Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* bit search implementation
3 *
4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 *
7 * Copyright (C) 2008 IBM Corporation
8 * 'find_last_bit' is written by Rusty Russell <rusty@rustcorp.com.au>
9 * (Inspired by David Howell's find_next_bit implementation)
10 *
11 * Rewritten by Yury Norov <yury.norov@gmail.com> to decrease
12 * size and improve performance, 2015.
13 */
14
15#include <linux/bitops.h>
16#include <linux/bitmap.h>
17#include <linux/export.h>
18#include <linux/math.h>
19#include <linux/minmax.h>
20#include <linux/swab.h>
21
22/*
23 * Common helper for find_bit() function family
24 * @FETCH: The expression that fetches and pre-processes each word of bitmap(s)
25 * @MUNGE: The expression that post-processes a word containing found bit (may be empty)
26 * @size: The bitmap size in bits
27 */
28#define FIND_FIRST_BIT(FETCH, MUNGE, size) \
29({ \
30 unsigned long idx, val, sz = (size); \
31 \
32 for (idx = 0; idx * BITS_PER_LONG < sz; idx++) { \
33 val = (FETCH); \
34 if (val) { \
35 sz = min(idx * BITS_PER_LONG + __ffs(MUNGE(val)), sz); \
36 break; \
37 } \
38 } \
39 \
40 sz; \
41})
42
43/*
44 * Common helper for find_next_bit() function family
45 * @FETCH: The expression that fetches and pre-processes each word of bitmap(s)
46 * @MUNGE: The expression that post-processes a word containing found bit (may be empty)
47 * @size: The bitmap size in bits
48 * @start: The bitnumber to start searching at
49 */
50#define FIND_NEXT_BIT(FETCH, MUNGE, size, start) \
51({ \
52 unsigned long mask, idx, tmp, sz = (size), __start = (start); \
53 \
54 if (unlikely(__start >= sz)) \
55 goto out; \
56 \
57 mask = MUNGE(BITMAP_FIRST_WORD_MASK(__start)); \
58 idx = __start / BITS_PER_LONG; \
59 \
60 for (tmp = (FETCH) & mask; !tmp; tmp = (FETCH)) { \
61 if ((idx + 1) * BITS_PER_LONG >= sz) \
62 goto out; \
63 idx++; \
64 } \
65 \
66 sz = min(idx * BITS_PER_LONG + __ffs(MUNGE(tmp)), sz); \
67out: \
68 sz; \
69})
70
71#define FIND_NTH_BIT(FETCH, size, num) \
72({ \
73 unsigned long sz = (size), nr = (num), idx, w, tmp; \
74 \
75 for (idx = 0; (idx + 1) * BITS_PER_LONG <= sz; idx++) { \
76 if (idx * BITS_PER_LONG + nr >= sz) \
77 goto out; \
78 \
79 tmp = (FETCH); \
80 w = hweight_long(tmp); \
81 if (w > nr) \
82 goto found; \
83 \
84 nr -= w; \
85 } \
86 \
87 if (sz % BITS_PER_LONG) \
88 tmp = (FETCH) & BITMAP_LAST_WORD_MASK(sz); \
89found: \
90 sz = min(idx * BITS_PER_LONG + fns(tmp, nr), sz); \
91out: \
92 sz; \
93})
94
95#ifndef find_first_bit
96/*
97 * Find the first set bit in a memory region.
98 */
99unsigned long _find_first_bit(const unsigned long *addr, unsigned long size)
100{
101 return FIND_FIRST_BIT(addr[idx], /* nop */, size);
102}
103EXPORT_SYMBOL(_find_first_bit);
104#endif
105
106#ifndef find_first_and_bit
107/*
108 * Find the first set bit in two memory regions.
109 */
110unsigned long _find_first_and_bit(const unsigned long *addr1,
111 const unsigned long *addr2,
112 unsigned long size)
113{
114 return FIND_FIRST_BIT(addr1[idx] & addr2[idx], /* nop */, size);
115}
116EXPORT_SYMBOL(_find_first_and_bit);
117#endif
118
119#ifndef find_first_zero_bit
120/*
121 * Find the first cleared bit in a memory region.
122 */
123unsigned long _find_first_zero_bit(const unsigned long *addr, unsigned long size)
124{
125 return FIND_FIRST_BIT(~addr[idx], /* nop */, size);
126}
127EXPORT_SYMBOL(_find_first_zero_bit);
128#endif
129
130#ifndef find_next_bit
131unsigned long _find_next_bit(const unsigned long *addr, unsigned long nbits, unsigned long start)
132{
133 return FIND_NEXT_BIT(addr[idx], /* nop */, nbits, start);
134}
135EXPORT_SYMBOL(_find_next_bit);
136#endif
137
138unsigned long __find_nth_bit(const unsigned long *addr, unsigned long size, unsigned long n)
139{
140 return FIND_NTH_BIT(addr[idx], size, n);
141}
142EXPORT_SYMBOL(__find_nth_bit);
143
144unsigned long __find_nth_and_bit(const unsigned long *addr1, const unsigned long *addr2,
145 unsigned long size, unsigned long n)
146{
147 return FIND_NTH_BIT(addr1[idx] & addr2[idx], size, n);
148}
149EXPORT_SYMBOL(__find_nth_and_bit);
150
151unsigned long __find_nth_andnot_bit(const unsigned long *addr1, const unsigned long *addr2,
152 unsigned long size, unsigned long n)
153{
154 return FIND_NTH_BIT(addr1[idx] & ~addr2[idx], size, n);
155}
156EXPORT_SYMBOL(__find_nth_andnot_bit);
157
158unsigned long __find_nth_and_andnot_bit(const unsigned long *addr1,
159 const unsigned long *addr2,
160 const unsigned long *addr3,
161 unsigned long size, unsigned long n)
162{
163 return FIND_NTH_BIT(addr1[idx] & addr2[idx] & ~addr3[idx], size, n);
164}
165EXPORT_SYMBOL(__find_nth_and_andnot_bit);
166
167#ifndef find_next_and_bit
168unsigned long _find_next_and_bit(const unsigned long *addr1, const unsigned long *addr2,
169 unsigned long nbits, unsigned long start)
170{
171 return FIND_NEXT_BIT(addr1[idx] & addr2[idx], /* nop */, nbits, start);
172}
173EXPORT_SYMBOL(_find_next_and_bit);
174#endif
175
176#ifndef find_next_andnot_bit
177unsigned long _find_next_andnot_bit(const unsigned long *addr1, const unsigned long *addr2,
178 unsigned long nbits, unsigned long start)
179{
180 return FIND_NEXT_BIT(addr1[idx] & ~addr2[idx], /* nop */, nbits, start);
181}
182EXPORT_SYMBOL(_find_next_andnot_bit);
183#endif
184
185#ifndef find_next_or_bit
186unsigned long _find_next_or_bit(const unsigned long *addr1, const unsigned long *addr2,
187 unsigned long nbits, unsigned long start)
188{
189 return FIND_NEXT_BIT(addr1[idx] | addr2[idx], /* nop */, nbits, start);
190}
191EXPORT_SYMBOL(_find_next_or_bit);
192#endif
193
194#ifndef find_next_zero_bit
195unsigned long _find_next_zero_bit(const unsigned long *addr, unsigned long nbits,
196 unsigned long start)
197{
198 return FIND_NEXT_BIT(~addr[idx], /* nop */, nbits, start);
199}
200EXPORT_SYMBOL(_find_next_zero_bit);
201#endif
202
203#ifndef find_last_bit
204unsigned long _find_last_bit(const unsigned long *addr, unsigned long size)
205{
206 if (size) {
207 unsigned long val = BITMAP_LAST_WORD_MASK(size);
208 unsigned long idx = (size-1) / BITS_PER_LONG;
209
210 do {
211 val &= addr[idx];
212 if (val)
213 return idx * BITS_PER_LONG + __fls(val);
214
215 val = ~0ul;
216 } while (idx--);
217 }
218 return size;
219}
220EXPORT_SYMBOL(_find_last_bit);
221#endif
222
223unsigned long find_next_clump8(unsigned long *clump, const unsigned long *addr,
224 unsigned long size, unsigned long offset)
225{
226 offset = find_next_bit(addr, size, offset);
227 if (offset == size)
228 return size;
229
230 offset = round_down(offset, 8);
231 *clump = bitmap_get_value8(addr, offset);
232
233 return offset;
234}
235EXPORT_SYMBOL(find_next_clump8);
236
237#ifdef __BIG_ENDIAN
238
239#ifndef find_first_zero_bit_le
240/*
241 * Find the first cleared bit in an LE memory region.
242 */
243unsigned long _find_first_zero_bit_le(const unsigned long *addr, unsigned long size)
244{
245 return FIND_FIRST_BIT(~addr[idx], swab, size);
246}
247EXPORT_SYMBOL(_find_first_zero_bit_le);
248
249#endif
250
251#ifndef find_next_zero_bit_le
252unsigned long _find_next_zero_bit_le(const unsigned long *addr,
253 unsigned long size, unsigned long offset)
254{
255 return FIND_NEXT_BIT(~addr[idx], swab, size, offset);
256}
257EXPORT_SYMBOL(_find_next_zero_bit_le);
258#endif
259
260#ifndef find_next_bit_le
261unsigned long _find_next_bit_le(const unsigned long *addr,
262 unsigned long size, unsigned long offset)
263{
264 return FIND_NEXT_BIT(addr[idx], swab, size, offset);
265}
266EXPORT_SYMBOL(_find_next_bit_le);
267
268#endif
269
270#endif /* __BIG_ENDIAN */
1/* bit search implementation
2 *
3 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * Copyright (C) 2008 IBM Corporation
7 * 'find_last_bit' is written by Rusty Russell <rusty@rustcorp.com.au>
8 * (Inspired by David Howell's find_next_bit implementation)
9 *
10 * Rewritten by Yury Norov <yury.norov@gmail.com> to decrease
11 * size and improve performance, 2015.
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18
19#include <linux/bitops.h>
20#include <linux/bitmap.h>
21#include <linux/export.h>
22#include <linux/kernel.h>
23
24#if !defined(find_next_bit) || !defined(find_next_zero_bit)
25
26/*
27 * This is a common helper function for find_next_bit and
28 * find_next_zero_bit. The difference is the "invert" argument, which
29 * is XORed with each fetched word before searching it for one bits.
30 */
31static unsigned long _find_next_bit(const unsigned long *addr,
32 unsigned long nbits, unsigned long start, unsigned long invert)
33{
34 unsigned long tmp;
35
36 if (!nbits || start >= nbits)
37 return nbits;
38
39 tmp = addr[start / BITS_PER_LONG] ^ invert;
40
41 /* Handle 1st word. */
42 tmp &= BITMAP_FIRST_WORD_MASK(start);
43 start = round_down(start, BITS_PER_LONG);
44
45 while (!tmp) {
46 start += BITS_PER_LONG;
47 if (start >= nbits)
48 return nbits;
49
50 tmp = addr[start / BITS_PER_LONG] ^ invert;
51 }
52
53 return min(start + __ffs(tmp), nbits);
54}
55#endif
56
57#ifndef find_next_bit
58/*
59 * Find the next set bit in a memory region.
60 */
61unsigned long find_next_bit(const unsigned long *addr, unsigned long size,
62 unsigned long offset)
63{
64 return _find_next_bit(addr, size, offset, 0UL);
65}
66EXPORT_SYMBOL(find_next_bit);
67#endif
68
69#ifndef find_next_zero_bit
70unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size,
71 unsigned long offset)
72{
73 return _find_next_bit(addr, size, offset, ~0UL);
74}
75EXPORT_SYMBOL(find_next_zero_bit);
76#endif
77
78#ifndef find_first_bit
79/*
80 * Find the first set bit in a memory region.
81 */
82unsigned long find_first_bit(const unsigned long *addr, unsigned long size)
83{
84 unsigned long idx;
85
86 for (idx = 0; idx * BITS_PER_LONG < size; idx++) {
87 if (addr[idx])
88 return min(idx * BITS_PER_LONG + __ffs(addr[idx]), size);
89 }
90
91 return size;
92}
93EXPORT_SYMBOL(find_first_bit);
94#endif
95
96#ifndef find_first_zero_bit
97/*
98 * Find the first cleared bit in a memory region.
99 */
100unsigned long find_first_zero_bit(const unsigned long *addr, unsigned long size)
101{
102 unsigned long idx;
103
104 for (idx = 0; idx * BITS_PER_LONG < size; idx++) {
105 if (addr[idx] != ~0UL)
106 return min(idx * BITS_PER_LONG + ffz(addr[idx]), size);
107 }
108
109 return size;
110}
111EXPORT_SYMBOL(find_first_zero_bit);
112#endif
113
114#ifndef find_last_bit
115unsigned long find_last_bit(const unsigned long *addr, unsigned long size)
116{
117 if (size) {
118 unsigned long val = BITMAP_LAST_WORD_MASK(size);
119 unsigned long idx = (size-1) / BITS_PER_LONG;
120
121 do {
122 val &= addr[idx];
123 if (val)
124 return idx * BITS_PER_LONG + __fls(val);
125
126 val = ~0ul;
127 } while (idx--);
128 }
129 return size;
130}
131EXPORT_SYMBOL(find_last_bit);
132#endif
133
134#ifdef __BIG_ENDIAN
135
136/* include/linux/byteorder does not support "unsigned long" type */
137static inline unsigned long ext2_swab(const unsigned long y)
138{
139#if BITS_PER_LONG == 64
140 return (unsigned long) __swab64((u64) y);
141#elif BITS_PER_LONG == 32
142 return (unsigned long) __swab32((u32) y);
143#else
144#error BITS_PER_LONG not defined
145#endif
146}
147
148#if !defined(find_next_bit_le) || !defined(find_next_zero_bit_le)
149static unsigned long _find_next_bit_le(const unsigned long *addr,
150 unsigned long nbits, unsigned long start, unsigned long invert)
151{
152 unsigned long tmp;
153
154 if (!nbits || start >= nbits)
155 return nbits;
156
157 tmp = addr[start / BITS_PER_LONG] ^ invert;
158
159 /* Handle 1st word. */
160 tmp &= ext2_swab(BITMAP_FIRST_WORD_MASK(start));
161 start = round_down(start, BITS_PER_LONG);
162
163 while (!tmp) {
164 start += BITS_PER_LONG;
165 if (start >= nbits)
166 return nbits;
167
168 tmp = addr[start / BITS_PER_LONG] ^ invert;
169 }
170
171 return min(start + __ffs(ext2_swab(tmp)), nbits);
172}
173#endif
174
175#ifndef find_next_zero_bit_le
176unsigned long find_next_zero_bit_le(const void *addr, unsigned
177 long size, unsigned long offset)
178{
179 return _find_next_bit_le(addr, size, offset, ~0UL);
180}
181EXPORT_SYMBOL(find_next_zero_bit_le);
182#endif
183
184#ifndef find_next_bit_le
185unsigned long find_next_bit_le(const void *addr, unsigned
186 long size, unsigned long offset)
187{
188 return _find_next_bit_le(addr, size, offset, 0UL);
189}
190EXPORT_SYMBOL(find_next_bit_le);
191#endif
192
193#endif /* __BIG_ENDIAN */