 iwe.u.data.length = sprintf(buf,
3824 "Formation Info: 0x%02X",
3825 cfg[5]);
3826 current_ev = iwe_stream_add_point_check(info,
3827 current_ev,
3828 end_buf,
3829 &iwe, buf);
3830 if (IS_ERR(current_ev))
3831 goto unlock;
3832 iwe.u.data.length = sprintf(buf,
3833 "Capabilities: 0x%02X",
3834 cfg[6]);
3835 current_ev = iwe_stream_add_point_check(info,
3836 current_ev,
3837 end_buf,
3838 &iwe, buf);
3839 if (IS_ERR(current_ev))
3840 goto unlock;
3841 break;
3842 case WLAN_EID_SUPP_RATES:
3843 case WLAN_EID_EXT_SUPP_RATES:
3844 /* display all supported rates in readable format */
3845 p = current_ev + iwe_stream_lcp_len(info);
3846
3847 memset(&iwe, 0, sizeof(iwe));
3848 iwe.cmd = SIOCGIWRATE;
3849 /* Those two flags are ignored... */
3850 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3851
3852 for (i = 0; i < ie[1]; i++) {
3853 iwe.u.bitrate.value =
3854 ((ie[i + 2] & 0x7f) * 500000);
3855 tmp = p;
3856 p = iwe_stream_add_value(info, current_ev, p,
3857 end_buf, &iwe,
3858 IW_EV_PARAM_LEN);
3859 if (p == tmp) {
3860 current_ev = ERR_PTR(-E2BIG);
3861 goto unlock;
3862 }
3863 }
3864 current_ev = p;
3865 break;
3866 }
3867 rem -= ie[1] + 2;
3868 ie += ie[1] + 2;
3869 }
3870
3871 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3872 ismesh) {
3873 memset(&iwe, 0, sizeof(iwe));
3874 iwe.cmd = SIOCGIWMODE;
3875 if (ismesh)
3876 iwe.u.mode = IW_MODE_MESH;
3877 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3878 iwe.u.mode = IW_MODE_MASTER;
3879 else
3880 iwe.u.mode = IW_MODE_ADHOC;
3881 current_ev = iwe_stream_add_event_check(info, current_ev,
3882 end_buf, &iwe,
3883 IW_EV_UINT_LEN);
3884 if (IS_ERR(current_ev))
3885 goto unlock;
3886 }
3887
3888 memset(&iwe, 0, sizeof(iwe));
3889 iwe.cmd = IWEVCUSTOM;
3890 iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3891 (unsigned long long)(ies->tsf));
3892 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3893 &iwe, buf);
3894 if (IS_ERR(current_ev))
3895 goto unlock;
3896 memset(&iwe, 0, sizeof(iwe));
3897 iwe.cmd = IWEVCUSTOM;
3898 iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3899 elapsed_jiffies_msecs(bss->ts));
3900 current_ev = iwe_stream_add_point_check(info, current_ev,
3901 end_buf, &iwe, buf);
3902 if (IS_ERR(current_ev))
3903 goto unlock;
3904
3905 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3906
3907 unlock:
3908 rcu_read_unlock();
3909 return current_ev;
3910}
3911
3912
3913static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3914 struct iw_request_info *info,
3915 char *buf, size_t len)
3916{
3917 char *current_ev = buf;
3918 char *end_buf = buf + len;
3919 struct cfg80211_internal_bss *bss;
3920 int err = 0;
3921
3922 spin_lock_bh(&rdev->bss_lock);
3923 cfg80211_bss_expire(rdev);
3924
3925 list_for_each_entry(bss, &rdev->bss_list, list) {
3926 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3927 err = -E2BIG;
3928 break;
3929 }
3930 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3931 current_ev, end_buf);
3932 if (IS_ERR(current_ev)) {
3933 err = PTR_ERR(current_ev);
3934 break;
3935 }
3936 }
3937 spin_unlock_bh(&rdev->bss_lock);
3938
3939 if (err)
3940 return err;
3941 return current_ev - buf;
3942}
3943
3944
3945int cfg80211_wext_giwscan(struct net_device *dev,
3946 struct iw_request_info *info,
3947 union iwreq_data *wrqu, char *extra)
3948{
3949 struct iw_point *data = &wrqu->data;
3950 struct cfg80211_registered_device *rdev;
3951 int res;
3952
3953 if (!netif_running(dev))
3954 return -ENETDOWN;
3955
3956 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3957
3958 if (IS_ERR(rdev))
3959 return PTR_ERR(rdev);
3960
3961 if (rdev->scan_req || rdev->scan_msg)
3962 return -EAGAIN;
3963
3964 res = ieee80211_scan_results(rdev, info, extra, data->length);
3965 data->length = 0;
3966 if (res >= 0) {
3967 data->length = res;
3968 res = 0;
3969 }
3970
3971 return res;
3972}
3973#endif