Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/* bit search implementation
  3 *
  4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
  5 * Written by David Howells (dhowells@redhat.com)
  6 *
  7 * Copyright (C) 2008 IBM Corporation
  8 * 'find_last_bit' is written by Rusty Russell <rusty@rustcorp.com.au>
  9 * (Inspired by David Howell's find_next_bit implementation)
 10 *
 11 * Rewritten by Yury Norov <yury.norov@gmail.com> to decrease
 12 * size and improve performance, 2015.
 
 
 
 
 
 13 */
 14
 15#include <linux/bitops.h>
 16#include <linux/bitmap.h>
 17#include <linux/export.h>
 18#include <linux/math.h>
 19#include <linux/minmax.h>
 20#include <linux/swab.h>
 21
 22/*
 23 * Common helper for find_bit() function family
 24 * @FETCH: The expression that fetches and pre-processes each word of bitmap(s)
 25 * @MUNGE: The expression that post-processes a word containing found bit (may be empty)
 26 * @size: The bitmap size in bits
 27 */
 28#define FIND_FIRST_BIT(FETCH, MUNGE, size)					\
 29({										\
 30	unsigned long idx, val, sz = (size);					\
 31										\
 32	for (idx = 0; idx * BITS_PER_LONG < sz; idx++) {			\
 33		val = (FETCH);							\
 34		if (val) {							\
 35			sz = min(idx * BITS_PER_LONG + __ffs(MUNGE(val)), sz);	\
 36			break;							\
 37		}								\
 38	}									\
 39										\
 40	sz;									\
 41})
 42
 43/*
 44 * Common helper for find_next_bit() function family
 45 * @FETCH: The expression that fetches and pre-processes each word of bitmap(s)
 46 * @MUNGE: The expression that post-processes a word containing found bit (may be empty)
 47 * @size: The bitmap size in bits
 48 * @start: The bitnumber to start searching at
 49 */
 50#define FIND_NEXT_BIT(FETCH, MUNGE, size, start)				\
 51({										\
 52	unsigned long mask, idx, tmp, sz = (size), __start = (start);		\
 53										\
 54	if (unlikely(__start >= sz))						\
 55		goto out;							\
 56										\
 57	mask = MUNGE(BITMAP_FIRST_WORD_MASK(__start));				\
 58	idx = __start / BITS_PER_LONG;						\
 59										\
 60	for (tmp = (FETCH) & mask; !tmp; tmp = (FETCH)) {			\
 61		if ((idx + 1) * BITS_PER_LONG >= sz)				\
 62			goto out;						\
 63		idx++;								\
 64	}									\
 65										\
 66	sz = min(idx * BITS_PER_LONG + __ffs(MUNGE(tmp)), sz);			\
 67out:										\
 68	sz;									\
 69})
 70
 71#define FIND_NTH_BIT(FETCH, size, num)						\
 72({										\
 73	unsigned long sz = (size), nr = (num), idx, w, tmp;			\
 74										\
 75	for (idx = 0; (idx + 1) * BITS_PER_LONG <= sz; idx++) {			\
 76		if (idx * BITS_PER_LONG + nr >= sz)				\
 77			goto out;						\
 78										\
 79		tmp = (FETCH);							\
 80		w = hweight_long(tmp);						\
 81		if (w > nr)							\
 82			goto found;						\
 83										\
 84		nr -= w;							\
 85	}									\
 86										\
 87	if (sz % BITS_PER_LONG)							\
 88		tmp = (FETCH) & BITMAP_LAST_WORD_MASK(sz);			\
 89found:										\
 90	sz = min(idx * BITS_PER_LONG + fns(tmp, nr), sz);			\
 91out:										\
 92	sz;									\
 93})
 94
 95#ifndef find_first_bit
 96/*
 97 * Find the first set bit in a memory region.
 98 */
 99unsigned long _find_first_bit(const unsigned long *addr, unsigned long size)
100{
101	return FIND_FIRST_BIT(addr[idx], /* nop */, size);
102}
103EXPORT_SYMBOL(_find_first_bit);
104#endif
105
106#ifndef find_first_and_bit
107/*
108 * Find the first set bit in two memory regions.
109 */
110unsigned long _find_first_and_bit(const unsigned long *addr1,
111				  const unsigned long *addr2,
112				  unsigned long size)
113{
114	return FIND_FIRST_BIT(addr1[idx] & addr2[idx], /* nop */, size);
 
 
 
 
 
 
 
 
 
115}
116EXPORT_SYMBOL(_find_first_and_bit);
117#endif
118
119#ifndef find_first_zero_bit
120/*
121 * Find the first cleared bit in a memory region.
122 */
123unsigned long _find_first_zero_bit(const unsigned long *addr, unsigned long size)
 
124{
125	return FIND_FIRST_BIT(~addr[idx], /* nop */, size);
126}
127EXPORT_SYMBOL(_find_first_zero_bit);
128#endif
129
130#ifndef find_next_bit
131unsigned long _find_next_bit(const unsigned long *addr, unsigned long nbits, unsigned long start)
 
132{
133	return FIND_NEXT_BIT(addr[idx], /* nop */, nbits, start);
134}
135EXPORT_SYMBOL(_find_next_bit);
136#endif
137
138unsigned long __find_nth_bit(const unsigned long *addr, unsigned long size, unsigned long n)
139{
140	return FIND_NTH_BIT(addr[idx], size, n);
141}
142EXPORT_SYMBOL(__find_nth_bit);
143
144unsigned long __find_nth_and_bit(const unsigned long *addr1, const unsigned long *addr2,
145				 unsigned long size, unsigned long n)
146{
147	return FIND_NTH_BIT(addr1[idx] & addr2[idx], size, n);
148}
149EXPORT_SYMBOL(__find_nth_and_bit);
150
151unsigned long __find_nth_andnot_bit(const unsigned long *addr1, const unsigned long *addr2,
152				 unsigned long size, unsigned long n)
153{
154	return FIND_NTH_BIT(addr1[idx] & ~addr2[idx], size, n);
155}
156EXPORT_SYMBOL(__find_nth_andnot_bit);
157
158unsigned long __find_nth_and_andnot_bit(const unsigned long *addr1,
159					const unsigned long *addr2,
160					const unsigned long *addr3,
161					unsigned long size, unsigned long n)
162{
163	return FIND_NTH_BIT(addr1[idx] & addr2[idx] & ~addr3[idx], size, n);
164}
165EXPORT_SYMBOL(__find_nth_and_andnot_bit);
166
167#ifndef find_next_and_bit
168unsigned long _find_next_and_bit(const unsigned long *addr1, const unsigned long *addr2,
169					unsigned long nbits, unsigned long start)
170{
171	return FIND_NEXT_BIT(addr1[idx] & addr2[idx], /* nop */, nbits, start);
172}
173EXPORT_SYMBOL(_find_next_and_bit);
174#endif
175
176#ifndef find_next_andnot_bit
177unsigned long _find_next_andnot_bit(const unsigned long *addr1, const unsigned long *addr2,
178					unsigned long nbits, unsigned long start)
 
 
179{
180	return FIND_NEXT_BIT(addr1[idx] & ~addr2[idx], /* nop */, nbits, start);
181}
182EXPORT_SYMBOL(_find_next_andnot_bit);
183#endif
184
185#ifndef find_next_or_bit
186unsigned long _find_next_or_bit(const unsigned long *addr1, const unsigned long *addr2,
187					unsigned long nbits, unsigned long start)
188{
189	return FIND_NEXT_BIT(addr1[idx] | addr2[idx], /* nop */, nbits, start);
190}
191EXPORT_SYMBOL(_find_next_or_bit);
192#endif
193
194#ifndef find_next_zero_bit
195unsigned long _find_next_zero_bit(const unsigned long *addr, unsigned long nbits,
196					 unsigned long start)
197{
198	return FIND_NEXT_BIT(~addr[idx], /* nop */, nbits, start);
199}
200EXPORT_SYMBOL(_find_next_zero_bit);
201#endif
202
203#ifndef find_last_bit
204unsigned long _find_last_bit(const unsigned long *addr, unsigned long size)
205{
206	if (size) {
207		unsigned long val = BITMAP_LAST_WORD_MASK(size);
208		unsigned long idx = (size-1) / BITS_PER_LONG;
209
210		do {
211			val &= addr[idx];
212			if (val)
213				return idx * BITS_PER_LONG + __fls(val);
214
215			val = ~0ul;
216		} while (idx--);
217	}
218	return size;
219}
220EXPORT_SYMBOL(_find_last_bit);
221#endif
222
223unsigned long find_next_clump8(unsigned long *clump, const unsigned long *addr,
224			       unsigned long size, unsigned long offset)
 
 
225{
226	offset = find_next_bit(addr, size, offset);
227	if (offset == size)
228		return size;
 
 
 
 
 
229
230	offset = round_down(offset, 8);
231	*clump = bitmap_get_value8(addr, offset);
 
 
 
232
233	return offset;
234}
235EXPORT_SYMBOL(find_next_clump8);
236
237#ifdef __BIG_ENDIAN
238
239#ifndef find_first_zero_bit_le
240/*
241 * Find the first cleared bit in an LE memory region.
242 */
243unsigned long _find_first_zero_bit_le(const unsigned long *addr, unsigned long size)
244{
245	return FIND_FIRST_BIT(~addr[idx], swab, size);
246}
247EXPORT_SYMBOL(_find_first_zero_bit_le);
248
 
 
 
 
 
249#endif
250
251#ifndef find_next_zero_bit_le
252unsigned long _find_next_zero_bit_le(const unsigned long *addr,
253					unsigned long size, unsigned long offset)
254{
255	return FIND_NEXT_BIT(~addr[idx], swab, size, offset);
256}
257EXPORT_SYMBOL(_find_next_zero_bit_le);
258#endif
259
260#ifndef find_next_bit_le
261unsigned long _find_next_bit_le(const unsigned long *addr,
262				unsigned long size, unsigned long offset)
263{
264	return FIND_NEXT_BIT(addr[idx], swab, size, offset);
265}
266EXPORT_SYMBOL(_find_next_bit_le);
267
268#endif
269
270#endif /* __BIG_ENDIAN */
v4.6
 
  1/* bit search implementation
  2 *
  3 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
  4 * Written by David Howells (dhowells@redhat.com)
  5 *
  6 * Copyright (C) 2008 IBM Corporation
  7 * 'find_last_bit' is written by Rusty Russell <rusty@rustcorp.com.au>
  8 * (Inspired by David Howell's find_next_bit implementation)
  9 *
 10 * Rewritten by Yury Norov <yury.norov@gmail.com> to decrease
 11 * size and improve performance, 2015.
 12 *
 13 * This program is free software; you can redistribute it and/or
 14 * modify it under the terms of the GNU General Public License
 15 * as published by the Free Software Foundation; either version
 16 * 2 of the License, or (at your option) any later version.
 17 */
 18
 19#include <linux/bitops.h>
 20#include <linux/bitmap.h>
 21#include <linux/export.h>
 22#include <linux/kernel.h>
 
 
 23
 24#if !defined(find_next_bit) || !defined(find_next_zero_bit)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25
 26/*
 27 * This is a common helper function for find_next_bit and
 28 * find_next_zero_bit.  The difference is the "invert" argument, which
 29 * is XORed with each fetched word before searching it for one bits.
 
 
 30 */
 31static unsigned long _find_next_bit(const unsigned long *addr,
 32		unsigned long nbits, unsigned long start, unsigned long invert)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 33{
 34	unsigned long tmp;
 
 
 
 35
 36	if (!nbits || start >= nbits)
 37		return nbits;
 38
 39	tmp = addr[start / BITS_PER_LONG] ^ invert;
 40
 41	/* Handle 1st word. */
 42	tmp &= BITMAP_FIRST_WORD_MASK(start);
 43	start = round_down(start, BITS_PER_LONG);
 44
 45	while (!tmp) {
 46		start += BITS_PER_LONG;
 47		if (start >= nbits)
 48			return nbits;
 49
 50		tmp = addr[start / BITS_PER_LONG] ^ invert;
 51	}
 52
 53	return min(start + __ffs(tmp), nbits);
 54}
 
 55#endif
 56
 57#ifndef find_next_bit
 58/*
 59 * Find the next set bit in a memory region.
 60 */
 61unsigned long find_next_bit(const unsigned long *addr, unsigned long size,
 62			    unsigned long offset)
 63{
 64	return _find_next_bit(addr, size, offset, 0UL);
 65}
 66EXPORT_SYMBOL(find_next_bit);
 67#endif
 68
 69#ifndef find_next_zero_bit
 70unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size,
 71				 unsigned long offset)
 72{
 73	return _find_next_bit(addr, size, offset, ~0UL);
 74}
 75EXPORT_SYMBOL(find_next_zero_bit);
 76#endif
 77
 78#ifndef find_first_bit
 79/*
 80 * Find the first set bit in a memory region.
 81 */
 82unsigned long find_first_bit(const unsigned long *addr, unsigned long size)
 
 
 
 
 
 
 
 
 
 
 83{
 84	unsigned long idx;
 
 
 85
 86	for (idx = 0; idx * BITS_PER_LONG < size; idx++) {
 87		if (addr[idx])
 88			return min(idx * BITS_PER_LONG + __ffs(addr[idx]), size);
 89	}
 
 
 
 
 90
 91	return size;
 
 
 
 
 92}
 93EXPORT_SYMBOL(find_first_bit);
 94#endif
 95
 96#ifndef find_first_zero_bit
 97/*
 98 * Find the first cleared bit in a memory region.
 99 */
100unsigned long find_first_zero_bit(const unsigned long *addr, unsigned long size)
101{
102	unsigned long idx;
 
 
 
103
104	for (idx = 0; idx * BITS_PER_LONG < size; idx++) {
105		if (addr[idx] != ~0UL)
106			return min(idx * BITS_PER_LONG + ffz(addr[idx]), size);
107	}
 
 
 
 
108
109	return size;
 
 
 
 
110}
111EXPORT_SYMBOL(find_first_zero_bit);
112#endif
113
114#ifndef find_last_bit
115unsigned long find_last_bit(const unsigned long *addr, unsigned long size)
116{
117	if (size) {
118		unsigned long val = BITMAP_LAST_WORD_MASK(size);
119		unsigned long idx = (size-1) / BITS_PER_LONG;
120
121		do {
122			val &= addr[idx];
123			if (val)
124				return idx * BITS_PER_LONG + __fls(val);
125
126			val = ~0ul;
127		} while (idx--);
128	}
129	return size;
130}
131EXPORT_SYMBOL(find_last_bit);
132#endif
133
134#ifdef __BIG_ENDIAN
135
136/* include/linux/byteorder does not support "unsigned long" type */
137static inline unsigned long ext2_swab(const unsigned long y)
138{
139#if BITS_PER_LONG == 64
140	return (unsigned long) __swab64((u64) y);
141#elif BITS_PER_LONG == 32
142	return (unsigned long) __swab32((u32) y);
143#else
144#error BITS_PER_LONG not defined
145#endif
146}
147
148#if !defined(find_next_bit_le) || !defined(find_next_zero_bit_le)
149static unsigned long _find_next_bit_le(const unsigned long *addr,
150		unsigned long nbits, unsigned long start, unsigned long invert)
151{
152	unsigned long tmp;
153
154	if (!nbits || start >= nbits)
155		return nbits;
 
156
157	tmp = addr[start / BITS_PER_LONG] ^ invert;
158
159	/* Handle 1st word. */
160	tmp &= ext2_swab(BITMAP_FIRST_WORD_MASK(start));
161	start = round_down(start, BITS_PER_LONG);
162
163	while (!tmp) {
164		start += BITS_PER_LONG;
165		if (start >= nbits)
166			return nbits;
 
167
168		tmp = addr[start / BITS_PER_LONG] ^ invert;
169	}
170
171	return min(start + __ffs(ext2_swab(tmp)), nbits);
172}
173#endif
174
175#ifndef find_next_zero_bit_le
176unsigned long find_next_zero_bit_le(const void *addr, unsigned
177		long size, unsigned long offset)
178{
179	return _find_next_bit_le(addr, size, offset, ~0UL);
180}
181EXPORT_SYMBOL(find_next_zero_bit_le);
182#endif
183
184#ifndef find_next_bit_le
185unsigned long find_next_bit_le(const void *addr, unsigned
186		long size, unsigned long offset)
187{
188	return _find_next_bit_le(addr, size, offset, 0UL);
189}
190EXPORT_SYMBOL(find_next_bit_le);
 
191#endif
192
193#endif /* __BIG_ENDIAN */