Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * f_fs.c -- user mode file system API for USB composite function controllers
   4 *
   5 * Copyright (C) 2010 Samsung Electronics
   6 * Author: Michal Nazarewicz <mina86@mina86.com>
   7 *
   8 * Based on inode.c (GadgetFS) which was:
   9 * Copyright (C) 2003-2004 David Brownell
  10 * Copyright (C) 2003 Agilent Technologies
  11 */
  12
  13
  14/* #define DEBUG */
  15/* #define VERBOSE_DEBUG */
  16
  17#include <linux/blkdev.h>
  18#include <linux/pagemap.h>
  19#include <linux/export.h>
  20#include <linux/fs_parser.h>
  21#include <linux/hid.h>
  22#include <linux/mm.h>
  23#include <linux/module.h>
  24#include <linux/scatterlist.h>
  25#include <linux/sched/signal.h>
  26#include <linux/uio.h>
  27#include <linux/vmalloc.h>
  28#include <asm/unaligned.h>
  29
  30#include <linux/usb/ccid.h>
  31#include <linux/usb/composite.h>
  32#include <linux/usb/functionfs.h>
  33
  34#include <linux/aio.h>
  35#include <linux/kthread.h>
  36#include <linux/poll.h>
  37#include <linux/eventfd.h>
  38
  39#include "u_fs.h"
  40#include "u_f.h"
  41#include "u_os_desc.h"
  42#include "configfs.h"
  43
  44#define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
  45
  46/* Reference counter handling */
  47static void ffs_data_get(struct ffs_data *ffs);
  48static void ffs_data_put(struct ffs_data *ffs);
  49/* Creates new ffs_data object. */
  50static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
  51	__attribute__((malloc));
  52
  53/* Opened counter handling. */
  54static void ffs_data_opened(struct ffs_data *ffs);
  55static void ffs_data_closed(struct ffs_data *ffs);
  56
  57/* Called with ffs->mutex held; take over ownership of data. */
  58static int __must_check
  59__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
  60static int __must_check
  61__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
  62
  63
  64/* The function structure ***************************************************/
  65
  66struct ffs_ep;
  67
  68struct ffs_function {
  69	struct usb_configuration	*conf;
  70	struct usb_gadget		*gadget;
  71	struct ffs_data			*ffs;
  72
  73	struct ffs_ep			*eps;
  74	u8				eps_revmap[16];
  75	short				*interfaces_nums;
  76
  77	struct usb_function		function;
  78};
  79
  80
  81static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
  82{
  83	return container_of(f, struct ffs_function, function);
  84}
  85
  86
  87static inline enum ffs_setup_state
  88ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
  89{
  90	return (enum ffs_setup_state)
  91		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
  92}
  93
  94
  95static void ffs_func_eps_disable(struct ffs_function *func);
  96static int __must_check ffs_func_eps_enable(struct ffs_function *func);
  97
  98static int ffs_func_bind(struct usb_configuration *,
  99			 struct usb_function *);
 100static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
 101static void ffs_func_disable(struct usb_function *);
 102static int ffs_func_setup(struct usb_function *,
 103			  const struct usb_ctrlrequest *);
 104static bool ffs_func_req_match(struct usb_function *,
 105			       const struct usb_ctrlrequest *,
 106			       bool config0);
 107static void ffs_func_suspend(struct usb_function *);
 108static void ffs_func_resume(struct usb_function *);
 109
 110
 111static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
 112static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
 113
 114
 115/* The endpoints structures *************************************************/
 116
 117struct ffs_ep {
 118	struct usb_ep			*ep;	/* P: ffs->eps_lock */
 119	struct usb_request		*req;	/* P: epfile->mutex */
 120
 121	/* [0]: full speed, [1]: high speed, [2]: super speed */
 122	struct usb_endpoint_descriptor	*descs[3];
 123
 124	u8				num;
 
 
 125};
 126
 127struct ffs_epfile {
 128	/* Protects ep->ep and ep->req. */
 129	struct mutex			mutex;
 130
 131	struct ffs_data			*ffs;
 132	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
 133
 134	struct dentry			*dentry;
 135
 136	/*
 137	 * Buffer for holding data from partial reads which may happen since
 138	 * we’re rounding user read requests to a multiple of a max packet size.
 139	 *
 140	 * The pointer is initialised with NULL value and may be set by
 141	 * __ffs_epfile_read_data function to point to a temporary buffer.
 142	 *
 143	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
 144	 * data from said buffer and eventually free it.  Importantly, while the
 145	 * function is using the buffer, it sets the pointer to NULL.  This is
 146	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
 147	 * can never run concurrently (they are synchronised by epfile->mutex)
 148	 * so the latter will not assign a new value to the pointer.
 149	 *
 150	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
 151	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
 152	 * value is crux of the synchronisation between ffs_func_eps_disable and
 153	 * __ffs_epfile_read_data.
 154	 *
 155	 * Once __ffs_epfile_read_data is about to finish it will try to set the
 156	 * pointer back to its old value (as described above), but seeing as the
 157	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
 158	 * the buffer.
 159	 *
 160	 * == State transitions ==
 161	 *
 162	 * • ptr == NULL:  (initial state)
 163	 *   â—¦ __ffs_epfile_read_buffer_free: go to ptr == DROP
 164	 *   â—¦ __ffs_epfile_read_buffered:    nop
 165	 *   â—¦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
 166	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 167	 * • ptr == DROP:
 168	 *   â—¦ __ffs_epfile_read_buffer_free: nop
 169	 *   â—¦ __ffs_epfile_read_buffered:    go to ptr == NULL
 170	 *   â—¦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
 171	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 172	 * • ptr == buf:
 173	 *   â—¦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
 174	 *   â—¦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
 175	 *   â—¦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
 176	 *                                    is always called first
 177	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 178	 * • ptr == NULL and reading:
 179	 *   â—¦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
 180	 *   â—¦ __ffs_epfile_read_buffered:    n/a, mutex is held
 181	 *   â—¦ __ffs_epfile_read_data:        n/a, mutex is held
 182	 *   ◦ reading finishes and …
 183	 *     … all data read:               free buf, go to ptr == NULL
 184	 *     … otherwise:                   go to ptr == buf and reading
 185	 * • ptr == DROP and reading:
 186	 *   â—¦ __ffs_epfile_read_buffer_free: nop
 187	 *   â—¦ __ffs_epfile_read_buffered:    n/a, mutex is held
 188	 *   â—¦ __ffs_epfile_read_data:        n/a, mutex is held
 189	 *   â—¦ reading finishes:              free buf, go to ptr == DROP
 190	 */
 191	struct ffs_buffer		*read_buffer;
 192#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
 193
 194	char				name[5];
 195
 196	unsigned char			in;	/* P: ffs->eps_lock */
 197	unsigned char			isoc;	/* P: ffs->eps_lock */
 198
 199	unsigned char			_pad;
 200};
 201
 202struct ffs_buffer {
 203	size_t length;
 204	char *data;
 205	char storage[] __counted_by(length);
 206};
 207
 208/*  ffs_io_data structure ***************************************************/
 209
 210struct ffs_io_data {
 211	bool aio;
 212	bool read;
 213
 214	struct kiocb *kiocb;
 215	struct iov_iter data;
 216	const void *to_free;
 217	char *buf;
 218
 219	struct mm_struct *mm;
 220	struct work_struct work;
 221
 222	struct usb_ep *ep;
 223	struct usb_request *req;
 224	struct sg_table sgt;
 225	bool use_sg;
 226
 227	struct ffs_data *ffs;
 228
 229	int status;
 230	struct completion done;
 231};
 232
 233struct ffs_desc_helper {
 234	struct ffs_data *ffs;
 235	unsigned interfaces_count;
 236	unsigned eps_count;
 237};
 238
 239static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
 240static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
 241
 242static struct dentry *
 243ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
 244		   const struct file_operations *fops);
 245
 246/* Devices management *******************************************************/
 247
 248DEFINE_MUTEX(ffs_lock);
 249EXPORT_SYMBOL_GPL(ffs_lock);
 250
 251static struct ffs_dev *_ffs_find_dev(const char *name);
 252static struct ffs_dev *_ffs_alloc_dev(void);
 253static void _ffs_free_dev(struct ffs_dev *dev);
 254static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
 255static void ffs_release_dev(struct ffs_dev *ffs_dev);
 256static int ffs_ready(struct ffs_data *ffs);
 257static void ffs_closed(struct ffs_data *ffs);
 258
 259/* Misc helper functions ****************************************************/
 260
 261static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
 262	__attribute__((warn_unused_result, nonnull));
 263static char *ffs_prepare_buffer(const char __user *buf, size_t len)
 264	__attribute__((warn_unused_result, nonnull));
 265
 266
 267/* Control file aka ep0 *****************************************************/
 268
 269static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
 270{
 271	struct ffs_data *ffs = req->context;
 272
 273	complete(&ffs->ep0req_completion);
 274}
 275
 276static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
 277	__releases(&ffs->ev.waitq.lock)
 278{
 279	struct usb_request *req = ffs->ep0req;
 280	int ret;
 281
 282	if (!req) {
 283		spin_unlock_irq(&ffs->ev.waitq.lock);
 284		return -EINVAL;
 285	}
 286
 287	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
 288
 289	spin_unlock_irq(&ffs->ev.waitq.lock);
 290
 291	req->buf      = data;
 292	req->length   = len;
 293
 294	/*
 295	 * UDC layer requires to provide a buffer even for ZLP, but should
 296	 * not use it at all. Let's provide some poisoned pointer to catch
 297	 * possible bug in the driver.
 298	 */
 299	if (req->buf == NULL)
 300		req->buf = (void *)0xDEADBABE;
 301
 302	reinit_completion(&ffs->ep0req_completion);
 303
 304	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
 305	if (ret < 0)
 306		return ret;
 307
 308	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
 309	if (ret) {
 310		usb_ep_dequeue(ffs->gadget->ep0, req);
 311		return -EINTR;
 312	}
 313
 314	ffs->setup_state = FFS_NO_SETUP;
 315	return req->status ? req->status : req->actual;
 316}
 317
 318static int __ffs_ep0_stall(struct ffs_data *ffs)
 319{
 320	if (ffs->ev.can_stall) {
 321		pr_vdebug("ep0 stall\n");
 322		usb_ep_set_halt(ffs->gadget->ep0);
 323		ffs->setup_state = FFS_NO_SETUP;
 324		return -EL2HLT;
 325	} else {
 326		pr_debug("bogus ep0 stall!\n");
 327		return -ESRCH;
 328	}
 329}
 330
 331static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
 332			     size_t len, loff_t *ptr)
 333{
 334	struct ffs_data *ffs = file->private_data;
 335	ssize_t ret;
 336	char *data;
 337
 
 
 338	/* Fast check if setup was canceled */
 339	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 340		return -EIDRM;
 341
 342	/* Acquire mutex */
 343	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 344	if (ret < 0)
 345		return ret;
 346
 347	/* Check state */
 348	switch (ffs->state) {
 349	case FFS_READ_DESCRIPTORS:
 350	case FFS_READ_STRINGS:
 351		/* Copy data */
 352		if (len < 16) {
 353			ret = -EINVAL;
 354			break;
 355		}
 356
 357		data = ffs_prepare_buffer(buf, len);
 358		if (IS_ERR(data)) {
 359			ret = PTR_ERR(data);
 360			break;
 361		}
 362
 363		/* Handle data */
 364		if (ffs->state == FFS_READ_DESCRIPTORS) {
 365			pr_info("read descriptors\n");
 366			ret = __ffs_data_got_descs(ffs, data, len);
 367			if (ret < 0)
 368				break;
 369
 370			ffs->state = FFS_READ_STRINGS;
 371			ret = len;
 372		} else {
 373			pr_info("read strings\n");
 374			ret = __ffs_data_got_strings(ffs, data, len);
 375			if (ret < 0)
 376				break;
 377
 378			ret = ffs_epfiles_create(ffs);
 379			if (ret) {
 380				ffs->state = FFS_CLOSING;
 381				break;
 382			}
 383
 384			ffs->state = FFS_ACTIVE;
 385			mutex_unlock(&ffs->mutex);
 386
 387			ret = ffs_ready(ffs);
 388			if (ret < 0) {
 389				ffs->state = FFS_CLOSING;
 390				return ret;
 391			}
 392
 393			return len;
 394		}
 395		break;
 396
 397	case FFS_ACTIVE:
 398		data = NULL;
 399		/*
 400		 * We're called from user space, we can use _irq
 401		 * rather then _irqsave
 402		 */
 403		spin_lock_irq(&ffs->ev.waitq.lock);
 404		switch (ffs_setup_state_clear_cancelled(ffs)) {
 405		case FFS_SETUP_CANCELLED:
 406			ret = -EIDRM;
 407			goto done_spin;
 408
 409		case FFS_NO_SETUP:
 410			ret = -ESRCH;
 411			goto done_spin;
 412
 413		case FFS_SETUP_PENDING:
 414			break;
 415		}
 416
 417		/* FFS_SETUP_PENDING */
 418		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
 419			spin_unlock_irq(&ffs->ev.waitq.lock);
 420			ret = __ffs_ep0_stall(ffs);
 421			break;
 422		}
 423
 424		/* FFS_SETUP_PENDING and not stall */
 425		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 426
 427		spin_unlock_irq(&ffs->ev.waitq.lock);
 428
 429		data = ffs_prepare_buffer(buf, len);
 430		if (IS_ERR(data)) {
 431			ret = PTR_ERR(data);
 432			break;
 433		}
 434
 435		spin_lock_irq(&ffs->ev.waitq.lock);
 436
 437		/*
 438		 * We are guaranteed to be still in FFS_ACTIVE state
 439		 * but the state of setup could have changed from
 440		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
 441		 * to check for that.  If that happened we copied data
 442		 * from user space in vain but it's unlikely.
 443		 *
 444		 * For sure we are not in FFS_NO_SETUP since this is
 445		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
 446		 * transition can be performed and it's protected by
 447		 * mutex.
 448		 */
 449		if (ffs_setup_state_clear_cancelled(ffs) ==
 450		    FFS_SETUP_CANCELLED) {
 451			ret = -EIDRM;
 452done_spin:
 453			spin_unlock_irq(&ffs->ev.waitq.lock);
 454		} else {
 455			/* unlocks spinlock */
 456			ret = __ffs_ep0_queue_wait(ffs, data, len);
 457		}
 458		kfree(data);
 459		break;
 460
 461	default:
 462		ret = -EBADFD;
 463		break;
 464	}
 465
 466	mutex_unlock(&ffs->mutex);
 467	return ret;
 468}
 469
 470/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
 471static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
 472				     size_t n)
 473	__releases(&ffs->ev.waitq.lock)
 474{
 475	/*
 476	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
 477	 * size of ffs->ev.types array (which is four) so that's how much space
 478	 * we reserve.
 479	 */
 480	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
 481	const size_t size = n * sizeof *events;
 482	unsigned i = 0;
 483
 484	memset(events, 0, size);
 485
 486	do {
 487		events[i].type = ffs->ev.types[i];
 488		if (events[i].type == FUNCTIONFS_SETUP) {
 489			events[i].u.setup = ffs->ev.setup;
 490			ffs->setup_state = FFS_SETUP_PENDING;
 491		}
 492	} while (++i < n);
 493
 494	ffs->ev.count -= n;
 495	if (ffs->ev.count)
 496		memmove(ffs->ev.types, ffs->ev.types + n,
 497			ffs->ev.count * sizeof *ffs->ev.types);
 498
 499	spin_unlock_irq(&ffs->ev.waitq.lock);
 500	mutex_unlock(&ffs->mutex);
 501
 502	return copy_to_user(buf, events, size) ? -EFAULT : size;
 503}
 504
 505static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
 506			    size_t len, loff_t *ptr)
 507{
 508	struct ffs_data *ffs = file->private_data;
 509	char *data = NULL;
 510	size_t n;
 511	int ret;
 512
 
 
 513	/* Fast check if setup was canceled */
 514	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 515		return -EIDRM;
 516
 517	/* Acquire mutex */
 518	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 519	if (ret < 0)
 520		return ret;
 521
 522	/* Check state */
 523	if (ffs->state != FFS_ACTIVE) {
 524		ret = -EBADFD;
 525		goto done_mutex;
 526	}
 527
 528	/*
 529	 * We're called from user space, we can use _irq rather then
 530	 * _irqsave
 531	 */
 532	spin_lock_irq(&ffs->ev.waitq.lock);
 533
 534	switch (ffs_setup_state_clear_cancelled(ffs)) {
 535	case FFS_SETUP_CANCELLED:
 536		ret = -EIDRM;
 537		break;
 538
 539	case FFS_NO_SETUP:
 540		n = len / sizeof(struct usb_functionfs_event);
 541		if (!n) {
 542			ret = -EINVAL;
 543			break;
 544		}
 545
 546		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
 547			ret = -EAGAIN;
 548			break;
 549		}
 550
 551		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
 552							ffs->ev.count)) {
 553			ret = -EINTR;
 554			break;
 555		}
 556
 557		/* unlocks spinlock */
 558		return __ffs_ep0_read_events(ffs, buf,
 559					     min(n, (size_t)ffs->ev.count));
 560
 561	case FFS_SETUP_PENDING:
 562		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
 563			spin_unlock_irq(&ffs->ev.waitq.lock);
 564			ret = __ffs_ep0_stall(ffs);
 565			goto done_mutex;
 566		}
 567
 568		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 569
 570		spin_unlock_irq(&ffs->ev.waitq.lock);
 571
 572		if (len) {
 573			data = kmalloc(len, GFP_KERNEL);
 574			if (!data) {
 575				ret = -ENOMEM;
 576				goto done_mutex;
 577			}
 578		}
 579
 580		spin_lock_irq(&ffs->ev.waitq.lock);
 581
 582		/* See ffs_ep0_write() */
 583		if (ffs_setup_state_clear_cancelled(ffs) ==
 584		    FFS_SETUP_CANCELLED) {
 585			ret = -EIDRM;
 586			break;
 587		}
 588
 589		/* unlocks spinlock */
 590		ret = __ffs_ep0_queue_wait(ffs, data, len);
 591		if ((ret > 0) && (copy_to_user(buf, data, len)))
 592			ret = -EFAULT;
 593		goto done_mutex;
 594
 595	default:
 596		ret = -EBADFD;
 597		break;
 598	}
 599
 600	spin_unlock_irq(&ffs->ev.waitq.lock);
 601done_mutex:
 602	mutex_unlock(&ffs->mutex);
 603	kfree(data);
 604	return ret;
 605}
 606
 607static int ffs_ep0_open(struct inode *inode, struct file *file)
 608{
 609	struct ffs_data *ffs = inode->i_private;
 610
 611	if (ffs->state == FFS_CLOSING)
 
 
 612		return -EBUSY;
 613
 614	file->private_data = ffs;
 615	ffs_data_opened(ffs);
 616
 617	return stream_open(inode, file);
 618}
 619
 620static int ffs_ep0_release(struct inode *inode, struct file *file)
 621{
 622	struct ffs_data *ffs = file->private_data;
 623
 
 
 624	ffs_data_closed(ffs);
 625
 626	return 0;
 627}
 628
 629static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
 630{
 631	struct ffs_data *ffs = file->private_data;
 632	struct usb_gadget *gadget = ffs->gadget;
 633	long ret;
 634
 
 
 635	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
 636		struct ffs_function *func = ffs->func;
 637		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
 638	} else if (gadget && gadget->ops->ioctl) {
 639		ret = gadget->ops->ioctl(gadget, code, value);
 640	} else {
 641		ret = -ENOTTY;
 642	}
 643
 644	return ret;
 645}
 646
 647static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
 648{
 649	struct ffs_data *ffs = file->private_data;
 650	__poll_t mask = EPOLLWRNORM;
 651	int ret;
 652
 653	poll_wait(file, &ffs->ev.waitq, wait);
 654
 655	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 656	if (ret < 0)
 657		return mask;
 658
 659	switch (ffs->state) {
 660	case FFS_READ_DESCRIPTORS:
 661	case FFS_READ_STRINGS:
 662		mask |= EPOLLOUT;
 663		break;
 664
 665	case FFS_ACTIVE:
 666		switch (ffs->setup_state) {
 667		case FFS_NO_SETUP:
 668			if (ffs->ev.count)
 669				mask |= EPOLLIN;
 670			break;
 671
 672		case FFS_SETUP_PENDING:
 673		case FFS_SETUP_CANCELLED:
 674			mask |= (EPOLLIN | EPOLLOUT);
 675			break;
 676		}
 677		break;
 678
 679	case FFS_CLOSING:
 680		break;
 681	case FFS_DEACTIVATED:
 682		break;
 683	}
 684
 685	mutex_unlock(&ffs->mutex);
 686
 687	return mask;
 688}
 689
 690static const struct file_operations ffs_ep0_operations = {
 691	.llseek =	no_llseek,
 692
 693	.open =		ffs_ep0_open,
 694	.write =	ffs_ep0_write,
 695	.read =		ffs_ep0_read,
 696	.release =	ffs_ep0_release,
 697	.unlocked_ioctl =	ffs_ep0_ioctl,
 698	.poll =		ffs_ep0_poll,
 699};
 700
 701
 702/* "Normal" endpoints operations ********************************************/
 703
 704static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
 705{
 706	struct ffs_io_data *io_data = req->context;
 707
 708	if (req->status)
 709		io_data->status = req->status;
 710	else
 711		io_data->status = req->actual;
 712
 713	complete(&io_data->done);
 714}
 715
 716static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
 717{
 718	ssize_t ret = copy_to_iter(data, data_len, iter);
 719	if (ret == data_len)
 720		return ret;
 721
 722	if (iov_iter_count(iter))
 723		return -EFAULT;
 724
 725	/*
 726	 * Dear user space developer!
 727	 *
 728	 * TL;DR: To stop getting below error message in your kernel log, change
 729	 * user space code using functionfs to align read buffers to a max
 730	 * packet size.
 731	 *
 732	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
 733	 * packet size.  When unaligned buffer is passed to functionfs, it
 734	 * internally uses a larger, aligned buffer so that such UDCs are happy.
 735	 *
 736	 * Unfortunately, this means that host may send more data than was
 737	 * requested in read(2) system call.  f_fs doesn’t know what to do with
 738	 * that excess data so it simply drops it.
 739	 *
 740	 * Was the buffer aligned in the first place, no such problem would
 741	 * happen.
 742	 *
 743	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
 744	 * by splitting a request into multiple parts.  This splitting may still
 745	 * be a problem though so it’s likely best to align the buffer
 746	 * regardless of it being AIO or not..
 747	 *
 748	 * This only affects OUT endpoints, i.e. reading data with a read(2),
 749	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
 750	 * affected.
 751	 */
 752	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
 753	       "Align read buffer size to max packet size to avoid the problem.\n",
 754	       data_len, ret);
 755
 756	return ret;
 757}
 758
 759/*
 760 * allocate a virtually contiguous buffer and create a scatterlist describing it
 761 * @sg_table	- pointer to a place to be filled with sg_table contents
 762 * @size	- required buffer size
 763 */
 764static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
 765{
 766	struct page **pages;
 767	void *vaddr, *ptr;
 768	unsigned int n_pages;
 769	int i;
 770
 771	vaddr = vmalloc(sz);
 772	if (!vaddr)
 773		return NULL;
 774
 775	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
 776	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
 777	if (!pages) {
 778		vfree(vaddr);
 779
 780		return NULL;
 781	}
 782	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
 783		pages[i] = vmalloc_to_page(ptr);
 784
 785	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
 786		kvfree(pages);
 787		vfree(vaddr);
 788
 789		return NULL;
 790	}
 791	kvfree(pages);
 792
 793	return vaddr;
 794}
 795
 796static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
 797	size_t data_len)
 798{
 799	if (io_data->use_sg)
 800		return ffs_build_sg_list(&io_data->sgt, data_len);
 801
 802	return kmalloc(data_len, GFP_KERNEL);
 803}
 804
 805static inline void ffs_free_buffer(struct ffs_io_data *io_data)
 806{
 807	if (!io_data->buf)
 808		return;
 809
 810	if (io_data->use_sg) {
 811		sg_free_table(&io_data->sgt);
 812		vfree(io_data->buf);
 813	} else {
 814		kfree(io_data->buf);
 815	}
 816}
 817
 818static void ffs_user_copy_worker(struct work_struct *work)
 819{
 820	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
 821						   work);
 822	int ret = io_data->status;
 
 823	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
 824
 825	if (io_data->read && ret > 0) {
 826		kthread_use_mm(io_data->mm);
 
 
 
 827		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
 828		kthread_unuse_mm(io_data->mm);
 
 829	}
 830
 831	io_data->kiocb->ki_complete(io_data->kiocb, ret);
 832
 833	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
 834		eventfd_signal(io_data->ffs->ffs_eventfd);
 
 
 835
 836	if (io_data->read)
 837		kfree(io_data->to_free);
 838	ffs_free_buffer(io_data);
 839	kfree(io_data);
 840}
 841
 842static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
 843					 struct usb_request *req)
 844{
 845	struct ffs_io_data *io_data = req->context;
 846	struct ffs_data *ffs = io_data->ffs;
 847
 848	io_data->status = req->status ? req->status : req->actual;
 849	usb_ep_free_request(_ep, req);
 850
 851	INIT_WORK(&io_data->work, ffs_user_copy_worker);
 852	queue_work(ffs->io_completion_wq, &io_data->work);
 853}
 854
 855static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
 856{
 857	/*
 858	 * See comment in struct ffs_epfile for full read_buffer pointer
 859	 * synchronisation story.
 860	 */
 861	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
 862	if (buf && buf != READ_BUFFER_DROP)
 863		kfree(buf);
 864}
 865
 866/* Assumes epfile->mutex is held. */
 867static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
 868					  struct iov_iter *iter)
 869{
 870	/*
 871	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
 872	 * the buffer while we are using it.  See comment in struct ffs_epfile
 873	 * for full read_buffer pointer synchronisation story.
 874	 */
 875	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
 876	ssize_t ret;
 877	if (!buf || buf == READ_BUFFER_DROP)
 878		return 0;
 879
 880	ret = copy_to_iter(buf->data, buf->length, iter);
 881	if (buf->length == ret) {
 882		kfree(buf);
 883		return ret;
 884	}
 885
 886	if (iov_iter_count(iter)) {
 887		ret = -EFAULT;
 888	} else {
 889		buf->length -= ret;
 890		buf->data += ret;
 891	}
 892
 893	if (cmpxchg(&epfile->read_buffer, NULL, buf))
 894		kfree(buf);
 895
 896	return ret;
 897}
 898
 899/* Assumes epfile->mutex is held. */
 900static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
 901				      void *data, int data_len,
 902				      struct iov_iter *iter)
 903{
 904	struct ffs_buffer *buf;
 905
 906	ssize_t ret = copy_to_iter(data, data_len, iter);
 907	if (data_len == ret)
 908		return ret;
 909
 910	if (iov_iter_count(iter))
 911		return -EFAULT;
 912
 913	/* See ffs_copy_to_iter for more context. */
 914	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
 915		data_len, ret);
 916
 917	data_len -= ret;
 918	buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL);
 919	if (!buf)
 920		return -ENOMEM;
 921	buf->length = data_len;
 922	buf->data = buf->storage;
 923	memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len));
 924
 925	/*
 926	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
 927	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
 928	 * in struct ffs_epfile for full read_buffer pointer synchronisation
 929	 * story.
 930	 */
 931	if (cmpxchg(&epfile->read_buffer, NULL, buf))
 932		kfree(buf);
 933
 934	return ret;
 935}
 936
 937static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
 938{
 939	struct ffs_epfile *epfile = file->private_data;
 940	struct usb_request *req;
 941	struct ffs_ep *ep;
 942	char *data = NULL;
 943	ssize_t ret, data_len = -EINVAL;
 944	int halt;
 945
 946	/* Are we still active? */
 947	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
 948		return -ENODEV;
 949
 950	/* Wait for endpoint to be enabled */
 951	ep = epfile->ep;
 952	if (!ep) {
 953		if (file->f_flags & O_NONBLOCK)
 954			return -EAGAIN;
 955
 956		ret = wait_event_interruptible(
 957				epfile->ffs->wait, (ep = epfile->ep));
 958		if (ret)
 959			return -EINTR;
 960	}
 961
 962	/* Do we halt? */
 963	halt = (!io_data->read == !epfile->in);
 964	if (halt && epfile->isoc)
 965		return -EINVAL;
 966
 967	/* We will be using request and read_buffer */
 968	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
 969	if (ret)
 970		goto error;
 971
 972	/* Allocate & copy */
 973	if (!halt) {
 974		struct usb_gadget *gadget;
 975
 976		/*
 977		 * Do we have buffered data from previous partial read?  Check
 978		 * that for synchronous case only because we do not have
 979		 * facility to ‘wake up’ a pending asynchronous read and push
 980		 * buffered data to it which we would need to make things behave
 981		 * consistently.
 982		 */
 983		if (!io_data->aio && io_data->read) {
 984			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
 985			if (ret)
 986				goto error_mutex;
 987		}
 988
 989		/*
 990		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
 991		 * before the waiting completes, so do not assign to 'gadget'
 992		 * earlier
 993		 */
 994		gadget = epfile->ffs->gadget;
 995
 996		spin_lock_irq(&epfile->ffs->eps_lock);
 997		/* In the meantime, endpoint got disabled or changed. */
 998		if (epfile->ep != ep) {
 999			ret = -ESHUTDOWN;
1000			goto error_lock;
1001		}
1002		data_len = iov_iter_count(&io_data->data);
1003		/*
1004		 * Controller may require buffer size to be aligned to
1005		 * maxpacketsize of an out endpoint.
1006		 */
1007		if (io_data->read)
1008			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1009
1010		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1011		spin_unlock_irq(&epfile->ffs->eps_lock);
1012
1013		data = ffs_alloc_buffer(io_data, data_len);
1014		if (!data) {
1015			ret = -ENOMEM;
1016			goto error_mutex;
1017		}
1018		if (!io_data->read &&
1019		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1020			ret = -EFAULT;
1021			goto error_mutex;
1022		}
1023	}
1024
1025	spin_lock_irq(&epfile->ffs->eps_lock);
1026
1027	if (epfile->ep != ep) {
1028		/* In the meantime, endpoint got disabled or changed. */
1029		ret = -ESHUTDOWN;
1030	} else if (halt) {
1031		ret = usb_ep_set_halt(ep->ep);
1032		if (!ret)
1033			ret = -EBADMSG;
1034	} else if (data_len == -EINVAL) {
1035		/*
1036		 * Sanity Check: even though data_len can't be used
1037		 * uninitialized at the time I write this comment, some
1038		 * compilers complain about this situation.
1039		 * In order to keep the code clean from warnings, data_len is
1040		 * being initialized to -EINVAL during its declaration, which
1041		 * means we can't rely on compiler anymore to warn no future
1042		 * changes won't result in data_len being used uninitialized.
1043		 * For such reason, we're adding this redundant sanity check
1044		 * here.
1045		 */
1046		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1047		ret = -EINVAL;
1048	} else if (!io_data->aio) {
 
1049		bool interrupted = false;
1050
1051		req = ep->req;
1052		if (io_data->use_sg) {
1053			req->buf = NULL;
1054			req->sg	= io_data->sgt.sgl;
1055			req->num_sgs = io_data->sgt.nents;
1056		} else {
1057			req->buf = data;
1058			req->num_sgs = 0;
1059		}
1060		req->length = data_len;
1061
1062		io_data->buf = data;
1063
1064		init_completion(&io_data->done);
1065		req->context  = io_data;
1066		req->complete = ffs_epfile_io_complete;
1067
1068		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1069		if (ret < 0)
1070			goto error_lock;
1071
1072		spin_unlock_irq(&epfile->ffs->eps_lock);
1073
1074		if (wait_for_completion_interruptible(&io_data->done)) {
1075			spin_lock_irq(&epfile->ffs->eps_lock);
1076			if (epfile->ep != ep) {
1077				ret = -ESHUTDOWN;
1078				goto error_lock;
1079			}
1080			/*
1081			 * To avoid race condition with ffs_epfile_io_complete,
1082			 * dequeue the request first then check
1083			 * status. usb_ep_dequeue API should guarantee no race
1084			 * condition with req->complete callback.
1085			 */
1086			usb_ep_dequeue(ep->ep, req);
1087			spin_unlock_irq(&epfile->ffs->eps_lock);
1088			wait_for_completion(&io_data->done);
1089			interrupted = io_data->status < 0;
1090		}
1091
1092		if (interrupted)
1093			ret = -EINTR;
1094		else if (io_data->read && io_data->status > 0)
1095			ret = __ffs_epfile_read_data(epfile, data, io_data->status,
1096						     &io_data->data);
1097		else
1098			ret = io_data->status;
1099		goto error_mutex;
1100	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1101		ret = -ENOMEM;
1102	} else {
1103		if (io_data->use_sg) {
1104			req->buf = NULL;
1105			req->sg	= io_data->sgt.sgl;
1106			req->num_sgs = io_data->sgt.nents;
1107		} else {
1108			req->buf = data;
1109			req->num_sgs = 0;
1110		}
1111		req->length = data_len;
1112
1113		io_data->buf = data;
1114		io_data->ep = ep->ep;
1115		io_data->req = req;
1116		io_data->ffs = epfile->ffs;
1117
1118		req->context  = io_data;
1119		req->complete = ffs_epfile_async_io_complete;
1120
1121		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1122		if (ret) {
1123			io_data->req = NULL;
1124			usb_ep_free_request(ep->ep, req);
1125			goto error_lock;
1126		}
1127
1128		ret = -EIOCBQUEUED;
1129		/*
1130		 * Do not kfree the buffer in this function.  It will be freed
1131		 * by ffs_user_copy_worker.
1132		 */
1133		data = NULL;
1134	}
1135
1136error_lock:
1137	spin_unlock_irq(&epfile->ffs->eps_lock);
1138error_mutex:
1139	mutex_unlock(&epfile->mutex);
1140error:
1141	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1142		ffs_free_buffer(io_data);
1143	return ret;
1144}
1145
1146static int
1147ffs_epfile_open(struct inode *inode, struct file *file)
1148{
1149	struct ffs_epfile *epfile = inode->i_private;
1150
 
 
1151	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1152		return -ENODEV;
1153
1154	file->private_data = epfile;
1155	ffs_data_opened(epfile->ffs);
1156
1157	return stream_open(inode, file);
1158}
1159
1160static int ffs_aio_cancel(struct kiocb *kiocb)
1161{
1162	struct ffs_io_data *io_data = kiocb->private;
1163	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1164	unsigned long flags;
1165	int value;
1166
1167	spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
 
 
1168
1169	if (io_data && io_data->ep && io_data->req)
1170		value = usb_ep_dequeue(io_data->ep, io_data->req);
1171	else
1172		value = -EINVAL;
1173
1174	spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1175
1176	return value;
1177}
1178
1179static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1180{
1181	struct ffs_io_data io_data, *p = &io_data;
1182	ssize_t res;
1183
 
 
1184	if (!is_sync_kiocb(kiocb)) {
1185		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1186		if (!p)
1187			return -ENOMEM;
1188		p->aio = true;
1189	} else {
1190		memset(p, 0, sizeof(*p));
1191		p->aio = false;
1192	}
1193
1194	p->read = false;
1195	p->kiocb = kiocb;
1196	p->data = *from;
1197	p->mm = current->mm;
1198
1199	kiocb->private = p;
1200
1201	if (p->aio)
1202		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1203
1204	res = ffs_epfile_io(kiocb->ki_filp, p);
1205	if (res == -EIOCBQUEUED)
1206		return res;
1207	if (p->aio)
1208		kfree(p);
1209	else
1210		*from = p->data;
1211	return res;
1212}
1213
1214static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1215{
1216	struct ffs_io_data io_data, *p = &io_data;
1217	ssize_t res;
1218
 
 
1219	if (!is_sync_kiocb(kiocb)) {
1220		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1221		if (!p)
1222			return -ENOMEM;
1223		p->aio = true;
1224	} else {
1225		memset(p, 0, sizeof(*p));
1226		p->aio = false;
1227	}
1228
1229	p->read = true;
1230	p->kiocb = kiocb;
1231	if (p->aio) {
1232		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1233		if (!iter_is_ubuf(&p->data) && !p->to_free) {
1234			kfree(p);
1235			return -ENOMEM;
1236		}
1237	} else {
1238		p->data = *to;
1239		p->to_free = NULL;
1240	}
1241	p->mm = current->mm;
1242
1243	kiocb->private = p;
1244
1245	if (p->aio)
1246		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1247
1248	res = ffs_epfile_io(kiocb->ki_filp, p);
1249	if (res == -EIOCBQUEUED)
1250		return res;
1251
1252	if (p->aio) {
1253		kfree(p->to_free);
1254		kfree(p);
1255	} else {
1256		*to = p->data;
1257	}
1258	return res;
1259}
1260
1261static int
1262ffs_epfile_release(struct inode *inode, struct file *file)
1263{
1264	struct ffs_epfile *epfile = inode->i_private;
1265
 
 
1266	__ffs_epfile_read_buffer_free(epfile);
1267	ffs_data_closed(epfile->ffs);
1268
1269	return 0;
1270}
1271
1272static long ffs_epfile_ioctl(struct file *file, unsigned code,
1273			     unsigned long value)
1274{
1275	struct ffs_epfile *epfile = file->private_data;
1276	struct ffs_ep *ep;
1277	int ret;
1278
 
 
1279	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1280		return -ENODEV;
1281
1282	/* Wait for endpoint to be enabled */
1283	ep = epfile->ep;
1284	if (!ep) {
1285		if (file->f_flags & O_NONBLOCK)
1286			return -EAGAIN;
1287
1288		ret = wait_event_interruptible(
1289				epfile->ffs->wait, (ep = epfile->ep));
1290		if (ret)
1291			return -EINTR;
1292	}
1293
1294	spin_lock_irq(&epfile->ffs->eps_lock);
1295
1296	/* In the meantime, endpoint got disabled or changed. */
1297	if (epfile->ep != ep) {
1298		spin_unlock_irq(&epfile->ffs->eps_lock);
1299		return -ESHUTDOWN;
1300	}
1301
1302	switch (code) {
1303	case FUNCTIONFS_FIFO_STATUS:
1304		ret = usb_ep_fifo_status(epfile->ep->ep);
1305		break;
1306	case FUNCTIONFS_FIFO_FLUSH:
1307		usb_ep_fifo_flush(epfile->ep->ep);
1308		ret = 0;
1309		break;
1310	case FUNCTIONFS_CLEAR_HALT:
1311		ret = usb_ep_clear_halt(epfile->ep->ep);
1312		break;
1313	case FUNCTIONFS_ENDPOINT_REVMAP:
1314		ret = epfile->ep->num;
1315		break;
1316	case FUNCTIONFS_ENDPOINT_DESC:
1317	{
1318		int desc_idx;
1319		struct usb_endpoint_descriptor desc1, *desc;
1320
1321		switch (epfile->ffs->gadget->speed) {
1322		case USB_SPEED_SUPER:
1323		case USB_SPEED_SUPER_PLUS:
1324			desc_idx = 2;
1325			break;
1326		case USB_SPEED_HIGH:
1327			desc_idx = 1;
1328			break;
1329		default:
1330			desc_idx = 0;
1331		}
1332
1333		desc = epfile->ep->descs[desc_idx];
1334		memcpy(&desc1, desc, desc->bLength);
1335
1336		spin_unlock_irq(&epfile->ffs->eps_lock);
1337		ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1338		if (ret)
1339			ret = -EFAULT;
1340		return ret;
1341	}
1342	default:
1343		ret = -ENOTTY;
1344	}
1345	spin_unlock_irq(&epfile->ffs->eps_lock);
1346
1347	return ret;
1348}
1349
 
 
 
 
 
 
 
 
1350static const struct file_operations ffs_epfile_operations = {
1351	.llseek =	no_llseek,
1352
1353	.open =		ffs_epfile_open,
1354	.write_iter =	ffs_epfile_write_iter,
1355	.read_iter =	ffs_epfile_read_iter,
1356	.release =	ffs_epfile_release,
1357	.unlocked_ioctl =	ffs_epfile_ioctl,
1358	.compat_ioctl = compat_ptr_ioctl,
 
 
1359};
1360
1361
1362/* File system and super block operations ***********************************/
1363
1364/*
1365 * Mounting the file system creates a controller file, used first for
1366 * function configuration then later for event monitoring.
1367 */
1368
1369static struct inode *__must_check
1370ffs_sb_make_inode(struct super_block *sb, void *data,
1371		  const struct file_operations *fops,
1372		  const struct inode_operations *iops,
1373		  struct ffs_file_perms *perms)
1374{
1375	struct inode *inode;
1376
 
 
1377	inode = new_inode(sb);
1378
1379	if (inode) {
1380		struct timespec64 ts = inode_set_ctime_current(inode);
1381
1382		inode->i_ino	 = get_next_ino();
1383		inode->i_mode    = perms->mode;
1384		inode->i_uid     = perms->uid;
1385		inode->i_gid     = perms->gid;
1386		inode_set_atime_to_ts(inode, ts);
1387		inode_set_mtime_to_ts(inode, ts);
 
1388		inode->i_private = data;
1389		if (fops)
1390			inode->i_fop = fops;
1391		if (iops)
1392			inode->i_op  = iops;
1393	}
1394
1395	return inode;
1396}
1397
1398/* Create "regular" file */
1399static struct dentry *ffs_sb_create_file(struct super_block *sb,
1400					const char *name, void *data,
1401					const struct file_operations *fops)
1402{
1403	struct ffs_data	*ffs = sb->s_fs_info;
1404	struct dentry	*dentry;
1405	struct inode	*inode;
1406
 
 
1407	dentry = d_alloc_name(sb->s_root, name);
1408	if (!dentry)
1409		return NULL;
1410
1411	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1412	if (!inode) {
1413		dput(dentry);
1414		return NULL;
1415	}
1416
1417	d_add(dentry, inode);
1418	return dentry;
1419}
1420
1421/* Super block */
1422static const struct super_operations ffs_sb_operations = {
1423	.statfs =	simple_statfs,
1424	.drop_inode =	generic_delete_inode,
1425};
1426
1427struct ffs_sb_fill_data {
1428	struct ffs_file_perms perms;
1429	umode_t root_mode;
1430	const char *dev_name;
1431	bool no_disconnect;
1432	struct ffs_data *ffs_data;
1433};
1434
1435static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1436{
1437	struct ffs_sb_fill_data *data = fc->fs_private;
1438	struct inode	*inode;
1439	struct ffs_data	*ffs = data->ffs_data;
1440
 
 
1441	ffs->sb              = sb;
1442	data->ffs_data       = NULL;
1443	sb->s_fs_info        = ffs;
1444	sb->s_blocksize      = PAGE_SIZE;
1445	sb->s_blocksize_bits = PAGE_SHIFT;
1446	sb->s_magic          = FUNCTIONFS_MAGIC;
1447	sb->s_op             = &ffs_sb_operations;
1448	sb->s_time_gran      = 1;
1449
1450	/* Root inode */
1451	data->perms.mode = data->root_mode;
1452	inode = ffs_sb_make_inode(sb, NULL,
1453				  &simple_dir_operations,
1454				  &simple_dir_inode_operations,
1455				  &data->perms);
1456	sb->s_root = d_make_root(inode);
1457	if (!sb->s_root)
1458		return -ENOMEM;
1459
1460	/* EP0 file */
1461	if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations))
 
1462		return -ENOMEM;
1463
1464	return 0;
1465}
1466
1467enum {
1468	Opt_no_disconnect,
1469	Opt_rmode,
1470	Opt_fmode,
1471	Opt_mode,
1472	Opt_uid,
1473	Opt_gid,
1474};
1475
1476static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1477	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1478	fsparam_u32	("rmode",		Opt_rmode),
1479	fsparam_u32	("fmode",		Opt_fmode),
1480	fsparam_u32	("mode",		Opt_mode),
1481	fsparam_u32	("uid",			Opt_uid),
1482	fsparam_u32	("gid",			Opt_gid),
1483	{}
1484};
1485
 
 
 
 
 
1486static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1487{
1488	struct ffs_sb_fill_data *data = fc->fs_private;
1489	struct fs_parse_result result;
1490	int opt;
1491
1492	opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
 
 
1493	if (opt < 0)
1494		return opt;
1495
1496	switch (opt) {
1497	case Opt_no_disconnect:
1498		data->no_disconnect = result.boolean;
1499		break;
1500	case Opt_rmode:
1501		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1502		break;
1503	case Opt_fmode:
1504		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1505		break;
1506	case Opt_mode:
1507		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1508		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1509		break;
1510
1511	case Opt_uid:
1512		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1513		if (!uid_valid(data->perms.uid))
1514			goto unmapped_value;
1515		break;
1516	case Opt_gid:
1517		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1518		if (!gid_valid(data->perms.gid))
1519			goto unmapped_value;
1520		break;
1521
1522	default:
1523		return -ENOPARAM;
1524	}
1525
1526	return 0;
1527
1528unmapped_value:
1529	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1530}
1531
1532/*
1533 * Set up the superblock for a mount.
1534 */
1535static int ffs_fs_get_tree(struct fs_context *fc)
1536{
1537	struct ffs_sb_fill_data *ctx = fc->fs_private;
 
1538	struct ffs_data	*ffs;
1539	int ret;
 
1540
1541	if (!fc->source)
1542		return invalf(fc, "No source specified");
1543
1544	ffs = ffs_data_new(fc->source);
1545	if (!ffs)
1546		return -ENOMEM;
1547	ffs->file_perms = ctx->perms;
1548	ffs->no_disconnect = ctx->no_disconnect;
1549
1550	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1551	if (!ffs->dev_name) {
1552		ffs_data_put(ffs);
1553		return -ENOMEM;
1554	}
1555
1556	ret = ffs_acquire_dev(ffs->dev_name, ffs);
1557	if (ret) {
1558		ffs_data_put(ffs);
1559		return ret;
1560	}
1561
 
1562	ctx->ffs_data = ffs;
1563	return get_tree_nodev(fc, ffs_sb_fill);
1564}
1565
1566static void ffs_fs_free_fc(struct fs_context *fc)
1567{
1568	struct ffs_sb_fill_data *ctx = fc->fs_private;
1569
1570	if (ctx) {
1571		if (ctx->ffs_data) {
 
1572			ffs_data_put(ctx->ffs_data);
1573		}
1574
1575		kfree(ctx);
1576	}
1577}
1578
1579static const struct fs_context_operations ffs_fs_context_ops = {
1580	.free		= ffs_fs_free_fc,
1581	.parse_param	= ffs_fs_parse_param,
1582	.get_tree	= ffs_fs_get_tree,
1583};
1584
1585static int ffs_fs_init_fs_context(struct fs_context *fc)
1586{
1587	struct ffs_sb_fill_data *ctx;
1588
1589	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1590	if (!ctx)
1591		return -ENOMEM;
1592
1593	ctx->perms.mode = S_IFREG | 0600;
1594	ctx->perms.uid = GLOBAL_ROOT_UID;
1595	ctx->perms.gid = GLOBAL_ROOT_GID;
1596	ctx->root_mode = S_IFDIR | 0500;
1597	ctx->no_disconnect = false;
1598
1599	fc->fs_private = ctx;
1600	fc->ops = &ffs_fs_context_ops;
1601	return 0;
1602}
1603
1604static void
1605ffs_fs_kill_sb(struct super_block *sb)
1606{
 
 
1607	kill_litter_super(sb);
1608	if (sb->s_fs_info)
 
1609		ffs_data_closed(sb->s_fs_info);
 
1610}
1611
1612static struct file_system_type ffs_fs_type = {
1613	.owner		= THIS_MODULE,
1614	.name		= "functionfs",
1615	.init_fs_context = ffs_fs_init_fs_context,
1616	.parameters	= ffs_fs_fs_parameters,
1617	.kill_sb	= ffs_fs_kill_sb,
1618};
1619MODULE_ALIAS_FS("functionfs");
1620
1621
1622/* Driver's main init/cleanup functions *************************************/
1623
1624static int functionfs_init(void)
1625{
1626	int ret;
1627
 
 
1628	ret = register_filesystem(&ffs_fs_type);
1629	if (!ret)
1630		pr_info("file system registered\n");
1631	else
1632		pr_err("failed registering file system (%d)\n", ret);
1633
1634	return ret;
1635}
1636
1637static void functionfs_cleanup(void)
1638{
 
 
1639	pr_info("unloading\n");
1640	unregister_filesystem(&ffs_fs_type);
1641}
1642
1643
1644/* ffs_data and ffs_function construction and destruction code **************/
1645
1646static void ffs_data_clear(struct ffs_data *ffs);
1647static void ffs_data_reset(struct ffs_data *ffs);
1648
1649static void ffs_data_get(struct ffs_data *ffs)
1650{
 
 
1651	refcount_inc(&ffs->ref);
1652}
1653
1654static void ffs_data_opened(struct ffs_data *ffs)
1655{
 
 
1656	refcount_inc(&ffs->ref);
1657	if (atomic_add_return(1, &ffs->opened) == 1 &&
1658			ffs->state == FFS_DEACTIVATED) {
1659		ffs->state = FFS_CLOSING;
1660		ffs_data_reset(ffs);
1661	}
1662}
1663
1664static void ffs_data_put(struct ffs_data *ffs)
1665{
1666	if (refcount_dec_and_test(&ffs->ref)) {
 
 
1667		pr_info("%s(): freeing\n", __func__);
1668		ffs_data_clear(ffs);
1669		ffs_release_dev(ffs->private_data);
1670		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1671		       swait_active(&ffs->ep0req_completion.wait) ||
1672		       waitqueue_active(&ffs->wait));
1673		destroy_workqueue(ffs->io_completion_wq);
1674		kfree(ffs->dev_name);
1675		kfree(ffs);
1676	}
1677}
1678
1679static void ffs_data_closed(struct ffs_data *ffs)
1680{
1681	struct ffs_epfile *epfiles;
1682	unsigned long flags;
1683
1684	if (atomic_dec_and_test(&ffs->opened)) {
1685		if (ffs->no_disconnect) {
1686			ffs->state = FFS_DEACTIVATED;
1687			spin_lock_irqsave(&ffs->eps_lock, flags);
1688			epfiles = ffs->epfiles;
1689			ffs->epfiles = NULL;
1690			spin_unlock_irqrestore(&ffs->eps_lock,
1691							flags);
1692
1693			if (epfiles)
1694				ffs_epfiles_destroy(epfiles,
1695						 ffs->eps_count);
1696
1697			if (ffs->setup_state == FFS_SETUP_PENDING)
1698				__ffs_ep0_stall(ffs);
1699		} else {
1700			ffs->state = FFS_CLOSING;
1701			ffs_data_reset(ffs);
1702		}
1703	}
1704	if (atomic_read(&ffs->opened) < 0) {
1705		ffs->state = FFS_CLOSING;
1706		ffs_data_reset(ffs);
1707	}
1708
1709	ffs_data_put(ffs);
1710}
1711
1712static struct ffs_data *ffs_data_new(const char *dev_name)
1713{
1714	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1715	if (!ffs)
1716		return NULL;
1717
 
 
1718	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1719	if (!ffs->io_completion_wq) {
1720		kfree(ffs);
1721		return NULL;
1722	}
1723
1724	refcount_set(&ffs->ref, 1);
1725	atomic_set(&ffs->opened, 0);
1726	ffs->state = FFS_READ_DESCRIPTORS;
1727	mutex_init(&ffs->mutex);
1728	spin_lock_init(&ffs->eps_lock);
1729	init_waitqueue_head(&ffs->ev.waitq);
1730	init_waitqueue_head(&ffs->wait);
1731	init_completion(&ffs->ep0req_completion);
1732
1733	/* XXX REVISIT need to update it in some places, or do we? */
1734	ffs->ev.can_stall = 1;
1735
1736	return ffs;
1737}
1738
1739static void ffs_data_clear(struct ffs_data *ffs)
1740{
1741	struct ffs_epfile *epfiles;
1742	unsigned long flags;
1743
1744	ffs_closed(ffs);
1745
1746	BUG_ON(ffs->gadget);
1747
1748	spin_lock_irqsave(&ffs->eps_lock, flags);
1749	epfiles = ffs->epfiles;
1750	ffs->epfiles = NULL;
1751	spin_unlock_irqrestore(&ffs->eps_lock, flags);
1752
1753	/*
1754	 * potential race possible between ffs_func_eps_disable
1755	 * & ffs_epfile_release therefore maintaining a local
1756	 * copy of epfile will save us from use-after-free.
1757	 */
1758	if (epfiles) {
1759		ffs_epfiles_destroy(epfiles, ffs->eps_count);
1760		ffs->epfiles = NULL;
1761	}
1762
1763	if (ffs->ffs_eventfd) {
1764		eventfd_ctx_put(ffs->ffs_eventfd);
1765		ffs->ffs_eventfd = NULL;
1766	}
1767
1768	kfree(ffs->raw_descs_data);
1769	kfree(ffs->raw_strings);
1770	kfree(ffs->stringtabs);
1771}
1772
1773static void ffs_data_reset(struct ffs_data *ffs)
1774{
 
 
1775	ffs_data_clear(ffs);
1776
 
1777	ffs->raw_descs_data = NULL;
1778	ffs->raw_descs = NULL;
1779	ffs->raw_strings = NULL;
1780	ffs->stringtabs = NULL;
1781
1782	ffs->raw_descs_length = 0;
1783	ffs->fs_descs_count = 0;
1784	ffs->hs_descs_count = 0;
1785	ffs->ss_descs_count = 0;
1786
1787	ffs->strings_count = 0;
1788	ffs->interfaces_count = 0;
1789	ffs->eps_count = 0;
1790
1791	ffs->ev.count = 0;
1792
1793	ffs->state = FFS_READ_DESCRIPTORS;
1794	ffs->setup_state = FFS_NO_SETUP;
1795	ffs->flags = 0;
1796
1797	ffs->ms_os_descs_ext_prop_count = 0;
1798	ffs->ms_os_descs_ext_prop_name_len = 0;
1799	ffs->ms_os_descs_ext_prop_data_len = 0;
1800}
1801
1802
1803static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1804{
1805	struct usb_gadget_strings **lang;
1806	int first_id;
1807
 
 
1808	if (WARN_ON(ffs->state != FFS_ACTIVE
1809		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1810		return -EBADFD;
1811
1812	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1813	if (first_id < 0)
1814		return first_id;
1815
1816	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1817	if (!ffs->ep0req)
1818		return -ENOMEM;
1819	ffs->ep0req->complete = ffs_ep0_complete;
1820	ffs->ep0req->context = ffs;
1821
1822	lang = ffs->stringtabs;
1823	if (lang) {
1824		for (; *lang; ++lang) {
1825			struct usb_string *str = (*lang)->strings;
1826			int id = first_id;
1827			for (; str->s; ++id, ++str)
1828				str->id = id;
1829		}
1830	}
1831
1832	ffs->gadget = cdev->gadget;
1833	ffs_data_get(ffs);
1834	return 0;
1835}
1836
1837static void functionfs_unbind(struct ffs_data *ffs)
1838{
 
 
1839	if (!WARN_ON(!ffs->gadget)) {
1840		/* dequeue before freeing ep0req */
1841		usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
1842		mutex_lock(&ffs->mutex);
1843		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1844		ffs->ep0req = NULL;
1845		ffs->gadget = NULL;
1846		clear_bit(FFS_FL_BOUND, &ffs->flags);
1847		mutex_unlock(&ffs->mutex);
1848		ffs_data_put(ffs);
1849	}
1850}
1851
1852static int ffs_epfiles_create(struct ffs_data *ffs)
1853{
1854	struct ffs_epfile *epfile, *epfiles;
1855	unsigned i, count;
1856
 
 
1857	count = ffs->eps_count;
1858	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1859	if (!epfiles)
1860		return -ENOMEM;
1861
1862	epfile = epfiles;
1863	for (i = 1; i <= count; ++i, ++epfile) {
1864		epfile->ffs = ffs;
1865		mutex_init(&epfile->mutex);
1866		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1867			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1868		else
1869			sprintf(epfile->name, "ep%u", i);
1870		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1871						 epfile,
1872						 &ffs_epfile_operations);
1873		if (!epfile->dentry) {
1874			ffs_epfiles_destroy(epfiles, i - 1);
1875			return -ENOMEM;
1876		}
1877	}
1878
1879	ffs->epfiles = epfiles;
1880	return 0;
1881}
1882
1883static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1884{
1885	struct ffs_epfile *epfile = epfiles;
1886
 
 
1887	for (; count; --count, ++epfile) {
1888		BUG_ON(mutex_is_locked(&epfile->mutex));
1889		if (epfile->dentry) {
1890			d_delete(epfile->dentry);
1891			dput(epfile->dentry);
1892			epfile->dentry = NULL;
1893		}
1894	}
1895
1896	kfree(epfiles);
1897}
1898
1899static void ffs_func_eps_disable(struct ffs_function *func)
1900{
1901	struct ffs_ep *ep;
1902	struct ffs_epfile *epfile;
1903	unsigned short count;
1904	unsigned long flags;
1905
1906	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1907	count = func->ffs->eps_count;
1908	epfile = func->ffs->epfiles;
1909	ep = func->eps;
1910	while (count--) {
1911		/* pending requests get nuked */
1912		if (ep->ep)
1913			usb_ep_disable(ep->ep);
1914		++ep;
1915
1916		if (epfile) {
1917			epfile->ep = NULL;
1918			__ffs_epfile_read_buffer_free(epfile);
1919			++epfile;
1920		}
1921	}
1922	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1923}
1924
1925static int ffs_func_eps_enable(struct ffs_function *func)
1926{
1927	struct ffs_data *ffs;
1928	struct ffs_ep *ep;
1929	struct ffs_epfile *epfile;
1930	unsigned short count;
1931	unsigned long flags;
1932	int ret = 0;
1933
1934	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1935	ffs = func->ffs;
1936	ep = func->eps;
1937	epfile = ffs->epfiles;
1938	count = ffs->eps_count;
1939	while(count--) {
1940		ep->ep->driver_data = ep;
1941
1942		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1943		if (ret) {
1944			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1945					__func__, ep->ep->name, ret);
1946			break;
1947		}
1948
1949		ret = usb_ep_enable(ep->ep);
1950		if (!ret) {
1951			epfile->ep = ep;
1952			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1953			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1954		} else {
1955			break;
1956		}
1957
1958		++ep;
1959		++epfile;
1960	}
1961
1962	wake_up_interruptible(&ffs->wait);
1963	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1964
1965	return ret;
1966}
1967
1968
1969/* Parsing and building descriptors and strings *****************************/
1970
1971/*
1972 * This validates if data pointed by data is a valid USB descriptor as
1973 * well as record how many interfaces, endpoints and strings are
1974 * required by given configuration.  Returns address after the
1975 * descriptor or NULL if data is invalid.
1976 */
1977
1978enum ffs_entity_type {
1979	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1980};
1981
1982enum ffs_os_desc_type {
1983	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1984};
1985
1986typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1987				   u8 *valuep,
1988				   struct usb_descriptor_header *desc,
1989				   void *priv);
1990
1991typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1992				    struct usb_os_desc_header *h, void *data,
1993				    unsigned len, void *priv);
1994
1995static int __must_check ffs_do_single_desc(char *data, unsigned len,
1996					   ffs_entity_callback entity,
1997					   void *priv, int *current_class)
1998{
1999	struct usb_descriptor_header *_ds = (void *)data;
2000	u8 length;
2001	int ret;
2002
 
 
2003	/* At least two bytes are required: length and type */
2004	if (len < 2) {
2005		pr_vdebug("descriptor too short\n");
2006		return -EINVAL;
2007	}
2008
2009	/* If we have at least as many bytes as the descriptor takes? */
2010	length = _ds->bLength;
2011	if (len < length) {
2012		pr_vdebug("descriptor longer then available data\n");
2013		return -EINVAL;
2014	}
2015
2016#define __entity_check_INTERFACE(val)  1
2017#define __entity_check_STRING(val)     (val)
2018#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2019#define __entity(type, val) do {					\
2020		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2021		if (!__entity_check_ ##type(val)) {			\
2022			pr_vdebug("invalid entity's value\n");		\
2023			return -EINVAL;					\
2024		}							\
2025		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2026		if (ret < 0) {						\
2027			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2028				 (val), ret);				\
2029			return ret;					\
2030		}							\
2031	} while (0)
2032
2033	/* Parse descriptor depending on type. */
2034	switch (_ds->bDescriptorType) {
2035	case USB_DT_DEVICE:
2036	case USB_DT_CONFIG:
2037	case USB_DT_STRING:
2038	case USB_DT_DEVICE_QUALIFIER:
2039		/* function can't have any of those */
2040		pr_vdebug("descriptor reserved for gadget: %d\n",
2041		      _ds->bDescriptorType);
2042		return -EINVAL;
2043
2044	case USB_DT_INTERFACE: {
2045		struct usb_interface_descriptor *ds = (void *)_ds;
2046		pr_vdebug("interface descriptor\n");
2047		if (length != sizeof *ds)
2048			goto inv_length;
2049
2050		__entity(INTERFACE, ds->bInterfaceNumber);
2051		if (ds->iInterface)
2052			__entity(STRING, ds->iInterface);
2053		*current_class = ds->bInterfaceClass;
2054	}
2055		break;
2056
2057	case USB_DT_ENDPOINT: {
2058		struct usb_endpoint_descriptor *ds = (void *)_ds;
2059		pr_vdebug("endpoint descriptor\n");
2060		if (length != USB_DT_ENDPOINT_SIZE &&
2061		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2062			goto inv_length;
2063		__entity(ENDPOINT, ds->bEndpointAddress);
2064	}
2065		break;
2066
2067	case USB_TYPE_CLASS | 0x01:
2068		if (*current_class == USB_INTERFACE_CLASS_HID) {
2069			pr_vdebug("hid descriptor\n");
2070			if (length != sizeof(struct hid_descriptor))
2071				goto inv_length;
2072			break;
2073		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2074			pr_vdebug("ccid descriptor\n");
2075			if (length != sizeof(struct ccid_descriptor))
2076				goto inv_length;
2077			break;
2078		} else {
2079			pr_vdebug("unknown descriptor: %d for class %d\n",
2080			      _ds->bDescriptorType, *current_class);
2081			return -EINVAL;
2082		}
2083
2084	case USB_DT_OTG:
2085		if (length != sizeof(struct usb_otg_descriptor))
2086			goto inv_length;
2087		break;
2088
2089	case USB_DT_INTERFACE_ASSOCIATION: {
2090		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2091		pr_vdebug("interface association descriptor\n");
2092		if (length != sizeof *ds)
2093			goto inv_length;
2094		if (ds->iFunction)
2095			__entity(STRING, ds->iFunction);
2096	}
2097		break;
2098
2099	case USB_DT_SS_ENDPOINT_COMP:
2100		pr_vdebug("EP SS companion descriptor\n");
2101		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2102			goto inv_length;
2103		break;
2104
2105	case USB_DT_OTHER_SPEED_CONFIG:
2106	case USB_DT_INTERFACE_POWER:
2107	case USB_DT_DEBUG:
2108	case USB_DT_SECURITY:
2109	case USB_DT_CS_RADIO_CONTROL:
2110		/* TODO */
2111		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2112		return -EINVAL;
2113
2114	default:
2115		/* We should never be here */
2116		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2117		return -EINVAL;
2118
2119inv_length:
2120		pr_vdebug("invalid length: %d (descriptor %d)\n",
2121			  _ds->bLength, _ds->bDescriptorType);
2122		return -EINVAL;
2123	}
2124
2125#undef __entity
2126#undef __entity_check_DESCRIPTOR
2127#undef __entity_check_INTERFACE
2128#undef __entity_check_STRING
2129#undef __entity_check_ENDPOINT
2130
2131	return length;
2132}
2133
2134static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2135				     ffs_entity_callback entity, void *priv)
2136{
2137	const unsigned _len = len;
2138	unsigned long num = 0;
2139	int current_class = -1;
2140
 
 
2141	for (;;) {
2142		int ret;
2143
2144		if (num == count)
2145			data = NULL;
2146
2147		/* Record "descriptor" entity */
2148		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2149		if (ret < 0) {
2150			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2151				 num, ret);
2152			return ret;
2153		}
2154
2155		if (!data)
2156			return _len - len;
2157
2158		ret = ffs_do_single_desc(data, len, entity, priv,
2159			&current_class);
2160		if (ret < 0) {
2161			pr_debug("%s returns %d\n", __func__, ret);
2162			return ret;
2163		}
2164
2165		len -= ret;
2166		data += ret;
2167		++num;
2168	}
2169}
2170
2171static int __ffs_data_do_entity(enum ffs_entity_type type,
2172				u8 *valuep, struct usb_descriptor_header *desc,
2173				void *priv)
2174{
2175	struct ffs_desc_helper *helper = priv;
2176	struct usb_endpoint_descriptor *d;
2177
 
 
2178	switch (type) {
2179	case FFS_DESCRIPTOR:
2180		break;
2181
2182	case FFS_INTERFACE:
2183		/*
2184		 * Interfaces are indexed from zero so if we
2185		 * encountered interface "n" then there are at least
2186		 * "n+1" interfaces.
2187		 */
2188		if (*valuep >= helper->interfaces_count)
2189			helper->interfaces_count = *valuep + 1;
2190		break;
2191
2192	case FFS_STRING:
2193		/*
2194		 * Strings are indexed from 1 (0 is reserved
2195		 * for languages list)
2196		 */
2197		if (*valuep > helper->ffs->strings_count)
2198			helper->ffs->strings_count = *valuep;
2199		break;
2200
2201	case FFS_ENDPOINT:
2202		d = (void *)desc;
2203		helper->eps_count++;
2204		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2205			return -EINVAL;
2206		/* Check if descriptors for any speed were already parsed */
2207		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2208			helper->ffs->eps_addrmap[helper->eps_count] =
2209				d->bEndpointAddress;
2210		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2211				d->bEndpointAddress)
2212			return -EINVAL;
2213		break;
2214	}
2215
2216	return 0;
2217}
2218
2219static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2220				   struct usb_os_desc_header *desc)
2221{
2222	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2223	u16 w_index = le16_to_cpu(desc->wIndex);
2224
2225	if (bcd_version == 0x1) {
2226		pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. "
2227			"Userspace driver should be fixed, accepting 0x0001 for compatibility.\n");
2228	} else if (bcd_version != 0x100) {
2229		pr_vdebug("unsupported os descriptors version: 0x%x\n",
2230			  bcd_version);
2231		return -EINVAL;
2232	}
2233	switch (w_index) {
2234	case 0x4:
2235		*next_type = FFS_OS_DESC_EXT_COMPAT;
2236		break;
2237	case 0x5:
2238		*next_type = FFS_OS_DESC_EXT_PROP;
2239		break;
2240	default:
2241		pr_vdebug("unsupported os descriptor type: %d", w_index);
2242		return -EINVAL;
2243	}
2244
2245	return sizeof(*desc);
2246}
2247
2248/*
2249 * Process all extended compatibility/extended property descriptors
2250 * of a feature descriptor
2251 */
2252static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2253					      enum ffs_os_desc_type type,
2254					      u16 feature_count,
2255					      ffs_os_desc_callback entity,
2256					      void *priv,
2257					      struct usb_os_desc_header *h)
2258{
2259	int ret;
2260	const unsigned _len = len;
2261
 
 
2262	/* loop over all ext compat/ext prop descriptors */
2263	while (feature_count--) {
2264		ret = entity(type, h, data, len, priv);
2265		if (ret < 0) {
2266			pr_debug("bad OS descriptor, type: %d\n", type);
2267			return ret;
2268		}
2269		data += ret;
2270		len -= ret;
2271	}
2272	return _len - len;
2273}
2274
2275/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2276static int __must_check ffs_do_os_descs(unsigned count,
2277					char *data, unsigned len,
2278					ffs_os_desc_callback entity, void *priv)
2279{
2280	const unsigned _len = len;
2281	unsigned long num = 0;
2282
 
 
2283	for (num = 0; num < count; ++num) {
2284		int ret;
2285		enum ffs_os_desc_type type;
2286		u16 feature_count;
2287		struct usb_os_desc_header *desc = (void *)data;
2288
2289		if (len < sizeof(*desc))
2290			return -EINVAL;
2291
2292		/*
2293		 * Record "descriptor" entity.
2294		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2295		 * Move the data pointer to the beginning of extended
2296		 * compatibilities proper or extended properties proper
2297		 * portions of the data
2298		 */
2299		if (le32_to_cpu(desc->dwLength) > len)
2300			return -EINVAL;
2301
2302		ret = __ffs_do_os_desc_header(&type, desc);
2303		if (ret < 0) {
2304			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2305				 num, ret);
2306			return ret;
2307		}
2308		/*
2309		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2310		 */
2311		feature_count = le16_to_cpu(desc->wCount);
2312		if (type == FFS_OS_DESC_EXT_COMPAT &&
2313		    (feature_count > 255 || desc->Reserved))
2314				return -EINVAL;
2315		len -= ret;
2316		data += ret;
2317
2318		/*
2319		 * Process all function/property descriptors
2320		 * of this Feature Descriptor
2321		 */
2322		ret = ffs_do_single_os_desc(data, len, type,
2323					    feature_count, entity, priv, desc);
2324		if (ret < 0) {
2325			pr_debug("%s returns %d\n", __func__, ret);
2326			return ret;
2327		}
2328
2329		len -= ret;
2330		data += ret;
2331	}
2332	return _len - len;
2333}
2334
2335/*
2336 * Validate contents of the buffer from userspace related to OS descriptors.
2337 */
2338static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2339				 struct usb_os_desc_header *h, void *data,
2340				 unsigned len, void *priv)
2341{
2342	struct ffs_data *ffs = priv;
2343	u8 length;
2344
 
 
2345	switch (type) {
2346	case FFS_OS_DESC_EXT_COMPAT: {
2347		struct usb_ext_compat_desc *d = data;
2348		int i;
2349
2350		if (len < sizeof(*d) ||
2351		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2352			return -EINVAL;
2353		if (d->Reserved1 != 1) {
2354			/*
2355			 * According to the spec, Reserved1 must be set to 1
2356			 * but older kernels incorrectly rejected non-zero
2357			 * values.  We fix it here to avoid returning EINVAL
2358			 * in response to values we used to accept.
2359			 */
2360			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2361			d->Reserved1 = 1;
2362		}
2363		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2364			if (d->Reserved2[i])
2365				return -EINVAL;
2366
2367		length = sizeof(struct usb_ext_compat_desc);
2368	}
2369		break;
2370	case FFS_OS_DESC_EXT_PROP: {
2371		struct usb_ext_prop_desc *d = data;
2372		u32 type, pdl;
2373		u16 pnl;
2374
2375		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2376			return -EINVAL;
2377		length = le32_to_cpu(d->dwSize);
2378		if (len < length)
2379			return -EINVAL;
2380		type = le32_to_cpu(d->dwPropertyDataType);
2381		if (type < USB_EXT_PROP_UNICODE ||
2382		    type > USB_EXT_PROP_UNICODE_MULTI) {
2383			pr_vdebug("unsupported os descriptor property type: %d",
2384				  type);
2385			return -EINVAL;
2386		}
2387		pnl = le16_to_cpu(d->wPropertyNameLength);
2388		if (length < 14 + pnl) {
2389			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2390				  length, pnl, type);
2391			return -EINVAL;
2392		}
2393		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2394		if (length != 14 + pnl + pdl) {
2395			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2396				  length, pnl, pdl, type);
2397			return -EINVAL;
2398		}
2399		++ffs->ms_os_descs_ext_prop_count;
2400		/* property name reported to the host as "WCHAR"s */
2401		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2402		ffs->ms_os_descs_ext_prop_data_len += pdl;
2403	}
2404		break;
2405	default:
2406		pr_vdebug("unknown descriptor: %d\n", type);
2407		return -EINVAL;
2408	}
2409	return length;
2410}
2411
2412static int __ffs_data_got_descs(struct ffs_data *ffs,
2413				char *const _data, size_t len)
2414{
2415	char *data = _data, *raw_descs;
2416	unsigned os_descs_count = 0, counts[3], flags;
2417	int ret = -EINVAL, i;
2418	struct ffs_desc_helper helper;
2419
 
 
2420	if (get_unaligned_le32(data + 4) != len)
2421		goto error;
2422
2423	switch (get_unaligned_le32(data)) {
2424	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2425		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2426		data += 8;
2427		len  -= 8;
2428		break;
2429	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2430		flags = get_unaligned_le32(data + 8);
2431		ffs->user_flags = flags;
2432		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2433			      FUNCTIONFS_HAS_HS_DESC |
2434			      FUNCTIONFS_HAS_SS_DESC |
2435			      FUNCTIONFS_HAS_MS_OS_DESC |
2436			      FUNCTIONFS_VIRTUAL_ADDR |
2437			      FUNCTIONFS_EVENTFD |
2438			      FUNCTIONFS_ALL_CTRL_RECIP |
2439			      FUNCTIONFS_CONFIG0_SETUP)) {
2440			ret = -ENOSYS;
2441			goto error;
2442		}
2443		data += 12;
2444		len  -= 12;
2445		break;
2446	default:
2447		goto error;
2448	}
2449
2450	if (flags & FUNCTIONFS_EVENTFD) {
2451		if (len < 4)
2452			goto error;
2453		ffs->ffs_eventfd =
2454			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2455		if (IS_ERR(ffs->ffs_eventfd)) {
2456			ret = PTR_ERR(ffs->ffs_eventfd);
2457			ffs->ffs_eventfd = NULL;
2458			goto error;
2459		}
2460		data += 4;
2461		len  -= 4;
2462	}
2463
2464	/* Read fs_count, hs_count and ss_count (if present) */
2465	for (i = 0; i < 3; ++i) {
2466		if (!(flags & (1 << i))) {
2467			counts[i] = 0;
2468		} else if (len < 4) {
2469			goto error;
2470		} else {
2471			counts[i] = get_unaligned_le32(data);
2472			data += 4;
2473			len  -= 4;
2474		}
2475	}
2476	if (flags & (1 << i)) {
2477		if (len < 4) {
2478			goto error;
2479		}
2480		os_descs_count = get_unaligned_le32(data);
2481		data += 4;
2482		len -= 4;
2483	}
2484
2485	/* Read descriptors */
2486	raw_descs = data;
2487	helper.ffs = ffs;
2488	for (i = 0; i < 3; ++i) {
2489		if (!counts[i])
2490			continue;
2491		helper.interfaces_count = 0;
2492		helper.eps_count = 0;
2493		ret = ffs_do_descs(counts[i], data, len,
2494				   __ffs_data_do_entity, &helper);
2495		if (ret < 0)
2496			goto error;
2497		if (!ffs->eps_count && !ffs->interfaces_count) {
2498			ffs->eps_count = helper.eps_count;
2499			ffs->interfaces_count = helper.interfaces_count;
2500		} else {
2501			if (ffs->eps_count != helper.eps_count) {
2502				ret = -EINVAL;
2503				goto error;
2504			}
2505			if (ffs->interfaces_count != helper.interfaces_count) {
2506				ret = -EINVAL;
2507				goto error;
2508			}
2509		}
2510		data += ret;
2511		len  -= ret;
2512	}
2513	if (os_descs_count) {
2514		ret = ffs_do_os_descs(os_descs_count, data, len,
2515				      __ffs_data_do_os_desc, ffs);
2516		if (ret < 0)
2517			goto error;
2518		data += ret;
2519		len -= ret;
2520	}
2521
2522	if (raw_descs == data || len) {
2523		ret = -EINVAL;
2524		goto error;
2525	}
2526
2527	ffs->raw_descs_data	= _data;
2528	ffs->raw_descs		= raw_descs;
2529	ffs->raw_descs_length	= data - raw_descs;
2530	ffs->fs_descs_count	= counts[0];
2531	ffs->hs_descs_count	= counts[1];
2532	ffs->ss_descs_count	= counts[2];
2533	ffs->ms_os_descs_count	= os_descs_count;
2534
2535	return 0;
2536
2537error:
2538	kfree(_data);
2539	return ret;
2540}
2541
2542static int __ffs_data_got_strings(struct ffs_data *ffs,
2543				  char *const _data, size_t len)
2544{
2545	u32 str_count, needed_count, lang_count;
2546	struct usb_gadget_strings **stringtabs, *t;
2547	const char *data = _data;
2548	struct usb_string *s;
2549
2550	if (len < 16 ||
2551	    get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2552	    get_unaligned_le32(data + 4) != len)
 
 
2553		goto error;
2554	str_count  = get_unaligned_le32(data + 8);
2555	lang_count = get_unaligned_le32(data + 12);
2556
2557	/* if one is zero the other must be zero */
2558	if (!str_count != !lang_count)
2559		goto error;
2560
2561	/* Do we have at least as many strings as descriptors need? */
2562	needed_count = ffs->strings_count;
2563	if (str_count < needed_count)
2564		goto error;
2565
2566	/*
2567	 * If we don't need any strings just return and free all
2568	 * memory.
2569	 */
2570	if (!needed_count) {
2571		kfree(_data);
2572		return 0;
2573	}
2574
2575	/* Allocate everything in one chunk so there's less maintenance. */
2576	{
2577		unsigned i = 0;
2578		vla_group(d);
2579		vla_item(d, struct usb_gadget_strings *, stringtabs,
2580			size_add(lang_count, 1));
2581		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2582		vla_item(d, struct usb_string, strings,
2583			size_mul(lang_count, (needed_count + 1)));
2584
2585		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2586
2587		if (!vlabuf) {
2588			kfree(_data);
2589			return -ENOMEM;
2590		}
2591
2592		/* Initialize the VLA pointers */
2593		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2594		t = vla_ptr(vlabuf, d, stringtab);
2595		i = lang_count;
2596		do {
2597			*stringtabs++ = t++;
2598		} while (--i);
2599		*stringtabs = NULL;
2600
2601		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2602		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2603		t = vla_ptr(vlabuf, d, stringtab);
2604		s = vla_ptr(vlabuf, d, strings);
2605	}
2606
2607	/* For each language */
2608	data += 16;
2609	len -= 16;
2610
2611	do { /* lang_count > 0 so we can use do-while */
2612		unsigned needed = needed_count;
2613		u32 str_per_lang = str_count;
2614
2615		if (len < 3)
2616			goto error_free;
2617		t->language = get_unaligned_le16(data);
2618		t->strings  = s;
2619		++t;
2620
2621		data += 2;
2622		len -= 2;
2623
2624		/* For each string */
2625		do { /* str_count > 0 so we can use do-while */
2626			size_t length = strnlen(data, len);
2627
2628			if (length == len)
2629				goto error_free;
2630
2631			/*
2632			 * User may provide more strings then we need,
2633			 * if that's the case we simply ignore the
2634			 * rest
2635			 */
2636			if (needed) {
2637				/*
2638				 * s->id will be set while adding
2639				 * function to configuration so for
2640				 * now just leave garbage here.
2641				 */
2642				s->s = data;
2643				--needed;
2644				++s;
2645			}
2646
2647			data += length + 1;
2648			len -= length + 1;
2649		} while (--str_per_lang);
2650
2651		s->id = 0;   /* terminator */
2652		s->s = NULL;
2653		++s;
2654
2655	} while (--lang_count);
2656
2657	/* Some garbage left? */
2658	if (len)
2659		goto error_free;
2660
2661	/* Done! */
2662	ffs->stringtabs = stringtabs;
2663	ffs->raw_strings = _data;
2664
2665	return 0;
2666
2667error_free:
2668	kfree(stringtabs);
2669error:
2670	kfree(_data);
2671	return -EINVAL;
2672}
2673
2674
2675/* Events handling and management *******************************************/
2676
2677static void __ffs_event_add(struct ffs_data *ffs,
2678			    enum usb_functionfs_event_type type)
2679{
2680	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2681	int neg = 0;
2682
2683	/*
2684	 * Abort any unhandled setup
2685	 *
2686	 * We do not need to worry about some cmpxchg() changing value
2687	 * of ffs->setup_state without holding the lock because when
2688	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2689	 * the source does nothing.
2690	 */
2691	if (ffs->setup_state == FFS_SETUP_PENDING)
2692		ffs->setup_state = FFS_SETUP_CANCELLED;
2693
2694	/*
2695	 * Logic of this function guarantees that there are at most four pending
2696	 * evens on ffs->ev.types queue.  This is important because the queue
2697	 * has space for four elements only and __ffs_ep0_read_events function
2698	 * depends on that limit as well.  If more event types are added, those
2699	 * limits have to be revisited or guaranteed to still hold.
2700	 */
2701	switch (type) {
2702	case FUNCTIONFS_RESUME:
2703		rem_type2 = FUNCTIONFS_SUSPEND;
2704		fallthrough;
2705	case FUNCTIONFS_SUSPEND:
2706	case FUNCTIONFS_SETUP:
2707		rem_type1 = type;
2708		/* Discard all similar events */
2709		break;
2710
2711	case FUNCTIONFS_BIND:
2712	case FUNCTIONFS_UNBIND:
2713	case FUNCTIONFS_DISABLE:
2714	case FUNCTIONFS_ENABLE:
2715		/* Discard everything other then power management. */
2716		rem_type1 = FUNCTIONFS_SUSPEND;
2717		rem_type2 = FUNCTIONFS_RESUME;
2718		neg = 1;
2719		break;
2720
2721	default:
2722		WARN(1, "%d: unknown event, this should not happen\n", type);
2723		return;
2724	}
2725
2726	{
2727		u8 *ev  = ffs->ev.types, *out = ev;
2728		unsigned n = ffs->ev.count;
2729		for (; n; --n, ++ev)
2730			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2731				*out++ = *ev;
2732			else
2733				pr_vdebug("purging event %d\n", *ev);
2734		ffs->ev.count = out - ffs->ev.types;
2735	}
2736
2737	pr_vdebug("adding event %d\n", type);
2738	ffs->ev.types[ffs->ev.count++] = type;
2739	wake_up_locked(&ffs->ev.waitq);
2740	if (ffs->ffs_eventfd)
2741		eventfd_signal(ffs->ffs_eventfd);
2742}
2743
2744static void ffs_event_add(struct ffs_data *ffs,
2745			  enum usb_functionfs_event_type type)
2746{
2747	unsigned long flags;
2748	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2749	__ffs_event_add(ffs, type);
2750	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2751}
2752
2753/* Bind/unbind USB function hooks *******************************************/
2754
2755static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2756{
2757	int i;
2758
2759	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2760		if (ffs->eps_addrmap[i] == endpoint_address)
2761			return i;
2762	return -ENOENT;
2763}
2764
2765static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2766				    struct usb_descriptor_header *desc,
2767				    void *priv)
2768{
2769	struct usb_endpoint_descriptor *ds = (void *)desc;
2770	struct ffs_function *func = priv;
2771	struct ffs_ep *ffs_ep;
2772	unsigned ep_desc_id;
2773	int idx;
2774	static const char *speed_names[] = { "full", "high", "super" };
2775
2776	if (type != FFS_DESCRIPTOR)
2777		return 0;
2778
2779	/*
2780	 * If ss_descriptors is not NULL, we are reading super speed
2781	 * descriptors; if hs_descriptors is not NULL, we are reading high
2782	 * speed descriptors; otherwise, we are reading full speed
2783	 * descriptors.
2784	 */
2785	if (func->function.ss_descriptors) {
2786		ep_desc_id = 2;
2787		func->function.ss_descriptors[(long)valuep] = desc;
2788	} else if (func->function.hs_descriptors) {
2789		ep_desc_id = 1;
2790		func->function.hs_descriptors[(long)valuep] = desc;
2791	} else {
2792		ep_desc_id = 0;
2793		func->function.fs_descriptors[(long)valuep]    = desc;
2794	}
2795
2796	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2797		return 0;
2798
2799	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2800	if (idx < 0)
2801		return idx;
2802
2803	ffs_ep = func->eps + idx;
2804
2805	if (ffs_ep->descs[ep_desc_id]) {
2806		pr_err("two %sspeed descriptors for EP %d\n",
2807			  speed_names[ep_desc_id],
2808			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2809		return -EINVAL;
2810	}
2811	ffs_ep->descs[ep_desc_id] = ds;
2812
2813	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2814	if (ffs_ep->ep) {
2815		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2816		if (!ds->wMaxPacketSize)
2817			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2818	} else {
2819		struct usb_request *req;
2820		struct usb_ep *ep;
2821		u8 bEndpointAddress;
2822		u16 wMaxPacketSize;
2823
2824		/*
2825		 * We back up bEndpointAddress because autoconfig overwrites
2826		 * it with physical endpoint address.
2827		 */
2828		bEndpointAddress = ds->bEndpointAddress;
2829		/*
2830		 * We back up wMaxPacketSize because autoconfig treats
2831		 * endpoint descriptors as if they were full speed.
2832		 */
2833		wMaxPacketSize = ds->wMaxPacketSize;
2834		pr_vdebug("autoconfig\n");
2835		ep = usb_ep_autoconfig(func->gadget, ds);
2836		if (!ep)
2837			return -ENOTSUPP;
2838		ep->driver_data = func->eps + idx;
2839
2840		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2841		if (!req)
2842			return -ENOMEM;
2843
2844		ffs_ep->ep  = ep;
2845		ffs_ep->req = req;
2846		func->eps_revmap[ds->bEndpointAddress &
2847				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2848		/*
2849		 * If we use virtual address mapping, we restore
2850		 * original bEndpointAddress value.
2851		 */
2852		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2853			ds->bEndpointAddress = bEndpointAddress;
2854		/*
2855		 * Restore wMaxPacketSize which was potentially
2856		 * overwritten by autoconfig.
2857		 */
2858		ds->wMaxPacketSize = wMaxPacketSize;
2859	}
2860	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2861
2862	return 0;
2863}
2864
2865static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2866				   struct usb_descriptor_header *desc,
2867				   void *priv)
2868{
2869	struct ffs_function *func = priv;
2870	unsigned idx;
2871	u8 newValue;
2872
2873	switch (type) {
2874	default:
2875	case FFS_DESCRIPTOR:
2876		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2877		return 0;
2878
2879	case FFS_INTERFACE:
2880		idx = *valuep;
2881		if (func->interfaces_nums[idx] < 0) {
2882			int id = usb_interface_id(func->conf, &func->function);
2883			if (id < 0)
2884				return id;
2885			func->interfaces_nums[idx] = id;
2886		}
2887		newValue = func->interfaces_nums[idx];
2888		break;
2889
2890	case FFS_STRING:
2891		/* String' IDs are allocated when fsf_data is bound to cdev */
2892		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2893		break;
2894
2895	case FFS_ENDPOINT:
2896		/*
2897		 * USB_DT_ENDPOINT are handled in
2898		 * __ffs_func_bind_do_descs().
2899		 */
2900		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2901			return 0;
2902
2903		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2904		if (!func->eps[idx].ep)
2905			return -EINVAL;
2906
2907		{
2908			struct usb_endpoint_descriptor **descs;
2909			descs = func->eps[idx].descs;
2910			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2911		}
2912		break;
2913	}
2914
2915	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2916	*valuep = newValue;
2917	return 0;
2918}
2919
2920static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2921				      struct usb_os_desc_header *h, void *data,
2922				      unsigned len, void *priv)
2923{
2924	struct ffs_function *func = priv;
2925	u8 length = 0;
2926
2927	switch (type) {
2928	case FFS_OS_DESC_EXT_COMPAT: {
2929		struct usb_ext_compat_desc *desc = data;
2930		struct usb_os_desc_table *t;
2931
2932		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2933		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2934		memcpy(t->os_desc->ext_compat_id, &desc->IDs,
2935		       sizeof_field(struct usb_ext_compat_desc, IDs));
 
2936		length = sizeof(*desc);
2937	}
2938		break;
2939	case FFS_OS_DESC_EXT_PROP: {
2940		struct usb_ext_prop_desc *desc = data;
2941		struct usb_os_desc_table *t;
2942		struct usb_os_desc_ext_prop *ext_prop;
2943		char *ext_prop_name;
2944		char *ext_prop_data;
2945
2946		t = &func->function.os_desc_table[h->interface];
2947		t->if_id = func->interfaces_nums[h->interface];
2948
2949		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2950		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2951
2952		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2953		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2954		ext_prop->data_len = le32_to_cpu(*(__le32 *)
2955			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2956		length = ext_prop->name_len + ext_prop->data_len + 14;
2957
2958		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2959		func->ffs->ms_os_descs_ext_prop_name_avail +=
2960			ext_prop->name_len;
2961
2962		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2963		func->ffs->ms_os_descs_ext_prop_data_avail +=
2964			ext_prop->data_len;
2965		memcpy(ext_prop_data,
2966		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2967		       ext_prop->data_len);
2968		/* unicode data reported to the host as "WCHAR"s */
2969		switch (ext_prop->type) {
2970		case USB_EXT_PROP_UNICODE:
2971		case USB_EXT_PROP_UNICODE_ENV:
2972		case USB_EXT_PROP_UNICODE_LINK:
2973		case USB_EXT_PROP_UNICODE_MULTI:
2974			ext_prop->data_len *= 2;
2975			break;
2976		}
2977		ext_prop->data = ext_prop_data;
2978
2979		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2980		       ext_prop->name_len);
2981		/* property name reported to the host as "WCHAR"s */
2982		ext_prop->name_len *= 2;
2983		ext_prop->name = ext_prop_name;
2984
2985		t->os_desc->ext_prop_len +=
2986			ext_prop->name_len + ext_prop->data_len + 14;
2987		++t->os_desc->ext_prop_count;
2988		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2989	}
2990		break;
2991	default:
2992		pr_vdebug("unknown descriptor: %d\n", type);
2993	}
2994
2995	return length;
2996}
2997
2998static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2999						struct usb_configuration *c)
3000{
3001	struct ffs_function *func = ffs_func_from_usb(f);
3002	struct f_fs_opts *ffs_opts =
3003		container_of(f->fi, struct f_fs_opts, func_inst);
3004	struct ffs_data *ffs_data;
3005	int ret;
3006
 
 
3007	/*
3008	 * Legacy gadget triggers binding in functionfs_ready_callback,
3009	 * which already uses locking; taking the same lock here would
3010	 * cause a deadlock.
3011	 *
3012	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3013	 */
3014	if (!ffs_opts->no_configfs)
3015		ffs_dev_lock();
3016	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3017	ffs_data = ffs_opts->dev->ffs_data;
3018	if (!ffs_opts->no_configfs)
3019		ffs_dev_unlock();
3020	if (ret)
3021		return ERR_PTR(ret);
3022
3023	func->ffs = ffs_data;
3024	func->conf = c;
3025	func->gadget = c->cdev->gadget;
3026
3027	/*
3028	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3029	 * configurations are bound in sequence with list_for_each_entry,
3030	 * in each configuration its functions are bound in sequence
3031	 * with list_for_each_entry, so we assume no race condition
3032	 * with regard to ffs_opts->bound access
3033	 */
3034	if (!ffs_opts->refcnt) {
3035		ret = functionfs_bind(func->ffs, c->cdev);
3036		if (ret)
3037			return ERR_PTR(ret);
3038	}
3039	ffs_opts->refcnt++;
3040	func->function.strings = func->ffs->stringtabs;
3041
3042	return ffs_opts;
3043}
3044
3045static int _ffs_func_bind(struct usb_configuration *c,
3046			  struct usb_function *f)
3047{
3048	struct ffs_function *func = ffs_func_from_usb(f);
3049	struct ffs_data *ffs = func->ffs;
3050
3051	const int full = !!func->ffs->fs_descs_count;
3052	const int high = !!func->ffs->hs_descs_count;
3053	const int super = !!func->ffs->ss_descs_count;
3054
3055	int fs_len, hs_len, ss_len, ret, i;
3056	struct ffs_ep *eps_ptr;
3057
3058	/* Make it a single chunk, less management later on */
3059	vla_group(d);
3060	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3061	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3062		full ? ffs->fs_descs_count + 1 : 0);
3063	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3064		high ? ffs->hs_descs_count + 1 : 0);
3065	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3066		super ? ffs->ss_descs_count + 1 : 0);
3067	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3068	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3069			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3070	vla_item_with_sz(d, char[16], ext_compat,
3071			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3072	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3073			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3074	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3075			 ffs->ms_os_descs_ext_prop_count);
3076	vla_item_with_sz(d, char, ext_prop_name,
3077			 ffs->ms_os_descs_ext_prop_name_len);
3078	vla_item_with_sz(d, char, ext_prop_data,
3079			 ffs->ms_os_descs_ext_prop_data_len);
3080	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3081	char *vlabuf;
3082
 
 
3083	/* Has descriptors only for speeds gadget does not support */
3084	if (!(full | high | super))
3085		return -ENOTSUPP;
3086
3087	/* Allocate a single chunk, less management later on */
3088	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3089	if (!vlabuf)
3090		return -ENOMEM;
3091
3092	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3093	ffs->ms_os_descs_ext_prop_name_avail =
3094		vla_ptr(vlabuf, d, ext_prop_name);
3095	ffs->ms_os_descs_ext_prop_data_avail =
3096		vla_ptr(vlabuf, d, ext_prop_data);
3097
3098	/* Copy descriptors  */
3099	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3100	       ffs->raw_descs_length);
3101
3102	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3103	eps_ptr = vla_ptr(vlabuf, d, eps);
3104	for (i = 0; i < ffs->eps_count; i++)
3105		eps_ptr[i].num = -1;
3106
3107	/* Save pointers
3108	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3109	*/
3110	func->eps             = vla_ptr(vlabuf, d, eps);
3111	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3112
3113	/*
3114	 * Go through all the endpoint descriptors and allocate
3115	 * endpoints first, so that later we can rewrite the endpoint
3116	 * numbers without worrying that it may be described later on.
3117	 */
3118	if (full) {
3119		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3120		fs_len = ffs_do_descs(ffs->fs_descs_count,
3121				      vla_ptr(vlabuf, d, raw_descs),
3122				      d_raw_descs__sz,
3123				      __ffs_func_bind_do_descs, func);
3124		if (fs_len < 0) {
3125			ret = fs_len;
3126			goto error;
3127		}
3128	} else {
3129		fs_len = 0;
3130	}
3131
3132	if (high) {
3133		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3134		hs_len = ffs_do_descs(ffs->hs_descs_count,
3135				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3136				      d_raw_descs__sz - fs_len,
3137				      __ffs_func_bind_do_descs, func);
3138		if (hs_len < 0) {
3139			ret = hs_len;
3140			goto error;
3141		}
3142	} else {
3143		hs_len = 0;
3144	}
3145
3146	if (super) {
3147		func->function.ss_descriptors = func->function.ssp_descriptors =
3148			vla_ptr(vlabuf, d, ss_descs);
3149		ss_len = ffs_do_descs(ffs->ss_descs_count,
3150				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3151				d_raw_descs__sz - fs_len - hs_len,
3152				__ffs_func_bind_do_descs, func);
3153		if (ss_len < 0) {
3154			ret = ss_len;
3155			goto error;
3156		}
3157	} else {
3158		ss_len = 0;
3159	}
3160
3161	/*
3162	 * Now handle interface numbers allocation and interface and
3163	 * endpoint numbers rewriting.  We can do that in one go
3164	 * now.
3165	 */
3166	ret = ffs_do_descs(ffs->fs_descs_count +
3167			   (high ? ffs->hs_descs_count : 0) +
3168			   (super ? ffs->ss_descs_count : 0),
3169			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3170			   __ffs_func_bind_do_nums, func);
3171	if (ret < 0)
3172		goto error;
3173
3174	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3175	if (c->cdev->use_os_string) {
3176		for (i = 0; i < ffs->interfaces_count; ++i) {
3177			struct usb_os_desc *desc;
3178
3179			desc = func->function.os_desc_table[i].os_desc =
3180				vla_ptr(vlabuf, d, os_desc) +
3181				i * sizeof(struct usb_os_desc);
3182			desc->ext_compat_id =
3183				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3184			INIT_LIST_HEAD(&desc->ext_prop);
3185		}
3186		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3187				      vla_ptr(vlabuf, d, raw_descs) +
3188				      fs_len + hs_len + ss_len,
3189				      d_raw_descs__sz - fs_len - hs_len -
3190				      ss_len,
3191				      __ffs_func_bind_do_os_desc, func);
3192		if (ret < 0)
3193			goto error;
3194	}
3195	func->function.os_desc_n =
3196		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3197
3198	/* And we're done */
3199	ffs_event_add(ffs, FUNCTIONFS_BIND);
3200	return 0;
3201
3202error:
3203	/* XXX Do we need to release all claimed endpoints here? */
3204	return ret;
3205}
3206
3207static int ffs_func_bind(struct usb_configuration *c,
3208			 struct usb_function *f)
3209{
3210	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3211	struct ffs_function *func = ffs_func_from_usb(f);
3212	int ret;
3213
3214	if (IS_ERR(ffs_opts))
3215		return PTR_ERR(ffs_opts);
3216
3217	ret = _ffs_func_bind(c, f);
3218	if (ret && !--ffs_opts->refcnt)
3219		functionfs_unbind(func->ffs);
3220
3221	return ret;
3222}
3223
3224
3225/* Other USB function hooks *************************************************/
3226
3227static void ffs_reset_work(struct work_struct *work)
3228{
3229	struct ffs_data *ffs = container_of(work,
3230		struct ffs_data, reset_work);
3231	ffs_data_reset(ffs);
3232}
3233
3234static int ffs_func_set_alt(struct usb_function *f,
3235			    unsigned interface, unsigned alt)
3236{
3237	struct ffs_function *func = ffs_func_from_usb(f);
3238	struct ffs_data *ffs = func->ffs;
3239	int ret = 0, intf;
3240
3241	if (alt != (unsigned)-1) {
3242		intf = ffs_func_revmap_intf(func, interface);
3243		if (intf < 0)
3244			return intf;
3245	}
3246
3247	if (ffs->func)
3248		ffs_func_eps_disable(ffs->func);
3249
3250	if (ffs->state == FFS_DEACTIVATED) {
3251		ffs->state = FFS_CLOSING;
3252		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3253		schedule_work(&ffs->reset_work);
3254		return -ENODEV;
3255	}
3256
3257	if (ffs->state != FFS_ACTIVE)
3258		return -ENODEV;
3259
3260	if (alt == (unsigned)-1) {
3261		ffs->func = NULL;
3262		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3263		return 0;
3264	}
3265
3266	ffs->func = func;
3267	ret = ffs_func_eps_enable(func);
3268	if (ret >= 0)
3269		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3270	return ret;
3271}
3272
3273static void ffs_func_disable(struct usb_function *f)
3274{
3275	ffs_func_set_alt(f, 0, (unsigned)-1);
3276}
3277
3278static int ffs_func_setup(struct usb_function *f,
3279			  const struct usb_ctrlrequest *creq)
3280{
3281	struct ffs_function *func = ffs_func_from_usb(f);
3282	struct ffs_data *ffs = func->ffs;
3283	unsigned long flags;
3284	int ret;
3285
 
 
3286	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3287	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3288	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3289	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3290	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3291
3292	/*
3293	 * Most requests directed to interface go through here
3294	 * (notable exceptions are set/get interface) so we need to
3295	 * handle them.  All other either handled by composite or
3296	 * passed to usb_configuration->setup() (if one is set).  No
3297	 * matter, we will handle requests directed to endpoint here
3298	 * as well (as it's straightforward).  Other request recipient
3299	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3300	 * is being used.
3301	 */
3302	if (ffs->state != FFS_ACTIVE)
3303		return -ENODEV;
3304
3305	switch (creq->bRequestType & USB_RECIP_MASK) {
3306	case USB_RECIP_INTERFACE:
3307		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3308		if (ret < 0)
3309			return ret;
3310		break;
3311
3312	case USB_RECIP_ENDPOINT:
3313		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3314		if (ret < 0)
3315			return ret;
3316		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3317			ret = func->ffs->eps_addrmap[ret];
3318		break;
3319
3320	default:
3321		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3322			ret = le16_to_cpu(creq->wIndex);
3323		else
3324			return -EOPNOTSUPP;
3325	}
3326
3327	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3328	ffs->ev.setup = *creq;
3329	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3330	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3331	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3332
3333	return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3334}
3335
3336static bool ffs_func_req_match(struct usb_function *f,
3337			       const struct usb_ctrlrequest *creq,
3338			       bool config0)
3339{
3340	struct ffs_function *func = ffs_func_from_usb(f);
3341
3342	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3343		return false;
3344
3345	switch (creq->bRequestType & USB_RECIP_MASK) {
3346	case USB_RECIP_INTERFACE:
3347		return (ffs_func_revmap_intf(func,
3348					     le16_to_cpu(creq->wIndex)) >= 0);
3349	case USB_RECIP_ENDPOINT:
3350		return (ffs_func_revmap_ep(func,
3351					   le16_to_cpu(creq->wIndex)) >= 0);
3352	default:
3353		return (bool) (func->ffs->user_flags &
3354			       FUNCTIONFS_ALL_CTRL_RECIP);
3355	}
3356}
3357
3358static void ffs_func_suspend(struct usb_function *f)
3359{
 
3360	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3361}
3362
3363static void ffs_func_resume(struct usb_function *f)
3364{
 
3365	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3366}
3367
3368
3369/* Endpoint and interface numbers reverse mapping ***************************/
3370
3371static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3372{
3373	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3374	return num ? num : -EDOM;
3375}
3376
3377static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3378{
3379	short *nums = func->interfaces_nums;
3380	unsigned count = func->ffs->interfaces_count;
3381
3382	for (; count; --count, ++nums) {
3383		if (*nums >= 0 && *nums == intf)
3384			return nums - func->interfaces_nums;
3385	}
3386
3387	return -EDOM;
3388}
3389
3390
3391/* Devices management *******************************************************/
3392
3393static LIST_HEAD(ffs_devices);
3394
3395static struct ffs_dev *_ffs_do_find_dev(const char *name)
3396{
3397	struct ffs_dev *dev;
3398
3399	if (!name)
3400		return NULL;
3401
3402	list_for_each_entry(dev, &ffs_devices, entry) {
3403		if (strcmp(dev->name, name) == 0)
3404			return dev;
3405	}
3406
3407	return NULL;
3408}
3409
3410/*
3411 * ffs_lock must be taken by the caller of this function
3412 */
3413static struct ffs_dev *_ffs_get_single_dev(void)
3414{
3415	struct ffs_dev *dev;
3416
3417	if (list_is_singular(&ffs_devices)) {
3418		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3419		if (dev->single)
3420			return dev;
3421	}
3422
3423	return NULL;
3424}
3425
3426/*
3427 * ffs_lock must be taken by the caller of this function
3428 */
3429static struct ffs_dev *_ffs_find_dev(const char *name)
3430{
3431	struct ffs_dev *dev;
3432
3433	dev = _ffs_get_single_dev();
3434	if (dev)
3435		return dev;
3436
3437	return _ffs_do_find_dev(name);
3438}
3439
3440/* Configfs support *********************************************************/
3441
3442static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3443{
3444	return container_of(to_config_group(item), struct f_fs_opts,
3445			    func_inst.group);
3446}
3447
3448static void ffs_attr_release(struct config_item *item)
3449{
3450	struct f_fs_opts *opts = to_ffs_opts(item);
3451
3452	usb_put_function_instance(&opts->func_inst);
3453}
3454
3455static struct configfs_item_operations ffs_item_ops = {
3456	.release	= ffs_attr_release,
3457};
3458
3459static const struct config_item_type ffs_func_type = {
3460	.ct_item_ops	= &ffs_item_ops,
3461	.ct_owner	= THIS_MODULE,
3462};
3463
3464
3465/* Function registration interface ******************************************/
3466
3467static void ffs_free_inst(struct usb_function_instance *f)
3468{
3469	struct f_fs_opts *opts;
3470
3471	opts = to_f_fs_opts(f);
3472	ffs_release_dev(opts->dev);
3473	ffs_dev_lock();
3474	_ffs_free_dev(opts->dev);
3475	ffs_dev_unlock();
3476	kfree(opts);
3477}
3478
3479static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3480{
3481	if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3482		return -ENAMETOOLONG;
3483	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3484}
3485
3486static struct usb_function_instance *ffs_alloc_inst(void)
3487{
3488	struct f_fs_opts *opts;
3489	struct ffs_dev *dev;
3490
3491	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3492	if (!opts)
3493		return ERR_PTR(-ENOMEM);
3494
3495	opts->func_inst.set_inst_name = ffs_set_inst_name;
3496	opts->func_inst.free_func_inst = ffs_free_inst;
3497	ffs_dev_lock();
3498	dev = _ffs_alloc_dev();
3499	ffs_dev_unlock();
3500	if (IS_ERR(dev)) {
3501		kfree(opts);
3502		return ERR_CAST(dev);
3503	}
3504	opts->dev = dev;
3505	dev->opts = opts;
3506
3507	config_group_init_type_name(&opts->func_inst.group, "",
3508				    &ffs_func_type);
3509	return &opts->func_inst;
3510}
3511
3512static void ffs_free(struct usb_function *f)
3513{
3514	kfree(ffs_func_from_usb(f));
3515}
3516
3517static void ffs_func_unbind(struct usb_configuration *c,
3518			    struct usb_function *f)
3519{
3520	struct ffs_function *func = ffs_func_from_usb(f);
3521	struct ffs_data *ffs = func->ffs;
3522	struct f_fs_opts *opts =
3523		container_of(f->fi, struct f_fs_opts, func_inst);
3524	struct ffs_ep *ep = func->eps;
3525	unsigned count = ffs->eps_count;
3526	unsigned long flags;
3527
 
3528	if (ffs->func == func) {
3529		ffs_func_eps_disable(func);
3530		ffs->func = NULL;
3531	}
3532
3533	/* Drain any pending AIO completions */
3534	drain_workqueue(ffs->io_completion_wq);
3535
3536	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3537	if (!--opts->refcnt)
3538		functionfs_unbind(ffs);
3539
3540	/* cleanup after autoconfig */
3541	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3542	while (count--) {
3543		if (ep->ep && ep->req)
3544			usb_ep_free_request(ep->ep, ep->req);
3545		ep->req = NULL;
3546		++ep;
3547	}
3548	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3549	kfree(func->eps);
3550	func->eps = NULL;
3551	/*
3552	 * eps, descriptors and interfaces_nums are allocated in the
3553	 * same chunk so only one free is required.
3554	 */
3555	func->function.fs_descriptors = NULL;
3556	func->function.hs_descriptors = NULL;
3557	func->function.ss_descriptors = NULL;
3558	func->function.ssp_descriptors = NULL;
3559	func->interfaces_nums = NULL;
3560
 
3561}
3562
3563static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3564{
3565	struct ffs_function *func;
3566
 
 
3567	func = kzalloc(sizeof(*func), GFP_KERNEL);
3568	if (!func)
3569		return ERR_PTR(-ENOMEM);
3570
3571	func->function.name    = "Function FS Gadget";
3572
3573	func->function.bind    = ffs_func_bind;
3574	func->function.unbind  = ffs_func_unbind;
3575	func->function.set_alt = ffs_func_set_alt;
3576	func->function.disable = ffs_func_disable;
3577	func->function.setup   = ffs_func_setup;
3578	func->function.req_match = ffs_func_req_match;
3579	func->function.suspend = ffs_func_suspend;
3580	func->function.resume  = ffs_func_resume;
3581	func->function.free_func = ffs_free;
3582
3583	return &func->function;
3584}
3585
3586/*
3587 * ffs_lock must be taken by the caller of this function
3588 */
3589static struct ffs_dev *_ffs_alloc_dev(void)
3590{
3591	struct ffs_dev *dev;
3592	int ret;
3593
3594	if (_ffs_get_single_dev())
3595			return ERR_PTR(-EBUSY);
3596
3597	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3598	if (!dev)
3599		return ERR_PTR(-ENOMEM);
3600
3601	if (list_empty(&ffs_devices)) {
3602		ret = functionfs_init();
3603		if (ret) {
3604			kfree(dev);
3605			return ERR_PTR(ret);
3606		}
3607	}
3608
3609	list_add(&dev->entry, &ffs_devices);
3610
3611	return dev;
3612}
3613
3614int ffs_name_dev(struct ffs_dev *dev, const char *name)
3615{
3616	struct ffs_dev *existing;
3617	int ret = 0;
3618
3619	ffs_dev_lock();
3620
3621	existing = _ffs_do_find_dev(name);
3622	if (!existing)
3623		strscpy(dev->name, name, ARRAY_SIZE(dev->name));
3624	else if (existing != dev)
3625		ret = -EBUSY;
3626
3627	ffs_dev_unlock();
3628
3629	return ret;
3630}
3631EXPORT_SYMBOL_GPL(ffs_name_dev);
3632
3633int ffs_single_dev(struct ffs_dev *dev)
3634{
3635	int ret;
3636
3637	ret = 0;
3638	ffs_dev_lock();
3639
3640	if (!list_is_singular(&ffs_devices))
3641		ret = -EBUSY;
3642	else
3643		dev->single = true;
3644
3645	ffs_dev_unlock();
3646	return ret;
3647}
3648EXPORT_SYMBOL_GPL(ffs_single_dev);
3649
3650/*
3651 * ffs_lock must be taken by the caller of this function
3652 */
3653static void _ffs_free_dev(struct ffs_dev *dev)
3654{
3655	list_del(&dev->entry);
3656
 
 
 
 
3657	kfree(dev);
3658	if (list_empty(&ffs_devices))
3659		functionfs_cleanup();
3660}
3661
3662static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
3663{
3664	int ret = 0;
3665	struct ffs_dev *ffs_dev;
3666
 
3667	ffs_dev_lock();
3668
3669	ffs_dev = _ffs_find_dev(dev_name);
3670	if (!ffs_dev) {
3671		ret = -ENOENT;
3672	} else if (ffs_dev->mounted) {
3673		ret = -EBUSY;
3674	} else if (ffs_dev->ffs_acquire_dev_callback &&
3675		   ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
3676		ret = -ENOENT;
3677	} else {
3678		ffs_dev->mounted = true;
3679		ffs_dev->ffs_data = ffs_data;
3680		ffs_data->private_data = ffs_dev;
3681	}
3682
3683	ffs_dev_unlock();
3684	return ret;
3685}
3686
3687static void ffs_release_dev(struct ffs_dev *ffs_dev)
3688{
 
 
 
3689	ffs_dev_lock();
3690
3691	if (ffs_dev && ffs_dev->mounted) {
 
3692		ffs_dev->mounted = false;
3693		if (ffs_dev->ffs_data) {
3694			ffs_dev->ffs_data->private_data = NULL;
3695			ffs_dev->ffs_data = NULL;
3696		}
3697
3698		if (ffs_dev->ffs_release_dev_callback)
3699			ffs_dev->ffs_release_dev_callback(ffs_dev);
3700	}
3701
3702	ffs_dev_unlock();
3703}
3704
3705static int ffs_ready(struct ffs_data *ffs)
3706{
3707	struct ffs_dev *ffs_obj;
3708	int ret = 0;
3709
 
3710	ffs_dev_lock();
3711
3712	ffs_obj = ffs->private_data;
3713	if (!ffs_obj) {
3714		ret = -EINVAL;
3715		goto done;
3716	}
3717	if (WARN_ON(ffs_obj->desc_ready)) {
3718		ret = -EBUSY;
3719		goto done;
3720	}
3721
3722	ffs_obj->desc_ready = true;
 
3723
3724	if (ffs_obj->ffs_ready_callback) {
3725		ret = ffs_obj->ffs_ready_callback(ffs);
3726		if (ret)
3727			goto done;
3728	}
3729
3730	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3731done:
3732	ffs_dev_unlock();
3733	return ret;
3734}
3735
3736static void ffs_closed(struct ffs_data *ffs)
3737{
3738	struct ffs_dev *ffs_obj;
3739	struct f_fs_opts *opts;
3740	struct config_item *ci;
3741
 
3742	ffs_dev_lock();
3743
3744	ffs_obj = ffs->private_data;
3745	if (!ffs_obj)
3746		goto done;
3747
3748	ffs_obj->desc_ready = false;
 
3749
3750	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3751	    ffs_obj->ffs_closed_callback)
3752		ffs_obj->ffs_closed_callback(ffs);
3753
3754	if (ffs_obj->opts)
3755		opts = ffs_obj->opts;
3756	else
3757		goto done;
3758
3759	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3760	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3761		goto done;
3762
3763	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3764	ffs_dev_unlock();
3765
3766	if (test_bit(FFS_FL_BOUND, &ffs->flags))
3767		unregister_gadget_item(ci);
3768	return;
3769done:
3770	ffs_dev_unlock();
3771}
3772
3773/* Misc helper functions ****************************************************/
3774
3775static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3776{
3777	return nonblock
3778		? mutex_trylock(mutex) ? 0 : -EAGAIN
3779		: mutex_lock_interruptible(mutex);
3780}
3781
3782static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3783{
3784	char *data;
3785
3786	if (!len)
3787		return NULL;
3788
3789	data = memdup_user(buf, len);
3790	if (IS_ERR(data))
3791		return data;
 
 
 
 
 
3792
3793	pr_vdebug("Buffer from user space:\n");
3794	ffs_dump_mem("", data, len);
3795
3796	return data;
3797}
3798
3799DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3800MODULE_LICENSE("GPL");
3801MODULE_AUTHOR("Michal Nazarewicz");
v5.4
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * f_fs.c -- user mode file system API for USB composite function controllers
   4 *
   5 * Copyright (C) 2010 Samsung Electronics
   6 * Author: Michal Nazarewicz <mina86@mina86.com>
   7 *
   8 * Based on inode.c (GadgetFS) which was:
   9 * Copyright (C) 2003-2004 David Brownell
  10 * Copyright (C) 2003 Agilent Technologies
  11 */
  12
  13
  14/* #define DEBUG */
  15/* #define VERBOSE_DEBUG */
  16
  17#include <linux/blkdev.h>
  18#include <linux/pagemap.h>
  19#include <linux/export.h>
  20#include <linux/fs_parser.h>
  21#include <linux/hid.h>
  22#include <linux/mm.h>
  23#include <linux/module.h>
  24#include <linux/scatterlist.h>
  25#include <linux/sched/signal.h>
  26#include <linux/uio.h>
  27#include <linux/vmalloc.h>
  28#include <asm/unaligned.h>
  29
  30#include <linux/usb/ccid.h>
  31#include <linux/usb/composite.h>
  32#include <linux/usb/functionfs.h>
  33
  34#include <linux/aio.h>
  35#include <linux/mmu_context.h>
  36#include <linux/poll.h>
  37#include <linux/eventfd.h>
  38
  39#include "u_fs.h"
  40#include "u_f.h"
  41#include "u_os_desc.h"
  42#include "configfs.h"
  43
  44#define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
  45
  46/* Reference counter handling */
  47static void ffs_data_get(struct ffs_data *ffs);
  48static void ffs_data_put(struct ffs_data *ffs);
  49/* Creates new ffs_data object. */
  50static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
  51	__attribute__((malloc));
  52
  53/* Opened counter handling. */
  54static void ffs_data_opened(struct ffs_data *ffs);
  55static void ffs_data_closed(struct ffs_data *ffs);
  56
  57/* Called with ffs->mutex held; take over ownership of data. */
  58static int __must_check
  59__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
  60static int __must_check
  61__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
  62
  63
  64/* The function structure ***************************************************/
  65
  66struct ffs_ep;
  67
  68struct ffs_function {
  69	struct usb_configuration	*conf;
  70	struct usb_gadget		*gadget;
  71	struct ffs_data			*ffs;
  72
  73	struct ffs_ep			*eps;
  74	u8				eps_revmap[16];
  75	short				*interfaces_nums;
  76
  77	struct usb_function		function;
  78};
  79
  80
  81static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
  82{
  83	return container_of(f, struct ffs_function, function);
  84}
  85
  86
  87static inline enum ffs_setup_state
  88ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
  89{
  90	return (enum ffs_setup_state)
  91		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
  92}
  93
  94
  95static void ffs_func_eps_disable(struct ffs_function *func);
  96static int __must_check ffs_func_eps_enable(struct ffs_function *func);
  97
  98static int ffs_func_bind(struct usb_configuration *,
  99			 struct usb_function *);
 100static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
 101static void ffs_func_disable(struct usb_function *);
 102static int ffs_func_setup(struct usb_function *,
 103			  const struct usb_ctrlrequest *);
 104static bool ffs_func_req_match(struct usb_function *,
 105			       const struct usb_ctrlrequest *,
 106			       bool config0);
 107static void ffs_func_suspend(struct usb_function *);
 108static void ffs_func_resume(struct usb_function *);
 109
 110
 111static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
 112static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
 113
 114
 115/* The endpoints structures *************************************************/
 116
 117struct ffs_ep {
 118	struct usb_ep			*ep;	/* P: ffs->eps_lock */
 119	struct usb_request		*req;	/* P: epfile->mutex */
 120
 121	/* [0]: full speed, [1]: high speed, [2]: super speed */
 122	struct usb_endpoint_descriptor	*descs[3];
 123
 124	u8				num;
 125
 126	int				status;	/* P: epfile->mutex */
 127};
 128
 129struct ffs_epfile {
 130	/* Protects ep->ep and ep->req. */
 131	struct mutex			mutex;
 132
 133	struct ffs_data			*ffs;
 134	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
 135
 136	struct dentry			*dentry;
 137
 138	/*
 139	 * Buffer for holding data from partial reads which may happen since
 140	 * we’re rounding user read requests to a multiple of a max packet size.
 141	 *
 142	 * The pointer is initialised with NULL value and may be set by
 143	 * __ffs_epfile_read_data function to point to a temporary buffer.
 144	 *
 145	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
 146	 * data from said buffer and eventually free it.  Importantly, while the
 147	 * function is using the buffer, it sets the pointer to NULL.  This is
 148	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
 149	 * can never run concurrently (they are synchronised by epfile->mutex)
 150	 * so the latter will not assign a new value to the pointer.
 151	 *
 152	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
 153	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
 154	 * value is crux of the synchronisation between ffs_func_eps_disable and
 155	 * __ffs_epfile_read_data.
 156	 *
 157	 * Once __ffs_epfile_read_data is about to finish it will try to set the
 158	 * pointer back to its old value (as described above), but seeing as the
 159	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
 160	 * the buffer.
 161	 *
 162	 * == State transitions ==
 163	 *
 164	 * • ptr == NULL:  (initial state)
 165	 *   â—¦ __ffs_epfile_read_buffer_free: go to ptr == DROP
 166	 *   â—¦ __ffs_epfile_read_buffered:    nop
 167	 *   â—¦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
 168	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 169	 * • ptr == DROP:
 170	 *   â—¦ __ffs_epfile_read_buffer_free: nop
 171	 *   â—¦ __ffs_epfile_read_buffered:    go to ptr == NULL
 172	 *   â—¦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
 173	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 174	 * • ptr == buf:
 175	 *   â—¦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
 176	 *   â—¦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
 177	 *   â—¦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
 178	 *                                    is always called first
 179	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 180	 * • ptr == NULL and reading:
 181	 *   â—¦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
 182	 *   â—¦ __ffs_epfile_read_buffered:    n/a, mutex is held
 183	 *   â—¦ __ffs_epfile_read_data:        n/a, mutex is held
 184	 *   ◦ reading finishes and …
 185	 *     … all data read:               free buf, go to ptr == NULL
 186	 *     … otherwise:                   go to ptr == buf and reading
 187	 * • ptr == DROP and reading:
 188	 *   â—¦ __ffs_epfile_read_buffer_free: nop
 189	 *   â—¦ __ffs_epfile_read_buffered:    n/a, mutex is held
 190	 *   â—¦ __ffs_epfile_read_data:        n/a, mutex is held
 191	 *   â—¦ reading finishes:              free buf, go to ptr == DROP
 192	 */
 193	struct ffs_buffer		*read_buffer;
 194#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
 195
 196	char				name[5];
 197
 198	unsigned char			in;	/* P: ffs->eps_lock */
 199	unsigned char			isoc;	/* P: ffs->eps_lock */
 200
 201	unsigned char			_pad;
 202};
 203
 204struct ffs_buffer {
 205	size_t length;
 206	char *data;
 207	char storage[];
 208};
 209
 210/*  ffs_io_data structure ***************************************************/
 211
 212struct ffs_io_data {
 213	bool aio;
 214	bool read;
 215
 216	struct kiocb *kiocb;
 217	struct iov_iter data;
 218	const void *to_free;
 219	char *buf;
 220
 221	struct mm_struct *mm;
 222	struct work_struct work;
 223
 224	struct usb_ep *ep;
 225	struct usb_request *req;
 226	struct sg_table sgt;
 227	bool use_sg;
 228
 229	struct ffs_data *ffs;
 
 
 
 230};
 231
 232struct ffs_desc_helper {
 233	struct ffs_data *ffs;
 234	unsigned interfaces_count;
 235	unsigned eps_count;
 236};
 237
 238static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
 239static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
 240
 241static struct dentry *
 242ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
 243		   const struct file_operations *fops);
 244
 245/* Devices management *******************************************************/
 246
 247DEFINE_MUTEX(ffs_lock);
 248EXPORT_SYMBOL_GPL(ffs_lock);
 249
 250static struct ffs_dev *_ffs_find_dev(const char *name);
 251static struct ffs_dev *_ffs_alloc_dev(void);
 252static void _ffs_free_dev(struct ffs_dev *dev);
 253static void *ffs_acquire_dev(const char *dev_name);
 254static void ffs_release_dev(struct ffs_data *ffs_data);
 255static int ffs_ready(struct ffs_data *ffs);
 256static void ffs_closed(struct ffs_data *ffs);
 257
 258/* Misc helper functions ****************************************************/
 259
 260static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
 261	__attribute__((warn_unused_result, nonnull));
 262static char *ffs_prepare_buffer(const char __user *buf, size_t len)
 263	__attribute__((warn_unused_result, nonnull));
 264
 265
 266/* Control file aka ep0 *****************************************************/
 267
 268static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
 269{
 270	struct ffs_data *ffs = req->context;
 271
 272	complete(&ffs->ep0req_completion);
 273}
 274
 275static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
 276	__releases(&ffs->ev.waitq.lock)
 277{
 278	struct usb_request *req = ffs->ep0req;
 279	int ret;
 280
 
 
 
 
 
 281	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
 282
 283	spin_unlock_irq(&ffs->ev.waitq.lock);
 284
 285	req->buf      = data;
 286	req->length   = len;
 287
 288	/*
 289	 * UDC layer requires to provide a buffer even for ZLP, but should
 290	 * not use it at all. Let's provide some poisoned pointer to catch
 291	 * possible bug in the driver.
 292	 */
 293	if (req->buf == NULL)
 294		req->buf = (void *)0xDEADBABE;
 295
 296	reinit_completion(&ffs->ep0req_completion);
 297
 298	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
 299	if (unlikely(ret < 0))
 300		return ret;
 301
 302	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
 303	if (unlikely(ret)) {
 304		usb_ep_dequeue(ffs->gadget->ep0, req);
 305		return -EINTR;
 306	}
 307
 308	ffs->setup_state = FFS_NO_SETUP;
 309	return req->status ? req->status : req->actual;
 310}
 311
 312static int __ffs_ep0_stall(struct ffs_data *ffs)
 313{
 314	if (ffs->ev.can_stall) {
 315		pr_vdebug("ep0 stall\n");
 316		usb_ep_set_halt(ffs->gadget->ep0);
 317		ffs->setup_state = FFS_NO_SETUP;
 318		return -EL2HLT;
 319	} else {
 320		pr_debug("bogus ep0 stall!\n");
 321		return -ESRCH;
 322	}
 323}
 324
 325static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
 326			     size_t len, loff_t *ptr)
 327{
 328	struct ffs_data *ffs = file->private_data;
 329	ssize_t ret;
 330	char *data;
 331
 332	ENTER();
 333
 334	/* Fast check if setup was canceled */
 335	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 336		return -EIDRM;
 337
 338	/* Acquire mutex */
 339	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 340	if (unlikely(ret < 0))
 341		return ret;
 342
 343	/* Check state */
 344	switch (ffs->state) {
 345	case FFS_READ_DESCRIPTORS:
 346	case FFS_READ_STRINGS:
 347		/* Copy data */
 348		if (unlikely(len < 16)) {
 349			ret = -EINVAL;
 350			break;
 351		}
 352
 353		data = ffs_prepare_buffer(buf, len);
 354		if (IS_ERR(data)) {
 355			ret = PTR_ERR(data);
 356			break;
 357		}
 358
 359		/* Handle data */
 360		if (ffs->state == FFS_READ_DESCRIPTORS) {
 361			pr_info("read descriptors\n");
 362			ret = __ffs_data_got_descs(ffs, data, len);
 363			if (unlikely(ret < 0))
 364				break;
 365
 366			ffs->state = FFS_READ_STRINGS;
 367			ret = len;
 368		} else {
 369			pr_info("read strings\n");
 370			ret = __ffs_data_got_strings(ffs, data, len);
 371			if (unlikely(ret < 0))
 372				break;
 373
 374			ret = ffs_epfiles_create(ffs);
 375			if (unlikely(ret)) {
 376				ffs->state = FFS_CLOSING;
 377				break;
 378			}
 379
 380			ffs->state = FFS_ACTIVE;
 381			mutex_unlock(&ffs->mutex);
 382
 383			ret = ffs_ready(ffs);
 384			if (unlikely(ret < 0)) {
 385				ffs->state = FFS_CLOSING;
 386				return ret;
 387			}
 388
 389			return len;
 390		}
 391		break;
 392
 393	case FFS_ACTIVE:
 394		data = NULL;
 395		/*
 396		 * We're called from user space, we can use _irq
 397		 * rather then _irqsave
 398		 */
 399		spin_lock_irq(&ffs->ev.waitq.lock);
 400		switch (ffs_setup_state_clear_cancelled(ffs)) {
 401		case FFS_SETUP_CANCELLED:
 402			ret = -EIDRM;
 403			goto done_spin;
 404
 405		case FFS_NO_SETUP:
 406			ret = -ESRCH;
 407			goto done_spin;
 408
 409		case FFS_SETUP_PENDING:
 410			break;
 411		}
 412
 413		/* FFS_SETUP_PENDING */
 414		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
 415			spin_unlock_irq(&ffs->ev.waitq.lock);
 416			ret = __ffs_ep0_stall(ffs);
 417			break;
 418		}
 419
 420		/* FFS_SETUP_PENDING and not stall */
 421		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 422
 423		spin_unlock_irq(&ffs->ev.waitq.lock);
 424
 425		data = ffs_prepare_buffer(buf, len);
 426		if (IS_ERR(data)) {
 427			ret = PTR_ERR(data);
 428			break;
 429		}
 430
 431		spin_lock_irq(&ffs->ev.waitq.lock);
 432
 433		/*
 434		 * We are guaranteed to be still in FFS_ACTIVE state
 435		 * but the state of setup could have changed from
 436		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
 437		 * to check for that.  If that happened we copied data
 438		 * from user space in vain but it's unlikely.
 439		 *
 440		 * For sure we are not in FFS_NO_SETUP since this is
 441		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
 442		 * transition can be performed and it's protected by
 443		 * mutex.
 444		 */
 445		if (ffs_setup_state_clear_cancelled(ffs) ==
 446		    FFS_SETUP_CANCELLED) {
 447			ret = -EIDRM;
 448done_spin:
 449			spin_unlock_irq(&ffs->ev.waitq.lock);
 450		} else {
 451			/* unlocks spinlock */
 452			ret = __ffs_ep0_queue_wait(ffs, data, len);
 453		}
 454		kfree(data);
 455		break;
 456
 457	default:
 458		ret = -EBADFD;
 459		break;
 460	}
 461
 462	mutex_unlock(&ffs->mutex);
 463	return ret;
 464}
 465
 466/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
 467static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
 468				     size_t n)
 469	__releases(&ffs->ev.waitq.lock)
 470{
 471	/*
 472	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
 473	 * size of ffs->ev.types array (which is four) so that's how much space
 474	 * we reserve.
 475	 */
 476	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
 477	const size_t size = n * sizeof *events;
 478	unsigned i = 0;
 479
 480	memset(events, 0, size);
 481
 482	do {
 483		events[i].type = ffs->ev.types[i];
 484		if (events[i].type == FUNCTIONFS_SETUP) {
 485			events[i].u.setup = ffs->ev.setup;
 486			ffs->setup_state = FFS_SETUP_PENDING;
 487		}
 488	} while (++i < n);
 489
 490	ffs->ev.count -= n;
 491	if (ffs->ev.count)
 492		memmove(ffs->ev.types, ffs->ev.types + n,
 493			ffs->ev.count * sizeof *ffs->ev.types);
 494
 495	spin_unlock_irq(&ffs->ev.waitq.lock);
 496	mutex_unlock(&ffs->mutex);
 497
 498	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
 499}
 500
 501static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
 502			    size_t len, loff_t *ptr)
 503{
 504	struct ffs_data *ffs = file->private_data;
 505	char *data = NULL;
 506	size_t n;
 507	int ret;
 508
 509	ENTER();
 510
 511	/* Fast check if setup was canceled */
 512	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 513		return -EIDRM;
 514
 515	/* Acquire mutex */
 516	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 517	if (unlikely(ret < 0))
 518		return ret;
 519
 520	/* Check state */
 521	if (ffs->state != FFS_ACTIVE) {
 522		ret = -EBADFD;
 523		goto done_mutex;
 524	}
 525
 526	/*
 527	 * We're called from user space, we can use _irq rather then
 528	 * _irqsave
 529	 */
 530	spin_lock_irq(&ffs->ev.waitq.lock);
 531
 532	switch (ffs_setup_state_clear_cancelled(ffs)) {
 533	case FFS_SETUP_CANCELLED:
 534		ret = -EIDRM;
 535		break;
 536
 537	case FFS_NO_SETUP:
 538		n = len / sizeof(struct usb_functionfs_event);
 539		if (unlikely(!n)) {
 540			ret = -EINVAL;
 541			break;
 542		}
 543
 544		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
 545			ret = -EAGAIN;
 546			break;
 547		}
 548
 549		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
 550							ffs->ev.count)) {
 551			ret = -EINTR;
 552			break;
 553		}
 554
 555		/* unlocks spinlock */
 556		return __ffs_ep0_read_events(ffs, buf,
 557					     min(n, (size_t)ffs->ev.count));
 558
 559	case FFS_SETUP_PENDING:
 560		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
 561			spin_unlock_irq(&ffs->ev.waitq.lock);
 562			ret = __ffs_ep0_stall(ffs);
 563			goto done_mutex;
 564		}
 565
 566		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 567
 568		spin_unlock_irq(&ffs->ev.waitq.lock);
 569
 570		if (likely(len)) {
 571			data = kmalloc(len, GFP_KERNEL);
 572			if (unlikely(!data)) {
 573				ret = -ENOMEM;
 574				goto done_mutex;
 575			}
 576		}
 577
 578		spin_lock_irq(&ffs->ev.waitq.lock);
 579
 580		/* See ffs_ep0_write() */
 581		if (ffs_setup_state_clear_cancelled(ffs) ==
 582		    FFS_SETUP_CANCELLED) {
 583			ret = -EIDRM;
 584			break;
 585		}
 586
 587		/* unlocks spinlock */
 588		ret = __ffs_ep0_queue_wait(ffs, data, len);
 589		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
 590			ret = -EFAULT;
 591		goto done_mutex;
 592
 593	default:
 594		ret = -EBADFD;
 595		break;
 596	}
 597
 598	spin_unlock_irq(&ffs->ev.waitq.lock);
 599done_mutex:
 600	mutex_unlock(&ffs->mutex);
 601	kfree(data);
 602	return ret;
 603}
 604
 605static int ffs_ep0_open(struct inode *inode, struct file *file)
 606{
 607	struct ffs_data *ffs = inode->i_private;
 608
 609	ENTER();
 610
 611	if (unlikely(ffs->state == FFS_CLOSING))
 612		return -EBUSY;
 613
 614	file->private_data = ffs;
 615	ffs_data_opened(ffs);
 616
 617	return 0;
 618}
 619
 620static int ffs_ep0_release(struct inode *inode, struct file *file)
 621{
 622	struct ffs_data *ffs = file->private_data;
 623
 624	ENTER();
 625
 626	ffs_data_closed(ffs);
 627
 628	return 0;
 629}
 630
 631static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
 632{
 633	struct ffs_data *ffs = file->private_data;
 634	struct usb_gadget *gadget = ffs->gadget;
 635	long ret;
 636
 637	ENTER();
 638
 639	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
 640		struct ffs_function *func = ffs->func;
 641		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
 642	} else if (gadget && gadget->ops->ioctl) {
 643		ret = gadget->ops->ioctl(gadget, code, value);
 644	} else {
 645		ret = -ENOTTY;
 646	}
 647
 648	return ret;
 649}
 650
 651static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
 652{
 653	struct ffs_data *ffs = file->private_data;
 654	__poll_t mask = EPOLLWRNORM;
 655	int ret;
 656
 657	poll_wait(file, &ffs->ev.waitq, wait);
 658
 659	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 660	if (unlikely(ret < 0))
 661		return mask;
 662
 663	switch (ffs->state) {
 664	case FFS_READ_DESCRIPTORS:
 665	case FFS_READ_STRINGS:
 666		mask |= EPOLLOUT;
 667		break;
 668
 669	case FFS_ACTIVE:
 670		switch (ffs->setup_state) {
 671		case FFS_NO_SETUP:
 672			if (ffs->ev.count)
 673				mask |= EPOLLIN;
 674			break;
 675
 676		case FFS_SETUP_PENDING:
 677		case FFS_SETUP_CANCELLED:
 678			mask |= (EPOLLIN | EPOLLOUT);
 679			break;
 680		}
 
 
 681	case FFS_CLOSING:
 682		break;
 683	case FFS_DEACTIVATED:
 684		break;
 685	}
 686
 687	mutex_unlock(&ffs->mutex);
 688
 689	return mask;
 690}
 691
 692static const struct file_operations ffs_ep0_operations = {
 693	.llseek =	no_llseek,
 694
 695	.open =		ffs_ep0_open,
 696	.write =	ffs_ep0_write,
 697	.read =		ffs_ep0_read,
 698	.release =	ffs_ep0_release,
 699	.unlocked_ioctl =	ffs_ep0_ioctl,
 700	.poll =		ffs_ep0_poll,
 701};
 702
 703
 704/* "Normal" endpoints operations ********************************************/
 705
 706static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
 707{
 708	ENTER();
 709	if (likely(req->context)) {
 710		struct ffs_ep *ep = _ep->driver_data;
 711		ep->status = req->status ? req->status : req->actual;
 712		complete(req->context);
 713	}
 
 
 714}
 715
 716static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
 717{
 718	ssize_t ret = copy_to_iter(data, data_len, iter);
 719	if (likely(ret == data_len))
 720		return ret;
 721
 722	if (unlikely(iov_iter_count(iter)))
 723		return -EFAULT;
 724
 725	/*
 726	 * Dear user space developer!
 727	 *
 728	 * TL;DR: To stop getting below error message in your kernel log, change
 729	 * user space code using functionfs to align read buffers to a max
 730	 * packet size.
 731	 *
 732	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
 733	 * packet size.  When unaligned buffer is passed to functionfs, it
 734	 * internally uses a larger, aligned buffer so that such UDCs are happy.
 735	 *
 736	 * Unfortunately, this means that host may send more data than was
 737	 * requested in read(2) system call.  f_fs doesn’t know what to do with
 738	 * that excess data so it simply drops it.
 739	 *
 740	 * Was the buffer aligned in the first place, no such problem would
 741	 * happen.
 742	 *
 743	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
 744	 * by splitting a request into multiple parts.  This splitting may still
 745	 * be a problem though so it’s likely best to align the buffer
 746	 * regardless of it being AIO or not..
 747	 *
 748	 * This only affects OUT endpoints, i.e. reading data with a read(2),
 749	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
 750	 * affected.
 751	 */
 752	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
 753	       "Align read buffer size to max packet size to avoid the problem.\n",
 754	       data_len, ret);
 755
 756	return ret;
 757}
 758
 759/*
 760 * allocate a virtually contiguous buffer and create a scatterlist describing it
 761 * @sg_table	- pointer to a place to be filled with sg_table contents
 762 * @size	- required buffer size
 763 */
 764static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
 765{
 766	struct page **pages;
 767	void *vaddr, *ptr;
 768	unsigned int n_pages;
 769	int i;
 770
 771	vaddr = vmalloc(sz);
 772	if (!vaddr)
 773		return NULL;
 774
 775	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
 776	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
 777	if (!pages) {
 778		vfree(vaddr);
 779
 780		return NULL;
 781	}
 782	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
 783		pages[i] = vmalloc_to_page(ptr);
 784
 785	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
 786		kvfree(pages);
 787		vfree(vaddr);
 788
 789		return NULL;
 790	}
 791	kvfree(pages);
 792
 793	return vaddr;
 794}
 795
 796static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
 797	size_t data_len)
 798{
 799	if (io_data->use_sg)
 800		return ffs_build_sg_list(&io_data->sgt, data_len);
 801
 802	return kmalloc(data_len, GFP_KERNEL);
 803}
 804
 805static inline void ffs_free_buffer(struct ffs_io_data *io_data)
 806{
 807	if (!io_data->buf)
 808		return;
 809
 810	if (io_data->use_sg) {
 811		sg_free_table(&io_data->sgt);
 812		vfree(io_data->buf);
 813	} else {
 814		kfree(io_data->buf);
 815	}
 816}
 817
 818static void ffs_user_copy_worker(struct work_struct *work)
 819{
 820	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
 821						   work);
 822	int ret = io_data->req->status ? io_data->req->status :
 823					 io_data->req->actual;
 824	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
 825
 826	if (io_data->read && ret > 0) {
 827		mm_segment_t oldfs = get_fs();
 828
 829		set_fs(USER_DS);
 830		use_mm(io_data->mm);
 831		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
 832		unuse_mm(io_data->mm);
 833		set_fs(oldfs);
 834	}
 835
 836	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
 837
 838	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
 839		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
 840
 841	usb_ep_free_request(io_data->ep, io_data->req);
 842
 843	if (io_data->read)
 844		kfree(io_data->to_free);
 845	ffs_free_buffer(io_data);
 846	kfree(io_data);
 847}
 848
 849static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
 850					 struct usb_request *req)
 851{
 852	struct ffs_io_data *io_data = req->context;
 853	struct ffs_data *ffs = io_data->ffs;
 854
 855	ENTER();
 
 856
 857	INIT_WORK(&io_data->work, ffs_user_copy_worker);
 858	queue_work(ffs->io_completion_wq, &io_data->work);
 859}
 860
 861static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
 862{
 863	/*
 864	 * See comment in struct ffs_epfile for full read_buffer pointer
 865	 * synchronisation story.
 866	 */
 867	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
 868	if (buf && buf != READ_BUFFER_DROP)
 869		kfree(buf);
 870}
 871
 872/* Assumes epfile->mutex is held. */
 873static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
 874					  struct iov_iter *iter)
 875{
 876	/*
 877	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
 878	 * the buffer while we are using it.  See comment in struct ffs_epfile
 879	 * for full read_buffer pointer synchronisation story.
 880	 */
 881	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
 882	ssize_t ret;
 883	if (!buf || buf == READ_BUFFER_DROP)
 884		return 0;
 885
 886	ret = copy_to_iter(buf->data, buf->length, iter);
 887	if (buf->length == ret) {
 888		kfree(buf);
 889		return ret;
 890	}
 891
 892	if (unlikely(iov_iter_count(iter))) {
 893		ret = -EFAULT;
 894	} else {
 895		buf->length -= ret;
 896		buf->data += ret;
 897	}
 898
 899	if (cmpxchg(&epfile->read_buffer, NULL, buf))
 900		kfree(buf);
 901
 902	return ret;
 903}
 904
 905/* Assumes epfile->mutex is held. */
 906static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
 907				      void *data, int data_len,
 908				      struct iov_iter *iter)
 909{
 910	struct ffs_buffer *buf;
 911
 912	ssize_t ret = copy_to_iter(data, data_len, iter);
 913	if (likely(data_len == ret))
 914		return ret;
 915
 916	if (unlikely(iov_iter_count(iter)))
 917		return -EFAULT;
 918
 919	/* See ffs_copy_to_iter for more context. */
 920	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
 921		data_len, ret);
 922
 923	data_len -= ret;
 924	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
 925	if (!buf)
 926		return -ENOMEM;
 927	buf->length = data_len;
 928	buf->data = buf->storage;
 929	memcpy(buf->storage, data + ret, data_len);
 930
 931	/*
 932	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
 933	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
 934	 * in struct ffs_epfile for full read_buffer pointer synchronisation
 935	 * story.
 936	 */
 937	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
 938		kfree(buf);
 939
 940	return ret;
 941}
 942
 943static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
 944{
 945	struct ffs_epfile *epfile = file->private_data;
 946	struct usb_request *req;
 947	struct ffs_ep *ep;
 948	char *data = NULL;
 949	ssize_t ret, data_len = -EINVAL;
 950	int halt;
 951
 952	/* Are we still active? */
 953	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
 954		return -ENODEV;
 955
 956	/* Wait for endpoint to be enabled */
 957	ep = epfile->ep;
 958	if (!ep) {
 959		if (file->f_flags & O_NONBLOCK)
 960			return -EAGAIN;
 961
 962		ret = wait_event_interruptible(
 963				epfile->ffs->wait, (ep = epfile->ep));
 964		if (ret)
 965			return -EINTR;
 966	}
 967
 968	/* Do we halt? */
 969	halt = (!io_data->read == !epfile->in);
 970	if (halt && epfile->isoc)
 971		return -EINVAL;
 972
 973	/* We will be using request and read_buffer */
 974	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
 975	if (unlikely(ret))
 976		goto error;
 977
 978	/* Allocate & copy */
 979	if (!halt) {
 980		struct usb_gadget *gadget;
 981
 982		/*
 983		 * Do we have buffered data from previous partial read?  Check
 984		 * that for synchronous case only because we do not have
 985		 * facility to ‘wake up’ a pending asynchronous read and push
 986		 * buffered data to it which we would need to make things behave
 987		 * consistently.
 988		 */
 989		if (!io_data->aio && io_data->read) {
 990			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
 991			if (ret)
 992				goto error_mutex;
 993		}
 994
 995		/*
 996		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
 997		 * before the waiting completes, so do not assign to 'gadget'
 998		 * earlier
 999		 */
1000		gadget = epfile->ffs->gadget;
1001
1002		spin_lock_irq(&epfile->ffs->eps_lock);
1003		/* In the meantime, endpoint got disabled or changed. */
1004		if (epfile->ep != ep) {
1005			ret = -ESHUTDOWN;
1006			goto error_lock;
1007		}
1008		data_len = iov_iter_count(&io_data->data);
1009		/*
1010		 * Controller may require buffer size to be aligned to
1011		 * maxpacketsize of an out endpoint.
1012		 */
1013		if (io_data->read)
1014			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1015
1016		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1017		spin_unlock_irq(&epfile->ffs->eps_lock);
1018
1019		data = ffs_alloc_buffer(io_data, data_len);
1020		if (unlikely(!data)) {
1021			ret = -ENOMEM;
1022			goto error_mutex;
1023		}
1024		if (!io_data->read &&
1025		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1026			ret = -EFAULT;
1027			goto error_mutex;
1028		}
1029	}
1030
1031	spin_lock_irq(&epfile->ffs->eps_lock);
1032
1033	if (epfile->ep != ep) {
1034		/* In the meantime, endpoint got disabled or changed. */
1035		ret = -ESHUTDOWN;
1036	} else if (halt) {
1037		ret = usb_ep_set_halt(ep->ep);
1038		if (!ret)
1039			ret = -EBADMSG;
1040	} else if (unlikely(data_len == -EINVAL)) {
1041		/*
1042		 * Sanity Check: even though data_len can't be used
1043		 * uninitialized at the time I write this comment, some
1044		 * compilers complain about this situation.
1045		 * In order to keep the code clean from warnings, data_len is
1046		 * being initialized to -EINVAL during its declaration, which
1047		 * means we can't rely on compiler anymore to warn no future
1048		 * changes won't result in data_len being used uninitialized.
1049		 * For such reason, we're adding this redundant sanity check
1050		 * here.
1051		 */
1052		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1053		ret = -EINVAL;
1054	} else if (!io_data->aio) {
1055		DECLARE_COMPLETION_ONSTACK(done);
1056		bool interrupted = false;
1057
1058		req = ep->req;
1059		if (io_data->use_sg) {
1060			req->buf = NULL;
1061			req->sg	= io_data->sgt.sgl;
1062			req->num_sgs = io_data->sgt.nents;
1063		} else {
1064			req->buf = data;
 
1065		}
1066		req->length = data_len;
1067
1068		io_data->buf = data;
1069
1070		req->context  = &done;
 
1071		req->complete = ffs_epfile_io_complete;
1072
1073		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1074		if (unlikely(ret < 0))
1075			goto error_lock;
1076
1077		spin_unlock_irq(&epfile->ffs->eps_lock);
1078
1079		if (unlikely(wait_for_completion_interruptible(&done))) {
 
 
 
 
 
1080			/*
1081			 * To avoid race condition with ffs_epfile_io_complete,
1082			 * dequeue the request first then check
1083			 * status. usb_ep_dequeue API should guarantee no race
1084			 * condition with req->complete callback.
1085			 */
1086			usb_ep_dequeue(ep->ep, req);
1087			wait_for_completion(&done);
1088			interrupted = ep->status < 0;
 
1089		}
1090
1091		if (interrupted)
1092			ret = -EINTR;
1093		else if (io_data->read && ep->status > 0)
1094			ret = __ffs_epfile_read_data(epfile, data, ep->status,
1095						     &io_data->data);
1096		else
1097			ret = ep->status;
1098		goto error_mutex;
1099	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1100		ret = -ENOMEM;
1101	} else {
1102		if (io_data->use_sg) {
1103			req->buf = NULL;
1104			req->sg	= io_data->sgt.sgl;
1105			req->num_sgs = io_data->sgt.nents;
1106		} else {
1107			req->buf = data;
 
1108		}
1109		req->length = data_len;
1110
1111		io_data->buf = data;
1112		io_data->ep = ep->ep;
1113		io_data->req = req;
1114		io_data->ffs = epfile->ffs;
1115
1116		req->context  = io_data;
1117		req->complete = ffs_epfile_async_io_complete;
1118
1119		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1120		if (unlikely(ret)) {
 
1121			usb_ep_free_request(ep->ep, req);
1122			goto error_lock;
1123		}
1124
1125		ret = -EIOCBQUEUED;
1126		/*
1127		 * Do not kfree the buffer in this function.  It will be freed
1128		 * by ffs_user_copy_worker.
1129		 */
1130		data = NULL;
1131	}
1132
1133error_lock:
1134	spin_unlock_irq(&epfile->ffs->eps_lock);
1135error_mutex:
1136	mutex_unlock(&epfile->mutex);
1137error:
1138	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1139		ffs_free_buffer(io_data);
1140	return ret;
1141}
1142
1143static int
1144ffs_epfile_open(struct inode *inode, struct file *file)
1145{
1146	struct ffs_epfile *epfile = inode->i_private;
1147
1148	ENTER();
1149
1150	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1151		return -ENODEV;
1152
1153	file->private_data = epfile;
1154	ffs_data_opened(epfile->ffs);
1155
1156	return 0;
1157}
1158
1159static int ffs_aio_cancel(struct kiocb *kiocb)
1160{
1161	struct ffs_io_data *io_data = kiocb->private;
1162	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
 
1163	int value;
1164
1165	ENTER();
1166
1167	spin_lock_irq(&epfile->ffs->eps_lock);
1168
1169	if (likely(io_data && io_data->ep && io_data->req))
1170		value = usb_ep_dequeue(io_data->ep, io_data->req);
1171	else
1172		value = -EINVAL;
1173
1174	spin_unlock_irq(&epfile->ffs->eps_lock);
1175
1176	return value;
1177}
1178
1179static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1180{
1181	struct ffs_io_data io_data, *p = &io_data;
1182	ssize_t res;
1183
1184	ENTER();
1185
1186	if (!is_sync_kiocb(kiocb)) {
1187		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1188		if (unlikely(!p))
1189			return -ENOMEM;
1190		p->aio = true;
1191	} else {
1192		memset(p, 0, sizeof(*p));
1193		p->aio = false;
1194	}
1195
1196	p->read = false;
1197	p->kiocb = kiocb;
1198	p->data = *from;
1199	p->mm = current->mm;
1200
1201	kiocb->private = p;
1202
1203	if (p->aio)
1204		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1205
1206	res = ffs_epfile_io(kiocb->ki_filp, p);
1207	if (res == -EIOCBQUEUED)
1208		return res;
1209	if (p->aio)
1210		kfree(p);
1211	else
1212		*from = p->data;
1213	return res;
1214}
1215
1216static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1217{
1218	struct ffs_io_data io_data, *p = &io_data;
1219	ssize_t res;
1220
1221	ENTER();
1222
1223	if (!is_sync_kiocb(kiocb)) {
1224		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1225		if (unlikely(!p))
1226			return -ENOMEM;
1227		p->aio = true;
1228	} else {
1229		memset(p, 0, sizeof(*p));
1230		p->aio = false;
1231	}
1232
1233	p->read = true;
1234	p->kiocb = kiocb;
1235	if (p->aio) {
1236		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1237		if (!p->to_free) {
1238			kfree(p);
1239			return -ENOMEM;
1240		}
1241	} else {
1242		p->data = *to;
1243		p->to_free = NULL;
1244	}
1245	p->mm = current->mm;
1246
1247	kiocb->private = p;
1248
1249	if (p->aio)
1250		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1251
1252	res = ffs_epfile_io(kiocb->ki_filp, p);
1253	if (res == -EIOCBQUEUED)
1254		return res;
1255
1256	if (p->aio) {
1257		kfree(p->to_free);
1258		kfree(p);
1259	} else {
1260		*to = p->data;
1261	}
1262	return res;
1263}
1264
1265static int
1266ffs_epfile_release(struct inode *inode, struct file *file)
1267{
1268	struct ffs_epfile *epfile = inode->i_private;
1269
1270	ENTER();
1271
1272	__ffs_epfile_read_buffer_free(epfile);
1273	ffs_data_closed(epfile->ffs);
1274
1275	return 0;
1276}
1277
1278static long ffs_epfile_ioctl(struct file *file, unsigned code,
1279			     unsigned long value)
1280{
1281	struct ffs_epfile *epfile = file->private_data;
1282	struct ffs_ep *ep;
1283	int ret;
1284
1285	ENTER();
1286
1287	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1288		return -ENODEV;
1289
1290	/* Wait for endpoint to be enabled */
1291	ep = epfile->ep;
1292	if (!ep) {
1293		if (file->f_flags & O_NONBLOCK)
1294			return -EAGAIN;
1295
1296		ret = wait_event_interruptible(
1297				epfile->ffs->wait, (ep = epfile->ep));
1298		if (ret)
1299			return -EINTR;
1300	}
1301
1302	spin_lock_irq(&epfile->ffs->eps_lock);
1303
1304	/* In the meantime, endpoint got disabled or changed. */
1305	if (epfile->ep != ep) {
1306		spin_unlock_irq(&epfile->ffs->eps_lock);
1307		return -ESHUTDOWN;
1308	}
1309
1310	switch (code) {
1311	case FUNCTIONFS_FIFO_STATUS:
1312		ret = usb_ep_fifo_status(epfile->ep->ep);
1313		break;
1314	case FUNCTIONFS_FIFO_FLUSH:
1315		usb_ep_fifo_flush(epfile->ep->ep);
1316		ret = 0;
1317		break;
1318	case FUNCTIONFS_CLEAR_HALT:
1319		ret = usb_ep_clear_halt(epfile->ep->ep);
1320		break;
1321	case FUNCTIONFS_ENDPOINT_REVMAP:
1322		ret = epfile->ep->num;
1323		break;
1324	case FUNCTIONFS_ENDPOINT_DESC:
1325	{
1326		int desc_idx;
1327		struct usb_endpoint_descriptor *desc;
1328
1329		switch (epfile->ffs->gadget->speed) {
1330		case USB_SPEED_SUPER:
 
1331			desc_idx = 2;
1332			break;
1333		case USB_SPEED_HIGH:
1334			desc_idx = 1;
1335			break;
1336		default:
1337			desc_idx = 0;
1338		}
 
1339		desc = epfile->ep->descs[desc_idx];
 
1340
1341		spin_unlock_irq(&epfile->ffs->eps_lock);
1342		ret = copy_to_user((void __user *)value, desc, desc->bLength);
1343		if (ret)
1344			ret = -EFAULT;
1345		return ret;
1346	}
1347	default:
1348		ret = -ENOTTY;
1349	}
1350	spin_unlock_irq(&epfile->ffs->eps_lock);
1351
1352	return ret;
1353}
1354
1355#ifdef CONFIG_COMPAT
1356static long ffs_epfile_compat_ioctl(struct file *file, unsigned code,
1357		unsigned long value)
1358{
1359	return ffs_epfile_ioctl(file, code, value);
1360}
1361#endif
1362
1363static const struct file_operations ffs_epfile_operations = {
1364	.llseek =	no_llseek,
1365
1366	.open =		ffs_epfile_open,
1367	.write_iter =	ffs_epfile_write_iter,
1368	.read_iter =	ffs_epfile_read_iter,
1369	.release =	ffs_epfile_release,
1370	.unlocked_ioctl =	ffs_epfile_ioctl,
1371#ifdef CONFIG_COMPAT
1372	.compat_ioctl = ffs_epfile_compat_ioctl,
1373#endif
1374};
1375
1376
1377/* File system and super block operations ***********************************/
1378
1379/*
1380 * Mounting the file system creates a controller file, used first for
1381 * function configuration then later for event monitoring.
1382 */
1383
1384static struct inode *__must_check
1385ffs_sb_make_inode(struct super_block *sb, void *data,
1386		  const struct file_operations *fops,
1387		  const struct inode_operations *iops,
1388		  struct ffs_file_perms *perms)
1389{
1390	struct inode *inode;
1391
1392	ENTER();
1393
1394	inode = new_inode(sb);
1395
1396	if (likely(inode)) {
1397		struct timespec64 ts = current_time(inode);
1398
1399		inode->i_ino	 = get_next_ino();
1400		inode->i_mode    = perms->mode;
1401		inode->i_uid     = perms->uid;
1402		inode->i_gid     = perms->gid;
1403		inode->i_atime   = ts;
1404		inode->i_mtime   = ts;
1405		inode->i_ctime   = ts;
1406		inode->i_private = data;
1407		if (fops)
1408			inode->i_fop = fops;
1409		if (iops)
1410			inode->i_op  = iops;
1411	}
1412
1413	return inode;
1414}
1415
1416/* Create "regular" file */
1417static struct dentry *ffs_sb_create_file(struct super_block *sb,
1418					const char *name, void *data,
1419					const struct file_operations *fops)
1420{
1421	struct ffs_data	*ffs = sb->s_fs_info;
1422	struct dentry	*dentry;
1423	struct inode	*inode;
1424
1425	ENTER();
1426
1427	dentry = d_alloc_name(sb->s_root, name);
1428	if (unlikely(!dentry))
1429		return NULL;
1430
1431	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1432	if (unlikely(!inode)) {
1433		dput(dentry);
1434		return NULL;
1435	}
1436
1437	d_add(dentry, inode);
1438	return dentry;
1439}
1440
1441/* Super block */
1442static const struct super_operations ffs_sb_operations = {
1443	.statfs =	simple_statfs,
1444	.drop_inode =	generic_delete_inode,
1445};
1446
1447struct ffs_sb_fill_data {
1448	struct ffs_file_perms perms;
1449	umode_t root_mode;
1450	const char *dev_name;
1451	bool no_disconnect;
1452	struct ffs_data *ffs_data;
1453};
1454
1455static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1456{
1457	struct ffs_sb_fill_data *data = fc->fs_private;
1458	struct inode	*inode;
1459	struct ffs_data	*ffs = data->ffs_data;
1460
1461	ENTER();
1462
1463	ffs->sb              = sb;
1464	data->ffs_data       = NULL;
1465	sb->s_fs_info        = ffs;
1466	sb->s_blocksize      = PAGE_SIZE;
1467	sb->s_blocksize_bits = PAGE_SHIFT;
1468	sb->s_magic          = FUNCTIONFS_MAGIC;
1469	sb->s_op             = &ffs_sb_operations;
1470	sb->s_time_gran      = 1;
1471
1472	/* Root inode */
1473	data->perms.mode = data->root_mode;
1474	inode = ffs_sb_make_inode(sb, NULL,
1475				  &simple_dir_operations,
1476				  &simple_dir_inode_operations,
1477				  &data->perms);
1478	sb->s_root = d_make_root(inode);
1479	if (unlikely(!sb->s_root))
1480		return -ENOMEM;
1481
1482	/* EP0 file */
1483	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1484					 &ffs_ep0_operations)))
1485		return -ENOMEM;
1486
1487	return 0;
1488}
1489
1490enum {
1491	Opt_no_disconnect,
1492	Opt_rmode,
1493	Opt_fmode,
1494	Opt_mode,
1495	Opt_uid,
1496	Opt_gid,
1497};
1498
1499static const struct fs_parameter_spec ffs_fs_param_specs[] = {
1500	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1501	fsparam_u32	("rmode",		Opt_rmode),
1502	fsparam_u32	("fmode",		Opt_fmode),
1503	fsparam_u32	("mode",		Opt_mode),
1504	fsparam_u32	("uid",			Opt_uid),
1505	fsparam_u32	("gid",			Opt_gid),
1506	{}
1507};
1508
1509static const struct fs_parameter_description ffs_fs_fs_parameters = {
1510	.name		= "kAFS",
1511	.specs		= ffs_fs_param_specs,
1512};
1513
1514static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1515{
1516	struct ffs_sb_fill_data *data = fc->fs_private;
1517	struct fs_parse_result result;
1518	int opt;
1519
1520	ENTER();
1521
1522	opt = fs_parse(fc, &ffs_fs_fs_parameters, param, &result);
1523	if (opt < 0)
1524		return opt;
1525
1526	switch (opt) {
1527	case Opt_no_disconnect:
1528		data->no_disconnect = result.boolean;
1529		break;
1530	case Opt_rmode:
1531		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1532		break;
1533	case Opt_fmode:
1534		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1535		break;
1536	case Opt_mode:
1537		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1538		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1539		break;
1540
1541	case Opt_uid:
1542		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1543		if (!uid_valid(data->perms.uid))
1544			goto unmapped_value;
1545		break;
1546	case Opt_gid:
1547		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1548		if (!gid_valid(data->perms.gid))
1549			goto unmapped_value;
1550		break;
1551
1552	default:
1553		return -ENOPARAM;
1554	}
1555
1556	return 0;
1557
1558unmapped_value:
1559	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1560}
1561
1562/*
1563 * Set up the superblock for a mount.
1564 */
1565static int ffs_fs_get_tree(struct fs_context *fc)
1566{
1567	struct ffs_sb_fill_data *ctx = fc->fs_private;
1568	void *ffs_dev;
1569	struct ffs_data	*ffs;
1570
1571	ENTER();
1572
1573	if (!fc->source)
1574		return invalf(fc, "No source specified");
1575
1576	ffs = ffs_data_new(fc->source);
1577	if (unlikely(!ffs))
1578		return -ENOMEM;
1579	ffs->file_perms = ctx->perms;
1580	ffs->no_disconnect = ctx->no_disconnect;
1581
1582	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1583	if (unlikely(!ffs->dev_name)) {
1584		ffs_data_put(ffs);
1585		return -ENOMEM;
1586	}
1587
1588	ffs_dev = ffs_acquire_dev(ffs->dev_name);
1589	if (IS_ERR(ffs_dev)) {
1590		ffs_data_put(ffs);
1591		return PTR_ERR(ffs_dev);
1592	}
1593
1594	ffs->private_data = ffs_dev;
1595	ctx->ffs_data = ffs;
1596	return get_tree_nodev(fc, ffs_sb_fill);
1597}
1598
1599static void ffs_fs_free_fc(struct fs_context *fc)
1600{
1601	struct ffs_sb_fill_data *ctx = fc->fs_private;
1602
1603	if (ctx) {
1604		if (ctx->ffs_data) {
1605			ffs_release_dev(ctx->ffs_data);
1606			ffs_data_put(ctx->ffs_data);
1607		}
1608
1609		kfree(ctx);
1610	}
1611}
1612
1613static const struct fs_context_operations ffs_fs_context_ops = {
1614	.free		= ffs_fs_free_fc,
1615	.parse_param	= ffs_fs_parse_param,
1616	.get_tree	= ffs_fs_get_tree,
1617};
1618
1619static int ffs_fs_init_fs_context(struct fs_context *fc)
1620{
1621	struct ffs_sb_fill_data *ctx;
1622
1623	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1624	if (!ctx)
1625		return -ENOMEM;
1626
1627	ctx->perms.mode = S_IFREG | 0600;
1628	ctx->perms.uid = GLOBAL_ROOT_UID;
1629	ctx->perms.gid = GLOBAL_ROOT_GID;
1630	ctx->root_mode = S_IFDIR | 0500;
1631	ctx->no_disconnect = false;
1632
1633	fc->fs_private = ctx;
1634	fc->ops = &ffs_fs_context_ops;
1635	return 0;
1636}
1637
1638static void
1639ffs_fs_kill_sb(struct super_block *sb)
1640{
1641	ENTER();
1642
1643	kill_litter_super(sb);
1644	if (sb->s_fs_info) {
1645		ffs_release_dev(sb->s_fs_info);
1646		ffs_data_closed(sb->s_fs_info);
1647	}
1648}
1649
1650static struct file_system_type ffs_fs_type = {
1651	.owner		= THIS_MODULE,
1652	.name		= "functionfs",
1653	.init_fs_context = ffs_fs_init_fs_context,
1654	.parameters	= &ffs_fs_fs_parameters,
1655	.kill_sb	= ffs_fs_kill_sb,
1656};
1657MODULE_ALIAS_FS("functionfs");
1658
1659
1660/* Driver's main init/cleanup functions *************************************/
1661
1662static int functionfs_init(void)
1663{
1664	int ret;
1665
1666	ENTER();
1667
1668	ret = register_filesystem(&ffs_fs_type);
1669	if (likely(!ret))
1670		pr_info("file system registered\n");
1671	else
1672		pr_err("failed registering file system (%d)\n", ret);
1673
1674	return ret;
1675}
1676
1677static void functionfs_cleanup(void)
1678{
1679	ENTER();
1680
1681	pr_info("unloading\n");
1682	unregister_filesystem(&ffs_fs_type);
1683}
1684
1685
1686/* ffs_data and ffs_function construction and destruction code **************/
1687
1688static void ffs_data_clear(struct ffs_data *ffs);
1689static void ffs_data_reset(struct ffs_data *ffs);
1690
1691static void ffs_data_get(struct ffs_data *ffs)
1692{
1693	ENTER();
1694
1695	refcount_inc(&ffs->ref);
1696}
1697
1698static void ffs_data_opened(struct ffs_data *ffs)
1699{
1700	ENTER();
1701
1702	refcount_inc(&ffs->ref);
1703	if (atomic_add_return(1, &ffs->opened) == 1 &&
1704			ffs->state == FFS_DEACTIVATED) {
1705		ffs->state = FFS_CLOSING;
1706		ffs_data_reset(ffs);
1707	}
1708}
1709
1710static void ffs_data_put(struct ffs_data *ffs)
1711{
1712	ENTER();
1713
1714	if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1715		pr_info("%s(): freeing\n", __func__);
1716		ffs_data_clear(ffs);
 
1717		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1718		       waitqueue_active(&ffs->ep0req_completion.wait) ||
1719		       waitqueue_active(&ffs->wait));
1720		destroy_workqueue(ffs->io_completion_wq);
1721		kfree(ffs->dev_name);
1722		kfree(ffs);
1723	}
1724}
1725
1726static void ffs_data_closed(struct ffs_data *ffs)
1727{
1728	ENTER();
 
1729
1730	if (atomic_dec_and_test(&ffs->opened)) {
1731		if (ffs->no_disconnect) {
1732			ffs->state = FFS_DEACTIVATED;
1733			if (ffs->epfiles) {
1734				ffs_epfiles_destroy(ffs->epfiles,
1735						   ffs->eps_count);
1736				ffs->epfiles = NULL;
1737			}
 
 
 
 
 
1738			if (ffs->setup_state == FFS_SETUP_PENDING)
1739				__ffs_ep0_stall(ffs);
1740		} else {
1741			ffs->state = FFS_CLOSING;
1742			ffs_data_reset(ffs);
1743		}
1744	}
1745	if (atomic_read(&ffs->opened) < 0) {
1746		ffs->state = FFS_CLOSING;
1747		ffs_data_reset(ffs);
1748	}
1749
1750	ffs_data_put(ffs);
1751}
1752
1753static struct ffs_data *ffs_data_new(const char *dev_name)
1754{
1755	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1756	if (unlikely(!ffs))
1757		return NULL;
1758
1759	ENTER();
1760
1761	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1762	if (!ffs->io_completion_wq) {
1763		kfree(ffs);
1764		return NULL;
1765	}
1766
1767	refcount_set(&ffs->ref, 1);
1768	atomic_set(&ffs->opened, 0);
1769	ffs->state = FFS_READ_DESCRIPTORS;
1770	mutex_init(&ffs->mutex);
1771	spin_lock_init(&ffs->eps_lock);
1772	init_waitqueue_head(&ffs->ev.waitq);
1773	init_waitqueue_head(&ffs->wait);
1774	init_completion(&ffs->ep0req_completion);
1775
1776	/* XXX REVISIT need to update it in some places, or do we? */
1777	ffs->ev.can_stall = 1;
1778
1779	return ffs;
1780}
1781
1782static void ffs_data_clear(struct ffs_data *ffs)
1783{
1784	ENTER();
 
1785
1786	ffs_closed(ffs);
1787
1788	BUG_ON(ffs->gadget);
1789
1790	if (ffs->epfiles)
1791		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
 
 
1792
1793	if (ffs->ffs_eventfd)
 
 
 
 
 
 
 
 
 
 
1794		eventfd_ctx_put(ffs->ffs_eventfd);
 
 
1795
1796	kfree(ffs->raw_descs_data);
1797	kfree(ffs->raw_strings);
1798	kfree(ffs->stringtabs);
1799}
1800
1801static void ffs_data_reset(struct ffs_data *ffs)
1802{
1803	ENTER();
1804
1805	ffs_data_clear(ffs);
1806
1807	ffs->epfiles = NULL;
1808	ffs->raw_descs_data = NULL;
1809	ffs->raw_descs = NULL;
1810	ffs->raw_strings = NULL;
1811	ffs->stringtabs = NULL;
1812
1813	ffs->raw_descs_length = 0;
1814	ffs->fs_descs_count = 0;
1815	ffs->hs_descs_count = 0;
1816	ffs->ss_descs_count = 0;
1817
1818	ffs->strings_count = 0;
1819	ffs->interfaces_count = 0;
1820	ffs->eps_count = 0;
1821
1822	ffs->ev.count = 0;
1823
1824	ffs->state = FFS_READ_DESCRIPTORS;
1825	ffs->setup_state = FFS_NO_SETUP;
1826	ffs->flags = 0;
 
 
 
 
1827}
1828
1829
1830static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1831{
1832	struct usb_gadget_strings **lang;
1833	int first_id;
1834
1835	ENTER();
1836
1837	if (WARN_ON(ffs->state != FFS_ACTIVE
1838		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1839		return -EBADFD;
1840
1841	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1842	if (unlikely(first_id < 0))
1843		return first_id;
1844
1845	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1846	if (unlikely(!ffs->ep0req))
1847		return -ENOMEM;
1848	ffs->ep0req->complete = ffs_ep0_complete;
1849	ffs->ep0req->context = ffs;
1850
1851	lang = ffs->stringtabs;
1852	if (lang) {
1853		for (; *lang; ++lang) {
1854			struct usb_string *str = (*lang)->strings;
1855			int id = first_id;
1856			for (; str->s; ++id, ++str)
1857				str->id = id;
1858		}
1859	}
1860
1861	ffs->gadget = cdev->gadget;
1862	ffs_data_get(ffs);
1863	return 0;
1864}
1865
1866static void functionfs_unbind(struct ffs_data *ffs)
1867{
1868	ENTER();
1869
1870	if (!WARN_ON(!ffs->gadget)) {
 
 
 
1871		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1872		ffs->ep0req = NULL;
1873		ffs->gadget = NULL;
1874		clear_bit(FFS_FL_BOUND, &ffs->flags);
 
1875		ffs_data_put(ffs);
1876	}
1877}
1878
1879static int ffs_epfiles_create(struct ffs_data *ffs)
1880{
1881	struct ffs_epfile *epfile, *epfiles;
1882	unsigned i, count;
1883
1884	ENTER();
1885
1886	count = ffs->eps_count;
1887	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1888	if (!epfiles)
1889		return -ENOMEM;
1890
1891	epfile = epfiles;
1892	for (i = 1; i <= count; ++i, ++epfile) {
1893		epfile->ffs = ffs;
1894		mutex_init(&epfile->mutex);
1895		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1896			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1897		else
1898			sprintf(epfile->name, "ep%u", i);
1899		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1900						 epfile,
1901						 &ffs_epfile_operations);
1902		if (unlikely(!epfile->dentry)) {
1903			ffs_epfiles_destroy(epfiles, i - 1);
1904			return -ENOMEM;
1905		}
1906	}
1907
1908	ffs->epfiles = epfiles;
1909	return 0;
1910}
1911
1912static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1913{
1914	struct ffs_epfile *epfile = epfiles;
1915
1916	ENTER();
1917
1918	for (; count; --count, ++epfile) {
1919		BUG_ON(mutex_is_locked(&epfile->mutex));
1920		if (epfile->dentry) {
1921			d_delete(epfile->dentry);
1922			dput(epfile->dentry);
1923			epfile->dentry = NULL;
1924		}
1925	}
1926
1927	kfree(epfiles);
1928}
1929
1930static void ffs_func_eps_disable(struct ffs_function *func)
1931{
1932	struct ffs_ep *ep         = func->eps;
1933	struct ffs_epfile *epfile = func->ffs->epfiles;
1934	unsigned count            = func->ffs->eps_count;
1935	unsigned long flags;
1936
1937	spin_lock_irqsave(&func->ffs->eps_lock, flags);
 
 
 
1938	while (count--) {
1939		/* pending requests get nuked */
1940		if (likely(ep->ep))
1941			usb_ep_disable(ep->ep);
1942		++ep;
1943
1944		if (epfile) {
1945			epfile->ep = NULL;
1946			__ffs_epfile_read_buffer_free(epfile);
1947			++epfile;
1948		}
1949	}
1950	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1951}
1952
1953static int ffs_func_eps_enable(struct ffs_function *func)
1954{
1955	struct ffs_data *ffs      = func->ffs;
1956	struct ffs_ep *ep         = func->eps;
1957	struct ffs_epfile *epfile = ffs->epfiles;
1958	unsigned count            = ffs->eps_count;
1959	unsigned long flags;
1960	int ret = 0;
1961
1962	spin_lock_irqsave(&func->ffs->eps_lock, flags);
 
 
 
 
1963	while(count--) {
1964		ep->ep->driver_data = ep;
1965
1966		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1967		if (ret) {
1968			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1969					__func__, ep->ep->name, ret);
1970			break;
1971		}
1972
1973		ret = usb_ep_enable(ep->ep);
1974		if (likely(!ret)) {
1975			epfile->ep = ep;
1976			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1977			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1978		} else {
1979			break;
1980		}
1981
1982		++ep;
1983		++epfile;
1984	}
1985
1986	wake_up_interruptible(&ffs->wait);
1987	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1988
1989	return ret;
1990}
1991
1992
1993/* Parsing and building descriptors and strings *****************************/
1994
1995/*
1996 * This validates if data pointed by data is a valid USB descriptor as
1997 * well as record how many interfaces, endpoints and strings are
1998 * required by given configuration.  Returns address after the
1999 * descriptor or NULL if data is invalid.
2000 */
2001
2002enum ffs_entity_type {
2003	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2004};
2005
2006enum ffs_os_desc_type {
2007	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2008};
2009
2010typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2011				   u8 *valuep,
2012				   struct usb_descriptor_header *desc,
2013				   void *priv);
2014
2015typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2016				    struct usb_os_desc_header *h, void *data,
2017				    unsigned len, void *priv);
2018
2019static int __must_check ffs_do_single_desc(char *data, unsigned len,
2020					   ffs_entity_callback entity,
2021					   void *priv, int *current_class)
2022{
2023	struct usb_descriptor_header *_ds = (void *)data;
2024	u8 length;
2025	int ret;
2026
2027	ENTER();
2028
2029	/* At least two bytes are required: length and type */
2030	if (len < 2) {
2031		pr_vdebug("descriptor too short\n");
2032		return -EINVAL;
2033	}
2034
2035	/* If we have at least as many bytes as the descriptor takes? */
2036	length = _ds->bLength;
2037	if (len < length) {
2038		pr_vdebug("descriptor longer then available data\n");
2039		return -EINVAL;
2040	}
2041
2042#define __entity_check_INTERFACE(val)  1
2043#define __entity_check_STRING(val)     (val)
2044#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2045#define __entity(type, val) do {					\
2046		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2047		if (unlikely(!__entity_check_ ##type(val))) {		\
2048			pr_vdebug("invalid entity's value\n");		\
2049			return -EINVAL;					\
2050		}							\
2051		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2052		if (unlikely(ret < 0)) {				\
2053			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2054				 (val), ret);				\
2055			return ret;					\
2056		}							\
2057	} while (0)
2058
2059	/* Parse descriptor depending on type. */
2060	switch (_ds->bDescriptorType) {
2061	case USB_DT_DEVICE:
2062	case USB_DT_CONFIG:
2063	case USB_DT_STRING:
2064	case USB_DT_DEVICE_QUALIFIER:
2065		/* function can't have any of those */
2066		pr_vdebug("descriptor reserved for gadget: %d\n",
2067		      _ds->bDescriptorType);
2068		return -EINVAL;
2069
2070	case USB_DT_INTERFACE: {
2071		struct usb_interface_descriptor *ds = (void *)_ds;
2072		pr_vdebug("interface descriptor\n");
2073		if (length != sizeof *ds)
2074			goto inv_length;
2075
2076		__entity(INTERFACE, ds->bInterfaceNumber);
2077		if (ds->iInterface)
2078			__entity(STRING, ds->iInterface);
2079		*current_class = ds->bInterfaceClass;
2080	}
2081		break;
2082
2083	case USB_DT_ENDPOINT: {
2084		struct usb_endpoint_descriptor *ds = (void *)_ds;
2085		pr_vdebug("endpoint descriptor\n");
2086		if (length != USB_DT_ENDPOINT_SIZE &&
2087		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2088			goto inv_length;
2089		__entity(ENDPOINT, ds->bEndpointAddress);
2090	}
2091		break;
2092
2093	case USB_TYPE_CLASS | 0x01:
2094                if (*current_class == USB_INTERFACE_CLASS_HID) {
2095			pr_vdebug("hid descriptor\n");
2096			if (length != sizeof(struct hid_descriptor))
2097				goto inv_length;
2098			break;
2099		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2100			pr_vdebug("ccid descriptor\n");
2101			if (length != sizeof(struct ccid_descriptor))
2102				goto inv_length;
2103			break;
2104		} else {
2105			pr_vdebug("unknown descriptor: %d for class %d\n",
2106			      _ds->bDescriptorType, *current_class);
2107			return -EINVAL;
2108		}
2109
2110	case USB_DT_OTG:
2111		if (length != sizeof(struct usb_otg_descriptor))
2112			goto inv_length;
2113		break;
2114
2115	case USB_DT_INTERFACE_ASSOCIATION: {
2116		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2117		pr_vdebug("interface association descriptor\n");
2118		if (length != sizeof *ds)
2119			goto inv_length;
2120		if (ds->iFunction)
2121			__entity(STRING, ds->iFunction);
2122	}
2123		break;
2124
2125	case USB_DT_SS_ENDPOINT_COMP:
2126		pr_vdebug("EP SS companion descriptor\n");
2127		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2128			goto inv_length;
2129		break;
2130
2131	case USB_DT_OTHER_SPEED_CONFIG:
2132	case USB_DT_INTERFACE_POWER:
2133	case USB_DT_DEBUG:
2134	case USB_DT_SECURITY:
2135	case USB_DT_CS_RADIO_CONTROL:
2136		/* TODO */
2137		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2138		return -EINVAL;
2139
2140	default:
2141		/* We should never be here */
2142		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2143		return -EINVAL;
2144
2145inv_length:
2146		pr_vdebug("invalid length: %d (descriptor %d)\n",
2147			  _ds->bLength, _ds->bDescriptorType);
2148		return -EINVAL;
2149	}
2150
2151#undef __entity
2152#undef __entity_check_DESCRIPTOR
2153#undef __entity_check_INTERFACE
2154#undef __entity_check_STRING
2155#undef __entity_check_ENDPOINT
2156
2157	return length;
2158}
2159
2160static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2161				     ffs_entity_callback entity, void *priv)
2162{
2163	const unsigned _len = len;
2164	unsigned long num = 0;
2165	int current_class = -1;
2166
2167	ENTER();
2168
2169	for (;;) {
2170		int ret;
2171
2172		if (num == count)
2173			data = NULL;
2174
2175		/* Record "descriptor" entity */
2176		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2177		if (unlikely(ret < 0)) {
2178			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2179				 num, ret);
2180			return ret;
2181		}
2182
2183		if (!data)
2184			return _len - len;
2185
2186		ret = ffs_do_single_desc(data, len, entity, priv,
2187			&current_class);
2188		if (unlikely(ret < 0)) {
2189			pr_debug("%s returns %d\n", __func__, ret);
2190			return ret;
2191		}
2192
2193		len -= ret;
2194		data += ret;
2195		++num;
2196	}
2197}
2198
2199static int __ffs_data_do_entity(enum ffs_entity_type type,
2200				u8 *valuep, struct usb_descriptor_header *desc,
2201				void *priv)
2202{
2203	struct ffs_desc_helper *helper = priv;
2204	struct usb_endpoint_descriptor *d;
2205
2206	ENTER();
2207
2208	switch (type) {
2209	case FFS_DESCRIPTOR:
2210		break;
2211
2212	case FFS_INTERFACE:
2213		/*
2214		 * Interfaces are indexed from zero so if we
2215		 * encountered interface "n" then there are at least
2216		 * "n+1" interfaces.
2217		 */
2218		if (*valuep >= helper->interfaces_count)
2219			helper->interfaces_count = *valuep + 1;
2220		break;
2221
2222	case FFS_STRING:
2223		/*
2224		 * Strings are indexed from 1 (0 is reserved
2225		 * for languages list)
2226		 */
2227		if (*valuep > helper->ffs->strings_count)
2228			helper->ffs->strings_count = *valuep;
2229		break;
2230
2231	case FFS_ENDPOINT:
2232		d = (void *)desc;
2233		helper->eps_count++;
2234		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2235			return -EINVAL;
2236		/* Check if descriptors for any speed were already parsed */
2237		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2238			helper->ffs->eps_addrmap[helper->eps_count] =
2239				d->bEndpointAddress;
2240		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2241				d->bEndpointAddress)
2242			return -EINVAL;
2243		break;
2244	}
2245
2246	return 0;
2247}
2248
2249static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2250				   struct usb_os_desc_header *desc)
2251{
2252	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2253	u16 w_index = le16_to_cpu(desc->wIndex);
2254
2255	if (bcd_version != 1) {
2256		pr_vdebug("unsupported os descriptors version: %d",
 
 
 
2257			  bcd_version);
2258		return -EINVAL;
2259	}
2260	switch (w_index) {
2261	case 0x4:
2262		*next_type = FFS_OS_DESC_EXT_COMPAT;
2263		break;
2264	case 0x5:
2265		*next_type = FFS_OS_DESC_EXT_PROP;
2266		break;
2267	default:
2268		pr_vdebug("unsupported os descriptor type: %d", w_index);
2269		return -EINVAL;
2270	}
2271
2272	return sizeof(*desc);
2273}
2274
2275/*
2276 * Process all extended compatibility/extended property descriptors
2277 * of a feature descriptor
2278 */
2279static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2280					      enum ffs_os_desc_type type,
2281					      u16 feature_count,
2282					      ffs_os_desc_callback entity,
2283					      void *priv,
2284					      struct usb_os_desc_header *h)
2285{
2286	int ret;
2287	const unsigned _len = len;
2288
2289	ENTER();
2290
2291	/* loop over all ext compat/ext prop descriptors */
2292	while (feature_count--) {
2293		ret = entity(type, h, data, len, priv);
2294		if (unlikely(ret < 0)) {
2295			pr_debug("bad OS descriptor, type: %d\n", type);
2296			return ret;
2297		}
2298		data += ret;
2299		len -= ret;
2300	}
2301	return _len - len;
2302}
2303
2304/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2305static int __must_check ffs_do_os_descs(unsigned count,
2306					char *data, unsigned len,
2307					ffs_os_desc_callback entity, void *priv)
2308{
2309	const unsigned _len = len;
2310	unsigned long num = 0;
2311
2312	ENTER();
2313
2314	for (num = 0; num < count; ++num) {
2315		int ret;
2316		enum ffs_os_desc_type type;
2317		u16 feature_count;
2318		struct usb_os_desc_header *desc = (void *)data;
2319
2320		if (len < sizeof(*desc))
2321			return -EINVAL;
2322
2323		/*
2324		 * Record "descriptor" entity.
2325		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2326		 * Move the data pointer to the beginning of extended
2327		 * compatibilities proper or extended properties proper
2328		 * portions of the data
2329		 */
2330		if (le32_to_cpu(desc->dwLength) > len)
2331			return -EINVAL;
2332
2333		ret = __ffs_do_os_desc_header(&type, desc);
2334		if (unlikely(ret < 0)) {
2335			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2336				 num, ret);
2337			return ret;
2338		}
2339		/*
2340		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2341		 */
2342		feature_count = le16_to_cpu(desc->wCount);
2343		if (type == FFS_OS_DESC_EXT_COMPAT &&
2344		    (feature_count > 255 || desc->Reserved))
2345				return -EINVAL;
2346		len -= ret;
2347		data += ret;
2348
2349		/*
2350		 * Process all function/property descriptors
2351		 * of this Feature Descriptor
2352		 */
2353		ret = ffs_do_single_os_desc(data, len, type,
2354					    feature_count, entity, priv, desc);
2355		if (unlikely(ret < 0)) {
2356			pr_debug("%s returns %d\n", __func__, ret);
2357			return ret;
2358		}
2359
2360		len -= ret;
2361		data += ret;
2362	}
2363	return _len - len;
2364}
2365
2366/**
2367 * Validate contents of the buffer from userspace related to OS descriptors.
2368 */
2369static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2370				 struct usb_os_desc_header *h, void *data,
2371				 unsigned len, void *priv)
2372{
2373	struct ffs_data *ffs = priv;
2374	u8 length;
2375
2376	ENTER();
2377
2378	switch (type) {
2379	case FFS_OS_DESC_EXT_COMPAT: {
2380		struct usb_ext_compat_desc *d = data;
2381		int i;
2382
2383		if (len < sizeof(*d) ||
2384		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2385			return -EINVAL;
2386		if (d->Reserved1 != 1) {
2387			/*
2388			 * According to the spec, Reserved1 must be set to 1
2389			 * but older kernels incorrectly rejected non-zero
2390			 * values.  We fix it here to avoid returning EINVAL
2391			 * in response to values we used to accept.
2392			 */
2393			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2394			d->Reserved1 = 1;
2395		}
2396		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2397			if (d->Reserved2[i])
2398				return -EINVAL;
2399
2400		length = sizeof(struct usb_ext_compat_desc);
2401	}
2402		break;
2403	case FFS_OS_DESC_EXT_PROP: {
2404		struct usb_ext_prop_desc *d = data;
2405		u32 type, pdl;
2406		u16 pnl;
2407
2408		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2409			return -EINVAL;
2410		length = le32_to_cpu(d->dwSize);
2411		if (len < length)
2412			return -EINVAL;
2413		type = le32_to_cpu(d->dwPropertyDataType);
2414		if (type < USB_EXT_PROP_UNICODE ||
2415		    type > USB_EXT_PROP_UNICODE_MULTI) {
2416			pr_vdebug("unsupported os descriptor property type: %d",
2417				  type);
2418			return -EINVAL;
2419		}
2420		pnl = le16_to_cpu(d->wPropertyNameLength);
2421		if (length < 14 + pnl) {
2422			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2423				  length, pnl, type);
2424			return -EINVAL;
2425		}
2426		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2427		if (length != 14 + pnl + pdl) {
2428			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2429				  length, pnl, pdl, type);
2430			return -EINVAL;
2431		}
2432		++ffs->ms_os_descs_ext_prop_count;
2433		/* property name reported to the host as "WCHAR"s */
2434		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2435		ffs->ms_os_descs_ext_prop_data_len += pdl;
2436	}
2437		break;
2438	default:
2439		pr_vdebug("unknown descriptor: %d\n", type);
2440		return -EINVAL;
2441	}
2442	return length;
2443}
2444
2445static int __ffs_data_got_descs(struct ffs_data *ffs,
2446				char *const _data, size_t len)
2447{
2448	char *data = _data, *raw_descs;
2449	unsigned os_descs_count = 0, counts[3], flags;
2450	int ret = -EINVAL, i;
2451	struct ffs_desc_helper helper;
2452
2453	ENTER();
2454
2455	if (get_unaligned_le32(data + 4) != len)
2456		goto error;
2457
2458	switch (get_unaligned_le32(data)) {
2459	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2460		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2461		data += 8;
2462		len  -= 8;
2463		break;
2464	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2465		flags = get_unaligned_le32(data + 8);
2466		ffs->user_flags = flags;
2467		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2468			      FUNCTIONFS_HAS_HS_DESC |
2469			      FUNCTIONFS_HAS_SS_DESC |
2470			      FUNCTIONFS_HAS_MS_OS_DESC |
2471			      FUNCTIONFS_VIRTUAL_ADDR |
2472			      FUNCTIONFS_EVENTFD |
2473			      FUNCTIONFS_ALL_CTRL_RECIP |
2474			      FUNCTIONFS_CONFIG0_SETUP)) {
2475			ret = -ENOSYS;
2476			goto error;
2477		}
2478		data += 12;
2479		len  -= 12;
2480		break;
2481	default:
2482		goto error;
2483	}
2484
2485	if (flags & FUNCTIONFS_EVENTFD) {
2486		if (len < 4)
2487			goto error;
2488		ffs->ffs_eventfd =
2489			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2490		if (IS_ERR(ffs->ffs_eventfd)) {
2491			ret = PTR_ERR(ffs->ffs_eventfd);
2492			ffs->ffs_eventfd = NULL;
2493			goto error;
2494		}
2495		data += 4;
2496		len  -= 4;
2497	}
2498
2499	/* Read fs_count, hs_count and ss_count (if present) */
2500	for (i = 0; i < 3; ++i) {
2501		if (!(flags & (1 << i))) {
2502			counts[i] = 0;
2503		} else if (len < 4) {
2504			goto error;
2505		} else {
2506			counts[i] = get_unaligned_le32(data);
2507			data += 4;
2508			len  -= 4;
2509		}
2510	}
2511	if (flags & (1 << i)) {
2512		if (len < 4) {
2513			goto error;
2514		}
2515		os_descs_count = get_unaligned_le32(data);
2516		data += 4;
2517		len -= 4;
2518	};
2519
2520	/* Read descriptors */
2521	raw_descs = data;
2522	helper.ffs = ffs;
2523	for (i = 0; i < 3; ++i) {
2524		if (!counts[i])
2525			continue;
2526		helper.interfaces_count = 0;
2527		helper.eps_count = 0;
2528		ret = ffs_do_descs(counts[i], data, len,
2529				   __ffs_data_do_entity, &helper);
2530		if (ret < 0)
2531			goto error;
2532		if (!ffs->eps_count && !ffs->interfaces_count) {
2533			ffs->eps_count = helper.eps_count;
2534			ffs->interfaces_count = helper.interfaces_count;
2535		} else {
2536			if (ffs->eps_count != helper.eps_count) {
2537				ret = -EINVAL;
2538				goto error;
2539			}
2540			if (ffs->interfaces_count != helper.interfaces_count) {
2541				ret = -EINVAL;
2542				goto error;
2543			}
2544		}
2545		data += ret;
2546		len  -= ret;
2547	}
2548	if (os_descs_count) {
2549		ret = ffs_do_os_descs(os_descs_count, data, len,
2550				      __ffs_data_do_os_desc, ffs);
2551		if (ret < 0)
2552			goto error;
2553		data += ret;
2554		len -= ret;
2555	}
2556
2557	if (raw_descs == data || len) {
2558		ret = -EINVAL;
2559		goto error;
2560	}
2561
2562	ffs->raw_descs_data	= _data;
2563	ffs->raw_descs		= raw_descs;
2564	ffs->raw_descs_length	= data - raw_descs;
2565	ffs->fs_descs_count	= counts[0];
2566	ffs->hs_descs_count	= counts[1];
2567	ffs->ss_descs_count	= counts[2];
2568	ffs->ms_os_descs_count	= os_descs_count;
2569
2570	return 0;
2571
2572error:
2573	kfree(_data);
2574	return ret;
2575}
2576
2577static int __ffs_data_got_strings(struct ffs_data *ffs,
2578				  char *const _data, size_t len)
2579{
2580	u32 str_count, needed_count, lang_count;
2581	struct usb_gadget_strings **stringtabs, *t;
2582	const char *data = _data;
2583	struct usb_string *s;
2584
2585	ENTER();
2586
2587	if (unlikely(len < 16 ||
2588		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2589		     get_unaligned_le32(data + 4) != len))
2590		goto error;
2591	str_count  = get_unaligned_le32(data + 8);
2592	lang_count = get_unaligned_le32(data + 12);
2593
2594	/* if one is zero the other must be zero */
2595	if (unlikely(!str_count != !lang_count))
2596		goto error;
2597
2598	/* Do we have at least as many strings as descriptors need? */
2599	needed_count = ffs->strings_count;
2600	if (unlikely(str_count < needed_count))
2601		goto error;
2602
2603	/*
2604	 * If we don't need any strings just return and free all
2605	 * memory.
2606	 */
2607	if (!needed_count) {
2608		kfree(_data);
2609		return 0;
2610	}
2611
2612	/* Allocate everything in one chunk so there's less maintenance. */
2613	{
2614		unsigned i = 0;
2615		vla_group(d);
2616		vla_item(d, struct usb_gadget_strings *, stringtabs,
2617			lang_count + 1);
2618		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2619		vla_item(d, struct usb_string, strings,
2620			lang_count*(needed_count+1));
2621
2622		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2623
2624		if (unlikely(!vlabuf)) {
2625			kfree(_data);
2626			return -ENOMEM;
2627		}
2628
2629		/* Initialize the VLA pointers */
2630		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2631		t = vla_ptr(vlabuf, d, stringtab);
2632		i = lang_count;
2633		do {
2634			*stringtabs++ = t++;
2635		} while (--i);
2636		*stringtabs = NULL;
2637
2638		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2639		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2640		t = vla_ptr(vlabuf, d, stringtab);
2641		s = vla_ptr(vlabuf, d, strings);
2642	}
2643
2644	/* For each language */
2645	data += 16;
2646	len -= 16;
2647
2648	do { /* lang_count > 0 so we can use do-while */
2649		unsigned needed = needed_count;
 
2650
2651		if (unlikely(len < 3))
2652			goto error_free;
2653		t->language = get_unaligned_le16(data);
2654		t->strings  = s;
2655		++t;
2656
2657		data += 2;
2658		len -= 2;
2659
2660		/* For each string */
2661		do { /* str_count > 0 so we can use do-while */
2662			size_t length = strnlen(data, len);
2663
2664			if (unlikely(length == len))
2665				goto error_free;
2666
2667			/*
2668			 * User may provide more strings then we need,
2669			 * if that's the case we simply ignore the
2670			 * rest
2671			 */
2672			if (likely(needed)) {
2673				/*
2674				 * s->id will be set while adding
2675				 * function to configuration so for
2676				 * now just leave garbage here.
2677				 */
2678				s->s = data;
2679				--needed;
2680				++s;
2681			}
2682
2683			data += length + 1;
2684			len -= length + 1;
2685		} while (--str_count);
2686
2687		s->id = 0;   /* terminator */
2688		s->s = NULL;
2689		++s;
2690
2691	} while (--lang_count);
2692
2693	/* Some garbage left? */
2694	if (unlikely(len))
2695		goto error_free;
2696
2697	/* Done! */
2698	ffs->stringtabs = stringtabs;
2699	ffs->raw_strings = _data;
2700
2701	return 0;
2702
2703error_free:
2704	kfree(stringtabs);
2705error:
2706	kfree(_data);
2707	return -EINVAL;
2708}
2709
2710
2711/* Events handling and management *******************************************/
2712
2713static void __ffs_event_add(struct ffs_data *ffs,
2714			    enum usb_functionfs_event_type type)
2715{
2716	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2717	int neg = 0;
2718
2719	/*
2720	 * Abort any unhandled setup
2721	 *
2722	 * We do not need to worry about some cmpxchg() changing value
2723	 * of ffs->setup_state without holding the lock because when
2724	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2725	 * the source does nothing.
2726	 */
2727	if (ffs->setup_state == FFS_SETUP_PENDING)
2728		ffs->setup_state = FFS_SETUP_CANCELLED;
2729
2730	/*
2731	 * Logic of this function guarantees that there are at most four pending
2732	 * evens on ffs->ev.types queue.  This is important because the queue
2733	 * has space for four elements only and __ffs_ep0_read_events function
2734	 * depends on that limit as well.  If more event types are added, those
2735	 * limits have to be revisited or guaranteed to still hold.
2736	 */
2737	switch (type) {
2738	case FUNCTIONFS_RESUME:
2739		rem_type2 = FUNCTIONFS_SUSPEND;
2740		/* FALL THROUGH */
2741	case FUNCTIONFS_SUSPEND:
2742	case FUNCTIONFS_SETUP:
2743		rem_type1 = type;
2744		/* Discard all similar events */
2745		break;
2746
2747	case FUNCTIONFS_BIND:
2748	case FUNCTIONFS_UNBIND:
2749	case FUNCTIONFS_DISABLE:
2750	case FUNCTIONFS_ENABLE:
2751		/* Discard everything other then power management. */
2752		rem_type1 = FUNCTIONFS_SUSPEND;
2753		rem_type2 = FUNCTIONFS_RESUME;
2754		neg = 1;
2755		break;
2756
2757	default:
2758		WARN(1, "%d: unknown event, this should not happen\n", type);
2759		return;
2760	}
2761
2762	{
2763		u8 *ev  = ffs->ev.types, *out = ev;
2764		unsigned n = ffs->ev.count;
2765		for (; n; --n, ++ev)
2766			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2767				*out++ = *ev;
2768			else
2769				pr_vdebug("purging event %d\n", *ev);
2770		ffs->ev.count = out - ffs->ev.types;
2771	}
2772
2773	pr_vdebug("adding event %d\n", type);
2774	ffs->ev.types[ffs->ev.count++] = type;
2775	wake_up_locked(&ffs->ev.waitq);
2776	if (ffs->ffs_eventfd)
2777		eventfd_signal(ffs->ffs_eventfd, 1);
2778}
2779
2780static void ffs_event_add(struct ffs_data *ffs,
2781			  enum usb_functionfs_event_type type)
2782{
2783	unsigned long flags;
2784	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2785	__ffs_event_add(ffs, type);
2786	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2787}
2788
2789/* Bind/unbind USB function hooks *******************************************/
2790
2791static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2792{
2793	int i;
2794
2795	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2796		if (ffs->eps_addrmap[i] == endpoint_address)
2797			return i;
2798	return -ENOENT;
2799}
2800
2801static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2802				    struct usb_descriptor_header *desc,
2803				    void *priv)
2804{
2805	struct usb_endpoint_descriptor *ds = (void *)desc;
2806	struct ffs_function *func = priv;
2807	struct ffs_ep *ffs_ep;
2808	unsigned ep_desc_id;
2809	int idx;
2810	static const char *speed_names[] = { "full", "high", "super" };
2811
2812	if (type != FFS_DESCRIPTOR)
2813		return 0;
2814
2815	/*
2816	 * If ss_descriptors is not NULL, we are reading super speed
2817	 * descriptors; if hs_descriptors is not NULL, we are reading high
2818	 * speed descriptors; otherwise, we are reading full speed
2819	 * descriptors.
2820	 */
2821	if (func->function.ss_descriptors) {
2822		ep_desc_id = 2;
2823		func->function.ss_descriptors[(long)valuep] = desc;
2824	} else if (func->function.hs_descriptors) {
2825		ep_desc_id = 1;
2826		func->function.hs_descriptors[(long)valuep] = desc;
2827	} else {
2828		ep_desc_id = 0;
2829		func->function.fs_descriptors[(long)valuep]    = desc;
2830	}
2831
2832	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2833		return 0;
2834
2835	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2836	if (idx < 0)
2837		return idx;
2838
2839	ffs_ep = func->eps + idx;
2840
2841	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2842		pr_err("two %sspeed descriptors for EP %d\n",
2843			  speed_names[ep_desc_id],
2844			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2845		return -EINVAL;
2846	}
2847	ffs_ep->descs[ep_desc_id] = ds;
2848
2849	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2850	if (ffs_ep->ep) {
2851		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2852		if (!ds->wMaxPacketSize)
2853			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2854	} else {
2855		struct usb_request *req;
2856		struct usb_ep *ep;
2857		u8 bEndpointAddress;
2858		u16 wMaxPacketSize;
2859
2860		/*
2861		 * We back up bEndpointAddress because autoconfig overwrites
2862		 * it with physical endpoint address.
2863		 */
2864		bEndpointAddress = ds->bEndpointAddress;
2865		/*
2866		 * We back up wMaxPacketSize because autoconfig treats
2867		 * endpoint descriptors as if they were full speed.
2868		 */
2869		wMaxPacketSize = ds->wMaxPacketSize;
2870		pr_vdebug("autoconfig\n");
2871		ep = usb_ep_autoconfig(func->gadget, ds);
2872		if (unlikely(!ep))
2873			return -ENOTSUPP;
2874		ep->driver_data = func->eps + idx;
2875
2876		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2877		if (unlikely(!req))
2878			return -ENOMEM;
2879
2880		ffs_ep->ep  = ep;
2881		ffs_ep->req = req;
2882		func->eps_revmap[ds->bEndpointAddress &
2883				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2884		/*
2885		 * If we use virtual address mapping, we restore
2886		 * original bEndpointAddress value.
2887		 */
2888		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2889			ds->bEndpointAddress = bEndpointAddress;
2890		/*
2891		 * Restore wMaxPacketSize which was potentially
2892		 * overwritten by autoconfig.
2893		 */
2894		ds->wMaxPacketSize = wMaxPacketSize;
2895	}
2896	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2897
2898	return 0;
2899}
2900
2901static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2902				   struct usb_descriptor_header *desc,
2903				   void *priv)
2904{
2905	struct ffs_function *func = priv;
2906	unsigned idx;
2907	u8 newValue;
2908
2909	switch (type) {
2910	default:
2911	case FFS_DESCRIPTOR:
2912		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2913		return 0;
2914
2915	case FFS_INTERFACE:
2916		idx = *valuep;
2917		if (func->interfaces_nums[idx] < 0) {
2918			int id = usb_interface_id(func->conf, &func->function);
2919			if (unlikely(id < 0))
2920				return id;
2921			func->interfaces_nums[idx] = id;
2922		}
2923		newValue = func->interfaces_nums[idx];
2924		break;
2925
2926	case FFS_STRING:
2927		/* String' IDs are allocated when fsf_data is bound to cdev */
2928		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2929		break;
2930
2931	case FFS_ENDPOINT:
2932		/*
2933		 * USB_DT_ENDPOINT are handled in
2934		 * __ffs_func_bind_do_descs().
2935		 */
2936		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2937			return 0;
2938
2939		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2940		if (unlikely(!func->eps[idx].ep))
2941			return -EINVAL;
2942
2943		{
2944			struct usb_endpoint_descriptor **descs;
2945			descs = func->eps[idx].descs;
2946			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2947		}
2948		break;
2949	}
2950
2951	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2952	*valuep = newValue;
2953	return 0;
2954}
2955
2956static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2957				      struct usb_os_desc_header *h, void *data,
2958				      unsigned len, void *priv)
2959{
2960	struct ffs_function *func = priv;
2961	u8 length = 0;
2962
2963	switch (type) {
2964	case FFS_OS_DESC_EXT_COMPAT: {
2965		struct usb_ext_compat_desc *desc = data;
2966		struct usb_os_desc_table *t;
2967
2968		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2969		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2970		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2971		       ARRAY_SIZE(desc->CompatibleID) +
2972		       ARRAY_SIZE(desc->SubCompatibleID));
2973		length = sizeof(*desc);
2974	}
2975		break;
2976	case FFS_OS_DESC_EXT_PROP: {
2977		struct usb_ext_prop_desc *desc = data;
2978		struct usb_os_desc_table *t;
2979		struct usb_os_desc_ext_prop *ext_prop;
2980		char *ext_prop_name;
2981		char *ext_prop_data;
2982
2983		t = &func->function.os_desc_table[h->interface];
2984		t->if_id = func->interfaces_nums[h->interface];
2985
2986		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2987		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2988
2989		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2990		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2991		ext_prop->data_len = le32_to_cpu(*(__le32 *)
2992			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2993		length = ext_prop->name_len + ext_prop->data_len + 14;
2994
2995		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2996		func->ffs->ms_os_descs_ext_prop_name_avail +=
2997			ext_prop->name_len;
2998
2999		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3000		func->ffs->ms_os_descs_ext_prop_data_avail +=
3001			ext_prop->data_len;
3002		memcpy(ext_prop_data,
3003		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
3004		       ext_prop->data_len);
3005		/* unicode data reported to the host as "WCHAR"s */
3006		switch (ext_prop->type) {
3007		case USB_EXT_PROP_UNICODE:
3008		case USB_EXT_PROP_UNICODE_ENV:
3009		case USB_EXT_PROP_UNICODE_LINK:
3010		case USB_EXT_PROP_UNICODE_MULTI:
3011			ext_prop->data_len *= 2;
3012			break;
3013		}
3014		ext_prop->data = ext_prop_data;
3015
3016		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3017		       ext_prop->name_len);
3018		/* property name reported to the host as "WCHAR"s */
3019		ext_prop->name_len *= 2;
3020		ext_prop->name = ext_prop_name;
3021
3022		t->os_desc->ext_prop_len +=
3023			ext_prop->name_len + ext_prop->data_len + 14;
3024		++t->os_desc->ext_prop_count;
3025		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3026	}
3027		break;
3028	default:
3029		pr_vdebug("unknown descriptor: %d\n", type);
3030	}
3031
3032	return length;
3033}
3034
3035static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3036						struct usb_configuration *c)
3037{
3038	struct ffs_function *func = ffs_func_from_usb(f);
3039	struct f_fs_opts *ffs_opts =
3040		container_of(f->fi, struct f_fs_opts, func_inst);
 
3041	int ret;
3042
3043	ENTER();
3044
3045	/*
3046	 * Legacy gadget triggers binding in functionfs_ready_callback,
3047	 * which already uses locking; taking the same lock here would
3048	 * cause a deadlock.
3049	 *
3050	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3051	 */
3052	if (!ffs_opts->no_configfs)
3053		ffs_dev_lock();
3054	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3055	func->ffs = ffs_opts->dev->ffs_data;
3056	if (!ffs_opts->no_configfs)
3057		ffs_dev_unlock();
3058	if (ret)
3059		return ERR_PTR(ret);
3060
 
3061	func->conf = c;
3062	func->gadget = c->cdev->gadget;
3063
3064	/*
3065	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3066	 * configurations are bound in sequence with list_for_each_entry,
3067	 * in each configuration its functions are bound in sequence
3068	 * with list_for_each_entry, so we assume no race condition
3069	 * with regard to ffs_opts->bound access
3070	 */
3071	if (!ffs_opts->refcnt) {
3072		ret = functionfs_bind(func->ffs, c->cdev);
3073		if (ret)
3074			return ERR_PTR(ret);
3075	}
3076	ffs_opts->refcnt++;
3077	func->function.strings = func->ffs->stringtabs;
3078
3079	return ffs_opts;
3080}
3081
3082static int _ffs_func_bind(struct usb_configuration *c,
3083			  struct usb_function *f)
3084{
3085	struct ffs_function *func = ffs_func_from_usb(f);
3086	struct ffs_data *ffs = func->ffs;
3087
3088	const int full = !!func->ffs->fs_descs_count;
3089	const int high = !!func->ffs->hs_descs_count;
3090	const int super = !!func->ffs->ss_descs_count;
3091
3092	int fs_len, hs_len, ss_len, ret, i;
3093	struct ffs_ep *eps_ptr;
3094
3095	/* Make it a single chunk, less management later on */
3096	vla_group(d);
3097	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3098	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3099		full ? ffs->fs_descs_count + 1 : 0);
3100	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3101		high ? ffs->hs_descs_count + 1 : 0);
3102	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3103		super ? ffs->ss_descs_count + 1 : 0);
3104	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3105	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3106			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3107	vla_item_with_sz(d, char[16], ext_compat,
3108			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3109	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3110			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3111	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3112			 ffs->ms_os_descs_ext_prop_count);
3113	vla_item_with_sz(d, char, ext_prop_name,
3114			 ffs->ms_os_descs_ext_prop_name_len);
3115	vla_item_with_sz(d, char, ext_prop_data,
3116			 ffs->ms_os_descs_ext_prop_data_len);
3117	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3118	char *vlabuf;
3119
3120	ENTER();
3121
3122	/* Has descriptors only for speeds gadget does not support */
3123	if (unlikely(!(full | high | super)))
3124		return -ENOTSUPP;
3125
3126	/* Allocate a single chunk, less management later on */
3127	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3128	if (unlikely(!vlabuf))
3129		return -ENOMEM;
3130
3131	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3132	ffs->ms_os_descs_ext_prop_name_avail =
3133		vla_ptr(vlabuf, d, ext_prop_name);
3134	ffs->ms_os_descs_ext_prop_data_avail =
3135		vla_ptr(vlabuf, d, ext_prop_data);
3136
3137	/* Copy descriptors  */
3138	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3139	       ffs->raw_descs_length);
3140
3141	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3142	eps_ptr = vla_ptr(vlabuf, d, eps);
3143	for (i = 0; i < ffs->eps_count; i++)
3144		eps_ptr[i].num = -1;
3145
3146	/* Save pointers
3147	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3148	*/
3149	func->eps             = vla_ptr(vlabuf, d, eps);
3150	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3151
3152	/*
3153	 * Go through all the endpoint descriptors and allocate
3154	 * endpoints first, so that later we can rewrite the endpoint
3155	 * numbers without worrying that it may be described later on.
3156	 */
3157	if (likely(full)) {
3158		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3159		fs_len = ffs_do_descs(ffs->fs_descs_count,
3160				      vla_ptr(vlabuf, d, raw_descs),
3161				      d_raw_descs__sz,
3162				      __ffs_func_bind_do_descs, func);
3163		if (unlikely(fs_len < 0)) {
3164			ret = fs_len;
3165			goto error;
3166		}
3167	} else {
3168		fs_len = 0;
3169	}
3170
3171	if (likely(high)) {
3172		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3173		hs_len = ffs_do_descs(ffs->hs_descs_count,
3174				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3175				      d_raw_descs__sz - fs_len,
3176				      __ffs_func_bind_do_descs, func);
3177		if (unlikely(hs_len < 0)) {
3178			ret = hs_len;
3179			goto error;
3180		}
3181	} else {
3182		hs_len = 0;
3183	}
3184
3185	if (likely(super)) {
3186		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
 
3187		ss_len = ffs_do_descs(ffs->ss_descs_count,
3188				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3189				d_raw_descs__sz - fs_len - hs_len,
3190				__ffs_func_bind_do_descs, func);
3191		if (unlikely(ss_len < 0)) {
3192			ret = ss_len;
3193			goto error;
3194		}
3195	} else {
3196		ss_len = 0;
3197	}
3198
3199	/*
3200	 * Now handle interface numbers allocation and interface and
3201	 * endpoint numbers rewriting.  We can do that in one go
3202	 * now.
3203	 */
3204	ret = ffs_do_descs(ffs->fs_descs_count +
3205			   (high ? ffs->hs_descs_count : 0) +
3206			   (super ? ffs->ss_descs_count : 0),
3207			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3208			   __ffs_func_bind_do_nums, func);
3209	if (unlikely(ret < 0))
3210		goto error;
3211
3212	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3213	if (c->cdev->use_os_string) {
3214		for (i = 0; i < ffs->interfaces_count; ++i) {
3215			struct usb_os_desc *desc;
3216
3217			desc = func->function.os_desc_table[i].os_desc =
3218				vla_ptr(vlabuf, d, os_desc) +
3219				i * sizeof(struct usb_os_desc);
3220			desc->ext_compat_id =
3221				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3222			INIT_LIST_HEAD(&desc->ext_prop);
3223		}
3224		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3225				      vla_ptr(vlabuf, d, raw_descs) +
3226				      fs_len + hs_len + ss_len,
3227				      d_raw_descs__sz - fs_len - hs_len -
3228				      ss_len,
3229				      __ffs_func_bind_do_os_desc, func);
3230		if (unlikely(ret < 0))
3231			goto error;
3232	}
3233	func->function.os_desc_n =
3234		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3235
3236	/* And we're done */
3237	ffs_event_add(ffs, FUNCTIONFS_BIND);
3238	return 0;
3239
3240error:
3241	/* XXX Do we need to release all claimed endpoints here? */
3242	return ret;
3243}
3244
3245static int ffs_func_bind(struct usb_configuration *c,
3246			 struct usb_function *f)
3247{
3248	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3249	struct ffs_function *func = ffs_func_from_usb(f);
3250	int ret;
3251
3252	if (IS_ERR(ffs_opts))
3253		return PTR_ERR(ffs_opts);
3254
3255	ret = _ffs_func_bind(c, f);
3256	if (ret && !--ffs_opts->refcnt)
3257		functionfs_unbind(func->ffs);
3258
3259	return ret;
3260}
3261
3262
3263/* Other USB function hooks *************************************************/
3264
3265static void ffs_reset_work(struct work_struct *work)
3266{
3267	struct ffs_data *ffs = container_of(work,
3268		struct ffs_data, reset_work);
3269	ffs_data_reset(ffs);
3270}
3271
3272static int ffs_func_set_alt(struct usb_function *f,
3273			    unsigned interface, unsigned alt)
3274{
3275	struct ffs_function *func = ffs_func_from_usb(f);
3276	struct ffs_data *ffs = func->ffs;
3277	int ret = 0, intf;
3278
3279	if (alt != (unsigned)-1) {
3280		intf = ffs_func_revmap_intf(func, interface);
3281		if (unlikely(intf < 0))
3282			return intf;
3283	}
3284
3285	if (ffs->func)
3286		ffs_func_eps_disable(ffs->func);
3287
3288	if (ffs->state == FFS_DEACTIVATED) {
3289		ffs->state = FFS_CLOSING;
3290		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3291		schedule_work(&ffs->reset_work);
3292		return -ENODEV;
3293	}
3294
3295	if (ffs->state != FFS_ACTIVE)
3296		return -ENODEV;
3297
3298	if (alt == (unsigned)-1) {
3299		ffs->func = NULL;
3300		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3301		return 0;
3302	}
3303
3304	ffs->func = func;
3305	ret = ffs_func_eps_enable(func);
3306	if (likely(ret >= 0))
3307		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3308	return ret;
3309}
3310
3311static void ffs_func_disable(struct usb_function *f)
3312{
3313	ffs_func_set_alt(f, 0, (unsigned)-1);
3314}
3315
3316static int ffs_func_setup(struct usb_function *f,
3317			  const struct usb_ctrlrequest *creq)
3318{
3319	struct ffs_function *func = ffs_func_from_usb(f);
3320	struct ffs_data *ffs = func->ffs;
3321	unsigned long flags;
3322	int ret;
3323
3324	ENTER();
3325
3326	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3327	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3328	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3329	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3330	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3331
3332	/*
3333	 * Most requests directed to interface go through here
3334	 * (notable exceptions are set/get interface) so we need to
3335	 * handle them.  All other either handled by composite or
3336	 * passed to usb_configuration->setup() (if one is set).  No
3337	 * matter, we will handle requests directed to endpoint here
3338	 * as well (as it's straightforward).  Other request recipient
3339	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3340	 * is being used.
3341	 */
3342	if (ffs->state != FFS_ACTIVE)
3343		return -ENODEV;
3344
3345	switch (creq->bRequestType & USB_RECIP_MASK) {
3346	case USB_RECIP_INTERFACE:
3347		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3348		if (unlikely(ret < 0))
3349			return ret;
3350		break;
3351
3352	case USB_RECIP_ENDPOINT:
3353		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3354		if (unlikely(ret < 0))
3355			return ret;
3356		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3357			ret = func->ffs->eps_addrmap[ret];
3358		break;
3359
3360	default:
3361		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3362			ret = le16_to_cpu(creq->wIndex);
3363		else
3364			return -EOPNOTSUPP;
3365	}
3366
3367	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3368	ffs->ev.setup = *creq;
3369	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3370	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3371	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3372
3373	return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3374}
3375
3376static bool ffs_func_req_match(struct usb_function *f,
3377			       const struct usb_ctrlrequest *creq,
3378			       bool config0)
3379{
3380	struct ffs_function *func = ffs_func_from_usb(f);
3381
3382	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3383		return false;
3384
3385	switch (creq->bRequestType & USB_RECIP_MASK) {
3386	case USB_RECIP_INTERFACE:
3387		return (ffs_func_revmap_intf(func,
3388					     le16_to_cpu(creq->wIndex)) >= 0);
3389	case USB_RECIP_ENDPOINT:
3390		return (ffs_func_revmap_ep(func,
3391					   le16_to_cpu(creq->wIndex)) >= 0);
3392	default:
3393		return (bool) (func->ffs->user_flags &
3394			       FUNCTIONFS_ALL_CTRL_RECIP);
3395	}
3396}
3397
3398static void ffs_func_suspend(struct usb_function *f)
3399{
3400	ENTER();
3401	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3402}
3403
3404static void ffs_func_resume(struct usb_function *f)
3405{
3406	ENTER();
3407	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3408}
3409
3410
3411/* Endpoint and interface numbers reverse mapping ***************************/
3412
3413static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3414{
3415	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3416	return num ? num : -EDOM;
3417}
3418
3419static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3420{
3421	short *nums = func->interfaces_nums;
3422	unsigned count = func->ffs->interfaces_count;
3423
3424	for (; count; --count, ++nums) {
3425		if (*nums >= 0 && *nums == intf)
3426			return nums - func->interfaces_nums;
3427	}
3428
3429	return -EDOM;
3430}
3431
3432
3433/* Devices management *******************************************************/
3434
3435static LIST_HEAD(ffs_devices);
3436
3437static struct ffs_dev *_ffs_do_find_dev(const char *name)
3438{
3439	struct ffs_dev *dev;
3440
3441	if (!name)
3442		return NULL;
3443
3444	list_for_each_entry(dev, &ffs_devices, entry) {
3445		if (strcmp(dev->name, name) == 0)
3446			return dev;
3447	}
3448
3449	return NULL;
3450}
3451
3452/*
3453 * ffs_lock must be taken by the caller of this function
3454 */
3455static struct ffs_dev *_ffs_get_single_dev(void)
3456{
3457	struct ffs_dev *dev;
3458
3459	if (list_is_singular(&ffs_devices)) {
3460		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3461		if (dev->single)
3462			return dev;
3463	}
3464
3465	return NULL;
3466}
3467
3468/*
3469 * ffs_lock must be taken by the caller of this function
3470 */
3471static struct ffs_dev *_ffs_find_dev(const char *name)
3472{
3473	struct ffs_dev *dev;
3474
3475	dev = _ffs_get_single_dev();
3476	if (dev)
3477		return dev;
3478
3479	return _ffs_do_find_dev(name);
3480}
3481
3482/* Configfs support *********************************************************/
3483
3484static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3485{
3486	return container_of(to_config_group(item), struct f_fs_opts,
3487			    func_inst.group);
3488}
3489
3490static void ffs_attr_release(struct config_item *item)
3491{
3492	struct f_fs_opts *opts = to_ffs_opts(item);
3493
3494	usb_put_function_instance(&opts->func_inst);
3495}
3496
3497static struct configfs_item_operations ffs_item_ops = {
3498	.release	= ffs_attr_release,
3499};
3500
3501static const struct config_item_type ffs_func_type = {
3502	.ct_item_ops	= &ffs_item_ops,
3503	.ct_owner	= THIS_MODULE,
3504};
3505
3506
3507/* Function registration interface ******************************************/
3508
3509static void ffs_free_inst(struct usb_function_instance *f)
3510{
3511	struct f_fs_opts *opts;
3512
3513	opts = to_f_fs_opts(f);
 
3514	ffs_dev_lock();
3515	_ffs_free_dev(opts->dev);
3516	ffs_dev_unlock();
3517	kfree(opts);
3518}
3519
3520static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3521{
3522	if (strlen(name) >= FIELD_SIZEOF(struct ffs_dev, name))
3523		return -ENAMETOOLONG;
3524	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3525}
3526
3527static struct usb_function_instance *ffs_alloc_inst(void)
3528{
3529	struct f_fs_opts *opts;
3530	struct ffs_dev *dev;
3531
3532	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3533	if (!opts)
3534		return ERR_PTR(-ENOMEM);
3535
3536	opts->func_inst.set_inst_name = ffs_set_inst_name;
3537	opts->func_inst.free_func_inst = ffs_free_inst;
3538	ffs_dev_lock();
3539	dev = _ffs_alloc_dev();
3540	ffs_dev_unlock();
3541	if (IS_ERR(dev)) {
3542		kfree(opts);
3543		return ERR_CAST(dev);
3544	}
3545	opts->dev = dev;
3546	dev->opts = opts;
3547
3548	config_group_init_type_name(&opts->func_inst.group, "",
3549				    &ffs_func_type);
3550	return &opts->func_inst;
3551}
3552
3553static void ffs_free(struct usb_function *f)
3554{
3555	kfree(ffs_func_from_usb(f));
3556}
3557
3558static void ffs_func_unbind(struct usb_configuration *c,
3559			    struct usb_function *f)
3560{
3561	struct ffs_function *func = ffs_func_from_usb(f);
3562	struct ffs_data *ffs = func->ffs;
3563	struct f_fs_opts *opts =
3564		container_of(f->fi, struct f_fs_opts, func_inst);
3565	struct ffs_ep *ep = func->eps;
3566	unsigned count = ffs->eps_count;
3567	unsigned long flags;
3568
3569	ENTER();
3570	if (ffs->func == func) {
3571		ffs_func_eps_disable(func);
3572		ffs->func = NULL;
3573	}
3574
 
 
 
 
3575	if (!--opts->refcnt)
3576		functionfs_unbind(ffs);
3577
3578	/* cleanup after autoconfig */
3579	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3580	while (count--) {
3581		if (ep->ep && ep->req)
3582			usb_ep_free_request(ep->ep, ep->req);
3583		ep->req = NULL;
3584		++ep;
3585	}
3586	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3587	kfree(func->eps);
3588	func->eps = NULL;
3589	/*
3590	 * eps, descriptors and interfaces_nums are allocated in the
3591	 * same chunk so only one free is required.
3592	 */
3593	func->function.fs_descriptors = NULL;
3594	func->function.hs_descriptors = NULL;
3595	func->function.ss_descriptors = NULL;
 
3596	func->interfaces_nums = NULL;
3597
3598	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3599}
3600
3601static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3602{
3603	struct ffs_function *func;
3604
3605	ENTER();
3606
3607	func = kzalloc(sizeof(*func), GFP_KERNEL);
3608	if (unlikely(!func))
3609		return ERR_PTR(-ENOMEM);
3610
3611	func->function.name    = "Function FS Gadget";
3612
3613	func->function.bind    = ffs_func_bind;
3614	func->function.unbind  = ffs_func_unbind;
3615	func->function.set_alt = ffs_func_set_alt;
3616	func->function.disable = ffs_func_disable;
3617	func->function.setup   = ffs_func_setup;
3618	func->function.req_match = ffs_func_req_match;
3619	func->function.suspend = ffs_func_suspend;
3620	func->function.resume  = ffs_func_resume;
3621	func->function.free_func = ffs_free;
3622
3623	return &func->function;
3624}
3625
3626/*
3627 * ffs_lock must be taken by the caller of this function
3628 */
3629static struct ffs_dev *_ffs_alloc_dev(void)
3630{
3631	struct ffs_dev *dev;
3632	int ret;
3633
3634	if (_ffs_get_single_dev())
3635			return ERR_PTR(-EBUSY);
3636
3637	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3638	if (!dev)
3639		return ERR_PTR(-ENOMEM);
3640
3641	if (list_empty(&ffs_devices)) {
3642		ret = functionfs_init();
3643		if (ret) {
3644			kfree(dev);
3645			return ERR_PTR(ret);
3646		}
3647	}
3648
3649	list_add(&dev->entry, &ffs_devices);
3650
3651	return dev;
3652}
3653
3654int ffs_name_dev(struct ffs_dev *dev, const char *name)
3655{
3656	struct ffs_dev *existing;
3657	int ret = 0;
3658
3659	ffs_dev_lock();
3660
3661	existing = _ffs_do_find_dev(name);
3662	if (!existing)
3663		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3664	else if (existing != dev)
3665		ret = -EBUSY;
3666
3667	ffs_dev_unlock();
3668
3669	return ret;
3670}
3671EXPORT_SYMBOL_GPL(ffs_name_dev);
3672
3673int ffs_single_dev(struct ffs_dev *dev)
3674{
3675	int ret;
3676
3677	ret = 0;
3678	ffs_dev_lock();
3679
3680	if (!list_is_singular(&ffs_devices))
3681		ret = -EBUSY;
3682	else
3683		dev->single = true;
3684
3685	ffs_dev_unlock();
3686	return ret;
3687}
3688EXPORT_SYMBOL_GPL(ffs_single_dev);
3689
3690/*
3691 * ffs_lock must be taken by the caller of this function
3692 */
3693static void _ffs_free_dev(struct ffs_dev *dev)
3694{
3695	list_del(&dev->entry);
3696
3697	/* Clear the private_data pointer to stop incorrect dev access */
3698	if (dev->ffs_data)
3699		dev->ffs_data->private_data = NULL;
3700
3701	kfree(dev);
3702	if (list_empty(&ffs_devices))
3703		functionfs_cleanup();
3704}
3705
3706static void *ffs_acquire_dev(const char *dev_name)
3707{
 
3708	struct ffs_dev *ffs_dev;
3709
3710	ENTER();
3711	ffs_dev_lock();
3712
3713	ffs_dev = _ffs_find_dev(dev_name);
3714	if (!ffs_dev)
3715		ffs_dev = ERR_PTR(-ENOENT);
3716	else if (ffs_dev->mounted)
3717		ffs_dev = ERR_PTR(-EBUSY);
3718	else if (ffs_dev->ffs_acquire_dev_callback &&
3719	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3720		ffs_dev = ERR_PTR(-ENOENT);
3721	else
3722		ffs_dev->mounted = true;
 
 
 
3723
3724	ffs_dev_unlock();
3725	return ffs_dev;
3726}
3727
3728static void ffs_release_dev(struct ffs_data *ffs_data)
3729{
3730	struct ffs_dev *ffs_dev;
3731
3732	ENTER();
3733	ffs_dev_lock();
3734
3735	ffs_dev = ffs_data->private_data;
3736	if (ffs_dev) {
3737		ffs_dev->mounted = false;
 
 
 
 
3738
3739		if (ffs_dev->ffs_release_dev_callback)
3740			ffs_dev->ffs_release_dev_callback(ffs_dev);
3741	}
3742
3743	ffs_dev_unlock();
3744}
3745
3746static int ffs_ready(struct ffs_data *ffs)
3747{
3748	struct ffs_dev *ffs_obj;
3749	int ret = 0;
3750
3751	ENTER();
3752	ffs_dev_lock();
3753
3754	ffs_obj = ffs->private_data;
3755	if (!ffs_obj) {
3756		ret = -EINVAL;
3757		goto done;
3758	}
3759	if (WARN_ON(ffs_obj->desc_ready)) {
3760		ret = -EBUSY;
3761		goto done;
3762	}
3763
3764	ffs_obj->desc_ready = true;
3765	ffs_obj->ffs_data = ffs;
3766
3767	if (ffs_obj->ffs_ready_callback) {
3768		ret = ffs_obj->ffs_ready_callback(ffs);
3769		if (ret)
3770			goto done;
3771	}
3772
3773	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3774done:
3775	ffs_dev_unlock();
3776	return ret;
3777}
3778
3779static void ffs_closed(struct ffs_data *ffs)
3780{
3781	struct ffs_dev *ffs_obj;
3782	struct f_fs_opts *opts;
3783	struct config_item *ci;
3784
3785	ENTER();
3786	ffs_dev_lock();
3787
3788	ffs_obj = ffs->private_data;
3789	if (!ffs_obj)
3790		goto done;
3791
3792	ffs_obj->desc_ready = false;
3793	ffs_obj->ffs_data = NULL;
3794
3795	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3796	    ffs_obj->ffs_closed_callback)
3797		ffs_obj->ffs_closed_callback(ffs);
3798
3799	if (ffs_obj->opts)
3800		opts = ffs_obj->opts;
3801	else
3802		goto done;
3803
3804	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3805	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3806		goto done;
3807
3808	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3809	ffs_dev_unlock();
3810
3811	if (test_bit(FFS_FL_BOUND, &ffs->flags))
3812		unregister_gadget_item(ci);
3813	return;
3814done:
3815	ffs_dev_unlock();
3816}
3817
3818/* Misc helper functions ****************************************************/
3819
3820static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3821{
3822	return nonblock
3823		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3824		: mutex_lock_interruptible(mutex);
3825}
3826
3827static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3828{
3829	char *data;
3830
3831	if (unlikely(!len))
3832		return NULL;
3833
3834	data = kmalloc(len, GFP_KERNEL);
3835	if (unlikely(!data))
3836		return ERR_PTR(-ENOMEM);
3837
3838	if (unlikely(copy_from_user(data, buf, len))) {
3839		kfree(data);
3840		return ERR_PTR(-EFAULT);
3841	}
3842
3843	pr_vdebug("Buffer from user space:\n");
3844	ffs_dump_mem("", data, len);
3845
3846	return data;
3847}
3848
3849DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3850MODULE_LICENSE("GPL");
3851MODULE_AUTHOR("Michal Nazarewicz");