Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/* bit search implementation
  3 *
  4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
  5 * Written by David Howells (dhowells@redhat.com)
  6 *
  7 * Copyright (C) 2008 IBM Corporation
  8 * 'find_last_bit' is written by Rusty Russell <rusty@rustcorp.com.au>
  9 * (Inspired by David Howell's find_next_bit implementation)
 10 *
 11 * Rewritten by Yury Norov <yury.norov@gmail.com> to decrease
 12 * size and improve performance, 2015.
 13 */
 14
 15#include <linux/bitops.h>
 16#include <linux/bitmap.h>
 17#include <linux/export.h>
 18#include <linux/math.h>
 19#include <linux/minmax.h>
 20#include <linux/swab.h>
 21
 22/*
 23 * Common helper for find_bit() function family
 24 * @FETCH: The expression that fetches and pre-processes each word of bitmap(s)
 25 * @MUNGE: The expression that post-processes a word containing found bit (may be empty)
 26 * @size: The bitmap size in bits
 27 */
 28#define FIND_FIRST_BIT(FETCH, MUNGE, size)					\
 29({										\
 30	unsigned long idx, val, sz = (size);					\
 31										\
 32	for (idx = 0; idx * BITS_PER_LONG < sz; idx++) {			\
 33		val = (FETCH);							\
 34		if (val) {							\
 35			sz = min(idx * BITS_PER_LONG + __ffs(MUNGE(val)), sz);	\
 36			break;							\
 37		}								\
 38	}									\
 39										\
 40	sz;									\
 41})
 42
 43/*
 44 * Common helper for find_next_bit() function family
 45 * @FETCH: The expression that fetches and pre-processes each word of bitmap(s)
 46 * @MUNGE: The expression that post-processes a word containing found bit (may be empty)
 47 * @size: The bitmap size in bits
 48 * @start: The bitnumber to start searching at
 49 */
 50#define FIND_NEXT_BIT(FETCH, MUNGE, size, start)				\
 51({										\
 52	unsigned long mask, idx, tmp, sz = (size), __start = (start);		\
 53										\
 54	if (unlikely(__start >= sz))						\
 55		goto out;							\
 56										\
 57	mask = MUNGE(BITMAP_FIRST_WORD_MASK(__start));				\
 58	idx = __start / BITS_PER_LONG;						\
 59										\
 60	for (tmp = (FETCH) & mask; !tmp; tmp = (FETCH)) {			\
 61		if ((idx + 1) * BITS_PER_LONG >= sz)				\
 62			goto out;						\
 63		idx++;								\
 64	}									\
 65										\
 66	sz = min(idx * BITS_PER_LONG + __ffs(MUNGE(tmp)), sz);			\
 67out:										\
 68	sz;									\
 69})
 70
 71#define FIND_NTH_BIT(FETCH, size, num)						\
 72({										\
 73	unsigned long sz = (size), nr = (num), idx, w, tmp;			\
 74										\
 75	for (idx = 0; (idx + 1) * BITS_PER_LONG <= sz; idx++) {			\
 76		if (idx * BITS_PER_LONG + nr >= sz)				\
 77			goto out;						\
 78										\
 79		tmp = (FETCH);							\
 80		w = hweight_long(tmp);						\
 81		if (w > nr)							\
 82			goto found;						\
 83										\
 84		nr -= w;							\
 85	}									\
 86										\
 87	if (sz % BITS_PER_LONG)							\
 88		tmp = (FETCH) & BITMAP_LAST_WORD_MASK(sz);			\
 89found:										\
 90	sz = min(idx * BITS_PER_LONG + fns(tmp, nr), sz);			\
 91out:										\
 92	sz;									\
 93})
 94
 95#ifndef find_first_bit
 96/*
 97 * Find the first set bit in a memory region.
 
 
 
 
 98 */
 99unsigned long _find_first_bit(const unsigned long *addr, unsigned long size)
 
 
100{
101	return FIND_FIRST_BIT(addr[idx], /* nop */, size);
102}
103EXPORT_SYMBOL(_find_first_bit);
104#endif
105
106#ifndef find_first_and_bit
107/*
108 * Find the first set bit in two memory regions.
109 */
110unsigned long _find_first_and_bit(const unsigned long *addr1,
111				  const unsigned long *addr2,
112				  unsigned long size)
113{
114	return FIND_FIRST_BIT(addr1[idx] & addr2[idx], /* nop */, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115}
116EXPORT_SYMBOL(_find_first_and_bit);
117#endif
118
119#ifndef find_first_zero_bit
120/*
121 * Find the first cleared bit in a memory region.
122 */
123unsigned long _find_first_zero_bit(const unsigned long *addr, unsigned long size)
 
124{
125	return FIND_FIRST_BIT(~addr[idx], /* nop */, size);
126}
127EXPORT_SYMBOL(_find_first_zero_bit);
128#endif
129
130#ifndef find_next_bit
131unsigned long _find_next_bit(const unsigned long *addr, unsigned long nbits, unsigned long start)
 
132{
133	return FIND_NEXT_BIT(addr[idx], /* nop */, nbits, start);
134}
135EXPORT_SYMBOL(_find_next_bit);
136#endif
137
138unsigned long __find_nth_bit(const unsigned long *addr, unsigned long size, unsigned long n)
 
 
 
139{
140	return FIND_NTH_BIT(addr[idx], size, n);
141}
142EXPORT_SYMBOL(__find_nth_bit);
143
144unsigned long __find_nth_and_bit(const unsigned long *addr1, const unsigned long *addr2,
145				 unsigned long size, unsigned long n)
146{
147	return FIND_NTH_BIT(addr1[idx] & addr2[idx], size, n);
148}
149EXPORT_SYMBOL(__find_nth_and_bit);
150
151unsigned long __find_nth_andnot_bit(const unsigned long *addr1, const unsigned long *addr2,
152				 unsigned long size, unsigned long n)
 
 
 
153{
154	return FIND_NTH_BIT(addr1[idx] & ~addr2[idx], size, n);
155}
156EXPORT_SYMBOL(__find_nth_andnot_bit);
157
158unsigned long __find_nth_and_andnot_bit(const unsigned long *addr1,
159					const unsigned long *addr2,
160					const unsigned long *addr3,
161					unsigned long size, unsigned long n)
162{
163	return FIND_NTH_BIT(addr1[idx] & addr2[idx] & ~addr3[idx], size, n);
164}
165EXPORT_SYMBOL(__find_nth_and_andnot_bit);
166
167#ifndef find_next_and_bit
168unsigned long _find_next_and_bit(const unsigned long *addr1, const unsigned long *addr2,
169					unsigned long nbits, unsigned long start)
170{
171	return FIND_NEXT_BIT(addr1[idx] & addr2[idx], /* nop */, nbits, start);
172}
173EXPORT_SYMBOL(_find_next_and_bit);
174#endif
175
176#ifndef find_next_andnot_bit
177unsigned long _find_next_andnot_bit(const unsigned long *addr1, const unsigned long *addr2,
178					unsigned long nbits, unsigned long start)
 
 
179{
180	return FIND_NEXT_BIT(addr1[idx] & ~addr2[idx], /* nop */, nbits, start);
181}
182EXPORT_SYMBOL(_find_next_andnot_bit);
183#endif
184
185#ifndef find_next_or_bit
186unsigned long _find_next_or_bit(const unsigned long *addr1, const unsigned long *addr2,
187					unsigned long nbits, unsigned long start)
188{
189	return FIND_NEXT_BIT(addr1[idx] | addr2[idx], /* nop */, nbits, start);
190}
191EXPORT_SYMBOL(_find_next_or_bit);
192#endif
193
194#ifndef find_next_zero_bit
195unsigned long _find_next_zero_bit(const unsigned long *addr, unsigned long nbits,
196					 unsigned long start)
197{
198	return FIND_NEXT_BIT(~addr[idx], /* nop */, nbits, start);
199}
200EXPORT_SYMBOL(_find_next_zero_bit);
201#endif
202
203#ifndef find_last_bit
204unsigned long _find_last_bit(const unsigned long *addr, unsigned long size)
205{
206	if (size) {
207		unsigned long val = BITMAP_LAST_WORD_MASK(size);
208		unsigned long idx = (size-1) / BITS_PER_LONG;
209
210		do {
211			val &= addr[idx];
212			if (val)
213				return idx * BITS_PER_LONG + __fls(val);
214
215			val = ~0ul;
216		} while (idx--);
217	}
218	return size;
219}
220EXPORT_SYMBOL(_find_last_bit);
221#endif
222
223unsigned long find_next_clump8(unsigned long *clump, const unsigned long *addr,
224			       unsigned long size, unsigned long offset)
225{
226	offset = find_next_bit(addr, size, offset);
227	if (offset == size)
228		return size;
229
230	offset = round_down(offset, 8);
231	*clump = bitmap_get_value8(addr, offset);
232
233	return offset;
234}
235EXPORT_SYMBOL(find_next_clump8);
236
237#ifdef __BIG_ENDIAN
238
239#ifndef find_first_zero_bit_le
240/*
241 * Find the first cleared bit in an LE memory region.
242 */
243unsigned long _find_first_zero_bit_le(const unsigned long *addr, unsigned long size)
244{
245	return FIND_FIRST_BIT(~addr[idx], swab, size);
 
 
 
 
 
 
246}
247EXPORT_SYMBOL(_find_first_zero_bit_le);
248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
249#endif
250
251#ifndef find_next_zero_bit_le
252unsigned long _find_next_zero_bit_le(const unsigned long *addr,
253					unsigned long size, unsigned long offset)
254{
255	return FIND_NEXT_BIT(~addr[idx], swab, size, offset);
256}
257EXPORT_SYMBOL(_find_next_zero_bit_le);
258#endif
259
260#ifndef find_next_bit_le
261unsigned long _find_next_bit_le(const unsigned long *addr,
262				unsigned long size, unsigned long offset)
263{
264	return FIND_NEXT_BIT(addr[idx], swab, size, offset);
265}
266EXPORT_SYMBOL(_find_next_bit_le);
267
268#endif
269
270#endif /* __BIG_ENDIAN */
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/* bit search implementation
  3 *
  4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
  5 * Written by David Howells (dhowells@redhat.com)
  6 *
  7 * Copyright (C) 2008 IBM Corporation
  8 * 'find_last_bit' is written by Rusty Russell <rusty@rustcorp.com.au>
  9 * (Inspired by David Howell's find_next_bit implementation)
 10 *
 11 * Rewritten by Yury Norov <yury.norov@gmail.com> to decrease
 12 * size and improve performance, 2015.
 13 */
 14
 15#include <linux/bitops.h>
 16#include <linux/bitmap.h>
 17#include <linux/export.h>
 18#include <linux/kernel.h>
 
 
 19
 20#if !defined(find_next_bit) || !defined(find_next_zero_bit) || \
 21		!defined(find_next_and_bit)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 22
 
 23/*
 24 * This is a common helper function for find_next_bit, find_next_zero_bit, and
 25 * find_next_and_bit. The differences are:
 26 *  - The "invert" argument, which is XORed with each fetched word before
 27 *    searching it for one bits.
 28 *  - The optional "addr2", which is anded with "addr1" if present.
 29 */
 30static inline unsigned long _find_next_bit(const unsigned long *addr1,
 31		const unsigned long *addr2, unsigned long nbits,
 32		unsigned long start, unsigned long invert)
 33{
 34	unsigned long tmp;
 
 
 
 35
 36	if (unlikely(start >= nbits))
 37		return nbits;
 38
 39	tmp = addr1[start / BITS_PER_LONG];
 40	if (addr2)
 41		tmp &= addr2[start / BITS_PER_LONG];
 42	tmp ^= invert;
 43
 44	/* Handle 1st word. */
 45	tmp &= BITMAP_FIRST_WORD_MASK(start);
 46	start = round_down(start, BITS_PER_LONG);
 47
 48	while (!tmp) {
 49		start += BITS_PER_LONG;
 50		if (start >= nbits)
 51			return nbits;
 52
 53		tmp = addr1[start / BITS_PER_LONG];
 54		if (addr2)
 55			tmp &= addr2[start / BITS_PER_LONG];
 56		tmp ^= invert;
 57	}
 58
 59	return min(start + __ffs(tmp), nbits);
 60}
 
 61#endif
 62
 63#ifndef find_next_bit
 64/*
 65 * Find the next set bit in a memory region.
 66 */
 67unsigned long find_next_bit(const unsigned long *addr, unsigned long size,
 68			    unsigned long offset)
 69{
 70	return _find_next_bit(addr, NULL, size, offset, 0UL);
 71}
 72EXPORT_SYMBOL(find_next_bit);
 73#endif
 74
 75#ifndef find_next_zero_bit
 76unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size,
 77				 unsigned long offset)
 78{
 79	return _find_next_bit(addr, NULL, size, offset, ~0UL);
 80}
 81EXPORT_SYMBOL(find_next_zero_bit);
 82#endif
 83
 84#if !defined(find_next_and_bit)
 85unsigned long find_next_and_bit(const unsigned long *addr1,
 86		const unsigned long *addr2, unsigned long size,
 87		unsigned long offset)
 88{
 89	return _find_next_bit(addr1, addr2, size, offset, 0UL);
 90}
 91EXPORT_SYMBOL(find_next_and_bit);
 92#endif
 
 
 
 
 
 
 93
 94#ifndef find_first_bit
 95/*
 96 * Find the first set bit in a memory region.
 97 */
 98unsigned long find_first_bit(const unsigned long *addr, unsigned long size)
 99{
100	unsigned long idx;
 
 
101
102	for (idx = 0; idx * BITS_PER_LONG < size; idx++) {
103		if (addr[idx])
104			return min(idx * BITS_PER_LONG + __ffs(addr[idx]), size);
105	}
 
 
 
 
106
107	return size;
 
 
 
 
108}
109EXPORT_SYMBOL(find_first_bit);
110#endif
111
112#ifndef find_first_zero_bit
113/*
114 * Find the first cleared bit in a memory region.
115 */
116unsigned long find_first_zero_bit(const unsigned long *addr, unsigned long size)
117{
118	unsigned long idx;
 
 
 
119
120	for (idx = 0; idx * BITS_PER_LONG < size; idx++) {
121		if (addr[idx] != ~0UL)
122			return min(idx * BITS_PER_LONG + ffz(addr[idx]), size);
123	}
 
 
 
 
124
125	return size;
 
 
 
 
126}
127EXPORT_SYMBOL(find_first_zero_bit);
128#endif
129
130#ifndef find_last_bit
131unsigned long find_last_bit(const unsigned long *addr, unsigned long size)
132{
133	if (size) {
134		unsigned long val = BITMAP_LAST_WORD_MASK(size);
135		unsigned long idx = (size-1) / BITS_PER_LONG;
136
137		do {
138			val &= addr[idx];
139			if (val)
140				return idx * BITS_PER_LONG + __fls(val);
141
142			val = ~0ul;
143		} while (idx--);
144	}
145	return size;
146}
147EXPORT_SYMBOL(find_last_bit);
148#endif
149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150#ifdef __BIG_ENDIAN
151
152/* include/linux/byteorder does not support "unsigned long" type */
153static inline unsigned long ext2_swab(const unsigned long y)
 
 
 
154{
155#if BITS_PER_LONG == 64
156	return (unsigned long) __swab64((u64) y);
157#elif BITS_PER_LONG == 32
158	return (unsigned long) __swab32((u32) y);
159#else
160#error BITS_PER_LONG not defined
161#endif
162}
 
163
164#if !defined(find_next_bit_le) || !defined(find_next_zero_bit_le)
165static inline unsigned long _find_next_bit_le(const unsigned long *addr1,
166		const unsigned long *addr2, unsigned long nbits,
167		unsigned long start, unsigned long invert)
168{
169	unsigned long tmp;
170
171	if (unlikely(start >= nbits))
172		return nbits;
173
174	tmp = addr1[start / BITS_PER_LONG];
175	if (addr2)
176		tmp &= addr2[start / BITS_PER_LONG];
177	tmp ^= invert;
178
179	/* Handle 1st word. */
180	tmp &= ext2_swab(BITMAP_FIRST_WORD_MASK(start));
181	start = round_down(start, BITS_PER_LONG);
182
183	while (!tmp) {
184		start += BITS_PER_LONG;
185		if (start >= nbits)
186			return nbits;
187
188		tmp = addr1[start / BITS_PER_LONG];
189		if (addr2)
190			tmp &= addr2[start / BITS_PER_LONG];
191		tmp ^= invert;
192	}
193
194	return min(start + __ffs(ext2_swab(tmp)), nbits);
195}
196#endif
197
198#ifndef find_next_zero_bit_le
199unsigned long find_next_zero_bit_le(const void *addr, unsigned
200		long size, unsigned long offset)
201{
202	return _find_next_bit_le(addr, NULL, size, offset, ~0UL);
203}
204EXPORT_SYMBOL(find_next_zero_bit_le);
205#endif
206
207#ifndef find_next_bit_le
208unsigned long find_next_bit_le(const void *addr, unsigned
209		long size, unsigned long offset)
210{
211	return _find_next_bit_le(addr, NULL, size, offset, 0UL);
212}
213EXPORT_SYMBOL(find_next_bit_le);
 
214#endif
215
216#endif /* __BIG_ENDIAN */