Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/namei.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 * Some corrections by tytso.
  10 */
  11
  12/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
  13 * lookup logic.
  14 */
  15/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
  16 */
  17
  18#include <linux/init.h>
  19#include <linux/export.h>
  20#include <linux/kernel.h>
  21#include <linux/slab.h>
  22#include <linux/fs.h>
  23#include <linux/filelock.h>
  24#include <linux/namei.h>
  25#include <linux/pagemap.h>
  26#include <linux/sched/mm.h>
  27#include <linux/fsnotify.h>
  28#include <linux/personality.h>
  29#include <linux/security.h>
  30#include <linux/ima.h>
  31#include <linux/syscalls.h>
  32#include <linux/mount.h>
  33#include <linux/audit.h>
  34#include <linux/capability.h>
  35#include <linux/file.h>
  36#include <linux/fcntl.h>
  37#include <linux/device_cgroup.h>
  38#include <linux/fs_struct.h>
  39#include <linux/posix_acl.h>
  40#include <linux/hash.h>
  41#include <linux/bitops.h>
  42#include <linux/init_task.h>
  43#include <linux/uaccess.h>
  44
  45#include "internal.h"
  46#include "mount.h"
  47
  48/* [Feb-1997 T. Schoebel-Theuer]
  49 * Fundamental changes in the pathname lookup mechanisms (namei)
  50 * were necessary because of omirr.  The reason is that omirr needs
  51 * to know the _real_ pathname, not the user-supplied one, in case
  52 * of symlinks (and also when transname replacements occur).
  53 *
  54 * The new code replaces the old recursive symlink resolution with
  55 * an iterative one (in case of non-nested symlink chains).  It does
  56 * this with calls to <fs>_follow_link().
  57 * As a side effect, dir_namei(), _namei() and follow_link() are now 
  58 * replaced with a single function lookup_dentry() that can handle all 
  59 * the special cases of the former code.
  60 *
  61 * With the new dcache, the pathname is stored at each inode, at least as
  62 * long as the refcount of the inode is positive.  As a side effect, the
  63 * size of the dcache depends on the inode cache and thus is dynamic.
  64 *
  65 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
  66 * resolution to correspond with current state of the code.
  67 *
  68 * Note that the symlink resolution is not *completely* iterative.
  69 * There is still a significant amount of tail- and mid- recursion in
  70 * the algorithm.  Also, note that <fs>_readlink() is not used in
  71 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
  72 * may return different results than <fs>_follow_link().  Many virtual
  73 * filesystems (including /proc) exhibit this behavior.
  74 */
  75
  76/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
  77 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
  78 * and the name already exists in form of a symlink, try to create the new
  79 * name indicated by the symlink. The old code always complained that the
  80 * name already exists, due to not following the symlink even if its target
  81 * is nonexistent.  The new semantics affects also mknod() and link() when
  82 * the name is a symlink pointing to a non-existent name.
  83 *
  84 * I don't know which semantics is the right one, since I have no access
  85 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
  86 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
  87 * "old" one. Personally, I think the new semantics is much more logical.
  88 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
  89 * file does succeed in both HP-UX and SunOs, but not in Solaris
  90 * and in the old Linux semantics.
  91 */
  92
  93/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
  94 * semantics.  See the comments in "open_namei" and "do_link" below.
  95 *
  96 * [10-Sep-98 Alan Modra] Another symlink change.
  97 */
  98
  99/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
 100 *	inside the path - always follow.
 101 *	in the last component in creation/removal/renaming - never follow.
 102 *	if LOOKUP_FOLLOW passed - follow.
 103 *	if the pathname has trailing slashes - follow.
 104 *	otherwise - don't follow.
 105 * (applied in that order).
 106 *
 107 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
 108 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
 109 * During the 2.4 we need to fix the userland stuff depending on it -
 110 * hopefully we will be able to get rid of that wart in 2.5. So far only
 111 * XEmacs seems to be relying on it...
 112 */
 113/*
 114 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
 115 * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
 116 * any extra contention...
 117 */
 118
 119/* In order to reduce some races, while at the same time doing additional
 120 * checking and hopefully speeding things up, we copy filenames to the
 121 * kernel data space before using them..
 122 *
 123 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
 124 * PATH_MAX includes the nul terminator --RR.
 125 */
 126
 127#define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
 128
 129struct filename *
 130getname_flags(const char __user *filename, int flags, int *empty)
 131{
 132	struct filename *result;
 133	char *kname;
 134	int len;
 135
 136	result = audit_reusename(filename);
 137	if (result)
 138		return result;
 139
 140	result = __getname();
 141	if (unlikely(!result))
 142		return ERR_PTR(-ENOMEM);
 143
 144	/*
 145	 * First, try to embed the struct filename inside the names_cache
 146	 * allocation
 147	 */
 148	kname = (char *)result->iname;
 149	result->name = kname;
 150
 151	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
 152	if (unlikely(len < 0)) {
 153		__putname(result);
 154		return ERR_PTR(len);
 155	}
 156
 157	/*
 158	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
 159	 * separate struct filename so we can dedicate the entire
 160	 * names_cache allocation for the pathname, and re-do the copy from
 161	 * userland.
 162	 */
 163	if (unlikely(len == EMBEDDED_NAME_MAX)) {
 164		const size_t size = offsetof(struct filename, iname[1]);
 165		kname = (char *)result;
 166
 167		/*
 168		 * size is chosen that way we to guarantee that
 169		 * result->iname[0] is within the same object and that
 170		 * kname can't be equal to result->iname, no matter what.
 171		 */
 172		result = kzalloc(size, GFP_KERNEL);
 173		if (unlikely(!result)) {
 174			__putname(kname);
 175			return ERR_PTR(-ENOMEM);
 176		}
 177		result->name = kname;
 178		len = strncpy_from_user(kname, filename, PATH_MAX);
 179		if (unlikely(len < 0)) {
 180			__putname(kname);
 181			kfree(result);
 182			return ERR_PTR(len);
 183		}
 184		if (unlikely(len == PATH_MAX)) {
 185			__putname(kname);
 186			kfree(result);
 187			return ERR_PTR(-ENAMETOOLONG);
 188		}
 189	}
 190
 191	atomic_set(&result->refcnt, 1);
 192	/* The empty path is special. */
 193	if (unlikely(!len)) {
 194		if (empty)
 195			*empty = 1;
 196		if (!(flags & LOOKUP_EMPTY)) {
 197			putname(result);
 198			return ERR_PTR(-ENOENT);
 199		}
 200	}
 201
 202	result->uptr = filename;
 203	result->aname = NULL;
 204	audit_getname(result);
 205	return result;
 206}
 207
 208struct filename *
 209getname_uflags(const char __user *filename, int uflags)
 210{
 211	int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
 212
 213	return getname_flags(filename, flags, NULL);
 214}
 215
 216struct filename *
 217getname(const char __user * filename)
 218{
 219	return getname_flags(filename, 0, NULL);
 220}
 221
 222struct filename *
 223getname_kernel(const char * filename)
 224{
 225	struct filename *result;
 226	int len = strlen(filename) + 1;
 227
 228	result = __getname();
 229	if (unlikely(!result))
 230		return ERR_PTR(-ENOMEM);
 231
 232	if (len <= EMBEDDED_NAME_MAX) {
 233		result->name = (char *)result->iname;
 234	} else if (len <= PATH_MAX) {
 235		const size_t size = offsetof(struct filename, iname[1]);
 236		struct filename *tmp;
 237
 238		tmp = kmalloc(size, GFP_KERNEL);
 239		if (unlikely(!tmp)) {
 240			__putname(result);
 241			return ERR_PTR(-ENOMEM);
 242		}
 243		tmp->name = (char *)result;
 244		result = tmp;
 245	} else {
 246		__putname(result);
 247		return ERR_PTR(-ENAMETOOLONG);
 248	}
 249	memcpy((char *)result->name, filename, len);
 250	result->uptr = NULL;
 251	result->aname = NULL;
 252	atomic_set(&result->refcnt, 1);
 253	audit_getname(result);
 254
 255	return result;
 256}
 257EXPORT_SYMBOL(getname_kernel);
 258
 259void putname(struct filename *name)
 260{
 261	if (IS_ERR(name))
 262		return;
 263
 264	if (WARN_ON_ONCE(!atomic_read(&name->refcnt)))
 265		return;
 266
 267	if (!atomic_dec_and_test(&name->refcnt))
 268		return;
 269
 270	if (name->name != name->iname) {
 271		__putname(name->name);
 272		kfree(name);
 273	} else
 274		__putname(name);
 275}
 276EXPORT_SYMBOL(putname);
 277
 278/**
 279 * check_acl - perform ACL permission checking
 280 * @idmap:	idmap of the mount the inode was found from
 281 * @inode:	inode to check permissions on
 282 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
 283 *
 284 * This function performs the ACL permission checking. Since this function
 285 * retrieve POSIX acls it needs to know whether it is called from a blocking or
 286 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
 287 *
 288 * If the inode has been found through an idmapped mount the idmap of
 289 * the vfsmount must be passed through @idmap. This function will then take
 290 * care to map the inode according to @idmap before checking permissions.
 291 * On non-idmapped mounts or if permission checking is to be performed on the
 292 * raw inode simply pass @nop_mnt_idmap.
 293 */
 294static int check_acl(struct mnt_idmap *idmap,
 295		     struct inode *inode, int mask)
 296{
 297#ifdef CONFIG_FS_POSIX_ACL
 298	struct posix_acl *acl;
 299
 300	if (mask & MAY_NOT_BLOCK) {
 301		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
 302	        if (!acl)
 303	                return -EAGAIN;
 304		/* no ->get_inode_acl() calls in RCU mode... */
 305		if (is_uncached_acl(acl))
 306			return -ECHILD;
 307	        return posix_acl_permission(idmap, inode, acl, mask);
 308	}
 309
 310	acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
 311	if (IS_ERR(acl))
 312		return PTR_ERR(acl);
 313	if (acl) {
 314	        int error = posix_acl_permission(idmap, inode, acl, mask);
 315	        posix_acl_release(acl);
 316	        return error;
 317	}
 318#endif
 319
 320	return -EAGAIN;
 321}
 322
 323/**
 324 * acl_permission_check - perform basic UNIX permission checking
 325 * @idmap:	idmap of the mount the inode was found from
 326 * @inode:	inode to check permissions on
 327 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
 328 *
 329 * This function performs the basic UNIX permission checking. Since this
 330 * function may retrieve POSIX acls it needs to know whether it is called from a
 331 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
 332 *
 333 * If the inode has been found through an idmapped mount the idmap of
 334 * the vfsmount must be passed through @idmap. This function will then take
 335 * care to map the inode according to @idmap before checking permissions.
 336 * On non-idmapped mounts or if permission checking is to be performed on the
 337 * raw inode simply pass @nop_mnt_idmap.
 338 */
 339static int acl_permission_check(struct mnt_idmap *idmap,
 340				struct inode *inode, int mask)
 341{
 342	unsigned int mode = inode->i_mode;
 343	vfsuid_t vfsuid;
 344
 345	/* Are we the owner? If so, ACL's don't matter */
 346	vfsuid = i_uid_into_vfsuid(idmap, inode);
 347	if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
 348		mask &= 7;
 349		mode >>= 6;
 350		return (mask & ~mode) ? -EACCES : 0;
 351	}
 
 
 
 
 352
 353	/* Do we have ACL's? */
 354	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
 355		int error = check_acl(idmap, inode, mask);
 356		if (error != -EAGAIN)
 357			return error;
 358	}
 359
 360	/* Only RWX matters for group/other mode bits */
 361	mask &= 7;
 362
 363	/*
 364	 * Are the group permissions different from
 365	 * the other permissions in the bits we care
 366	 * about? Need to check group ownership if so.
 367	 */
 368	if (mask & (mode ^ (mode >> 3))) {
 369		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
 370		if (vfsgid_in_group_p(vfsgid))
 371			mode >>= 3;
 372	}
 373
 374	/* Bits in 'mode' clear that we require? */
 375	return (mask & ~mode) ? -EACCES : 0;
 376}
 377
 378/**
 379 * generic_permission -  check for access rights on a Posix-like filesystem
 380 * @idmap:	idmap of the mount the inode was found from
 381 * @inode:	inode to check access rights for
 382 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
 383 *		%MAY_NOT_BLOCK ...)
 384 *
 385 * Used to check for read/write/execute permissions on a file.
 386 * We use "fsuid" for this, letting us set arbitrary permissions
 387 * for filesystem access without changing the "normal" uids which
 388 * are used for other things.
 389 *
 390 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
 391 * request cannot be satisfied (eg. requires blocking or too much complexity).
 392 * It would then be called again in ref-walk mode.
 393 *
 394 * If the inode has been found through an idmapped mount the idmap of
 395 * the vfsmount must be passed through @idmap. This function will then take
 396 * care to map the inode according to @idmap before checking permissions.
 397 * On non-idmapped mounts or if permission checking is to be performed on the
 398 * raw inode simply pass @nop_mnt_idmap.
 399 */
 400int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
 401		       int mask)
 402{
 403	int ret;
 404
 405	/*
 406	 * Do the basic permission checks.
 407	 */
 408	ret = acl_permission_check(idmap, inode, mask);
 409	if (ret != -EACCES)
 410		return ret;
 411
 412	if (S_ISDIR(inode->i_mode)) {
 413		/* DACs are overridable for directories */
 414		if (!(mask & MAY_WRITE))
 415			if (capable_wrt_inode_uidgid(idmap, inode,
 416						     CAP_DAC_READ_SEARCH))
 417				return 0;
 418		if (capable_wrt_inode_uidgid(idmap, inode,
 419					     CAP_DAC_OVERRIDE))
 420			return 0;
 421		return -EACCES;
 422	}
 423
 424	/*
 425	 * Searching includes executable on directories, else just read.
 426	 */
 427	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
 428	if (mask == MAY_READ)
 429		if (capable_wrt_inode_uidgid(idmap, inode,
 430					     CAP_DAC_READ_SEARCH))
 431			return 0;
 432	/*
 433	 * Read/write DACs are always overridable.
 434	 * Executable DACs are overridable when there is
 435	 * at least one exec bit set.
 436	 */
 437	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
 438		if (capable_wrt_inode_uidgid(idmap, inode,
 439					     CAP_DAC_OVERRIDE))
 440			return 0;
 441
 442	return -EACCES;
 443}
 444EXPORT_SYMBOL(generic_permission);
 445
 446/**
 447 * do_inode_permission - UNIX permission checking
 448 * @idmap:	idmap of the mount the inode was found from
 449 * @inode:	inode to check permissions on
 450 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
 451 *
 452 * We _really_ want to just do "generic_permission()" without
 453 * even looking at the inode->i_op values. So we keep a cache
 454 * flag in inode->i_opflags, that says "this has not special
 455 * permission function, use the fast case".
 456 */
 457static inline int do_inode_permission(struct mnt_idmap *idmap,
 458				      struct inode *inode, int mask)
 459{
 460	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
 461		if (likely(inode->i_op->permission))
 462			return inode->i_op->permission(idmap, inode, mask);
 463
 464		/* This gets set once for the inode lifetime */
 465		spin_lock(&inode->i_lock);
 466		inode->i_opflags |= IOP_FASTPERM;
 467		spin_unlock(&inode->i_lock);
 468	}
 469	return generic_permission(idmap, inode, mask);
 470}
 471
 472/**
 473 * sb_permission - Check superblock-level permissions
 474 * @sb: Superblock of inode to check permission on
 475 * @inode: Inode to check permission on
 476 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 477 *
 478 * Separate out file-system wide checks from inode-specific permission checks.
 479 */
 480static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
 481{
 482	if (unlikely(mask & MAY_WRITE)) {
 483		umode_t mode = inode->i_mode;
 484
 485		/* Nobody gets write access to a read-only fs. */
 486		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
 487			return -EROFS;
 488	}
 489	return 0;
 490}
 491
 492/**
 493 * inode_permission - Check for access rights to a given inode
 494 * @idmap:	idmap of the mount the inode was found from
 495 * @inode:	Inode to check permission on
 496 * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 497 *
 498 * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
 499 * this, letting us set arbitrary permissions for filesystem access without
 500 * changing the "normal" UIDs which are used for other things.
 501 *
 502 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
 503 */
 504int inode_permission(struct mnt_idmap *idmap,
 505		     struct inode *inode, int mask)
 506{
 507	int retval;
 508
 509	retval = sb_permission(inode->i_sb, inode, mask);
 510	if (retval)
 511		return retval;
 512
 513	if (unlikely(mask & MAY_WRITE)) {
 514		/*
 515		 * Nobody gets write access to an immutable file.
 516		 */
 517		if (IS_IMMUTABLE(inode))
 518			return -EPERM;
 519
 520		/*
 521		 * Updating mtime will likely cause i_uid and i_gid to be
 522		 * written back improperly if their true value is unknown
 523		 * to the vfs.
 524		 */
 525		if (HAS_UNMAPPED_ID(idmap, inode))
 526			return -EACCES;
 527	}
 528
 529	retval = do_inode_permission(idmap, inode, mask);
 530	if (retval)
 531		return retval;
 532
 533	retval = devcgroup_inode_permission(inode, mask);
 534	if (retval)
 535		return retval;
 536
 537	return security_inode_permission(inode, mask);
 538}
 539EXPORT_SYMBOL(inode_permission);
 540
 541/**
 542 * path_get - get a reference to a path
 543 * @path: path to get the reference to
 544 *
 545 * Given a path increment the reference count to the dentry and the vfsmount.
 546 */
 547void path_get(const struct path *path)
 548{
 549	mntget(path->mnt);
 550	dget(path->dentry);
 551}
 552EXPORT_SYMBOL(path_get);
 553
 554/**
 555 * path_put - put a reference to a path
 556 * @path: path to put the reference to
 557 *
 558 * Given a path decrement the reference count to the dentry and the vfsmount.
 559 */
 560void path_put(const struct path *path)
 561{
 562	dput(path->dentry);
 563	mntput(path->mnt);
 564}
 565EXPORT_SYMBOL(path_put);
 566
 567#define EMBEDDED_LEVELS 2
 568struct nameidata {
 569	struct path	path;
 570	struct qstr	last;
 571	struct path	root;
 572	struct inode	*inode; /* path.dentry.d_inode */
 573	unsigned int	flags, state;
 574	unsigned	seq, next_seq, m_seq, r_seq;
 575	int		last_type;
 576	unsigned	depth;
 577	int		total_link_count;
 578	struct saved {
 579		struct path link;
 580		struct delayed_call done;
 581		const char *name;
 582		unsigned seq;
 583	} *stack, internal[EMBEDDED_LEVELS];
 584	struct filename	*name;
 585	struct nameidata *saved;
 
 586	unsigned	root_seq;
 587	int		dfd;
 588	vfsuid_t	dir_vfsuid;
 589	umode_t		dir_mode;
 590} __randomize_layout;
 591
 592#define ND_ROOT_PRESET 1
 593#define ND_ROOT_GRABBED 2
 594#define ND_JUMPED 4
 595
 596static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
 597{
 598	struct nameidata *old = current->nameidata;
 599	p->stack = p->internal;
 600	p->depth = 0;
 601	p->dfd = dfd;
 602	p->name = name;
 603	p->path.mnt = NULL;
 604	p->path.dentry = NULL;
 605	p->total_link_count = old ? old->total_link_count : 0;
 606	p->saved = old;
 607	current->nameidata = p;
 608}
 609
 610static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
 611			  const struct path *root)
 612{
 613	__set_nameidata(p, dfd, name);
 614	p->state = 0;
 615	if (unlikely(root)) {
 616		p->state = ND_ROOT_PRESET;
 617		p->root = *root;
 618	}
 619}
 620
 621static void restore_nameidata(void)
 622{
 623	struct nameidata *now = current->nameidata, *old = now->saved;
 624
 625	current->nameidata = old;
 626	if (old)
 627		old->total_link_count = now->total_link_count;
 628	if (now->stack != now->internal)
 629		kfree(now->stack);
 630}
 631
 632static bool nd_alloc_stack(struct nameidata *nd)
 633{
 634	struct saved *p;
 635
 636	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
 637			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
 638	if (unlikely(!p))
 639		return false;
 
 
 
 
 
 
 
 640	memcpy(p, nd->internal, sizeof(nd->internal));
 641	nd->stack = p;
 642	return true;
 643}
 644
 645/**
 646 * path_connected - Verify that a dentry is below mnt.mnt_root
 647 * @mnt: The mountpoint to check.
 648 * @dentry: The dentry to check.
 649 *
 650 * Rename can sometimes move a file or directory outside of a bind
 651 * mount, path_connected allows those cases to be detected.
 652 */
 653static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
 654{
 
 655	struct super_block *sb = mnt->mnt_sb;
 656
 657	/* Bind mounts can have disconnected paths */
 658	if (mnt->mnt_root == sb->s_root)
 659		return true;
 660
 661	return is_subdir(dentry, mnt->mnt_root);
 
 
 
 
 
 
 
 
 
 662}
 663
 664static void drop_links(struct nameidata *nd)
 665{
 666	int i = nd->depth;
 667	while (i--) {
 668		struct saved *last = nd->stack + i;
 669		do_delayed_call(&last->done);
 670		clear_delayed_call(&last->done);
 671	}
 672}
 673
 674static void leave_rcu(struct nameidata *nd)
 675{
 676	nd->flags &= ~LOOKUP_RCU;
 677	nd->seq = nd->next_seq = 0;
 678	rcu_read_unlock();
 679}
 680
 681static void terminate_walk(struct nameidata *nd)
 682{
 683	drop_links(nd);
 684	if (!(nd->flags & LOOKUP_RCU)) {
 685		int i;
 686		path_put(&nd->path);
 687		for (i = 0; i < nd->depth; i++)
 688			path_put(&nd->stack[i].link);
 689		if (nd->state & ND_ROOT_GRABBED) {
 690			path_put(&nd->root);
 691			nd->state &= ~ND_ROOT_GRABBED;
 692		}
 693	} else {
 694		leave_rcu(nd);
 
 695	}
 696	nd->depth = 0;
 697	nd->path.mnt = NULL;
 698	nd->path.dentry = NULL;
 699}
 700
 701/* path_put is needed afterwards regardless of success or failure */
 702static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
 
 703{
 704	int res = __legitimize_mnt(path->mnt, mseq);
 705	if (unlikely(res)) {
 706		if (res > 0)
 707			path->mnt = NULL;
 708		path->dentry = NULL;
 709		return false;
 710	}
 711	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
 712		path->dentry = NULL;
 713		return false;
 714	}
 715	return !read_seqcount_retry(&path->dentry->d_seq, seq);
 716}
 717
 718static inline bool legitimize_path(struct nameidata *nd,
 719			    struct path *path, unsigned seq)
 720{
 721	return __legitimize_path(path, seq, nd->m_seq);
 722}
 723
 724static bool legitimize_links(struct nameidata *nd)
 725{
 726	int i;
 727	if (unlikely(nd->flags & LOOKUP_CACHED)) {
 728		drop_links(nd);
 729		nd->depth = 0;
 730		return false;
 731	}
 732	for (i = 0; i < nd->depth; i++) {
 733		struct saved *last = nd->stack + i;
 734		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
 735			drop_links(nd);
 736			nd->depth = i + 1;
 737			return false;
 738		}
 739	}
 740	return true;
 741}
 742
 743static bool legitimize_root(struct nameidata *nd)
 744{
 745	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
 746	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
 747		return true;
 748	nd->state |= ND_ROOT_GRABBED;
 749	return legitimize_path(nd, &nd->root, nd->root_seq);
 750}
 751
 752/*
 753 * Path walking has 2 modes, rcu-walk and ref-walk (see
 754 * Documentation/filesystems/path-lookup.txt).  In situations when we can't
 755 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
 756 * normal reference counts on dentries and vfsmounts to transition to ref-walk
 757 * mode.  Refcounts are grabbed at the last known good point before rcu-walk
 758 * got stuck, so ref-walk may continue from there. If this is not successful
 759 * (eg. a seqcount has changed), then failure is returned and it's up to caller
 760 * to restart the path walk from the beginning in ref-walk mode.
 761 */
 762
 763/**
 764 * try_to_unlazy - try to switch to ref-walk mode.
 765 * @nd: nameidata pathwalk data
 766 * Returns: true on success, false on failure
 767 *
 768 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
 769 * for ref-walk mode.
 770 * Must be called from rcu-walk context.
 771 * Nothing should touch nameidata between try_to_unlazy() failure and
 772 * terminate_walk().
 773 */
 774static bool try_to_unlazy(struct nameidata *nd)
 775{
 776	struct dentry *parent = nd->path.dentry;
 777
 778	BUG_ON(!(nd->flags & LOOKUP_RCU));
 779
 
 780	if (unlikely(!legitimize_links(nd)))
 781		goto out1;
 782	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
 783		goto out;
 784	if (unlikely(!legitimize_root(nd)))
 785		goto out;
 786	leave_rcu(nd);
 787	BUG_ON(nd->inode != parent->d_inode);
 788	return true;
 789
 790out1:
 791	nd->path.mnt = NULL;
 792	nd->path.dentry = NULL;
 793out:
 794	leave_rcu(nd);
 795	return false;
 796}
 797
 798/**
 799 * try_to_unlazy_next - try to switch to ref-walk mode.
 800 * @nd: nameidata pathwalk data
 801 * @dentry: next dentry to step into
 802 * Returns: true on success, false on failure
 803 *
 804 * Similar to try_to_unlazy(), but here we have the next dentry already
 805 * picked by rcu-walk and want to legitimize that in addition to the current
 806 * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
 807 * Nothing should touch nameidata between try_to_unlazy_next() failure and
 
 808 * terminate_walk().
 809 */
 810static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
 811{
 812	int res;
 813	BUG_ON(!(nd->flags & LOOKUP_RCU));
 814
 
 815	if (unlikely(!legitimize_links(nd)))
 816		goto out2;
 817	res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
 818	if (unlikely(res)) {
 819		if (res > 0)
 820			goto out2;
 821		goto out1;
 822	}
 823	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
 824		goto out1;
 825
 826	/*
 827	 * We need to move both the parent and the dentry from the RCU domain
 828	 * to be properly refcounted. And the sequence number in the dentry
 829	 * validates *both* dentry counters, since we checked the sequence
 830	 * number of the parent after we got the child sequence number. So we
 831	 * know the parent must still be valid if the child sequence number is
 832	 */
 833	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
 834		goto out;
 835	if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
 836		goto out_dput;
 837	/*
 838	 * Sequence counts matched. Now make sure that the root is
 839	 * still valid and get it if required.
 840	 */
 841	if (unlikely(!legitimize_root(nd)))
 842		goto out_dput;
 843	leave_rcu(nd);
 844	return true;
 845
 846out2:
 847	nd->path.mnt = NULL;
 848out1:
 849	nd->path.dentry = NULL;
 850out:
 851	leave_rcu(nd);
 852	return false;
 853out_dput:
 854	leave_rcu(nd);
 855	dput(dentry);
 856	return false;
 857}
 858
 859static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
 860{
 861	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
 862		return dentry->d_op->d_revalidate(dentry, flags);
 863	else
 864		return 1;
 865}
 866
 867/**
 868 * complete_walk - successful completion of path walk
 869 * @nd:  pointer nameidata
 870 *
 871 * If we had been in RCU mode, drop out of it and legitimize nd->path.
 872 * Revalidate the final result, unless we'd already done that during
 873 * the path walk or the filesystem doesn't ask for it.  Return 0 on
 874 * success, -error on failure.  In case of failure caller does not
 875 * need to drop nd->path.
 876 */
 877static int complete_walk(struct nameidata *nd)
 878{
 879	struct dentry *dentry = nd->path.dentry;
 880	int status;
 881
 882	if (nd->flags & LOOKUP_RCU) {
 883		/*
 884		 * We don't want to zero nd->root for scoped-lookups or
 885		 * externally-managed nd->root.
 886		 */
 887		if (!(nd->state & ND_ROOT_PRESET))
 888			if (!(nd->flags & LOOKUP_IS_SCOPED))
 889				nd->root.mnt = NULL;
 890		nd->flags &= ~LOOKUP_CACHED;
 891		if (!try_to_unlazy(nd))
 892			return -ECHILD;
 893	}
 894
 895	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
 896		/*
 897		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
 898		 * ever step outside the root during lookup" and should already
 899		 * be guaranteed by the rest of namei, we want to avoid a namei
 900		 * BUG resulting in userspace being given a path that was not
 901		 * scoped within the root at some point during the lookup.
 902		 *
 903		 * So, do a final sanity-check to make sure that in the
 904		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
 905		 * we won't silently return an fd completely outside of the
 906		 * requested root to userspace.
 907		 *
 908		 * Userspace could move the path outside the root after this
 909		 * check, but as discussed elsewhere this is not a concern (the
 910		 * resolved file was inside the root at some point).
 911		 */
 912		if (!path_is_under(&nd->path, &nd->root))
 913			return -EXDEV;
 914	}
 915
 916	if (likely(!(nd->state & ND_JUMPED)))
 917		return 0;
 918
 919	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
 920		return 0;
 921
 922	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
 923	if (status > 0)
 924		return 0;
 925
 926	if (!status)
 927		status = -ESTALE;
 928
 929	return status;
 930}
 931
 932static int set_root(struct nameidata *nd)
 933{
 934	struct fs_struct *fs = current->fs;
 935
 936	/*
 937	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
 938	 * still have to ensure it doesn't happen because it will cause a breakout
 939	 * from the dirfd.
 940	 */
 941	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
 942		return -ENOTRECOVERABLE;
 943
 944	if (nd->flags & LOOKUP_RCU) {
 945		unsigned seq;
 946
 947		do {
 948			seq = read_seqcount_begin(&fs->seq);
 949			nd->root = fs->root;
 950			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
 951		} while (read_seqcount_retry(&fs->seq, seq));
 952	} else {
 953		get_fs_root(fs, &nd->root);
 954		nd->state |= ND_ROOT_GRABBED;
 955	}
 956	return 0;
 957}
 958
 959static int nd_jump_root(struct nameidata *nd)
 960{
 961	if (unlikely(nd->flags & LOOKUP_BENEATH))
 962		return -EXDEV;
 963	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
 964		/* Absolute path arguments to path_init() are allowed. */
 965		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
 966			return -EXDEV;
 967	}
 968	if (!nd->root.mnt) {
 969		int error = set_root(nd);
 970		if (error)
 971			return error;
 
 972	}
 
 
 
 
 
 
 973	if (nd->flags & LOOKUP_RCU) {
 974		struct dentry *d;
 975		nd->path = nd->root;
 976		d = nd->path.dentry;
 977		nd->inode = d->d_inode;
 978		nd->seq = nd->root_seq;
 979		if (read_seqcount_retry(&d->d_seq, nd->seq))
 980			return -ECHILD;
 981	} else {
 982		path_put(&nd->path);
 983		nd->path = nd->root;
 984		path_get(&nd->path);
 985		nd->inode = nd->path.dentry->d_inode;
 986	}
 987	nd->state |= ND_JUMPED;
 988	return 0;
 989}
 990
 991/*
 992 * Helper to directly jump to a known parsed path from ->get_link,
 993 * caller must have taken a reference to path beforehand.
 994 */
 995int nd_jump_link(const struct path *path)
 996{
 997	int error = -ELOOP;
 998	struct nameidata *nd = current->nameidata;
 999
1000	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1001		goto err;
1002
1003	error = -EXDEV;
1004	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1005		if (nd->path.mnt != path->mnt)
1006			goto err;
1007	}
1008	/* Not currently safe for scoped-lookups. */
1009	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1010		goto err;
1011
1012	path_put(&nd->path);
 
1013	nd->path = *path;
1014	nd->inode = nd->path.dentry->d_inode;
1015	nd->state |= ND_JUMPED;
1016	return 0;
1017
1018err:
1019	path_put(path);
1020	return error;
1021}
1022
1023static inline void put_link(struct nameidata *nd)
1024{
1025	struct saved *last = nd->stack + --nd->depth;
1026	do_delayed_call(&last->done);
1027	if (!(nd->flags & LOOKUP_RCU))
1028		path_put(&last->link);
1029}
1030
1031static int sysctl_protected_symlinks __read_mostly;
1032static int sysctl_protected_hardlinks __read_mostly;
1033static int sysctl_protected_fifos __read_mostly;
1034static int sysctl_protected_regular __read_mostly;
1035
1036#ifdef CONFIG_SYSCTL
1037static struct ctl_table namei_sysctls[] = {
1038	{
1039		.procname	= "protected_symlinks",
1040		.data		= &sysctl_protected_symlinks,
1041		.maxlen		= sizeof(int),
1042		.mode		= 0644,
1043		.proc_handler	= proc_dointvec_minmax,
1044		.extra1		= SYSCTL_ZERO,
1045		.extra2		= SYSCTL_ONE,
1046	},
1047	{
1048		.procname	= "protected_hardlinks",
1049		.data		= &sysctl_protected_hardlinks,
1050		.maxlen		= sizeof(int),
1051		.mode		= 0644,
1052		.proc_handler	= proc_dointvec_minmax,
1053		.extra1		= SYSCTL_ZERO,
1054		.extra2		= SYSCTL_ONE,
1055	},
1056	{
1057		.procname	= "protected_fifos",
1058		.data		= &sysctl_protected_fifos,
1059		.maxlen		= sizeof(int),
1060		.mode		= 0644,
1061		.proc_handler	= proc_dointvec_minmax,
1062		.extra1		= SYSCTL_ZERO,
1063		.extra2		= SYSCTL_TWO,
1064	},
1065	{
1066		.procname	= "protected_regular",
1067		.data		= &sysctl_protected_regular,
1068		.maxlen		= sizeof(int),
1069		.mode		= 0644,
1070		.proc_handler	= proc_dointvec_minmax,
1071		.extra1		= SYSCTL_ZERO,
1072		.extra2		= SYSCTL_TWO,
1073	},
1074};
1075
1076static int __init init_fs_namei_sysctls(void)
1077{
1078	register_sysctl_init("fs", namei_sysctls);
1079	return 0;
1080}
1081fs_initcall(init_fs_namei_sysctls);
1082
1083#endif /* CONFIG_SYSCTL */
1084
1085/**
1086 * may_follow_link - Check symlink following for unsafe situations
1087 * @nd: nameidata pathwalk data
1088 * @inode: Used for idmapping.
1089 *
1090 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1091 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1092 * in a sticky world-writable directory. This is to protect privileged
1093 * processes from failing races against path names that may change out
1094 * from under them by way of other users creating malicious symlinks.
1095 * It will permit symlinks to be followed only when outside a sticky
1096 * world-writable directory, or when the uid of the symlink and follower
1097 * match, or when the directory owner matches the symlink's owner.
1098 *
1099 * Returns 0 if following the symlink is allowed, -ve on error.
1100 */
1101static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1102{
1103	struct mnt_idmap *idmap;
1104	vfsuid_t vfsuid;
 
1105
1106	if (!sysctl_protected_symlinks)
1107		return 0;
1108
1109	idmap = mnt_idmap(nd->path.mnt);
1110	vfsuid = i_uid_into_vfsuid(idmap, inode);
1111	/* Allowed if owner and follower match. */
1112	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
 
1113		return 0;
1114
1115	/* Allowed if parent directory not sticky and world-writable. */
1116	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
 
1117		return 0;
1118
1119	/* Allowed if parent directory and link owner match. */
1120	if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
 
1121		return 0;
1122
1123	if (nd->flags & LOOKUP_RCU)
1124		return -ECHILD;
1125
1126	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1127	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1128	return -EACCES;
1129}
1130
1131/**
1132 * safe_hardlink_source - Check for safe hardlink conditions
1133 * @idmap: idmap of the mount the inode was found from
1134 * @inode: the source inode to hardlink from
1135 *
1136 * Return false if at least one of the following conditions:
1137 *    - inode is not a regular file
1138 *    - inode is setuid
1139 *    - inode is setgid and group-exec
1140 *    - access failure for read and write
1141 *
1142 * Otherwise returns true.
1143 */
1144static bool safe_hardlink_source(struct mnt_idmap *idmap,
1145				 struct inode *inode)
1146{
1147	umode_t mode = inode->i_mode;
1148
1149	/* Special files should not get pinned to the filesystem. */
1150	if (!S_ISREG(mode))
1151		return false;
1152
1153	/* Setuid files should not get pinned to the filesystem. */
1154	if (mode & S_ISUID)
1155		return false;
1156
1157	/* Executable setgid files should not get pinned to the filesystem. */
1158	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1159		return false;
1160
1161	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1162	if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1163		return false;
1164
1165	return true;
1166}
1167
1168/**
1169 * may_linkat - Check permissions for creating a hardlink
1170 * @idmap: idmap of the mount the inode was found from
1171 * @link:  the source to hardlink from
1172 *
1173 * Block hardlink when all of:
1174 *  - sysctl_protected_hardlinks enabled
1175 *  - fsuid does not match inode
1176 *  - hardlink source is unsafe (see safe_hardlink_source() above)
1177 *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1178 *
1179 * If the inode has been found through an idmapped mount the idmap of
1180 * the vfsmount must be passed through @idmap. This function will then take
1181 * care to map the inode according to @idmap before checking permissions.
1182 * On non-idmapped mounts or if permission checking is to be performed on the
1183 * raw inode simply pass @nop_mnt_idmap.
1184 *
1185 * Returns 0 if successful, -ve on error.
1186 */
1187int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1188{
1189	struct inode *inode = link->dentry->d_inode;
1190
1191	/* Inode writeback is not safe when the uid or gid are invalid. */
1192	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1193	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1194		return -EOVERFLOW;
1195
1196	if (!sysctl_protected_hardlinks)
1197		return 0;
1198
1199	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1200	 * otherwise, it must be a safe source.
1201	 */
1202	if (safe_hardlink_source(idmap, inode) ||
1203	    inode_owner_or_capable(idmap, inode))
1204		return 0;
1205
1206	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1207	return -EPERM;
1208}
1209
1210/**
1211 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1212 *			  should be allowed, or not, on files that already
1213 *			  exist.
1214 * @idmap: idmap of the mount the inode was found from
1215 * @nd: nameidata pathwalk data
1216 * @inode: the inode of the file to open
1217 *
1218 * Block an O_CREAT open of a FIFO (or a regular file) when:
1219 *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1220 *   - the file already exists
1221 *   - we are in a sticky directory
1222 *   - we don't own the file
1223 *   - the owner of the directory doesn't own the file
1224 *   - the directory is world writable
1225 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1226 * the directory doesn't have to be world writable: being group writable will
1227 * be enough.
1228 *
1229 * If the inode has been found through an idmapped mount the idmap of
1230 * the vfsmount must be passed through @idmap. This function will then take
1231 * care to map the inode according to @idmap before checking permissions.
1232 * On non-idmapped mounts or if permission checking is to be performed on the
1233 * raw inode simply pass @nop_mnt_idmap.
1234 *
1235 * Returns 0 if the open is allowed, -ve on error.
1236 */
1237static int may_create_in_sticky(struct mnt_idmap *idmap,
1238				struct nameidata *nd, struct inode *const inode)
1239{
1240	umode_t dir_mode = nd->dir_mode;
1241	vfsuid_t dir_vfsuid = nd->dir_vfsuid;
1242
1243	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1244	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1245	    likely(!(dir_mode & S_ISVTX)) ||
1246	    vfsuid_eq(i_uid_into_vfsuid(idmap, inode), dir_vfsuid) ||
1247	    vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), current_fsuid()))
1248		return 0;
1249
1250	if (likely(dir_mode & 0002) ||
1251	    (dir_mode & 0020 &&
1252	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1253	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1254		const char *operation = S_ISFIFO(inode->i_mode) ?
1255					"sticky_create_fifo" :
1256					"sticky_create_regular";
1257		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1258		return -EACCES;
1259	}
1260	return 0;
1261}
1262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1263/*
1264 * follow_up - Find the mountpoint of path's vfsmount
1265 *
1266 * Given a path, find the mountpoint of its source file system.
1267 * Replace @path with the path of the mountpoint in the parent mount.
1268 * Up is towards /.
1269 *
1270 * Return 1 if we went up a level and 0 if we were already at the
1271 * root.
1272 */
1273int follow_up(struct path *path)
1274{
1275	struct mount *mnt = real_mount(path->mnt);
1276	struct mount *parent;
1277	struct dentry *mountpoint;
1278
1279	read_seqlock_excl(&mount_lock);
1280	parent = mnt->mnt_parent;
1281	if (parent == mnt) {
1282		read_sequnlock_excl(&mount_lock);
1283		return 0;
1284	}
1285	mntget(&parent->mnt);
1286	mountpoint = dget(mnt->mnt_mountpoint);
1287	read_sequnlock_excl(&mount_lock);
1288	dput(path->dentry);
1289	path->dentry = mountpoint;
1290	mntput(path->mnt);
1291	path->mnt = &parent->mnt;
1292	return 1;
1293}
1294EXPORT_SYMBOL(follow_up);
1295
1296static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1297				  struct path *path, unsigned *seqp)
1298{
1299	while (mnt_has_parent(m)) {
1300		struct dentry *mountpoint = m->mnt_mountpoint;
1301
1302		m = m->mnt_parent;
1303		if (unlikely(root->dentry == mountpoint &&
1304			     root->mnt == &m->mnt))
1305			break;
1306		if (mountpoint != m->mnt.mnt_root) {
1307			path->mnt = &m->mnt;
1308			path->dentry = mountpoint;
1309			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1310			return true;
1311		}
1312	}
1313	return false;
1314}
1315
1316static bool choose_mountpoint(struct mount *m, const struct path *root,
1317			      struct path *path)
1318{
1319	bool found;
1320
1321	rcu_read_lock();
1322	while (1) {
1323		unsigned seq, mseq = read_seqbegin(&mount_lock);
1324
1325		found = choose_mountpoint_rcu(m, root, path, &seq);
1326		if (unlikely(!found)) {
1327			if (!read_seqretry(&mount_lock, mseq))
1328				break;
1329		} else {
1330			if (likely(__legitimize_path(path, seq, mseq)))
1331				break;
1332			rcu_read_unlock();
1333			path_put(path);
1334			rcu_read_lock();
1335		}
1336	}
1337	rcu_read_unlock();
1338	return found;
1339}
1340
1341/*
1342 * Perform an automount
1343 * - return -EISDIR to tell follow_managed() to stop and return the path we
1344 *   were called with.
1345 */
1346static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
 
1347{
1348	struct dentry *dentry = path->dentry;
 
 
 
 
1349
1350	/* We don't want to mount if someone's just doing a stat -
1351	 * unless they're stat'ing a directory and appended a '/' to
1352	 * the name.
1353	 *
1354	 * We do, however, want to mount if someone wants to open or
1355	 * create a file of any type under the mountpoint, wants to
1356	 * traverse through the mountpoint or wants to open the
1357	 * mounted directory.  Also, autofs may mark negative dentries
1358	 * as being automount points.  These will need the attentions
1359	 * of the daemon to instantiate them before they can be used.
1360	 */
1361	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1362			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1363	    dentry->d_inode)
1364		return -EISDIR;
1365
1366	if (count && (*count)++ >= MAXSYMLINKS)
 
1367		return -ELOOP;
1368
1369	return finish_automount(dentry->d_op->d_automount(path), path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1370}
1371
1372/*
1373 * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1374 * dentries are pinned but not locked here, so negative dentry can go
1375 * positive right under us.  Use of smp_load_acquire() provides a barrier
1376 * sufficient for ->d_inode and ->d_flags consistency.
 
 
 
 
1377 */
1378static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1379			     int *count, unsigned lookup_flags)
1380{
1381	struct vfsmount *mnt = path->mnt;
 
1382	bool need_mntput = false;
1383	int ret = 0;
1384
1385	while (flags & DCACHE_MANAGED_DENTRY) {
 
 
 
 
 
1386		/* Allow the filesystem to manage the transit without i_mutex
1387		 * being held. */
1388		if (flags & DCACHE_MANAGE_TRANSIT) {
 
 
1389			ret = path->dentry->d_op->d_manage(path, false);
1390			flags = smp_load_acquire(&path->dentry->d_flags);
1391			if (ret < 0)
1392				break;
1393		}
1394
1395		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
 
1396			struct vfsmount *mounted = lookup_mnt(path);
1397			if (mounted) {		// ... in our namespace
1398				dput(path->dentry);
1399				if (need_mntput)
1400					mntput(path->mnt);
1401				path->mnt = mounted;
1402				path->dentry = dget(mounted->mnt_root);
1403				// here we know it's positive
1404				flags = path->dentry->d_flags;
1405				need_mntput = true;
1406				continue;
1407			}
 
 
 
 
 
1408		}
1409
1410		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1411			break;
 
 
 
 
 
1412
1413		// uncovered automount point
1414		ret = follow_automount(path, count, lookup_flags);
1415		flags = smp_load_acquire(&path->dentry->d_flags);
1416		if (ret < 0)
1417			break;
1418	}
1419
1420	if (ret == -EISDIR)
1421		ret = 0;
1422	// possible if you race with several mount --move
1423	if (need_mntput && path->mnt == mnt)
1424		mntput(path->mnt);
1425	if (!ret && unlikely(d_flags_negative(flags)))
1426		ret = -ENOENT;
1427	*jumped = need_mntput;
 
 
 
1428	return ret;
1429}
1430
1431static inline int traverse_mounts(struct path *path, bool *jumped,
1432				  int *count, unsigned lookup_flags)
1433{
1434	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1435
1436	/* fastpath */
1437	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1438		*jumped = false;
1439		if (unlikely(d_flags_negative(flags)))
1440			return -ENOENT;
1441		return 0;
1442	}
1443	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1444}
1445
1446int follow_down_one(struct path *path)
1447{
1448	struct vfsmount *mounted;
1449
1450	mounted = lookup_mnt(path);
1451	if (mounted) {
1452		dput(path->dentry);
1453		mntput(path->mnt);
1454		path->mnt = mounted;
1455		path->dentry = dget(mounted->mnt_root);
1456		return 1;
1457	}
1458	return 0;
1459}
1460EXPORT_SYMBOL(follow_down_one);
1461
1462/*
1463 * Follow down to the covering mount currently visible to userspace.  At each
1464 * point, the filesystem owning that dentry may be queried as to whether the
1465 * caller is permitted to proceed or not.
1466 */
1467int follow_down(struct path *path, unsigned int flags)
1468{
1469	struct vfsmount *mnt = path->mnt;
1470	bool jumped;
1471	int ret = traverse_mounts(path, &jumped, NULL, flags);
1472
1473	if (path->mnt != mnt)
1474		mntput(mnt);
1475	return ret;
1476}
1477EXPORT_SYMBOL(follow_down);
1478
1479/*
1480 * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1481 * we meet a managed dentry that would need blocking.
1482 */
1483static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
 
1484{
1485	struct dentry *dentry = path->dentry;
1486	unsigned int flags = dentry->d_flags;
1487
1488	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1489		return true;
1490
1491	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1492		return false;
1493
1494	for (;;) {
 
1495		/*
1496		 * Don't forget we might have a non-mountpoint managed dentry
1497		 * that wants to block transit.
1498		 */
1499		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1500			int res = dentry->d_op->d_manage(path, true);
1501			if (res)
1502				return res == -EISDIR;
1503			flags = dentry->d_flags;
 
 
 
1504		}
1505
1506		if (flags & DCACHE_MOUNTED) {
1507			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1508			if (mounted) {
1509				path->mnt = &mounted->mnt;
1510				dentry = path->dentry = mounted->mnt.mnt_root;
1511				nd->state |= ND_JUMPED;
1512				nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1513				flags = dentry->d_flags;
1514				// makes sure that non-RCU pathwalk could reach
1515				// this state.
1516				if (read_seqretry(&mount_lock, nd->m_seq))
1517					return false;
1518				continue;
1519			}
1520			if (read_seqretry(&mount_lock, nd->m_seq))
1521				return false;
1522		}
1523		return !(flags & DCACHE_NEED_AUTOMOUNT);
1524	}
 
 
1525}
1526
1527static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1528			  struct path *path)
1529{
1530	bool jumped;
1531	int ret;
1532
1533	path->mnt = nd->path.mnt;
1534	path->dentry = dentry;
1535	if (nd->flags & LOOKUP_RCU) {
1536		unsigned int seq = nd->next_seq;
1537		if (likely(__follow_mount_rcu(nd, path)))
1538			return 0;
1539		// *path and nd->next_seq might've been clobbered
1540		path->mnt = nd->path.mnt;
1541		path->dentry = dentry;
1542		nd->next_seq = seq;
1543		if (!try_to_unlazy_next(nd, dentry))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544			return -ECHILD;
 
 
 
 
 
 
1545	}
1546	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1547	if (jumped) {
1548		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1549			ret = -EXDEV;
1550		else
1551			nd->state |= ND_JUMPED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1552	}
1553	if (unlikely(ret)) {
 
 
 
 
 
 
 
 
 
 
 
 
1554		dput(path->dentry);
1555		if (path->mnt != nd->path.mnt)
1556			mntput(path->mnt);
 
1557	}
1558	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1559}
1560
1561/*
1562 * This looks up the name in dcache and possibly revalidates the found dentry.
1563 * NULL is returned if the dentry does not exist in the cache.
1564 */
1565static struct dentry *lookup_dcache(const struct qstr *name,
1566				    struct dentry *dir,
1567				    unsigned int flags)
1568{
1569	struct dentry *dentry = d_lookup(dir, name);
1570	if (dentry) {
1571		int error = d_revalidate(dentry, flags);
1572		if (unlikely(error <= 0)) {
1573			if (!error)
1574				d_invalidate(dentry);
1575			dput(dentry);
1576			return ERR_PTR(error);
1577		}
1578	}
1579	return dentry;
1580}
1581
1582/*
1583 * Parent directory has inode locked exclusive.  This is one
1584 * and only case when ->lookup() gets called on non in-lookup
1585 * dentries - as the matter of fact, this only gets called
1586 * when directory is guaranteed to have no in-lookup children
1587 * at all.
1588 */
1589struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1590				    struct dentry *base,
1591				    unsigned int flags)
1592{
1593	struct dentry *dentry = lookup_dcache(name, base, flags);
1594	struct dentry *old;
1595	struct inode *dir = base->d_inode;
1596
1597	if (dentry)
1598		return dentry;
1599
1600	/* Don't create child dentry for a dead directory. */
1601	if (unlikely(IS_DEADDIR(dir)))
1602		return ERR_PTR(-ENOENT);
1603
1604	dentry = d_alloc(base, name);
1605	if (unlikely(!dentry))
1606		return ERR_PTR(-ENOMEM);
1607
1608	old = dir->i_op->lookup(dir, dentry, flags);
1609	if (unlikely(old)) {
1610		dput(dentry);
1611		dentry = old;
1612	}
1613	return dentry;
1614}
1615EXPORT_SYMBOL(lookup_one_qstr_excl);
1616
1617static struct dentry *lookup_fast(struct nameidata *nd)
 
 
1618{
 
1619	struct dentry *dentry, *parent = nd->path.dentry;
1620	int status = 1;
 
1621
1622	/*
1623	 * Rename seqlock is not required here because in the off chance
1624	 * of a false negative due to a concurrent rename, the caller is
1625	 * going to fall back to non-racy lookup.
1626	 */
1627	if (nd->flags & LOOKUP_RCU) {
1628		dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
 
 
1629		if (unlikely(!dentry)) {
1630			if (!try_to_unlazy(nd))
1631				return ERR_PTR(-ECHILD);
1632			return NULL;
1633		}
1634
1635		/*
 
 
 
 
 
 
 
 
 
1636		 * This sequence count validates that the parent had no
1637		 * changes while we did the lookup of the dentry above.
 
 
 
1638		 */
1639		if (read_seqcount_retry(&parent->d_seq, nd->seq))
1640			return ERR_PTR(-ECHILD);
1641
 
1642		status = d_revalidate(dentry, nd->flags);
1643		if (likely(status > 0))
1644			return dentry;
1645		if (!try_to_unlazy_next(nd, dentry))
1646			return ERR_PTR(-ECHILD);
1647		if (status == -ECHILD)
 
 
 
 
 
 
 
 
 
 
1648			/* we'd been told to redo it in non-rcu mode */
1649			status = d_revalidate(dentry, nd->flags);
1650	} else {
1651		dentry = __d_lookup(parent, &nd->last);
1652		if (unlikely(!dentry))
1653			return NULL;
1654		status = d_revalidate(dentry, nd->flags);
1655	}
1656	if (unlikely(status <= 0)) {
1657		if (!status)
1658			d_invalidate(dentry);
1659		dput(dentry);
1660		return ERR_PTR(status);
1661	}
1662	return dentry;
 
 
 
 
 
 
 
 
 
 
1663}
1664
1665/* Fast lookup failed, do it the slow way */
1666static struct dentry *__lookup_slow(const struct qstr *name,
1667				    struct dentry *dir,
1668				    unsigned int flags)
1669{
1670	struct dentry *dentry, *old;
1671	struct inode *inode = dir->d_inode;
1672	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1673
1674	/* Don't go there if it's already dead */
1675	if (unlikely(IS_DEADDIR(inode)))
1676		return ERR_PTR(-ENOENT);
1677again:
1678	dentry = d_alloc_parallel(dir, name, &wq);
1679	if (IS_ERR(dentry))
1680		return dentry;
1681	if (unlikely(!d_in_lookup(dentry))) {
1682		int error = d_revalidate(dentry, flags);
1683		if (unlikely(error <= 0)) {
1684			if (!error) {
1685				d_invalidate(dentry);
 
 
 
 
1686				dput(dentry);
1687				goto again;
1688			}
1689			dput(dentry);
1690			dentry = ERR_PTR(error);
1691		}
1692	} else {
1693		old = inode->i_op->lookup(inode, dentry, flags);
1694		d_lookup_done(dentry);
1695		if (unlikely(old)) {
1696			dput(dentry);
1697			dentry = old;
1698		}
1699	}
1700	return dentry;
1701}
1702
1703static struct dentry *lookup_slow(const struct qstr *name,
1704				  struct dentry *dir,
1705				  unsigned int flags)
1706{
1707	struct inode *inode = dir->d_inode;
1708	struct dentry *res;
1709	inode_lock_shared(inode);
1710	res = __lookup_slow(name, dir, flags);
1711	inode_unlock_shared(inode);
1712	return res;
1713}
1714
1715static inline int may_lookup(struct mnt_idmap *idmap,
1716			     struct nameidata *nd)
1717{
1718	if (nd->flags & LOOKUP_RCU) {
1719		int err = inode_permission(idmap, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1720		if (!err)		// success, keep going
1721			return 0;
1722		if (!try_to_unlazy(nd))
1723			return -ECHILD;	// redo it all non-lazy
1724		if (err != -ECHILD)	// hard error
1725			return err;
 
 
1726	}
1727	return inode_permission(idmap, nd->inode, MAY_EXEC);
1728}
1729
1730static int reserve_stack(struct nameidata *nd, struct path *link)
1731{
1732	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1733		return -ELOOP;
1734
1735	if (likely(nd->depth != EMBEDDED_LEVELS))
1736		return 0;
1737	if (likely(nd->stack != nd->internal))
1738		return 0;
1739	if (likely(nd_alloc_stack(nd)))
1740		return 0;
1741
1742	if (nd->flags & LOOKUP_RCU) {
1743		// we need to grab link before we do unlazy.  And we can't skip
1744		// unlazy even if we fail to grab the link - cleanup needs it
1745		bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1746
1747		if (!try_to_unlazy(nd) || !grabbed_link)
1748			return -ECHILD;
1749
1750		if (nd_alloc_stack(nd))
1751			return 0;
1752	}
1753	return -ENOMEM;
1754}
1755
1756enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1757
1758static const char *pick_link(struct nameidata *nd, struct path *link,
1759		     struct inode *inode, int flags)
1760{
 
1761	struct saved *last;
1762	const char *res;
1763	int error = reserve_stack(nd, link);
1764
 
 
 
 
 
 
1765	if (unlikely(error)) {
1766		if (!(nd->flags & LOOKUP_RCU))
 
 
 
 
 
 
 
 
 
 
 
1767			path_put(link);
1768		return ERR_PTR(error);
 
1769	}
 
1770	last = nd->stack + nd->depth++;
1771	last->link = *link;
1772	clear_delayed_call(&last->done);
1773	last->seq = nd->next_seq;
1774
1775	if (flags & WALK_TRAILING) {
1776		error = may_follow_link(nd, inode);
1777		if (unlikely(error))
1778			return ERR_PTR(error);
1779	}
1780
1781	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1782			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1783		return ERR_PTR(-ELOOP);
1784
1785	if (!(nd->flags & LOOKUP_RCU)) {
1786		touch_atime(&last->link);
1787		cond_resched();
1788	} else if (atime_needs_update(&last->link, inode)) {
1789		if (!try_to_unlazy(nd))
1790			return ERR_PTR(-ECHILD);
1791		touch_atime(&last->link);
1792	}
1793
1794	error = security_inode_follow_link(link->dentry, inode,
1795					   nd->flags & LOOKUP_RCU);
1796	if (unlikely(error))
1797		return ERR_PTR(error);
1798
1799	res = READ_ONCE(inode->i_link);
1800	if (!res) {
1801		const char * (*get)(struct dentry *, struct inode *,
1802				struct delayed_call *);
1803		get = inode->i_op->get_link;
1804		if (nd->flags & LOOKUP_RCU) {
1805			res = get(NULL, inode, &last->done);
1806			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1807				res = get(link->dentry, inode, &last->done);
1808		} else {
1809			res = get(link->dentry, inode, &last->done);
1810		}
1811		if (!res)
1812			goto all_done;
1813		if (IS_ERR(res))
1814			return res;
1815	}
1816	if (*res == '/') {
1817		error = nd_jump_root(nd);
1818		if (unlikely(error))
1819			return ERR_PTR(error);
1820		while (unlikely(*++res == '/'))
1821			;
1822	}
1823	if (*res)
1824		return res;
1825all_done: // pure jump
1826	put_link(nd);
1827	return NULL;
1828}
1829
 
 
1830/*
1831 * Do we need to follow links? We _really_ want to be able
1832 * to do this check without having to look at inode->i_op,
1833 * so we keep a cache of "no, this doesn't need follow_link"
1834 * for the common case.
1835 *
1836 * NOTE: dentry must be what nd->next_seq had been sampled from.
1837 */
1838static const char *step_into(struct nameidata *nd, int flags,
1839		     struct dentry *dentry)
1840{
1841	struct path path;
1842	struct inode *inode;
1843	int err = handle_mounts(nd, dentry, &path);
1844
1845	if (err < 0)
1846		return ERR_PTR(err);
1847	inode = path.dentry->d_inode;
1848	if (likely(!d_is_symlink(path.dentry)) ||
1849	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1850	   (flags & WALK_NOFOLLOW)) {
1851		/* not a symlink or should not follow */
1852		if (nd->flags & LOOKUP_RCU) {
1853			if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1854				return ERR_PTR(-ECHILD);
1855			if (unlikely(!inode))
1856				return ERR_PTR(-ENOENT);
1857		} else {
1858			dput(nd->path.dentry);
1859			if (nd->path.mnt != path.mnt)
1860				mntput(nd->path.mnt);
1861		}
1862		nd->path = path;
1863		nd->inode = inode;
1864		nd->seq = nd->next_seq;
1865		return NULL;
1866	}
1867	if (nd->flags & LOOKUP_RCU) {
1868		/* make sure that d_is_symlink above matches inode */
1869		if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1870			return ERR_PTR(-ECHILD);
1871	} else {
1872		if (path.mnt == nd->path.mnt)
1873			mntget(path.mnt);
1874	}
1875	return pick_link(nd, &path, inode, flags);
1876}
1877
1878static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1879{
1880	struct dentry *parent, *old;
1881
1882	if (path_equal(&nd->path, &nd->root))
1883		goto in_root;
1884	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1885		struct path path;
1886		unsigned seq;
1887		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1888					   &nd->root, &path, &seq))
1889			goto in_root;
1890		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1891			return ERR_PTR(-ECHILD);
1892		nd->path = path;
1893		nd->inode = path.dentry->d_inode;
1894		nd->seq = seq;
1895		// makes sure that non-RCU pathwalk could reach this state
1896		if (read_seqretry(&mount_lock, nd->m_seq))
1897			return ERR_PTR(-ECHILD);
1898		/* we know that mountpoint was pinned */
1899	}
1900	old = nd->path.dentry;
1901	parent = old->d_parent;
1902	nd->next_seq = read_seqcount_begin(&parent->d_seq);
1903	// makes sure that non-RCU pathwalk could reach this state
1904	if (read_seqcount_retry(&old->d_seq, nd->seq))
1905		return ERR_PTR(-ECHILD);
1906	if (unlikely(!path_connected(nd->path.mnt, parent)))
1907		return ERR_PTR(-ECHILD);
1908	return parent;
1909in_root:
1910	if (read_seqretry(&mount_lock, nd->m_seq))
1911		return ERR_PTR(-ECHILD);
1912	if (unlikely(nd->flags & LOOKUP_BENEATH))
1913		return ERR_PTR(-ECHILD);
1914	nd->next_seq = nd->seq;
1915	return nd->path.dentry;
1916}
1917
1918static struct dentry *follow_dotdot(struct nameidata *nd)
1919{
1920	struct dentry *parent;
1921
1922	if (path_equal(&nd->path, &nd->root))
1923		goto in_root;
1924	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1925		struct path path;
1926
1927		if (!choose_mountpoint(real_mount(nd->path.mnt),
1928				       &nd->root, &path))
1929			goto in_root;
1930		path_put(&nd->path);
1931		nd->path = path;
1932		nd->inode = path.dentry->d_inode;
1933		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1934			return ERR_PTR(-EXDEV);
1935	}
1936	/* rare case of legitimate dget_parent()... */
1937	parent = dget_parent(nd->path.dentry);
1938	if (unlikely(!path_connected(nd->path.mnt, parent))) {
1939		dput(parent);
1940		return ERR_PTR(-ENOENT);
1941	}
1942	return parent;
1943
1944in_root:
1945	if (unlikely(nd->flags & LOOKUP_BENEATH))
1946		return ERR_PTR(-EXDEV);
1947	return dget(nd->path.dentry);
1948}
1949
1950static const char *handle_dots(struct nameidata *nd, int type)
1951{
1952	if (type == LAST_DOTDOT) {
1953		const char *error = NULL;
1954		struct dentry *parent;
1955
1956		if (!nd->root.mnt) {
1957			error = ERR_PTR(set_root(nd));
1958			if (error)
1959				return error;
1960		}
1961		if (nd->flags & LOOKUP_RCU)
1962			parent = follow_dotdot_rcu(nd);
1963		else
1964			parent = follow_dotdot(nd);
1965		if (IS_ERR(parent))
1966			return ERR_CAST(parent);
1967		error = step_into(nd, WALK_NOFOLLOW, parent);
1968		if (unlikely(error))
1969			return error;
1970
1971		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1972			/*
1973			 * If there was a racing rename or mount along our
1974			 * path, then we can't be sure that ".." hasn't jumped
1975			 * above nd->root (and so userspace should retry or use
1976			 * some fallback).
1977			 */
1978			smp_rmb();
1979			if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
1980				return ERR_PTR(-EAGAIN);
1981			if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
1982				return ERR_PTR(-EAGAIN);
1983		}
1984	}
1985	return NULL;
1986}
1987
1988static const char *walk_component(struct nameidata *nd, int flags)
1989{
1990	struct dentry *dentry;
 
 
 
1991	/*
1992	 * "." and ".." are special - ".." especially so because it has
1993	 * to be able to know about the current root directory and
1994	 * parent relationships.
1995	 */
1996	if (unlikely(nd->last_type != LAST_NORM)) {
 
1997		if (!(flags & WALK_MORE) && nd->depth)
1998			put_link(nd);
1999		return handle_dots(nd, nd->last_type);
2000	}
2001	dentry = lookup_fast(nd);
2002	if (IS_ERR(dentry))
2003		return ERR_CAST(dentry);
2004	if (unlikely(!dentry)) {
2005		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2006		if (IS_ERR(dentry))
2007			return ERR_CAST(dentry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2008	}
2009	if (!(flags & WALK_MORE) && nd->depth)
2010		put_link(nd);
2011	return step_into(nd, flags, dentry);
2012}
2013
2014/*
2015 * We can do the critical dentry name comparison and hashing
2016 * operations one word at a time, but we are limited to:
2017 *
2018 * - Architectures with fast unaligned word accesses. We could
2019 *   do a "get_unaligned()" if this helps and is sufficiently
2020 *   fast.
2021 *
2022 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2023 *   do not trap on the (extremely unlikely) case of a page
2024 *   crossing operation.
2025 *
2026 * - Furthermore, we need an efficient 64-bit compile for the
2027 *   64-bit case in order to generate the "number of bytes in
2028 *   the final mask". Again, that could be replaced with a
2029 *   efficient population count instruction or similar.
2030 */
2031#ifdef CONFIG_DCACHE_WORD_ACCESS
2032
2033#include <asm/word-at-a-time.h>
2034
2035#ifdef HASH_MIX
2036
2037/* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2038
2039#elif defined(CONFIG_64BIT)
2040/*
2041 * Register pressure in the mixing function is an issue, particularly
2042 * on 32-bit x86, but almost any function requires one state value and
2043 * one temporary.  Instead, use a function designed for two state values
2044 * and no temporaries.
2045 *
2046 * This function cannot create a collision in only two iterations, so
2047 * we have two iterations to achieve avalanche.  In those two iterations,
2048 * we have six layers of mixing, which is enough to spread one bit's
2049 * influence out to 2^6 = 64 state bits.
2050 *
2051 * Rotate constants are scored by considering either 64 one-bit input
2052 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2053 * probability of that delta causing a change to each of the 128 output
2054 * bits, using a sample of random initial states.
2055 *
2056 * The Shannon entropy of the computed probabilities is then summed
2057 * to produce a score.  Ideally, any input change has a 50% chance of
2058 * toggling any given output bit.
2059 *
2060 * Mixing scores (in bits) for (12,45):
2061 * Input delta: 1-bit      2-bit
2062 * 1 round:     713.3    42542.6
2063 * 2 rounds:   2753.7   140389.8
2064 * 3 rounds:   5954.1   233458.2
2065 * 4 rounds:   7862.6   256672.2
2066 * Perfect:    8192     258048
2067 *            (64*128) (64*63/2 * 128)
2068 */
2069#define HASH_MIX(x, y, a)	\
2070	(	x ^= (a),	\
2071	y ^= x,	x = rol64(x,12),\
2072	x += y,	y = rol64(y,45),\
2073	y *= 9			)
2074
2075/*
2076 * Fold two longs into one 32-bit hash value.  This must be fast, but
2077 * latency isn't quite as critical, as there is a fair bit of additional
2078 * work done before the hash value is used.
2079 */
2080static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2081{
2082	y ^= x * GOLDEN_RATIO_64;
2083	y *= GOLDEN_RATIO_64;
2084	return y >> 32;
2085}
2086
2087#else	/* 32-bit case */
2088
2089/*
2090 * Mixing scores (in bits) for (7,20):
2091 * Input delta: 1-bit      2-bit
2092 * 1 round:     330.3     9201.6
2093 * 2 rounds:   1246.4    25475.4
2094 * 3 rounds:   1907.1    31295.1
2095 * 4 rounds:   2042.3    31718.6
2096 * Perfect:    2048      31744
2097 *            (32*64)   (32*31/2 * 64)
2098 */
2099#define HASH_MIX(x, y, a)	\
2100	(	x ^= (a),	\
2101	y ^= x,	x = rol32(x, 7),\
2102	x += y,	y = rol32(y,20),\
2103	y *= 9			)
2104
2105static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2106{
2107	/* Use arch-optimized multiply if one exists */
2108	return __hash_32(y ^ __hash_32(x));
2109}
2110
2111#endif
2112
2113/*
2114 * Return the hash of a string of known length.  This is carfully
2115 * designed to match hash_name(), which is the more critical function.
2116 * In particular, we must end by hashing a final word containing 0..7
2117 * payload bytes, to match the way that hash_name() iterates until it
2118 * finds the delimiter after the name.
2119 */
2120unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2121{
2122	unsigned long a, x = 0, y = (unsigned long)salt;
2123
2124	for (;;) {
2125		if (!len)
2126			goto done;
2127		a = load_unaligned_zeropad(name);
2128		if (len < sizeof(unsigned long))
2129			break;
2130		HASH_MIX(x, y, a);
2131		name += sizeof(unsigned long);
2132		len -= sizeof(unsigned long);
2133	}
2134	x ^= a & bytemask_from_count(len);
2135done:
2136	return fold_hash(x, y);
2137}
2138EXPORT_SYMBOL(full_name_hash);
2139
2140/* Return the "hash_len" (hash and length) of a null-terminated string */
2141u64 hashlen_string(const void *salt, const char *name)
2142{
2143	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2144	unsigned long adata, mask, len;
2145	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2146
2147	len = 0;
2148	goto inside;
2149
2150	do {
2151		HASH_MIX(x, y, a);
2152		len += sizeof(unsigned long);
2153inside:
2154		a = load_unaligned_zeropad(name+len);
2155	} while (!has_zero(a, &adata, &constants));
2156
2157	adata = prep_zero_mask(a, adata, &constants);
2158	mask = create_zero_mask(adata);
2159	x ^= a & zero_bytemask(mask);
2160
2161	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2162}
2163EXPORT_SYMBOL(hashlen_string);
2164
2165/*
2166 * Calculate the length and hash of the path component, and
2167 * return the "hash_len" as the result.
2168 */
2169static inline u64 hash_name(const void *salt, const char *name)
2170{
2171	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2172	unsigned long adata, bdata, mask, len;
2173	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2174
2175	len = 0;
2176	goto inside;
2177
2178	do {
2179		HASH_MIX(x, y, a);
2180		len += sizeof(unsigned long);
2181inside:
2182		a = load_unaligned_zeropad(name+len);
2183		b = a ^ REPEAT_BYTE('/');
2184	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2185
2186	adata = prep_zero_mask(a, adata, &constants);
2187	bdata = prep_zero_mask(b, bdata, &constants);
2188	mask = create_zero_mask(adata | bdata);
2189	x ^= a & zero_bytemask(mask);
2190
2191	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2192}
2193
2194#else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2195
2196/* Return the hash of a string of known length */
2197unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2198{
2199	unsigned long hash = init_name_hash(salt);
2200	while (len--)
2201		hash = partial_name_hash((unsigned char)*name++, hash);
2202	return end_name_hash(hash);
2203}
2204EXPORT_SYMBOL(full_name_hash);
2205
2206/* Return the "hash_len" (hash and length) of a null-terminated string */
2207u64 hashlen_string(const void *salt, const char *name)
2208{
2209	unsigned long hash = init_name_hash(salt);
2210	unsigned long len = 0, c;
2211
2212	c = (unsigned char)*name;
2213	while (c) {
2214		len++;
2215		hash = partial_name_hash(c, hash);
2216		c = (unsigned char)name[len];
2217	}
2218	return hashlen_create(end_name_hash(hash), len);
2219}
2220EXPORT_SYMBOL(hashlen_string);
2221
2222/*
2223 * We know there's a real path component here of at least
2224 * one character.
2225 */
2226static inline u64 hash_name(const void *salt, const char *name)
2227{
2228	unsigned long hash = init_name_hash(salt);
2229	unsigned long len = 0, c;
2230
2231	c = (unsigned char)*name;
2232	do {
2233		len++;
2234		hash = partial_name_hash(c, hash);
2235		c = (unsigned char)name[len];
2236	} while (c && c != '/');
2237	return hashlen_create(end_name_hash(hash), len);
2238}
2239
2240#endif
2241
2242/*
2243 * Name resolution.
2244 * This is the basic name resolution function, turning a pathname into
2245 * the final dentry. We expect 'base' to be positive and a directory.
2246 *
2247 * Returns 0 and nd will have valid dentry and mnt on success.
2248 * Returns error and drops reference to input namei data on failure.
2249 */
2250static int link_path_walk(const char *name, struct nameidata *nd)
2251{
2252	int depth = 0; // depth <= nd->depth
2253	int err;
2254
2255	nd->last_type = LAST_ROOT;
2256	nd->flags |= LOOKUP_PARENT;
2257	if (IS_ERR(name))
2258		return PTR_ERR(name);
2259	while (*name=='/')
2260		name++;
2261	if (!*name) {
2262		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2263		return 0;
2264	}
2265
2266	/* At this point we know we have a real path component. */
2267	for(;;) {
2268		struct mnt_idmap *idmap;
2269		const char *link;
2270		u64 hash_len;
2271		int type;
2272
2273		idmap = mnt_idmap(nd->path.mnt);
2274		err = may_lookup(idmap, nd);
2275		if (err)
2276			return err;
2277
2278		hash_len = hash_name(nd->path.dentry, name);
2279
2280		type = LAST_NORM;
2281		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2282			case 2:
2283				if (name[1] == '.') {
2284					type = LAST_DOTDOT;
2285					nd->state |= ND_JUMPED;
2286				}
2287				break;
2288			case 1:
2289				type = LAST_DOT;
2290		}
2291		if (likely(type == LAST_NORM)) {
2292			struct dentry *parent = nd->path.dentry;
2293			nd->state &= ~ND_JUMPED;
2294			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2295				struct qstr this = { { .hash_len = hash_len }, .name = name };
2296				err = parent->d_op->d_hash(parent, &this);
2297				if (err < 0)
2298					return err;
2299				hash_len = this.hash_len;
2300				name = this.name;
2301			}
2302		}
2303
2304		nd->last.hash_len = hash_len;
2305		nd->last.name = name;
2306		nd->last_type = type;
2307
2308		name += hashlen_len(hash_len);
2309		if (!*name)
2310			goto OK;
2311		/*
2312		 * If it wasn't NUL, we know it was '/'. Skip that
2313		 * slash, and continue until no more slashes.
2314		 */
2315		do {
2316			name++;
2317		} while (unlikely(*name == '/'));
2318		if (unlikely(!*name)) {
2319OK:
2320			/* pathname or trailing symlink, done */
2321			if (!depth) {
2322				nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2323				nd->dir_mode = nd->inode->i_mode;
2324				nd->flags &= ~LOOKUP_PARENT;
 
2325				return 0;
2326			}
2327			/* last component of nested symlink */
2328			name = nd->stack[--depth].name;
2329			link = walk_component(nd, 0);
2330		} else {
2331			/* not the last component */
2332			link = walk_component(nd, WALK_MORE);
2333		}
2334		if (unlikely(link)) {
2335			if (IS_ERR(link))
2336				return PTR_ERR(link);
2337			/* a symlink to follow */
2338			nd->stack[depth++].name = name;
2339			name = link;
2340			continue;
 
 
 
 
 
 
 
 
 
 
2341		}
2342		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2343			if (nd->flags & LOOKUP_RCU) {
2344				if (!try_to_unlazy(nd))
2345					return -ECHILD;
2346			}
2347			return -ENOTDIR;
2348		}
2349	}
2350}
2351
2352/* must be paired with terminate_walk() */
2353static const char *path_init(struct nameidata *nd, unsigned flags)
2354{
2355	int error;
2356	const char *s = nd->name->name;
2357
2358	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2359	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2360		return ERR_PTR(-EAGAIN);
2361
2362	if (!*s)
2363		flags &= ~LOOKUP_RCU;
2364	if (flags & LOOKUP_RCU)
2365		rcu_read_lock();
2366	else
2367		nd->seq = nd->next_seq = 0;
2368
2369	nd->flags = flags;
2370	nd->state |= ND_JUMPED;
2371
2372	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2373	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2374	smp_rmb();
2375
2376	if (nd->state & ND_ROOT_PRESET) {
 
 
 
2377		struct dentry *root = nd->root.dentry;
2378		struct inode *inode = root->d_inode;
2379		if (*s && unlikely(!d_can_lookup(root)))
2380			return ERR_PTR(-ENOTDIR);
2381		nd->path = nd->root;
2382		nd->inode = inode;
2383		if (flags & LOOKUP_RCU) {
2384			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2385			nd->root_seq = nd->seq;
 
2386		} else {
2387			path_get(&nd->path);
2388		}
2389		return s;
2390	}
2391
2392	nd->root.mnt = NULL;
 
 
2393
2394	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2395	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2396		error = nd_jump_root(nd);
2397		if (unlikely(error))
2398			return ERR_PTR(error);
2399		return s;
2400	}
2401
2402	/* Relative pathname -- get the starting-point it is relative to. */
2403	if (nd->dfd == AT_FDCWD) {
2404		if (flags & LOOKUP_RCU) {
2405			struct fs_struct *fs = current->fs;
2406			unsigned seq;
2407
2408			do {
2409				seq = read_seqcount_begin(&fs->seq);
2410				nd->path = fs->pwd;
2411				nd->inode = nd->path.dentry->d_inode;
2412				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2413			} while (read_seqcount_retry(&fs->seq, seq));
2414		} else {
2415			get_fs_pwd(current->fs, &nd->path);
2416			nd->inode = nd->path.dentry->d_inode;
2417		}
 
2418	} else {
2419		/* Caller must check execute permissions on the starting path component */
2420		struct fd f = fdget_raw(nd->dfd);
2421		struct dentry *dentry;
2422
2423		if (!f.file)
2424			return ERR_PTR(-EBADF);
2425
2426		dentry = f.file->f_path.dentry;
2427
2428		if (*s && unlikely(!d_can_lookup(dentry))) {
2429			fdput(f);
2430			return ERR_PTR(-ENOTDIR);
2431		}
2432
2433		nd->path = f.file->f_path;
2434		if (flags & LOOKUP_RCU) {
2435			nd->inode = nd->path.dentry->d_inode;
2436			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2437		} else {
2438			path_get(&nd->path);
2439			nd->inode = nd->path.dentry->d_inode;
2440		}
2441		fdput(f);
 
2442	}
 
2443
2444	/* For scoped-lookups we need to set the root to the dirfd as well. */
2445	if (flags & LOOKUP_IS_SCOPED) {
2446		nd->root = nd->path;
2447		if (flags & LOOKUP_RCU) {
2448			nd->root_seq = nd->seq;
2449		} else {
2450			path_get(&nd->root);
2451			nd->state |= ND_ROOT_GRABBED;
2452		}
2453	}
2454	return s;
2455}
2456
2457static inline const char *lookup_last(struct nameidata *nd)
2458{
2459	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2460		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2461
2462	return walk_component(nd, WALK_TRAILING);
 
2463}
2464
2465static int handle_lookup_down(struct nameidata *nd)
2466{
2467	if (!(nd->flags & LOOKUP_RCU))
2468		dget(nd->path.dentry);
2469	nd->next_seq = nd->seq;
2470	return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2471}
2472
2473/* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2474static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2475{
2476	const char *s = path_init(nd, flags);
2477	int err;
2478
2479	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2480		err = handle_lookup_down(nd);
2481		if (unlikely(err < 0))
2482			s = ERR_PTR(err);
2483	}
2484
2485	while (!(err = link_path_walk(s, nd)) &&
2486	       (s = lookup_last(nd)) != NULL)
2487		;
2488	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2489		err = handle_lookup_down(nd);
2490		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2491	}
2492	if (!err)
2493		err = complete_walk(nd);
2494
2495	if (!err && nd->flags & LOOKUP_DIRECTORY)
2496		if (!d_can_lookup(nd->path.dentry))
2497			err = -ENOTDIR;
2498	if (!err) {
2499		*path = nd->path;
2500		nd->path.mnt = NULL;
2501		nd->path.dentry = NULL;
2502	}
2503	terminate_walk(nd);
2504	return err;
2505}
2506
2507int filename_lookup(int dfd, struct filename *name, unsigned flags,
2508		    struct path *path, struct path *root)
2509{
2510	int retval;
2511	struct nameidata nd;
2512	if (IS_ERR(name))
2513		return PTR_ERR(name);
2514	set_nameidata(&nd, dfd, name, root);
 
 
 
 
2515	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2516	if (unlikely(retval == -ECHILD))
2517		retval = path_lookupat(&nd, flags, path);
2518	if (unlikely(retval == -ESTALE))
2519		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2520
2521	if (likely(!retval))
2522		audit_inode(name, path->dentry,
2523			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2524	restore_nameidata();
 
2525	return retval;
2526}
2527
2528/* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2529static int path_parentat(struct nameidata *nd, unsigned flags,
2530				struct path *parent)
2531{
2532	const char *s = path_init(nd, flags);
2533	int err = link_path_walk(s, nd);
2534	if (!err)
2535		err = complete_walk(nd);
2536	if (!err) {
2537		*parent = nd->path;
2538		nd->path.mnt = NULL;
2539		nd->path.dentry = NULL;
2540	}
2541	terminate_walk(nd);
2542	return err;
2543}
2544
2545/* Note: this does not consume "name" */
2546static int __filename_parentat(int dfd, struct filename *name,
2547			       unsigned int flags, struct path *parent,
2548			       struct qstr *last, int *type,
2549			       const struct path *root)
2550{
2551	int retval;
2552	struct nameidata nd;
2553
2554	if (IS_ERR(name))
2555		return PTR_ERR(name);
2556	set_nameidata(&nd, dfd, name, root);
2557	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2558	if (unlikely(retval == -ECHILD))
2559		retval = path_parentat(&nd, flags, parent);
2560	if (unlikely(retval == -ESTALE))
2561		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2562	if (likely(!retval)) {
2563		*last = nd.last;
2564		*type = nd.last_type;
2565		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
 
 
 
2566	}
2567	restore_nameidata();
2568	return retval;
2569}
2570
2571static int filename_parentat(int dfd, struct filename *name,
2572			     unsigned int flags, struct path *parent,
2573			     struct qstr *last, int *type)
2574{
2575	return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2576}
2577
2578/* does lookup, returns the object with parent locked */
2579static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path)
2580{
 
2581	struct dentry *d;
2582	struct qstr last;
2583	int type, error;
2584
2585	error = filename_parentat(dfd, name, 0, path, &last, &type);
2586	if (error)
2587		return ERR_PTR(error);
 
2588	if (unlikely(type != LAST_NORM)) {
2589		path_put(path);
 
2590		return ERR_PTR(-EINVAL);
2591	}
2592	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2593	d = lookup_one_qstr_excl(&last, path->dentry, 0);
2594	if (IS_ERR(d)) {
2595		inode_unlock(path->dentry->d_inode);
2596		path_put(path);
2597	}
2598	return d;
2599}
2600
2601struct dentry *kern_path_locked(const char *name, struct path *path)
2602{
2603	struct filename *filename = getname_kernel(name);
2604	struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path);
2605
2606	putname(filename);
2607	return res;
2608}
2609
2610struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path)
2611{
2612	struct filename *filename = getname(name);
2613	struct dentry *res = __kern_path_locked(dfd, filename, path);
2614
2615	putname(filename);
2616	return res;
2617}
2618EXPORT_SYMBOL(user_path_locked_at);
2619
2620int kern_path(const char *name, unsigned int flags, struct path *path)
2621{
2622	struct filename *filename = getname_kernel(name);
2623	int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2624
2625	putname(filename);
2626	return ret;
2627
2628}
2629EXPORT_SYMBOL(kern_path);
2630
2631/**
2632 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2633 * @filename: filename structure
2634 * @flags: lookup flags
2635 * @parent: pointer to struct path to fill
2636 * @last: last component
2637 * @type: type of the last component
2638 * @root: pointer to struct path of the base directory
2639 */
2640int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2641			   struct path *parent, struct qstr *last, int *type,
2642			   const struct path *root)
2643{
2644	return  __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2645				    type, root);
2646}
2647EXPORT_SYMBOL(vfs_path_parent_lookup);
2648
2649/**
2650 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2651 * @dentry:  pointer to dentry of the base directory
2652 * @mnt: pointer to vfs mount of the base directory
2653 * @name: pointer to file name
2654 * @flags: lookup flags
2655 * @path: pointer to struct path to fill
2656 */
2657int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2658		    const char *name, unsigned int flags,
2659		    struct path *path)
2660{
2661	struct filename *filename;
2662	struct path root = {.mnt = mnt, .dentry = dentry};
2663	int ret;
2664
2665	filename = getname_kernel(name);
2666	/* the first argument of filename_lookup() is ignored with root */
2667	ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2668	putname(filename);
2669	return ret;
2670}
2671EXPORT_SYMBOL(vfs_path_lookup);
2672
2673static int lookup_one_common(struct mnt_idmap *idmap,
2674			     const char *name, struct dentry *base, int len,
2675			     struct qstr *this)
2676{
2677	this->name = name;
2678	this->len = len;
2679	this->hash = full_name_hash(base, name, len);
2680	if (!len)
2681		return -EACCES;
2682
2683	if (unlikely(name[0] == '.')) {
2684		if (len < 2 || (len == 2 && name[1] == '.'))
2685			return -EACCES;
2686	}
2687
2688	while (len--) {
2689		unsigned int c = *(const unsigned char *)name++;
2690		if (c == '/' || c == '\0')
2691			return -EACCES;
2692	}
2693	/*
2694	 * See if the low-level filesystem might want
2695	 * to use its own hash..
2696	 */
2697	if (base->d_flags & DCACHE_OP_HASH) {
2698		int err = base->d_op->d_hash(base, this);
2699		if (err < 0)
2700			return err;
2701	}
2702
2703	return inode_permission(idmap, base->d_inode, MAY_EXEC);
2704}
2705
2706/**
2707 * try_lookup_one_len - filesystem helper to lookup single pathname component
2708 * @name:	pathname component to lookup
2709 * @base:	base directory to lookup from
2710 * @len:	maximum length @len should be interpreted to
2711 *
2712 * Look up a dentry by name in the dcache, returning NULL if it does not
2713 * currently exist.  The function does not try to create a dentry.
2714 *
2715 * Note that this routine is purely a helper for filesystem usage and should
2716 * not be called by generic code.
2717 *
2718 * The caller must hold base->i_mutex.
2719 */
2720struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2721{
2722	struct qstr this;
2723	int err;
2724
2725	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2726
2727	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2728	if (err)
2729		return ERR_PTR(err);
2730
2731	return lookup_dcache(&this, base, 0);
2732}
2733EXPORT_SYMBOL(try_lookup_one_len);
2734
2735/**
2736 * lookup_one_len - filesystem helper to lookup single pathname component
2737 * @name:	pathname component to lookup
2738 * @base:	base directory to lookup from
2739 * @len:	maximum length @len should be interpreted to
2740 *
2741 * Note that this routine is purely a helper for filesystem usage and should
2742 * not be called by generic code.
2743 *
2744 * The caller must hold base->i_mutex.
2745 */
2746struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2747{
2748	struct dentry *dentry;
2749	struct qstr this;
2750	int err;
2751
2752	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2753
2754	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2755	if (err)
2756		return ERR_PTR(err);
2757
2758	dentry = lookup_dcache(&this, base, 0);
2759	return dentry ? dentry : __lookup_slow(&this, base, 0);
2760}
2761EXPORT_SYMBOL(lookup_one_len);
2762
2763/**
2764 * lookup_one - filesystem helper to lookup single pathname component
2765 * @idmap:	idmap of the mount the lookup is performed from
2766 * @name:	pathname component to lookup
2767 * @base:	base directory to lookup from
2768 * @len:	maximum length @len should be interpreted to
2769 *
2770 * Note that this routine is purely a helper for filesystem usage and should
2771 * not be called by generic code.
2772 *
2773 * The caller must hold base->i_mutex.
2774 */
2775struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name,
2776			  struct dentry *base, int len)
2777{
2778	struct dentry *dentry;
2779	struct qstr this;
2780	int err;
2781
2782	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2783
2784	err = lookup_one_common(idmap, name, base, len, &this);
2785	if (err)
2786		return ERR_PTR(err);
2787
2788	dentry = lookup_dcache(&this, base, 0);
2789	return dentry ? dentry : __lookup_slow(&this, base, 0);
2790}
2791EXPORT_SYMBOL(lookup_one);
2792
2793/**
2794 * lookup_one_unlocked - filesystem helper to lookup single pathname component
2795 * @idmap:	idmap of the mount the lookup is performed from
2796 * @name:	pathname component to lookup
2797 * @base:	base directory to lookup from
2798 * @len:	maximum length @len should be interpreted to
2799 *
2800 * Note that this routine is purely a helper for filesystem usage and should
2801 * not be called by generic code.
2802 *
2803 * Unlike lookup_one_len, it should be called without the parent
2804 * i_mutex held, and will take the i_mutex itself if necessary.
2805 */
2806struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap,
2807				   const char *name, struct dentry *base,
2808				   int len)
2809{
2810	struct qstr this;
2811	int err;
2812	struct dentry *ret;
2813
2814	err = lookup_one_common(idmap, name, base, len, &this);
2815	if (err)
2816		return ERR_PTR(err);
2817
2818	ret = lookup_dcache(&this, base, 0);
2819	if (!ret)
2820		ret = lookup_slow(&this, base, 0);
2821	return ret;
2822}
2823EXPORT_SYMBOL(lookup_one_unlocked);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2824
2825/**
2826 * lookup_one_positive_unlocked - filesystem helper to lookup single
2827 *				  pathname component
2828 * @idmap:	idmap of the mount the lookup is performed from
2829 * @name:	pathname component to lookup
2830 * @base:	base directory to lookup from
2831 * @len:	maximum length @len should be interpreted to
2832 *
2833 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2834 * known positive or ERR_PTR(). This is what most of the users want.
2835 *
2836 * Note that pinned negative with unlocked parent _can_ become positive at any
2837 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2838 * positives have >d_inode stable, so this one avoids such problems.
 
 
2839 *
2840 * Note that this routine is purely a helper for filesystem usage and should
2841 * not be called by generic code.
 
2842 *
2843 * The helper should be called without i_mutex held.
 
 
 
 
2844 */
2845struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
2846					    const char *name,
2847					    struct dentry *base, int len)
2848{
2849	struct dentry *ret = lookup_one_unlocked(idmap, name, base, len);
 
 
2850
2851	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2852		dput(ret);
2853		ret = ERR_PTR(-ENOENT);
 
2854	}
2855	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2856}
2857EXPORT_SYMBOL(lookup_one_positive_unlocked);
2858
2859/**
2860 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2861 * @name:	pathname component to lookup
2862 * @base:	base directory to lookup from
2863 * @len:	maximum length @len should be interpreted to
2864 *
2865 * Note that this routine is purely a helper for filesystem usage and should
2866 * not be called by generic code.
2867 *
2868 * Unlike lookup_one_len, it should be called without the parent
2869 * i_mutex held, and will take the i_mutex itself if necessary.
2870 */
2871struct dentry *lookup_one_len_unlocked(const char *name,
2872				       struct dentry *base, int len)
2873{
2874	return lookup_one_unlocked(&nop_mnt_idmap, name, base, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2875}
2876EXPORT_SYMBOL(lookup_one_len_unlocked);
2877
2878/*
2879 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2880 * on negatives.  Returns known positive or ERR_PTR(); that's what
2881 * most of the users want.  Note that pinned negative with unlocked parent
2882 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2883 * need to be very careful; pinned positives have ->d_inode stable, so
2884 * this one avoids such problems.
2885 */
2886struct dentry *lookup_positive_unlocked(const char *name,
2887				       struct dentry *base, int len)
2888{
2889	return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2890}
2891EXPORT_SYMBOL(lookup_positive_unlocked);
2892
2893#ifdef CONFIG_UNIX98_PTYS
2894int path_pts(struct path *path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2895{
2896	/* Find something mounted on "pts" in the same directory as
2897	 * the input path.
2898	 */
2899	struct dentry *parent = dget_parent(path->dentry);
2900	struct dentry *child;
2901	struct qstr this = QSTR_INIT("pts", 3);
2902
2903	if (unlikely(!path_connected(path->mnt, parent))) {
2904		dput(parent);
2905		return -ENOENT;
2906	}
2907	dput(path->dentry);
2908	path->dentry = parent;
2909	child = d_hash_and_lookup(parent, &this);
2910	if (IS_ERR_OR_NULL(child))
2911		return -ENOENT;
2912
2913	path->dentry = child;
2914	dput(parent);
2915	follow_down(path, 0);
2916	return 0;
2917}
2918#endif
2919
2920int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2921		 struct path *path, int *empty)
 
2922{
2923	struct filename *filename = getname_flags(name, flags, empty);
2924	int ret = filename_lookup(dfd, filename, flags, path, NULL);
2925
2926	putname(filename);
2927	return ret;
2928}
2929EXPORT_SYMBOL(user_path_at_empty);
2930
2931int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
2932		   struct inode *inode)
2933{
2934	kuid_t fsuid = current_fsuid();
2935
2936	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
2937		return 0;
2938	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
2939		return 0;
2940	return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
2941}
2942EXPORT_SYMBOL(__check_sticky);
2943
2944/*
2945 *	Check whether we can remove a link victim from directory dir, check
2946 *  whether the type of victim is right.
2947 *  1. We can't do it if dir is read-only (done in permission())
2948 *  2. We should have write and exec permissions on dir
2949 *  3. We can't remove anything from append-only dir
2950 *  4. We can't do anything with immutable dir (done in permission())
2951 *  5. If the sticky bit on dir is set we should either
2952 *	a. be owner of dir, or
2953 *	b. be owner of victim, or
2954 *	c. have CAP_FOWNER capability
2955 *  6. If the victim is append-only or immutable we can't do antyhing with
2956 *     links pointing to it.
2957 *  7. If the victim has an unknown uid or gid we can't change the inode.
2958 *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2959 *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2960 * 10. We can't remove a root or mountpoint.
2961 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2962 *     nfs_async_unlink().
2963 */
2964static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
2965		      struct dentry *victim, bool isdir)
2966{
2967	struct inode *inode = d_backing_inode(victim);
2968	int error;
2969
2970	if (d_is_negative(victim))
2971		return -ENOENT;
2972	BUG_ON(!inode);
2973
2974	BUG_ON(victim->d_parent->d_inode != dir);
2975
2976	/* Inode writeback is not safe when the uid or gid are invalid. */
2977	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
2978	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
2979		return -EOVERFLOW;
2980
2981	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2982
2983	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
2984	if (error)
2985		return error;
2986	if (IS_APPEND(dir))
2987		return -EPERM;
2988
2989	if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
2990	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2991	    HAS_UNMAPPED_ID(idmap, inode))
2992		return -EPERM;
2993	if (isdir) {
2994		if (!d_is_dir(victim))
2995			return -ENOTDIR;
2996		if (IS_ROOT(victim))
2997			return -EBUSY;
2998	} else if (d_is_dir(victim))
2999		return -EISDIR;
3000	if (IS_DEADDIR(dir))
3001		return -ENOENT;
3002	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
3003		return -EBUSY;
3004	return 0;
3005}
3006
3007/*	Check whether we can create an object with dentry child in directory
3008 *  dir.
3009 *  1. We can't do it if child already exists (open has special treatment for
3010 *     this case, but since we are inlined it's OK)
3011 *  2. We can't do it if dir is read-only (done in permission())
3012 *  3. We can't do it if the fs can't represent the fsuid or fsgid.
3013 *  4. We should have write and exec permissions on dir
3014 *  5. We can't do it if dir is immutable (done in permission())
3015 */
3016static inline int may_create(struct mnt_idmap *idmap,
3017			     struct inode *dir, struct dentry *child)
3018{
 
3019	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3020	if (child->d_inode)
3021		return -EEXIST;
3022	if (IS_DEADDIR(dir))
3023		return -ENOENT;
3024	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
 
 
3025		return -EOVERFLOW;
3026
3027	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3028}
3029
3030// p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
3031static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3032{
3033	struct dentry *p = p1, *q = p2, *r;
3034
3035	while ((r = p->d_parent) != p2 && r != p)
3036		p = r;
3037	if (r == p2) {
3038		// p is a child of p2 and an ancestor of p1 or p1 itself
3039		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3040		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3041		return p;
3042	}
3043	// p is the root of connected component that contains p1
3044	// p2 does not occur on the path from p to p1
3045	while ((r = q->d_parent) != p1 && r != p && r != q)
3046		q = r;
3047	if (r == p1) {
3048		// q is a child of p1 and an ancestor of p2 or p2 itself
3049		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3050		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3051		return q;
3052	} else if (likely(r == p)) {
3053		// both p2 and p1 are descendents of p
3054		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3055		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3056		return NULL;
3057	} else { // no common ancestor at the time we'd been called
3058		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3059		return ERR_PTR(-EXDEV);
3060	}
3061}
3062
3063/*
3064 * p1 and p2 should be directories on the same fs.
3065 */
3066struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3067{
 
 
3068	if (p1 == p2) {
3069		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3070		return NULL;
3071	}
3072
3073	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3074	return lock_two_directories(p1, p2);
3075}
3076EXPORT_SYMBOL(lock_rename);
3077
3078/*
3079 * c1 and p2 should be on the same fs.
3080 */
3081struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3082{
3083	if (READ_ONCE(c1->d_parent) == p2) {
3084		/*
3085		 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3086		 */
3087		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3088		/*
3089		 * now that p2 is locked, nobody can move in or out of it,
3090		 * so the test below is safe.
3091		 */
3092		if (likely(c1->d_parent == p2))
3093			return NULL;
3094
3095		/*
3096		 * c1 got moved out of p2 while we'd been taking locks;
3097		 * unlock and fall back to slow case.
3098		 */
3099		inode_unlock(p2->d_inode);
3100	}
3101
3102	mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3103	/*
3104	 * nobody can move out of any directories on this fs.
3105	 */
3106	if (likely(c1->d_parent != p2))
3107		return lock_two_directories(c1->d_parent, p2);
3108
3109	/*
3110	 * c1 got moved into p2 while we were taking locks;
3111	 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3112	 * for consistency with lock_rename().
3113	 */
3114	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3115	mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3116	return NULL;
3117}
3118EXPORT_SYMBOL(lock_rename_child);
3119
3120void unlock_rename(struct dentry *p1, struct dentry *p2)
3121{
3122	inode_unlock(p1->d_inode);
3123	if (p1 != p2) {
3124		inode_unlock(p2->d_inode);
3125		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3126	}
3127}
3128EXPORT_SYMBOL(unlock_rename);
3129
3130/**
3131 * vfs_prepare_mode - prepare the mode to be used for a new inode
3132 * @idmap:	idmap of the mount the inode was found from
3133 * @dir:	parent directory of the new inode
3134 * @mode:	mode of the new inode
3135 * @mask_perms:	allowed permission by the vfs
3136 * @type:	type of file to be created
3137 *
3138 * This helper consolidates and enforces vfs restrictions on the @mode of a new
3139 * object to be created.
3140 *
3141 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3142 * the kernel documentation for mode_strip_umask()). Moving umask stripping
3143 * after setgid stripping allows the same ordering for both non-POSIX ACL and
3144 * POSIX ACL supporting filesystems.
3145 *
3146 * Note that it's currently valid for @type to be 0 if a directory is created.
3147 * Filesystems raise that flag individually and we need to check whether each
3148 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3149 * non-zero type.
3150 *
3151 * Returns: mode to be passed to the filesystem
3152 */
3153static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3154				       const struct inode *dir, umode_t mode,
3155				       umode_t mask_perms, umode_t type)
3156{
3157	mode = mode_strip_sgid(idmap, dir, mode);
3158	mode = mode_strip_umask(dir, mode);
3159
3160	/*
3161	 * Apply the vfs mandated allowed permission mask and set the type of
3162	 * file to be created before we call into the filesystem.
3163	 */
3164	mode &= (mask_perms & ~S_IFMT);
3165	mode |= (type & S_IFMT);
3166
3167	return mode;
3168}
3169
3170/**
3171 * vfs_create - create new file
3172 * @idmap:	idmap of the mount the inode was found from
3173 * @dir:	inode of @dentry
3174 * @dentry:	pointer to dentry of the base directory
3175 * @mode:	mode of the new file
3176 * @want_excl:	whether the file must not yet exist
3177 *
3178 * Create a new file.
3179 *
3180 * If the inode has been found through an idmapped mount the idmap of
3181 * the vfsmount must be passed through @idmap. This function will then take
3182 * care to map the inode according to @idmap before checking permissions.
3183 * On non-idmapped mounts or if permission checking is to be performed on the
3184 * raw inode simply pass @nop_mnt_idmap.
3185 */
3186int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3187	       struct dentry *dentry, umode_t mode, bool want_excl)
3188{
3189	int error;
3190
3191	error = may_create(idmap, dir, dentry);
3192	if (error)
3193		return error;
3194
3195	if (!dir->i_op->create)
3196		return -EACCES;	/* shouldn't it be ENOSYS? */
3197
3198	mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3199	error = security_inode_create(dir, dentry, mode);
3200	if (error)
3201		return error;
3202	error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3203	if (!error)
3204		fsnotify_create(dir, dentry);
3205	return error;
3206}
3207EXPORT_SYMBOL(vfs_create);
3208
3209int vfs_mkobj(struct dentry *dentry, umode_t mode,
3210		int (*f)(struct dentry *, umode_t, void *),
3211		void *arg)
3212{
3213	struct inode *dir = dentry->d_parent->d_inode;
3214	int error = may_create(&nop_mnt_idmap, dir, dentry);
3215	if (error)
3216		return error;
3217
3218	mode &= S_IALLUGO;
3219	mode |= S_IFREG;
3220	error = security_inode_create(dir, dentry, mode);
3221	if (error)
3222		return error;
3223	error = f(dentry, mode, arg);
3224	if (!error)
3225		fsnotify_create(dir, dentry);
3226	return error;
3227}
3228EXPORT_SYMBOL(vfs_mkobj);
3229
3230bool may_open_dev(const struct path *path)
3231{
3232	return !(path->mnt->mnt_flags & MNT_NODEV) &&
3233		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3234}
3235
3236static int may_open(struct mnt_idmap *idmap, const struct path *path,
3237		    int acc_mode, int flag)
3238{
3239	struct dentry *dentry = path->dentry;
3240	struct inode *inode = dentry->d_inode;
3241	int error;
3242
3243	if (!inode)
3244		return -ENOENT;
3245
3246	switch (inode->i_mode & S_IFMT) {
3247	case S_IFLNK:
3248		return -ELOOP;
3249	case S_IFDIR:
3250		if (acc_mode & MAY_WRITE)
3251			return -EISDIR;
3252		if (acc_mode & MAY_EXEC)
3253			return -EACCES;
3254		break;
3255	case S_IFBLK:
3256	case S_IFCHR:
3257		if (!may_open_dev(path))
3258			return -EACCES;
3259		fallthrough;
3260	case S_IFIFO:
3261	case S_IFSOCK:
3262		if (acc_mode & MAY_EXEC)
3263			return -EACCES;
3264		flag &= ~O_TRUNC;
3265		break;
3266	case S_IFREG:
3267		if ((acc_mode & MAY_EXEC) && path_noexec(path))
3268			return -EACCES;
3269		break;
3270	}
3271
3272	error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3273	if (error)
3274		return error;
3275
3276	/*
3277	 * An append-only file must be opened in append mode for writing.
3278	 */
3279	if (IS_APPEND(inode)) {
3280		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3281			return -EPERM;
3282		if (flag & O_TRUNC)
3283			return -EPERM;
3284	}
3285
3286	/* O_NOATIME can only be set by the owner or superuser */
3287	if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3288		return -EPERM;
3289
3290	return 0;
3291}
3292
3293static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3294{
3295	const struct path *path = &filp->f_path;
3296	struct inode *inode = path->dentry->d_inode;
3297	int error = get_write_access(inode);
3298	if (error)
3299		return error;
3300
3301	error = security_file_truncate(filp);
 
 
 
 
3302	if (!error) {
3303		error = do_truncate(idmap, path->dentry, 0,
3304				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3305				    filp);
3306	}
3307	put_write_access(inode);
3308	return error;
3309}
3310
3311static inline int open_to_namei_flags(int flag)
3312{
3313	if ((flag & O_ACCMODE) == 3)
3314		flag--;
3315	return flag;
3316}
3317
3318static int may_o_create(struct mnt_idmap *idmap,
3319			const struct path *dir, struct dentry *dentry,
3320			umode_t mode)
3321{
 
3322	int error = security_path_mknod(dir, dentry, mode, 0);
3323	if (error)
3324		return error;
3325
3326	if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
 
 
3327		return -EOVERFLOW;
3328
3329	error = inode_permission(idmap, dir->dentry->d_inode,
3330				 MAY_WRITE | MAY_EXEC);
3331	if (error)
3332		return error;
3333
3334	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3335}
3336
3337/*
3338 * Attempt to atomically look up, create and open a file from a negative
3339 * dentry.
3340 *
3341 * Returns 0 if successful.  The file will have been created and attached to
3342 * @file by the filesystem calling finish_open().
3343 *
3344 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3345 * be set.  The caller will need to perform the open themselves.  @path will
3346 * have been updated to point to the new dentry.  This may be negative.
3347 *
3348 * Returns an error code otherwise.
3349 */
3350static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3351				  struct file *file,
3352				  int open_flag, umode_t mode)
 
3353{
3354	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3355	struct inode *dir =  nd->path.dentry->d_inode;
3356	int error;
3357
 
 
 
3358	if (nd->flags & LOOKUP_DIRECTORY)
3359		open_flag |= O_DIRECTORY;
3360
3361	file->f_path.dentry = DENTRY_NOT_SET;
3362	file->f_path.mnt = nd->path.mnt;
3363	error = dir->i_op->atomic_open(dir, dentry, file,
3364				       open_to_namei_flags(open_flag), mode);
3365	d_lookup_done(dentry);
3366	if (!error) {
3367		if (file->f_mode & FMODE_OPENED) {
3368			if (unlikely(dentry != file->f_path.dentry)) {
3369				dput(dentry);
3370				dentry = dget(file->f_path.dentry);
 
 
 
 
 
 
3371			}
 
 
 
3372		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3373			error = -EIO;
3374		} else {
3375			if (file->f_path.dentry) {
3376				dput(dentry);
3377				dentry = file->f_path.dentry;
3378			}
3379			if (unlikely(d_is_negative(dentry)))
 
 
3380				error = -ENOENT;
 
 
 
 
 
3381		}
3382	}
3383	if (error) {
3384		dput(dentry);
3385		dentry = ERR_PTR(error);
3386	}
3387	return dentry;
3388}
3389
3390/*
3391 * Look up and maybe create and open the last component.
3392 *
3393 * Must be called with parent locked (exclusive in O_CREAT case).
3394 *
3395 * Returns 0 on success, that is, if
3396 *  the file was successfully atomically created (if necessary) and opened, or
3397 *  the file was not completely opened at this time, though lookups and
3398 *  creations were performed.
3399 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3400 * In the latter case dentry returned in @path might be negative if O_CREAT
3401 * hadn't been specified.
3402 *
3403 * An error code is returned on failure.
3404 */
3405static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3406				  const struct open_flags *op,
3407				  bool got_write)
 
3408{
3409	struct mnt_idmap *idmap;
3410	struct dentry *dir = nd->path.dentry;
3411	struct inode *dir_inode = dir->d_inode;
3412	int open_flag = op->open_flag;
3413	struct dentry *dentry;
3414	int error, create_error = 0;
3415	umode_t mode = op->mode;
3416	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3417
3418	if (unlikely(IS_DEADDIR(dir_inode)))
3419		return ERR_PTR(-ENOENT);
3420
3421	file->f_mode &= ~FMODE_CREATED;
3422	dentry = d_lookup(dir, &nd->last);
3423	for (;;) {
3424		if (!dentry) {
3425			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3426			if (IS_ERR(dentry))
3427				return dentry;
3428		}
3429		if (d_in_lookup(dentry))
3430			break;
3431
3432		error = d_revalidate(dentry, nd->flags);
3433		if (likely(error > 0))
3434			break;
3435		if (error)
3436			goto out_dput;
3437		d_invalidate(dentry);
3438		dput(dentry);
3439		dentry = NULL;
3440	}
3441	if (dentry->d_inode) {
3442		/* Cached positive dentry: will open in f_op->open */
3443		return dentry;
3444	}
3445
3446	/*
3447	 * Checking write permission is tricky, bacuse we don't know if we are
3448	 * going to actually need it: O_CREAT opens should work as long as the
3449	 * file exists.  But checking existence breaks atomicity.  The trick is
3450	 * to check access and if not granted clear O_CREAT from the flags.
3451	 *
3452	 * Another problem is returing the "right" error value (e.g. for an
3453	 * O_EXCL open we want to return EEXIST not EROFS).
3454	 */
3455	if (unlikely(!got_write))
3456		open_flag &= ~O_TRUNC;
3457	idmap = mnt_idmap(nd->path.mnt);
3458	if (open_flag & O_CREAT) {
3459		if (open_flag & O_EXCL)
3460			open_flag &= ~O_TRUNC;
3461		mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3462		if (likely(got_write))
3463			create_error = may_o_create(idmap, &nd->path,
3464						    dentry, mode);
3465		else
3466			create_error = -EROFS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3467	}
3468	if (create_error)
3469		open_flag &= ~O_CREAT;
3470	if (dir_inode->i_op->atomic_open) {
3471		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3472		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3473			dentry = ERR_PTR(create_error);
3474		return dentry;
 
3475	}
3476
 
3477	if (d_in_lookup(dentry)) {
3478		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3479							     nd->flags);
3480		d_lookup_done(dentry);
3481		if (unlikely(res)) {
3482			if (IS_ERR(res)) {
3483				error = PTR_ERR(res);
3484				goto out_dput;
3485			}
3486			dput(dentry);
3487			dentry = res;
3488		}
3489	}
3490
3491	/* Negative dentry, just create the file */
3492	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3493		file->f_mode |= FMODE_CREATED;
3494		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3495		if (!dir_inode->i_op->create) {
3496			error = -EACCES;
3497			goto out_dput;
3498		}
3499
3500		error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3501						mode, open_flag & O_EXCL);
3502		if (error)
3503			goto out_dput;
 
3504	}
3505	if (unlikely(create_error) && !dentry->d_inode) {
3506		error = create_error;
3507		goto out_dput;
3508	}
3509	return dentry;
 
 
 
3510
3511out_dput:
3512	dput(dentry);
3513	return ERR_PTR(error);
3514}
3515
3516static const char *open_last_lookups(struct nameidata *nd,
 
 
 
3517		   struct file *file, const struct open_flags *op)
3518{
3519	struct dentry *dir = nd->path.dentry;
3520	int open_flag = op->open_flag;
 
3521	bool got_write = false;
3522	struct dentry *dentry;
3523	const char *res;
 
 
 
3524
 
3525	nd->flags |= op->intent;
3526
3527	if (nd->last_type != LAST_NORM) {
3528		if (nd->depth)
3529			put_link(nd);
3530		return handle_dots(nd, nd->last_type);
 
3531	}
3532
3533	if (!(open_flag & O_CREAT)) {
3534		if (nd->last.name[nd->last.len])
3535			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3536		/* we _can_ be in RCU mode here */
3537		dentry = lookup_fast(nd);
3538		if (IS_ERR(dentry))
3539			return ERR_CAST(dentry);
3540		if (likely(dentry))
3541			goto finish_lookup;
3542
3543		if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
3544			return ERR_PTR(-ECHILD);
 
 
 
3545	} else {
3546		/* create side of things */
3547		if (nd->flags & LOOKUP_RCU) {
3548			if (!try_to_unlazy(nd))
3549				return ERR_PTR(-ECHILD);
3550		}
 
 
 
 
 
3551		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3552		/* trailing slashes? */
3553		if (unlikely(nd->last.name[nd->last.len]))
3554			return ERR_PTR(-EISDIR);
3555	}
3556
3557	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3558		got_write = !mnt_want_write(nd->path.mnt);
 
 
3559		/*
3560		 * do _not_ fail yet - we might not need that or fail with
3561		 * a different error; let lookup_open() decide; we'll be
3562		 * dropping this one anyway.
3563		 */
3564	}
3565	if (open_flag & O_CREAT)
3566		inode_lock(dir->d_inode);
3567	else
3568		inode_lock_shared(dir->d_inode);
3569	dentry = lookup_open(nd, file, op, got_write);
3570	if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3571		fsnotify_create(dir->d_inode, dentry);
3572	if (open_flag & O_CREAT)
3573		inode_unlock(dir->d_inode);
3574	else
3575		inode_unlock_shared(dir->d_inode);
3576
3577	if (got_write)
3578		mnt_drop_write(nd->path.mnt);
3579
3580	if (IS_ERR(dentry))
3581		return ERR_CAST(dentry);
 
 
3582
3583	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3584		dput(nd->path.dentry);
3585		nd->path.dentry = dentry;
3586		return NULL;
3587	}
3588
3589finish_lookup:
3590	if (nd->depth)
3591		put_link(nd);
3592	res = step_into(nd, WALK_TRAILING, dentry);
3593	if (unlikely(res))
3594		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3595	return res;
3596}
3597
3598/*
3599 * Handle the last step of open()
3600 */
3601static int do_open(struct nameidata *nd,
3602		   struct file *file, const struct open_flags *op)
3603{
3604	struct mnt_idmap *idmap;
3605	int open_flag = op->open_flag;
3606	bool do_truncate;
3607	int acc_mode;
3608	int error;
3609
3610	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3611		error = complete_walk(nd);
3612		if (error)
3613			return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
3614	}
3615	if (!(file->f_mode & FMODE_CREATED))
3616		audit_inode(nd->name, nd->path.dentry, 0);
3617	idmap = mnt_idmap(nd->path.mnt);
 
 
 
 
 
 
 
 
 
 
3618	if (open_flag & O_CREAT) {
3619		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3620			return -EEXIST;
3621		if (d_is_dir(nd->path.dentry))
3622			return -EISDIR;
3623		error = may_create_in_sticky(idmap, nd,
3624					     d_backing_inode(nd->path.dentry));
3625		if (unlikely(error))
3626			return error;
3627	}
 
3628	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3629		return -ENOTDIR;
 
 
3630
3631	do_truncate = false;
3632	acc_mode = op->acc_mode;
3633	if (file->f_mode & FMODE_CREATED) {
3634		/* Don't check for write permission, don't truncate */
3635		open_flag &= ~O_TRUNC;
3636		acc_mode = 0;
3637	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3638		error = mnt_want_write(nd->path.mnt);
3639		if (error)
3640			return error;
3641		do_truncate = true;
3642	}
3643	error = may_open(idmap, &nd->path, acc_mode, open_flag);
3644	if (!error && !(file->f_mode & FMODE_OPENED))
3645		error = vfs_open(&nd->path, file);
3646	if (!error)
3647		error = ima_file_check(file, op->acc_mode);
3648	if (!error && do_truncate)
3649		error = handle_truncate(idmap, file);
 
 
 
 
 
 
3650	if (unlikely(error > 0)) {
3651		WARN_ON(1);
3652		error = -EINVAL;
3653	}
3654	if (do_truncate)
3655		mnt_drop_write(nd->path.mnt);
3656	return error;
3657}
3658
3659/**
3660 * vfs_tmpfile - create tmpfile
3661 * @idmap:	idmap of the mount the inode was found from
3662 * @parentpath:	pointer to the path of the base directory
3663 * @file:	file descriptor of the new tmpfile
3664 * @mode:	mode of the new tmpfile
3665 *
3666 * Create a temporary file.
3667 *
3668 * If the inode has been found through an idmapped mount the idmap of
3669 * the vfsmount must be passed through @idmap. This function will then take
3670 * care to map the inode according to @idmap before checking permissions.
3671 * On non-idmapped mounts or if permission checking is to be performed on the
3672 * raw inode simply pass @nop_mnt_idmap.
3673 */
3674static int vfs_tmpfile(struct mnt_idmap *idmap,
3675		       const struct path *parentpath,
3676		       struct file *file, umode_t mode)
3677{
3678	struct dentry *child;
3679	struct inode *dir = d_inode(parentpath->dentry);
3680	struct inode *inode;
3681	int error;
3682	int open_flag = file->f_flags;
3683
3684	/* we want directory to be writable */
3685	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3686	if (error)
3687		return error;
 
3688	if (!dir->i_op->tmpfile)
3689		return -EOPNOTSUPP;
3690	child = d_alloc(parentpath->dentry, &slash_name);
 
3691	if (unlikely(!child))
3692		return -ENOMEM;
3693	file->f_path.mnt = parentpath->mnt;
3694	file->f_path.dentry = child;
3695	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3696	error = dir->i_op->tmpfile(idmap, dir, file, mode);
3697	dput(child);
3698	if (error)
3699		return error;
3700	/* Don't check for other permissions, the inode was just created */
3701	error = may_open(idmap, &file->f_path, 0, file->f_flags);
3702	if (error)
3703		return error;
3704	inode = file_inode(file);
 
 
 
3705	if (!(open_flag & O_EXCL)) {
3706		spin_lock(&inode->i_lock);
3707		inode->i_state |= I_LINKABLE;
3708		spin_unlock(&inode->i_lock);
3709	}
3710	ima_post_create_tmpfile(idmap, inode);
3711	return 0;
3712}
3713
3714/**
3715 * kernel_tmpfile_open - open a tmpfile for kernel internal use
3716 * @idmap:	idmap of the mount the inode was found from
3717 * @parentpath:	path of the base directory
3718 * @mode:	mode of the new tmpfile
3719 * @open_flag:	flags
3720 * @cred:	credentials for open
3721 *
3722 * Create and open a temporary file.  The file is not accounted in nr_files,
3723 * hence this is only for kernel internal use, and must not be installed into
3724 * file tables or such.
3725 */
3726struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
3727				 const struct path *parentpath,
3728				 umode_t mode, int open_flag,
3729				 const struct cred *cred)
3730{
3731	struct file *file;
3732	int error;
3733
3734	file = alloc_empty_file_noaccount(open_flag, cred);
3735	if (IS_ERR(file))
3736		return file;
3737
3738	error = vfs_tmpfile(idmap, parentpath, file, mode);
3739	if (error) {
3740		fput(file);
3741		file = ERR_PTR(error);
3742	}
3743	return file;
3744}
3745EXPORT_SYMBOL(kernel_tmpfile_open);
3746
3747static int do_tmpfile(struct nameidata *nd, unsigned flags,
3748		const struct open_flags *op,
3749		struct file *file)
3750{
 
3751	struct path path;
3752	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3753
3754	if (unlikely(error))
3755		return error;
3756	error = mnt_want_write(path.mnt);
3757	if (unlikely(error))
3758		goto out;
3759	error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
 
 
 
 
 
 
 
 
3760	if (error)
3761		goto out2;
3762	audit_inode(nd->name, file->f_path.dentry, 0);
 
3763out2:
3764	mnt_drop_write(path.mnt);
3765out:
3766	path_put(&path);
3767	return error;
3768}
3769
3770static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3771{
3772	struct path path;
3773	int error = path_lookupat(nd, flags, &path);
3774	if (!error) {
3775		audit_inode(nd->name, path.dentry, 0);
3776		error = vfs_open(&path, file);
3777		path_put(&path);
3778	}
3779	return error;
3780}
3781
3782static struct file *path_openat(struct nameidata *nd,
3783			const struct open_flags *op, unsigned flags)
3784{
3785	struct file *file;
3786	int error;
3787
3788	file = alloc_empty_file(op->open_flag, current_cred());
3789	if (IS_ERR(file))
3790		return file;
3791
3792	if (unlikely(file->f_flags & __O_TMPFILE)) {
3793		error = do_tmpfile(nd, flags, op, file);
3794	} else if (unlikely(file->f_flags & O_PATH)) {
3795		error = do_o_path(nd, flags, file);
3796	} else {
3797		const char *s = path_init(nd, flags);
3798		while (!(error = link_path_walk(s, nd)) &&
3799		       (s = open_last_lookups(nd, file, op)) != NULL)
3800			;
3801		if (!error)
3802			error = do_open(nd, file, op);
3803		terminate_walk(nd);
3804	}
3805	if (likely(!error)) {
3806		if (likely(file->f_mode & FMODE_OPENED))
3807			return file;
3808		WARN_ON(1);
3809		error = -EINVAL;
3810	}
3811	fput(file);
3812	if (error == -EOPENSTALE) {
3813		if (flags & LOOKUP_RCU)
3814			error = -ECHILD;
3815		else
3816			error = -ESTALE;
3817	}
3818	return ERR_PTR(error);
3819}
3820
3821struct file *do_filp_open(int dfd, struct filename *pathname,
3822		const struct open_flags *op)
3823{
3824	struct nameidata nd;
3825	int flags = op->lookup_flags;
3826	struct file *filp;
3827
3828	set_nameidata(&nd, dfd, pathname, NULL);
3829	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3830	if (unlikely(filp == ERR_PTR(-ECHILD)))
3831		filp = path_openat(&nd, op, flags);
3832	if (unlikely(filp == ERR_PTR(-ESTALE)))
3833		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3834	restore_nameidata();
3835	return filp;
3836}
3837
3838struct file *do_file_open_root(const struct path *root,
3839		const char *name, const struct open_flags *op)
3840{
3841	struct nameidata nd;
3842	struct file *file;
3843	struct filename *filename;
3844	int flags = op->lookup_flags;
3845
3846	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
 
 
 
3847		return ERR_PTR(-ELOOP);
3848
3849	filename = getname_kernel(name);
3850	if (IS_ERR(filename))
3851		return ERR_CAST(filename);
3852
3853	set_nameidata(&nd, -1, filename, root);
3854	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3855	if (unlikely(file == ERR_PTR(-ECHILD)))
3856		file = path_openat(&nd, op, flags);
3857	if (unlikely(file == ERR_PTR(-ESTALE)))
3858		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3859	restore_nameidata();
3860	putname(filename);
3861	return file;
3862}
3863
3864static struct dentry *filename_create(int dfd, struct filename *name,
3865				      struct path *path, unsigned int lookup_flags)
3866{
3867	struct dentry *dentry = ERR_PTR(-EEXIST);
3868	struct qstr last;
3869	bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
3870	unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
3871	unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
3872	int type;
3873	int err2;
3874	int error;
 
3875
3876	error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
3877	if (error)
3878		return ERR_PTR(error);
 
 
 
 
 
 
3879
3880	/*
3881	 * Yucky last component or no last component at all?
3882	 * (foo/., foo/.., /////)
3883	 */
3884	if (unlikely(type != LAST_NORM))
3885		goto out;
3886
3887	/* don't fail immediately if it's r/o, at least try to report other errors */
3888	err2 = mnt_want_write(path->mnt);
3889	/*
3890	 * Do the final lookup.  Suppress 'create' if there is a trailing
3891	 * '/', and a directory wasn't requested.
3892	 */
3893	if (last.name[last.len] && !want_dir)
3894		create_flags = 0;
3895	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3896	dentry = lookup_one_qstr_excl(&last, path->dentry,
3897				      reval_flag | create_flags);
3898	if (IS_ERR(dentry))
3899		goto unlock;
3900
3901	error = -EEXIST;
3902	if (d_is_positive(dentry))
3903		goto fail;
3904
3905	/*
3906	 * Special case - lookup gave negative, but... we had foo/bar/
3907	 * From the vfs_mknod() POV we just have a negative dentry -
3908	 * all is fine. Let's be bastards - you had / on the end, you've
3909	 * been asking for (non-existent) directory. -ENOENT for you.
3910	 */
3911	if (unlikely(!create_flags)) {
3912		error = -ENOENT;
3913		goto fail;
3914	}
3915	if (unlikely(err2)) {
3916		error = err2;
3917		goto fail;
3918	}
 
3919	return dentry;
3920fail:
3921	dput(dentry);
3922	dentry = ERR_PTR(error);
3923unlock:
3924	inode_unlock(path->dentry->d_inode);
3925	if (!err2)
3926		mnt_drop_write(path->mnt);
3927out:
3928	path_put(path);
 
3929	return dentry;
3930}
3931
3932struct dentry *kern_path_create(int dfd, const char *pathname,
3933				struct path *path, unsigned int lookup_flags)
3934{
3935	struct filename *filename = getname_kernel(pathname);
3936	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3937
3938	putname(filename);
3939	return res;
3940}
3941EXPORT_SYMBOL(kern_path_create);
3942
3943void done_path_create(struct path *path, struct dentry *dentry)
3944{
3945	dput(dentry);
3946	inode_unlock(path->dentry->d_inode);
3947	mnt_drop_write(path->mnt);
3948	path_put(path);
3949}
3950EXPORT_SYMBOL(done_path_create);
3951
3952inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3953				struct path *path, unsigned int lookup_flags)
3954{
3955	struct filename *filename = getname(pathname);
3956	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3957
3958	putname(filename);
3959	return res;
3960}
3961EXPORT_SYMBOL(user_path_create);
3962
3963/**
3964 * vfs_mknod - create device node or file
3965 * @idmap:	idmap of the mount the inode was found from
3966 * @dir:	inode of @dentry
3967 * @dentry:	pointer to dentry of the base directory
3968 * @mode:	mode of the new device node or file
3969 * @dev:	device number of device to create
3970 *
3971 * Create a device node or file.
3972 *
3973 * If the inode has been found through an idmapped mount the idmap of
3974 * the vfsmount must be passed through @idmap. This function will then take
3975 * care to map the inode according to @idmap before checking permissions.
3976 * On non-idmapped mounts or if permission checking is to be performed on the
3977 * raw inode simply pass @nop_mnt_idmap.
3978 */
3979int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
3980	      struct dentry *dentry, umode_t mode, dev_t dev)
3981{
3982	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3983	int error = may_create(idmap, dir, dentry);
3984
3985	if (error)
3986		return error;
3987
3988	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3989	    !capable(CAP_MKNOD))
3990		return -EPERM;
3991
3992	if (!dir->i_op->mknod)
3993		return -EPERM;
3994
3995	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3996	error = devcgroup_inode_mknod(mode, dev);
3997	if (error)
3998		return error;
3999
4000	error = security_inode_mknod(dir, dentry, mode, dev);
4001	if (error)
4002		return error;
4003
4004	error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
4005	if (!error)
4006		fsnotify_create(dir, dentry);
4007	return error;
4008}
4009EXPORT_SYMBOL(vfs_mknod);
4010
4011static int may_mknod(umode_t mode)
4012{
4013	switch (mode & S_IFMT) {
4014	case S_IFREG:
4015	case S_IFCHR:
4016	case S_IFBLK:
4017	case S_IFIFO:
4018	case S_IFSOCK:
4019	case 0: /* zero mode translates to S_IFREG */
4020		return 0;
4021	case S_IFDIR:
4022		return -EPERM;
4023	default:
4024		return -EINVAL;
4025	}
4026}
4027
4028static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4029		unsigned int dev)
4030{
4031	struct mnt_idmap *idmap;
4032	struct dentry *dentry;
4033	struct path path;
4034	int error;
4035	unsigned int lookup_flags = 0;
4036
4037	error = may_mknod(mode);
4038	if (error)
4039		goto out1;
4040retry:
4041	dentry = filename_create(dfd, name, &path, lookup_flags);
4042	error = PTR_ERR(dentry);
4043	if (IS_ERR(dentry))
4044		goto out1;
4045
4046	error = security_path_mknod(&path, dentry,
4047			mode_strip_umask(path.dentry->d_inode, mode), dev);
 
4048	if (error)
4049		goto out2;
4050
4051	idmap = mnt_idmap(path.mnt);
4052	switch (mode & S_IFMT) {
4053		case 0: case S_IFREG:
4054			error = vfs_create(idmap, path.dentry->d_inode,
4055					   dentry, mode, true);
4056			if (!error)
4057				ima_post_path_mknod(idmap, dentry);
4058			break;
4059		case S_IFCHR: case S_IFBLK:
4060			error = vfs_mknod(idmap, path.dentry->d_inode,
4061					  dentry, mode, new_decode_dev(dev));
4062			break;
4063		case S_IFIFO: case S_IFSOCK:
4064			error = vfs_mknod(idmap, path.dentry->d_inode,
4065					  dentry, mode, 0);
4066			break;
4067	}
4068out2:
4069	done_path_create(&path, dentry);
4070	if (retry_estale(error, lookup_flags)) {
4071		lookup_flags |= LOOKUP_REVAL;
4072		goto retry;
4073	}
4074out1:
4075	putname(name);
4076	return error;
4077}
4078
4079SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4080		unsigned int, dev)
4081{
4082	return do_mknodat(dfd, getname(filename), mode, dev);
4083}
4084
4085SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4086{
4087	return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4088}
4089
4090/**
4091 * vfs_mkdir - create directory
4092 * @idmap:	idmap of the mount the inode was found from
4093 * @dir:	inode of @dentry
4094 * @dentry:	pointer to dentry of the base directory
4095 * @mode:	mode of the new directory
4096 *
4097 * Create a directory.
4098 *
4099 * If the inode has been found through an idmapped mount the idmap of
4100 * the vfsmount must be passed through @idmap. This function will then take
4101 * care to map the inode according to @idmap before checking permissions.
4102 * On non-idmapped mounts or if permission checking is to be performed on the
4103 * raw inode simply pass @nop_mnt_idmap.
4104 */
4105int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4106	      struct dentry *dentry, umode_t mode)
4107{
4108	int error;
4109	unsigned max_links = dir->i_sb->s_max_links;
4110
4111	error = may_create(idmap, dir, dentry);
4112	if (error)
4113		return error;
4114
4115	if (!dir->i_op->mkdir)
4116		return -EPERM;
4117
4118	mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4119	error = security_inode_mkdir(dir, dentry, mode);
4120	if (error)
4121		return error;
4122
4123	if (max_links && dir->i_nlink >= max_links)
4124		return -EMLINK;
4125
4126	error = dir->i_op->mkdir(idmap, dir, dentry, mode);
4127	if (!error)
4128		fsnotify_mkdir(dir, dentry);
4129	return error;
4130}
4131EXPORT_SYMBOL(vfs_mkdir);
4132
4133int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4134{
4135	struct dentry *dentry;
4136	struct path path;
4137	int error;
4138	unsigned int lookup_flags = LOOKUP_DIRECTORY;
4139
4140retry:
4141	dentry = filename_create(dfd, name, &path, lookup_flags);
4142	error = PTR_ERR(dentry);
4143	if (IS_ERR(dentry))
4144		goto out_putname;
4145
4146	error = security_path_mkdir(&path, dentry,
4147			mode_strip_umask(path.dentry->d_inode, mode));
4148	if (!error) {
4149		error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4150				  dentry, mode);
4151	}
4152	done_path_create(&path, dentry);
4153	if (retry_estale(error, lookup_flags)) {
4154		lookup_flags |= LOOKUP_REVAL;
4155		goto retry;
4156	}
4157out_putname:
4158	putname(name);
4159	return error;
4160}
4161
4162SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4163{
4164	return do_mkdirat(dfd, getname(pathname), mode);
4165}
4166
4167SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4168{
4169	return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4170}
4171
4172/**
4173 * vfs_rmdir - remove directory
4174 * @idmap:	idmap of the mount the inode was found from
4175 * @dir:	inode of @dentry
4176 * @dentry:	pointer to dentry of the base directory
4177 *
4178 * Remove a directory.
4179 *
4180 * If the inode has been found through an idmapped mount the idmap of
4181 * the vfsmount must be passed through @idmap. This function will then take
4182 * care to map the inode according to @idmap before checking permissions.
4183 * On non-idmapped mounts or if permission checking is to be performed on the
4184 * raw inode simply pass @nop_mnt_idmap.
4185 */
4186int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4187		     struct dentry *dentry)
4188{
4189	int error = may_delete(idmap, dir, dentry, 1);
4190
4191	if (error)
4192		return error;
4193
4194	if (!dir->i_op->rmdir)
4195		return -EPERM;
4196
4197	dget(dentry);
4198	inode_lock(dentry->d_inode);
4199
4200	error = -EBUSY;
4201	if (is_local_mountpoint(dentry) ||
4202	    (dentry->d_inode->i_flags & S_KERNEL_FILE))
4203		goto out;
4204
4205	error = security_inode_rmdir(dir, dentry);
4206	if (error)
4207		goto out;
4208
4209	error = dir->i_op->rmdir(dir, dentry);
4210	if (error)
4211		goto out;
4212
4213	shrink_dcache_parent(dentry);
4214	dentry->d_inode->i_flags |= S_DEAD;
4215	dont_mount(dentry);
4216	detach_mounts(dentry);
 
4217
4218out:
4219	inode_unlock(dentry->d_inode);
4220	dput(dentry);
4221	if (!error)
4222		d_delete_notify(dir, dentry);
4223	return error;
4224}
4225EXPORT_SYMBOL(vfs_rmdir);
4226
4227int do_rmdir(int dfd, struct filename *name)
4228{
4229	int error;
 
4230	struct dentry *dentry;
4231	struct path path;
4232	struct qstr last;
4233	int type;
4234	unsigned int lookup_flags = 0;
4235retry:
4236	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4237	if (error)
4238		goto exit1;
 
4239
4240	switch (type) {
4241	case LAST_DOTDOT:
4242		error = -ENOTEMPTY;
4243		goto exit2;
4244	case LAST_DOT:
4245		error = -EINVAL;
4246		goto exit2;
4247	case LAST_ROOT:
4248		error = -EBUSY;
4249		goto exit2;
4250	}
4251
4252	error = mnt_want_write(path.mnt);
4253	if (error)
4254		goto exit2;
4255
4256	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4257	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4258	error = PTR_ERR(dentry);
4259	if (IS_ERR(dentry))
4260		goto exit3;
4261	if (!dentry->d_inode) {
4262		error = -ENOENT;
4263		goto exit4;
4264	}
4265	error = security_path_rmdir(&path, dentry);
4266	if (error)
4267		goto exit4;
4268	error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4269exit4:
4270	dput(dentry);
4271exit3:
 
 
4272	inode_unlock(path.dentry->d_inode);
4273	mnt_drop_write(path.mnt);
4274exit2:
4275	path_put(&path);
 
4276	if (retry_estale(error, lookup_flags)) {
4277		lookup_flags |= LOOKUP_REVAL;
4278		goto retry;
4279	}
4280exit1:
4281	putname(name);
4282	return error;
4283}
4284
4285SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4286{
4287	return do_rmdir(AT_FDCWD, getname(pathname));
4288}
4289
4290/**
4291 * vfs_unlink - unlink a filesystem object
4292 * @idmap:	idmap of the mount the inode was found from
4293 * @dir:	parent directory
4294 * @dentry:	victim
4295 * @delegated_inode: returns victim inode, if the inode is delegated.
4296 *
4297 * The caller must hold dir->i_mutex.
4298 *
4299 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4300 * return a reference to the inode in delegated_inode.  The caller
4301 * should then break the delegation on that inode and retry.  Because
4302 * breaking a delegation may take a long time, the caller should drop
4303 * dir->i_mutex before doing so.
4304 *
4305 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4306 * be appropriate for callers that expect the underlying filesystem not
4307 * to be NFS exported.
4308 *
4309 * If the inode has been found through an idmapped mount the idmap of
4310 * the vfsmount must be passed through @idmap. This function will then take
4311 * care to map the inode according to @idmap before checking permissions.
4312 * On non-idmapped mounts or if permission checking is to be performed on the
4313 * raw inode simply pass @nop_mnt_idmap.
4314 */
4315int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4316	       struct dentry *dentry, struct inode **delegated_inode)
4317{
4318	struct inode *target = dentry->d_inode;
4319	int error = may_delete(idmap, dir, dentry, 0);
4320
4321	if (error)
4322		return error;
4323
4324	if (!dir->i_op->unlink)
4325		return -EPERM;
4326
4327	inode_lock(target);
4328	if (IS_SWAPFILE(target))
4329		error = -EPERM;
4330	else if (is_local_mountpoint(dentry))
4331		error = -EBUSY;
4332	else {
4333		error = security_inode_unlink(dir, dentry);
4334		if (!error) {
4335			error = try_break_deleg(target, delegated_inode);
4336			if (error)
4337				goto out;
4338			error = dir->i_op->unlink(dir, dentry);
4339			if (!error) {
4340				dont_mount(dentry);
4341				detach_mounts(dentry);
 
4342			}
4343		}
4344	}
4345out:
4346	inode_unlock(target);
4347
4348	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4349	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4350		fsnotify_unlink(dir, dentry);
4351	} else if (!error) {
4352		fsnotify_link_count(target);
4353		d_delete_notify(dir, dentry);
4354	}
4355
4356	return error;
4357}
4358EXPORT_SYMBOL(vfs_unlink);
4359
4360/*
4361 * Make sure that the actual truncation of the file will occur outside its
4362 * directory's i_mutex.  Truncate can take a long time if there is a lot of
4363 * writeout happening, and we don't want to prevent access to the directory
4364 * while waiting on the I/O.
4365 */
4366int do_unlinkat(int dfd, struct filename *name)
4367{
4368	int error;
4369	struct dentry *dentry;
4370	struct path path;
4371	struct qstr last;
4372	int type;
4373	struct inode *inode = NULL;
4374	struct inode *delegated_inode = NULL;
4375	unsigned int lookup_flags = 0;
4376retry:
4377	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4378	if (error)
4379		goto exit1;
4380
4381	error = -EISDIR;
4382	if (type != LAST_NORM)
4383		goto exit2;
4384
4385	error = mnt_want_write(path.mnt);
4386	if (error)
4387		goto exit2;
4388retry_deleg:
4389	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4390	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4391	error = PTR_ERR(dentry);
4392	if (!IS_ERR(dentry)) {
4393
4394		/* Why not before? Because we want correct error value */
4395		if (last.name[last.len] || d_is_negative(dentry))
4396			goto slashes;
4397		inode = dentry->d_inode;
 
 
4398		ihold(inode);
4399		error = security_path_unlink(&path, dentry);
4400		if (error)
4401			goto exit3;
4402		error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4403				   dentry, &delegated_inode);
4404exit3:
4405		dput(dentry);
4406	}
4407	inode_unlock(path.dentry->d_inode);
4408	if (inode)
4409		iput(inode);	/* truncate the inode here */
4410	inode = NULL;
4411	if (delegated_inode) {
4412		error = break_deleg_wait(&delegated_inode);
4413		if (!error)
4414			goto retry_deleg;
4415	}
4416	mnt_drop_write(path.mnt);
4417exit2:
4418	path_put(&path);
4419	if (retry_estale(error, lookup_flags)) {
4420		lookup_flags |= LOOKUP_REVAL;
4421		inode = NULL;
4422		goto retry;
4423	}
4424exit1:
4425	putname(name);
4426	return error;
4427
4428slashes:
4429	if (d_is_negative(dentry))
4430		error = -ENOENT;
4431	else if (d_is_dir(dentry))
4432		error = -EISDIR;
4433	else
4434		error = -ENOTDIR;
4435	goto exit3;
4436}
4437
4438SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4439{
4440	if ((flag & ~AT_REMOVEDIR) != 0)
4441		return -EINVAL;
4442
4443	if (flag & AT_REMOVEDIR)
4444		return do_rmdir(dfd, getname(pathname));
 
4445	return do_unlinkat(dfd, getname(pathname));
4446}
4447
4448SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4449{
4450	return do_unlinkat(AT_FDCWD, getname(pathname));
4451}
4452
4453/**
4454 * vfs_symlink - create symlink
4455 * @idmap:	idmap of the mount the inode was found from
4456 * @dir:	inode of @dentry
4457 * @dentry:	pointer to dentry of the base directory
4458 * @oldname:	name of the file to link to
4459 *
4460 * Create a symlink.
4461 *
4462 * If the inode has been found through an idmapped mount the idmap of
4463 * the vfsmount must be passed through @idmap. This function will then take
4464 * care to map the inode according to @idmap before checking permissions.
4465 * On non-idmapped mounts or if permission checking is to be performed on the
4466 * raw inode simply pass @nop_mnt_idmap.
4467 */
4468int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4469		struct dentry *dentry, const char *oldname)
4470{
4471	int error;
4472
4473	error = may_create(idmap, dir, dentry);
4474	if (error)
4475		return error;
4476
4477	if (!dir->i_op->symlink)
4478		return -EPERM;
4479
4480	error = security_inode_symlink(dir, dentry, oldname);
4481	if (error)
4482		return error;
4483
4484	error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4485	if (!error)
4486		fsnotify_create(dir, dentry);
4487	return error;
4488}
4489EXPORT_SYMBOL(vfs_symlink);
4490
4491int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
 
4492{
4493	int error;
 
4494	struct dentry *dentry;
4495	struct path path;
4496	unsigned int lookup_flags = 0;
4497
4498	if (IS_ERR(from)) {
4499		error = PTR_ERR(from);
4500		goto out_putnames;
4501	}
4502retry:
4503	dentry = filename_create(newdfd, to, &path, lookup_flags);
4504	error = PTR_ERR(dentry);
4505	if (IS_ERR(dentry))
4506		goto out_putnames;
4507
4508	error = security_path_symlink(&path, dentry, from->name);
4509	if (!error)
4510		error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4511				    dentry, from->name);
4512	done_path_create(&path, dentry);
4513	if (retry_estale(error, lookup_flags)) {
4514		lookup_flags |= LOOKUP_REVAL;
4515		goto retry;
4516	}
4517out_putnames:
4518	putname(to);
4519	putname(from);
4520	return error;
4521}
4522
4523SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4524		int, newdfd, const char __user *, newname)
4525{
4526	return do_symlinkat(getname(oldname), newdfd, getname(newname));
4527}
4528
4529SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4530{
4531	return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4532}
4533
4534/**
4535 * vfs_link - create a new link
4536 * @old_dentry:	object to be linked
4537 * @idmap:	idmap of the mount
4538 * @dir:	new parent
4539 * @new_dentry:	where to create the new link
4540 * @delegated_inode: returns inode needing a delegation break
4541 *
4542 * The caller must hold dir->i_mutex
4543 *
4544 * If vfs_link discovers a delegation on the to-be-linked file in need
4545 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4546 * inode in delegated_inode.  The caller should then break the delegation
4547 * and retry.  Because breaking a delegation may take a long time, the
4548 * caller should drop the i_mutex before doing so.
4549 *
4550 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4551 * be appropriate for callers that expect the underlying filesystem not
4552 * to be NFS exported.
4553 *
4554 * If the inode has been found through an idmapped mount the idmap of
4555 * the vfsmount must be passed through @idmap. This function will then take
4556 * care to map the inode according to @idmap before checking permissions.
4557 * On non-idmapped mounts or if permission checking is to be performed on the
4558 * raw inode simply pass @nop_mnt_idmap.
4559 */
4560int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4561	     struct inode *dir, struct dentry *new_dentry,
4562	     struct inode **delegated_inode)
4563{
4564	struct inode *inode = old_dentry->d_inode;
4565	unsigned max_links = dir->i_sb->s_max_links;
4566	int error;
4567
4568	if (!inode)
4569		return -ENOENT;
4570
4571	error = may_create(idmap, dir, new_dentry);
4572	if (error)
4573		return error;
4574
4575	if (dir->i_sb != inode->i_sb)
4576		return -EXDEV;
4577
4578	/*
4579	 * A link to an append-only or immutable file cannot be created.
4580	 */
4581	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4582		return -EPERM;
4583	/*
4584	 * Updating the link count will likely cause i_uid and i_gid to
4585	 * be writen back improperly if their true value is unknown to
4586	 * the vfs.
4587	 */
4588	if (HAS_UNMAPPED_ID(idmap, inode))
4589		return -EPERM;
4590	if (!dir->i_op->link)
4591		return -EPERM;
4592	if (S_ISDIR(inode->i_mode))
4593		return -EPERM;
4594
4595	error = security_inode_link(old_dentry, dir, new_dentry);
4596	if (error)
4597		return error;
4598
4599	inode_lock(inode);
4600	/* Make sure we don't allow creating hardlink to an unlinked file */
4601	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4602		error =  -ENOENT;
4603	else if (max_links && inode->i_nlink >= max_links)
4604		error = -EMLINK;
4605	else {
4606		error = try_break_deleg(inode, delegated_inode);
4607		if (!error)
4608			error = dir->i_op->link(old_dentry, dir, new_dentry);
4609	}
4610
4611	if (!error && (inode->i_state & I_LINKABLE)) {
4612		spin_lock(&inode->i_lock);
4613		inode->i_state &= ~I_LINKABLE;
4614		spin_unlock(&inode->i_lock);
4615	}
4616	inode_unlock(inode);
4617	if (!error)
4618		fsnotify_link(dir, inode, new_dentry);
4619	return error;
4620}
4621EXPORT_SYMBOL(vfs_link);
4622
4623/*
4624 * Hardlinks are often used in delicate situations.  We avoid
4625 * security-related surprises by not following symlinks on the
4626 * newname.  --KAB
4627 *
4628 * We don't follow them on the oldname either to be compatible
4629 * with linux 2.0, and to avoid hard-linking to directories
4630 * and other special files.  --ADM
4631 */
4632int do_linkat(int olddfd, struct filename *old, int newdfd,
4633	      struct filename *new, int flags)
4634{
4635	struct mnt_idmap *idmap;
4636	struct dentry *new_dentry;
4637	struct path old_path, new_path;
4638	struct inode *delegated_inode = NULL;
4639	int how = 0;
4640	int error;
4641
4642	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4643		error = -EINVAL;
4644		goto out_putnames;
4645	}
4646	/*
4647	 * To use null names we require CAP_DAC_READ_SEARCH
4648	 * This ensures that not everyone will be able to create
4649	 * handlink using the passed filedescriptor.
4650	 */
4651	if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) {
4652		error = -ENOENT;
4653		goto out_putnames;
 
4654	}
4655
4656	if (flags & AT_SYMLINK_FOLLOW)
4657		how |= LOOKUP_FOLLOW;
4658retry:
4659	error = filename_lookup(olddfd, old, how, &old_path, NULL);
4660	if (error)
4661		goto out_putnames;
4662
4663	new_dentry = filename_create(newdfd, new, &new_path,
4664					(how & LOOKUP_REVAL));
4665	error = PTR_ERR(new_dentry);
4666	if (IS_ERR(new_dentry))
4667		goto out_putpath;
4668
4669	error = -EXDEV;
4670	if (old_path.mnt != new_path.mnt)
4671		goto out_dput;
4672	idmap = mnt_idmap(new_path.mnt);
4673	error = may_linkat(idmap, &old_path);
4674	if (unlikely(error))
4675		goto out_dput;
4676	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4677	if (error)
4678		goto out_dput;
4679	error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4680			 new_dentry, &delegated_inode);
4681out_dput:
4682	done_path_create(&new_path, new_dentry);
4683	if (delegated_inode) {
4684		error = break_deleg_wait(&delegated_inode);
4685		if (!error) {
4686			path_put(&old_path);
4687			goto retry;
4688		}
4689	}
4690	if (retry_estale(error, how)) {
4691		path_put(&old_path);
4692		how |= LOOKUP_REVAL;
4693		goto retry;
4694	}
4695out_putpath:
4696	path_put(&old_path);
4697out_putnames:
4698	putname(old);
4699	putname(new);
4700
4701	return error;
4702}
4703
4704SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4705		int, newdfd, const char __user *, newname, int, flags)
4706{
4707	return do_linkat(olddfd, getname_uflags(oldname, flags),
4708		newdfd, getname(newname), flags);
4709}
4710
4711SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4712{
4713	return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4714}
4715
4716/**
4717 * vfs_rename - rename a filesystem object
4718 * @rd:		pointer to &struct renamedata info
 
 
 
 
 
4719 *
4720 * The caller must hold multiple mutexes--see lock_rename()).
4721 *
4722 * If vfs_rename discovers a delegation in need of breaking at either
4723 * the source or destination, it will return -EWOULDBLOCK and return a
4724 * reference to the inode in delegated_inode.  The caller should then
4725 * break the delegation and retry.  Because breaking a delegation may
4726 * take a long time, the caller should drop all locks before doing
4727 * so.
4728 *
4729 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4730 * be appropriate for callers that expect the underlying filesystem not
4731 * to be NFS exported.
4732 *
4733 * The worst of all namespace operations - renaming directory. "Perverted"
4734 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4735 * Problems:
4736 *
4737 *	a) we can get into loop creation.
4738 *	b) race potential - two innocent renames can create a loop together.
4739 *	   That's where 4.4BSD screws up. Current fix: serialization on
4740 *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4741 *	   story.
4742 *	c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4743 *	   and source (if it's a non-directory or a subdirectory that moves to
4744 *	   different parent).
4745 *	   And that - after we got ->i_mutex on parents (until then we don't know
4746 *	   whether the target exists).  Solution: try to be smart with locking
4747 *	   order for inodes.  We rely on the fact that tree topology may change
4748 *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4749 *	   move will be locked.  Thus we can rank directories by the tree
4750 *	   (ancestors first) and rank all non-directories after them.
4751 *	   That works since everybody except rename does "lock parent, lookup,
4752 *	   lock child" and rename is under ->s_vfs_rename_mutex.
4753 *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4754 *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4755 *	   we'd better make sure that there's no link(2) for them.
4756 *	d) conversion from fhandle to dentry may come in the wrong moment - when
4757 *	   we are removing the target. Solution: we will have to grab ->i_mutex
4758 *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4759 *	   ->i_mutex on parents, which works but leads to some truly excessive
4760 *	   locking].
4761 */
4762int vfs_rename(struct renamedata *rd)
 
 
4763{
4764	int error;
4765	struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4766	struct dentry *old_dentry = rd->old_dentry;
4767	struct dentry *new_dentry = rd->new_dentry;
4768	struct inode **delegated_inode = rd->delegated_inode;
4769	unsigned int flags = rd->flags;
4770	bool is_dir = d_is_dir(old_dentry);
4771	struct inode *source = old_dentry->d_inode;
4772	struct inode *target = new_dentry->d_inode;
4773	bool new_is_dir = false;
4774	unsigned max_links = new_dir->i_sb->s_max_links;
4775	struct name_snapshot old_name;
4776	bool lock_old_subdir, lock_new_subdir;
4777
4778	if (source == target)
4779		return 0;
4780
4781	error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir);
4782	if (error)
4783		return error;
4784
4785	if (!target) {
4786		error = may_create(rd->new_mnt_idmap, new_dir, new_dentry);
4787	} else {
4788		new_is_dir = d_is_dir(new_dentry);
4789
4790		if (!(flags & RENAME_EXCHANGE))
4791			error = may_delete(rd->new_mnt_idmap, new_dir,
4792					   new_dentry, is_dir);
4793		else
4794			error = may_delete(rd->new_mnt_idmap, new_dir,
4795					   new_dentry, new_is_dir);
4796	}
4797	if (error)
4798		return error;
4799
4800	if (!old_dir->i_op->rename)
4801		return -EPERM;
4802
4803	/*
4804	 * If we are going to change the parent - check write permissions,
4805	 * we'll need to flip '..'.
4806	 */
4807	if (new_dir != old_dir) {
4808		if (is_dir) {
4809			error = inode_permission(rd->old_mnt_idmap, source,
4810						 MAY_WRITE);
4811			if (error)
4812				return error;
4813		}
4814		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4815			error = inode_permission(rd->new_mnt_idmap, target,
4816						 MAY_WRITE);
4817			if (error)
4818				return error;
4819		}
4820	}
4821
4822	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4823				      flags);
4824	if (error)
4825		return error;
4826
4827	take_dentry_name_snapshot(&old_name, old_dentry);
4828	dget(new_dentry);
4829	/*
4830	 * Lock children.
4831	 * The source subdirectory needs to be locked on cross-directory
4832	 * rename or cross-directory exchange since its parent changes.
4833	 * The target subdirectory needs to be locked on cross-directory
4834	 * exchange due to parent change and on any rename due to becoming
4835	 * a victim.
4836	 * Non-directories need locking in all cases (for NFS reasons);
4837	 * they get locked after any subdirectories (in inode address order).
4838	 *
4839	 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
4840	 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
4841	 */
4842	lock_old_subdir = new_dir != old_dir;
4843	lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
4844	if (is_dir) {
4845		if (lock_old_subdir)
4846			inode_lock_nested(source, I_MUTEX_CHILD);
4847		if (target && (!new_is_dir || lock_new_subdir))
4848			inode_lock(target);
4849	} else if (new_is_dir) {
4850		if (lock_new_subdir)
4851			inode_lock_nested(target, I_MUTEX_CHILD);
4852		inode_lock(source);
4853	} else {
4854		lock_two_nondirectories(source, target);
4855	}
4856
4857	error = -EPERM;
4858	if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4859		goto out;
4860
4861	error = -EBUSY;
4862	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4863		goto out;
4864
4865	if (max_links && new_dir != old_dir) {
4866		error = -EMLINK;
4867		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4868			goto out;
4869		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4870		    old_dir->i_nlink >= max_links)
4871			goto out;
4872	}
4873	if (!is_dir) {
4874		error = try_break_deleg(source, delegated_inode);
4875		if (error)
4876			goto out;
4877	}
4878	if (target && !new_is_dir) {
4879		error = try_break_deleg(target, delegated_inode);
4880		if (error)
4881			goto out;
4882	}
4883	error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
4884				      new_dir, new_dentry, flags);
4885	if (error)
4886		goto out;
4887
4888	if (!(flags & RENAME_EXCHANGE) && target) {
4889		if (is_dir) {
4890			shrink_dcache_parent(new_dentry);
4891			target->i_flags |= S_DEAD;
4892		}
4893		dont_mount(new_dentry);
4894		detach_mounts(new_dentry);
4895	}
4896	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4897		if (!(flags & RENAME_EXCHANGE))
4898			d_move(old_dentry, new_dentry);
4899		else
4900			d_exchange(old_dentry, new_dentry);
4901	}
4902out:
4903	if (!is_dir || lock_old_subdir)
4904		inode_unlock(source);
4905	if (target && (!new_is_dir || lock_new_subdir))
4906		inode_unlock(target);
4907	dput(new_dentry);
4908	if (!error) {
4909		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4910			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4911		if (flags & RENAME_EXCHANGE) {
4912			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4913				      new_is_dir, NULL, new_dentry);
4914		}
4915	}
4916	release_dentry_name_snapshot(&old_name);
4917
4918	return error;
4919}
4920EXPORT_SYMBOL(vfs_rename);
4921
4922int do_renameat2(int olddfd, struct filename *from, int newdfd,
4923		 struct filename *to, unsigned int flags)
4924{
4925	struct renamedata rd;
4926	struct dentry *old_dentry, *new_dentry;
4927	struct dentry *trap;
4928	struct path old_path, new_path;
4929	struct qstr old_last, new_last;
4930	int old_type, new_type;
4931	struct inode *delegated_inode = NULL;
 
 
4932	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4933	bool should_retry = false;
4934	int error = -EINVAL;
4935
4936	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4937		goto put_names;
4938
4939	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4940	    (flags & RENAME_EXCHANGE))
4941		goto put_names;
 
 
 
4942
4943	if (flags & RENAME_EXCHANGE)
4944		target_flags = 0;
4945
4946retry:
4947	error = filename_parentat(olddfd, from, lookup_flags, &old_path,
4948				  &old_last, &old_type);
4949	if (error)
4950		goto put_names;
 
 
4951
4952	error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4953				  &new_type);
4954	if (error)
 
4955		goto exit1;
 
4956
4957	error = -EXDEV;
4958	if (old_path.mnt != new_path.mnt)
4959		goto exit2;
4960
4961	error = -EBUSY;
4962	if (old_type != LAST_NORM)
4963		goto exit2;
4964
4965	if (flags & RENAME_NOREPLACE)
4966		error = -EEXIST;
4967	if (new_type != LAST_NORM)
4968		goto exit2;
4969
4970	error = mnt_want_write(old_path.mnt);
4971	if (error)
4972		goto exit2;
4973
4974retry_deleg:
4975	trap = lock_rename(new_path.dentry, old_path.dentry);
4976	if (IS_ERR(trap)) {
4977		error = PTR_ERR(trap);
4978		goto exit_lock_rename;
4979	}
4980
4981	old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
4982					  lookup_flags);
4983	error = PTR_ERR(old_dentry);
4984	if (IS_ERR(old_dentry))
4985		goto exit3;
4986	/* source must exist */
4987	error = -ENOENT;
4988	if (d_is_negative(old_dentry))
4989		goto exit4;
4990	new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
4991					  lookup_flags | target_flags);
4992	error = PTR_ERR(new_dentry);
4993	if (IS_ERR(new_dentry))
4994		goto exit4;
4995	error = -EEXIST;
4996	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4997		goto exit5;
4998	if (flags & RENAME_EXCHANGE) {
4999		error = -ENOENT;
5000		if (d_is_negative(new_dentry))
5001			goto exit5;
5002
5003		if (!d_is_dir(new_dentry)) {
5004			error = -ENOTDIR;
5005			if (new_last.name[new_last.len])
5006				goto exit5;
5007		}
5008	}
5009	/* unless the source is a directory trailing slashes give -ENOTDIR */
5010	if (!d_is_dir(old_dentry)) {
5011		error = -ENOTDIR;
5012		if (old_last.name[old_last.len])
5013			goto exit5;
5014		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5015			goto exit5;
5016	}
5017	/* source should not be ancestor of target */
5018	error = -EINVAL;
5019	if (old_dentry == trap)
5020		goto exit5;
5021	/* target should not be an ancestor of source */
5022	if (!(flags & RENAME_EXCHANGE))
5023		error = -ENOTEMPTY;
5024	if (new_dentry == trap)
5025		goto exit5;
5026
5027	error = security_path_rename(&old_path, old_dentry,
5028				     &new_path, new_dentry, flags);
5029	if (error)
5030		goto exit5;
5031
5032	rd.old_dir	   = old_path.dentry->d_inode;
5033	rd.old_dentry	   = old_dentry;
5034	rd.old_mnt_idmap   = mnt_idmap(old_path.mnt);
5035	rd.new_dir	   = new_path.dentry->d_inode;
5036	rd.new_dentry	   = new_dentry;
5037	rd.new_mnt_idmap   = mnt_idmap(new_path.mnt);
5038	rd.delegated_inode = &delegated_inode;
5039	rd.flags	   = flags;
5040	error = vfs_rename(&rd);
5041exit5:
5042	dput(new_dentry);
5043exit4:
5044	dput(old_dentry);
5045exit3:
5046	unlock_rename(new_path.dentry, old_path.dentry);
5047exit_lock_rename:
5048	if (delegated_inode) {
5049		error = break_deleg_wait(&delegated_inode);
5050		if (!error)
5051			goto retry_deleg;
5052	}
5053	mnt_drop_write(old_path.mnt);
5054exit2:
5055	if (retry_estale(error, lookup_flags))
5056		should_retry = true;
5057	path_put(&new_path);
 
5058exit1:
5059	path_put(&old_path);
 
5060	if (should_retry) {
5061		should_retry = false;
5062		lookup_flags |= LOOKUP_REVAL;
5063		goto retry;
5064	}
5065put_names:
5066	putname(from);
5067	putname(to);
5068	return error;
5069}
5070
5071SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5072		int, newdfd, const char __user *, newname, unsigned int, flags)
5073{
5074	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5075				flags);
5076}
5077
5078SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5079		int, newdfd, const char __user *, newname)
5080{
5081	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5082				0);
5083}
5084
5085SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5086{
5087	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5088				getname(newname), 0);
 
 
 
 
 
 
 
 
 
 
 
 
5089}
 
5090
5091int readlink_copy(char __user *buffer, int buflen, const char *link)
5092{
5093	int len = PTR_ERR(link);
5094	if (IS_ERR(link))
5095		goto out;
5096
5097	len = strlen(link);
5098	if (len > (unsigned) buflen)
5099		len = buflen;
5100	if (copy_to_user(buffer, link, len))
5101		len = -EFAULT;
5102out:
5103	return len;
5104}
5105
5106/**
5107 * vfs_readlink - copy symlink body into userspace buffer
5108 * @dentry: dentry on which to get symbolic link
5109 * @buffer: user memory pointer
5110 * @buflen: size of buffer
5111 *
5112 * Does not touch atime.  That's up to the caller if necessary
5113 *
5114 * Does not call security hook.
5115 */
5116int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5117{
5118	struct inode *inode = d_inode(dentry);
5119	DEFINE_DELAYED_CALL(done);
5120	const char *link;
5121	int res;
5122
5123	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5124		if (unlikely(inode->i_op->readlink))
5125			return inode->i_op->readlink(dentry, buffer, buflen);
5126
5127		if (!d_is_symlink(dentry))
5128			return -EINVAL;
5129
5130		spin_lock(&inode->i_lock);
5131		inode->i_opflags |= IOP_DEFAULT_READLINK;
5132		spin_unlock(&inode->i_lock);
5133	}
5134
5135	link = READ_ONCE(inode->i_link);
5136	if (!link) {
5137		link = inode->i_op->get_link(dentry, inode, &done);
5138		if (IS_ERR(link))
5139			return PTR_ERR(link);
5140	}
5141	res = readlink_copy(buffer, buflen, link);
5142	do_delayed_call(&done);
5143	return res;
5144}
5145EXPORT_SYMBOL(vfs_readlink);
5146
5147/**
5148 * vfs_get_link - get symlink body
5149 * @dentry: dentry on which to get symbolic link
5150 * @done: caller needs to free returned data with this
5151 *
5152 * Calls security hook and i_op->get_link() on the supplied inode.
5153 *
5154 * It does not touch atime.  That's up to the caller if necessary.
5155 *
5156 * Does not work on "special" symlinks like /proc/$$/fd/N
5157 */
5158const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5159{
5160	const char *res = ERR_PTR(-EINVAL);
5161	struct inode *inode = d_inode(dentry);
5162
5163	if (d_is_symlink(dentry)) {
5164		res = ERR_PTR(security_inode_readlink(dentry));
5165		if (!res)
5166			res = inode->i_op->get_link(dentry, inode, done);
5167	}
5168	return res;
5169}
5170EXPORT_SYMBOL(vfs_get_link);
5171
5172/* get the link contents into pagecache */
5173const char *page_get_link(struct dentry *dentry, struct inode *inode,
5174			  struct delayed_call *callback)
5175{
5176	char *kaddr;
5177	struct page *page;
5178	struct address_space *mapping = inode->i_mapping;
5179
5180	if (!dentry) {
5181		page = find_get_page(mapping, 0);
5182		if (!page)
5183			return ERR_PTR(-ECHILD);
5184		if (!PageUptodate(page)) {
5185			put_page(page);
5186			return ERR_PTR(-ECHILD);
5187		}
5188	} else {
5189		page = read_mapping_page(mapping, 0, NULL);
5190		if (IS_ERR(page))
5191			return (char*)page;
5192	}
5193	set_delayed_call(callback, page_put_link, page);
5194	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5195	kaddr = page_address(page);
5196	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5197	return kaddr;
5198}
5199
5200EXPORT_SYMBOL(page_get_link);
5201
5202void page_put_link(void *arg)
5203{
5204	put_page(arg);
5205}
5206EXPORT_SYMBOL(page_put_link);
5207
5208int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5209{
5210	DEFINE_DELAYED_CALL(done);
5211	int res = readlink_copy(buffer, buflen,
5212				page_get_link(dentry, d_inode(dentry),
5213					      &done));
5214	do_delayed_call(&done);
5215	return res;
5216}
5217EXPORT_SYMBOL(page_readlink);
5218
5219int page_symlink(struct inode *inode, const char *symname, int len)
 
 
 
5220{
5221	struct address_space *mapping = inode->i_mapping;
5222	const struct address_space_operations *aops = mapping->a_ops;
5223	bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5224	struct page *page;
5225	void *fsdata = NULL;
5226	int err;
5227	unsigned int flags;
 
 
5228
5229retry:
5230	if (nofs)
5231		flags = memalloc_nofs_save();
5232	err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata);
5233	if (nofs)
5234		memalloc_nofs_restore(flags);
5235	if (err)
5236		goto fail;
5237
5238	memcpy(page_address(page), symname, len-1);
5239
5240	err = aops->write_end(NULL, mapping, 0, len-1, len-1,
5241							page, fsdata);
5242	if (err < 0)
5243		goto fail;
5244	if (err < len-1)
5245		goto retry;
5246
5247	mark_inode_dirty(inode);
5248	return 0;
5249fail:
5250	return err;
 
 
 
 
 
 
 
5251}
5252EXPORT_SYMBOL(page_symlink);
5253
5254const struct inode_operations page_symlink_inode_operations = {
5255	.get_link	= page_get_link,
5256};
5257EXPORT_SYMBOL(page_symlink_inode_operations);
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/namei.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 * Some corrections by tytso.
  10 */
  11
  12/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
  13 * lookup logic.
  14 */
  15/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
  16 */
  17
  18#include <linux/init.h>
  19#include <linux/export.h>
  20#include <linux/kernel.h>
  21#include <linux/slab.h>
  22#include <linux/fs.h>
 
  23#include <linux/namei.h>
  24#include <linux/pagemap.h>
 
  25#include <linux/fsnotify.h>
  26#include <linux/personality.h>
  27#include <linux/security.h>
  28#include <linux/ima.h>
  29#include <linux/syscalls.h>
  30#include <linux/mount.h>
  31#include <linux/audit.h>
  32#include <linux/capability.h>
  33#include <linux/file.h>
  34#include <linux/fcntl.h>
  35#include <linux/device_cgroup.h>
  36#include <linux/fs_struct.h>
  37#include <linux/posix_acl.h>
  38#include <linux/hash.h>
  39#include <linux/bitops.h>
  40#include <linux/init_task.h>
  41#include <linux/uaccess.h>
  42
  43#include "internal.h"
  44#include "mount.h"
  45
  46/* [Feb-1997 T. Schoebel-Theuer]
  47 * Fundamental changes in the pathname lookup mechanisms (namei)
  48 * were necessary because of omirr.  The reason is that omirr needs
  49 * to know the _real_ pathname, not the user-supplied one, in case
  50 * of symlinks (and also when transname replacements occur).
  51 *
  52 * The new code replaces the old recursive symlink resolution with
  53 * an iterative one (in case of non-nested symlink chains).  It does
  54 * this with calls to <fs>_follow_link().
  55 * As a side effect, dir_namei(), _namei() and follow_link() are now 
  56 * replaced with a single function lookup_dentry() that can handle all 
  57 * the special cases of the former code.
  58 *
  59 * With the new dcache, the pathname is stored at each inode, at least as
  60 * long as the refcount of the inode is positive.  As a side effect, the
  61 * size of the dcache depends on the inode cache and thus is dynamic.
  62 *
  63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
  64 * resolution to correspond with current state of the code.
  65 *
  66 * Note that the symlink resolution is not *completely* iterative.
  67 * There is still a significant amount of tail- and mid- recursion in
  68 * the algorithm.  Also, note that <fs>_readlink() is not used in
  69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
  70 * may return different results than <fs>_follow_link().  Many virtual
  71 * filesystems (including /proc) exhibit this behavior.
  72 */
  73
  74/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
  75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
  76 * and the name already exists in form of a symlink, try to create the new
  77 * name indicated by the symlink. The old code always complained that the
  78 * name already exists, due to not following the symlink even if its target
  79 * is nonexistent.  The new semantics affects also mknod() and link() when
  80 * the name is a symlink pointing to a non-existent name.
  81 *
  82 * I don't know which semantics is the right one, since I have no access
  83 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
  84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
  85 * "old" one. Personally, I think the new semantics is much more logical.
  86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
  87 * file does succeed in both HP-UX and SunOs, but not in Solaris
  88 * and in the old Linux semantics.
  89 */
  90
  91/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
  92 * semantics.  See the comments in "open_namei" and "do_link" below.
  93 *
  94 * [10-Sep-98 Alan Modra] Another symlink change.
  95 */
  96
  97/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
  98 *	inside the path - always follow.
  99 *	in the last component in creation/removal/renaming - never follow.
 100 *	if LOOKUP_FOLLOW passed - follow.
 101 *	if the pathname has trailing slashes - follow.
 102 *	otherwise - don't follow.
 103 * (applied in that order).
 104 *
 105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
 106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
 107 * During the 2.4 we need to fix the userland stuff depending on it -
 108 * hopefully we will be able to get rid of that wart in 2.5. So far only
 109 * XEmacs seems to be relying on it...
 110 */
 111/*
 112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
 113 * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
 114 * any extra contention...
 115 */
 116
 117/* In order to reduce some races, while at the same time doing additional
 118 * checking and hopefully speeding things up, we copy filenames to the
 119 * kernel data space before using them..
 120 *
 121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
 122 * PATH_MAX includes the nul terminator --RR.
 123 */
 124
 125#define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
 126
 127struct filename *
 128getname_flags(const char __user *filename, int flags, int *empty)
 129{
 130	struct filename *result;
 131	char *kname;
 132	int len;
 133
 134	result = audit_reusename(filename);
 135	if (result)
 136		return result;
 137
 138	result = __getname();
 139	if (unlikely(!result))
 140		return ERR_PTR(-ENOMEM);
 141
 142	/*
 143	 * First, try to embed the struct filename inside the names_cache
 144	 * allocation
 145	 */
 146	kname = (char *)result->iname;
 147	result->name = kname;
 148
 149	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
 150	if (unlikely(len < 0)) {
 151		__putname(result);
 152		return ERR_PTR(len);
 153	}
 154
 155	/*
 156	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
 157	 * separate struct filename so we can dedicate the entire
 158	 * names_cache allocation for the pathname, and re-do the copy from
 159	 * userland.
 160	 */
 161	if (unlikely(len == EMBEDDED_NAME_MAX)) {
 162		const size_t size = offsetof(struct filename, iname[1]);
 163		kname = (char *)result;
 164
 165		/*
 166		 * size is chosen that way we to guarantee that
 167		 * result->iname[0] is within the same object and that
 168		 * kname can't be equal to result->iname, no matter what.
 169		 */
 170		result = kzalloc(size, GFP_KERNEL);
 171		if (unlikely(!result)) {
 172			__putname(kname);
 173			return ERR_PTR(-ENOMEM);
 174		}
 175		result->name = kname;
 176		len = strncpy_from_user(kname, filename, PATH_MAX);
 177		if (unlikely(len < 0)) {
 178			__putname(kname);
 179			kfree(result);
 180			return ERR_PTR(len);
 181		}
 182		if (unlikely(len == PATH_MAX)) {
 183			__putname(kname);
 184			kfree(result);
 185			return ERR_PTR(-ENAMETOOLONG);
 186		}
 187	}
 188
 189	result->refcnt = 1;
 190	/* The empty path is special. */
 191	if (unlikely(!len)) {
 192		if (empty)
 193			*empty = 1;
 194		if (!(flags & LOOKUP_EMPTY)) {
 195			putname(result);
 196			return ERR_PTR(-ENOENT);
 197		}
 198	}
 199
 200	result->uptr = filename;
 201	result->aname = NULL;
 202	audit_getname(result);
 203	return result;
 204}
 205
 206struct filename *
 
 
 
 
 
 
 
 
 207getname(const char __user * filename)
 208{
 209	return getname_flags(filename, 0, NULL);
 210}
 211
 212struct filename *
 213getname_kernel(const char * filename)
 214{
 215	struct filename *result;
 216	int len = strlen(filename) + 1;
 217
 218	result = __getname();
 219	if (unlikely(!result))
 220		return ERR_PTR(-ENOMEM);
 221
 222	if (len <= EMBEDDED_NAME_MAX) {
 223		result->name = (char *)result->iname;
 224	} else if (len <= PATH_MAX) {
 225		const size_t size = offsetof(struct filename, iname[1]);
 226		struct filename *tmp;
 227
 228		tmp = kmalloc(size, GFP_KERNEL);
 229		if (unlikely(!tmp)) {
 230			__putname(result);
 231			return ERR_PTR(-ENOMEM);
 232		}
 233		tmp->name = (char *)result;
 234		result = tmp;
 235	} else {
 236		__putname(result);
 237		return ERR_PTR(-ENAMETOOLONG);
 238	}
 239	memcpy((char *)result->name, filename, len);
 240	result->uptr = NULL;
 241	result->aname = NULL;
 242	result->refcnt = 1;
 243	audit_getname(result);
 244
 245	return result;
 246}
 
 247
 248void putname(struct filename *name)
 249{
 250	BUG_ON(name->refcnt <= 0);
 
 
 
 
 251
 252	if (--name->refcnt > 0)
 253		return;
 254
 255	if (name->name != name->iname) {
 256		__putname(name->name);
 257		kfree(name);
 258	} else
 259		__putname(name);
 260}
 
 261
 262static int check_acl(struct inode *inode, int mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 263{
 264#ifdef CONFIG_FS_POSIX_ACL
 265	struct posix_acl *acl;
 266
 267	if (mask & MAY_NOT_BLOCK) {
 268		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
 269	        if (!acl)
 270	                return -EAGAIN;
 271		/* no ->get_acl() calls in RCU mode... */
 272		if (is_uncached_acl(acl))
 273			return -ECHILD;
 274	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
 275	}
 276
 277	acl = get_acl(inode, ACL_TYPE_ACCESS);
 278	if (IS_ERR(acl))
 279		return PTR_ERR(acl);
 280	if (acl) {
 281	        int error = posix_acl_permission(inode, acl, mask);
 282	        posix_acl_release(acl);
 283	        return error;
 284	}
 285#endif
 286
 287	return -EAGAIN;
 288}
 289
 290/*
 291 * This does the basic permission checking
 
 
 
 
 
 
 
 
 
 
 
 
 
 292 */
 293static int acl_permission_check(struct inode *inode, int mask)
 
 294{
 295	unsigned int mode = inode->i_mode;
 
 296
 297	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
 
 
 
 298		mode >>= 6;
 299	else {
 300		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
 301			int error = check_acl(inode, mask);
 302			if (error != -EAGAIN)
 303				return error;
 304		}
 305
 306		if (in_group_p(inode->i_gid))
 307			mode >>= 3;
 
 
 
 308	}
 309
 
 
 
 310	/*
 311	 * If the DACs are ok we don't need any capability check.
 
 
 312	 */
 313	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
 314		return 0;
 315	return -EACCES;
 
 
 
 
 
 316}
 317
 318/**
 319 * generic_permission -  check for access rights on a Posix-like filesystem
 
 320 * @inode:	inode to check access rights for
 321 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
 
 322 *
 323 * Used to check for read/write/execute permissions on a file.
 324 * We use "fsuid" for this, letting us set arbitrary permissions
 325 * for filesystem access without changing the "normal" uids which
 326 * are used for other things.
 327 *
 328 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
 329 * request cannot be satisfied (eg. requires blocking or too much complexity).
 330 * It would then be called again in ref-walk mode.
 
 
 
 
 
 
 331 */
 332int generic_permission(struct inode *inode, int mask)
 
 333{
 334	int ret;
 335
 336	/*
 337	 * Do the basic permission checks.
 338	 */
 339	ret = acl_permission_check(inode, mask);
 340	if (ret != -EACCES)
 341		return ret;
 342
 343	if (S_ISDIR(inode->i_mode)) {
 344		/* DACs are overridable for directories */
 345		if (!(mask & MAY_WRITE))
 346			if (capable_wrt_inode_uidgid(inode,
 347						     CAP_DAC_READ_SEARCH))
 348				return 0;
 349		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
 
 350			return 0;
 351		return -EACCES;
 352	}
 353
 354	/*
 355	 * Searching includes executable on directories, else just read.
 356	 */
 357	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
 358	if (mask == MAY_READ)
 359		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
 
 360			return 0;
 361	/*
 362	 * Read/write DACs are always overridable.
 363	 * Executable DACs are overridable when there is
 364	 * at least one exec bit set.
 365	 */
 366	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
 367		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
 
 368			return 0;
 369
 370	return -EACCES;
 371}
 372EXPORT_SYMBOL(generic_permission);
 373
 374/*
 
 
 
 
 
 375 * We _really_ want to just do "generic_permission()" without
 376 * even looking at the inode->i_op values. So we keep a cache
 377 * flag in inode->i_opflags, that says "this has not special
 378 * permission function, use the fast case".
 379 */
 380static inline int do_inode_permission(struct inode *inode, int mask)
 
 381{
 382	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
 383		if (likely(inode->i_op->permission))
 384			return inode->i_op->permission(inode, mask);
 385
 386		/* This gets set once for the inode lifetime */
 387		spin_lock(&inode->i_lock);
 388		inode->i_opflags |= IOP_FASTPERM;
 389		spin_unlock(&inode->i_lock);
 390	}
 391	return generic_permission(inode, mask);
 392}
 393
 394/**
 395 * sb_permission - Check superblock-level permissions
 396 * @sb: Superblock of inode to check permission on
 397 * @inode: Inode to check permission on
 398 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 399 *
 400 * Separate out file-system wide checks from inode-specific permission checks.
 401 */
 402static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
 403{
 404	if (unlikely(mask & MAY_WRITE)) {
 405		umode_t mode = inode->i_mode;
 406
 407		/* Nobody gets write access to a read-only fs. */
 408		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
 409			return -EROFS;
 410	}
 411	return 0;
 412}
 413
 414/**
 415 * inode_permission - Check for access rights to a given inode
 416 * @inode: Inode to check permission on
 417 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 
 418 *
 419 * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
 420 * this, letting us set arbitrary permissions for filesystem access without
 421 * changing the "normal" UIDs which are used for other things.
 422 *
 423 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
 424 */
 425int inode_permission(struct inode *inode, int mask)
 
 426{
 427	int retval;
 428
 429	retval = sb_permission(inode->i_sb, inode, mask);
 430	if (retval)
 431		return retval;
 432
 433	if (unlikely(mask & MAY_WRITE)) {
 434		/*
 435		 * Nobody gets write access to an immutable file.
 436		 */
 437		if (IS_IMMUTABLE(inode))
 438			return -EPERM;
 439
 440		/*
 441		 * Updating mtime will likely cause i_uid and i_gid to be
 442		 * written back improperly if their true value is unknown
 443		 * to the vfs.
 444		 */
 445		if (HAS_UNMAPPED_ID(inode))
 446			return -EACCES;
 447	}
 448
 449	retval = do_inode_permission(inode, mask);
 450	if (retval)
 451		return retval;
 452
 453	retval = devcgroup_inode_permission(inode, mask);
 454	if (retval)
 455		return retval;
 456
 457	return security_inode_permission(inode, mask);
 458}
 459EXPORT_SYMBOL(inode_permission);
 460
 461/**
 462 * path_get - get a reference to a path
 463 * @path: path to get the reference to
 464 *
 465 * Given a path increment the reference count to the dentry and the vfsmount.
 466 */
 467void path_get(const struct path *path)
 468{
 469	mntget(path->mnt);
 470	dget(path->dentry);
 471}
 472EXPORT_SYMBOL(path_get);
 473
 474/**
 475 * path_put - put a reference to a path
 476 * @path: path to put the reference to
 477 *
 478 * Given a path decrement the reference count to the dentry and the vfsmount.
 479 */
 480void path_put(const struct path *path)
 481{
 482	dput(path->dentry);
 483	mntput(path->mnt);
 484}
 485EXPORT_SYMBOL(path_put);
 486
 487#define EMBEDDED_LEVELS 2
 488struct nameidata {
 489	struct path	path;
 490	struct qstr	last;
 491	struct path	root;
 492	struct inode	*inode; /* path.dentry.d_inode */
 493	unsigned int	flags;
 494	unsigned	seq, m_seq;
 495	int		last_type;
 496	unsigned	depth;
 497	int		total_link_count;
 498	struct saved {
 499		struct path link;
 500		struct delayed_call done;
 501		const char *name;
 502		unsigned seq;
 503	} *stack, internal[EMBEDDED_LEVELS];
 504	struct filename	*name;
 505	struct nameidata *saved;
 506	struct inode	*link_inode;
 507	unsigned	root_seq;
 508	int		dfd;
 
 
 509} __randomize_layout;
 510
 511static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
 
 
 
 
 512{
 513	struct nameidata *old = current->nameidata;
 514	p->stack = p->internal;
 
 515	p->dfd = dfd;
 516	p->name = name;
 
 
 517	p->total_link_count = old ? old->total_link_count : 0;
 518	p->saved = old;
 519	current->nameidata = p;
 520}
 521
 
 
 
 
 
 
 
 
 
 
 
 522static void restore_nameidata(void)
 523{
 524	struct nameidata *now = current->nameidata, *old = now->saved;
 525
 526	current->nameidata = old;
 527	if (old)
 528		old->total_link_count = now->total_link_count;
 529	if (now->stack != now->internal)
 530		kfree(now->stack);
 531}
 532
 533static int __nd_alloc_stack(struct nameidata *nd)
 534{
 535	struct saved *p;
 536
 537	if (nd->flags & LOOKUP_RCU) {
 538		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
 539				  GFP_ATOMIC);
 540		if (unlikely(!p))
 541			return -ECHILD;
 542	} else {
 543		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
 544				  GFP_KERNEL);
 545		if (unlikely(!p))
 546			return -ENOMEM;
 547	}
 548	memcpy(p, nd->internal, sizeof(nd->internal));
 549	nd->stack = p;
 550	return 0;
 551}
 552
 553/**
 554 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
 555 * @path: nameidate to verify
 
 556 *
 557 * Rename can sometimes move a file or directory outside of a bind
 558 * mount, path_connected allows those cases to be detected.
 559 */
 560static bool path_connected(const struct path *path)
 561{
 562	struct vfsmount *mnt = path->mnt;
 563	struct super_block *sb = mnt->mnt_sb;
 564
 565	/* Bind mounts and multi-root filesystems can have disconnected paths */
 566	if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
 567		return true;
 568
 569	return is_subdir(path->dentry, mnt->mnt_root);
 570}
 571
 572static inline int nd_alloc_stack(struct nameidata *nd)
 573{
 574	if (likely(nd->depth != EMBEDDED_LEVELS))
 575		return 0;
 576	if (likely(nd->stack != nd->internal))
 577		return 0;
 578	return __nd_alloc_stack(nd);
 579}
 580
 581static void drop_links(struct nameidata *nd)
 582{
 583	int i = nd->depth;
 584	while (i--) {
 585		struct saved *last = nd->stack + i;
 586		do_delayed_call(&last->done);
 587		clear_delayed_call(&last->done);
 588	}
 589}
 590
 
 
 
 
 
 
 
 591static void terminate_walk(struct nameidata *nd)
 592{
 593	drop_links(nd);
 594	if (!(nd->flags & LOOKUP_RCU)) {
 595		int i;
 596		path_put(&nd->path);
 597		for (i = 0; i < nd->depth; i++)
 598			path_put(&nd->stack[i].link);
 599		if (nd->flags & LOOKUP_ROOT_GRABBED) {
 600			path_put(&nd->root);
 601			nd->flags &= ~LOOKUP_ROOT_GRABBED;
 602		}
 603	} else {
 604		nd->flags &= ~LOOKUP_RCU;
 605		rcu_read_unlock();
 606	}
 607	nd->depth = 0;
 
 
 608}
 609
 610/* path_put is needed afterwards regardless of success or failure */
 611static bool legitimize_path(struct nameidata *nd,
 612			    struct path *path, unsigned seq)
 613{
 614	int res = __legitimize_mnt(path->mnt, nd->m_seq);
 615	if (unlikely(res)) {
 616		if (res > 0)
 617			path->mnt = NULL;
 618		path->dentry = NULL;
 619		return false;
 620	}
 621	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
 622		path->dentry = NULL;
 623		return false;
 624	}
 625	return !read_seqcount_retry(&path->dentry->d_seq, seq);
 626}
 627
 
 
 
 
 
 
 628static bool legitimize_links(struct nameidata *nd)
 629{
 630	int i;
 
 
 
 
 
 631	for (i = 0; i < nd->depth; i++) {
 632		struct saved *last = nd->stack + i;
 633		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
 634			drop_links(nd);
 635			nd->depth = i + 1;
 636			return false;
 637		}
 638	}
 639	return true;
 640}
 641
 642static bool legitimize_root(struct nameidata *nd)
 643{
 644	if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
 
 645		return true;
 646	nd->flags |= LOOKUP_ROOT_GRABBED;
 647	return legitimize_path(nd, &nd->root, nd->root_seq);
 648}
 649
 650/*
 651 * Path walking has 2 modes, rcu-walk and ref-walk (see
 652 * Documentation/filesystems/path-lookup.txt).  In situations when we can't
 653 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
 654 * normal reference counts on dentries and vfsmounts to transition to ref-walk
 655 * mode.  Refcounts are grabbed at the last known good point before rcu-walk
 656 * got stuck, so ref-walk may continue from there. If this is not successful
 657 * (eg. a seqcount has changed), then failure is returned and it's up to caller
 658 * to restart the path walk from the beginning in ref-walk mode.
 659 */
 660
 661/**
 662 * unlazy_walk - try to switch to ref-walk mode.
 663 * @nd: nameidata pathwalk data
 664 * Returns: 0 on success, -ECHILD on failure
 665 *
 666 * unlazy_walk attempts to legitimize the current nd->path and nd->root
 667 * for ref-walk mode.
 668 * Must be called from rcu-walk context.
 669 * Nothing should touch nameidata between unlazy_walk() failure and
 670 * terminate_walk().
 671 */
 672static int unlazy_walk(struct nameidata *nd)
 673{
 674	struct dentry *parent = nd->path.dentry;
 675
 676	BUG_ON(!(nd->flags & LOOKUP_RCU));
 677
 678	nd->flags &= ~LOOKUP_RCU;
 679	if (unlikely(!legitimize_links(nd)))
 680		goto out1;
 681	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
 682		goto out;
 683	if (unlikely(!legitimize_root(nd)))
 684		goto out;
 685	rcu_read_unlock();
 686	BUG_ON(nd->inode != parent->d_inode);
 687	return 0;
 688
 689out1:
 690	nd->path.mnt = NULL;
 691	nd->path.dentry = NULL;
 692out:
 693	rcu_read_unlock();
 694	return -ECHILD;
 695}
 696
 697/**
 698 * unlazy_child - try to switch to ref-walk mode.
 699 * @nd: nameidata pathwalk data
 700 * @dentry: child of nd->path.dentry
 701 * @seq: seq number to check dentry against
 702 * Returns: 0 on success, -ECHILD on failure
 703 *
 704 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
 705 * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
 706 * @nd.  Must be called from rcu-walk context.
 707 * Nothing should touch nameidata between unlazy_child() failure and
 708 * terminate_walk().
 709 */
 710static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
 711{
 
 712	BUG_ON(!(nd->flags & LOOKUP_RCU));
 713
 714	nd->flags &= ~LOOKUP_RCU;
 715	if (unlikely(!legitimize_links(nd)))
 716		goto out2;
 717	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
 718		goto out2;
 
 
 
 
 719	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
 720		goto out1;
 721
 722	/*
 723	 * We need to move both the parent and the dentry from the RCU domain
 724	 * to be properly refcounted. And the sequence number in the dentry
 725	 * validates *both* dentry counters, since we checked the sequence
 726	 * number of the parent after we got the child sequence number. So we
 727	 * know the parent must still be valid if the child sequence number is
 728	 */
 729	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
 730		goto out;
 731	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
 732		goto out_dput;
 733	/*
 734	 * Sequence counts matched. Now make sure that the root is
 735	 * still valid and get it if required.
 736	 */
 737	if (unlikely(!legitimize_root(nd)))
 738		goto out_dput;
 739	rcu_read_unlock();
 740	return 0;
 741
 742out2:
 743	nd->path.mnt = NULL;
 744out1:
 745	nd->path.dentry = NULL;
 746out:
 747	rcu_read_unlock();
 748	return -ECHILD;
 749out_dput:
 750	rcu_read_unlock();
 751	dput(dentry);
 752	return -ECHILD;
 753}
 754
 755static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
 756{
 757	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
 758		return dentry->d_op->d_revalidate(dentry, flags);
 759	else
 760		return 1;
 761}
 762
 763/**
 764 * complete_walk - successful completion of path walk
 765 * @nd:  pointer nameidata
 766 *
 767 * If we had been in RCU mode, drop out of it and legitimize nd->path.
 768 * Revalidate the final result, unless we'd already done that during
 769 * the path walk or the filesystem doesn't ask for it.  Return 0 on
 770 * success, -error on failure.  In case of failure caller does not
 771 * need to drop nd->path.
 772 */
 773static int complete_walk(struct nameidata *nd)
 774{
 775	struct dentry *dentry = nd->path.dentry;
 776	int status;
 777
 778	if (nd->flags & LOOKUP_RCU) {
 779		if (!(nd->flags & LOOKUP_ROOT))
 780			nd->root.mnt = NULL;
 781		if (unlikely(unlazy_walk(nd)))
 
 
 
 
 
 
 782			return -ECHILD;
 783	}
 784
 785	if (likely(!(nd->flags & LOOKUP_JUMPED)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786		return 0;
 787
 788	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
 789		return 0;
 790
 791	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
 792	if (status > 0)
 793		return 0;
 794
 795	if (!status)
 796		status = -ESTALE;
 797
 798	return status;
 799}
 800
 801static void set_root(struct nameidata *nd)
 802{
 803	struct fs_struct *fs = current->fs;
 804
 
 
 
 
 
 
 
 
 805	if (nd->flags & LOOKUP_RCU) {
 806		unsigned seq;
 807
 808		do {
 809			seq = read_seqcount_begin(&fs->seq);
 810			nd->root = fs->root;
 811			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
 812		} while (read_seqcount_retry(&fs->seq, seq));
 813	} else {
 814		get_fs_root(fs, &nd->root);
 815		nd->flags |= LOOKUP_ROOT_GRABBED;
 816	}
 
 817}
 818
 819static void path_put_conditional(struct path *path, struct nameidata *nd)
 820{
 821	dput(path->dentry);
 822	if (path->mnt != nd->path.mnt)
 823		mntput(path->mnt);
 824}
 825
 826static inline void path_to_nameidata(const struct path *path,
 827					struct nameidata *nd)
 828{
 829	if (!(nd->flags & LOOKUP_RCU)) {
 830		dput(nd->path.dentry);
 831		if (nd->path.mnt != path->mnt)
 832			mntput(nd->path.mnt);
 833	}
 834	nd->path.mnt = path->mnt;
 835	nd->path.dentry = path->dentry;
 836}
 837
 838static int nd_jump_root(struct nameidata *nd)
 839{
 840	if (nd->flags & LOOKUP_RCU) {
 841		struct dentry *d;
 842		nd->path = nd->root;
 843		d = nd->path.dentry;
 844		nd->inode = d->d_inode;
 845		nd->seq = nd->root_seq;
 846		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
 847			return -ECHILD;
 848	} else {
 849		path_put(&nd->path);
 850		nd->path = nd->root;
 851		path_get(&nd->path);
 852		nd->inode = nd->path.dentry->d_inode;
 853	}
 854	nd->flags |= LOOKUP_JUMPED;
 855	return 0;
 856}
 857
 858/*
 859 * Helper to directly jump to a known parsed path from ->get_link,
 860 * caller must have taken a reference to path beforehand.
 861 */
 862void nd_jump_link(struct path *path)
 863{
 
 864	struct nameidata *nd = current->nameidata;
 
 
 
 
 
 
 
 
 
 
 
 
 
 865	path_put(&nd->path);
 866
 867	nd->path = *path;
 868	nd->inode = nd->path.dentry->d_inode;
 869	nd->flags |= LOOKUP_JUMPED;
 
 
 
 
 
 870}
 871
 872static inline void put_link(struct nameidata *nd)
 873{
 874	struct saved *last = nd->stack + --nd->depth;
 875	do_delayed_call(&last->done);
 876	if (!(nd->flags & LOOKUP_RCU))
 877		path_put(&last->link);
 878}
 879
 880int sysctl_protected_symlinks __read_mostly = 0;
 881int sysctl_protected_hardlinks __read_mostly = 0;
 882int sysctl_protected_fifos __read_mostly;
 883int sysctl_protected_regular __read_mostly;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 884
 885/**
 886 * may_follow_link - Check symlink following for unsafe situations
 887 * @nd: nameidata pathwalk data
 
 888 *
 889 * In the case of the sysctl_protected_symlinks sysctl being enabled,
 890 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
 891 * in a sticky world-writable directory. This is to protect privileged
 892 * processes from failing races against path names that may change out
 893 * from under them by way of other users creating malicious symlinks.
 894 * It will permit symlinks to be followed only when outside a sticky
 895 * world-writable directory, or when the uid of the symlink and follower
 896 * match, or when the directory owner matches the symlink's owner.
 897 *
 898 * Returns 0 if following the symlink is allowed, -ve on error.
 899 */
 900static inline int may_follow_link(struct nameidata *nd)
 901{
 902	const struct inode *inode;
 903	const struct inode *parent;
 904	kuid_t puid;
 905
 906	if (!sysctl_protected_symlinks)
 907		return 0;
 908
 
 
 909	/* Allowed if owner and follower match. */
 910	inode = nd->link_inode;
 911	if (uid_eq(current_cred()->fsuid, inode->i_uid))
 912		return 0;
 913
 914	/* Allowed if parent directory not sticky and world-writable. */
 915	parent = nd->inode;
 916	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
 917		return 0;
 918
 919	/* Allowed if parent directory and link owner match. */
 920	puid = parent->i_uid;
 921	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
 922		return 0;
 923
 924	if (nd->flags & LOOKUP_RCU)
 925		return -ECHILD;
 926
 927	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
 928	audit_log_link_denied("follow_link");
 929	return -EACCES;
 930}
 931
 932/**
 933 * safe_hardlink_source - Check for safe hardlink conditions
 
 934 * @inode: the source inode to hardlink from
 935 *
 936 * Return false if at least one of the following conditions:
 937 *    - inode is not a regular file
 938 *    - inode is setuid
 939 *    - inode is setgid and group-exec
 940 *    - access failure for read and write
 941 *
 942 * Otherwise returns true.
 943 */
 944static bool safe_hardlink_source(struct inode *inode)
 
 945{
 946	umode_t mode = inode->i_mode;
 947
 948	/* Special files should not get pinned to the filesystem. */
 949	if (!S_ISREG(mode))
 950		return false;
 951
 952	/* Setuid files should not get pinned to the filesystem. */
 953	if (mode & S_ISUID)
 954		return false;
 955
 956	/* Executable setgid files should not get pinned to the filesystem. */
 957	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
 958		return false;
 959
 960	/* Hardlinking to unreadable or unwritable sources is dangerous. */
 961	if (inode_permission(inode, MAY_READ | MAY_WRITE))
 962		return false;
 963
 964	return true;
 965}
 966
 967/**
 968 * may_linkat - Check permissions for creating a hardlink
 969 * @link: the source to hardlink from
 
 970 *
 971 * Block hardlink when all of:
 972 *  - sysctl_protected_hardlinks enabled
 973 *  - fsuid does not match inode
 974 *  - hardlink source is unsafe (see safe_hardlink_source() above)
 975 *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
 976 *
 
 
 
 
 
 
 977 * Returns 0 if successful, -ve on error.
 978 */
 979static int may_linkat(struct path *link)
 980{
 981	struct inode *inode = link->dentry->d_inode;
 982
 983	/* Inode writeback is not safe when the uid or gid are invalid. */
 984	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
 
 985		return -EOVERFLOW;
 986
 987	if (!sysctl_protected_hardlinks)
 988		return 0;
 989
 990	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
 991	 * otherwise, it must be a safe source.
 992	 */
 993	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
 
 994		return 0;
 995
 996	audit_log_link_denied("linkat");
 997	return -EPERM;
 998}
 999
1000/**
1001 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1002 *			  should be allowed, or not, on files that already
1003 *			  exist.
1004 * @dir: the sticky parent directory
 
1005 * @inode: the inode of the file to open
1006 *
1007 * Block an O_CREAT open of a FIFO (or a regular file) when:
1008 *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1009 *   - the file already exists
1010 *   - we are in a sticky directory
1011 *   - we don't own the file
1012 *   - the owner of the directory doesn't own the file
1013 *   - the directory is world writable
1014 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1015 * the directory doesn't have to be world writable: being group writable will
1016 * be enough.
1017 *
 
 
 
 
 
 
1018 * Returns 0 if the open is allowed, -ve on error.
1019 */
1020static int may_create_in_sticky(struct dentry * const dir,
1021				struct inode * const inode)
1022{
 
 
 
1023	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1024	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1025	    likely(!(dir->d_inode->i_mode & S_ISVTX)) ||
1026	    uid_eq(inode->i_uid, dir->d_inode->i_uid) ||
1027	    uid_eq(current_fsuid(), inode->i_uid))
1028		return 0;
1029
1030	if (likely(dir->d_inode->i_mode & 0002) ||
1031	    (dir->d_inode->i_mode & 0020 &&
1032	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1033	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
 
 
 
 
1034		return -EACCES;
1035	}
1036	return 0;
1037}
1038
1039static __always_inline
1040const char *get_link(struct nameidata *nd)
1041{
1042	struct saved *last = nd->stack + nd->depth - 1;
1043	struct dentry *dentry = last->link.dentry;
1044	struct inode *inode = nd->link_inode;
1045	int error;
1046	const char *res;
1047
1048	if (!(nd->flags & LOOKUP_RCU)) {
1049		touch_atime(&last->link);
1050		cond_resched();
1051	} else if (atime_needs_update(&last->link, inode)) {
1052		if (unlikely(unlazy_walk(nd)))
1053			return ERR_PTR(-ECHILD);
1054		touch_atime(&last->link);
1055	}
1056
1057	error = security_inode_follow_link(dentry, inode,
1058					   nd->flags & LOOKUP_RCU);
1059	if (unlikely(error))
1060		return ERR_PTR(error);
1061
1062	nd->last_type = LAST_BIND;
1063	res = READ_ONCE(inode->i_link);
1064	if (!res) {
1065		const char * (*get)(struct dentry *, struct inode *,
1066				struct delayed_call *);
1067		get = inode->i_op->get_link;
1068		if (nd->flags & LOOKUP_RCU) {
1069			res = get(NULL, inode, &last->done);
1070			if (res == ERR_PTR(-ECHILD)) {
1071				if (unlikely(unlazy_walk(nd)))
1072					return ERR_PTR(-ECHILD);
1073				res = get(dentry, inode, &last->done);
1074			}
1075		} else {
1076			res = get(dentry, inode, &last->done);
1077		}
1078		if (IS_ERR_OR_NULL(res))
1079			return res;
1080	}
1081	if (*res == '/') {
1082		if (!nd->root.mnt)
1083			set_root(nd);
1084		if (unlikely(nd_jump_root(nd)))
1085			return ERR_PTR(-ECHILD);
1086		while (unlikely(*++res == '/'))
1087			;
1088	}
1089	if (!*res)
1090		res = NULL;
1091	return res;
1092}
1093
1094/*
1095 * follow_up - Find the mountpoint of path's vfsmount
1096 *
1097 * Given a path, find the mountpoint of its source file system.
1098 * Replace @path with the path of the mountpoint in the parent mount.
1099 * Up is towards /.
1100 *
1101 * Return 1 if we went up a level and 0 if we were already at the
1102 * root.
1103 */
1104int follow_up(struct path *path)
1105{
1106	struct mount *mnt = real_mount(path->mnt);
1107	struct mount *parent;
1108	struct dentry *mountpoint;
1109
1110	read_seqlock_excl(&mount_lock);
1111	parent = mnt->mnt_parent;
1112	if (parent == mnt) {
1113		read_sequnlock_excl(&mount_lock);
1114		return 0;
1115	}
1116	mntget(&parent->mnt);
1117	mountpoint = dget(mnt->mnt_mountpoint);
1118	read_sequnlock_excl(&mount_lock);
1119	dput(path->dentry);
1120	path->dentry = mountpoint;
1121	mntput(path->mnt);
1122	path->mnt = &parent->mnt;
1123	return 1;
1124}
1125EXPORT_SYMBOL(follow_up);
1126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1127/*
1128 * Perform an automount
1129 * - return -EISDIR to tell follow_managed() to stop and return the path we
1130 *   were called with.
1131 */
1132static int follow_automount(struct path *path, struct nameidata *nd,
1133			    bool *need_mntput)
1134{
1135	struct vfsmount *mnt;
1136	int err;
1137
1138	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1139		return -EREMOTE;
1140
1141	/* We don't want to mount if someone's just doing a stat -
1142	 * unless they're stat'ing a directory and appended a '/' to
1143	 * the name.
1144	 *
1145	 * We do, however, want to mount if someone wants to open or
1146	 * create a file of any type under the mountpoint, wants to
1147	 * traverse through the mountpoint or wants to open the
1148	 * mounted directory.  Also, autofs may mark negative dentries
1149	 * as being automount points.  These will need the attentions
1150	 * of the daemon to instantiate them before they can be used.
1151	 */
1152	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1153			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1154	    path->dentry->d_inode)
1155		return -EISDIR;
1156
1157	nd->total_link_count++;
1158	if (nd->total_link_count >= 40)
1159		return -ELOOP;
1160
1161	mnt = path->dentry->d_op->d_automount(path);
1162	if (IS_ERR(mnt)) {
1163		/*
1164		 * The filesystem is allowed to return -EISDIR here to indicate
1165		 * it doesn't want to automount.  For instance, autofs would do
1166		 * this so that its userspace daemon can mount on this dentry.
1167		 *
1168		 * However, we can only permit this if it's a terminal point in
1169		 * the path being looked up; if it wasn't then the remainder of
1170		 * the path is inaccessible and we should say so.
1171		 */
1172		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1173			return -EREMOTE;
1174		return PTR_ERR(mnt);
1175	}
1176
1177	if (!mnt) /* mount collision */
1178		return 0;
1179
1180	if (!*need_mntput) {
1181		/* lock_mount() may release path->mnt on error */
1182		mntget(path->mnt);
1183		*need_mntput = true;
1184	}
1185	err = finish_automount(mnt, path);
1186
1187	switch (err) {
1188	case -EBUSY:
1189		/* Someone else made a mount here whilst we were busy */
1190		return 0;
1191	case 0:
1192		path_put(path);
1193		path->mnt = mnt;
1194		path->dentry = dget(mnt->mnt_root);
1195		return 0;
1196	default:
1197		return err;
1198	}
1199
1200}
1201
1202/*
1203 * Handle a dentry that is managed in some way.
1204 * - Flagged for transit management (autofs)
1205 * - Flagged as mountpoint
1206 * - Flagged as automount point
1207 *
1208 * This may only be called in refwalk mode.
1209 *
1210 * Serialization is taken care of in namespace.c
1211 */
1212static int follow_managed(struct path *path, struct nameidata *nd)
 
1213{
1214	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1215	unsigned managed;
1216	bool need_mntput = false;
1217	int ret = 0;
1218
1219	/* Given that we're not holding a lock here, we retain the value in a
1220	 * local variable for each dentry as we look at it so that we don't see
1221	 * the components of that value change under us */
1222	while (managed = READ_ONCE(path->dentry->d_flags),
1223	       managed &= DCACHE_MANAGED_DENTRY,
1224	       unlikely(managed != 0)) {
1225		/* Allow the filesystem to manage the transit without i_mutex
1226		 * being held. */
1227		if (managed & DCACHE_MANAGE_TRANSIT) {
1228			BUG_ON(!path->dentry->d_op);
1229			BUG_ON(!path->dentry->d_op->d_manage);
1230			ret = path->dentry->d_op->d_manage(path, false);
 
1231			if (ret < 0)
1232				break;
1233		}
1234
1235		/* Transit to a mounted filesystem. */
1236		if (managed & DCACHE_MOUNTED) {
1237			struct vfsmount *mounted = lookup_mnt(path);
1238			if (mounted) {
1239				dput(path->dentry);
1240				if (need_mntput)
1241					mntput(path->mnt);
1242				path->mnt = mounted;
1243				path->dentry = dget(mounted->mnt_root);
 
 
1244				need_mntput = true;
1245				continue;
1246			}
1247
1248			/* Something is mounted on this dentry in another
1249			 * namespace and/or whatever was mounted there in this
1250			 * namespace got unmounted before lookup_mnt() could
1251			 * get it */
1252		}
1253
1254		/* Handle an automount point */
1255		if (managed & DCACHE_NEED_AUTOMOUNT) {
1256			ret = follow_automount(path, nd, &need_mntput);
1257			if (ret < 0)
1258				break;
1259			continue;
1260		}
1261
1262		/* We didn't change the current path point */
1263		break;
 
 
 
1264	}
1265
 
 
 
1266	if (need_mntput && path->mnt == mnt)
1267		mntput(path->mnt);
1268	if (ret == -EISDIR || !ret)
1269		ret = 1;
1270	if (need_mntput)
1271		nd->flags |= LOOKUP_JUMPED;
1272	if (unlikely(ret < 0))
1273		path_put_conditional(path, nd);
1274	return ret;
1275}
1276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1277int follow_down_one(struct path *path)
1278{
1279	struct vfsmount *mounted;
1280
1281	mounted = lookup_mnt(path);
1282	if (mounted) {
1283		dput(path->dentry);
1284		mntput(path->mnt);
1285		path->mnt = mounted;
1286		path->dentry = dget(mounted->mnt_root);
1287		return 1;
1288	}
1289	return 0;
1290}
1291EXPORT_SYMBOL(follow_down_one);
1292
1293static inline int managed_dentry_rcu(const struct path *path)
 
 
 
 
 
1294{
1295	return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1296		path->dentry->d_op->d_manage(path, true) : 0;
 
 
 
 
 
1297}
 
1298
1299/*
1300 * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1301 * we meet a managed dentry that would need blocking.
1302 */
1303static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1304			       struct inode **inode, unsigned *seqp)
1305{
 
 
 
 
 
 
 
 
 
1306	for (;;) {
1307		struct mount *mounted;
1308		/*
1309		 * Don't forget we might have a non-mountpoint managed dentry
1310		 * that wants to block transit.
1311		 */
1312		switch (managed_dentry_rcu(path)) {
1313		case -ECHILD:
1314		default:
1315			return false;
1316		case -EISDIR:
1317			return true;
1318		case 0:
1319			break;
1320		}
1321
1322		if (!d_mountpoint(path->dentry))
1323			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1324
1325		mounted = __lookup_mnt(path->mnt, path->dentry);
1326		if (!mounted)
1327			break;
1328		path->mnt = &mounted->mnt;
1329		path->dentry = mounted->mnt.mnt_root;
1330		nd->flags |= LOOKUP_JUMPED;
1331		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1332		/*
1333		 * Update the inode too. We don't need to re-check the
1334		 * dentry sequence number here after this d_inode read,
1335		 * because a mount-point is always pinned.
1336		 */
1337		*inode = path->dentry->d_inode;
 
 
1338	}
1339	return !read_seqretry(&mount_lock, nd->m_seq) &&
1340		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1341}
1342
1343static int follow_dotdot_rcu(struct nameidata *nd)
 
1344{
1345	struct inode *inode = nd->inode;
 
1346
1347	while (1) {
1348		if (path_equal(&nd->path, &nd->root))
1349			break;
1350		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1351			struct dentry *old = nd->path.dentry;
1352			struct dentry *parent = old->d_parent;
1353			unsigned seq;
1354
1355			inode = parent->d_inode;
1356			seq = read_seqcount_begin(&parent->d_seq);
1357			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1358				return -ECHILD;
1359			nd->path.dentry = parent;
1360			nd->seq = seq;
1361			if (unlikely(!path_connected(&nd->path)))
1362				return -ENOENT;
1363			break;
1364		} else {
1365			struct mount *mnt = real_mount(nd->path.mnt);
1366			struct mount *mparent = mnt->mnt_parent;
1367			struct dentry *mountpoint = mnt->mnt_mountpoint;
1368			struct inode *inode2 = mountpoint->d_inode;
1369			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1370			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1371				return -ECHILD;
1372			if (&mparent->mnt == nd->path.mnt)
1373				break;
1374			/* we know that mountpoint was pinned */
1375			nd->path.dentry = mountpoint;
1376			nd->path.mnt = &mparent->mnt;
1377			inode = inode2;
1378			nd->seq = seq;
1379		}
1380	}
1381	while (unlikely(d_mountpoint(nd->path.dentry))) {
1382		struct mount *mounted;
1383		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1384		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1385			return -ECHILD;
1386		if (!mounted)
1387			break;
1388		nd->path.mnt = &mounted->mnt;
1389		nd->path.dentry = mounted->mnt.mnt_root;
1390		inode = nd->path.dentry->d_inode;
1391		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1392	}
1393	nd->inode = inode;
1394	return 0;
1395}
1396
1397/*
1398 * Follow down to the covering mount currently visible to userspace.  At each
1399 * point, the filesystem owning that dentry may be queried as to whether the
1400 * caller is permitted to proceed or not.
1401 */
1402int follow_down(struct path *path)
1403{
1404	unsigned managed;
1405	int ret;
1406
1407	while (managed = READ_ONCE(path->dentry->d_flags),
1408	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1409		/* Allow the filesystem to manage the transit without i_mutex
1410		 * being held.
1411		 *
1412		 * We indicate to the filesystem if someone is trying to mount
1413		 * something here.  This gives autofs the chance to deny anyone
1414		 * other than its daemon the right to mount on its
1415		 * superstructure.
1416		 *
1417		 * The filesystem may sleep at this point.
1418		 */
1419		if (managed & DCACHE_MANAGE_TRANSIT) {
1420			BUG_ON(!path->dentry->d_op);
1421			BUG_ON(!path->dentry->d_op->d_manage);
1422			ret = path->dentry->d_op->d_manage(path, false);
1423			if (ret < 0)
1424				return ret == -EISDIR ? 0 : ret;
1425		}
1426
1427		/* Transit to a mounted filesystem. */
1428		if (managed & DCACHE_MOUNTED) {
1429			struct vfsmount *mounted = lookup_mnt(path);
1430			if (!mounted)
1431				break;
1432			dput(path->dentry);
1433			mntput(path->mnt);
1434			path->mnt = mounted;
1435			path->dentry = dget(mounted->mnt_root);
1436			continue;
1437		}
1438
1439		/* Don't handle automount points here */
1440		break;
1441	}
1442	return 0;
1443}
1444EXPORT_SYMBOL(follow_down);
1445
1446/*
1447 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1448 */
1449static void follow_mount(struct path *path)
1450{
1451	while (d_mountpoint(path->dentry)) {
1452		struct vfsmount *mounted = lookup_mnt(path);
1453		if (!mounted)
1454			break;
1455		dput(path->dentry);
1456		mntput(path->mnt);
1457		path->mnt = mounted;
1458		path->dentry = dget(mounted->mnt_root);
1459	}
1460}
1461
1462static int path_parent_directory(struct path *path)
1463{
1464	struct dentry *old = path->dentry;
1465	/* rare case of legitimate dget_parent()... */
1466	path->dentry = dget_parent(path->dentry);
1467	dput(old);
1468	if (unlikely(!path_connected(path)))
1469		return -ENOENT;
1470	return 0;
1471}
1472
1473static int follow_dotdot(struct nameidata *nd)
1474{
1475	while(1) {
1476		if (path_equal(&nd->path, &nd->root))
1477			break;
1478		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1479			int ret = path_parent_directory(&nd->path);
1480			if (ret)
1481				return ret;
1482			break;
1483		}
1484		if (!follow_up(&nd->path))
1485			break;
1486	}
1487	follow_mount(&nd->path);
1488	nd->inode = nd->path.dentry->d_inode;
1489	return 0;
1490}
1491
1492/*
1493 * This looks up the name in dcache and possibly revalidates the found dentry.
1494 * NULL is returned if the dentry does not exist in the cache.
1495 */
1496static struct dentry *lookup_dcache(const struct qstr *name,
1497				    struct dentry *dir,
1498				    unsigned int flags)
1499{
1500	struct dentry *dentry = d_lookup(dir, name);
1501	if (dentry) {
1502		int error = d_revalidate(dentry, flags);
1503		if (unlikely(error <= 0)) {
1504			if (!error)
1505				d_invalidate(dentry);
1506			dput(dentry);
1507			return ERR_PTR(error);
1508		}
1509	}
1510	return dentry;
1511}
1512
1513/*
1514 * Parent directory has inode locked exclusive.  This is one
1515 * and only case when ->lookup() gets called on non in-lookup
1516 * dentries - as the matter of fact, this only gets called
1517 * when directory is guaranteed to have no in-lookup children
1518 * at all.
1519 */
1520static struct dentry *__lookup_hash(const struct qstr *name,
1521		struct dentry *base, unsigned int flags)
 
1522{
1523	struct dentry *dentry = lookup_dcache(name, base, flags);
1524	struct dentry *old;
1525	struct inode *dir = base->d_inode;
1526
1527	if (dentry)
1528		return dentry;
1529
1530	/* Don't create child dentry for a dead directory. */
1531	if (unlikely(IS_DEADDIR(dir)))
1532		return ERR_PTR(-ENOENT);
1533
1534	dentry = d_alloc(base, name);
1535	if (unlikely(!dentry))
1536		return ERR_PTR(-ENOMEM);
1537
1538	old = dir->i_op->lookup(dir, dentry, flags);
1539	if (unlikely(old)) {
1540		dput(dentry);
1541		dentry = old;
1542	}
1543	return dentry;
1544}
 
1545
1546static int lookup_fast(struct nameidata *nd,
1547		       struct path *path, struct inode **inode,
1548		       unsigned *seqp)
1549{
1550	struct vfsmount *mnt = nd->path.mnt;
1551	struct dentry *dentry, *parent = nd->path.dentry;
1552	int status = 1;
1553	int err;
1554
1555	/*
1556	 * Rename seqlock is not required here because in the off chance
1557	 * of a false negative due to a concurrent rename, the caller is
1558	 * going to fall back to non-racy lookup.
1559	 */
1560	if (nd->flags & LOOKUP_RCU) {
1561		unsigned seq;
1562		bool negative;
1563		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1564		if (unlikely(!dentry)) {
1565			if (unlazy_walk(nd))
1566				return -ECHILD;
1567			return 0;
1568		}
1569
1570		/*
1571		 * This sequence count validates that the inode matches
1572		 * the dentry name information from lookup.
1573		 */
1574		*inode = d_backing_inode(dentry);
1575		negative = d_is_negative(dentry);
1576		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1577			return -ECHILD;
1578
1579		/*
1580		 * This sequence count validates that the parent had no
1581		 * changes while we did the lookup of the dentry above.
1582		 *
1583		 * The memory barrier in read_seqcount_begin of child is
1584		 *  enough, we can use __read_seqcount_retry here.
1585		 */
1586		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1587			return -ECHILD;
1588
1589		*seqp = seq;
1590		status = d_revalidate(dentry, nd->flags);
1591		if (likely(status > 0)) {
1592			/*
1593			 * Note: do negative dentry check after revalidation in
1594			 * case that drops it.
1595			 */
1596			if (unlikely(negative))
1597				return -ENOENT;
1598			path->mnt = mnt;
1599			path->dentry = dentry;
1600			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1601				return 1;
1602		}
1603		if (unlazy_child(nd, dentry, seq))
1604			return -ECHILD;
1605		if (unlikely(status == -ECHILD))
1606			/* we'd been told to redo it in non-rcu mode */
1607			status = d_revalidate(dentry, nd->flags);
1608	} else {
1609		dentry = __d_lookup(parent, &nd->last);
1610		if (unlikely(!dentry))
1611			return 0;
1612		status = d_revalidate(dentry, nd->flags);
1613	}
1614	if (unlikely(status <= 0)) {
1615		if (!status)
1616			d_invalidate(dentry);
1617		dput(dentry);
1618		return status;
1619	}
1620	if (unlikely(d_is_negative(dentry))) {
1621		dput(dentry);
1622		return -ENOENT;
1623	}
1624
1625	path->mnt = mnt;
1626	path->dentry = dentry;
1627	err = follow_managed(path, nd);
1628	if (likely(err > 0))
1629		*inode = d_backing_inode(path->dentry);
1630	return err;
1631}
1632
1633/* Fast lookup failed, do it the slow way */
1634static struct dentry *__lookup_slow(const struct qstr *name,
1635				    struct dentry *dir,
1636				    unsigned int flags)
1637{
1638	struct dentry *dentry, *old;
1639	struct inode *inode = dir->d_inode;
1640	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1641
1642	/* Don't go there if it's already dead */
1643	if (unlikely(IS_DEADDIR(inode)))
1644		return ERR_PTR(-ENOENT);
1645again:
1646	dentry = d_alloc_parallel(dir, name, &wq);
1647	if (IS_ERR(dentry))
1648		return dentry;
1649	if (unlikely(!d_in_lookup(dentry))) {
1650		if (!(flags & LOOKUP_NO_REVAL)) {
1651			int error = d_revalidate(dentry, flags);
1652			if (unlikely(error <= 0)) {
1653				if (!error) {
1654					d_invalidate(dentry);
1655					dput(dentry);
1656					goto again;
1657				}
1658				dput(dentry);
1659				dentry = ERR_PTR(error);
1660			}
 
 
1661		}
1662	} else {
1663		old = inode->i_op->lookup(inode, dentry, flags);
1664		d_lookup_done(dentry);
1665		if (unlikely(old)) {
1666			dput(dentry);
1667			dentry = old;
1668		}
1669	}
1670	return dentry;
1671}
1672
1673static struct dentry *lookup_slow(const struct qstr *name,
1674				  struct dentry *dir,
1675				  unsigned int flags)
1676{
1677	struct inode *inode = dir->d_inode;
1678	struct dentry *res;
1679	inode_lock_shared(inode);
1680	res = __lookup_slow(name, dir, flags);
1681	inode_unlock_shared(inode);
1682	return res;
1683}
1684
1685static inline int may_lookup(struct nameidata *nd)
 
1686{
1687	if (nd->flags & LOOKUP_RCU) {
1688		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1689		if (err != -ECHILD)
 
 
 
 
1690			return err;
1691		if (unlazy_walk(nd))
1692			return -ECHILD;
1693	}
1694	return inode_permission(nd->inode, MAY_EXEC);
1695}
1696
1697static inline int handle_dots(struct nameidata *nd, int type)
1698{
1699	if (type == LAST_DOTDOT) {
1700		if (!nd->root.mnt)
1701			set_root(nd);
1702		if (nd->flags & LOOKUP_RCU) {
1703			return follow_dotdot_rcu(nd);
1704		} else
1705			return follow_dotdot(nd);
 
 
 
 
 
 
 
 
 
 
 
 
 
1706	}
1707	return 0;
1708}
1709
1710static int pick_link(struct nameidata *nd, struct path *link,
1711		     struct inode *inode, unsigned seq)
 
 
1712{
1713	int error;
1714	struct saved *last;
1715	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1716		path_to_nameidata(link, nd);
1717		return -ELOOP;
1718	}
1719	if (!(nd->flags & LOOKUP_RCU)) {
1720		if (link->mnt == nd->path.mnt)
1721			mntget(link->mnt);
1722	}
1723	error = nd_alloc_stack(nd);
1724	if (unlikely(error)) {
1725		if (error == -ECHILD) {
1726			if (unlikely(!legitimize_path(nd, link, seq))) {
1727				drop_links(nd);
1728				nd->depth = 0;
1729				nd->flags &= ~LOOKUP_RCU;
1730				nd->path.mnt = NULL;
1731				nd->path.dentry = NULL;
1732				rcu_read_unlock();
1733			} else if (likely(unlazy_walk(nd)) == 0)
1734				error = nd_alloc_stack(nd);
1735		}
1736		if (error) {
1737			path_put(link);
1738			return error;
1739		}
1740	}
1741
1742	last = nd->stack + nd->depth++;
1743	last->link = *link;
1744	clear_delayed_call(&last->done);
1745	nd->link_inode = inode;
1746	last->seq = seq;
1747	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1748}
1749
1750enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1751
1752/*
1753 * Do we need to follow links? We _really_ want to be able
1754 * to do this check without having to look at inode->i_op,
1755 * so we keep a cache of "no, this doesn't need follow_link"
1756 * for the common case.
 
 
1757 */
1758static inline int step_into(struct nameidata *nd, struct path *path,
1759			    int flags, struct inode *inode, unsigned seq)
1760{
1761	if (!(flags & WALK_MORE) && nd->depth)
1762		put_link(nd);
1763	if (likely(!d_is_symlink(path->dentry)) ||
1764	   !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
 
 
 
 
 
 
1765		/* not a symlink or should not follow */
1766		path_to_nameidata(path, nd);
 
 
 
 
 
 
 
 
 
 
1767		nd->inode = inode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1768		nd->seq = seq;
1769		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1770	}
1771	/* make sure that d_is_symlink above matches inode */
1772	if (nd->flags & LOOKUP_RCU) {
1773		if (read_seqcount_retry(&path->dentry->d_seq, seq))
1774			return -ECHILD;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1775	}
1776	return pick_link(nd, path, inode, seq);
1777}
1778
1779static int walk_component(struct nameidata *nd, int flags)
1780{
1781	struct path path;
1782	struct inode *inode;
1783	unsigned seq;
1784	int err;
1785	/*
1786	 * "." and ".." are special - ".." especially so because it has
1787	 * to be able to know about the current root directory and
1788	 * parent relationships.
1789	 */
1790	if (unlikely(nd->last_type != LAST_NORM)) {
1791		err = handle_dots(nd, nd->last_type);
1792		if (!(flags & WALK_MORE) && nd->depth)
1793			put_link(nd);
1794		return err;
1795	}
1796	err = lookup_fast(nd, &path, &inode, &seq);
1797	if (unlikely(err <= 0)) {
1798		if (err < 0)
1799			return err;
1800		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1801					  nd->flags);
1802		if (IS_ERR(path.dentry))
1803			return PTR_ERR(path.dentry);
1804
1805		path.mnt = nd->path.mnt;
1806		err = follow_managed(&path, nd);
1807		if (unlikely(err < 0))
1808			return err;
1809
1810		if (unlikely(d_is_negative(path.dentry))) {
1811			path_to_nameidata(&path, nd);
1812			return -ENOENT;
1813		}
1814
1815		seq = 0;	/* we are already out of RCU mode */
1816		inode = d_backing_inode(path.dentry);
1817	}
1818
1819	return step_into(nd, &path, flags, inode, seq);
 
1820}
1821
1822/*
1823 * We can do the critical dentry name comparison and hashing
1824 * operations one word at a time, but we are limited to:
1825 *
1826 * - Architectures with fast unaligned word accesses. We could
1827 *   do a "get_unaligned()" if this helps and is sufficiently
1828 *   fast.
1829 *
1830 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1831 *   do not trap on the (extremely unlikely) case of a page
1832 *   crossing operation.
1833 *
1834 * - Furthermore, we need an efficient 64-bit compile for the
1835 *   64-bit case in order to generate the "number of bytes in
1836 *   the final mask". Again, that could be replaced with a
1837 *   efficient population count instruction or similar.
1838 */
1839#ifdef CONFIG_DCACHE_WORD_ACCESS
1840
1841#include <asm/word-at-a-time.h>
1842
1843#ifdef HASH_MIX
1844
1845/* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1846
1847#elif defined(CONFIG_64BIT)
1848/*
1849 * Register pressure in the mixing function is an issue, particularly
1850 * on 32-bit x86, but almost any function requires one state value and
1851 * one temporary.  Instead, use a function designed for two state values
1852 * and no temporaries.
1853 *
1854 * This function cannot create a collision in only two iterations, so
1855 * we have two iterations to achieve avalanche.  In those two iterations,
1856 * we have six layers of mixing, which is enough to spread one bit's
1857 * influence out to 2^6 = 64 state bits.
1858 *
1859 * Rotate constants are scored by considering either 64 one-bit input
1860 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1861 * probability of that delta causing a change to each of the 128 output
1862 * bits, using a sample of random initial states.
1863 *
1864 * The Shannon entropy of the computed probabilities is then summed
1865 * to produce a score.  Ideally, any input change has a 50% chance of
1866 * toggling any given output bit.
1867 *
1868 * Mixing scores (in bits) for (12,45):
1869 * Input delta: 1-bit      2-bit
1870 * 1 round:     713.3    42542.6
1871 * 2 rounds:   2753.7   140389.8
1872 * 3 rounds:   5954.1   233458.2
1873 * 4 rounds:   7862.6   256672.2
1874 * Perfect:    8192     258048
1875 *            (64*128) (64*63/2 * 128)
1876 */
1877#define HASH_MIX(x, y, a)	\
1878	(	x ^= (a),	\
1879	y ^= x,	x = rol64(x,12),\
1880	x += y,	y = rol64(y,45),\
1881	y *= 9			)
1882
1883/*
1884 * Fold two longs into one 32-bit hash value.  This must be fast, but
1885 * latency isn't quite as critical, as there is a fair bit of additional
1886 * work done before the hash value is used.
1887 */
1888static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1889{
1890	y ^= x * GOLDEN_RATIO_64;
1891	y *= GOLDEN_RATIO_64;
1892	return y >> 32;
1893}
1894
1895#else	/* 32-bit case */
1896
1897/*
1898 * Mixing scores (in bits) for (7,20):
1899 * Input delta: 1-bit      2-bit
1900 * 1 round:     330.3     9201.6
1901 * 2 rounds:   1246.4    25475.4
1902 * 3 rounds:   1907.1    31295.1
1903 * 4 rounds:   2042.3    31718.6
1904 * Perfect:    2048      31744
1905 *            (32*64)   (32*31/2 * 64)
1906 */
1907#define HASH_MIX(x, y, a)	\
1908	(	x ^= (a),	\
1909	y ^= x,	x = rol32(x, 7),\
1910	x += y,	y = rol32(y,20),\
1911	y *= 9			)
1912
1913static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1914{
1915	/* Use arch-optimized multiply if one exists */
1916	return __hash_32(y ^ __hash_32(x));
1917}
1918
1919#endif
1920
1921/*
1922 * Return the hash of a string of known length.  This is carfully
1923 * designed to match hash_name(), which is the more critical function.
1924 * In particular, we must end by hashing a final word containing 0..7
1925 * payload bytes, to match the way that hash_name() iterates until it
1926 * finds the delimiter after the name.
1927 */
1928unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1929{
1930	unsigned long a, x = 0, y = (unsigned long)salt;
1931
1932	for (;;) {
1933		if (!len)
1934			goto done;
1935		a = load_unaligned_zeropad(name);
1936		if (len < sizeof(unsigned long))
1937			break;
1938		HASH_MIX(x, y, a);
1939		name += sizeof(unsigned long);
1940		len -= sizeof(unsigned long);
1941	}
1942	x ^= a & bytemask_from_count(len);
1943done:
1944	return fold_hash(x, y);
1945}
1946EXPORT_SYMBOL(full_name_hash);
1947
1948/* Return the "hash_len" (hash and length) of a null-terminated string */
1949u64 hashlen_string(const void *salt, const char *name)
1950{
1951	unsigned long a = 0, x = 0, y = (unsigned long)salt;
1952	unsigned long adata, mask, len;
1953	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1954
1955	len = 0;
1956	goto inside;
1957
1958	do {
1959		HASH_MIX(x, y, a);
1960		len += sizeof(unsigned long);
1961inside:
1962		a = load_unaligned_zeropad(name+len);
1963	} while (!has_zero(a, &adata, &constants));
1964
1965	adata = prep_zero_mask(a, adata, &constants);
1966	mask = create_zero_mask(adata);
1967	x ^= a & zero_bytemask(mask);
1968
1969	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1970}
1971EXPORT_SYMBOL(hashlen_string);
1972
1973/*
1974 * Calculate the length and hash of the path component, and
1975 * return the "hash_len" as the result.
1976 */
1977static inline u64 hash_name(const void *salt, const char *name)
1978{
1979	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1980	unsigned long adata, bdata, mask, len;
1981	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1982
1983	len = 0;
1984	goto inside;
1985
1986	do {
1987		HASH_MIX(x, y, a);
1988		len += sizeof(unsigned long);
1989inside:
1990		a = load_unaligned_zeropad(name+len);
1991		b = a ^ REPEAT_BYTE('/');
1992	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1993
1994	adata = prep_zero_mask(a, adata, &constants);
1995	bdata = prep_zero_mask(b, bdata, &constants);
1996	mask = create_zero_mask(adata | bdata);
1997	x ^= a & zero_bytemask(mask);
1998
1999	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2000}
2001
2002#else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2003
2004/* Return the hash of a string of known length */
2005unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2006{
2007	unsigned long hash = init_name_hash(salt);
2008	while (len--)
2009		hash = partial_name_hash((unsigned char)*name++, hash);
2010	return end_name_hash(hash);
2011}
2012EXPORT_SYMBOL(full_name_hash);
2013
2014/* Return the "hash_len" (hash and length) of a null-terminated string */
2015u64 hashlen_string(const void *salt, const char *name)
2016{
2017	unsigned long hash = init_name_hash(salt);
2018	unsigned long len = 0, c;
2019
2020	c = (unsigned char)*name;
2021	while (c) {
2022		len++;
2023		hash = partial_name_hash(c, hash);
2024		c = (unsigned char)name[len];
2025	}
2026	return hashlen_create(end_name_hash(hash), len);
2027}
2028EXPORT_SYMBOL(hashlen_string);
2029
2030/*
2031 * We know there's a real path component here of at least
2032 * one character.
2033 */
2034static inline u64 hash_name(const void *salt, const char *name)
2035{
2036	unsigned long hash = init_name_hash(salt);
2037	unsigned long len = 0, c;
2038
2039	c = (unsigned char)*name;
2040	do {
2041		len++;
2042		hash = partial_name_hash(c, hash);
2043		c = (unsigned char)name[len];
2044	} while (c && c != '/');
2045	return hashlen_create(end_name_hash(hash), len);
2046}
2047
2048#endif
2049
2050/*
2051 * Name resolution.
2052 * This is the basic name resolution function, turning a pathname into
2053 * the final dentry. We expect 'base' to be positive and a directory.
2054 *
2055 * Returns 0 and nd will have valid dentry and mnt on success.
2056 * Returns error and drops reference to input namei data on failure.
2057 */
2058static int link_path_walk(const char *name, struct nameidata *nd)
2059{
 
2060	int err;
2061
 
 
2062	if (IS_ERR(name))
2063		return PTR_ERR(name);
2064	while (*name=='/')
2065		name++;
2066	if (!*name)
 
2067		return 0;
 
2068
2069	/* At this point we know we have a real path component. */
2070	for(;;) {
 
 
2071		u64 hash_len;
2072		int type;
2073
2074		err = may_lookup(nd);
 
2075		if (err)
2076			return err;
2077
2078		hash_len = hash_name(nd->path.dentry, name);
2079
2080		type = LAST_NORM;
2081		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2082			case 2:
2083				if (name[1] == '.') {
2084					type = LAST_DOTDOT;
2085					nd->flags |= LOOKUP_JUMPED;
2086				}
2087				break;
2088			case 1:
2089				type = LAST_DOT;
2090		}
2091		if (likely(type == LAST_NORM)) {
2092			struct dentry *parent = nd->path.dentry;
2093			nd->flags &= ~LOOKUP_JUMPED;
2094			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2095				struct qstr this = { { .hash_len = hash_len }, .name = name };
2096				err = parent->d_op->d_hash(parent, &this);
2097				if (err < 0)
2098					return err;
2099				hash_len = this.hash_len;
2100				name = this.name;
2101			}
2102		}
2103
2104		nd->last.hash_len = hash_len;
2105		nd->last.name = name;
2106		nd->last_type = type;
2107
2108		name += hashlen_len(hash_len);
2109		if (!*name)
2110			goto OK;
2111		/*
2112		 * If it wasn't NUL, we know it was '/'. Skip that
2113		 * slash, and continue until no more slashes.
2114		 */
2115		do {
2116			name++;
2117		} while (unlikely(*name == '/'));
2118		if (unlikely(!*name)) {
2119OK:
2120			/* pathname body, done */
2121			if (!nd->depth)
2122				return 0;
2123			name = nd->stack[nd->depth - 1].name;
2124			/* trailing symlink, done */
2125			if (!name)
2126				return 0;
 
2127			/* last component of nested symlink */
2128			err = walk_component(nd, WALK_FOLLOW);
 
2129		} else {
2130			/* not the last component */
2131			err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2132		}
2133		if (err < 0)
2134			return err;
2135
2136		if (err) {
2137			const char *s = get_link(nd);
2138
2139			if (IS_ERR(s))
2140				return PTR_ERR(s);
2141			err = 0;
2142			if (unlikely(!s)) {
2143				/* jumped */
2144				put_link(nd);
2145			} else {
2146				nd->stack[nd->depth - 1].name = name;
2147				name = s;
2148				continue;
2149			}
2150		}
2151		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2152			if (nd->flags & LOOKUP_RCU) {
2153				if (unlazy_walk(nd))
2154					return -ECHILD;
2155			}
2156			return -ENOTDIR;
2157		}
2158	}
2159}
2160
2161/* must be paired with terminate_walk() */
2162static const char *path_init(struct nameidata *nd, unsigned flags)
2163{
 
2164	const char *s = nd->name->name;
2165
 
 
 
 
2166	if (!*s)
2167		flags &= ~LOOKUP_RCU;
2168	if (flags & LOOKUP_RCU)
2169		rcu_read_lock();
 
 
 
 
 
 
 
 
 
2170
2171	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2172	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2173	nd->depth = 0;
2174	if (flags & LOOKUP_ROOT) {
2175		struct dentry *root = nd->root.dentry;
2176		struct inode *inode = root->d_inode;
2177		if (*s && unlikely(!d_can_lookup(root)))
2178			return ERR_PTR(-ENOTDIR);
2179		nd->path = nd->root;
2180		nd->inode = inode;
2181		if (flags & LOOKUP_RCU) {
2182			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2183			nd->root_seq = nd->seq;
2184			nd->m_seq = read_seqbegin(&mount_lock);
2185		} else {
2186			path_get(&nd->path);
2187		}
2188		return s;
2189	}
2190
2191	nd->root.mnt = NULL;
2192	nd->path.mnt = NULL;
2193	nd->path.dentry = NULL;
2194
2195	nd->m_seq = read_seqbegin(&mount_lock);
2196	if (*s == '/') {
2197		set_root(nd);
2198		if (likely(!nd_jump_root(nd)))
2199			return s;
2200		return ERR_PTR(-ECHILD);
2201	} else if (nd->dfd == AT_FDCWD) {
 
 
 
2202		if (flags & LOOKUP_RCU) {
2203			struct fs_struct *fs = current->fs;
2204			unsigned seq;
2205
2206			do {
2207				seq = read_seqcount_begin(&fs->seq);
2208				nd->path = fs->pwd;
2209				nd->inode = nd->path.dentry->d_inode;
2210				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2211			} while (read_seqcount_retry(&fs->seq, seq));
2212		} else {
2213			get_fs_pwd(current->fs, &nd->path);
2214			nd->inode = nd->path.dentry->d_inode;
2215		}
2216		return s;
2217	} else {
2218		/* Caller must check execute permissions on the starting path component */
2219		struct fd f = fdget_raw(nd->dfd);
2220		struct dentry *dentry;
2221
2222		if (!f.file)
2223			return ERR_PTR(-EBADF);
2224
2225		dentry = f.file->f_path.dentry;
2226
2227		if (*s && unlikely(!d_can_lookup(dentry))) {
2228			fdput(f);
2229			return ERR_PTR(-ENOTDIR);
2230		}
2231
2232		nd->path = f.file->f_path;
2233		if (flags & LOOKUP_RCU) {
2234			nd->inode = nd->path.dentry->d_inode;
2235			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2236		} else {
2237			path_get(&nd->path);
2238			nd->inode = nd->path.dentry->d_inode;
2239		}
2240		fdput(f);
2241		return s;
2242	}
2243}
2244
2245static const char *trailing_symlink(struct nameidata *nd)
2246{
2247	const char *s;
2248	int error = may_follow_link(nd);
2249	if (unlikely(error))
2250		return ERR_PTR(error);
2251	nd->flags |= LOOKUP_PARENT;
2252	nd->stack[0].name = NULL;
2253	s = get_link(nd);
2254	return s ? s : "";
 
2255}
2256
2257static inline int lookup_last(struct nameidata *nd)
2258{
2259	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2260		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2261
2262	nd->flags &= ~LOOKUP_PARENT;
2263	return walk_component(nd, 0);
2264}
2265
2266static int handle_lookup_down(struct nameidata *nd)
2267{
2268	struct path path = nd->path;
2269	struct inode *inode = nd->inode;
2270	unsigned seq = nd->seq;
2271	int err;
2272
2273	if (nd->flags & LOOKUP_RCU) {
2274		/*
2275		 * don't bother with unlazy_walk on failure - we are
2276		 * at the very beginning of walk, so we lose nothing
2277		 * if we simply redo everything in non-RCU mode
2278		 */
2279		if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2280			return -ECHILD;
2281	} else {
2282		dget(path.dentry);
2283		err = follow_managed(&path, nd);
2284		if (unlikely(err < 0))
2285			return err;
2286		inode = d_backing_inode(path.dentry);
2287		seq = 0;
2288	}
2289	path_to_nameidata(&path, nd);
2290	nd->inode = inode;
2291	nd->seq = seq;
2292	return 0;
2293}
2294
2295/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2296static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2297{
2298	const char *s = path_init(nd, flags);
2299	int err;
2300
2301	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2302		err = handle_lookup_down(nd);
2303		if (unlikely(err < 0))
2304			s = ERR_PTR(err);
2305	}
2306
2307	while (!(err = link_path_walk(s, nd))
2308		&& ((err = lookup_last(nd)) > 0)) {
2309		s = trailing_symlink(nd);
 
 
 
2310	}
2311	if (!err)
2312		err = complete_walk(nd);
2313
2314	if (!err && nd->flags & LOOKUP_DIRECTORY)
2315		if (!d_can_lookup(nd->path.dentry))
2316			err = -ENOTDIR;
2317	if (!err) {
2318		*path = nd->path;
2319		nd->path.mnt = NULL;
2320		nd->path.dentry = NULL;
2321	}
2322	terminate_walk(nd);
2323	return err;
2324}
2325
2326int filename_lookup(int dfd, struct filename *name, unsigned flags,
2327		    struct path *path, struct path *root)
2328{
2329	int retval;
2330	struct nameidata nd;
2331	if (IS_ERR(name))
2332		return PTR_ERR(name);
2333	if (unlikely(root)) {
2334		nd.root = *root;
2335		flags |= LOOKUP_ROOT;
2336	}
2337	set_nameidata(&nd, dfd, name);
2338	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2339	if (unlikely(retval == -ECHILD))
2340		retval = path_lookupat(&nd, flags, path);
2341	if (unlikely(retval == -ESTALE))
2342		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2343
2344	if (likely(!retval))
2345		audit_inode(name, path->dentry, 0);
 
2346	restore_nameidata();
2347	putname(name);
2348	return retval;
2349}
2350
2351/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2352static int path_parentat(struct nameidata *nd, unsigned flags,
2353				struct path *parent)
2354{
2355	const char *s = path_init(nd, flags);
2356	int err = link_path_walk(s, nd);
2357	if (!err)
2358		err = complete_walk(nd);
2359	if (!err) {
2360		*parent = nd->path;
2361		nd->path.mnt = NULL;
2362		nd->path.dentry = NULL;
2363	}
2364	terminate_walk(nd);
2365	return err;
2366}
2367
2368static struct filename *filename_parentat(int dfd, struct filename *name,
2369				unsigned int flags, struct path *parent,
2370				struct qstr *last, int *type)
 
 
2371{
2372	int retval;
2373	struct nameidata nd;
2374
2375	if (IS_ERR(name))
2376		return name;
2377	set_nameidata(&nd, dfd, name);
2378	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2379	if (unlikely(retval == -ECHILD))
2380		retval = path_parentat(&nd, flags, parent);
2381	if (unlikely(retval == -ESTALE))
2382		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2383	if (likely(!retval)) {
2384		*last = nd.last;
2385		*type = nd.last_type;
2386		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2387	} else {
2388		putname(name);
2389		name = ERR_PTR(retval);
2390	}
2391	restore_nameidata();
2392	return name;
 
 
 
 
 
 
 
2393}
2394
2395/* does lookup, returns the object with parent locked */
2396struct dentry *kern_path_locked(const char *name, struct path *path)
2397{
2398	struct filename *filename;
2399	struct dentry *d;
2400	struct qstr last;
2401	int type;
2402
2403	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2404				    &last, &type);
2405	if (IS_ERR(filename))
2406		return ERR_CAST(filename);
2407	if (unlikely(type != LAST_NORM)) {
2408		path_put(path);
2409		putname(filename);
2410		return ERR_PTR(-EINVAL);
2411	}
2412	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2413	d = __lookup_hash(&last, path->dentry, 0);
2414	if (IS_ERR(d)) {
2415		inode_unlock(path->dentry->d_inode);
2416		path_put(path);
2417	}
 
 
 
 
 
 
 
 
2418	putname(filename);
2419	return d;
 
 
 
 
 
 
 
 
 
2420}
 
2421
2422int kern_path(const char *name, unsigned int flags, struct path *path)
2423{
2424	return filename_lookup(AT_FDCWD, getname_kernel(name),
2425			       flags, path, NULL);
 
 
 
 
2426}
2427EXPORT_SYMBOL(kern_path);
2428
2429/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2430 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2431 * @dentry:  pointer to dentry of the base directory
2432 * @mnt: pointer to vfs mount of the base directory
2433 * @name: pointer to file name
2434 * @flags: lookup flags
2435 * @path: pointer to struct path to fill
2436 */
2437int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2438		    const char *name, unsigned int flags,
2439		    struct path *path)
2440{
 
2441	struct path root = {.mnt = mnt, .dentry = dentry};
 
 
 
2442	/* the first argument of filename_lookup() is ignored with root */
2443	return filename_lookup(AT_FDCWD, getname_kernel(name),
2444			       flags , path, &root);
 
2445}
2446EXPORT_SYMBOL(vfs_path_lookup);
2447
2448static int lookup_one_len_common(const char *name, struct dentry *base,
2449				 int len, struct qstr *this)
 
2450{
2451	this->name = name;
2452	this->len = len;
2453	this->hash = full_name_hash(base, name, len);
2454	if (!len)
2455		return -EACCES;
2456
2457	if (unlikely(name[0] == '.')) {
2458		if (len < 2 || (len == 2 && name[1] == '.'))
2459			return -EACCES;
2460	}
2461
2462	while (len--) {
2463		unsigned int c = *(const unsigned char *)name++;
2464		if (c == '/' || c == '\0')
2465			return -EACCES;
2466	}
2467	/*
2468	 * See if the low-level filesystem might want
2469	 * to use its own hash..
2470	 */
2471	if (base->d_flags & DCACHE_OP_HASH) {
2472		int err = base->d_op->d_hash(base, this);
2473		if (err < 0)
2474			return err;
2475	}
2476
2477	return inode_permission(base->d_inode, MAY_EXEC);
2478}
2479
2480/**
2481 * try_lookup_one_len - filesystem helper to lookup single pathname component
2482 * @name:	pathname component to lookup
2483 * @base:	base directory to lookup from
2484 * @len:	maximum length @len should be interpreted to
2485 *
2486 * Look up a dentry by name in the dcache, returning NULL if it does not
2487 * currently exist.  The function does not try to create a dentry.
2488 *
2489 * Note that this routine is purely a helper for filesystem usage and should
2490 * not be called by generic code.
2491 *
2492 * The caller must hold base->i_mutex.
2493 */
2494struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2495{
2496	struct qstr this;
2497	int err;
2498
2499	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2500
2501	err = lookup_one_len_common(name, base, len, &this);
2502	if (err)
2503		return ERR_PTR(err);
2504
2505	return lookup_dcache(&this, base, 0);
2506}
2507EXPORT_SYMBOL(try_lookup_one_len);
2508
2509/**
2510 * lookup_one_len - filesystem helper to lookup single pathname component
2511 * @name:	pathname component to lookup
2512 * @base:	base directory to lookup from
2513 * @len:	maximum length @len should be interpreted to
2514 *
2515 * Note that this routine is purely a helper for filesystem usage and should
2516 * not be called by generic code.
2517 *
2518 * The caller must hold base->i_mutex.
2519 */
2520struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2521{
2522	struct dentry *dentry;
2523	struct qstr this;
2524	int err;
2525
2526	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2527
2528	err = lookup_one_len_common(name, base, len, &this);
2529	if (err)
2530		return ERR_PTR(err);
2531
2532	dentry = lookup_dcache(&this, base, 0);
2533	return dentry ? dentry : __lookup_slow(&this, base, 0);
2534}
2535EXPORT_SYMBOL(lookup_one_len);
2536
2537/**
2538 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2539 * @name:	pathname component to lookup
2540 * @base:	base directory to lookup from
2541 * @len:	maximum length @len should be interpreted to
2542 *
2543 * Note that this routine is purely a helper for filesystem usage and should
2544 * not be called by generic code.
2545 *
2546 * Unlike lookup_one_len, it should be called without the parent
2547 * i_mutex held, and will take the i_mutex itself if necessary.
2548 */
2549struct dentry *lookup_one_len_unlocked(const char *name,
2550				       struct dentry *base, int len)
 
2551{
2552	struct qstr this;
2553	int err;
2554	struct dentry *ret;
2555
2556	err = lookup_one_len_common(name, base, len, &this);
2557	if (err)
2558		return ERR_PTR(err);
2559
2560	ret = lookup_dcache(&this, base, 0);
2561	if (!ret)
2562		ret = lookup_slow(&this, base, 0);
2563	return ret;
2564}
2565EXPORT_SYMBOL(lookup_one_len_unlocked);
2566
2567#ifdef CONFIG_UNIX98_PTYS
2568int path_pts(struct path *path)
2569{
2570	/* Find something mounted on "pts" in the same directory as
2571	 * the input path.
2572	 */
2573	struct dentry *child, *parent;
2574	struct qstr this;
2575	int ret;
2576
2577	ret = path_parent_directory(path);
2578	if (ret)
2579		return ret;
2580
2581	parent = path->dentry;
2582	this.name = "pts";
2583	this.len = 3;
2584	child = d_hash_and_lookup(parent, &this);
2585	if (!child)
2586		return -ENOENT;
2587
2588	path->dentry = child;
2589	dput(parent);
2590	follow_mount(path);
2591	return 0;
2592}
2593#endif
2594
2595int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2596		 struct path *path, int *empty)
2597{
2598	return filename_lookup(dfd, getname_flags(name, flags, empty),
2599			       flags, path, NULL);
2600}
2601EXPORT_SYMBOL(user_path_at_empty);
2602
2603/**
2604 * mountpoint_last - look up last component for umount
2605 * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
 
 
 
 
2606 *
2607 * This is a special lookup_last function just for umount. In this case, we
2608 * need to resolve the path without doing any revalidation.
2609 *
2610 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2611 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2612 * in almost all cases, this lookup will be served out of the dcache. The only
2613 * cases where it won't are if nd->last refers to a symlink or the path is
2614 * bogus and it doesn't exist.
2615 *
2616 * Returns:
2617 * -error: if there was an error during lookup. This includes -ENOENT if the
2618 *         lookup found a negative dentry.
2619 *
2620 * 0:      if we successfully resolved nd->last and found it to not to be a
2621 *         symlink that needs to be followed.
2622 *
2623 * 1:      if we successfully resolved nd->last and found it to be a symlink
2624 *         that needs to be followed.
2625 */
2626static int
2627mountpoint_last(struct nameidata *nd)
 
2628{
2629	int error = 0;
2630	struct dentry *dir = nd->path.dentry;
2631	struct path path;
2632
2633	/* If we're in rcuwalk, drop out of it to handle last component */
2634	if (nd->flags & LOOKUP_RCU) {
2635		if (unlazy_walk(nd))
2636			return -ECHILD;
2637	}
2638
2639	nd->flags &= ~LOOKUP_PARENT;
2640
2641	if (unlikely(nd->last_type != LAST_NORM)) {
2642		error = handle_dots(nd, nd->last_type);
2643		if (error)
2644			return error;
2645		path.dentry = dget(nd->path.dentry);
2646	} else {
2647		path.dentry = d_lookup(dir, &nd->last);
2648		if (!path.dentry) {
2649			/*
2650			 * No cached dentry. Mounted dentries are pinned in the
2651			 * cache, so that means that this dentry is probably
2652			 * a symlink or the path doesn't actually point
2653			 * to a mounted dentry.
2654			 */
2655			path.dentry = lookup_slow(&nd->last, dir,
2656					     nd->flags | LOOKUP_NO_REVAL);
2657			if (IS_ERR(path.dentry))
2658				return PTR_ERR(path.dentry);
2659		}
2660	}
2661	if (d_is_negative(path.dentry)) {
2662		dput(path.dentry);
2663		return -ENOENT;
2664	}
2665	path.mnt = nd->path.mnt;
2666	return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2667}
 
2668
2669/**
2670 * path_mountpoint - look up a path to be umounted
2671 * @nd:		lookup context
2672 * @flags:	lookup flags
2673 * @path:	pointer to container for result
2674 *
2675 * Look up the given name, but don't attempt to revalidate the last component.
2676 * Returns 0 and "path" will be valid on success; Returns error otherwise.
 
 
 
2677 */
2678static int
2679path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2680{
2681	const char *s = path_init(nd, flags);
2682	int err;
2683
2684	while (!(err = link_path_walk(s, nd)) &&
2685		(err = mountpoint_last(nd)) > 0) {
2686		s = trailing_symlink(nd);
2687	}
2688	if (!err) {
2689		*path = nd->path;
2690		nd->path.mnt = NULL;
2691		nd->path.dentry = NULL;
2692		follow_mount(path);
2693	}
2694	terminate_walk(nd);
2695	return err;
2696}
 
2697
2698static int
2699filename_mountpoint(int dfd, struct filename *name, struct path *path,
2700			unsigned int flags)
 
 
 
 
 
 
 
2701{
2702	struct nameidata nd;
2703	int error;
2704	if (IS_ERR(name))
2705		return PTR_ERR(name);
2706	set_nameidata(&nd, dfd, name);
2707	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2708	if (unlikely(error == -ECHILD))
2709		error = path_mountpoint(&nd, flags, path);
2710	if (unlikely(error == -ESTALE))
2711		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2712	if (likely(!error))
2713		audit_inode(name, path->dentry, AUDIT_INODE_NOEVAL);
2714	restore_nameidata();
2715	putname(name);
2716	return error;
2717}
 
2718
2719/**
2720 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2721 * @dfd:	directory file descriptor
2722 * @name:	pathname from userland
2723 * @flags:	lookup flags
2724 * @path:	pointer to container to hold result
2725 *
2726 * A umount is a special case for path walking. We're not actually interested
2727 * in the inode in this situation, and ESTALE errors can be a problem. We
2728 * simply want track down the dentry and vfsmount attached at the mountpoint
2729 * and avoid revalidating the last component.
2730 *
2731 * Returns 0 and populates "path" on success.
2732 */
2733int
2734user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2735			struct path *path)
2736{
2737	return filename_mountpoint(dfd, getname(name), path, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2738}
 
2739
2740int
2741kern_path_mountpoint(int dfd, const char *name, struct path *path,
2742			unsigned int flags)
2743{
2744	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
 
 
 
 
2745}
2746EXPORT_SYMBOL(kern_path_mountpoint);
2747
2748int __check_sticky(struct inode *dir, struct inode *inode)
 
2749{
2750	kuid_t fsuid = current_fsuid();
2751
2752	if (uid_eq(inode->i_uid, fsuid))
2753		return 0;
2754	if (uid_eq(dir->i_uid, fsuid))
2755		return 0;
2756	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2757}
2758EXPORT_SYMBOL(__check_sticky);
2759
2760/*
2761 *	Check whether we can remove a link victim from directory dir, check
2762 *  whether the type of victim is right.
2763 *  1. We can't do it if dir is read-only (done in permission())
2764 *  2. We should have write and exec permissions on dir
2765 *  3. We can't remove anything from append-only dir
2766 *  4. We can't do anything with immutable dir (done in permission())
2767 *  5. If the sticky bit on dir is set we should either
2768 *	a. be owner of dir, or
2769 *	b. be owner of victim, or
2770 *	c. have CAP_FOWNER capability
2771 *  6. If the victim is append-only or immutable we can't do antyhing with
2772 *     links pointing to it.
2773 *  7. If the victim has an unknown uid or gid we can't change the inode.
2774 *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2775 *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2776 * 10. We can't remove a root or mountpoint.
2777 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2778 *     nfs_async_unlink().
2779 */
2780static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
 
2781{
2782	struct inode *inode = d_backing_inode(victim);
2783	int error;
2784
2785	if (d_is_negative(victim))
2786		return -ENOENT;
2787	BUG_ON(!inode);
2788
2789	BUG_ON(victim->d_parent->d_inode != dir);
2790
2791	/* Inode writeback is not safe when the uid or gid are invalid. */
2792	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
 
2793		return -EOVERFLOW;
2794
2795	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2796
2797	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2798	if (error)
2799		return error;
2800	if (IS_APPEND(dir))
2801		return -EPERM;
2802
2803	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2804	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
 
2805		return -EPERM;
2806	if (isdir) {
2807		if (!d_is_dir(victim))
2808			return -ENOTDIR;
2809		if (IS_ROOT(victim))
2810			return -EBUSY;
2811	} else if (d_is_dir(victim))
2812		return -EISDIR;
2813	if (IS_DEADDIR(dir))
2814		return -ENOENT;
2815	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2816		return -EBUSY;
2817	return 0;
2818}
2819
2820/*	Check whether we can create an object with dentry child in directory
2821 *  dir.
2822 *  1. We can't do it if child already exists (open has special treatment for
2823 *     this case, but since we are inlined it's OK)
2824 *  2. We can't do it if dir is read-only (done in permission())
2825 *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2826 *  4. We should have write and exec permissions on dir
2827 *  5. We can't do it if dir is immutable (done in permission())
2828 */
2829static inline int may_create(struct inode *dir, struct dentry *child)
 
2830{
2831	struct user_namespace *s_user_ns;
2832	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2833	if (child->d_inode)
2834		return -EEXIST;
2835	if (IS_DEADDIR(dir))
2836		return -ENOENT;
2837	s_user_ns = dir->i_sb->s_user_ns;
2838	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2839	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2840		return -EOVERFLOW;
2841	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2842}
2843
2844/*
2845 * p1 and p2 should be directories on the same fs.
2846 */
2847struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2848{
2849	struct dentry *p;
2850
2851	if (p1 == p2) {
2852		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2853		return NULL;
2854	}
2855
2856	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
 
 
 
2857
2858	p = d_ancestor(p2, p1);
2859	if (p) {
 
 
 
 
 
 
 
2860		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2861		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2862		return p;
 
 
 
 
 
 
 
 
 
 
2863	}
2864
2865	p = d_ancestor(p1, p2);
2866	if (p) {
2867		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2868		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2869		return p;
2870	}
2871
2872	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2873	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
 
 
 
 
 
2874	return NULL;
2875}
2876EXPORT_SYMBOL(lock_rename);
2877
2878void unlock_rename(struct dentry *p1, struct dentry *p2)
2879{
2880	inode_unlock(p1->d_inode);
2881	if (p1 != p2) {
2882		inode_unlock(p2->d_inode);
2883		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2884	}
2885}
2886EXPORT_SYMBOL(unlock_rename);
2887
2888int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2889		bool want_excl)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2890{
2891	int error = may_create(dir, dentry);
 
 
2892	if (error)
2893		return error;
2894
2895	if (!dir->i_op->create)
2896		return -EACCES;	/* shouldn't it be ENOSYS? */
2897	mode &= S_IALLUGO;
2898	mode |= S_IFREG;
2899	error = security_inode_create(dir, dentry, mode);
2900	if (error)
2901		return error;
2902	error = dir->i_op->create(dir, dentry, mode, want_excl);
2903	if (!error)
2904		fsnotify_create(dir, dentry);
2905	return error;
2906}
2907EXPORT_SYMBOL(vfs_create);
2908
2909int vfs_mkobj(struct dentry *dentry, umode_t mode,
2910		int (*f)(struct dentry *, umode_t, void *),
2911		void *arg)
2912{
2913	struct inode *dir = dentry->d_parent->d_inode;
2914	int error = may_create(dir, dentry);
2915	if (error)
2916		return error;
2917
2918	mode &= S_IALLUGO;
2919	mode |= S_IFREG;
2920	error = security_inode_create(dir, dentry, mode);
2921	if (error)
2922		return error;
2923	error = f(dentry, mode, arg);
2924	if (!error)
2925		fsnotify_create(dir, dentry);
2926	return error;
2927}
2928EXPORT_SYMBOL(vfs_mkobj);
2929
2930bool may_open_dev(const struct path *path)
2931{
2932	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2933		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2934}
2935
2936static int may_open(const struct path *path, int acc_mode, int flag)
 
2937{
2938	struct dentry *dentry = path->dentry;
2939	struct inode *inode = dentry->d_inode;
2940	int error;
2941
2942	if (!inode)
2943		return -ENOENT;
2944
2945	switch (inode->i_mode & S_IFMT) {
2946	case S_IFLNK:
2947		return -ELOOP;
2948	case S_IFDIR:
2949		if (acc_mode & MAY_WRITE)
2950			return -EISDIR;
 
 
2951		break;
2952	case S_IFBLK:
2953	case S_IFCHR:
2954		if (!may_open_dev(path))
2955			return -EACCES;
2956		/*FALLTHRU*/
2957	case S_IFIFO:
2958	case S_IFSOCK:
 
 
2959		flag &= ~O_TRUNC;
2960		break;
 
 
 
 
2961	}
2962
2963	error = inode_permission(inode, MAY_OPEN | acc_mode);
2964	if (error)
2965		return error;
2966
2967	/*
2968	 * An append-only file must be opened in append mode for writing.
2969	 */
2970	if (IS_APPEND(inode)) {
2971		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2972			return -EPERM;
2973		if (flag & O_TRUNC)
2974			return -EPERM;
2975	}
2976
2977	/* O_NOATIME can only be set by the owner or superuser */
2978	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2979		return -EPERM;
2980
2981	return 0;
2982}
2983
2984static int handle_truncate(struct file *filp)
2985{
2986	const struct path *path = &filp->f_path;
2987	struct inode *inode = path->dentry->d_inode;
2988	int error = get_write_access(inode);
2989	if (error)
2990		return error;
2991	/*
2992	 * Refuse to truncate files with mandatory locks held on them.
2993	 */
2994	error = locks_verify_locked(filp);
2995	if (!error)
2996		error = security_path_truncate(path);
2997	if (!error) {
2998		error = do_truncate(path->dentry, 0,
2999				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3000				    filp);
3001	}
3002	put_write_access(inode);
3003	return error;
3004}
3005
3006static inline int open_to_namei_flags(int flag)
3007{
3008	if ((flag & O_ACCMODE) == 3)
3009		flag--;
3010	return flag;
3011}
3012
3013static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
 
 
3014{
3015	struct user_namespace *s_user_ns;
3016	int error = security_path_mknod(dir, dentry, mode, 0);
3017	if (error)
3018		return error;
3019
3020	s_user_ns = dir->dentry->d_sb->s_user_ns;
3021	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3022	    !kgid_has_mapping(s_user_ns, current_fsgid()))
3023		return -EOVERFLOW;
3024
3025	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
 
3026	if (error)
3027		return error;
3028
3029	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3030}
3031
3032/*
3033 * Attempt to atomically look up, create and open a file from a negative
3034 * dentry.
3035 *
3036 * Returns 0 if successful.  The file will have been created and attached to
3037 * @file by the filesystem calling finish_open().
3038 *
3039 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3040 * be set.  The caller will need to perform the open themselves.  @path will
3041 * have been updated to point to the new dentry.  This may be negative.
3042 *
3043 * Returns an error code otherwise.
3044 */
3045static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3046			struct path *path, struct file *file,
3047			const struct open_flags *op,
3048			int open_flag, umode_t mode)
3049{
3050	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3051	struct inode *dir =  nd->path.dentry->d_inode;
3052	int error;
3053
3054	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
3055		open_flag &= ~O_TRUNC;
3056
3057	if (nd->flags & LOOKUP_DIRECTORY)
3058		open_flag |= O_DIRECTORY;
3059
3060	file->f_path.dentry = DENTRY_NOT_SET;
3061	file->f_path.mnt = nd->path.mnt;
3062	error = dir->i_op->atomic_open(dir, dentry, file,
3063				       open_to_namei_flags(open_flag), mode);
3064	d_lookup_done(dentry);
3065	if (!error) {
3066		if (file->f_mode & FMODE_OPENED) {
3067			/*
3068			 * We didn't have the inode before the open, so check open
3069			 * permission here.
3070			 */
3071			int acc_mode = op->acc_mode;
3072			if (file->f_mode & FMODE_CREATED) {
3073				WARN_ON(!(open_flag & O_CREAT));
3074				fsnotify_create(dir, dentry);
3075				acc_mode = 0;
3076			}
3077			error = may_open(&file->f_path, acc_mode, open_flag);
3078			if (WARN_ON(error > 0))
3079				error = -EINVAL;
3080		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3081			error = -EIO;
3082		} else {
3083			if (file->f_path.dentry) {
3084				dput(dentry);
3085				dentry = file->f_path.dentry;
3086			}
3087			if (file->f_mode & FMODE_CREATED)
3088				fsnotify_create(dir, dentry);
3089			if (unlikely(d_is_negative(dentry))) {
3090				error = -ENOENT;
3091			} else {
3092				path->dentry = dentry;
3093				path->mnt = nd->path.mnt;
3094				return 0;
3095			}
3096		}
3097	}
3098	dput(dentry);
3099	return error;
 
 
 
3100}
3101
3102/*
3103 * Look up and maybe create and open the last component.
3104 *
3105 * Must be called with parent locked (exclusive in O_CREAT case).
3106 *
3107 * Returns 0 on success, that is, if
3108 *  the file was successfully atomically created (if necessary) and opened, or
3109 *  the file was not completely opened at this time, though lookups and
3110 *  creations were performed.
3111 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3112 * In the latter case dentry returned in @path might be negative if O_CREAT
3113 * hadn't been specified.
3114 *
3115 * An error code is returned on failure.
3116 */
3117static int lookup_open(struct nameidata *nd, struct path *path,
3118			struct file *file,
3119			const struct open_flags *op,
3120			bool got_write)
3121{
 
3122	struct dentry *dir = nd->path.dentry;
3123	struct inode *dir_inode = dir->d_inode;
3124	int open_flag = op->open_flag;
3125	struct dentry *dentry;
3126	int error, create_error = 0;
3127	umode_t mode = op->mode;
3128	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3129
3130	if (unlikely(IS_DEADDIR(dir_inode)))
3131		return -ENOENT;
3132
3133	file->f_mode &= ~FMODE_CREATED;
3134	dentry = d_lookup(dir, &nd->last);
3135	for (;;) {
3136		if (!dentry) {
3137			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3138			if (IS_ERR(dentry))
3139				return PTR_ERR(dentry);
3140		}
3141		if (d_in_lookup(dentry))
3142			break;
3143
3144		error = d_revalidate(dentry, nd->flags);
3145		if (likely(error > 0))
3146			break;
3147		if (error)
3148			goto out_dput;
3149		d_invalidate(dentry);
3150		dput(dentry);
3151		dentry = NULL;
3152	}
3153	if (dentry->d_inode) {
3154		/* Cached positive dentry: will open in f_op->open */
3155		goto out_no_open;
3156	}
3157
3158	/*
3159	 * Checking write permission is tricky, bacuse we don't know if we are
3160	 * going to actually need it: O_CREAT opens should work as long as the
3161	 * file exists.  But checking existence breaks atomicity.  The trick is
3162	 * to check access and if not granted clear O_CREAT from the flags.
3163	 *
3164	 * Another problem is returing the "right" error value (e.g. for an
3165	 * O_EXCL open we want to return EEXIST not EROFS).
3166	 */
 
 
 
3167	if (open_flag & O_CREAT) {
3168		if (!IS_POSIXACL(dir->d_inode))
3169			mode &= ~current_umask();
3170		if (unlikely(!got_write)) {
 
 
 
 
3171			create_error = -EROFS;
3172			open_flag &= ~O_CREAT;
3173			if (open_flag & (O_EXCL | O_TRUNC))
3174				goto no_open;
3175			/* No side effects, safe to clear O_CREAT */
3176		} else {
3177			create_error = may_o_create(&nd->path, dentry, mode);
3178			if (create_error) {
3179				open_flag &= ~O_CREAT;
3180				if (open_flag & O_EXCL)
3181					goto no_open;
3182			}
3183		}
3184	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3185		   unlikely(!got_write)) {
3186		/*
3187		 * No O_CREATE -> atomicity not a requirement -> fall
3188		 * back to lookup + open
3189		 */
3190		goto no_open;
3191	}
3192
 
3193	if (dir_inode->i_op->atomic_open) {
3194		error = atomic_open(nd, dentry, path, file, op, open_flag,
3195				    mode);
3196		if (unlikely(error == -ENOENT) && create_error)
3197			error = create_error;
3198		return error;
3199	}
3200
3201no_open:
3202	if (d_in_lookup(dentry)) {
3203		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3204							     nd->flags);
3205		d_lookup_done(dentry);
3206		if (unlikely(res)) {
3207			if (IS_ERR(res)) {
3208				error = PTR_ERR(res);
3209				goto out_dput;
3210			}
3211			dput(dentry);
3212			dentry = res;
3213		}
3214	}
3215
3216	/* Negative dentry, just create the file */
3217	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3218		file->f_mode |= FMODE_CREATED;
3219		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3220		if (!dir_inode->i_op->create) {
3221			error = -EACCES;
3222			goto out_dput;
3223		}
3224		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3225						open_flag & O_EXCL);
 
3226		if (error)
3227			goto out_dput;
3228		fsnotify_create(dir_inode, dentry);
3229	}
3230	if (unlikely(create_error) && !dentry->d_inode) {
3231		error = create_error;
3232		goto out_dput;
3233	}
3234out_no_open:
3235	path->dentry = dentry;
3236	path->mnt = nd->path.mnt;
3237	return 0;
3238
3239out_dput:
3240	dput(dentry);
3241	return error;
3242}
3243
3244/*
3245 * Handle the last step of open()
3246 */
3247static int do_last(struct nameidata *nd,
3248		   struct file *file, const struct open_flags *op)
3249{
3250	struct dentry *dir = nd->path.dentry;
3251	int open_flag = op->open_flag;
3252	bool will_truncate = (open_flag & O_TRUNC) != 0;
3253	bool got_write = false;
3254	int acc_mode = op->acc_mode;
3255	unsigned seq;
3256	struct inode *inode;
3257	struct path path;
3258	int error;
3259
3260	nd->flags &= ~LOOKUP_PARENT;
3261	nd->flags |= op->intent;
3262
3263	if (nd->last_type != LAST_NORM) {
3264		error = handle_dots(nd, nd->last_type);
3265		if (unlikely(error))
3266			return error;
3267		goto finish_open;
3268	}
3269
3270	if (!(open_flag & O_CREAT)) {
3271		if (nd->last.name[nd->last.len])
3272			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3273		/* we _can_ be in RCU mode here */
3274		error = lookup_fast(nd, &path, &inode, &seq);
3275		if (likely(error > 0))
 
 
3276			goto finish_lookup;
3277
3278		if (error < 0)
3279			return error;
3280
3281		BUG_ON(nd->inode != dir->d_inode);
3282		BUG_ON(nd->flags & LOOKUP_RCU);
3283	} else {
3284		/* create side of things */
3285		/*
3286		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3287		 * has been cleared when we got to the last component we are
3288		 * about to look up
3289		 */
3290		error = complete_walk(nd);
3291		if (error)
3292			return error;
3293
3294		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3295		/* trailing slashes? */
3296		if (unlikely(nd->last.name[nd->last.len]))
3297			return -EISDIR;
3298	}
3299
3300	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3301		error = mnt_want_write(nd->path.mnt);
3302		if (!error)
3303			got_write = true;
3304		/*
3305		 * do _not_ fail yet - we might not need that or fail with
3306		 * a different error; let lookup_open() decide; we'll be
3307		 * dropping this one anyway.
3308		 */
3309	}
3310	if (open_flag & O_CREAT)
3311		inode_lock(dir->d_inode);
3312	else
3313		inode_lock_shared(dir->d_inode);
3314	error = lookup_open(nd, &path, file, op, got_write);
 
 
3315	if (open_flag & O_CREAT)
3316		inode_unlock(dir->d_inode);
3317	else
3318		inode_unlock_shared(dir->d_inode);
3319
3320	if (error)
3321		goto out;
3322
3323	if (file->f_mode & FMODE_OPENED) {
3324		if ((file->f_mode & FMODE_CREATED) ||
3325		    !S_ISREG(file_inode(file)->i_mode))
3326			will_truncate = false;
3327
3328		audit_inode(nd->name, file->f_path.dentry, 0);
3329		goto opened;
 
 
3330	}
3331
3332	if (file->f_mode & FMODE_CREATED) {
3333		/* Don't check for write permission, don't truncate */
3334		open_flag &= ~O_TRUNC;
3335		will_truncate = false;
3336		acc_mode = 0;
3337		path_to_nameidata(&path, nd);
3338		goto finish_open_created;
3339	}
3340
3341	/*
3342	 * If atomic_open() acquired write access it is dropped now due to
3343	 * possible mount and symlink following (this might be optimized away if
3344	 * necessary...)
3345	 */
3346	if (got_write) {
3347		mnt_drop_write(nd->path.mnt);
3348		got_write = false;
3349	}
 
 
3350
3351	error = follow_managed(&path, nd);
3352	if (unlikely(error < 0))
3353		return error;
3354
3355	if (unlikely(d_is_negative(path.dentry))) {
3356		path_to_nameidata(&path, nd);
3357		return -ENOENT;
3358	}
3359
3360	/*
3361	 * create/update audit record if it already exists.
3362	 */
3363	audit_inode(nd->name, path.dentry, 0);
3364
3365	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3366		path_to_nameidata(&path, nd);
3367		return -EEXIST;
3368	}
3369
3370	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3371	inode = d_backing_inode(path.dentry);
3372finish_lookup:
3373	error = step_into(nd, &path, 0, inode, seq);
3374	if (unlikely(error))
3375		return error;
3376finish_open:
3377	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3378	error = complete_walk(nd);
3379	if (error)
3380		return error;
3381	audit_inode(nd->name, nd->path.dentry, 0);
3382	if (open_flag & O_CREAT) {
3383		error = -EISDIR;
 
3384		if (d_is_dir(nd->path.dentry))
3385			goto out;
3386		error = may_create_in_sticky(dir,
3387					     d_backing_inode(nd->path.dentry));
3388		if (unlikely(error))
3389			goto out;
3390	}
3391	error = -ENOTDIR;
3392	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3393		goto out;
3394	if (!d_is_reg(nd->path.dentry))
3395		will_truncate = false;
3396
3397	if (will_truncate) {
 
 
 
 
 
 
3398		error = mnt_want_write(nd->path.mnt);
3399		if (error)
3400			goto out;
3401		got_write = true;
3402	}
3403finish_open_created:
3404	error = may_open(&nd->path, acc_mode, open_flag);
3405	if (error)
3406		goto out;
3407	BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */
3408	error = vfs_open(&nd->path, file);
3409	if (error)
3410		goto out;
3411opened:
3412	error = ima_file_check(file, op->acc_mode);
3413	if (!error && will_truncate)
3414		error = handle_truncate(file);
3415out:
3416	if (unlikely(error > 0)) {
3417		WARN_ON(1);
3418		error = -EINVAL;
3419	}
3420	if (got_write)
3421		mnt_drop_write(nd->path.mnt);
3422	return error;
3423}
3424
3425struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3426{
3427	struct dentry *child = NULL;
3428	struct inode *dir = dentry->d_inode;
3429	struct inode *inode;
3430	int error;
 
3431
3432	/* we want directory to be writable */
3433	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3434	if (error)
3435		goto out_err;
3436	error = -EOPNOTSUPP;
3437	if (!dir->i_op->tmpfile)
3438		goto out_err;
3439	error = -ENOMEM;
3440	child = d_alloc(dentry, &slash_name);
3441	if (unlikely(!child))
3442		goto out_err;
3443	error = dir->i_op->tmpfile(dir, child, mode);
 
 
 
 
 
 
 
 
3444	if (error)
3445		goto out_err;
3446	error = -ENOENT;
3447	inode = child->d_inode;
3448	if (unlikely(!inode))
3449		goto out_err;
3450	if (!(open_flag & O_EXCL)) {
3451		spin_lock(&inode->i_lock);
3452		inode->i_state |= I_LINKABLE;
3453		spin_unlock(&inode->i_lock);
3454	}
3455	ima_post_create_tmpfile(inode);
3456	return child;
 
3457
3458out_err:
3459	dput(child);
3460	return ERR_PTR(error);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3461}
3462EXPORT_SYMBOL(vfs_tmpfile);
3463
3464static int do_tmpfile(struct nameidata *nd, unsigned flags,
3465		const struct open_flags *op,
3466		struct file *file)
3467{
3468	struct dentry *child;
3469	struct path path;
3470	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
 
3471	if (unlikely(error))
3472		return error;
3473	error = mnt_want_write(path.mnt);
3474	if (unlikely(error))
3475		goto out;
3476	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3477	error = PTR_ERR(child);
3478	if (IS_ERR(child))
3479		goto out2;
3480	dput(path.dentry);
3481	path.dentry = child;
3482	audit_inode(nd->name, child, 0);
3483	/* Don't check for other permissions, the inode was just created */
3484	error = may_open(&path, 0, op->open_flag);
3485	if (error)
3486		goto out2;
3487	file->f_path.mnt = path.mnt;
3488	error = finish_open(file, child, NULL);
3489out2:
3490	mnt_drop_write(path.mnt);
3491out:
3492	path_put(&path);
3493	return error;
3494}
3495
3496static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3497{
3498	struct path path;
3499	int error = path_lookupat(nd, flags, &path);
3500	if (!error) {
3501		audit_inode(nd->name, path.dentry, 0);
3502		error = vfs_open(&path, file);
3503		path_put(&path);
3504	}
3505	return error;
3506}
3507
3508static struct file *path_openat(struct nameidata *nd,
3509			const struct open_flags *op, unsigned flags)
3510{
3511	struct file *file;
3512	int error;
3513
3514	file = alloc_empty_file(op->open_flag, current_cred());
3515	if (IS_ERR(file))
3516		return file;
3517
3518	if (unlikely(file->f_flags & __O_TMPFILE)) {
3519		error = do_tmpfile(nd, flags, op, file);
3520	} else if (unlikely(file->f_flags & O_PATH)) {
3521		error = do_o_path(nd, flags, file);
3522	} else {
3523		const char *s = path_init(nd, flags);
3524		while (!(error = link_path_walk(s, nd)) &&
3525			(error = do_last(nd, file, op)) > 0) {
3526			nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3527			s = trailing_symlink(nd);
3528		}
3529		terminate_walk(nd);
3530	}
3531	if (likely(!error)) {
3532		if (likely(file->f_mode & FMODE_OPENED))
3533			return file;
3534		WARN_ON(1);
3535		error = -EINVAL;
3536	}
3537	fput(file);
3538	if (error == -EOPENSTALE) {
3539		if (flags & LOOKUP_RCU)
3540			error = -ECHILD;
3541		else
3542			error = -ESTALE;
3543	}
3544	return ERR_PTR(error);
3545}
3546
3547struct file *do_filp_open(int dfd, struct filename *pathname,
3548		const struct open_flags *op)
3549{
3550	struct nameidata nd;
3551	int flags = op->lookup_flags;
3552	struct file *filp;
3553
3554	set_nameidata(&nd, dfd, pathname);
3555	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3556	if (unlikely(filp == ERR_PTR(-ECHILD)))
3557		filp = path_openat(&nd, op, flags);
3558	if (unlikely(filp == ERR_PTR(-ESTALE)))
3559		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3560	restore_nameidata();
3561	return filp;
3562}
3563
3564struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3565		const char *name, const struct open_flags *op)
3566{
3567	struct nameidata nd;
3568	struct file *file;
3569	struct filename *filename;
3570	int flags = op->lookup_flags | LOOKUP_ROOT;
3571
3572	nd.root.mnt = mnt;
3573	nd.root.dentry = dentry;
3574
3575	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3576		return ERR_PTR(-ELOOP);
3577
3578	filename = getname_kernel(name);
3579	if (IS_ERR(filename))
3580		return ERR_CAST(filename);
3581
3582	set_nameidata(&nd, -1, filename);
3583	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3584	if (unlikely(file == ERR_PTR(-ECHILD)))
3585		file = path_openat(&nd, op, flags);
3586	if (unlikely(file == ERR_PTR(-ESTALE)))
3587		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3588	restore_nameidata();
3589	putname(filename);
3590	return file;
3591}
3592
3593static struct dentry *filename_create(int dfd, struct filename *name,
3594				struct path *path, unsigned int lookup_flags)
3595{
3596	struct dentry *dentry = ERR_PTR(-EEXIST);
3597	struct qstr last;
 
 
 
3598	int type;
3599	int err2;
3600	int error;
3601	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3602
3603	/*
3604	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3605	 * other flags passed in are ignored!
3606	 */
3607	lookup_flags &= LOOKUP_REVAL;
3608
3609	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3610	if (IS_ERR(name))
3611		return ERR_CAST(name);
3612
3613	/*
3614	 * Yucky last component or no last component at all?
3615	 * (foo/., foo/.., /////)
3616	 */
3617	if (unlikely(type != LAST_NORM))
3618		goto out;
3619
3620	/* don't fail immediately if it's r/o, at least try to report other errors */
3621	err2 = mnt_want_write(path->mnt);
3622	/*
3623	 * Do the final lookup.
 
3624	 */
3625	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
 
3626	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3627	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
 
3628	if (IS_ERR(dentry))
3629		goto unlock;
3630
3631	error = -EEXIST;
3632	if (d_is_positive(dentry))
3633		goto fail;
3634
3635	/*
3636	 * Special case - lookup gave negative, but... we had foo/bar/
3637	 * From the vfs_mknod() POV we just have a negative dentry -
3638	 * all is fine. Let's be bastards - you had / on the end, you've
3639	 * been asking for (non-existent) directory. -ENOENT for you.
3640	 */
3641	if (unlikely(!is_dir && last.name[last.len])) {
3642		error = -ENOENT;
3643		goto fail;
3644	}
3645	if (unlikely(err2)) {
3646		error = err2;
3647		goto fail;
3648	}
3649	putname(name);
3650	return dentry;
3651fail:
3652	dput(dentry);
3653	dentry = ERR_PTR(error);
3654unlock:
3655	inode_unlock(path->dentry->d_inode);
3656	if (!err2)
3657		mnt_drop_write(path->mnt);
3658out:
3659	path_put(path);
3660	putname(name);
3661	return dentry;
3662}
3663
3664struct dentry *kern_path_create(int dfd, const char *pathname,
3665				struct path *path, unsigned int lookup_flags)
3666{
3667	return filename_create(dfd, getname_kernel(pathname),
3668				path, lookup_flags);
 
 
 
3669}
3670EXPORT_SYMBOL(kern_path_create);
3671
3672void done_path_create(struct path *path, struct dentry *dentry)
3673{
3674	dput(dentry);
3675	inode_unlock(path->dentry->d_inode);
3676	mnt_drop_write(path->mnt);
3677	path_put(path);
3678}
3679EXPORT_SYMBOL(done_path_create);
3680
3681inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3682				struct path *path, unsigned int lookup_flags)
3683{
3684	return filename_create(dfd, getname(pathname), path, lookup_flags);
 
 
 
 
3685}
3686EXPORT_SYMBOL(user_path_create);
3687
3688int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3689{
3690	int error = may_create(dir, dentry);
 
3691
3692	if (error)
3693		return error;
3694
3695	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
 
3696		return -EPERM;
3697
3698	if (!dir->i_op->mknod)
3699		return -EPERM;
3700
 
3701	error = devcgroup_inode_mknod(mode, dev);
3702	if (error)
3703		return error;
3704
3705	error = security_inode_mknod(dir, dentry, mode, dev);
3706	if (error)
3707		return error;
3708
3709	error = dir->i_op->mknod(dir, dentry, mode, dev);
3710	if (!error)
3711		fsnotify_create(dir, dentry);
3712	return error;
3713}
3714EXPORT_SYMBOL(vfs_mknod);
3715
3716static int may_mknod(umode_t mode)
3717{
3718	switch (mode & S_IFMT) {
3719	case S_IFREG:
3720	case S_IFCHR:
3721	case S_IFBLK:
3722	case S_IFIFO:
3723	case S_IFSOCK:
3724	case 0: /* zero mode translates to S_IFREG */
3725		return 0;
3726	case S_IFDIR:
3727		return -EPERM;
3728	default:
3729		return -EINVAL;
3730	}
3731}
3732
3733long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3734		unsigned int dev)
3735{
 
3736	struct dentry *dentry;
3737	struct path path;
3738	int error;
3739	unsigned int lookup_flags = 0;
3740
3741	error = may_mknod(mode);
3742	if (error)
3743		return error;
3744retry:
3745	dentry = user_path_create(dfd, filename, &path, lookup_flags);
 
3746	if (IS_ERR(dentry))
3747		return PTR_ERR(dentry);
3748
3749	if (!IS_POSIXACL(path.dentry->d_inode))
3750		mode &= ~current_umask();
3751	error = security_path_mknod(&path, dentry, mode, dev);
3752	if (error)
3753		goto out;
 
 
3754	switch (mode & S_IFMT) {
3755		case 0: case S_IFREG:
3756			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
 
3757			if (!error)
3758				ima_post_path_mknod(dentry);
3759			break;
3760		case S_IFCHR: case S_IFBLK:
3761			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3762					new_decode_dev(dev));
3763			break;
3764		case S_IFIFO: case S_IFSOCK:
3765			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
 
3766			break;
3767	}
3768out:
3769	done_path_create(&path, dentry);
3770	if (retry_estale(error, lookup_flags)) {
3771		lookup_flags |= LOOKUP_REVAL;
3772		goto retry;
3773	}
 
 
3774	return error;
3775}
3776
3777SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3778		unsigned int, dev)
3779{
3780	return do_mknodat(dfd, filename, mode, dev);
3781}
3782
3783SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3784{
3785	return do_mknodat(AT_FDCWD, filename, mode, dev);
3786}
3787
3788int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3789{
3790	int error = may_create(dir, dentry);
3791	unsigned max_links = dir->i_sb->s_max_links;
3792
 
3793	if (error)
3794		return error;
3795
3796	if (!dir->i_op->mkdir)
3797		return -EPERM;
3798
3799	mode &= (S_IRWXUGO|S_ISVTX);
3800	error = security_inode_mkdir(dir, dentry, mode);
3801	if (error)
3802		return error;
3803
3804	if (max_links && dir->i_nlink >= max_links)
3805		return -EMLINK;
3806
3807	error = dir->i_op->mkdir(dir, dentry, mode);
3808	if (!error)
3809		fsnotify_mkdir(dir, dentry);
3810	return error;
3811}
3812EXPORT_SYMBOL(vfs_mkdir);
3813
3814long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3815{
3816	struct dentry *dentry;
3817	struct path path;
3818	int error;
3819	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3820
3821retry:
3822	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
 
3823	if (IS_ERR(dentry))
3824		return PTR_ERR(dentry);
3825
3826	if (!IS_POSIXACL(path.dentry->d_inode))
3827		mode &= ~current_umask();
3828	error = security_path_mkdir(&path, dentry, mode);
3829	if (!error)
3830		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
 
3831	done_path_create(&path, dentry);
3832	if (retry_estale(error, lookup_flags)) {
3833		lookup_flags |= LOOKUP_REVAL;
3834		goto retry;
3835	}
 
 
3836	return error;
3837}
3838
3839SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3840{
3841	return do_mkdirat(dfd, pathname, mode);
3842}
3843
3844SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3845{
3846	return do_mkdirat(AT_FDCWD, pathname, mode);
3847}
3848
3849int vfs_rmdir(struct inode *dir, struct dentry *dentry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3850{
3851	int error = may_delete(dir, dentry, 1);
3852
3853	if (error)
3854		return error;
3855
3856	if (!dir->i_op->rmdir)
3857		return -EPERM;
3858
3859	dget(dentry);
3860	inode_lock(dentry->d_inode);
3861
3862	error = -EBUSY;
3863	if (is_local_mountpoint(dentry))
 
3864		goto out;
3865
3866	error = security_inode_rmdir(dir, dentry);
3867	if (error)
3868		goto out;
3869
3870	error = dir->i_op->rmdir(dir, dentry);
3871	if (error)
3872		goto out;
3873
3874	shrink_dcache_parent(dentry);
3875	dentry->d_inode->i_flags |= S_DEAD;
3876	dont_mount(dentry);
3877	detach_mounts(dentry);
3878	fsnotify_rmdir(dir, dentry);
3879
3880out:
3881	inode_unlock(dentry->d_inode);
3882	dput(dentry);
3883	if (!error)
3884		d_delete(dentry);
3885	return error;
3886}
3887EXPORT_SYMBOL(vfs_rmdir);
3888
3889long do_rmdir(int dfd, const char __user *pathname)
3890{
3891	int error = 0;
3892	struct filename *name;
3893	struct dentry *dentry;
3894	struct path path;
3895	struct qstr last;
3896	int type;
3897	unsigned int lookup_flags = 0;
3898retry:
3899	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3900				&path, &last, &type);
3901	if (IS_ERR(name))
3902		return PTR_ERR(name);
3903
3904	switch (type) {
3905	case LAST_DOTDOT:
3906		error = -ENOTEMPTY;
3907		goto exit1;
3908	case LAST_DOT:
3909		error = -EINVAL;
3910		goto exit1;
3911	case LAST_ROOT:
3912		error = -EBUSY;
3913		goto exit1;
3914	}
3915
3916	error = mnt_want_write(path.mnt);
3917	if (error)
3918		goto exit1;
3919
3920	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3921	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3922	error = PTR_ERR(dentry);
3923	if (IS_ERR(dentry))
3924		goto exit2;
3925	if (!dentry->d_inode) {
3926		error = -ENOENT;
3927		goto exit3;
3928	}
3929	error = security_path_rmdir(&path, dentry);
3930	if (error)
3931		goto exit3;
3932	error = vfs_rmdir(path.dentry->d_inode, dentry);
 
 
3933exit3:
3934	dput(dentry);
3935exit2:
3936	inode_unlock(path.dentry->d_inode);
3937	mnt_drop_write(path.mnt);
3938exit1:
3939	path_put(&path);
3940	putname(name);
3941	if (retry_estale(error, lookup_flags)) {
3942		lookup_flags |= LOOKUP_REVAL;
3943		goto retry;
3944	}
 
 
3945	return error;
3946}
3947
3948SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3949{
3950	return do_rmdir(AT_FDCWD, pathname);
3951}
3952
3953/**
3954 * vfs_unlink - unlink a filesystem object
 
3955 * @dir:	parent directory
3956 * @dentry:	victim
3957 * @delegated_inode: returns victim inode, if the inode is delegated.
3958 *
3959 * The caller must hold dir->i_mutex.
3960 *
3961 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3962 * return a reference to the inode in delegated_inode.  The caller
3963 * should then break the delegation on that inode and retry.  Because
3964 * breaking a delegation may take a long time, the caller should drop
3965 * dir->i_mutex before doing so.
3966 *
3967 * Alternatively, a caller may pass NULL for delegated_inode.  This may
3968 * be appropriate for callers that expect the underlying filesystem not
3969 * to be NFS exported.
 
 
 
 
 
 
3970 */
3971int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
 
3972{
3973	struct inode *target = dentry->d_inode;
3974	int error = may_delete(dir, dentry, 0);
3975
3976	if (error)
3977		return error;
3978
3979	if (!dir->i_op->unlink)
3980		return -EPERM;
3981
3982	inode_lock(target);
3983	if (is_local_mountpoint(dentry))
 
 
3984		error = -EBUSY;
3985	else {
3986		error = security_inode_unlink(dir, dentry);
3987		if (!error) {
3988			error = try_break_deleg(target, delegated_inode);
3989			if (error)
3990				goto out;
3991			error = dir->i_op->unlink(dir, dentry);
3992			if (!error) {
3993				dont_mount(dentry);
3994				detach_mounts(dentry);
3995				fsnotify_unlink(dir, dentry);
3996			}
3997		}
3998	}
3999out:
4000	inode_unlock(target);
4001
4002	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4003	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
 
 
4004		fsnotify_link_count(target);
4005		d_delete(dentry);
4006	}
4007
4008	return error;
4009}
4010EXPORT_SYMBOL(vfs_unlink);
4011
4012/*
4013 * Make sure that the actual truncation of the file will occur outside its
4014 * directory's i_mutex.  Truncate can take a long time if there is a lot of
4015 * writeout happening, and we don't want to prevent access to the directory
4016 * while waiting on the I/O.
4017 */
4018long do_unlinkat(int dfd, struct filename *name)
4019{
4020	int error;
4021	struct dentry *dentry;
4022	struct path path;
4023	struct qstr last;
4024	int type;
4025	struct inode *inode = NULL;
4026	struct inode *delegated_inode = NULL;
4027	unsigned int lookup_flags = 0;
4028retry:
4029	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4030	if (IS_ERR(name))
4031		return PTR_ERR(name);
4032
4033	error = -EISDIR;
4034	if (type != LAST_NORM)
4035		goto exit1;
4036
4037	error = mnt_want_write(path.mnt);
4038	if (error)
4039		goto exit1;
4040retry_deleg:
4041	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4042	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4043	error = PTR_ERR(dentry);
4044	if (!IS_ERR(dentry)) {
 
4045		/* Why not before? Because we want correct error value */
4046		if (last.name[last.len])
4047			goto slashes;
4048		inode = dentry->d_inode;
4049		if (d_is_negative(dentry))
4050			goto slashes;
4051		ihold(inode);
4052		error = security_path_unlink(&path, dentry);
4053		if (error)
4054			goto exit2;
4055		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4056exit2:
 
4057		dput(dentry);
4058	}
4059	inode_unlock(path.dentry->d_inode);
4060	if (inode)
4061		iput(inode);	/* truncate the inode here */
4062	inode = NULL;
4063	if (delegated_inode) {
4064		error = break_deleg_wait(&delegated_inode);
4065		if (!error)
4066			goto retry_deleg;
4067	}
4068	mnt_drop_write(path.mnt);
4069exit1:
4070	path_put(&path);
4071	if (retry_estale(error, lookup_flags)) {
4072		lookup_flags |= LOOKUP_REVAL;
4073		inode = NULL;
4074		goto retry;
4075	}
 
4076	putname(name);
4077	return error;
4078
4079slashes:
4080	if (d_is_negative(dentry))
4081		error = -ENOENT;
4082	else if (d_is_dir(dentry))
4083		error = -EISDIR;
4084	else
4085		error = -ENOTDIR;
4086	goto exit2;
4087}
4088
4089SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4090{
4091	if ((flag & ~AT_REMOVEDIR) != 0)
4092		return -EINVAL;
4093
4094	if (flag & AT_REMOVEDIR)
4095		return do_rmdir(dfd, pathname);
4096
4097	return do_unlinkat(dfd, getname(pathname));
4098}
4099
4100SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4101{
4102	return do_unlinkat(AT_FDCWD, getname(pathname));
4103}
4104
4105int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4106{
4107	int error = may_create(dir, dentry);
4108
 
4109	if (error)
4110		return error;
4111
4112	if (!dir->i_op->symlink)
4113		return -EPERM;
4114
4115	error = security_inode_symlink(dir, dentry, oldname);
4116	if (error)
4117		return error;
4118
4119	error = dir->i_op->symlink(dir, dentry, oldname);
4120	if (!error)
4121		fsnotify_create(dir, dentry);
4122	return error;
4123}
4124EXPORT_SYMBOL(vfs_symlink);
4125
4126long do_symlinkat(const char __user *oldname, int newdfd,
4127		  const char __user *newname)
4128{
4129	int error;
4130	struct filename *from;
4131	struct dentry *dentry;
4132	struct path path;
4133	unsigned int lookup_flags = 0;
4134
4135	from = getname(oldname);
4136	if (IS_ERR(from))
4137		return PTR_ERR(from);
 
4138retry:
4139	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4140	error = PTR_ERR(dentry);
4141	if (IS_ERR(dentry))
4142		goto out_putname;
4143
4144	error = security_path_symlink(&path, dentry, from->name);
4145	if (!error)
4146		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
 
4147	done_path_create(&path, dentry);
4148	if (retry_estale(error, lookup_flags)) {
4149		lookup_flags |= LOOKUP_REVAL;
4150		goto retry;
4151	}
4152out_putname:
 
4153	putname(from);
4154	return error;
4155}
4156
4157SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4158		int, newdfd, const char __user *, newname)
4159{
4160	return do_symlinkat(oldname, newdfd, newname);
4161}
4162
4163SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4164{
4165	return do_symlinkat(oldname, AT_FDCWD, newname);
4166}
4167
4168/**
4169 * vfs_link - create a new link
4170 * @old_dentry:	object to be linked
 
4171 * @dir:	new parent
4172 * @new_dentry:	where to create the new link
4173 * @delegated_inode: returns inode needing a delegation break
4174 *
4175 * The caller must hold dir->i_mutex
4176 *
4177 * If vfs_link discovers a delegation on the to-be-linked file in need
4178 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4179 * inode in delegated_inode.  The caller should then break the delegation
4180 * and retry.  Because breaking a delegation may take a long time, the
4181 * caller should drop the i_mutex before doing so.
4182 *
4183 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4184 * be appropriate for callers that expect the underlying filesystem not
4185 * to be NFS exported.
4186 */
4187int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
 
 
 
 
 
 
 
 
4188{
4189	struct inode *inode = old_dentry->d_inode;
4190	unsigned max_links = dir->i_sb->s_max_links;
4191	int error;
4192
4193	if (!inode)
4194		return -ENOENT;
4195
4196	error = may_create(dir, new_dentry);
4197	if (error)
4198		return error;
4199
4200	if (dir->i_sb != inode->i_sb)
4201		return -EXDEV;
4202
4203	/*
4204	 * A link to an append-only or immutable file cannot be created.
4205	 */
4206	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4207		return -EPERM;
4208	/*
4209	 * Updating the link count will likely cause i_uid and i_gid to
4210	 * be writen back improperly if their true value is unknown to
4211	 * the vfs.
4212	 */
4213	if (HAS_UNMAPPED_ID(inode))
4214		return -EPERM;
4215	if (!dir->i_op->link)
4216		return -EPERM;
4217	if (S_ISDIR(inode->i_mode))
4218		return -EPERM;
4219
4220	error = security_inode_link(old_dentry, dir, new_dentry);
4221	if (error)
4222		return error;
4223
4224	inode_lock(inode);
4225	/* Make sure we don't allow creating hardlink to an unlinked file */
4226	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4227		error =  -ENOENT;
4228	else if (max_links && inode->i_nlink >= max_links)
4229		error = -EMLINK;
4230	else {
4231		error = try_break_deleg(inode, delegated_inode);
4232		if (!error)
4233			error = dir->i_op->link(old_dentry, dir, new_dentry);
4234	}
4235
4236	if (!error && (inode->i_state & I_LINKABLE)) {
4237		spin_lock(&inode->i_lock);
4238		inode->i_state &= ~I_LINKABLE;
4239		spin_unlock(&inode->i_lock);
4240	}
4241	inode_unlock(inode);
4242	if (!error)
4243		fsnotify_link(dir, inode, new_dentry);
4244	return error;
4245}
4246EXPORT_SYMBOL(vfs_link);
4247
4248/*
4249 * Hardlinks are often used in delicate situations.  We avoid
4250 * security-related surprises by not following symlinks on the
4251 * newname.  --KAB
4252 *
4253 * We don't follow them on the oldname either to be compatible
4254 * with linux 2.0, and to avoid hard-linking to directories
4255 * and other special files.  --ADM
4256 */
4257int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4258	      const char __user *newname, int flags)
4259{
 
4260	struct dentry *new_dentry;
4261	struct path old_path, new_path;
4262	struct inode *delegated_inode = NULL;
4263	int how = 0;
4264	int error;
4265
4266	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4267		return -EINVAL;
 
 
4268	/*
4269	 * To use null names we require CAP_DAC_READ_SEARCH
4270	 * This ensures that not everyone will be able to create
4271	 * handlink using the passed filedescriptor.
4272	 */
4273	if (flags & AT_EMPTY_PATH) {
4274		if (!capable(CAP_DAC_READ_SEARCH))
4275			return -ENOENT;
4276		how = LOOKUP_EMPTY;
4277	}
4278
4279	if (flags & AT_SYMLINK_FOLLOW)
4280		how |= LOOKUP_FOLLOW;
4281retry:
4282	error = user_path_at(olddfd, oldname, how, &old_path);
4283	if (error)
4284		return error;
4285
4286	new_dentry = user_path_create(newdfd, newname, &new_path,
4287					(how & LOOKUP_REVAL));
4288	error = PTR_ERR(new_dentry);
4289	if (IS_ERR(new_dentry))
4290		goto out;
4291
4292	error = -EXDEV;
4293	if (old_path.mnt != new_path.mnt)
4294		goto out_dput;
4295	error = may_linkat(&old_path);
 
4296	if (unlikely(error))
4297		goto out_dput;
4298	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4299	if (error)
4300		goto out_dput;
4301	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
 
4302out_dput:
4303	done_path_create(&new_path, new_dentry);
4304	if (delegated_inode) {
4305		error = break_deleg_wait(&delegated_inode);
4306		if (!error) {
4307			path_put(&old_path);
4308			goto retry;
4309		}
4310	}
4311	if (retry_estale(error, how)) {
4312		path_put(&old_path);
4313		how |= LOOKUP_REVAL;
4314		goto retry;
4315	}
4316out:
4317	path_put(&old_path);
 
 
 
4318
4319	return error;
4320}
4321
4322SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4323		int, newdfd, const char __user *, newname, int, flags)
4324{
4325	return do_linkat(olddfd, oldname, newdfd, newname, flags);
 
4326}
4327
4328SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4329{
4330	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4331}
4332
4333/**
4334 * vfs_rename - rename a filesystem object
4335 * @old_dir:	parent of source
4336 * @old_dentry:	source
4337 * @new_dir:	parent of destination
4338 * @new_dentry:	destination
4339 * @delegated_inode: returns an inode needing a delegation break
4340 * @flags:	rename flags
4341 *
4342 * The caller must hold multiple mutexes--see lock_rename()).
4343 *
4344 * If vfs_rename discovers a delegation in need of breaking at either
4345 * the source or destination, it will return -EWOULDBLOCK and return a
4346 * reference to the inode in delegated_inode.  The caller should then
4347 * break the delegation and retry.  Because breaking a delegation may
4348 * take a long time, the caller should drop all locks before doing
4349 * so.
4350 *
4351 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4352 * be appropriate for callers that expect the underlying filesystem not
4353 * to be NFS exported.
4354 *
4355 * The worst of all namespace operations - renaming directory. "Perverted"
4356 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4357 * Problems:
4358 *
4359 *	a) we can get into loop creation.
4360 *	b) race potential - two innocent renames can create a loop together.
4361 *	   That's where 4.4 screws up. Current fix: serialization on
4362 *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4363 *	   story.
4364 *	c) we have to lock _four_ objects - parents and victim (if it exists),
4365 *	   and source (if it is not a directory).
 
4366 *	   And that - after we got ->i_mutex on parents (until then we don't know
4367 *	   whether the target exists).  Solution: try to be smart with locking
4368 *	   order for inodes.  We rely on the fact that tree topology may change
4369 *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4370 *	   move will be locked.  Thus we can rank directories by the tree
4371 *	   (ancestors first) and rank all non-directories after them.
4372 *	   That works since everybody except rename does "lock parent, lookup,
4373 *	   lock child" and rename is under ->s_vfs_rename_mutex.
4374 *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4375 *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4376 *	   we'd better make sure that there's no link(2) for them.
4377 *	d) conversion from fhandle to dentry may come in the wrong moment - when
4378 *	   we are removing the target. Solution: we will have to grab ->i_mutex
4379 *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4380 *	   ->i_mutex on parents, which works but leads to some truly excessive
4381 *	   locking].
4382 */
4383int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4384	       struct inode *new_dir, struct dentry *new_dentry,
4385	       struct inode **delegated_inode, unsigned int flags)
4386{
4387	int error;
 
 
 
 
 
4388	bool is_dir = d_is_dir(old_dentry);
4389	struct inode *source = old_dentry->d_inode;
4390	struct inode *target = new_dentry->d_inode;
4391	bool new_is_dir = false;
4392	unsigned max_links = new_dir->i_sb->s_max_links;
4393	struct name_snapshot old_name;
 
4394
4395	if (source == target)
4396		return 0;
4397
4398	error = may_delete(old_dir, old_dentry, is_dir);
4399	if (error)
4400		return error;
4401
4402	if (!target) {
4403		error = may_create(new_dir, new_dentry);
4404	} else {
4405		new_is_dir = d_is_dir(new_dentry);
4406
4407		if (!(flags & RENAME_EXCHANGE))
4408			error = may_delete(new_dir, new_dentry, is_dir);
 
4409		else
4410			error = may_delete(new_dir, new_dentry, new_is_dir);
 
4411	}
4412	if (error)
4413		return error;
4414
4415	if (!old_dir->i_op->rename)
4416		return -EPERM;
4417
4418	/*
4419	 * If we are going to change the parent - check write permissions,
4420	 * we'll need to flip '..'.
4421	 */
4422	if (new_dir != old_dir) {
4423		if (is_dir) {
4424			error = inode_permission(source, MAY_WRITE);
 
4425			if (error)
4426				return error;
4427		}
4428		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4429			error = inode_permission(target, MAY_WRITE);
 
4430			if (error)
4431				return error;
4432		}
4433	}
4434
4435	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4436				      flags);
4437	if (error)
4438		return error;
4439
4440	take_dentry_name_snapshot(&old_name, old_dentry);
4441	dget(new_dentry);
4442	if (!is_dir || (flags & RENAME_EXCHANGE))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4443		lock_two_nondirectories(source, target);
4444	else if (target)
4445		inode_lock(target);
 
 
 
4446
4447	error = -EBUSY;
4448	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4449		goto out;
4450
4451	if (max_links && new_dir != old_dir) {
4452		error = -EMLINK;
4453		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4454			goto out;
4455		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4456		    old_dir->i_nlink >= max_links)
4457			goto out;
4458	}
4459	if (!is_dir) {
4460		error = try_break_deleg(source, delegated_inode);
4461		if (error)
4462			goto out;
4463	}
4464	if (target && !new_is_dir) {
4465		error = try_break_deleg(target, delegated_inode);
4466		if (error)
4467			goto out;
4468	}
4469	error = old_dir->i_op->rename(old_dir, old_dentry,
4470				       new_dir, new_dentry, flags);
4471	if (error)
4472		goto out;
4473
4474	if (!(flags & RENAME_EXCHANGE) && target) {
4475		if (is_dir) {
4476			shrink_dcache_parent(new_dentry);
4477			target->i_flags |= S_DEAD;
4478		}
4479		dont_mount(new_dentry);
4480		detach_mounts(new_dentry);
4481	}
4482	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4483		if (!(flags & RENAME_EXCHANGE))
4484			d_move(old_dentry, new_dentry);
4485		else
4486			d_exchange(old_dentry, new_dentry);
4487	}
4488out:
4489	if (!is_dir || (flags & RENAME_EXCHANGE))
4490		unlock_two_nondirectories(source, target);
4491	else if (target)
4492		inode_unlock(target);
4493	dput(new_dentry);
4494	if (!error) {
4495		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4496			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4497		if (flags & RENAME_EXCHANGE) {
4498			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4499				      new_is_dir, NULL, new_dentry);
4500		}
4501	}
4502	release_dentry_name_snapshot(&old_name);
4503
4504	return error;
4505}
4506EXPORT_SYMBOL(vfs_rename);
4507
4508static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4509			const char __user *newname, unsigned int flags)
4510{
 
4511	struct dentry *old_dentry, *new_dentry;
4512	struct dentry *trap;
4513	struct path old_path, new_path;
4514	struct qstr old_last, new_last;
4515	int old_type, new_type;
4516	struct inode *delegated_inode = NULL;
4517	struct filename *from;
4518	struct filename *to;
4519	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4520	bool should_retry = false;
4521	int error;
4522
4523	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4524		return -EINVAL;
4525
4526	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4527	    (flags & RENAME_EXCHANGE))
4528		return -EINVAL;
4529
4530	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4531		return -EPERM;
4532
4533	if (flags & RENAME_EXCHANGE)
4534		target_flags = 0;
4535
4536retry:
4537	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4538				&old_path, &old_last, &old_type);
4539	if (IS_ERR(from)) {
4540		error = PTR_ERR(from);
4541		goto exit;
4542	}
4543
4544	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4545				&new_path, &new_last, &new_type);
4546	if (IS_ERR(to)) {
4547		error = PTR_ERR(to);
4548		goto exit1;
4549	}
4550
4551	error = -EXDEV;
4552	if (old_path.mnt != new_path.mnt)
4553		goto exit2;
4554
4555	error = -EBUSY;
4556	if (old_type != LAST_NORM)
4557		goto exit2;
4558
4559	if (flags & RENAME_NOREPLACE)
4560		error = -EEXIST;
4561	if (new_type != LAST_NORM)
4562		goto exit2;
4563
4564	error = mnt_want_write(old_path.mnt);
4565	if (error)
4566		goto exit2;
4567
4568retry_deleg:
4569	trap = lock_rename(new_path.dentry, old_path.dentry);
 
 
 
 
4570
4571	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
 
4572	error = PTR_ERR(old_dentry);
4573	if (IS_ERR(old_dentry))
4574		goto exit3;
4575	/* source must exist */
4576	error = -ENOENT;
4577	if (d_is_negative(old_dentry))
4578		goto exit4;
4579	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
 
4580	error = PTR_ERR(new_dentry);
4581	if (IS_ERR(new_dentry))
4582		goto exit4;
4583	error = -EEXIST;
4584	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4585		goto exit5;
4586	if (flags & RENAME_EXCHANGE) {
4587		error = -ENOENT;
4588		if (d_is_negative(new_dentry))
4589			goto exit5;
4590
4591		if (!d_is_dir(new_dentry)) {
4592			error = -ENOTDIR;
4593			if (new_last.name[new_last.len])
4594				goto exit5;
4595		}
4596	}
4597	/* unless the source is a directory trailing slashes give -ENOTDIR */
4598	if (!d_is_dir(old_dentry)) {
4599		error = -ENOTDIR;
4600		if (old_last.name[old_last.len])
4601			goto exit5;
4602		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4603			goto exit5;
4604	}
4605	/* source should not be ancestor of target */
4606	error = -EINVAL;
4607	if (old_dentry == trap)
4608		goto exit5;
4609	/* target should not be an ancestor of source */
4610	if (!(flags & RENAME_EXCHANGE))
4611		error = -ENOTEMPTY;
4612	if (new_dentry == trap)
4613		goto exit5;
4614
4615	error = security_path_rename(&old_path, old_dentry,
4616				     &new_path, new_dentry, flags);
4617	if (error)
4618		goto exit5;
4619	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4620			   new_path.dentry->d_inode, new_dentry,
4621			   &delegated_inode, flags);
 
 
 
 
 
 
 
4622exit5:
4623	dput(new_dentry);
4624exit4:
4625	dput(old_dentry);
4626exit3:
4627	unlock_rename(new_path.dentry, old_path.dentry);
 
4628	if (delegated_inode) {
4629		error = break_deleg_wait(&delegated_inode);
4630		if (!error)
4631			goto retry_deleg;
4632	}
4633	mnt_drop_write(old_path.mnt);
4634exit2:
4635	if (retry_estale(error, lookup_flags))
4636		should_retry = true;
4637	path_put(&new_path);
4638	putname(to);
4639exit1:
4640	path_put(&old_path);
4641	putname(from);
4642	if (should_retry) {
4643		should_retry = false;
4644		lookup_flags |= LOOKUP_REVAL;
4645		goto retry;
4646	}
4647exit:
 
 
4648	return error;
4649}
4650
4651SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4652		int, newdfd, const char __user *, newname, unsigned int, flags)
4653{
4654	return do_renameat2(olddfd, oldname, newdfd, newname, flags);
 
4655}
4656
4657SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4658		int, newdfd, const char __user *, newname)
4659{
4660	return do_renameat2(olddfd, oldname, newdfd, newname, 0);
 
4661}
4662
4663SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4664{
4665	return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4666}
4667
4668int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4669{
4670	int error = may_create(dir, dentry);
4671	if (error)
4672		return error;
4673
4674	if (!dir->i_op->mknod)
4675		return -EPERM;
4676
4677	return dir->i_op->mknod(dir, dentry,
4678				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4679}
4680EXPORT_SYMBOL(vfs_whiteout);
4681
4682int readlink_copy(char __user *buffer, int buflen, const char *link)
4683{
4684	int len = PTR_ERR(link);
4685	if (IS_ERR(link))
4686		goto out;
4687
4688	len = strlen(link);
4689	if (len > (unsigned) buflen)
4690		len = buflen;
4691	if (copy_to_user(buffer, link, len))
4692		len = -EFAULT;
4693out:
4694	return len;
4695}
4696
4697/**
4698 * vfs_readlink - copy symlink body into userspace buffer
4699 * @dentry: dentry on which to get symbolic link
4700 * @buffer: user memory pointer
4701 * @buflen: size of buffer
4702 *
4703 * Does not touch atime.  That's up to the caller if necessary
4704 *
4705 * Does not call security hook.
4706 */
4707int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4708{
4709	struct inode *inode = d_inode(dentry);
4710	DEFINE_DELAYED_CALL(done);
4711	const char *link;
4712	int res;
4713
4714	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4715		if (unlikely(inode->i_op->readlink))
4716			return inode->i_op->readlink(dentry, buffer, buflen);
4717
4718		if (!d_is_symlink(dentry))
4719			return -EINVAL;
4720
4721		spin_lock(&inode->i_lock);
4722		inode->i_opflags |= IOP_DEFAULT_READLINK;
4723		spin_unlock(&inode->i_lock);
4724	}
4725
4726	link = READ_ONCE(inode->i_link);
4727	if (!link) {
4728		link = inode->i_op->get_link(dentry, inode, &done);
4729		if (IS_ERR(link))
4730			return PTR_ERR(link);
4731	}
4732	res = readlink_copy(buffer, buflen, link);
4733	do_delayed_call(&done);
4734	return res;
4735}
4736EXPORT_SYMBOL(vfs_readlink);
4737
4738/**
4739 * vfs_get_link - get symlink body
4740 * @dentry: dentry on which to get symbolic link
4741 * @done: caller needs to free returned data with this
4742 *
4743 * Calls security hook and i_op->get_link() on the supplied inode.
4744 *
4745 * It does not touch atime.  That's up to the caller if necessary.
4746 *
4747 * Does not work on "special" symlinks like /proc/$$/fd/N
4748 */
4749const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4750{
4751	const char *res = ERR_PTR(-EINVAL);
4752	struct inode *inode = d_inode(dentry);
4753
4754	if (d_is_symlink(dentry)) {
4755		res = ERR_PTR(security_inode_readlink(dentry));
4756		if (!res)
4757			res = inode->i_op->get_link(dentry, inode, done);
4758	}
4759	return res;
4760}
4761EXPORT_SYMBOL(vfs_get_link);
4762
4763/* get the link contents into pagecache */
4764const char *page_get_link(struct dentry *dentry, struct inode *inode,
4765			  struct delayed_call *callback)
4766{
4767	char *kaddr;
4768	struct page *page;
4769	struct address_space *mapping = inode->i_mapping;
4770
4771	if (!dentry) {
4772		page = find_get_page(mapping, 0);
4773		if (!page)
4774			return ERR_PTR(-ECHILD);
4775		if (!PageUptodate(page)) {
4776			put_page(page);
4777			return ERR_PTR(-ECHILD);
4778		}
4779	} else {
4780		page = read_mapping_page(mapping, 0, NULL);
4781		if (IS_ERR(page))
4782			return (char*)page;
4783	}
4784	set_delayed_call(callback, page_put_link, page);
4785	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4786	kaddr = page_address(page);
4787	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4788	return kaddr;
4789}
4790
4791EXPORT_SYMBOL(page_get_link);
4792
4793void page_put_link(void *arg)
4794{
4795	put_page(arg);
4796}
4797EXPORT_SYMBOL(page_put_link);
4798
4799int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4800{
4801	DEFINE_DELAYED_CALL(done);
4802	int res = readlink_copy(buffer, buflen,
4803				page_get_link(dentry, d_inode(dentry),
4804					      &done));
4805	do_delayed_call(&done);
4806	return res;
4807}
4808EXPORT_SYMBOL(page_readlink);
4809
4810/*
4811 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4812 */
4813int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4814{
4815	struct address_space *mapping = inode->i_mapping;
 
 
4816	struct page *page;
4817	void *fsdata;
4818	int err;
4819	unsigned int flags = 0;
4820	if (nofs)
4821		flags |= AOP_FLAG_NOFS;
4822
4823retry:
4824	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4825				flags, &page, &fsdata);
 
 
 
4826	if (err)
4827		goto fail;
4828
4829	memcpy(page_address(page), symname, len-1);
4830
4831	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4832							page, fsdata);
4833	if (err < 0)
4834		goto fail;
4835	if (err < len-1)
4836		goto retry;
4837
4838	mark_inode_dirty(inode);
4839	return 0;
4840fail:
4841	return err;
4842}
4843EXPORT_SYMBOL(__page_symlink);
4844
4845int page_symlink(struct inode *inode, const char *symname, int len)
4846{
4847	return __page_symlink(inode, symname, len,
4848			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4849}
4850EXPORT_SYMBOL(page_symlink);
4851
4852const struct inode_operations page_symlink_inode_operations = {
4853	.get_link	= page_get_link,
4854};
4855EXPORT_SYMBOL(page_symlink_inode_operations);