Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * f_fs.c -- user mode file system API for USB composite function controllers
   4 *
   5 * Copyright (C) 2010 Samsung Electronics
   6 * Author: Michal Nazarewicz <mina86@mina86.com>
   7 *
   8 * Based on inode.c (GadgetFS) which was:
   9 * Copyright (C) 2003-2004 David Brownell
  10 * Copyright (C) 2003 Agilent Technologies
  11 */
  12
  13
  14/* #define DEBUG */
  15/* #define VERBOSE_DEBUG */
  16
  17#include <linux/blkdev.h>
 
 
 
  18#include <linux/pagemap.h>
  19#include <linux/export.h>
  20#include <linux/fs_parser.h>
  21#include <linux/hid.h>
  22#include <linux/mm.h>
  23#include <linux/module.h>
  24#include <linux/scatterlist.h>
  25#include <linux/sched/signal.h>
  26#include <linux/uio.h>
  27#include <linux/vmalloc.h>
  28#include <asm/unaligned.h>
  29
  30#include <linux/usb/ccid.h>
  31#include <linux/usb/composite.h>
  32#include <linux/usb/functionfs.h>
 
  33
  34#include <linux/aio.h>
  35#include <linux/kthread.h>
  36#include <linux/poll.h>
  37#include <linux/eventfd.h>
  38
  39#include "u_fs.h"
  40#include "u_f.h"
  41#include "u_os_desc.h"
  42#include "configfs.h"
  43
  44#define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
 
 
 
 
 
  45
  46/* Reference counter handling */
  47static void ffs_data_get(struct ffs_data *ffs);
  48static void ffs_data_put(struct ffs_data *ffs);
  49/* Creates new ffs_data object. */
  50static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
  51	__attribute__((malloc));
  52
  53/* Opened counter handling. */
  54static void ffs_data_opened(struct ffs_data *ffs);
  55static void ffs_data_closed(struct ffs_data *ffs);
  56
  57/* Called with ffs->mutex held; take over ownership of data. */
  58static int __must_check
  59__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
  60static int __must_check
  61__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
  62
  63
  64/* The function structure ***************************************************/
  65
  66struct ffs_ep;
  67
  68struct ffs_function {
  69	struct usb_configuration	*conf;
  70	struct usb_gadget		*gadget;
  71	struct ffs_data			*ffs;
  72
  73	struct ffs_ep			*eps;
  74	u8				eps_revmap[16];
  75	short				*interfaces_nums;
  76
  77	struct usb_function		function;
 
  78};
  79
  80
  81static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
  82{
  83	return container_of(f, struct ffs_function, function);
  84}
  85
  86
  87static inline enum ffs_setup_state
  88ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
  89{
  90	return (enum ffs_setup_state)
  91		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
  92}
  93
  94
  95static void ffs_func_eps_disable(struct ffs_function *func);
  96static int __must_check ffs_func_eps_enable(struct ffs_function *func);
  97
  98static int ffs_func_bind(struct usb_configuration *,
  99			 struct usb_function *);
 100static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
 
 101static void ffs_func_disable(struct usb_function *);
 102static int ffs_func_setup(struct usb_function *,
 103			  const struct usb_ctrlrequest *);
 104static bool ffs_func_req_match(struct usb_function *,
 105			       const struct usb_ctrlrequest *,
 106			       bool config0);
 107static void ffs_func_suspend(struct usb_function *);
 108static void ffs_func_resume(struct usb_function *);
 109
 110
 111static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
 112static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
 113
 114
 115/* The endpoints structures *************************************************/
 116
 117struct ffs_ep {
 118	struct usb_ep			*ep;	/* P: ffs->eps_lock */
 119	struct usb_request		*req;	/* P: epfile->mutex */
 120
 121	/* [0]: full speed, [1]: high speed, [2]: super speed */
 122	struct usb_endpoint_descriptor	*descs[3];
 123
 124	u8				num;
 125};
 126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127struct ffs_epfile {
 128	/* Protects ep->ep and ep->req. */
 129	struct mutex			mutex;
 130
 131	struct ffs_data			*ffs;
 132	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
 133
 134	struct dentry			*dentry;
 135
 136	/*
 137	 * Buffer for holding data from partial reads which may happen since
 138	 * we’re rounding user read requests to a multiple of a max packet size.
 139	 *
 140	 * The pointer is initialised with NULL value and may be set by
 141	 * __ffs_epfile_read_data function to point to a temporary buffer.
 142	 *
 143	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
 144	 * data from said buffer and eventually free it.  Importantly, while the
 145	 * function is using the buffer, it sets the pointer to NULL.  This is
 146	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
 147	 * can never run concurrently (they are synchronised by epfile->mutex)
 148	 * so the latter will not assign a new value to the pointer.
 149	 *
 150	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
 151	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
 152	 * value is crux of the synchronisation between ffs_func_eps_disable and
 153	 * __ffs_epfile_read_data.
 154	 *
 155	 * Once __ffs_epfile_read_data is about to finish it will try to set the
 156	 * pointer back to its old value (as described above), but seeing as the
 157	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
 158	 * the buffer.
 159	 *
 160	 * == State transitions ==
 161	 *
 162	 * • ptr == NULL:  (initial state)
 163	 *   â—¦ __ffs_epfile_read_buffer_free: go to ptr == DROP
 164	 *   â—¦ __ffs_epfile_read_buffered:    nop
 165	 *   â—¦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
 166	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 167	 * • ptr == DROP:
 168	 *   â—¦ __ffs_epfile_read_buffer_free: nop
 169	 *   â—¦ __ffs_epfile_read_buffered:    go to ptr == NULL
 170	 *   â—¦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
 171	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 172	 * • ptr == buf:
 173	 *   â—¦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
 174	 *   â—¦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
 175	 *   â—¦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
 176	 *                                    is always called first
 177	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 178	 * • ptr == NULL and reading:
 179	 *   â—¦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
 180	 *   â—¦ __ffs_epfile_read_buffered:    n/a, mutex is held
 181	 *   â—¦ __ffs_epfile_read_data:        n/a, mutex is held
 182	 *   ◦ reading finishes and …
 183	 *     … all data read:               free buf, go to ptr == NULL
 184	 *     … otherwise:                   go to ptr == buf and reading
 185	 * • ptr == DROP and reading:
 186	 *   â—¦ __ffs_epfile_read_buffer_free: nop
 187	 *   â—¦ __ffs_epfile_read_buffered:    n/a, mutex is held
 188	 *   â—¦ __ffs_epfile_read_data:        n/a, mutex is held
 189	 *   â—¦ reading finishes:              free buf, go to ptr == DROP
 190	 */
 191	struct ffs_buffer		*read_buffer;
 192#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
 193
 194	char				name[5];
 195
 196	unsigned char			in;	/* P: ffs->eps_lock */
 197	unsigned char			isoc;	/* P: ffs->eps_lock */
 198
 199	unsigned char			_pad;
 
 
 
 
 
 200};
 201
 202struct ffs_buffer {
 203	size_t length;
 204	char *data;
 205	char storage[] __counted_by(length);
 206};
 207
 208/*  ffs_io_data structure ***************************************************/
 209
 210struct ffs_io_data {
 211	bool aio;
 212	bool read;
 213
 214	struct kiocb *kiocb;
 215	struct iov_iter data;
 216	const void *to_free;
 217	char *buf;
 218
 219	struct mm_struct *mm;
 220	struct work_struct work;
 221
 222	struct usb_ep *ep;
 223	struct usb_request *req;
 224	struct sg_table sgt;
 225	bool use_sg;
 226
 227	struct ffs_data *ffs;
 228
 229	int status;
 230	struct completion done;
 231};
 232
 233struct ffs_desc_helper {
 234	struct ffs_data *ffs;
 235	unsigned interfaces_count;
 236	unsigned eps_count;
 237};
 238
 239static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
 240static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
 241
 242static struct dentry *
 243ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
 244		   const struct file_operations *fops);
 245
 246/* Devices management *******************************************************/
 247
 248DEFINE_MUTEX(ffs_lock);
 249EXPORT_SYMBOL_GPL(ffs_lock);
 250
 251static struct ffs_dev *_ffs_find_dev(const char *name);
 252static struct ffs_dev *_ffs_alloc_dev(void);
 253static void _ffs_free_dev(struct ffs_dev *dev);
 254static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
 255static void ffs_release_dev(struct ffs_dev *ffs_dev);
 256static int ffs_ready(struct ffs_data *ffs);
 257static void ffs_closed(struct ffs_data *ffs);
 258
 259/* Misc helper functions ****************************************************/
 260
 261static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
 262	__attribute__((warn_unused_result, nonnull));
 263static char *ffs_prepare_buffer(const char __user *buf, size_t len)
 264	__attribute__((warn_unused_result, nonnull));
 265
 266
 267/* Control file aka ep0 *****************************************************/
 268
 269static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
 270{
 271	struct ffs_data *ffs = req->context;
 272
 273	complete(&ffs->ep0req_completion);
 274}
 275
 276static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
 277	__releases(&ffs->ev.waitq.lock)
 278{
 279	struct usb_request *req = ffs->ep0req;
 280	int ret;
 281
 282	if (!req) {
 283		spin_unlock_irq(&ffs->ev.waitq.lock);
 284		return -EINVAL;
 285	}
 286
 287	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
 288
 289	spin_unlock_irq(&ffs->ev.waitq.lock);
 290
 291	req->buf      = data;
 292	req->length   = len;
 293
 294	/*
 295	 * UDC layer requires to provide a buffer even for ZLP, but should
 296	 * not use it at all. Let's provide some poisoned pointer to catch
 297	 * possible bug in the driver.
 298	 */
 299	if (req->buf == NULL)
 300		req->buf = (void *)0xDEADBABE;
 301
 302	reinit_completion(&ffs->ep0req_completion);
 303
 304	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
 305	if (ret < 0)
 306		return ret;
 307
 308	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
 309	if (ret) {
 310		usb_ep_dequeue(ffs->gadget->ep0, req);
 311		return -EINTR;
 312	}
 313
 314	ffs->setup_state = FFS_NO_SETUP;
 315	return req->status ? req->status : req->actual;
 316}
 317
 318static int __ffs_ep0_stall(struct ffs_data *ffs)
 319{
 320	if (ffs->ev.can_stall) {
 321		pr_vdebug("ep0 stall\n");
 322		usb_ep_set_halt(ffs->gadget->ep0);
 323		ffs->setup_state = FFS_NO_SETUP;
 324		return -EL2HLT;
 325	} else {
 326		pr_debug("bogus ep0 stall!\n");
 327		return -ESRCH;
 328	}
 329}
 330
 331static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
 332			     size_t len, loff_t *ptr)
 333{
 334	struct ffs_data *ffs = file->private_data;
 335	ssize_t ret;
 336	char *data;
 337
 338	/* Fast check if setup was canceled */
 339	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 340		return -EIDRM;
 341
 342	/* Acquire mutex */
 343	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 344	if (ret < 0)
 345		return ret;
 346
 347	/* Check state */
 348	switch (ffs->state) {
 349	case FFS_READ_DESCRIPTORS:
 350	case FFS_READ_STRINGS:
 351		/* Copy data */
 352		if (len < 16) {
 353			ret = -EINVAL;
 354			break;
 355		}
 356
 357		data = ffs_prepare_buffer(buf, len);
 358		if (IS_ERR(data)) {
 359			ret = PTR_ERR(data);
 360			break;
 361		}
 362
 363		/* Handle data */
 364		if (ffs->state == FFS_READ_DESCRIPTORS) {
 365			pr_info("read descriptors\n");
 366			ret = __ffs_data_got_descs(ffs, data, len);
 367			if (ret < 0)
 368				break;
 369
 370			ffs->state = FFS_READ_STRINGS;
 371			ret = len;
 372		} else {
 373			pr_info("read strings\n");
 374			ret = __ffs_data_got_strings(ffs, data, len);
 375			if (ret < 0)
 376				break;
 377
 378			ret = ffs_epfiles_create(ffs);
 379			if (ret) {
 380				ffs->state = FFS_CLOSING;
 381				break;
 382			}
 383
 384			ffs->state = FFS_ACTIVE;
 385			mutex_unlock(&ffs->mutex);
 386
 387			ret = ffs_ready(ffs);
 388			if (ret < 0) {
 389				ffs->state = FFS_CLOSING;
 390				return ret;
 391			}
 392
 393			return len;
 394		}
 395		break;
 396
 397	case FFS_ACTIVE:
 398		data = NULL;
 399		/*
 400		 * We're called from user space, we can use _irq
 401		 * rather then _irqsave
 402		 */
 403		spin_lock_irq(&ffs->ev.waitq.lock);
 404		switch (ffs_setup_state_clear_cancelled(ffs)) {
 405		case FFS_SETUP_CANCELLED:
 406			ret = -EIDRM;
 407			goto done_spin;
 408
 409		case FFS_NO_SETUP:
 410			ret = -ESRCH;
 411			goto done_spin;
 412
 413		case FFS_SETUP_PENDING:
 414			break;
 415		}
 416
 417		/* FFS_SETUP_PENDING */
 418		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
 419			spin_unlock_irq(&ffs->ev.waitq.lock);
 420			ret = __ffs_ep0_stall(ffs);
 421			break;
 422		}
 423
 424		/* FFS_SETUP_PENDING and not stall */
 425		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 426
 427		spin_unlock_irq(&ffs->ev.waitq.lock);
 428
 429		data = ffs_prepare_buffer(buf, len);
 430		if (IS_ERR(data)) {
 431			ret = PTR_ERR(data);
 432			break;
 433		}
 434
 435		spin_lock_irq(&ffs->ev.waitq.lock);
 436
 437		/*
 438		 * We are guaranteed to be still in FFS_ACTIVE state
 439		 * but the state of setup could have changed from
 440		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
 441		 * to check for that.  If that happened we copied data
 442		 * from user space in vain but it's unlikely.
 443		 *
 444		 * For sure we are not in FFS_NO_SETUP since this is
 445		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
 446		 * transition can be performed and it's protected by
 447		 * mutex.
 448		 */
 449		if (ffs_setup_state_clear_cancelled(ffs) ==
 450		    FFS_SETUP_CANCELLED) {
 451			ret = -EIDRM;
 452done_spin:
 453			spin_unlock_irq(&ffs->ev.waitq.lock);
 454		} else {
 455			/* unlocks spinlock */
 456			ret = __ffs_ep0_queue_wait(ffs, data, len);
 457		}
 458		kfree(data);
 459		break;
 460
 461	default:
 462		ret = -EBADFD;
 463		break;
 464	}
 465
 466	mutex_unlock(&ffs->mutex);
 467	return ret;
 468}
 469
 470/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
 471static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
 472				     size_t n)
 473	__releases(&ffs->ev.waitq.lock)
 474{
 475	/*
 476	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
 477	 * size of ffs->ev.types array (which is four) so that's how much space
 478	 * we reserve.
 479	 */
 480	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
 481	const size_t size = n * sizeof *events;
 482	unsigned i = 0;
 483
 484	memset(events, 0, size);
 485
 486	do {
 487		events[i].type = ffs->ev.types[i];
 488		if (events[i].type == FUNCTIONFS_SETUP) {
 489			events[i].u.setup = ffs->ev.setup;
 490			ffs->setup_state = FFS_SETUP_PENDING;
 491		}
 492	} while (++i < n);
 493
 494	ffs->ev.count -= n;
 495	if (ffs->ev.count)
 496		memmove(ffs->ev.types, ffs->ev.types + n,
 497			ffs->ev.count * sizeof *ffs->ev.types);
 498
 499	spin_unlock_irq(&ffs->ev.waitq.lock);
 500	mutex_unlock(&ffs->mutex);
 501
 502	return copy_to_user(buf, events, size) ? -EFAULT : size;
 503}
 504
 505static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
 506			    size_t len, loff_t *ptr)
 507{
 508	struct ffs_data *ffs = file->private_data;
 509	char *data = NULL;
 510	size_t n;
 511	int ret;
 512
 513	/* Fast check if setup was canceled */
 514	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 515		return -EIDRM;
 516
 517	/* Acquire mutex */
 518	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 519	if (ret < 0)
 520		return ret;
 521
 522	/* Check state */
 523	if (ffs->state != FFS_ACTIVE) {
 524		ret = -EBADFD;
 525		goto done_mutex;
 526	}
 527
 528	/*
 529	 * We're called from user space, we can use _irq rather then
 530	 * _irqsave
 531	 */
 532	spin_lock_irq(&ffs->ev.waitq.lock);
 533
 534	switch (ffs_setup_state_clear_cancelled(ffs)) {
 535	case FFS_SETUP_CANCELLED:
 536		ret = -EIDRM;
 537		break;
 538
 539	case FFS_NO_SETUP:
 540		n = len / sizeof(struct usb_functionfs_event);
 541		if (!n) {
 542			ret = -EINVAL;
 543			break;
 544		}
 545
 546		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
 547			ret = -EAGAIN;
 548			break;
 549		}
 550
 551		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
 552							ffs->ev.count)) {
 553			ret = -EINTR;
 554			break;
 555		}
 556
 557		/* unlocks spinlock */
 558		return __ffs_ep0_read_events(ffs, buf,
 559					     min(n, (size_t)ffs->ev.count));
 560
 561	case FFS_SETUP_PENDING:
 562		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
 563			spin_unlock_irq(&ffs->ev.waitq.lock);
 564			ret = __ffs_ep0_stall(ffs);
 565			goto done_mutex;
 566		}
 567
 568		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 569
 570		spin_unlock_irq(&ffs->ev.waitq.lock);
 571
 572		if (len) {
 573			data = kmalloc(len, GFP_KERNEL);
 574			if (!data) {
 575				ret = -ENOMEM;
 576				goto done_mutex;
 577			}
 578		}
 579
 580		spin_lock_irq(&ffs->ev.waitq.lock);
 581
 582		/* See ffs_ep0_write() */
 583		if (ffs_setup_state_clear_cancelled(ffs) ==
 584		    FFS_SETUP_CANCELLED) {
 585			ret = -EIDRM;
 586			break;
 587		}
 588
 589		/* unlocks spinlock */
 590		ret = __ffs_ep0_queue_wait(ffs, data, len);
 591		if ((ret > 0) && (copy_to_user(buf, data, len)))
 592			ret = -EFAULT;
 593		goto done_mutex;
 594
 595	default:
 596		ret = -EBADFD;
 597		break;
 598	}
 599
 600	spin_unlock_irq(&ffs->ev.waitq.lock);
 601done_mutex:
 602	mutex_unlock(&ffs->mutex);
 603	kfree(data);
 604	return ret;
 605}
 606
 607static int ffs_ep0_open(struct inode *inode, struct file *file)
 608{
 609	struct ffs_data *ffs = inode->i_private;
 610
 611	if (ffs->state == FFS_CLOSING)
 612		return -EBUSY;
 613
 614	file->private_data = ffs;
 615	ffs_data_opened(ffs);
 616
 617	return stream_open(inode, file);
 618}
 619
 620static int ffs_ep0_release(struct inode *inode, struct file *file)
 621{
 622	struct ffs_data *ffs = file->private_data;
 623
 624	ffs_data_closed(ffs);
 625
 626	return 0;
 627}
 628
 629static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
 630{
 631	struct ffs_data *ffs = file->private_data;
 632	struct usb_gadget *gadget = ffs->gadget;
 633	long ret;
 634
 635	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
 636		struct ffs_function *func = ffs->func;
 637		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
 638	} else if (gadget && gadget->ops->ioctl) {
 639		ret = gadget->ops->ioctl(gadget, code, value);
 640	} else {
 641		ret = -ENOTTY;
 642	}
 643
 644	return ret;
 645}
 646
 647static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
 648{
 649	struct ffs_data *ffs = file->private_data;
 650	__poll_t mask = EPOLLWRNORM;
 651	int ret;
 652
 653	poll_wait(file, &ffs->ev.waitq, wait);
 654
 655	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 656	if (ret < 0)
 657		return mask;
 658
 659	switch (ffs->state) {
 660	case FFS_READ_DESCRIPTORS:
 661	case FFS_READ_STRINGS:
 662		mask |= EPOLLOUT;
 663		break;
 664
 665	case FFS_ACTIVE:
 666		switch (ffs->setup_state) {
 667		case FFS_NO_SETUP:
 668			if (ffs->ev.count)
 669				mask |= EPOLLIN;
 670			break;
 671
 672		case FFS_SETUP_PENDING:
 673		case FFS_SETUP_CANCELLED:
 674			mask |= (EPOLLIN | EPOLLOUT);
 675			break;
 676		}
 677		break;
 678
 679	case FFS_CLOSING:
 680		break;
 681	case FFS_DEACTIVATED:
 682		break;
 683	}
 684
 685	mutex_unlock(&ffs->mutex);
 686
 687	return mask;
 688}
 689
 690static const struct file_operations ffs_ep0_operations = {
 691	.llseek =	no_llseek,
 692
 693	.open =		ffs_ep0_open,
 694	.write =	ffs_ep0_write,
 695	.read =		ffs_ep0_read,
 696	.release =	ffs_ep0_release,
 697	.unlocked_ioctl =	ffs_ep0_ioctl,
 698	.poll =		ffs_ep0_poll,
 699};
 700
 701
 702/* "Normal" endpoints operations ********************************************/
 703
 704static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
 705{
 706	struct ffs_io_data *io_data = req->context;
 707
 708	if (req->status)
 709		io_data->status = req->status;
 710	else
 711		io_data->status = req->actual;
 712
 713	complete(&io_data->done);
 714}
 715
 716static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
 717{
 718	ssize_t ret = copy_to_iter(data, data_len, iter);
 719	if (ret == data_len)
 720		return ret;
 721
 722	if (iov_iter_count(iter))
 723		return -EFAULT;
 724
 725	/*
 726	 * Dear user space developer!
 727	 *
 728	 * TL;DR: To stop getting below error message in your kernel log, change
 729	 * user space code using functionfs to align read buffers to a max
 730	 * packet size.
 731	 *
 732	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
 733	 * packet size.  When unaligned buffer is passed to functionfs, it
 734	 * internally uses a larger, aligned buffer so that such UDCs are happy.
 735	 *
 736	 * Unfortunately, this means that host may send more data than was
 737	 * requested in read(2) system call.  f_fs doesn’t know what to do with
 738	 * that excess data so it simply drops it.
 739	 *
 740	 * Was the buffer aligned in the first place, no such problem would
 741	 * happen.
 742	 *
 743	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
 744	 * by splitting a request into multiple parts.  This splitting may still
 745	 * be a problem though so it’s likely best to align the buffer
 746	 * regardless of it being AIO or not..
 747	 *
 748	 * This only affects OUT endpoints, i.e. reading data with a read(2),
 749	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
 750	 * affected.
 751	 */
 752	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
 753	       "Align read buffer size to max packet size to avoid the problem.\n",
 754	       data_len, ret);
 755
 756	return ret;
 757}
 758
 759/*
 760 * allocate a virtually contiguous buffer and create a scatterlist describing it
 761 * @sg_table	- pointer to a place to be filled with sg_table contents
 762 * @size	- required buffer size
 763 */
 764static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
 765{
 766	struct page **pages;
 767	void *vaddr, *ptr;
 768	unsigned int n_pages;
 769	int i;
 770
 771	vaddr = vmalloc(sz);
 772	if (!vaddr)
 773		return NULL;
 774
 775	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
 776	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
 777	if (!pages) {
 778		vfree(vaddr);
 779
 780		return NULL;
 781	}
 782	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
 783		pages[i] = vmalloc_to_page(ptr);
 784
 785	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
 786		kvfree(pages);
 787		vfree(vaddr);
 788
 789		return NULL;
 790	}
 791	kvfree(pages);
 792
 793	return vaddr;
 794}
 795
 796static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
 797	size_t data_len)
 798{
 799	if (io_data->use_sg)
 800		return ffs_build_sg_list(&io_data->sgt, data_len);
 801
 802	return kmalloc(data_len, GFP_KERNEL);
 803}
 804
 805static inline void ffs_free_buffer(struct ffs_io_data *io_data)
 806{
 807	if (!io_data->buf)
 808		return;
 809
 810	if (io_data->use_sg) {
 811		sg_free_table(&io_data->sgt);
 812		vfree(io_data->buf);
 813	} else {
 814		kfree(io_data->buf);
 815	}
 816}
 817
 818static void ffs_user_copy_worker(struct work_struct *work)
 819{
 820	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
 821						   work);
 822	int ret = io_data->status;
 823	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
 
 824
 825	if (io_data->read && ret > 0) {
 826		kthread_use_mm(io_data->mm);
 827		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
 828		kthread_unuse_mm(io_data->mm);
 829	}
 830
 831	io_data->kiocb->ki_complete(io_data->kiocb, ret);
 832
 833	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
 834		eventfd_signal(io_data->ffs->ffs_eventfd);
 835
 
 
 
 
 
 836	if (io_data->read)
 837		kfree(io_data->to_free);
 838	ffs_free_buffer(io_data);
 839	kfree(io_data);
 840}
 841
 842static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
 843					 struct usb_request *req)
 844{
 845	struct ffs_io_data *io_data = req->context;
 846	struct ffs_data *ffs = io_data->ffs;
 847
 848	io_data->status = req->status ? req->status : req->actual;
 849	usb_ep_free_request(_ep, req);
 850
 851	INIT_WORK(&io_data->work, ffs_user_copy_worker);
 852	queue_work(ffs->io_completion_wq, &io_data->work);
 853}
 854
 855static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
 856{
 857	/*
 858	 * See comment in struct ffs_epfile for full read_buffer pointer
 859	 * synchronisation story.
 860	 */
 861	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
 862	if (buf && buf != READ_BUFFER_DROP)
 863		kfree(buf);
 864}
 865
 866/* Assumes epfile->mutex is held. */
 867static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
 868					  struct iov_iter *iter)
 869{
 870	/*
 871	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
 872	 * the buffer while we are using it.  See comment in struct ffs_epfile
 873	 * for full read_buffer pointer synchronisation story.
 874	 */
 875	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
 876	ssize_t ret;
 877	if (!buf || buf == READ_BUFFER_DROP)
 878		return 0;
 879
 880	ret = copy_to_iter(buf->data, buf->length, iter);
 881	if (buf->length == ret) {
 882		kfree(buf);
 883		return ret;
 884	}
 885
 886	if (iov_iter_count(iter)) {
 887		ret = -EFAULT;
 888	} else {
 889		buf->length -= ret;
 890		buf->data += ret;
 891	}
 892
 893	if (cmpxchg(&epfile->read_buffer, NULL, buf))
 894		kfree(buf);
 895
 896	return ret;
 897}
 898
 899/* Assumes epfile->mutex is held. */
 900static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
 901				      void *data, int data_len,
 902				      struct iov_iter *iter)
 903{
 904	struct ffs_buffer *buf;
 905
 906	ssize_t ret = copy_to_iter(data, data_len, iter);
 907	if (data_len == ret)
 908		return ret;
 909
 910	if (iov_iter_count(iter))
 911		return -EFAULT;
 912
 913	/* See ffs_copy_to_iter for more context. */
 914	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
 915		data_len, ret);
 916
 917	data_len -= ret;
 918	buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL);
 919	if (!buf)
 920		return -ENOMEM;
 921	buf->length = data_len;
 922	buf->data = buf->storage;
 923	memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len));
 924
 925	/*
 926	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
 927	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
 928	 * in struct ffs_epfile for full read_buffer pointer synchronisation
 929	 * story.
 930	 */
 931	if (cmpxchg(&epfile->read_buffer, NULL, buf))
 932		kfree(buf);
 933
 934	return ret;
 935}
 936
 937static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
 938{
 939	struct ffs_epfile *epfile = file->private_data;
 940	struct usb_request *req;
 941	struct ffs_ep *ep;
 942	char *data = NULL;
 943	ssize_t ret, data_len = -EINVAL;
 944	int halt;
 945
 946	/* Are we still active? */
 947	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
 948		return -ENODEV;
 949
 950	/* Wait for endpoint to be enabled */
 951	ep = epfile->ep;
 952	if (!ep) {
 953		if (file->f_flags & O_NONBLOCK)
 954			return -EAGAIN;
 955
 956		ret = wait_event_interruptible(
 957				epfile->ffs->wait, (ep = epfile->ep));
 958		if (ret)
 959			return -EINTR;
 960	}
 961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 962	/* Do we halt? */
 963	halt = (!io_data->read == !epfile->in);
 964	if (halt && epfile->isoc)
 965		return -EINVAL;
 966
 967	/* We will be using request and read_buffer */
 968	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
 969	if (ret)
 970		goto error;
 971
 972	/* Allocate & copy */
 973	if (!halt) {
 974		struct usb_gadget *gadget;
 975
 976		/*
 977		 * Do we have buffered data from previous partial read?  Check
 978		 * that for synchronous case only because we do not have
 979		 * facility to ‘wake up’ a pending asynchronous read and push
 980		 * buffered data to it which we would need to make things behave
 981		 * consistently.
 982		 */
 983		if (!io_data->aio && io_data->read) {
 984			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
 985			if (ret)
 986				goto error_mutex;
 987		}
 988
 989		/*
 990		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
 991		 * before the waiting completes, so do not assign to 'gadget'
 992		 * earlier
 993		 */
 994		gadget = epfile->ffs->gadget;
 995
 996		spin_lock_irq(&epfile->ffs->eps_lock);
 997		/* In the meantime, endpoint got disabled or changed. */
 998		if (epfile->ep != ep) {
 999			ret = -ESHUTDOWN;
1000			goto error_lock;
1001		}
1002		data_len = iov_iter_count(&io_data->data);
1003		/*
1004		 * Controller may require buffer size to be aligned to
1005		 * maxpacketsize of an out endpoint.
1006		 */
1007		if (io_data->read)
1008			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1009
1010		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1011		spin_unlock_irq(&epfile->ffs->eps_lock);
1012
1013		data = ffs_alloc_buffer(io_data, data_len);
1014		if (!data) {
1015			ret = -ENOMEM;
1016			goto error_mutex;
1017		}
1018		if (!io_data->read &&
1019		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1020			ret = -EFAULT;
1021			goto error_mutex;
1022		}
1023	}
1024
1025	spin_lock_irq(&epfile->ffs->eps_lock);
1026
1027	if (epfile->ep != ep) {
1028		/* In the meantime, endpoint got disabled or changed. */
1029		ret = -ESHUTDOWN;
1030	} else if (halt) {
1031		ret = usb_ep_set_halt(ep->ep);
1032		if (!ret)
1033			ret = -EBADMSG;
1034	} else if (data_len == -EINVAL) {
1035		/*
1036		 * Sanity Check: even though data_len can't be used
1037		 * uninitialized at the time I write this comment, some
1038		 * compilers complain about this situation.
1039		 * In order to keep the code clean from warnings, data_len is
1040		 * being initialized to -EINVAL during its declaration, which
1041		 * means we can't rely on compiler anymore to warn no future
1042		 * changes won't result in data_len being used uninitialized.
1043		 * For such reason, we're adding this redundant sanity check
1044		 * here.
1045		 */
1046		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1047		ret = -EINVAL;
1048	} else if (!io_data->aio) {
1049		bool interrupted = false;
1050
1051		req = ep->req;
1052		if (io_data->use_sg) {
1053			req->buf = NULL;
1054			req->sg	= io_data->sgt.sgl;
1055			req->num_sgs = io_data->sgt.nents;
1056		} else {
1057			req->buf = data;
1058			req->num_sgs = 0;
1059		}
1060		req->length = data_len;
1061
1062		io_data->buf = data;
1063
1064		init_completion(&io_data->done);
1065		req->context  = io_data;
1066		req->complete = ffs_epfile_io_complete;
1067
1068		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1069		if (ret < 0)
1070			goto error_lock;
1071
1072		spin_unlock_irq(&epfile->ffs->eps_lock);
1073
1074		if (wait_for_completion_interruptible(&io_data->done)) {
1075			spin_lock_irq(&epfile->ffs->eps_lock);
1076			if (epfile->ep != ep) {
1077				ret = -ESHUTDOWN;
1078				goto error_lock;
1079			}
1080			/*
1081			 * To avoid race condition with ffs_epfile_io_complete,
1082			 * dequeue the request first then check
1083			 * status. usb_ep_dequeue API should guarantee no race
1084			 * condition with req->complete callback.
1085			 */
1086			usb_ep_dequeue(ep->ep, req);
1087			spin_unlock_irq(&epfile->ffs->eps_lock);
1088			wait_for_completion(&io_data->done);
1089			interrupted = io_data->status < 0;
1090		}
1091
1092		if (interrupted)
1093			ret = -EINTR;
1094		else if (io_data->read && io_data->status > 0)
1095			ret = __ffs_epfile_read_data(epfile, data, io_data->status,
1096						     &io_data->data);
1097		else
1098			ret = io_data->status;
1099		goto error_mutex;
1100	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1101		ret = -ENOMEM;
1102	} else {
1103		if (io_data->use_sg) {
1104			req->buf = NULL;
1105			req->sg	= io_data->sgt.sgl;
1106			req->num_sgs = io_data->sgt.nents;
1107		} else {
1108			req->buf = data;
1109			req->num_sgs = 0;
1110		}
1111		req->length = data_len;
1112
1113		io_data->buf = data;
1114		io_data->ep = ep->ep;
1115		io_data->req = req;
1116		io_data->ffs = epfile->ffs;
1117
1118		req->context  = io_data;
1119		req->complete = ffs_epfile_async_io_complete;
1120
1121		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1122		if (ret) {
1123			io_data->req = NULL;
1124			usb_ep_free_request(ep->ep, req);
1125			goto error_lock;
1126		}
1127
1128		ret = -EIOCBQUEUED;
1129		/*
1130		 * Do not kfree the buffer in this function.  It will be freed
1131		 * by ffs_user_copy_worker.
1132		 */
1133		data = NULL;
1134	}
1135
1136error_lock:
1137	spin_unlock_irq(&epfile->ffs->eps_lock);
1138error_mutex:
1139	mutex_unlock(&epfile->mutex);
1140error:
1141	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1142		ffs_free_buffer(io_data);
1143	return ret;
1144}
1145
1146static int
1147ffs_epfile_open(struct inode *inode, struct file *file)
1148{
1149	struct ffs_epfile *epfile = inode->i_private;
1150
1151	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1152		return -ENODEV;
1153
1154	file->private_data = epfile;
1155	ffs_data_opened(epfile->ffs);
1156
1157	return stream_open(inode, file);
1158}
1159
1160static int ffs_aio_cancel(struct kiocb *kiocb)
1161{
1162	struct ffs_io_data *io_data = kiocb->private;
1163	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1164	unsigned long flags;
1165	int value;
1166
1167	spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1168
1169	if (io_data && io_data->ep && io_data->req)
1170		value = usb_ep_dequeue(io_data->ep, io_data->req);
1171	else
1172		value = -EINVAL;
1173
1174	spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1175
1176	return value;
1177}
1178
1179static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1180{
1181	struct ffs_io_data io_data, *p = &io_data;
1182	ssize_t res;
1183
1184	if (!is_sync_kiocb(kiocb)) {
1185		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1186		if (!p)
1187			return -ENOMEM;
1188		p->aio = true;
1189	} else {
1190		memset(p, 0, sizeof(*p));
1191		p->aio = false;
1192	}
1193
1194	p->read = false;
1195	p->kiocb = kiocb;
1196	p->data = *from;
1197	p->mm = current->mm;
1198
1199	kiocb->private = p;
1200
1201	if (p->aio)
1202		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1203
1204	res = ffs_epfile_io(kiocb->ki_filp, p);
1205	if (res == -EIOCBQUEUED)
1206		return res;
1207	if (p->aio)
1208		kfree(p);
1209	else
1210		*from = p->data;
1211	return res;
1212}
1213
1214static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1215{
1216	struct ffs_io_data io_data, *p = &io_data;
1217	ssize_t res;
1218
1219	if (!is_sync_kiocb(kiocb)) {
1220		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1221		if (!p)
1222			return -ENOMEM;
1223		p->aio = true;
1224	} else {
1225		memset(p, 0, sizeof(*p));
1226		p->aio = false;
1227	}
1228
1229	p->read = true;
1230	p->kiocb = kiocb;
1231	if (p->aio) {
1232		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1233		if (!iter_is_ubuf(&p->data) && !p->to_free) {
1234			kfree(p);
1235			return -ENOMEM;
1236		}
1237	} else {
1238		p->data = *to;
1239		p->to_free = NULL;
1240	}
1241	p->mm = current->mm;
1242
1243	kiocb->private = p;
1244
1245	if (p->aio)
1246		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1247
1248	res = ffs_epfile_io(kiocb->ki_filp, p);
1249	if (res == -EIOCBQUEUED)
1250		return res;
1251
1252	if (p->aio) {
1253		kfree(p->to_free);
1254		kfree(p);
1255	} else {
1256		*to = p->data;
1257	}
1258	return res;
1259}
1260
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1261static int
1262ffs_epfile_release(struct inode *inode, struct file *file)
1263{
1264	struct ffs_epfile *epfile = inode->i_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1265
1266	__ffs_epfile_read_buffer_free(epfile);
1267	ffs_data_closed(epfile->ffs);
1268
1269	return 0;
1270}
1271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1272static long ffs_epfile_ioctl(struct file *file, unsigned code,
1273			     unsigned long value)
1274{
1275	struct ffs_epfile *epfile = file->private_data;
1276	struct ffs_ep *ep;
1277	int ret;
1278
1279	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1280		return -ENODEV;
1281
1282	/* Wait for endpoint to be enabled */
1283	ep = epfile->ep;
1284	if (!ep) {
1285		if (file->f_flags & O_NONBLOCK)
1286			return -EAGAIN;
1287
1288		ret = wait_event_interruptible(
1289				epfile->ffs->wait, (ep = epfile->ep));
1290		if (ret)
1291			return -EINTR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1292	}
 
 
 
 
 
 
 
 
1293
1294	spin_lock_irq(&epfile->ffs->eps_lock);
1295
1296	/* In the meantime, endpoint got disabled or changed. */
1297	if (epfile->ep != ep) {
1298		spin_unlock_irq(&epfile->ffs->eps_lock);
1299		return -ESHUTDOWN;
1300	}
1301
1302	switch (code) {
1303	case FUNCTIONFS_FIFO_STATUS:
1304		ret = usb_ep_fifo_status(epfile->ep->ep);
1305		break;
1306	case FUNCTIONFS_FIFO_FLUSH:
1307		usb_ep_fifo_flush(epfile->ep->ep);
1308		ret = 0;
1309		break;
1310	case FUNCTIONFS_CLEAR_HALT:
1311		ret = usb_ep_clear_halt(epfile->ep->ep);
1312		break;
1313	case FUNCTIONFS_ENDPOINT_REVMAP:
1314		ret = epfile->ep->num;
1315		break;
1316	case FUNCTIONFS_ENDPOINT_DESC:
1317	{
1318		int desc_idx;
1319		struct usb_endpoint_descriptor desc1, *desc;
1320
1321		switch (epfile->ffs->gadget->speed) {
1322		case USB_SPEED_SUPER:
1323		case USB_SPEED_SUPER_PLUS:
1324			desc_idx = 2;
1325			break;
1326		case USB_SPEED_HIGH:
1327			desc_idx = 1;
1328			break;
1329		default:
1330			desc_idx = 0;
1331		}
1332
1333		desc = epfile->ep->descs[desc_idx];
1334		memcpy(&desc1, desc, desc->bLength);
1335
1336		spin_unlock_irq(&epfile->ffs->eps_lock);
1337		ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1338		if (ret)
1339			ret = -EFAULT;
1340		return ret;
1341	}
1342	default:
1343		ret = -ENOTTY;
1344	}
1345	spin_unlock_irq(&epfile->ffs->eps_lock);
1346
1347	return ret;
1348}
1349
1350static const struct file_operations ffs_epfile_operations = {
1351	.llseek =	no_llseek,
1352
1353	.open =		ffs_epfile_open,
1354	.write_iter =	ffs_epfile_write_iter,
1355	.read_iter =	ffs_epfile_read_iter,
1356	.release =	ffs_epfile_release,
1357	.unlocked_ioctl =	ffs_epfile_ioctl,
1358	.compat_ioctl = compat_ptr_ioctl,
1359};
1360
1361
1362/* File system and super block operations ***********************************/
1363
1364/*
1365 * Mounting the file system creates a controller file, used first for
1366 * function configuration then later for event monitoring.
1367 */
1368
1369static struct inode *__must_check
1370ffs_sb_make_inode(struct super_block *sb, void *data,
1371		  const struct file_operations *fops,
1372		  const struct inode_operations *iops,
1373		  struct ffs_file_perms *perms)
1374{
1375	struct inode *inode;
1376
1377	inode = new_inode(sb);
1378
1379	if (inode) {
1380		struct timespec64 ts = inode_set_ctime_current(inode);
1381
1382		inode->i_ino	 = get_next_ino();
1383		inode->i_mode    = perms->mode;
1384		inode->i_uid     = perms->uid;
1385		inode->i_gid     = perms->gid;
1386		inode_set_atime_to_ts(inode, ts);
1387		inode_set_mtime_to_ts(inode, ts);
1388		inode->i_private = data;
1389		if (fops)
1390			inode->i_fop = fops;
1391		if (iops)
1392			inode->i_op  = iops;
1393	}
1394
1395	return inode;
1396}
1397
1398/* Create "regular" file */
1399static struct dentry *ffs_sb_create_file(struct super_block *sb,
1400					const char *name, void *data,
1401					const struct file_operations *fops)
1402{
1403	struct ffs_data	*ffs = sb->s_fs_info;
1404	struct dentry	*dentry;
1405	struct inode	*inode;
1406
1407	dentry = d_alloc_name(sb->s_root, name);
1408	if (!dentry)
1409		return NULL;
1410
1411	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1412	if (!inode) {
1413		dput(dentry);
1414		return NULL;
1415	}
1416
1417	d_add(dentry, inode);
1418	return dentry;
1419}
1420
1421/* Super block */
1422static const struct super_operations ffs_sb_operations = {
1423	.statfs =	simple_statfs,
1424	.drop_inode =	generic_delete_inode,
1425};
1426
1427struct ffs_sb_fill_data {
1428	struct ffs_file_perms perms;
1429	umode_t root_mode;
1430	const char *dev_name;
1431	bool no_disconnect;
1432	struct ffs_data *ffs_data;
1433};
1434
1435static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1436{
1437	struct ffs_sb_fill_data *data = fc->fs_private;
1438	struct inode	*inode;
1439	struct ffs_data	*ffs = data->ffs_data;
1440
1441	ffs->sb              = sb;
1442	data->ffs_data       = NULL;
1443	sb->s_fs_info        = ffs;
1444	sb->s_blocksize      = PAGE_SIZE;
1445	sb->s_blocksize_bits = PAGE_SHIFT;
1446	sb->s_magic          = FUNCTIONFS_MAGIC;
1447	sb->s_op             = &ffs_sb_operations;
1448	sb->s_time_gran      = 1;
1449
1450	/* Root inode */
1451	data->perms.mode = data->root_mode;
1452	inode = ffs_sb_make_inode(sb, NULL,
1453				  &simple_dir_operations,
1454				  &simple_dir_inode_operations,
1455				  &data->perms);
1456	sb->s_root = d_make_root(inode);
1457	if (!sb->s_root)
1458		return -ENOMEM;
1459
1460	/* EP0 file */
1461	if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations))
1462		return -ENOMEM;
1463
1464	return 0;
1465}
1466
1467enum {
1468	Opt_no_disconnect,
1469	Opt_rmode,
1470	Opt_fmode,
1471	Opt_mode,
1472	Opt_uid,
1473	Opt_gid,
1474};
1475
1476static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1477	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1478	fsparam_u32	("rmode",		Opt_rmode),
1479	fsparam_u32	("fmode",		Opt_fmode),
1480	fsparam_u32	("mode",		Opt_mode),
1481	fsparam_u32	("uid",			Opt_uid),
1482	fsparam_u32	("gid",			Opt_gid),
1483	{}
1484};
1485
1486static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1487{
1488	struct ffs_sb_fill_data *data = fc->fs_private;
1489	struct fs_parse_result result;
1490	int opt;
1491
1492	opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1493	if (opt < 0)
1494		return opt;
1495
1496	switch (opt) {
1497	case Opt_no_disconnect:
1498		data->no_disconnect = result.boolean;
1499		break;
1500	case Opt_rmode:
1501		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1502		break;
1503	case Opt_fmode:
1504		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1505		break;
1506	case Opt_mode:
1507		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1508		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1509		break;
1510
1511	case Opt_uid:
1512		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1513		if (!uid_valid(data->perms.uid))
1514			goto unmapped_value;
1515		break;
1516	case Opt_gid:
1517		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1518		if (!gid_valid(data->perms.gid))
1519			goto unmapped_value;
1520		break;
1521
1522	default:
1523		return -ENOPARAM;
1524	}
1525
1526	return 0;
1527
1528unmapped_value:
1529	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1530}
1531
1532/*
1533 * Set up the superblock for a mount.
1534 */
1535static int ffs_fs_get_tree(struct fs_context *fc)
1536{
1537	struct ffs_sb_fill_data *ctx = fc->fs_private;
1538	struct ffs_data	*ffs;
1539	int ret;
1540
1541	if (!fc->source)
1542		return invalf(fc, "No source specified");
1543
1544	ffs = ffs_data_new(fc->source);
1545	if (!ffs)
1546		return -ENOMEM;
1547	ffs->file_perms = ctx->perms;
1548	ffs->no_disconnect = ctx->no_disconnect;
1549
1550	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1551	if (!ffs->dev_name) {
1552		ffs_data_put(ffs);
1553		return -ENOMEM;
1554	}
1555
1556	ret = ffs_acquire_dev(ffs->dev_name, ffs);
1557	if (ret) {
1558		ffs_data_put(ffs);
1559		return ret;
1560	}
1561
1562	ctx->ffs_data = ffs;
1563	return get_tree_nodev(fc, ffs_sb_fill);
1564}
1565
1566static void ffs_fs_free_fc(struct fs_context *fc)
1567{
1568	struct ffs_sb_fill_data *ctx = fc->fs_private;
1569
1570	if (ctx) {
1571		if (ctx->ffs_data) {
1572			ffs_data_put(ctx->ffs_data);
1573		}
1574
1575		kfree(ctx);
1576	}
1577}
1578
1579static const struct fs_context_operations ffs_fs_context_ops = {
1580	.free		= ffs_fs_free_fc,
1581	.parse_param	= ffs_fs_parse_param,
1582	.get_tree	= ffs_fs_get_tree,
1583};
1584
1585static int ffs_fs_init_fs_context(struct fs_context *fc)
1586{
1587	struct ffs_sb_fill_data *ctx;
1588
1589	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1590	if (!ctx)
1591		return -ENOMEM;
1592
1593	ctx->perms.mode = S_IFREG | 0600;
1594	ctx->perms.uid = GLOBAL_ROOT_UID;
1595	ctx->perms.gid = GLOBAL_ROOT_GID;
1596	ctx->root_mode = S_IFDIR | 0500;
1597	ctx->no_disconnect = false;
1598
1599	fc->fs_private = ctx;
1600	fc->ops = &ffs_fs_context_ops;
1601	return 0;
1602}
1603
1604static void
1605ffs_fs_kill_sb(struct super_block *sb)
1606{
1607	kill_litter_super(sb);
1608	if (sb->s_fs_info)
1609		ffs_data_closed(sb->s_fs_info);
1610}
1611
1612static struct file_system_type ffs_fs_type = {
1613	.owner		= THIS_MODULE,
1614	.name		= "functionfs",
1615	.init_fs_context = ffs_fs_init_fs_context,
1616	.parameters	= ffs_fs_fs_parameters,
1617	.kill_sb	= ffs_fs_kill_sb,
1618};
1619MODULE_ALIAS_FS("functionfs");
1620
1621
1622/* Driver's main init/cleanup functions *************************************/
1623
1624static int functionfs_init(void)
1625{
1626	int ret;
1627
1628	ret = register_filesystem(&ffs_fs_type);
1629	if (!ret)
1630		pr_info("file system registered\n");
1631	else
1632		pr_err("failed registering file system (%d)\n", ret);
1633
1634	return ret;
1635}
1636
1637static void functionfs_cleanup(void)
1638{
1639	pr_info("unloading\n");
1640	unregister_filesystem(&ffs_fs_type);
1641}
1642
1643
1644/* ffs_data and ffs_function construction and destruction code **************/
1645
1646static void ffs_data_clear(struct ffs_data *ffs);
1647static void ffs_data_reset(struct ffs_data *ffs);
1648
1649static void ffs_data_get(struct ffs_data *ffs)
1650{
1651	refcount_inc(&ffs->ref);
1652}
1653
1654static void ffs_data_opened(struct ffs_data *ffs)
1655{
1656	refcount_inc(&ffs->ref);
1657	if (atomic_add_return(1, &ffs->opened) == 1 &&
1658			ffs->state == FFS_DEACTIVATED) {
1659		ffs->state = FFS_CLOSING;
1660		ffs_data_reset(ffs);
1661	}
1662}
1663
1664static void ffs_data_put(struct ffs_data *ffs)
1665{
1666	if (refcount_dec_and_test(&ffs->ref)) {
1667		pr_info("%s(): freeing\n", __func__);
1668		ffs_data_clear(ffs);
1669		ffs_release_dev(ffs->private_data);
1670		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1671		       swait_active(&ffs->ep0req_completion.wait) ||
1672		       waitqueue_active(&ffs->wait));
1673		destroy_workqueue(ffs->io_completion_wq);
1674		kfree(ffs->dev_name);
1675		kfree(ffs);
1676	}
1677}
1678
1679static void ffs_data_closed(struct ffs_data *ffs)
1680{
1681	struct ffs_epfile *epfiles;
1682	unsigned long flags;
1683
1684	if (atomic_dec_and_test(&ffs->opened)) {
1685		if (ffs->no_disconnect) {
1686			ffs->state = FFS_DEACTIVATED;
1687			spin_lock_irqsave(&ffs->eps_lock, flags);
1688			epfiles = ffs->epfiles;
1689			ffs->epfiles = NULL;
1690			spin_unlock_irqrestore(&ffs->eps_lock,
1691							flags);
1692
1693			if (epfiles)
1694				ffs_epfiles_destroy(epfiles,
1695						 ffs->eps_count);
1696
1697			if (ffs->setup_state == FFS_SETUP_PENDING)
1698				__ffs_ep0_stall(ffs);
1699		} else {
1700			ffs->state = FFS_CLOSING;
1701			ffs_data_reset(ffs);
1702		}
1703	}
1704	if (atomic_read(&ffs->opened) < 0) {
1705		ffs->state = FFS_CLOSING;
1706		ffs_data_reset(ffs);
1707	}
1708
1709	ffs_data_put(ffs);
1710}
1711
1712static struct ffs_data *ffs_data_new(const char *dev_name)
1713{
1714	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1715	if (!ffs)
1716		return NULL;
1717
1718	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1719	if (!ffs->io_completion_wq) {
1720		kfree(ffs);
1721		return NULL;
1722	}
1723
1724	refcount_set(&ffs->ref, 1);
1725	atomic_set(&ffs->opened, 0);
1726	ffs->state = FFS_READ_DESCRIPTORS;
1727	mutex_init(&ffs->mutex);
1728	spin_lock_init(&ffs->eps_lock);
1729	init_waitqueue_head(&ffs->ev.waitq);
1730	init_waitqueue_head(&ffs->wait);
1731	init_completion(&ffs->ep0req_completion);
1732
1733	/* XXX REVISIT need to update it in some places, or do we? */
1734	ffs->ev.can_stall = 1;
1735
1736	return ffs;
1737}
1738
1739static void ffs_data_clear(struct ffs_data *ffs)
1740{
1741	struct ffs_epfile *epfiles;
1742	unsigned long flags;
1743
1744	ffs_closed(ffs);
1745
1746	BUG_ON(ffs->gadget);
1747
1748	spin_lock_irqsave(&ffs->eps_lock, flags);
1749	epfiles = ffs->epfiles;
1750	ffs->epfiles = NULL;
1751	spin_unlock_irqrestore(&ffs->eps_lock, flags);
1752
1753	/*
1754	 * potential race possible between ffs_func_eps_disable
1755	 * & ffs_epfile_release therefore maintaining a local
1756	 * copy of epfile will save us from use-after-free.
1757	 */
1758	if (epfiles) {
1759		ffs_epfiles_destroy(epfiles, ffs->eps_count);
1760		ffs->epfiles = NULL;
1761	}
1762
1763	if (ffs->ffs_eventfd) {
1764		eventfd_ctx_put(ffs->ffs_eventfd);
1765		ffs->ffs_eventfd = NULL;
1766	}
1767
1768	kfree(ffs->raw_descs_data);
1769	kfree(ffs->raw_strings);
1770	kfree(ffs->stringtabs);
1771}
1772
1773static void ffs_data_reset(struct ffs_data *ffs)
1774{
1775	ffs_data_clear(ffs);
1776
1777	ffs->raw_descs_data = NULL;
1778	ffs->raw_descs = NULL;
1779	ffs->raw_strings = NULL;
1780	ffs->stringtabs = NULL;
1781
1782	ffs->raw_descs_length = 0;
1783	ffs->fs_descs_count = 0;
1784	ffs->hs_descs_count = 0;
1785	ffs->ss_descs_count = 0;
1786
1787	ffs->strings_count = 0;
1788	ffs->interfaces_count = 0;
1789	ffs->eps_count = 0;
1790
1791	ffs->ev.count = 0;
1792
1793	ffs->state = FFS_READ_DESCRIPTORS;
1794	ffs->setup_state = FFS_NO_SETUP;
1795	ffs->flags = 0;
1796
1797	ffs->ms_os_descs_ext_prop_count = 0;
1798	ffs->ms_os_descs_ext_prop_name_len = 0;
1799	ffs->ms_os_descs_ext_prop_data_len = 0;
1800}
1801
1802
1803static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1804{
1805	struct usb_gadget_strings **lang;
1806	int first_id;
1807
1808	if (WARN_ON(ffs->state != FFS_ACTIVE
1809		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1810		return -EBADFD;
1811
1812	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1813	if (first_id < 0)
1814		return first_id;
1815
1816	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1817	if (!ffs->ep0req)
1818		return -ENOMEM;
1819	ffs->ep0req->complete = ffs_ep0_complete;
1820	ffs->ep0req->context = ffs;
1821
1822	lang = ffs->stringtabs;
1823	if (lang) {
1824		for (; *lang; ++lang) {
1825			struct usb_string *str = (*lang)->strings;
1826			int id = first_id;
1827			for (; str->s; ++id, ++str)
1828				str->id = id;
1829		}
1830	}
1831
1832	ffs->gadget = cdev->gadget;
1833	ffs_data_get(ffs);
1834	return 0;
1835}
1836
1837static void functionfs_unbind(struct ffs_data *ffs)
1838{
1839	if (!WARN_ON(!ffs->gadget)) {
1840		/* dequeue before freeing ep0req */
1841		usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
1842		mutex_lock(&ffs->mutex);
1843		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1844		ffs->ep0req = NULL;
1845		ffs->gadget = NULL;
1846		clear_bit(FFS_FL_BOUND, &ffs->flags);
1847		mutex_unlock(&ffs->mutex);
1848		ffs_data_put(ffs);
1849	}
1850}
1851
1852static int ffs_epfiles_create(struct ffs_data *ffs)
1853{
1854	struct ffs_epfile *epfile, *epfiles;
1855	unsigned i, count;
1856
1857	count = ffs->eps_count;
1858	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1859	if (!epfiles)
1860		return -ENOMEM;
1861
1862	epfile = epfiles;
1863	for (i = 1; i <= count; ++i, ++epfile) {
1864		epfile->ffs = ffs;
1865		mutex_init(&epfile->mutex);
 
 
1866		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1867			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1868		else
1869			sprintf(epfile->name, "ep%u", i);
1870		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1871						 epfile,
1872						 &ffs_epfile_operations);
1873		if (!epfile->dentry) {
1874			ffs_epfiles_destroy(epfiles, i - 1);
1875			return -ENOMEM;
1876		}
1877	}
1878
1879	ffs->epfiles = epfiles;
1880	return 0;
1881}
1882
1883static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1884{
1885	struct ffs_epfile *epfile = epfiles;
1886
1887	for (; count; --count, ++epfile) {
1888		BUG_ON(mutex_is_locked(&epfile->mutex));
1889		if (epfile->dentry) {
1890			d_delete(epfile->dentry);
1891			dput(epfile->dentry);
1892			epfile->dentry = NULL;
1893		}
1894	}
1895
1896	kfree(epfiles);
1897}
1898
1899static void ffs_func_eps_disable(struct ffs_function *func)
1900{
1901	struct ffs_ep *ep;
1902	struct ffs_epfile *epfile;
1903	unsigned short count;
1904	unsigned long flags;
1905
1906	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1907	count = func->ffs->eps_count;
1908	epfile = func->ffs->epfiles;
1909	ep = func->eps;
1910	while (count--) {
1911		/* pending requests get nuked */
1912		if (ep->ep)
1913			usb_ep_disable(ep->ep);
1914		++ep;
1915
1916		if (epfile) {
1917			epfile->ep = NULL;
1918			__ffs_epfile_read_buffer_free(epfile);
1919			++epfile;
1920		}
1921	}
1922	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1923}
1924
1925static int ffs_func_eps_enable(struct ffs_function *func)
1926{
1927	struct ffs_data *ffs;
1928	struct ffs_ep *ep;
1929	struct ffs_epfile *epfile;
1930	unsigned short count;
1931	unsigned long flags;
1932	int ret = 0;
1933
1934	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1935	ffs = func->ffs;
1936	ep = func->eps;
1937	epfile = ffs->epfiles;
1938	count = ffs->eps_count;
1939	while(count--) {
1940		ep->ep->driver_data = ep;
1941
1942		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1943		if (ret) {
1944			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1945					__func__, ep->ep->name, ret);
1946			break;
1947		}
1948
1949		ret = usb_ep_enable(ep->ep);
1950		if (!ret) {
1951			epfile->ep = ep;
1952			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1953			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1954		} else {
1955			break;
1956		}
1957
1958		++ep;
1959		++epfile;
1960	}
1961
1962	wake_up_interruptible(&ffs->wait);
1963	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1964
1965	return ret;
1966}
1967
1968
1969/* Parsing and building descriptors and strings *****************************/
1970
1971/*
1972 * This validates if data pointed by data is a valid USB descriptor as
1973 * well as record how many interfaces, endpoints and strings are
1974 * required by given configuration.  Returns address after the
1975 * descriptor or NULL if data is invalid.
1976 */
1977
1978enum ffs_entity_type {
1979	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1980};
1981
1982enum ffs_os_desc_type {
1983	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1984};
1985
1986typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1987				   u8 *valuep,
1988				   struct usb_descriptor_header *desc,
1989				   void *priv);
1990
1991typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1992				    struct usb_os_desc_header *h, void *data,
1993				    unsigned len, void *priv);
1994
1995static int __must_check ffs_do_single_desc(char *data, unsigned len,
1996					   ffs_entity_callback entity,
1997					   void *priv, int *current_class)
1998{
1999	struct usb_descriptor_header *_ds = (void *)data;
2000	u8 length;
2001	int ret;
2002
2003	/* At least two bytes are required: length and type */
2004	if (len < 2) {
2005		pr_vdebug("descriptor too short\n");
2006		return -EINVAL;
2007	}
2008
2009	/* If we have at least as many bytes as the descriptor takes? */
2010	length = _ds->bLength;
2011	if (len < length) {
2012		pr_vdebug("descriptor longer then available data\n");
2013		return -EINVAL;
2014	}
2015
2016#define __entity_check_INTERFACE(val)  1
2017#define __entity_check_STRING(val)     (val)
2018#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2019#define __entity(type, val) do {					\
2020		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2021		if (!__entity_check_ ##type(val)) {			\
2022			pr_vdebug("invalid entity's value\n");		\
2023			return -EINVAL;					\
2024		}							\
2025		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2026		if (ret < 0) {						\
2027			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2028				 (val), ret);				\
2029			return ret;					\
2030		}							\
2031	} while (0)
2032
2033	/* Parse descriptor depending on type. */
2034	switch (_ds->bDescriptorType) {
2035	case USB_DT_DEVICE:
2036	case USB_DT_CONFIG:
2037	case USB_DT_STRING:
2038	case USB_DT_DEVICE_QUALIFIER:
2039		/* function can't have any of those */
2040		pr_vdebug("descriptor reserved for gadget: %d\n",
2041		      _ds->bDescriptorType);
2042		return -EINVAL;
2043
2044	case USB_DT_INTERFACE: {
2045		struct usb_interface_descriptor *ds = (void *)_ds;
2046		pr_vdebug("interface descriptor\n");
2047		if (length != sizeof *ds)
2048			goto inv_length;
2049
2050		__entity(INTERFACE, ds->bInterfaceNumber);
2051		if (ds->iInterface)
2052			__entity(STRING, ds->iInterface);
2053		*current_class = ds->bInterfaceClass;
 
2054	}
2055		break;
2056
2057	case USB_DT_ENDPOINT: {
2058		struct usb_endpoint_descriptor *ds = (void *)_ds;
2059		pr_vdebug("endpoint descriptor\n");
2060		if (length != USB_DT_ENDPOINT_SIZE &&
2061		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2062			goto inv_length;
2063		__entity(ENDPOINT, ds->bEndpointAddress);
2064	}
2065		break;
2066
2067	case USB_TYPE_CLASS | 0x01:
2068		if (*current_class == USB_INTERFACE_CLASS_HID) {
2069			pr_vdebug("hid descriptor\n");
2070			if (length != sizeof(struct hid_descriptor))
2071				goto inv_length;
2072			break;
2073		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2074			pr_vdebug("ccid descriptor\n");
2075			if (length != sizeof(struct ccid_descriptor))
2076				goto inv_length;
2077			break;
 
 
 
 
 
 
2078		} else {
2079			pr_vdebug("unknown descriptor: %d for class %d\n",
2080			      _ds->bDescriptorType, *current_class);
2081			return -EINVAL;
2082		}
2083
2084	case USB_DT_OTG:
2085		if (length != sizeof(struct usb_otg_descriptor))
2086			goto inv_length;
2087		break;
2088
2089	case USB_DT_INTERFACE_ASSOCIATION: {
2090		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2091		pr_vdebug("interface association descriptor\n");
2092		if (length != sizeof *ds)
2093			goto inv_length;
2094		if (ds->iFunction)
2095			__entity(STRING, ds->iFunction);
2096	}
2097		break;
2098
2099	case USB_DT_SS_ENDPOINT_COMP:
2100		pr_vdebug("EP SS companion descriptor\n");
2101		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2102			goto inv_length;
2103		break;
2104
2105	case USB_DT_OTHER_SPEED_CONFIG:
2106	case USB_DT_INTERFACE_POWER:
2107	case USB_DT_DEBUG:
2108	case USB_DT_SECURITY:
2109	case USB_DT_CS_RADIO_CONTROL:
2110		/* TODO */
2111		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2112		return -EINVAL;
2113
2114	default:
2115		/* We should never be here */
2116		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2117		return -EINVAL;
2118
2119inv_length:
2120		pr_vdebug("invalid length: %d (descriptor %d)\n",
2121			  _ds->bLength, _ds->bDescriptorType);
2122		return -EINVAL;
2123	}
2124
2125#undef __entity
2126#undef __entity_check_DESCRIPTOR
2127#undef __entity_check_INTERFACE
2128#undef __entity_check_STRING
2129#undef __entity_check_ENDPOINT
2130
2131	return length;
2132}
2133
2134static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2135				     ffs_entity_callback entity, void *priv)
2136{
2137	const unsigned _len = len;
2138	unsigned long num = 0;
2139	int current_class = -1;
 
2140
2141	for (;;) {
2142		int ret;
2143
2144		if (num == count)
2145			data = NULL;
2146
2147		/* Record "descriptor" entity */
2148		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2149		if (ret < 0) {
2150			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2151				 num, ret);
2152			return ret;
2153		}
2154
2155		if (!data)
2156			return _len - len;
2157
2158		ret = ffs_do_single_desc(data, len, entity, priv,
2159			&current_class);
2160		if (ret < 0) {
2161			pr_debug("%s returns %d\n", __func__, ret);
2162			return ret;
2163		}
2164
2165		len -= ret;
2166		data += ret;
2167		++num;
2168	}
2169}
2170
2171static int __ffs_data_do_entity(enum ffs_entity_type type,
2172				u8 *valuep, struct usb_descriptor_header *desc,
2173				void *priv)
2174{
2175	struct ffs_desc_helper *helper = priv;
2176	struct usb_endpoint_descriptor *d;
2177
2178	switch (type) {
2179	case FFS_DESCRIPTOR:
2180		break;
2181
2182	case FFS_INTERFACE:
2183		/*
2184		 * Interfaces are indexed from zero so if we
2185		 * encountered interface "n" then there are at least
2186		 * "n+1" interfaces.
2187		 */
2188		if (*valuep >= helper->interfaces_count)
2189			helper->interfaces_count = *valuep + 1;
2190		break;
2191
2192	case FFS_STRING:
2193		/*
2194		 * Strings are indexed from 1 (0 is reserved
2195		 * for languages list)
2196		 */
2197		if (*valuep > helper->ffs->strings_count)
2198			helper->ffs->strings_count = *valuep;
2199		break;
2200
2201	case FFS_ENDPOINT:
2202		d = (void *)desc;
2203		helper->eps_count++;
2204		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2205			return -EINVAL;
2206		/* Check if descriptors for any speed were already parsed */
2207		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2208			helper->ffs->eps_addrmap[helper->eps_count] =
2209				d->bEndpointAddress;
2210		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2211				d->bEndpointAddress)
2212			return -EINVAL;
2213		break;
2214	}
2215
2216	return 0;
2217}
2218
2219static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2220				   struct usb_os_desc_header *desc)
2221{
2222	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2223	u16 w_index = le16_to_cpu(desc->wIndex);
2224
2225	if (bcd_version == 0x1) {
2226		pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. "
2227			"Userspace driver should be fixed, accepting 0x0001 for compatibility.\n");
2228	} else if (bcd_version != 0x100) {
2229		pr_vdebug("unsupported os descriptors version: 0x%x\n",
2230			  bcd_version);
2231		return -EINVAL;
2232	}
2233	switch (w_index) {
2234	case 0x4:
2235		*next_type = FFS_OS_DESC_EXT_COMPAT;
2236		break;
2237	case 0x5:
2238		*next_type = FFS_OS_DESC_EXT_PROP;
2239		break;
2240	default:
2241		pr_vdebug("unsupported os descriptor type: %d", w_index);
2242		return -EINVAL;
2243	}
2244
2245	return sizeof(*desc);
2246}
2247
2248/*
2249 * Process all extended compatibility/extended property descriptors
2250 * of a feature descriptor
2251 */
2252static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2253					      enum ffs_os_desc_type type,
2254					      u16 feature_count,
2255					      ffs_os_desc_callback entity,
2256					      void *priv,
2257					      struct usb_os_desc_header *h)
2258{
2259	int ret;
2260	const unsigned _len = len;
2261
2262	/* loop over all ext compat/ext prop descriptors */
2263	while (feature_count--) {
2264		ret = entity(type, h, data, len, priv);
2265		if (ret < 0) {
2266			pr_debug("bad OS descriptor, type: %d\n", type);
2267			return ret;
2268		}
2269		data += ret;
2270		len -= ret;
2271	}
2272	return _len - len;
2273}
2274
2275/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2276static int __must_check ffs_do_os_descs(unsigned count,
2277					char *data, unsigned len,
2278					ffs_os_desc_callback entity, void *priv)
2279{
2280	const unsigned _len = len;
2281	unsigned long num = 0;
2282
2283	for (num = 0; num < count; ++num) {
2284		int ret;
2285		enum ffs_os_desc_type type;
2286		u16 feature_count;
2287		struct usb_os_desc_header *desc = (void *)data;
2288
2289		if (len < sizeof(*desc))
2290			return -EINVAL;
2291
2292		/*
2293		 * Record "descriptor" entity.
2294		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2295		 * Move the data pointer to the beginning of extended
2296		 * compatibilities proper or extended properties proper
2297		 * portions of the data
2298		 */
2299		if (le32_to_cpu(desc->dwLength) > len)
2300			return -EINVAL;
2301
2302		ret = __ffs_do_os_desc_header(&type, desc);
2303		if (ret < 0) {
2304			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2305				 num, ret);
2306			return ret;
2307		}
2308		/*
2309		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2310		 */
2311		feature_count = le16_to_cpu(desc->wCount);
2312		if (type == FFS_OS_DESC_EXT_COMPAT &&
2313		    (feature_count > 255 || desc->Reserved))
2314				return -EINVAL;
2315		len -= ret;
2316		data += ret;
2317
2318		/*
2319		 * Process all function/property descriptors
2320		 * of this Feature Descriptor
2321		 */
2322		ret = ffs_do_single_os_desc(data, len, type,
2323					    feature_count, entity, priv, desc);
2324		if (ret < 0) {
2325			pr_debug("%s returns %d\n", __func__, ret);
2326			return ret;
2327		}
2328
2329		len -= ret;
2330		data += ret;
2331	}
2332	return _len - len;
2333}
2334
2335/*
2336 * Validate contents of the buffer from userspace related to OS descriptors.
2337 */
2338static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2339				 struct usb_os_desc_header *h, void *data,
2340				 unsigned len, void *priv)
2341{
2342	struct ffs_data *ffs = priv;
2343	u8 length;
2344
2345	switch (type) {
2346	case FFS_OS_DESC_EXT_COMPAT: {
2347		struct usb_ext_compat_desc *d = data;
2348		int i;
2349
2350		if (len < sizeof(*d) ||
2351		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2352			return -EINVAL;
2353		if (d->Reserved1 != 1) {
2354			/*
2355			 * According to the spec, Reserved1 must be set to 1
2356			 * but older kernels incorrectly rejected non-zero
2357			 * values.  We fix it here to avoid returning EINVAL
2358			 * in response to values we used to accept.
2359			 */
2360			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2361			d->Reserved1 = 1;
2362		}
2363		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2364			if (d->Reserved2[i])
2365				return -EINVAL;
2366
2367		length = sizeof(struct usb_ext_compat_desc);
2368	}
2369		break;
2370	case FFS_OS_DESC_EXT_PROP: {
2371		struct usb_ext_prop_desc *d = data;
2372		u32 type, pdl;
2373		u16 pnl;
2374
2375		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2376			return -EINVAL;
2377		length = le32_to_cpu(d->dwSize);
2378		if (len < length)
2379			return -EINVAL;
2380		type = le32_to_cpu(d->dwPropertyDataType);
2381		if (type < USB_EXT_PROP_UNICODE ||
2382		    type > USB_EXT_PROP_UNICODE_MULTI) {
2383			pr_vdebug("unsupported os descriptor property type: %d",
2384				  type);
2385			return -EINVAL;
2386		}
2387		pnl = le16_to_cpu(d->wPropertyNameLength);
2388		if (length < 14 + pnl) {
2389			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2390				  length, pnl, type);
2391			return -EINVAL;
2392		}
2393		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2394		if (length != 14 + pnl + pdl) {
2395			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2396				  length, pnl, pdl, type);
2397			return -EINVAL;
2398		}
2399		++ffs->ms_os_descs_ext_prop_count;
2400		/* property name reported to the host as "WCHAR"s */
2401		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2402		ffs->ms_os_descs_ext_prop_data_len += pdl;
2403	}
2404		break;
2405	default:
2406		pr_vdebug("unknown descriptor: %d\n", type);
2407		return -EINVAL;
2408	}
2409	return length;
2410}
2411
2412static int __ffs_data_got_descs(struct ffs_data *ffs,
2413				char *const _data, size_t len)
2414{
2415	char *data = _data, *raw_descs;
2416	unsigned os_descs_count = 0, counts[3], flags;
2417	int ret = -EINVAL, i;
2418	struct ffs_desc_helper helper;
2419
2420	if (get_unaligned_le32(data + 4) != len)
2421		goto error;
2422
2423	switch (get_unaligned_le32(data)) {
2424	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2425		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2426		data += 8;
2427		len  -= 8;
2428		break;
2429	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2430		flags = get_unaligned_le32(data + 8);
2431		ffs->user_flags = flags;
2432		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2433			      FUNCTIONFS_HAS_HS_DESC |
2434			      FUNCTIONFS_HAS_SS_DESC |
2435			      FUNCTIONFS_HAS_MS_OS_DESC |
2436			      FUNCTIONFS_VIRTUAL_ADDR |
2437			      FUNCTIONFS_EVENTFD |
2438			      FUNCTIONFS_ALL_CTRL_RECIP |
2439			      FUNCTIONFS_CONFIG0_SETUP)) {
2440			ret = -ENOSYS;
2441			goto error;
2442		}
2443		data += 12;
2444		len  -= 12;
2445		break;
2446	default:
2447		goto error;
2448	}
2449
2450	if (flags & FUNCTIONFS_EVENTFD) {
2451		if (len < 4)
2452			goto error;
2453		ffs->ffs_eventfd =
2454			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2455		if (IS_ERR(ffs->ffs_eventfd)) {
2456			ret = PTR_ERR(ffs->ffs_eventfd);
2457			ffs->ffs_eventfd = NULL;
2458			goto error;
2459		}
2460		data += 4;
2461		len  -= 4;
2462	}
2463
2464	/* Read fs_count, hs_count and ss_count (if present) */
2465	for (i = 0; i < 3; ++i) {
2466		if (!(flags & (1 << i))) {
2467			counts[i] = 0;
2468		} else if (len < 4) {
2469			goto error;
2470		} else {
2471			counts[i] = get_unaligned_le32(data);
2472			data += 4;
2473			len  -= 4;
2474		}
2475	}
2476	if (flags & (1 << i)) {
2477		if (len < 4) {
2478			goto error;
2479		}
2480		os_descs_count = get_unaligned_le32(data);
2481		data += 4;
2482		len -= 4;
2483	}
2484
2485	/* Read descriptors */
2486	raw_descs = data;
2487	helper.ffs = ffs;
2488	for (i = 0; i < 3; ++i) {
2489		if (!counts[i])
2490			continue;
2491		helper.interfaces_count = 0;
2492		helper.eps_count = 0;
2493		ret = ffs_do_descs(counts[i], data, len,
2494				   __ffs_data_do_entity, &helper);
2495		if (ret < 0)
2496			goto error;
2497		if (!ffs->eps_count && !ffs->interfaces_count) {
2498			ffs->eps_count = helper.eps_count;
2499			ffs->interfaces_count = helper.interfaces_count;
2500		} else {
2501			if (ffs->eps_count != helper.eps_count) {
2502				ret = -EINVAL;
2503				goto error;
2504			}
2505			if (ffs->interfaces_count != helper.interfaces_count) {
2506				ret = -EINVAL;
2507				goto error;
2508			}
2509		}
2510		data += ret;
2511		len  -= ret;
2512	}
2513	if (os_descs_count) {
2514		ret = ffs_do_os_descs(os_descs_count, data, len,
2515				      __ffs_data_do_os_desc, ffs);
2516		if (ret < 0)
2517			goto error;
2518		data += ret;
2519		len -= ret;
2520	}
2521
2522	if (raw_descs == data || len) {
2523		ret = -EINVAL;
2524		goto error;
2525	}
2526
2527	ffs->raw_descs_data	= _data;
2528	ffs->raw_descs		= raw_descs;
2529	ffs->raw_descs_length	= data - raw_descs;
2530	ffs->fs_descs_count	= counts[0];
2531	ffs->hs_descs_count	= counts[1];
2532	ffs->ss_descs_count	= counts[2];
2533	ffs->ms_os_descs_count	= os_descs_count;
2534
2535	return 0;
2536
2537error:
2538	kfree(_data);
2539	return ret;
2540}
2541
2542static int __ffs_data_got_strings(struct ffs_data *ffs,
2543				  char *const _data, size_t len)
2544{
2545	u32 str_count, needed_count, lang_count;
2546	struct usb_gadget_strings **stringtabs, *t;
2547	const char *data = _data;
2548	struct usb_string *s;
2549
2550	if (len < 16 ||
2551	    get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2552	    get_unaligned_le32(data + 4) != len)
2553		goto error;
2554	str_count  = get_unaligned_le32(data + 8);
2555	lang_count = get_unaligned_le32(data + 12);
2556
2557	/* if one is zero the other must be zero */
2558	if (!str_count != !lang_count)
2559		goto error;
2560
2561	/* Do we have at least as many strings as descriptors need? */
2562	needed_count = ffs->strings_count;
2563	if (str_count < needed_count)
2564		goto error;
2565
2566	/*
2567	 * If we don't need any strings just return and free all
2568	 * memory.
2569	 */
2570	if (!needed_count) {
2571		kfree(_data);
2572		return 0;
2573	}
2574
2575	/* Allocate everything in one chunk so there's less maintenance. */
2576	{
2577		unsigned i = 0;
2578		vla_group(d);
2579		vla_item(d, struct usb_gadget_strings *, stringtabs,
2580			size_add(lang_count, 1));
2581		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2582		vla_item(d, struct usb_string, strings,
2583			size_mul(lang_count, (needed_count + 1)));
2584
2585		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2586
2587		if (!vlabuf) {
2588			kfree(_data);
2589			return -ENOMEM;
2590		}
2591
2592		/* Initialize the VLA pointers */
2593		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2594		t = vla_ptr(vlabuf, d, stringtab);
2595		i = lang_count;
2596		do {
2597			*stringtabs++ = t++;
2598		} while (--i);
2599		*stringtabs = NULL;
2600
2601		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2602		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2603		t = vla_ptr(vlabuf, d, stringtab);
2604		s = vla_ptr(vlabuf, d, strings);
2605	}
2606
2607	/* For each language */
2608	data += 16;
2609	len -= 16;
2610
2611	do { /* lang_count > 0 so we can use do-while */
2612		unsigned needed = needed_count;
2613		u32 str_per_lang = str_count;
2614
2615		if (len < 3)
2616			goto error_free;
2617		t->language = get_unaligned_le16(data);
2618		t->strings  = s;
2619		++t;
2620
2621		data += 2;
2622		len -= 2;
2623
2624		/* For each string */
2625		do { /* str_count > 0 so we can use do-while */
2626			size_t length = strnlen(data, len);
2627
2628			if (length == len)
2629				goto error_free;
2630
2631			/*
2632			 * User may provide more strings then we need,
2633			 * if that's the case we simply ignore the
2634			 * rest
2635			 */
2636			if (needed) {
2637				/*
2638				 * s->id will be set while adding
2639				 * function to configuration so for
2640				 * now just leave garbage here.
2641				 */
2642				s->s = data;
2643				--needed;
2644				++s;
2645			}
2646
2647			data += length + 1;
2648			len -= length + 1;
2649		} while (--str_per_lang);
2650
2651		s->id = 0;   /* terminator */
2652		s->s = NULL;
2653		++s;
2654
2655	} while (--lang_count);
2656
2657	/* Some garbage left? */
2658	if (len)
2659		goto error_free;
2660
2661	/* Done! */
2662	ffs->stringtabs = stringtabs;
2663	ffs->raw_strings = _data;
2664
2665	return 0;
2666
2667error_free:
2668	kfree(stringtabs);
2669error:
2670	kfree(_data);
2671	return -EINVAL;
2672}
2673
2674
2675/* Events handling and management *******************************************/
2676
2677static void __ffs_event_add(struct ffs_data *ffs,
2678			    enum usb_functionfs_event_type type)
2679{
2680	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2681	int neg = 0;
2682
2683	/*
2684	 * Abort any unhandled setup
2685	 *
2686	 * We do not need to worry about some cmpxchg() changing value
2687	 * of ffs->setup_state without holding the lock because when
2688	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2689	 * the source does nothing.
2690	 */
2691	if (ffs->setup_state == FFS_SETUP_PENDING)
2692		ffs->setup_state = FFS_SETUP_CANCELLED;
2693
2694	/*
2695	 * Logic of this function guarantees that there are at most four pending
2696	 * evens on ffs->ev.types queue.  This is important because the queue
2697	 * has space for four elements only and __ffs_ep0_read_events function
2698	 * depends on that limit as well.  If more event types are added, those
2699	 * limits have to be revisited or guaranteed to still hold.
2700	 */
2701	switch (type) {
2702	case FUNCTIONFS_RESUME:
2703		rem_type2 = FUNCTIONFS_SUSPEND;
2704		fallthrough;
2705	case FUNCTIONFS_SUSPEND:
2706	case FUNCTIONFS_SETUP:
2707		rem_type1 = type;
2708		/* Discard all similar events */
2709		break;
2710
2711	case FUNCTIONFS_BIND:
2712	case FUNCTIONFS_UNBIND:
2713	case FUNCTIONFS_DISABLE:
2714	case FUNCTIONFS_ENABLE:
2715		/* Discard everything other then power management. */
2716		rem_type1 = FUNCTIONFS_SUSPEND;
2717		rem_type2 = FUNCTIONFS_RESUME;
2718		neg = 1;
2719		break;
2720
2721	default:
2722		WARN(1, "%d: unknown event, this should not happen\n", type);
2723		return;
2724	}
2725
2726	{
2727		u8 *ev  = ffs->ev.types, *out = ev;
2728		unsigned n = ffs->ev.count;
2729		for (; n; --n, ++ev)
2730			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2731				*out++ = *ev;
2732			else
2733				pr_vdebug("purging event %d\n", *ev);
2734		ffs->ev.count = out - ffs->ev.types;
2735	}
2736
2737	pr_vdebug("adding event %d\n", type);
2738	ffs->ev.types[ffs->ev.count++] = type;
2739	wake_up_locked(&ffs->ev.waitq);
2740	if (ffs->ffs_eventfd)
2741		eventfd_signal(ffs->ffs_eventfd);
2742}
2743
2744static void ffs_event_add(struct ffs_data *ffs,
2745			  enum usb_functionfs_event_type type)
2746{
2747	unsigned long flags;
2748	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2749	__ffs_event_add(ffs, type);
2750	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2751}
2752
2753/* Bind/unbind USB function hooks *******************************************/
2754
2755static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2756{
2757	int i;
2758
2759	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2760		if (ffs->eps_addrmap[i] == endpoint_address)
2761			return i;
2762	return -ENOENT;
2763}
2764
2765static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2766				    struct usb_descriptor_header *desc,
2767				    void *priv)
2768{
2769	struct usb_endpoint_descriptor *ds = (void *)desc;
2770	struct ffs_function *func = priv;
2771	struct ffs_ep *ffs_ep;
2772	unsigned ep_desc_id;
2773	int idx;
2774	static const char *speed_names[] = { "full", "high", "super" };
2775
2776	if (type != FFS_DESCRIPTOR)
2777		return 0;
2778
2779	/*
2780	 * If ss_descriptors is not NULL, we are reading super speed
2781	 * descriptors; if hs_descriptors is not NULL, we are reading high
2782	 * speed descriptors; otherwise, we are reading full speed
2783	 * descriptors.
2784	 */
2785	if (func->function.ss_descriptors) {
2786		ep_desc_id = 2;
2787		func->function.ss_descriptors[(long)valuep] = desc;
2788	} else if (func->function.hs_descriptors) {
2789		ep_desc_id = 1;
2790		func->function.hs_descriptors[(long)valuep] = desc;
2791	} else {
2792		ep_desc_id = 0;
2793		func->function.fs_descriptors[(long)valuep]    = desc;
2794	}
2795
2796	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2797		return 0;
2798
2799	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2800	if (idx < 0)
2801		return idx;
2802
2803	ffs_ep = func->eps + idx;
2804
2805	if (ffs_ep->descs[ep_desc_id]) {
2806		pr_err("two %sspeed descriptors for EP %d\n",
2807			  speed_names[ep_desc_id],
2808			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2809		return -EINVAL;
2810	}
2811	ffs_ep->descs[ep_desc_id] = ds;
2812
2813	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2814	if (ffs_ep->ep) {
2815		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2816		if (!ds->wMaxPacketSize)
2817			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2818	} else {
2819		struct usb_request *req;
2820		struct usb_ep *ep;
2821		u8 bEndpointAddress;
2822		u16 wMaxPacketSize;
2823
2824		/*
2825		 * We back up bEndpointAddress because autoconfig overwrites
2826		 * it with physical endpoint address.
2827		 */
2828		bEndpointAddress = ds->bEndpointAddress;
2829		/*
2830		 * We back up wMaxPacketSize because autoconfig treats
2831		 * endpoint descriptors as if they were full speed.
2832		 */
2833		wMaxPacketSize = ds->wMaxPacketSize;
2834		pr_vdebug("autoconfig\n");
2835		ep = usb_ep_autoconfig(func->gadget, ds);
2836		if (!ep)
2837			return -ENOTSUPP;
2838		ep->driver_data = func->eps + idx;
2839
2840		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2841		if (!req)
2842			return -ENOMEM;
2843
2844		ffs_ep->ep  = ep;
2845		ffs_ep->req = req;
2846		func->eps_revmap[ds->bEndpointAddress &
2847				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2848		/*
2849		 * If we use virtual address mapping, we restore
2850		 * original bEndpointAddress value.
2851		 */
2852		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2853			ds->bEndpointAddress = bEndpointAddress;
2854		/*
2855		 * Restore wMaxPacketSize which was potentially
2856		 * overwritten by autoconfig.
2857		 */
2858		ds->wMaxPacketSize = wMaxPacketSize;
2859	}
2860	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2861
2862	return 0;
2863}
2864
2865static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2866				   struct usb_descriptor_header *desc,
2867				   void *priv)
2868{
2869	struct ffs_function *func = priv;
2870	unsigned idx;
2871	u8 newValue;
2872
2873	switch (type) {
2874	default:
2875	case FFS_DESCRIPTOR:
2876		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2877		return 0;
2878
2879	case FFS_INTERFACE:
2880		idx = *valuep;
2881		if (func->interfaces_nums[idx] < 0) {
2882			int id = usb_interface_id(func->conf, &func->function);
2883			if (id < 0)
2884				return id;
2885			func->interfaces_nums[idx] = id;
2886		}
2887		newValue = func->interfaces_nums[idx];
2888		break;
2889
2890	case FFS_STRING:
2891		/* String' IDs are allocated when fsf_data is bound to cdev */
2892		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2893		break;
2894
2895	case FFS_ENDPOINT:
2896		/*
2897		 * USB_DT_ENDPOINT are handled in
2898		 * __ffs_func_bind_do_descs().
2899		 */
2900		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2901			return 0;
2902
2903		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2904		if (!func->eps[idx].ep)
2905			return -EINVAL;
2906
2907		{
2908			struct usb_endpoint_descriptor **descs;
2909			descs = func->eps[idx].descs;
2910			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2911		}
2912		break;
2913	}
2914
2915	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2916	*valuep = newValue;
2917	return 0;
2918}
2919
2920static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2921				      struct usb_os_desc_header *h, void *data,
2922				      unsigned len, void *priv)
2923{
2924	struct ffs_function *func = priv;
2925	u8 length = 0;
2926
2927	switch (type) {
2928	case FFS_OS_DESC_EXT_COMPAT: {
2929		struct usb_ext_compat_desc *desc = data;
2930		struct usb_os_desc_table *t;
2931
2932		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2933		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2934		memcpy(t->os_desc->ext_compat_id, &desc->IDs,
2935		       sizeof_field(struct usb_ext_compat_desc, IDs));
2936		length = sizeof(*desc);
2937	}
2938		break;
2939	case FFS_OS_DESC_EXT_PROP: {
2940		struct usb_ext_prop_desc *desc = data;
2941		struct usb_os_desc_table *t;
2942		struct usb_os_desc_ext_prop *ext_prop;
2943		char *ext_prop_name;
2944		char *ext_prop_data;
2945
2946		t = &func->function.os_desc_table[h->interface];
2947		t->if_id = func->interfaces_nums[h->interface];
2948
2949		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2950		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2951
2952		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2953		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2954		ext_prop->data_len = le32_to_cpu(*(__le32 *)
2955			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2956		length = ext_prop->name_len + ext_prop->data_len + 14;
2957
2958		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2959		func->ffs->ms_os_descs_ext_prop_name_avail +=
2960			ext_prop->name_len;
2961
2962		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2963		func->ffs->ms_os_descs_ext_prop_data_avail +=
2964			ext_prop->data_len;
2965		memcpy(ext_prop_data,
2966		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2967		       ext_prop->data_len);
2968		/* unicode data reported to the host as "WCHAR"s */
2969		switch (ext_prop->type) {
2970		case USB_EXT_PROP_UNICODE:
2971		case USB_EXT_PROP_UNICODE_ENV:
2972		case USB_EXT_PROP_UNICODE_LINK:
2973		case USB_EXT_PROP_UNICODE_MULTI:
2974			ext_prop->data_len *= 2;
2975			break;
2976		}
2977		ext_prop->data = ext_prop_data;
2978
2979		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2980		       ext_prop->name_len);
2981		/* property name reported to the host as "WCHAR"s */
2982		ext_prop->name_len *= 2;
2983		ext_prop->name = ext_prop_name;
2984
2985		t->os_desc->ext_prop_len +=
2986			ext_prop->name_len + ext_prop->data_len + 14;
2987		++t->os_desc->ext_prop_count;
2988		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2989	}
2990		break;
2991	default:
2992		pr_vdebug("unknown descriptor: %d\n", type);
2993	}
2994
2995	return length;
2996}
2997
2998static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2999						struct usb_configuration *c)
3000{
3001	struct ffs_function *func = ffs_func_from_usb(f);
3002	struct f_fs_opts *ffs_opts =
3003		container_of(f->fi, struct f_fs_opts, func_inst);
3004	struct ffs_data *ffs_data;
3005	int ret;
3006
3007	/*
3008	 * Legacy gadget triggers binding in functionfs_ready_callback,
3009	 * which already uses locking; taking the same lock here would
3010	 * cause a deadlock.
3011	 *
3012	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3013	 */
3014	if (!ffs_opts->no_configfs)
3015		ffs_dev_lock();
3016	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3017	ffs_data = ffs_opts->dev->ffs_data;
3018	if (!ffs_opts->no_configfs)
3019		ffs_dev_unlock();
3020	if (ret)
3021		return ERR_PTR(ret);
3022
3023	func->ffs = ffs_data;
3024	func->conf = c;
3025	func->gadget = c->cdev->gadget;
3026
3027	/*
3028	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3029	 * configurations are bound in sequence with list_for_each_entry,
3030	 * in each configuration its functions are bound in sequence
3031	 * with list_for_each_entry, so we assume no race condition
3032	 * with regard to ffs_opts->bound access
3033	 */
3034	if (!ffs_opts->refcnt) {
3035		ret = functionfs_bind(func->ffs, c->cdev);
3036		if (ret)
3037			return ERR_PTR(ret);
3038	}
3039	ffs_opts->refcnt++;
3040	func->function.strings = func->ffs->stringtabs;
3041
3042	return ffs_opts;
3043}
3044
3045static int _ffs_func_bind(struct usb_configuration *c,
3046			  struct usb_function *f)
3047{
3048	struct ffs_function *func = ffs_func_from_usb(f);
3049	struct ffs_data *ffs = func->ffs;
3050
3051	const int full = !!func->ffs->fs_descs_count;
3052	const int high = !!func->ffs->hs_descs_count;
3053	const int super = !!func->ffs->ss_descs_count;
3054
3055	int fs_len, hs_len, ss_len, ret, i;
3056	struct ffs_ep *eps_ptr;
3057
3058	/* Make it a single chunk, less management later on */
3059	vla_group(d);
3060	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3061	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3062		full ? ffs->fs_descs_count + 1 : 0);
3063	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3064		high ? ffs->hs_descs_count + 1 : 0);
3065	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3066		super ? ffs->ss_descs_count + 1 : 0);
3067	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3068	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3069			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3070	vla_item_with_sz(d, char[16], ext_compat,
3071			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3072	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3073			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3074	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3075			 ffs->ms_os_descs_ext_prop_count);
3076	vla_item_with_sz(d, char, ext_prop_name,
3077			 ffs->ms_os_descs_ext_prop_name_len);
3078	vla_item_with_sz(d, char, ext_prop_data,
3079			 ffs->ms_os_descs_ext_prop_data_len);
3080	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3081	char *vlabuf;
3082
3083	/* Has descriptors only for speeds gadget does not support */
3084	if (!(full | high | super))
3085		return -ENOTSUPP;
3086
3087	/* Allocate a single chunk, less management later on */
3088	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3089	if (!vlabuf)
3090		return -ENOMEM;
3091
3092	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3093	ffs->ms_os_descs_ext_prop_name_avail =
3094		vla_ptr(vlabuf, d, ext_prop_name);
3095	ffs->ms_os_descs_ext_prop_data_avail =
3096		vla_ptr(vlabuf, d, ext_prop_data);
3097
3098	/* Copy descriptors  */
3099	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3100	       ffs->raw_descs_length);
3101
3102	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3103	eps_ptr = vla_ptr(vlabuf, d, eps);
3104	for (i = 0; i < ffs->eps_count; i++)
3105		eps_ptr[i].num = -1;
3106
3107	/* Save pointers
3108	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3109	*/
3110	func->eps             = vla_ptr(vlabuf, d, eps);
3111	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3112
3113	/*
3114	 * Go through all the endpoint descriptors and allocate
3115	 * endpoints first, so that later we can rewrite the endpoint
3116	 * numbers without worrying that it may be described later on.
3117	 */
3118	if (full) {
3119		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3120		fs_len = ffs_do_descs(ffs->fs_descs_count,
3121				      vla_ptr(vlabuf, d, raw_descs),
3122				      d_raw_descs__sz,
3123				      __ffs_func_bind_do_descs, func);
3124		if (fs_len < 0) {
3125			ret = fs_len;
3126			goto error;
3127		}
3128	} else {
3129		fs_len = 0;
3130	}
3131
3132	if (high) {
3133		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3134		hs_len = ffs_do_descs(ffs->hs_descs_count,
3135				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3136				      d_raw_descs__sz - fs_len,
3137				      __ffs_func_bind_do_descs, func);
3138		if (hs_len < 0) {
3139			ret = hs_len;
3140			goto error;
3141		}
3142	} else {
3143		hs_len = 0;
3144	}
3145
3146	if (super) {
3147		func->function.ss_descriptors = func->function.ssp_descriptors =
3148			vla_ptr(vlabuf, d, ss_descs);
3149		ss_len = ffs_do_descs(ffs->ss_descs_count,
3150				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3151				d_raw_descs__sz - fs_len - hs_len,
3152				__ffs_func_bind_do_descs, func);
3153		if (ss_len < 0) {
3154			ret = ss_len;
3155			goto error;
3156		}
3157	} else {
3158		ss_len = 0;
3159	}
3160
3161	/*
3162	 * Now handle interface numbers allocation and interface and
3163	 * endpoint numbers rewriting.  We can do that in one go
3164	 * now.
3165	 */
3166	ret = ffs_do_descs(ffs->fs_descs_count +
3167			   (high ? ffs->hs_descs_count : 0) +
3168			   (super ? ffs->ss_descs_count : 0),
3169			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3170			   __ffs_func_bind_do_nums, func);
3171	if (ret < 0)
3172		goto error;
3173
3174	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3175	if (c->cdev->use_os_string) {
3176		for (i = 0; i < ffs->interfaces_count; ++i) {
3177			struct usb_os_desc *desc;
3178
3179			desc = func->function.os_desc_table[i].os_desc =
3180				vla_ptr(vlabuf, d, os_desc) +
3181				i * sizeof(struct usb_os_desc);
3182			desc->ext_compat_id =
3183				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3184			INIT_LIST_HEAD(&desc->ext_prop);
3185		}
3186		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3187				      vla_ptr(vlabuf, d, raw_descs) +
3188				      fs_len + hs_len + ss_len,
3189				      d_raw_descs__sz - fs_len - hs_len -
3190				      ss_len,
3191				      __ffs_func_bind_do_os_desc, func);
3192		if (ret < 0)
3193			goto error;
3194	}
3195	func->function.os_desc_n =
3196		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3197
3198	/* And we're done */
3199	ffs_event_add(ffs, FUNCTIONFS_BIND);
3200	return 0;
3201
3202error:
3203	/* XXX Do we need to release all claimed endpoints here? */
3204	return ret;
3205}
3206
3207static int ffs_func_bind(struct usb_configuration *c,
3208			 struct usb_function *f)
3209{
3210	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3211	struct ffs_function *func = ffs_func_from_usb(f);
3212	int ret;
3213
3214	if (IS_ERR(ffs_opts))
3215		return PTR_ERR(ffs_opts);
3216
3217	ret = _ffs_func_bind(c, f);
3218	if (ret && !--ffs_opts->refcnt)
3219		functionfs_unbind(func->ffs);
3220
3221	return ret;
3222}
3223
3224
3225/* Other USB function hooks *************************************************/
3226
3227static void ffs_reset_work(struct work_struct *work)
3228{
3229	struct ffs_data *ffs = container_of(work,
3230		struct ffs_data, reset_work);
3231	ffs_data_reset(ffs);
3232}
3233
 
 
 
 
 
 
 
 
 
3234static int ffs_func_set_alt(struct usb_function *f,
3235			    unsigned interface, unsigned alt)
3236{
3237	struct ffs_function *func = ffs_func_from_usb(f);
3238	struct ffs_data *ffs = func->ffs;
3239	int ret = 0, intf;
3240
3241	if (alt != (unsigned)-1) {
3242		intf = ffs_func_revmap_intf(func, interface);
3243		if (intf < 0)
3244			return intf;
3245	}
 
3246
3247	if (ffs->func)
3248		ffs_func_eps_disable(ffs->func);
3249
3250	if (ffs->state == FFS_DEACTIVATED) {
3251		ffs->state = FFS_CLOSING;
3252		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3253		schedule_work(&ffs->reset_work);
3254		return -ENODEV;
3255	}
3256
3257	if (ffs->state != FFS_ACTIVE)
3258		return -ENODEV;
3259
3260	if (alt == (unsigned)-1) {
3261		ffs->func = NULL;
3262		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3263		return 0;
3264	}
3265
3266	ffs->func = func;
3267	ret = ffs_func_eps_enable(func);
3268	if (ret >= 0)
3269		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
 
 
3270	return ret;
3271}
3272
3273static void ffs_func_disable(struct usb_function *f)
3274{
3275	ffs_func_set_alt(f, 0, (unsigned)-1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3276}
3277
3278static int ffs_func_setup(struct usb_function *f,
3279			  const struct usb_ctrlrequest *creq)
3280{
3281	struct ffs_function *func = ffs_func_from_usb(f);
3282	struct ffs_data *ffs = func->ffs;
3283	unsigned long flags;
3284	int ret;
3285
3286	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3287	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3288	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3289	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3290	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3291
3292	/*
3293	 * Most requests directed to interface go through here
3294	 * (notable exceptions are set/get interface) so we need to
3295	 * handle them.  All other either handled by composite or
3296	 * passed to usb_configuration->setup() (if one is set).  No
3297	 * matter, we will handle requests directed to endpoint here
3298	 * as well (as it's straightforward).  Other request recipient
3299	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3300	 * is being used.
3301	 */
3302	if (ffs->state != FFS_ACTIVE)
3303		return -ENODEV;
3304
3305	switch (creq->bRequestType & USB_RECIP_MASK) {
3306	case USB_RECIP_INTERFACE:
3307		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3308		if (ret < 0)
3309			return ret;
3310		break;
3311
3312	case USB_RECIP_ENDPOINT:
3313		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3314		if (ret < 0)
3315			return ret;
3316		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3317			ret = func->ffs->eps_addrmap[ret];
3318		break;
3319
3320	default:
3321		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3322			ret = le16_to_cpu(creq->wIndex);
3323		else
3324			return -EOPNOTSUPP;
3325	}
3326
3327	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3328	ffs->ev.setup = *creq;
3329	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3330	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3331	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3332
3333	return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3334}
3335
3336static bool ffs_func_req_match(struct usb_function *f,
3337			       const struct usb_ctrlrequest *creq,
3338			       bool config0)
3339{
3340	struct ffs_function *func = ffs_func_from_usb(f);
3341
3342	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3343		return false;
3344
3345	switch (creq->bRequestType & USB_RECIP_MASK) {
3346	case USB_RECIP_INTERFACE:
3347		return (ffs_func_revmap_intf(func,
3348					     le16_to_cpu(creq->wIndex)) >= 0);
3349	case USB_RECIP_ENDPOINT:
3350		return (ffs_func_revmap_ep(func,
3351					   le16_to_cpu(creq->wIndex)) >= 0);
3352	default:
3353		return (bool) (func->ffs->user_flags &
3354			       FUNCTIONFS_ALL_CTRL_RECIP);
3355	}
3356}
3357
3358static void ffs_func_suspend(struct usb_function *f)
3359{
3360	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3361}
3362
3363static void ffs_func_resume(struct usb_function *f)
3364{
3365	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3366}
3367
3368
3369/* Endpoint and interface numbers reverse mapping ***************************/
3370
3371static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3372{
3373	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3374	return num ? num : -EDOM;
3375}
3376
3377static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3378{
3379	short *nums = func->interfaces_nums;
3380	unsigned count = func->ffs->interfaces_count;
3381
3382	for (; count; --count, ++nums) {
3383		if (*nums >= 0 && *nums == intf)
3384			return nums - func->interfaces_nums;
3385	}
3386
3387	return -EDOM;
3388}
3389
3390
3391/* Devices management *******************************************************/
3392
3393static LIST_HEAD(ffs_devices);
3394
3395static struct ffs_dev *_ffs_do_find_dev(const char *name)
3396{
3397	struct ffs_dev *dev;
3398
3399	if (!name)
3400		return NULL;
3401
3402	list_for_each_entry(dev, &ffs_devices, entry) {
3403		if (strcmp(dev->name, name) == 0)
3404			return dev;
3405	}
3406
3407	return NULL;
3408}
3409
3410/*
3411 * ffs_lock must be taken by the caller of this function
3412 */
3413static struct ffs_dev *_ffs_get_single_dev(void)
3414{
3415	struct ffs_dev *dev;
3416
3417	if (list_is_singular(&ffs_devices)) {
3418		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3419		if (dev->single)
3420			return dev;
3421	}
3422
3423	return NULL;
3424}
3425
3426/*
3427 * ffs_lock must be taken by the caller of this function
3428 */
3429static struct ffs_dev *_ffs_find_dev(const char *name)
3430{
3431	struct ffs_dev *dev;
3432
3433	dev = _ffs_get_single_dev();
3434	if (dev)
3435		return dev;
3436
3437	return _ffs_do_find_dev(name);
3438}
3439
3440/* Configfs support *********************************************************/
3441
3442static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3443{
3444	return container_of(to_config_group(item), struct f_fs_opts,
3445			    func_inst.group);
3446}
3447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3448static void ffs_attr_release(struct config_item *item)
3449{
3450	struct f_fs_opts *opts = to_ffs_opts(item);
3451
3452	usb_put_function_instance(&opts->func_inst);
3453}
3454
3455static struct configfs_item_operations ffs_item_ops = {
3456	.release	= ffs_attr_release,
3457};
3458
3459static const struct config_item_type ffs_func_type = {
3460	.ct_item_ops	= &ffs_item_ops,
 
3461	.ct_owner	= THIS_MODULE,
3462};
3463
3464
3465/* Function registration interface ******************************************/
3466
3467static void ffs_free_inst(struct usb_function_instance *f)
3468{
3469	struct f_fs_opts *opts;
3470
3471	opts = to_f_fs_opts(f);
3472	ffs_release_dev(opts->dev);
3473	ffs_dev_lock();
3474	_ffs_free_dev(opts->dev);
3475	ffs_dev_unlock();
3476	kfree(opts);
3477}
3478
3479static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3480{
3481	if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3482		return -ENAMETOOLONG;
3483	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3484}
3485
3486static struct usb_function_instance *ffs_alloc_inst(void)
3487{
3488	struct f_fs_opts *opts;
3489	struct ffs_dev *dev;
3490
3491	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3492	if (!opts)
3493		return ERR_PTR(-ENOMEM);
3494
3495	opts->func_inst.set_inst_name = ffs_set_inst_name;
3496	opts->func_inst.free_func_inst = ffs_free_inst;
3497	ffs_dev_lock();
3498	dev = _ffs_alloc_dev();
3499	ffs_dev_unlock();
3500	if (IS_ERR(dev)) {
3501		kfree(opts);
3502		return ERR_CAST(dev);
3503	}
3504	opts->dev = dev;
3505	dev->opts = opts;
3506
3507	config_group_init_type_name(&opts->func_inst.group, "",
3508				    &ffs_func_type);
3509	return &opts->func_inst;
3510}
3511
3512static void ffs_free(struct usb_function *f)
3513{
3514	kfree(ffs_func_from_usb(f));
3515}
3516
3517static void ffs_func_unbind(struct usb_configuration *c,
3518			    struct usb_function *f)
3519{
3520	struct ffs_function *func = ffs_func_from_usb(f);
3521	struct ffs_data *ffs = func->ffs;
3522	struct f_fs_opts *opts =
3523		container_of(f->fi, struct f_fs_opts, func_inst);
3524	struct ffs_ep *ep = func->eps;
3525	unsigned count = ffs->eps_count;
3526	unsigned long flags;
3527
3528	if (ffs->func == func) {
3529		ffs_func_eps_disable(func);
3530		ffs->func = NULL;
3531	}
3532
3533	/* Drain any pending AIO completions */
3534	drain_workqueue(ffs->io_completion_wq);
3535
3536	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3537	if (!--opts->refcnt)
3538		functionfs_unbind(ffs);
3539
3540	/* cleanup after autoconfig */
3541	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3542	while (count--) {
3543		if (ep->ep && ep->req)
3544			usb_ep_free_request(ep->ep, ep->req);
3545		ep->req = NULL;
3546		++ep;
3547	}
3548	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3549	kfree(func->eps);
3550	func->eps = NULL;
3551	/*
3552	 * eps, descriptors and interfaces_nums are allocated in the
3553	 * same chunk so only one free is required.
3554	 */
3555	func->function.fs_descriptors = NULL;
3556	func->function.hs_descriptors = NULL;
3557	func->function.ss_descriptors = NULL;
3558	func->function.ssp_descriptors = NULL;
3559	func->interfaces_nums = NULL;
3560
3561}
3562
3563static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3564{
3565	struct ffs_function *func;
3566
3567	func = kzalloc(sizeof(*func), GFP_KERNEL);
3568	if (!func)
3569		return ERR_PTR(-ENOMEM);
3570
3571	func->function.name    = "Function FS Gadget";
3572
3573	func->function.bind    = ffs_func_bind;
3574	func->function.unbind  = ffs_func_unbind;
3575	func->function.set_alt = ffs_func_set_alt;
 
3576	func->function.disable = ffs_func_disable;
3577	func->function.setup   = ffs_func_setup;
3578	func->function.req_match = ffs_func_req_match;
3579	func->function.suspend = ffs_func_suspend;
3580	func->function.resume  = ffs_func_resume;
3581	func->function.free_func = ffs_free;
3582
3583	return &func->function;
3584}
3585
3586/*
3587 * ffs_lock must be taken by the caller of this function
3588 */
3589static struct ffs_dev *_ffs_alloc_dev(void)
3590{
3591	struct ffs_dev *dev;
3592	int ret;
3593
3594	if (_ffs_get_single_dev())
3595			return ERR_PTR(-EBUSY);
3596
3597	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3598	if (!dev)
3599		return ERR_PTR(-ENOMEM);
3600
3601	if (list_empty(&ffs_devices)) {
3602		ret = functionfs_init();
3603		if (ret) {
3604			kfree(dev);
3605			return ERR_PTR(ret);
3606		}
3607	}
3608
3609	list_add(&dev->entry, &ffs_devices);
3610
3611	return dev;
3612}
3613
3614int ffs_name_dev(struct ffs_dev *dev, const char *name)
3615{
3616	struct ffs_dev *existing;
3617	int ret = 0;
3618
3619	ffs_dev_lock();
3620
3621	existing = _ffs_do_find_dev(name);
3622	if (!existing)
3623		strscpy(dev->name, name, ARRAY_SIZE(dev->name));
3624	else if (existing != dev)
3625		ret = -EBUSY;
3626
3627	ffs_dev_unlock();
3628
3629	return ret;
3630}
3631EXPORT_SYMBOL_GPL(ffs_name_dev);
3632
3633int ffs_single_dev(struct ffs_dev *dev)
3634{
3635	int ret;
3636
3637	ret = 0;
3638	ffs_dev_lock();
3639
3640	if (!list_is_singular(&ffs_devices))
3641		ret = -EBUSY;
3642	else
3643		dev->single = true;
3644
3645	ffs_dev_unlock();
3646	return ret;
3647}
3648EXPORT_SYMBOL_GPL(ffs_single_dev);
3649
3650/*
3651 * ffs_lock must be taken by the caller of this function
3652 */
3653static void _ffs_free_dev(struct ffs_dev *dev)
3654{
3655	list_del(&dev->entry);
3656
3657	kfree(dev);
3658	if (list_empty(&ffs_devices))
3659		functionfs_cleanup();
3660}
3661
3662static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
3663{
3664	int ret = 0;
3665	struct ffs_dev *ffs_dev;
3666
3667	ffs_dev_lock();
3668
3669	ffs_dev = _ffs_find_dev(dev_name);
3670	if (!ffs_dev) {
3671		ret = -ENOENT;
3672	} else if (ffs_dev->mounted) {
3673		ret = -EBUSY;
3674	} else if (ffs_dev->ffs_acquire_dev_callback &&
3675		   ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
3676		ret = -ENOENT;
3677	} else {
3678		ffs_dev->mounted = true;
3679		ffs_dev->ffs_data = ffs_data;
3680		ffs_data->private_data = ffs_dev;
3681	}
3682
3683	ffs_dev_unlock();
3684	return ret;
3685}
3686
3687static void ffs_release_dev(struct ffs_dev *ffs_dev)
3688{
3689	ffs_dev_lock();
3690
3691	if (ffs_dev && ffs_dev->mounted) {
3692		ffs_dev->mounted = false;
3693		if (ffs_dev->ffs_data) {
3694			ffs_dev->ffs_data->private_data = NULL;
3695			ffs_dev->ffs_data = NULL;
3696		}
3697
3698		if (ffs_dev->ffs_release_dev_callback)
3699			ffs_dev->ffs_release_dev_callback(ffs_dev);
3700	}
3701
3702	ffs_dev_unlock();
3703}
3704
3705static int ffs_ready(struct ffs_data *ffs)
3706{
3707	struct ffs_dev *ffs_obj;
3708	int ret = 0;
3709
3710	ffs_dev_lock();
3711
3712	ffs_obj = ffs->private_data;
3713	if (!ffs_obj) {
3714		ret = -EINVAL;
3715		goto done;
3716	}
3717	if (WARN_ON(ffs_obj->desc_ready)) {
3718		ret = -EBUSY;
3719		goto done;
3720	}
3721
3722	ffs_obj->desc_ready = true;
3723
3724	if (ffs_obj->ffs_ready_callback) {
3725		ret = ffs_obj->ffs_ready_callback(ffs);
3726		if (ret)
3727			goto done;
3728	}
3729
3730	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3731done:
3732	ffs_dev_unlock();
3733	return ret;
3734}
3735
3736static void ffs_closed(struct ffs_data *ffs)
3737{
3738	struct ffs_dev *ffs_obj;
3739	struct f_fs_opts *opts;
3740	struct config_item *ci;
3741
3742	ffs_dev_lock();
3743
3744	ffs_obj = ffs->private_data;
3745	if (!ffs_obj)
3746		goto done;
3747
3748	ffs_obj->desc_ready = false;
3749
3750	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3751	    ffs_obj->ffs_closed_callback)
3752		ffs_obj->ffs_closed_callback(ffs);
3753
3754	if (ffs_obj->opts)
3755		opts = ffs_obj->opts;
3756	else
3757		goto done;
3758
3759	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3760	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3761		goto done;
3762
3763	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3764	ffs_dev_unlock();
3765
3766	if (test_bit(FFS_FL_BOUND, &ffs->flags))
3767		unregister_gadget_item(ci);
3768	return;
3769done:
3770	ffs_dev_unlock();
3771}
3772
3773/* Misc helper functions ****************************************************/
3774
3775static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3776{
3777	return nonblock
3778		? mutex_trylock(mutex) ? 0 : -EAGAIN
3779		: mutex_lock_interruptible(mutex);
3780}
3781
3782static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3783{
3784	char *data;
3785
3786	if (!len)
3787		return NULL;
3788
3789	data = memdup_user(buf, len);
3790	if (IS_ERR(data))
3791		return data;
3792
3793	pr_vdebug("Buffer from user space:\n");
3794	ffs_dump_mem("", data, len);
3795
3796	return data;
3797}
3798
3799DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
 
3800MODULE_LICENSE("GPL");
3801MODULE_AUTHOR("Michal Nazarewicz");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * f_fs.c -- user mode file system API for USB composite function controllers
   4 *
   5 * Copyright (C) 2010 Samsung Electronics
   6 * Author: Michal Nazarewicz <mina86@mina86.com>
   7 *
   8 * Based on inode.c (GadgetFS) which was:
   9 * Copyright (C) 2003-2004 David Brownell
  10 * Copyright (C) 2003 Agilent Technologies
  11 */
  12
  13
  14/* #define DEBUG */
  15/* #define VERBOSE_DEBUG */
  16
  17#include <linux/blkdev.h>
  18#include <linux/dma-buf.h>
  19#include <linux/dma-fence.h>
  20#include <linux/dma-resv.h>
  21#include <linux/pagemap.h>
  22#include <linux/export.h>
  23#include <linux/fs_parser.h>
  24#include <linux/hid.h>
  25#include <linux/mm.h>
  26#include <linux/module.h>
  27#include <linux/scatterlist.h>
  28#include <linux/sched/signal.h>
  29#include <linux/uio.h>
  30#include <linux/vmalloc.h>
  31#include <linux/unaligned.h>
  32
  33#include <linux/usb/ccid.h>
  34#include <linux/usb/composite.h>
  35#include <linux/usb/functionfs.h>
  36#include <linux/usb/func_utils.h>
  37
  38#include <linux/aio.h>
  39#include <linux/kthread.h>
  40#include <linux/poll.h>
  41#include <linux/eventfd.h>
  42
  43#include "u_fs.h"
 
  44#include "u_os_desc.h"
  45#include "configfs.h"
  46
  47#define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
  48#define MAX_ALT_SETTINGS	2		  /* Allow up to 2 alt settings to be set. */
  49
  50#define DMABUF_ENQUEUE_TIMEOUT_MS 5000
  51
  52MODULE_IMPORT_NS("DMA_BUF");
  53
  54/* Reference counter handling */
  55static void ffs_data_get(struct ffs_data *ffs);
  56static void ffs_data_put(struct ffs_data *ffs);
  57/* Creates new ffs_data object. */
  58static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
  59	__attribute__((malloc));
  60
  61/* Opened counter handling. */
  62static void ffs_data_opened(struct ffs_data *ffs);
  63static void ffs_data_closed(struct ffs_data *ffs);
  64
  65/* Called with ffs->mutex held; take over ownership of data. */
  66static int __must_check
  67__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
  68static int __must_check
  69__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
  70
  71
  72/* The function structure ***************************************************/
  73
  74struct ffs_ep;
  75
  76struct ffs_function {
  77	struct usb_configuration	*conf;
  78	struct usb_gadget		*gadget;
  79	struct ffs_data			*ffs;
  80
  81	struct ffs_ep			*eps;
  82	u8				eps_revmap[16];
  83	short				*interfaces_nums;
  84
  85	struct usb_function		function;
  86	int				cur_alt[MAX_CONFIG_INTERFACES];
  87};
  88
  89
  90static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
  91{
  92	return container_of(f, struct ffs_function, function);
  93}
  94
  95
  96static inline enum ffs_setup_state
  97ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
  98{
  99	return (enum ffs_setup_state)
 100		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
 101}
 102
 103
 104static void ffs_func_eps_disable(struct ffs_function *func);
 105static int __must_check ffs_func_eps_enable(struct ffs_function *func);
 106
 107static int ffs_func_bind(struct usb_configuration *,
 108			 struct usb_function *);
 109static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
 110static int ffs_func_get_alt(struct usb_function *f, unsigned int intf);
 111static void ffs_func_disable(struct usb_function *);
 112static int ffs_func_setup(struct usb_function *,
 113			  const struct usb_ctrlrequest *);
 114static bool ffs_func_req_match(struct usb_function *,
 115			       const struct usb_ctrlrequest *,
 116			       bool config0);
 117static void ffs_func_suspend(struct usb_function *);
 118static void ffs_func_resume(struct usb_function *);
 119
 120
 121static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
 122static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
 123
 124
 125/* The endpoints structures *************************************************/
 126
 127struct ffs_ep {
 128	struct usb_ep			*ep;	/* P: ffs->eps_lock */
 129	struct usb_request		*req;	/* P: epfile->mutex */
 130
 131	/* [0]: full speed, [1]: high speed, [2]: super speed */
 132	struct usb_endpoint_descriptor	*descs[3];
 133
 134	u8				num;
 135};
 136
 137struct ffs_dmabuf_priv {
 138	struct list_head entry;
 139	struct kref ref;
 140	struct ffs_data *ffs;
 141	struct dma_buf_attachment *attach;
 142	struct sg_table *sgt;
 143	enum dma_data_direction dir;
 144	spinlock_t lock;
 145	u64 context;
 146	struct usb_request *req;	/* P: ffs->eps_lock */
 147	struct usb_ep *ep;		/* P: ffs->eps_lock */
 148};
 149
 150struct ffs_dma_fence {
 151	struct dma_fence base;
 152	struct ffs_dmabuf_priv *priv;
 153	struct work_struct work;
 154};
 155
 156struct ffs_epfile {
 157	/* Protects ep->ep and ep->req. */
 158	struct mutex			mutex;
 159
 160	struct ffs_data			*ffs;
 161	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
 162
 163	struct dentry			*dentry;
 164
 165	/*
 166	 * Buffer for holding data from partial reads which may happen since
 167	 * we’re rounding user read requests to a multiple of a max packet size.
 168	 *
 169	 * The pointer is initialised with NULL value and may be set by
 170	 * __ffs_epfile_read_data function to point to a temporary buffer.
 171	 *
 172	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
 173	 * data from said buffer and eventually free it.  Importantly, while the
 174	 * function is using the buffer, it sets the pointer to NULL.  This is
 175	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
 176	 * can never run concurrently (they are synchronised by epfile->mutex)
 177	 * so the latter will not assign a new value to the pointer.
 178	 *
 179	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
 180	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
 181	 * value is crux of the synchronisation between ffs_func_eps_disable and
 182	 * __ffs_epfile_read_data.
 183	 *
 184	 * Once __ffs_epfile_read_data is about to finish it will try to set the
 185	 * pointer back to its old value (as described above), but seeing as the
 186	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
 187	 * the buffer.
 188	 *
 189	 * == State transitions ==
 190	 *
 191	 * • ptr == NULL:  (initial state)
 192	 *   â—¦ __ffs_epfile_read_buffer_free: go to ptr == DROP
 193	 *   â—¦ __ffs_epfile_read_buffered:    nop
 194	 *   â—¦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
 195	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 196	 * • ptr == DROP:
 197	 *   â—¦ __ffs_epfile_read_buffer_free: nop
 198	 *   â—¦ __ffs_epfile_read_buffered:    go to ptr == NULL
 199	 *   â—¦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
 200	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 201	 * • ptr == buf:
 202	 *   â—¦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
 203	 *   â—¦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
 204	 *   â—¦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
 205	 *                                    is always called first
 206	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
 207	 * • ptr == NULL and reading:
 208	 *   â—¦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
 209	 *   â—¦ __ffs_epfile_read_buffered:    n/a, mutex is held
 210	 *   â—¦ __ffs_epfile_read_data:        n/a, mutex is held
 211	 *   ◦ reading finishes and …
 212	 *     … all data read:               free buf, go to ptr == NULL
 213	 *     … otherwise:                   go to ptr == buf and reading
 214	 * • ptr == DROP and reading:
 215	 *   â—¦ __ffs_epfile_read_buffer_free: nop
 216	 *   â—¦ __ffs_epfile_read_buffered:    n/a, mutex is held
 217	 *   â—¦ __ffs_epfile_read_data:        n/a, mutex is held
 218	 *   â—¦ reading finishes:              free buf, go to ptr == DROP
 219	 */
 220	struct ffs_buffer		*read_buffer;
 221#define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
 222
 223	char				name[5];
 224
 225	unsigned char			in;	/* P: ffs->eps_lock */
 226	unsigned char			isoc;	/* P: ffs->eps_lock */
 227
 228	unsigned char			_pad;
 229
 230	/* Protects dmabufs */
 231	struct mutex			dmabufs_mutex;
 232	struct list_head		dmabufs; /* P: dmabufs_mutex */
 233	atomic_t			seqno;
 234};
 235
 236struct ffs_buffer {
 237	size_t length;
 238	char *data;
 239	char storage[] __counted_by(length);
 240};
 241
 242/*  ffs_io_data structure ***************************************************/
 243
 244struct ffs_io_data {
 245	bool aio;
 246	bool read;
 247
 248	struct kiocb *kiocb;
 249	struct iov_iter data;
 250	const void *to_free;
 251	char *buf;
 252
 253	struct mm_struct *mm;
 254	struct work_struct work;
 255
 256	struct usb_ep *ep;
 257	struct usb_request *req;
 258	struct sg_table sgt;
 259	bool use_sg;
 260
 261	struct ffs_data *ffs;
 262
 263	int status;
 264	struct completion done;
 265};
 266
 267struct ffs_desc_helper {
 268	struct ffs_data *ffs;
 269	unsigned interfaces_count;
 270	unsigned eps_count;
 271};
 272
 273static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
 274static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
 275
 276static struct dentry *
 277ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
 278		   const struct file_operations *fops);
 279
 280/* Devices management *******************************************************/
 281
 282DEFINE_MUTEX(ffs_lock);
 283EXPORT_SYMBOL_GPL(ffs_lock);
 284
 285static struct ffs_dev *_ffs_find_dev(const char *name);
 286static struct ffs_dev *_ffs_alloc_dev(void);
 287static void _ffs_free_dev(struct ffs_dev *dev);
 288static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
 289static void ffs_release_dev(struct ffs_dev *ffs_dev);
 290static int ffs_ready(struct ffs_data *ffs);
 291static void ffs_closed(struct ffs_data *ffs);
 292
 293/* Misc helper functions ****************************************************/
 294
 295static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
 296	__attribute__((warn_unused_result, nonnull));
 297static char *ffs_prepare_buffer(const char __user *buf, size_t len)
 298	__attribute__((warn_unused_result, nonnull));
 299
 300
 301/* Control file aka ep0 *****************************************************/
 302
 303static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
 304{
 305	struct ffs_data *ffs = req->context;
 306
 307	complete(&ffs->ep0req_completion);
 308}
 309
 310static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
 311	__releases(&ffs->ev.waitq.lock)
 312{
 313	struct usb_request *req = ffs->ep0req;
 314	int ret;
 315
 316	if (!req) {
 317		spin_unlock_irq(&ffs->ev.waitq.lock);
 318		return -EINVAL;
 319	}
 320
 321	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
 322
 323	spin_unlock_irq(&ffs->ev.waitq.lock);
 324
 325	req->buf      = data;
 326	req->length   = len;
 327
 328	/*
 329	 * UDC layer requires to provide a buffer even for ZLP, but should
 330	 * not use it at all. Let's provide some poisoned pointer to catch
 331	 * possible bug in the driver.
 332	 */
 333	if (req->buf == NULL)
 334		req->buf = (void *)0xDEADBABE;
 335
 336	reinit_completion(&ffs->ep0req_completion);
 337
 338	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
 339	if (ret < 0)
 340		return ret;
 341
 342	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
 343	if (ret) {
 344		usb_ep_dequeue(ffs->gadget->ep0, req);
 345		return -EINTR;
 346	}
 347
 348	ffs->setup_state = FFS_NO_SETUP;
 349	return req->status ? req->status : req->actual;
 350}
 351
 352static int __ffs_ep0_stall(struct ffs_data *ffs)
 353{
 354	if (ffs->ev.can_stall) {
 355		pr_vdebug("ep0 stall\n");
 356		usb_ep_set_halt(ffs->gadget->ep0);
 357		ffs->setup_state = FFS_NO_SETUP;
 358		return -EL2HLT;
 359	} else {
 360		pr_debug("bogus ep0 stall!\n");
 361		return -ESRCH;
 362	}
 363}
 364
 365static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
 366			     size_t len, loff_t *ptr)
 367{
 368	struct ffs_data *ffs = file->private_data;
 369	ssize_t ret;
 370	char *data;
 371
 372	/* Fast check if setup was canceled */
 373	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 374		return -EIDRM;
 375
 376	/* Acquire mutex */
 377	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 378	if (ret < 0)
 379		return ret;
 380
 381	/* Check state */
 382	switch (ffs->state) {
 383	case FFS_READ_DESCRIPTORS:
 384	case FFS_READ_STRINGS:
 385		/* Copy data */
 386		if (len < 16) {
 387			ret = -EINVAL;
 388			break;
 389		}
 390
 391		data = ffs_prepare_buffer(buf, len);
 392		if (IS_ERR(data)) {
 393			ret = PTR_ERR(data);
 394			break;
 395		}
 396
 397		/* Handle data */
 398		if (ffs->state == FFS_READ_DESCRIPTORS) {
 399			pr_info("read descriptors\n");
 400			ret = __ffs_data_got_descs(ffs, data, len);
 401			if (ret < 0)
 402				break;
 403
 404			ffs->state = FFS_READ_STRINGS;
 405			ret = len;
 406		} else {
 407			pr_info("read strings\n");
 408			ret = __ffs_data_got_strings(ffs, data, len);
 409			if (ret < 0)
 410				break;
 411
 412			ret = ffs_epfiles_create(ffs);
 413			if (ret) {
 414				ffs->state = FFS_CLOSING;
 415				break;
 416			}
 417
 418			ffs->state = FFS_ACTIVE;
 419			mutex_unlock(&ffs->mutex);
 420
 421			ret = ffs_ready(ffs);
 422			if (ret < 0) {
 423				ffs->state = FFS_CLOSING;
 424				return ret;
 425			}
 426
 427			return len;
 428		}
 429		break;
 430
 431	case FFS_ACTIVE:
 432		data = NULL;
 433		/*
 434		 * We're called from user space, we can use _irq
 435		 * rather then _irqsave
 436		 */
 437		spin_lock_irq(&ffs->ev.waitq.lock);
 438		switch (ffs_setup_state_clear_cancelled(ffs)) {
 439		case FFS_SETUP_CANCELLED:
 440			ret = -EIDRM;
 441			goto done_spin;
 442
 443		case FFS_NO_SETUP:
 444			ret = -ESRCH;
 445			goto done_spin;
 446
 447		case FFS_SETUP_PENDING:
 448			break;
 449		}
 450
 451		/* FFS_SETUP_PENDING */
 452		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
 453			spin_unlock_irq(&ffs->ev.waitq.lock);
 454			ret = __ffs_ep0_stall(ffs);
 455			break;
 456		}
 457
 458		/* FFS_SETUP_PENDING and not stall */
 459		len = min_t(size_t, len, le16_to_cpu(ffs->ev.setup.wLength));
 460
 461		spin_unlock_irq(&ffs->ev.waitq.lock);
 462
 463		data = ffs_prepare_buffer(buf, len);
 464		if (IS_ERR(data)) {
 465			ret = PTR_ERR(data);
 466			break;
 467		}
 468
 469		spin_lock_irq(&ffs->ev.waitq.lock);
 470
 471		/*
 472		 * We are guaranteed to be still in FFS_ACTIVE state
 473		 * but the state of setup could have changed from
 474		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
 475		 * to check for that.  If that happened we copied data
 476		 * from user space in vain but it's unlikely.
 477		 *
 478		 * For sure we are not in FFS_NO_SETUP since this is
 479		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
 480		 * transition can be performed and it's protected by
 481		 * mutex.
 482		 */
 483		if (ffs_setup_state_clear_cancelled(ffs) ==
 484		    FFS_SETUP_CANCELLED) {
 485			ret = -EIDRM;
 486done_spin:
 487			spin_unlock_irq(&ffs->ev.waitq.lock);
 488		} else {
 489			/* unlocks spinlock */
 490			ret = __ffs_ep0_queue_wait(ffs, data, len);
 491		}
 492		kfree(data);
 493		break;
 494
 495	default:
 496		ret = -EBADFD;
 497		break;
 498	}
 499
 500	mutex_unlock(&ffs->mutex);
 501	return ret;
 502}
 503
 504/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
 505static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
 506				     size_t n)
 507	__releases(&ffs->ev.waitq.lock)
 508{
 509	/*
 510	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
 511	 * size of ffs->ev.types array (which is four) so that's how much space
 512	 * we reserve.
 513	 */
 514	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
 515	const size_t size = n * sizeof *events;
 516	unsigned i = 0;
 517
 518	memset(events, 0, size);
 519
 520	do {
 521		events[i].type = ffs->ev.types[i];
 522		if (events[i].type == FUNCTIONFS_SETUP) {
 523			events[i].u.setup = ffs->ev.setup;
 524			ffs->setup_state = FFS_SETUP_PENDING;
 525		}
 526	} while (++i < n);
 527
 528	ffs->ev.count -= n;
 529	if (ffs->ev.count)
 530		memmove(ffs->ev.types, ffs->ev.types + n,
 531			ffs->ev.count * sizeof *ffs->ev.types);
 532
 533	spin_unlock_irq(&ffs->ev.waitq.lock);
 534	mutex_unlock(&ffs->mutex);
 535
 536	return copy_to_user(buf, events, size) ? -EFAULT : size;
 537}
 538
 539static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
 540			    size_t len, loff_t *ptr)
 541{
 542	struct ffs_data *ffs = file->private_data;
 543	char *data = NULL;
 544	size_t n;
 545	int ret;
 546
 547	/* Fast check if setup was canceled */
 548	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 549		return -EIDRM;
 550
 551	/* Acquire mutex */
 552	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 553	if (ret < 0)
 554		return ret;
 555
 556	/* Check state */
 557	if (ffs->state != FFS_ACTIVE) {
 558		ret = -EBADFD;
 559		goto done_mutex;
 560	}
 561
 562	/*
 563	 * We're called from user space, we can use _irq rather then
 564	 * _irqsave
 565	 */
 566	spin_lock_irq(&ffs->ev.waitq.lock);
 567
 568	switch (ffs_setup_state_clear_cancelled(ffs)) {
 569	case FFS_SETUP_CANCELLED:
 570		ret = -EIDRM;
 571		break;
 572
 573	case FFS_NO_SETUP:
 574		n = len / sizeof(struct usb_functionfs_event);
 575		if (!n) {
 576			ret = -EINVAL;
 577			break;
 578		}
 579
 580		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
 581			ret = -EAGAIN;
 582			break;
 583		}
 584
 585		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
 586							ffs->ev.count)) {
 587			ret = -EINTR;
 588			break;
 589		}
 590
 591		/* unlocks spinlock */
 592		return __ffs_ep0_read_events(ffs, buf,
 593					     min_t(size_t, n, ffs->ev.count));
 594
 595	case FFS_SETUP_PENDING:
 596		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
 597			spin_unlock_irq(&ffs->ev.waitq.lock);
 598			ret = __ffs_ep0_stall(ffs);
 599			goto done_mutex;
 600		}
 601
 602		len = min_t(size_t, len, le16_to_cpu(ffs->ev.setup.wLength));
 603
 604		spin_unlock_irq(&ffs->ev.waitq.lock);
 605
 606		if (len) {
 607			data = kmalloc(len, GFP_KERNEL);
 608			if (!data) {
 609				ret = -ENOMEM;
 610				goto done_mutex;
 611			}
 612		}
 613
 614		spin_lock_irq(&ffs->ev.waitq.lock);
 615
 616		/* See ffs_ep0_write() */
 617		if (ffs_setup_state_clear_cancelled(ffs) ==
 618		    FFS_SETUP_CANCELLED) {
 619			ret = -EIDRM;
 620			break;
 621		}
 622
 623		/* unlocks spinlock */
 624		ret = __ffs_ep0_queue_wait(ffs, data, len);
 625		if ((ret > 0) && (copy_to_user(buf, data, len)))
 626			ret = -EFAULT;
 627		goto done_mutex;
 628
 629	default:
 630		ret = -EBADFD;
 631		break;
 632	}
 633
 634	spin_unlock_irq(&ffs->ev.waitq.lock);
 635done_mutex:
 636	mutex_unlock(&ffs->mutex);
 637	kfree(data);
 638	return ret;
 639}
 640
 641static int ffs_ep0_open(struct inode *inode, struct file *file)
 642{
 643	struct ffs_data *ffs = inode->i_private;
 644
 645	if (ffs->state == FFS_CLOSING)
 646		return -EBUSY;
 647
 648	file->private_data = ffs;
 649	ffs_data_opened(ffs);
 650
 651	return stream_open(inode, file);
 652}
 653
 654static int ffs_ep0_release(struct inode *inode, struct file *file)
 655{
 656	struct ffs_data *ffs = file->private_data;
 657
 658	ffs_data_closed(ffs);
 659
 660	return 0;
 661}
 662
 663static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
 664{
 665	struct ffs_data *ffs = file->private_data;
 666	struct usb_gadget *gadget = ffs->gadget;
 667	long ret;
 668
 669	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
 670		struct ffs_function *func = ffs->func;
 671		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
 672	} else if (gadget && gadget->ops->ioctl) {
 673		ret = gadget->ops->ioctl(gadget, code, value);
 674	} else {
 675		ret = -ENOTTY;
 676	}
 677
 678	return ret;
 679}
 680
 681static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
 682{
 683	struct ffs_data *ffs = file->private_data;
 684	__poll_t mask = EPOLLWRNORM;
 685	int ret;
 686
 687	poll_wait(file, &ffs->ev.waitq, wait);
 688
 689	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 690	if (ret < 0)
 691		return mask;
 692
 693	switch (ffs->state) {
 694	case FFS_READ_DESCRIPTORS:
 695	case FFS_READ_STRINGS:
 696		mask |= EPOLLOUT;
 697		break;
 698
 699	case FFS_ACTIVE:
 700		switch (ffs->setup_state) {
 701		case FFS_NO_SETUP:
 702			if (ffs->ev.count)
 703				mask |= EPOLLIN;
 704			break;
 705
 706		case FFS_SETUP_PENDING:
 707		case FFS_SETUP_CANCELLED:
 708			mask |= (EPOLLIN | EPOLLOUT);
 709			break;
 710		}
 711		break;
 712
 713	case FFS_CLOSING:
 714		break;
 715	case FFS_DEACTIVATED:
 716		break;
 717	}
 718
 719	mutex_unlock(&ffs->mutex);
 720
 721	return mask;
 722}
 723
 724static const struct file_operations ffs_ep0_operations = {
 
 725
 726	.open =		ffs_ep0_open,
 727	.write =	ffs_ep0_write,
 728	.read =		ffs_ep0_read,
 729	.release =	ffs_ep0_release,
 730	.unlocked_ioctl =	ffs_ep0_ioctl,
 731	.poll =		ffs_ep0_poll,
 732};
 733
 734
 735/* "Normal" endpoints operations ********************************************/
 736
 737static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
 738{
 739	struct ffs_io_data *io_data = req->context;
 740
 741	if (req->status)
 742		io_data->status = req->status;
 743	else
 744		io_data->status = req->actual;
 745
 746	complete(&io_data->done);
 747}
 748
 749static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
 750{
 751	ssize_t ret = copy_to_iter(data, data_len, iter);
 752	if (ret == data_len)
 753		return ret;
 754
 755	if (iov_iter_count(iter))
 756		return -EFAULT;
 757
 758	/*
 759	 * Dear user space developer!
 760	 *
 761	 * TL;DR: To stop getting below error message in your kernel log, change
 762	 * user space code using functionfs to align read buffers to a max
 763	 * packet size.
 764	 *
 765	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
 766	 * packet size.  When unaligned buffer is passed to functionfs, it
 767	 * internally uses a larger, aligned buffer so that such UDCs are happy.
 768	 *
 769	 * Unfortunately, this means that host may send more data than was
 770	 * requested in read(2) system call.  f_fs doesn’t know what to do with
 771	 * that excess data so it simply drops it.
 772	 *
 773	 * Was the buffer aligned in the first place, no such problem would
 774	 * happen.
 775	 *
 776	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
 777	 * by splitting a request into multiple parts.  This splitting may still
 778	 * be a problem though so it’s likely best to align the buffer
 779	 * regardless of it being AIO or not..
 780	 *
 781	 * This only affects OUT endpoints, i.e. reading data with a read(2),
 782	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
 783	 * affected.
 784	 */
 785	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
 786	       "Align read buffer size to max packet size to avoid the problem.\n",
 787	       data_len, ret);
 788
 789	return ret;
 790}
 791
 792/*
 793 * allocate a virtually contiguous buffer and create a scatterlist describing it
 794 * @sg_table	- pointer to a place to be filled with sg_table contents
 795 * @size	- required buffer size
 796 */
 797static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
 798{
 799	struct page **pages;
 800	void *vaddr, *ptr;
 801	unsigned int n_pages;
 802	int i;
 803
 804	vaddr = vmalloc(sz);
 805	if (!vaddr)
 806		return NULL;
 807
 808	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
 809	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
 810	if (!pages) {
 811		vfree(vaddr);
 812
 813		return NULL;
 814	}
 815	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
 816		pages[i] = vmalloc_to_page(ptr);
 817
 818	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
 819		kvfree(pages);
 820		vfree(vaddr);
 821
 822		return NULL;
 823	}
 824	kvfree(pages);
 825
 826	return vaddr;
 827}
 828
 829static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
 830	size_t data_len)
 831{
 832	if (io_data->use_sg)
 833		return ffs_build_sg_list(&io_data->sgt, data_len);
 834
 835	return kmalloc(data_len, GFP_KERNEL);
 836}
 837
 838static inline void ffs_free_buffer(struct ffs_io_data *io_data)
 839{
 840	if (!io_data->buf)
 841		return;
 842
 843	if (io_data->use_sg) {
 844		sg_free_table(&io_data->sgt);
 845		vfree(io_data->buf);
 846	} else {
 847		kfree(io_data->buf);
 848	}
 849}
 850
 851static void ffs_user_copy_worker(struct work_struct *work)
 852{
 853	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
 854						   work);
 855	int ret = io_data->status;
 856	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
 857	unsigned long flags;
 858
 859	if (io_data->read && ret > 0) {
 860		kthread_use_mm(io_data->mm);
 861		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
 862		kthread_unuse_mm(io_data->mm);
 863	}
 864
 865	io_data->kiocb->ki_complete(io_data->kiocb, ret);
 866
 867	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
 868		eventfd_signal(io_data->ffs->ffs_eventfd);
 869
 870	spin_lock_irqsave(&io_data->ffs->eps_lock, flags);
 871	usb_ep_free_request(io_data->ep, io_data->req);
 872	io_data->req = NULL;
 873	spin_unlock_irqrestore(&io_data->ffs->eps_lock, flags);
 874
 875	if (io_data->read)
 876		kfree(io_data->to_free);
 877	ffs_free_buffer(io_data);
 878	kfree(io_data);
 879}
 880
 881static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
 882					 struct usb_request *req)
 883{
 884	struct ffs_io_data *io_data = req->context;
 885	struct ffs_data *ffs = io_data->ffs;
 886
 887	io_data->status = req->status ? req->status : req->actual;
 
 888
 889	INIT_WORK(&io_data->work, ffs_user_copy_worker);
 890	queue_work(ffs->io_completion_wq, &io_data->work);
 891}
 892
 893static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
 894{
 895	/*
 896	 * See comment in struct ffs_epfile for full read_buffer pointer
 897	 * synchronisation story.
 898	 */
 899	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
 900	if (buf && buf != READ_BUFFER_DROP)
 901		kfree(buf);
 902}
 903
 904/* Assumes epfile->mutex is held. */
 905static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
 906					  struct iov_iter *iter)
 907{
 908	/*
 909	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
 910	 * the buffer while we are using it.  See comment in struct ffs_epfile
 911	 * for full read_buffer pointer synchronisation story.
 912	 */
 913	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
 914	ssize_t ret;
 915	if (!buf || buf == READ_BUFFER_DROP)
 916		return 0;
 917
 918	ret = copy_to_iter(buf->data, buf->length, iter);
 919	if (buf->length == ret) {
 920		kfree(buf);
 921		return ret;
 922	}
 923
 924	if (iov_iter_count(iter)) {
 925		ret = -EFAULT;
 926	} else {
 927		buf->length -= ret;
 928		buf->data += ret;
 929	}
 930
 931	if (cmpxchg(&epfile->read_buffer, NULL, buf))
 932		kfree(buf);
 933
 934	return ret;
 935}
 936
 937/* Assumes epfile->mutex is held. */
 938static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
 939				      void *data, int data_len,
 940				      struct iov_iter *iter)
 941{
 942	struct ffs_buffer *buf;
 943
 944	ssize_t ret = copy_to_iter(data, data_len, iter);
 945	if (data_len == ret)
 946		return ret;
 947
 948	if (iov_iter_count(iter))
 949		return -EFAULT;
 950
 951	/* See ffs_copy_to_iter for more context. */
 952	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
 953		data_len, ret);
 954
 955	data_len -= ret;
 956	buf = kmalloc(struct_size(buf, storage, data_len), GFP_KERNEL);
 957	if (!buf)
 958		return -ENOMEM;
 959	buf->length = data_len;
 960	buf->data = buf->storage;
 961	memcpy(buf->storage, data + ret, flex_array_size(buf, storage, data_len));
 962
 963	/*
 964	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
 965	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
 966	 * in struct ffs_epfile for full read_buffer pointer synchronisation
 967	 * story.
 968	 */
 969	if (cmpxchg(&epfile->read_buffer, NULL, buf))
 970		kfree(buf);
 971
 972	return ret;
 973}
 974
 975static struct ffs_ep *ffs_epfile_wait_ep(struct file *file)
 976{
 977	struct ffs_epfile *epfile = file->private_data;
 
 978	struct ffs_ep *ep;
 979	int ret;
 
 
 
 
 
 
 980
 981	/* Wait for endpoint to be enabled */
 982	ep = epfile->ep;
 983	if (!ep) {
 984		if (file->f_flags & O_NONBLOCK)
 985			return ERR_PTR(-EAGAIN);
 986
 987		ret = wait_event_interruptible(
 988				epfile->ffs->wait, (ep = epfile->ep));
 989		if (ret)
 990			return ERR_PTR(-EINTR);
 991	}
 992
 993	return ep;
 994}
 995
 996static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
 997{
 998	struct ffs_epfile *epfile = file->private_data;
 999	struct usb_request *req;
1000	struct ffs_ep *ep;
1001	char *data = NULL;
1002	ssize_t ret, data_len = -EINVAL;
1003	int halt;
1004
1005	/* Are we still active? */
1006	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1007		return -ENODEV;
1008
1009	ep = ffs_epfile_wait_ep(file);
1010	if (IS_ERR(ep))
1011		return PTR_ERR(ep);
1012
1013	/* Do we halt? */
1014	halt = (!io_data->read == !epfile->in);
1015	if (halt && epfile->isoc)
1016		return -EINVAL;
1017
1018	/* We will be using request and read_buffer */
1019	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
1020	if (ret)
1021		goto error;
1022
1023	/* Allocate & copy */
1024	if (!halt) {
1025		struct usb_gadget *gadget;
1026
1027		/*
1028		 * Do we have buffered data from previous partial read?  Check
1029		 * that for synchronous case only because we do not have
1030		 * facility to ‘wake up’ a pending asynchronous read and push
1031		 * buffered data to it which we would need to make things behave
1032		 * consistently.
1033		 */
1034		if (!io_data->aio && io_data->read) {
1035			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
1036			if (ret)
1037				goto error_mutex;
1038		}
1039
1040		/*
1041		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
1042		 * before the waiting completes, so do not assign to 'gadget'
1043		 * earlier
1044		 */
1045		gadget = epfile->ffs->gadget;
1046
1047		spin_lock_irq(&epfile->ffs->eps_lock);
1048		/* In the meantime, endpoint got disabled or changed. */
1049		if (epfile->ep != ep) {
1050			ret = -ESHUTDOWN;
1051			goto error_lock;
1052		}
1053		data_len = iov_iter_count(&io_data->data);
1054		/*
1055		 * Controller may require buffer size to be aligned to
1056		 * maxpacketsize of an out endpoint.
1057		 */
1058		if (io_data->read)
1059			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1060
1061		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1062		spin_unlock_irq(&epfile->ffs->eps_lock);
1063
1064		data = ffs_alloc_buffer(io_data, data_len);
1065		if (!data) {
1066			ret = -ENOMEM;
1067			goto error_mutex;
1068		}
1069		if (!io_data->read &&
1070		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1071			ret = -EFAULT;
1072			goto error_mutex;
1073		}
1074	}
1075
1076	spin_lock_irq(&epfile->ffs->eps_lock);
1077
1078	if (epfile->ep != ep) {
1079		/* In the meantime, endpoint got disabled or changed. */
1080		ret = -ESHUTDOWN;
1081	} else if (halt) {
1082		ret = usb_ep_set_halt(ep->ep);
1083		if (!ret)
1084			ret = -EBADMSG;
1085	} else if (data_len == -EINVAL) {
1086		/*
1087		 * Sanity Check: even though data_len can't be used
1088		 * uninitialized at the time I write this comment, some
1089		 * compilers complain about this situation.
1090		 * In order to keep the code clean from warnings, data_len is
1091		 * being initialized to -EINVAL during its declaration, which
1092		 * means we can't rely on compiler anymore to warn no future
1093		 * changes won't result in data_len being used uninitialized.
1094		 * For such reason, we're adding this redundant sanity check
1095		 * here.
1096		 */
1097		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1098		ret = -EINVAL;
1099	} else if (!io_data->aio) {
1100		bool interrupted = false;
1101
1102		req = ep->req;
1103		if (io_data->use_sg) {
1104			req->buf = NULL;
1105			req->sg	= io_data->sgt.sgl;
1106			req->num_sgs = io_data->sgt.nents;
1107		} else {
1108			req->buf = data;
1109			req->num_sgs = 0;
1110		}
1111		req->length = data_len;
1112
1113		io_data->buf = data;
1114
1115		init_completion(&io_data->done);
1116		req->context  = io_data;
1117		req->complete = ffs_epfile_io_complete;
1118
1119		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1120		if (ret < 0)
1121			goto error_lock;
1122
1123		spin_unlock_irq(&epfile->ffs->eps_lock);
1124
1125		if (wait_for_completion_interruptible(&io_data->done)) {
1126			spin_lock_irq(&epfile->ffs->eps_lock);
1127			if (epfile->ep != ep) {
1128				ret = -ESHUTDOWN;
1129				goto error_lock;
1130			}
1131			/*
1132			 * To avoid race condition with ffs_epfile_io_complete,
1133			 * dequeue the request first then check
1134			 * status. usb_ep_dequeue API should guarantee no race
1135			 * condition with req->complete callback.
1136			 */
1137			usb_ep_dequeue(ep->ep, req);
1138			spin_unlock_irq(&epfile->ffs->eps_lock);
1139			wait_for_completion(&io_data->done);
1140			interrupted = io_data->status < 0;
1141		}
1142
1143		if (interrupted)
1144			ret = -EINTR;
1145		else if (io_data->read && io_data->status > 0)
1146			ret = __ffs_epfile_read_data(epfile, data, io_data->status,
1147						     &io_data->data);
1148		else
1149			ret = io_data->status;
1150		goto error_mutex;
1151	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1152		ret = -ENOMEM;
1153	} else {
1154		if (io_data->use_sg) {
1155			req->buf = NULL;
1156			req->sg	= io_data->sgt.sgl;
1157			req->num_sgs = io_data->sgt.nents;
1158		} else {
1159			req->buf = data;
1160			req->num_sgs = 0;
1161		}
1162		req->length = data_len;
1163
1164		io_data->buf = data;
1165		io_data->ep = ep->ep;
1166		io_data->req = req;
1167		io_data->ffs = epfile->ffs;
1168
1169		req->context  = io_data;
1170		req->complete = ffs_epfile_async_io_complete;
1171
1172		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1173		if (ret) {
1174			io_data->req = NULL;
1175			usb_ep_free_request(ep->ep, req);
1176			goto error_lock;
1177		}
1178
1179		ret = -EIOCBQUEUED;
1180		/*
1181		 * Do not kfree the buffer in this function.  It will be freed
1182		 * by ffs_user_copy_worker.
1183		 */
1184		data = NULL;
1185	}
1186
1187error_lock:
1188	spin_unlock_irq(&epfile->ffs->eps_lock);
1189error_mutex:
1190	mutex_unlock(&epfile->mutex);
1191error:
1192	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1193		ffs_free_buffer(io_data);
1194	return ret;
1195}
1196
1197static int
1198ffs_epfile_open(struct inode *inode, struct file *file)
1199{
1200	struct ffs_epfile *epfile = inode->i_private;
1201
1202	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1203		return -ENODEV;
1204
1205	file->private_data = epfile;
1206	ffs_data_opened(epfile->ffs);
1207
1208	return stream_open(inode, file);
1209}
1210
1211static int ffs_aio_cancel(struct kiocb *kiocb)
1212{
1213	struct ffs_io_data *io_data = kiocb->private;
1214	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1215	unsigned long flags;
1216	int value;
1217
1218	spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1219
1220	if (io_data && io_data->ep && io_data->req)
1221		value = usb_ep_dequeue(io_data->ep, io_data->req);
1222	else
1223		value = -EINVAL;
1224
1225	spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1226
1227	return value;
1228}
1229
1230static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1231{
1232	struct ffs_io_data io_data, *p = &io_data;
1233	ssize_t res;
1234
1235	if (!is_sync_kiocb(kiocb)) {
1236		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1237		if (!p)
1238			return -ENOMEM;
1239		p->aio = true;
1240	} else {
1241		memset(p, 0, sizeof(*p));
1242		p->aio = false;
1243	}
1244
1245	p->read = false;
1246	p->kiocb = kiocb;
1247	p->data = *from;
1248	p->mm = current->mm;
1249
1250	kiocb->private = p;
1251
1252	if (p->aio)
1253		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1254
1255	res = ffs_epfile_io(kiocb->ki_filp, p);
1256	if (res == -EIOCBQUEUED)
1257		return res;
1258	if (p->aio)
1259		kfree(p);
1260	else
1261		*from = p->data;
1262	return res;
1263}
1264
1265static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1266{
1267	struct ffs_io_data io_data, *p = &io_data;
1268	ssize_t res;
1269
1270	if (!is_sync_kiocb(kiocb)) {
1271		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1272		if (!p)
1273			return -ENOMEM;
1274		p->aio = true;
1275	} else {
1276		memset(p, 0, sizeof(*p));
1277		p->aio = false;
1278	}
1279
1280	p->read = true;
1281	p->kiocb = kiocb;
1282	if (p->aio) {
1283		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1284		if (!iter_is_ubuf(&p->data) && !p->to_free) {
1285			kfree(p);
1286			return -ENOMEM;
1287		}
1288	} else {
1289		p->data = *to;
1290		p->to_free = NULL;
1291	}
1292	p->mm = current->mm;
1293
1294	kiocb->private = p;
1295
1296	if (p->aio)
1297		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1298
1299	res = ffs_epfile_io(kiocb->ki_filp, p);
1300	if (res == -EIOCBQUEUED)
1301		return res;
1302
1303	if (p->aio) {
1304		kfree(p->to_free);
1305		kfree(p);
1306	} else {
1307		*to = p->data;
1308	}
1309	return res;
1310}
1311
1312static void ffs_dmabuf_release(struct kref *ref)
1313{
1314	struct ffs_dmabuf_priv *priv = container_of(ref, struct ffs_dmabuf_priv, ref);
1315	struct dma_buf_attachment *attach = priv->attach;
1316	struct dma_buf *dmabuf = attach->dmabuf;
1317
1318	pr_vdebug("FFS DMABUF release\n");
1319	dma_resv_lock(dmabuf->resv, NULL);
1320	dma_buf_unmap_attachment(attach, priv->sgt, priv->dir);
1321	dma_resv_unlock(dmabuf->resv);
1322
1323	dma_buf_detach(attach->dmabuf, attach);
1324	dma_buf_put(dmabuf);
1325	kfree(priv);
1326}
1327
1328static void ffs_dmabuf_get(struct dma_buf_attachment *attach)
1329{
1330	struct ffs_dmabuf_priv *priv = attach->importer_priv;
1331
1332	kref_get(&priv->ref);
1333}
1334
1335static void ffs_dmabuf_put(struct dma_buf_attachment *attach)
1336{
1337	struct ffs_dmabuf_priv *priv = attach->importer_priv;
1338
1339	kref_put(&priv->ref, ffs_dmabuf_release);
1340}
1341
1342static int
1343ffs_epfile_release(struct inode *inode, struct file *file)
1344{
1345	struct ffs_epfile *epfile = inode->i_private;
1346	struct ffs_dmabuf_priv *priv, *tmp;
1347	struct ffs_data *ffs = epfile->ffs;
1348
1349	mutex_lock(&epfile->dmabufs_mutex);
1350
1351	/* Close all attached DMABUFs */
1352	list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1353		/* Cancel any pending transfer */
1354		spin_lock_irq(&ffs->eps_lock);
1355		if (priv->ep && priv->req)
1356			usb_ep_dequeue(priv->ep, priv->req);
1357		spin_unlock_irq(&ffs->eps_lock);
1358
1359		list_del(&priv->entry);
1360		ffs_dmabuf_put(priv->attach);
1361	}
1362
1363	mutex_unlock(&epfile->dmabufs_mutex);
1364
1365	__ffs_epfile_read_buffer_free(epfile);
1366	ffs_data_closed(epfile->ffs);
1367
1368	return 0;
1369}
1370
1371static void ffs_dmabuf_cleanup(struct work_struct *work)
1372{
1373	struct ffs_dma_fence *dma_fence =
1374		container_of(work, struct ffs_dma_fence, work);
1375	struct ffs_dmabuf_priv *priv = dma_fence->priv;
1376	struct dma_buf_attachment *attach = priv->attach;
1377	struct dma_fence *fence = &dma_fence->base;
1378
1379	ffs_dmabuf_put(attach);
1380	dma_fence_put(fence);
1381}
1382
1383static void ffs_dmabuf_signal_done(struct ffs_dma_fence *dma_fence, int ret)
1384{
1385	struct ffs_dmabuf_priv *priv = dma_fence->priv;
1386	struct dma_fence *fence = &dma_fence->base;
1387	bool cookie = dma_fence_begin_signalling();
1388
1389	dma_fence_get(fence);
1390	fence->error = ret;
1391	dma_fence_signal(fence);
1392	dma_fence_end_signalling(cookie);
1393
1394	/*
1395	 * The fence will be unref'd in ffs_dmabuf_cleanup.
1396	 * It can't be done here, as the unref functions might try to lock
1397	 * the resv object, which would deadlock.
1398	 */
1399	INIT_WORK(&dma_fence->work, ffs_dmabuf_cleanup);
1400	queue_work(priv->ffs->io_completion_wq, &dma_fence->work);
1401}
1402
1403static void ffs_epfile_dmabuf_io_complete(struct usb_ep *ep,
1404					  struct usb_request *req)
1405{
1406	pr_vdebug("FFS: DMABUF transfer complete, status=%d\n", req->status);
1407	ffs_dmabuf_signal_done(req->context, req->status);
1408	usb_ep_free_request(ep, req);
1409}
1410
1411static const char *ffs_dmabuf_get_driver_name(struct dma_fence *fence)
1412{
1413	return "functionfs";
1414}
1415
1416static const char *ffs_dmabuf_get_timeline_name(struct dma_fence *fence)
1417{
1418	return "";
1419}
1420
1421static void ffs_dmabuf_fence_release(struct dma_fence *fence)
1422{
1423	struct ffs_dma_fence *dma_fence =
1424		container_of(fence, struct ffs_dma_fence, base);
1425
1426	kfree(dma_fence);
1427}
1428
1429static const struct dma_fence_ops ffs_dmabuf_fence_ops = {
1430	.get_driver_name	= ffs_dmabuf_get_driver_name,
1431	.get_timeline_name	= ffs_dmabuf_get_timeline_name,
1432	.release		= ffs_dmabuf_fence_release,
1433};
1434
1435static int ffs_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock)
1436{
1437	if (!nonblock)
1438		return dma_resv_lock_interruptible(dmabuf->resv, NULL);
1439
1440	if (!dma_resv_trylock(dmabuf->resv))
1441		return -EBUSY;
1442
1443	return 0;
1444}
1445
1446static struct dma_buf_attachment *
1447ffs_dmabuf_find_attachment(struct ffs_epfile *epfile, struct dma_buf *dmabuf)
1448{
1449	struct device *dev = epfile->ffs->gadget->dev.parent;
1450	struct dma_buf_attachment *attach = NULL;
1451	struct ffs_dmabuf_priv *priv;
1452
1453	mutex_lock(&epfile->dmabufs_mutex);
1454
1455	list_for_each_entry(priv, &epfile->dmabufs, entry) {
1456		if (priv->attach->dev == dev
1457		    && priv->attach->dmabuf == dmabuf) {
1458			attach = priv->attach;
1459			break;
1460		}
1461	}
1462
1463	if (attach)
1464		ffs_dmabuf_get(attach);
1465
1466	mutex_unlock(&epfile->dmabufs_mutex);
1467
1468	return attach ?: ERR_PTR(-EPERM);
1469}
1470
1471static int ffs_dmabuf_attach(struct file *file, int fd)
1472{
1473	bool nonblock = file->f_flags & O_NONBLOCK;
1474	struct ffs_epfile *epfile = file->private_data;
1475	struct usb_gadget *gadget = epfile->ffs->gadget;
1476	struct dma_buf_attachment *attach;
1477	struct ffs_dmabuf_priv *priv;
1478	enum dma_data_direction dir;
1479	struct sg_table *sg_table;
1480	struct dma_buf *dmabuf;
1481	int err;
1482
1483	if (!gadget || !gadget->sg_supported)
1484		return -EPERM;
1485
1486	dmabuf = dma_buf_get(fd);
1487	if (IS_ERR(dmabuf))
1488		return PTR_ERR(dmabuf);
1489
1490	attach = dma_buf_attach(dmabuf, gadget->dev.parent);
1491	if (IS_ERR(attach)) {
1492		err = PTR_ERR(attach);
1493		goto err_dmabuf_put;
1494	}
1495
1496	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1497	if (!priv) {
1498		err = -ENOMEM;
1499		goto err_dmabuf_detach;
1500	}
1501
1502	dir = epfile->in ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1503
1504	err = ffs_dma_resv_lock(dmabuf, nonblock);
1505	if (err)
1506		goto err_free_priv;
1507
1508	sg_table = dma_buf_map_attachment(attach, dir);
1509	dma_resv_unlock(dmabuf->resv);
1510
1511	if (IS_ERR(sg_table)) {
1512		err = PTR_ERR(sg_table);
1513		goto err_free_priv;
1514	}
1515
1516	attach->importer_priv = priv;
1517
1518	priv->sgt = sg_table;
1519	priv->dir = dir;
1520	priv->ffs = epfile->ffs;
1521	priv->attach = attach;
1522	spin_lock_init(&priv->lock);
1523	kref_init(&priv->ref);
1524	priv->context = dma_fence_context_alloc(1);
1525
1526	mutex_lock(&epfile->dmabufs_mutex);
1527	list_add(&priv->entry, &epfile->dmabufs);
1528	mutex_unlock(&epfile->dmabufs_mutex);
1529
1530	return 0;
1531
1532err_free_priv:
1533	kfree(priv);
1534err_dmabuf_detach:
1535	dma_buf_detach(dmabuf, attach);
1536err_dmabuf_put:
1537	dma_buf_put(dmabuf);
1538
1539	return err;
1540}
1541
1542static int ffs_dmabuf_detach(struct file *file, int fd)
1543{
1544	struct ffs_epfile *epfile = file->private_data;
1545	struct ffs_data *ffs = epfile->ffs;
1546	struct device *dev = ffs->gadget->dev.parent;
1547	struct ffs_dmabuf_priv *priv, *tmp;
1548	struct dma_buf *dmabuf;
1549	int ret = -EPERM;
1550
1551	dmabuf = dma_buf_get(fd);
1552	if (IS_ERR(dmabuf))
1553		return PTR_ERR(dmabuf);
1554
1555	mutex_lock(&epfile->dmabufs_mutex);
1556
1557	list_for_each_entry_safe(priv, tmp, &epfile->dmabufs, entry) {
1558		if (priv->attach->dev == dev
1559		    && priv->attach->dmabuf == dmabuf) {
1560			/* Cancel any pending transfer */
1561			spin_lock_irq(&ffs->eps_lock);
1562			if (priv->ep && priv->req)
1563				usb_ep_dequeue(priv->ep, priv->req);
1564			spin_unlock_irq(&ffs->eps_lock);
1565
1566			list_del(&priv->entry);
1567
1568			/* Unref the reference from ffs_dmabuf_attach() */
1569			ffs_dmabuf_put(priv->attach);
1570			ret = 0;
1571			break;
1572		}
1573	}
1574
1575	mutex_unlock(&epfile->dmabufs_mutex);
1576	dma_buf_put(dmabuf);
1577
1578	return ret;
1579}
1580
1581static int ffs_dmabuf_transfer(struct file *file,
1582			       const struct usb_ffs_dmabuf_transfer_req *req)
1583{
1584	bool nonblock = file->f_flags & O_NONBLOCK;
1585	struct ffs_epfile *epfile = file->private_data;
1586	struct dma_buf_attachment *attach;
1587	struct ffs_dmabuf_priv *priv;
1588	struct ffs_dma_fence *fence;
1589	struct usb_request *usb_req;
1590	enum dma_resv_usage resv_dir;
1591	struct dma_buf *dmabuf;
1592	unsigned long timeout;
1593	struct ffs_ep *ep;
1594	bool cookie;
1595	u32 seqno;
1596	long retl;
1597	int ret;
1598
1599	if (req->flags & ~USB_FFS_DMABUF_TRANSFER_MASK)
1600		return -EINVAL;
1601
1602	dmabuf = dma_buf_get(req->fd);
1603	if (IS_ERR(dmabuf))
1604		return PTR_ERR(dmabuf);
1605
1606	if (req->length > dmabuf->size || req->length == 0) {
1607		ret = -EINVAL;
1608		goto err_dmabuf_put;
1609	}
1610
1611	attach = ffs_dmabuf_find_attachment(epfile, dmabuf);
1612	if (IS_ERR(attach)) {
1613		ret = PTR_ERR(attach);
1614		goto err_dmabuf_put;
1615	}
1616
1617	priv = attach->importer_priv;
1618
1619	ep = ffs_epfile_wait_ep(file);
1620	if (IS_ERR(ep)) {
1621		ret = PTR_ERR(ep);
1622		goto err_attachment_put;
1623	}
1624
1625	ret = ffs_dma_resv_lock(dmabuf, nonblock);
1626	if (ret)
1627		goto err_attachment_put;
1628
1629	/* Make sure we don't have writers */
1630	timeout = nonblock ? 0 : msecs_to_jiffies(DMABUF_ENQUEUE_TIMEOUT_MS);
1631	retl = dma_resv_wait_timeout(dmabuf->resv,
1632				     dma_resv_usage_rw(epfile->in),
1633				     true, timeout);
1634	if (retl == 0)
1635		retl = -EBUSY;
1636	if (retl < 0) {
1637		ret = (int)retl;
1638		goto err_resv_unlock;
1639	}
1640
1641	ret = dma_resv_reserve_fences(dmabuf->resv, 1);
1642	if (ret)
1643		goto err_resv_unlock;
1644
1645	fence = kmalloc(sizeof(*fence), GFP_KERNEL);
1646	if (!fence) {
1647		ret = -ENOMEM;
1648		goto err_resv_unlock;
1649	}
1650
1651	fence->priv = priv;
1652
1653	spin_lock_irq(&epfile->ffs->eps_lock);
1654
1655	/* In the meantime, endpoint got disabled or changed. */
1656	if (epfile->ep != ep) {
1657		ret = -ESHUTDOWN;
1658		goto err_fence_put;
1659	}
1660
1661	usb_req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC);
1662	if (!usb_req) {
1663		ret = -ENOMEM;
1664		goto err_fence_put;
1665	}
1666
1667	/*
1668	 * usb_ep_queue() guarantees that all transfers are processed in the
1669	 * order they are enqueued, so we can use a simple incrementing
1670	 * sequence number for the dma_fence.
1671	 */
1672	seqno = atomic_add_return(1, &epfile->seqno);
1673
1674	dma_fence_init(&fence->base, &ffs_dmabuf_fence_ops,
1675		       &priv->lock, priv->context, seqno);
1676
1677	resv_dir = epfile->in ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ;
1678
1679	dma_resv_add_fence(dmabuf->resv, &fence->base, resv_dir);
1680	dma_resv_unlock(dmabuf->resv);
1681
1682	/* Now that the dma_fence is in place, queue the transfer. */
1683
1684	usb_req->length = req->length;
1685	usb_req->buf = NULL;
1686	usb_req->sg = priv->sgt->sgl;
1687	usb_req->num_sgs = sg_nents_for_len(priv->sgt->sgl, req->length);
1688	usb_req->sg_was_mapped = true;
1689	usb_req->context  = fence;
1690	usb_req->complete = ffs_epfile_dmabuf_io_complete;
1691
1692	cookie = dma_fence_begin_signalling();
1693	ret = usb_ep_queue(ep->ep, usb_req, GFP_ATOMIC);
1694	dma_fence_end_signalling(cookie);
1695	if (!ret) {
1696		priv->req = usb_req;
1697		priv->ep = ep->ep;
1698	} else {
1699		pr_warn("FFS: Failed to queue DMABUF: %d\n", ret);
1700		ffs_dmabuf_signal_done(fence, ret);
1701		usb_ep_free_request(ep->ep, usb_req);
1702	}
1703
1704	spin_unlock_irq(&epfile->ffs->eps_lock);
1705	dma_buf_put(dmabuf);
1706
1707	return ret;
1708
1709err_fence_put:
1710	spin_unlock_irq(&epfile->ffs->eps_lock);
1711	dma_fence_put(&fence->base);
1712err_resv_unlock:
1713	dma_resv_unlock(dmabuf->resv);
1714err_attachment_put:
1715	ffs_dmabuf_put(attach);
1716err_dmabuf_put:
1717	dma_buf_put(dmabuf);
1718
1719	return ret;
1720}
1721
1722static long ffs_epfile_ioctl(struct file *file, unsigned code,
1723			     unsigned long value)
1724{
1725	struct ffs_epfile *epfile = file->private_data;
1726	struct ffs_ep *ep;
1727	int ret;
1728
1729	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1730		return -ENODEV;
1731
1732	switch (code) {
1733	case FUNCTIONFS_DMABUF_ATTACH:
1734	{
1735		int fd;
 
1736
1737		if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1738			ret = -EFAULT;
1739			break;
1740		}
1741
1742		return ffs_dmabuf_attach(file, fd);
1743	}
1744	case FUNCTIONFS_DMABUF_DETACH:
1745	{
1746		int fd;
1747
1748		if (copy_from_user(&fd, (void __user *)value, sizeof(fd))) {
1749			ret = -EFAULT;
1750			break;
1751		}
1752
1753		return ffs_dmabuf_detach(file, fd);
1754	}
1755	case FUNCTIONFS_DMABUF_TRANSFER:
1756	{
1757		struct usb_ffs_dmabuf_transfer_req req;
1758
1759		if (copy_from_user(&req, (void __user *)value, sizeof(req))) {
1760			ret = -EFAULT;
1761			break;
1762		}
1763
1764		return ffs_dmabuf_transfer(file, &req);
1765	}
1766	default:
1767		break;
1768	}
1769
1770	/* Wait for endpoint to be enabled */
1771	ep = ffs_epfile_wait_ep(file);
1772	if (IS_ERR(ep))
1773		return PTR_ERR(ep);
1774
1775	spin_lock_irq(&epfile->ffs->eps_lock);
1776
1777	/* In the meantime, endpoint got disabled or changed. */
1778	if (epfile->ep != ep) {
1779		spin_unlock_irq(&epfile->ffs->eps_lock);
1780		return -ESHUTDOWN;
1781	}
1782
1783	switch (code) {
1784	case FUNCTIONFS_FIFO_STATUS:
1785		ret = usb_ep_fifo_status(epfile->ep->ep);
1786		break;
1787	case FUNCTIONFS_FIFO_FLUSH:
1788		usb_ep_fifo_flush(epfile->ep->ep);
1789		ret = 0;
1790		break;
1791	case FUNCTIONFS_CLEAR_HALT:
1792		ret = usb_ep_clear_halt(epfile->ep->ep);
1793		break;
1794	case FUNCTIONFS_ENDPOINT_REVMAP:
1795		ret = epfile->ep->num;
1796		break;
1797	case FUNCTIONFS_ENDPOINT_DESC:
1798	{
1799		int desc_idx;
1800		struct usb_endpoint_descriptor desc1, *desc;
1801
1802		switch (epfile->ffs->gadget->speed) {
1803		case USB_SPEED_SUPER:
1804		case USB_SPEED_SUPER_PLUS:
1805			desc_idx = 2;
1806			break;
1807		case USB_SPEED_HIGH:
1808			desc_idx = 1;
1809			break;
1810		default:
1811			desc_idx = 0;
1812		}
1813
1814		desc = epfile->ep->descs[desc_idx];
1815		memcpy(&desc1, desc, desc->bLength);
1816
1817		spin_unlock_irq(&epfile->ffs->eps_lock);
1818		ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1819		if (ret)
1820			ret = -EFAULT;
1821		return ret;
1822	}
1823	default:
1824		ret = -ENOTTY;
1825	}
1826	spin_unlock_irq(&epfile->ffs->eps_lock);
1827
1828	return ret;
1829}
1830
1831static const struct file_operations ffs_epfile_operations = {
 
1832
1833	.open =		ffs_epfile_open,
1834	.write_iter =	ffs_epfile_write_iter,
1835	.read_iter =	ffs_epfile_read_iter,
1836	.release =	ffs_epfile_release,
1837	.unlocked_ioctl =	ffs_epfile_ioctl,
1838	.compat_ioctl = compat_ptr_ioctl,
1839};
1840
1841
1842/* File system and super block operations ***********************************/
1843
1844/*
1845 * Mounting the file system creates a controller file, used first for
1846 * function configuration then later for event monitoring.
1847 */
1848
1849static struct inode *__must_check
1850ffs_sb_make_inode(struct super_block *sb, void *data,
1851		  const struct file_operations *fops,
1852		  const struct inode_operations *iops,
1853		  struct ffs_file_perms *perms)
1854{
1855	struct inode *inode;
1856
1857	inode = new_inode(sb);
1858
1859	if (inode) {
1860		struct timespec64 ts = inode_set_ctime_current(inode);
1861
1862		inode->i_ino	 = get_next_ino();
1863		inode->i_mode    = perms->mode;
1864		inode->i_uid     = perms->uid;
1865		inode->i_gid     = perms->gid;
1866		inode_set_atime_to_ts(inode, ts);
1867		inode_set_mtime_to_ts(inode, ts);
1868		inode->i_private = data;
1869		if (fops)
1870			inode->i_fop = fops;
1871		if (iops)
1872			inode->i_op  = iops;
1873	}
1874
1875	return inode;
1876}
1877
1878/* Create "regular" file */
1879static struct dentry *ffs_sb_create_file(struct super_block *sb,
1880					const char *name, void *data,
1881					const struct file_operations *fops)
1882{
1883	struct ffs_data	*ffs = sb->s_fs_info;
1884	struct dentry	*dentry;
1885	struct inode	*inode;
1886
1887	dentry = d_alloc_name(sb->s_root, name);
1888	if (!dentry)
1889		return NULL;
1890
1891	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1892	if (!inode) {
1893		dput(dentry);
1894		return NULL;
1895	}
1896
1897	d_add(dentry, inode);
1898	return dentry;
1899}
1900
1901/* Super block */
1902static const struct super_operations ffs_sb_operations = {
1903	.statfs =	simple_statfs,
1904	.drop_inode =	generic_delete_inode,
1905};
1906
1907struct ffs_sb_fill_data {
1908	struct ffs_file_perms perms;
1909	umode_t root_mode;
1910	const char *dev_name;
1911	bool no_disconnect;
1912	struct ffs_data *ffs_data;
1913};
1914
1915static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1916{
1917	struct ffs_sb_fill_data *data = fc->fs_private;
1918	struct inode	*inode;
1919	struct ffs_data	*ffs = data->ffs_data;
1920
1921	ffs->sb              = sb;
1922	data->ffs_data       = NULL;
1923	sb->s_fs_info        = ffs;
1924	sb->s_blocksize      = PAGE_SIZE;
1925	sb->s_blocksize_bits = PAGE_SHIFT;
1926	sb->s_magic          = FUNCTIONFS_MAGIC;
1927	sb->s_op             = &ffs_sb_operations;
1928	sb->s_time_gran      = 1;
1929
1930	/* Root inode */
1931	data->perms.mode = data->root_mode;
1932	inode = ffs_sb_make_inode(sb, NULL,
1933				  &simple_dir_operations,
1934				  &simple_dir_inode_operations,
1935				  &data->perms);
1936	sb->s_root = d_make_root(inode);
1937	if (!sb->s_root)
1938		return -ENOMEM;
1939
1940	/* EP0 file */
1941	if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations))
1942		return -ENOMEM;
1943
1944	return 0;
1945}
1946
1947enum {
1948	Opt_no_disconnect,
1949	Opt_rmode,
1950	Opt_fmode,
1951	Opt_mode,
1952	Opt_uid,
1953	Opt_gid,
1954};
1955
1956static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1957	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1958	fsparam_u32	("rmode",		Opt_rmode),
1959	fsparam_u32	("fmode",		Opt_fmode),
1960	fsparam_u32	("mode",		Opt_mode),
1961	fsparam_u32	("uid",			Opt_uid),
1962	fsparam_u32	("gid",			Opt_gid),
1963	{}
1964};
1965
1966static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1967{
1968	struct ffs_sb_fill_data *data = fc->fs_private;
1969	struct fs_parse_result result;
1970	int opt;
1971
1972	opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1973	if (opt < 0)
1974		return opt;
1975
1976	switch (opt) {
1977	case Opt_no_disconnect:
1978		data->no_disconnect = result.boolean;
1979		break;
1980	case Opt_rmode:
1981		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1982		break;
1983	case Opt_fmode:
1984		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1985		break;
1986	case Opt_mode:
1987		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1988		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1989		break;
1990
1991	case Opt_uid:
1992		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1993		if (!uid_valid(data->perms.uid))
1994			goto unmapped_value;
1995		break;
1996	case Opt_gid:
1997		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1998		if (!gid_valid(data->perms.gid))
1999			goto unmapped_value;
2000		break;
2001
2002	default:
2003		return -ENOPARAM;
2004	}
2005
2006	return 0;
2007
2008unmapped_value:
2009	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
2010}
2011
2012/*
2013 * Set up the superblock for a mount.
2014 */
2015static int ffs_fs_get_tree(struct fs_context *fc)
2016{
2017	struct ffs_sb_fill_data *ctx = fc->fs_private;
2018	struct ffs_data	*ffs;
2019	int ret;
2020
2021	if (!fc->source)
2022		return invalf(fc, "No source specified");
2023
2024	ffs = ffs_data_new(fc->source);
2025	if (!ffs)
2026		return -ENOMEM;
2027	ffs->file_perms = ctx->perms;
2028	ffs->no_disconnect = ctx->no_disconnect;
2029
2030	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
2031	if (!ffs->dev_name) {
2032		ffs_data_put(ffs);
2033		return -ENOMEM;
2034	}
2035
2036	ret = ffs_acquire_dev(ffs->dev_name, ffs);
2037	if (ret) {
2038		ffs_data_put(ffs);
2039		return ret;
2040	}
2041
2042	ctx->ffs_data = ffs;
2043	return get_tree_nodev(fc, ffs_sb_fill);
2044}
2045
2046static void ffs_fs_free_fc(struct fs_context *fc)
2047{
2048	struct ffs_sb_fill_data *ctx = fc->fs_private;
2049
2050	if (ctx) {
2051		if (ctx->ffs_data) {
2052			ffs_data_put(ctx->ffs_data);
2053		}
2054
2055		kfree(ctx);
2056	}
2057}
2058
2059static const struct fs_context_operations ffs_fs_context_ops = {
2060	.free		= ffs_fs_free_fc,
2061	.parse_param	= ffs_fs_parse_param,
2062	.get_tree	= ffs_fs_get_tree,
2063};
2064
2065static int ffs_fs_init_fs_context(struct fs_context *fc)
2066{
2067	struct ffs_sb_fill_data *ctx;
2068
2069	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
2070	if (!ctx)
2071		return -ENOMEM;
2072
2073	ctx->perms.mode = S_IFREG | 0600;
2074	ctx->perms.uid = GLOBAL_ROOT_UID;
2075	ctx->perms.gid = GLOBAL_ROOT_GID;
2076	ctx->root_mode = S_IFDIR | 0500;
2077	ctx->no_disconnect = false;
2078
2079	fc->fs_private = ctx;
2080	fc->ops = &ffs_fs_context_ops;
2081	return 0;
2082}
2083
2084static void
2085ffs_fs_kill_sb(struct super_block *sb)
2086{
2087	kill_litter_super(sb);
2088	if (sb->s_fs_info)
2089		ffs_data_closed(sb->s_fs_info);
2090}
2091
2092static struct file_system_type ffs_fs_type = {
2093	.owner		= THIS_MODULE,
2094	.name		= "functionfs",
2095	.init_fs_context = ffs_fs_init_fs_context,
2096	.parameters	= ffs_fs_fs_parameters,
2097	.kill_sb	= ffs_fs_kill_sb,
2098};
2099MODULE_ALIAS_FS("functionfs");
2100
2101
2102/* Driver's main init/cleanup functions *************************************/
2103
2104static int functionfs_init(void)
2105{
2106	int ret;
2107
2108	ret = register_filesystem(&ffs_fs_type);
2109	if (!ret)
2110		pr_info("file system registered\n");
2111	else
2112		pr_err("failed registering file system (%d)\n", ret);
2113
2114	return ret;
2115}
2116
2117static void functionfs_cleanup(void)
2118{
2119	pr_info("unloading\n");
2120	unregister_filesystem(&ffs_fs_type);
2121}
2122
2123
2124/* ffs_data and ffs_function construction and destruction code **************/
2125
2126static void ffs_data_clear(struct ffs_data *ffs);
2127static void ffs_data_reset(struct ffs_data *ffs);
2128
2129static void ffs_data_get(struct ffs_data *ffs)
2130{
2131	refcount_inc(&ffs->ref);
2132}
2133
2134static void ffs_data_opened(struct ffs_data *ffs)
2135{
2136	refcount_inc(&ffs->ref);
2137	if (atomic_add_return(1, &ffs->opened) == 1 &&
2138			ffs->state == FFS_DEACTIVATED) {
2139		ffs->state = FFS_CLOSING;
2140		ffs_data_reset(ffs);
2141	}
2142}
2143
2144static void ffs_data_put(struct ffs_data *ffs)
2145{
2146	if (refcount_dec_and_test(&ffs->ref)) {
2147		pr_info("%s(): freeing\n", __func__);
2148		ffs_data_clear(ffs);
2149		ffs_release_dev(ffs->private_data);
2150		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
2151		       swait_active(&ffs->ep0req_completion.wait) ||
2152		       waitqueue_active(&ffs->wait));
2153		destroy_workqueue(ffs->io_completion_wq);
2154		kfree(ffs->dev_name);
2155		kfree(ffs);
2156	}
2157}
2158
2159static void ffs_data_closed(struct ffs_data *ffs)
2160{
2161	struct ffs_epfile *epfiles;
2162	unsigned long flags;
2163
2164	if (atomic_dec_and_test(&ffs->opened)) {
2165		if (ffs->no_disconnect) {
2166			ffs->state = FFS_DEACTIVATED;
2167			spin_lock_irqsave(&ffs->eps_lock, flags);
2168			epfiles = ffs->epfiles;
2169			ffs->epfiles = NULL;
2170			spin_unlock_irqrestore(&ffs->eps_lock,
2171							flags);
2172
2173			if (epfiles)
2174				ffs_epfiles_destroy(epfiles,
2175						 ffs->eps_count);
2176
2177			if (ffs->setup_state == FFS_SETUP_PENDING)
2178				__ffs_ep0_stall(ffs);
2179		} else {
2180			ffs->state = FFS_CLOSING;
2181			ffs_data_reset(ffs);
2182		}
2183	}
2184	if (atomic_read(&ffs->opened) < 0) {
2185		ffs->state = FFS_CLOSING;
2186		ffs_data_reset(ffs);
2187	}
2188
2189	ffs_data_put(ffs);
2190}
2191
2192static struct ffs_data *ffs_data_new(const char *dev_name)
2193{
2194	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
2195	if (!ffs)
2196		return NULL;
2197
2198	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
2199	if (!ffs->io_completion_wq) {
2200		kfree(ffs);
2201		return NULL;
2202	}
2203
2204	refcount_set(&ffs->ref, 1);
2205	atomic_set(&ffs->opened, 0);
2206	ffs->state = FFS_READ_DESCRIPTORS;
2207	mutex_init(&ffs->mutex);
2208	spin_lock_init(&ffs->eps_lock);
2209	init_waitqueue_head(&ffs->ev.waitq);
2210	init_waitqueue_head(&ffs->wait);
2211	init_completion(&ffs->ep0req_completion);
2212
2213	/* XXX REVISIT need to update it in some places, or do we? */
2214	ffs->ev.can_stall = 1;
2215
2216	return ffs;
2217}
2218
2219static void ffs_data_clear(struct ffs_data *ffs)
2220{
2221	struct ffs_epfile *epfiles;
2222	unsigned long flags;
2223
2224	ffs_closed(ffs);
2225
2226	BUG_ON(ffs->gadget);
2227
2228	spin_lock_irqsave(&ffs->eps_lock, flags);
2229	epfiles = ffs->epfiles;
2230	ffs->epfiles = NULL;
2231	spin_unlock_irqrestore(&ffs->eps_lock, flags);
2232
2233	/*
2234	 * potential race possible between ffs_func_eps_disable
2235	 * & ffs_epfile_release therefore maintaining a local
2236	 * copy of epfile will save us from use-after-free.
2237	 */
2238	if (epfiles) {
2239		ffs_epfiles_destroy(epfiles, ffs->eps_count);
2240		ffs->epfiles = NULL;
2241	}
2242
2243	if (ffs->ffs_eventfd) {
2244		eventfd_ctx_put(ffs->ffs_eventfd);
2245		ffs->ffs_eventfd = NULL;
2246	}
2247
2248	kfree(ffs->raw_descs_data);
2249	kfree(ffs->raw_strings);
2250	kfree(ffs->stringtabs);
2251}
2252
2253static void ffs_data_reset(struct ffs_data *ffs)
2254{
2255	ffs_data_clear(ffs);
2256
2257	ffs->raw_descs_data = NULL;
2258	ffs->raw_descs = NULL;
2259	ffs->raw_strings = NULL;
2260	ffs->stringtabs = NULL;
2261
2262	ffs->raw_descs_length = 0;
2263	ffs->fs_descs_count = 0;
2264	ffs->hs_descs_count = 0;
2265	ffs->ss_descs_count = 0;
2266
2267	ffs->strings_count = 0;
2268	ffs->interfaces_count = 0;
2269	ffs->eps_count = 0;
2270
2271	ffs->ev.count = 0;
2272
2273	ffs->state = FFS_READ_DESCRIPTORS;
2274	ffs->setup_state = FFS_NO_SETUP;
2275	ffs->flags = 0;
2276
2277	ffs->ms_os_descs_ext_prop_count = 0;
2278	ffs->ms_os_descs_ext_prop_name_len = 0;
2279	ffs->ms_os_descs_ext_prop_data_len = 0;
2280}
2281
2282
2283static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
2284{
2285	struct usb_gadget_strings **lang;
2286	int first_id;
2287
2288	if ((ffs->state != FFS_ACTIVE
2289		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
2290		return -EBADFD;
2291
2292	first_id = usb_string_ids_n(cdev, ffs->strings_count);
2293	if (first_id < 0)
2294		return first_id;
2295
2296	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
2297	if (!ffs->ep0req)
2298		return -ENOMEM;
2299	ffs->ep0req->complete = ffs_ep0_complete;
2300	ffs->ep0req->context = ffs;
2301
2302	lang = ffs->stringtabs;
2303	if (lang) {
2304		for (; *lang; ++lang) {
2305			struct usb_string *str = (*lang)->strings;
2306			int id = first_id;
2307			for (; str->s; ++id, ++str)
2308				str->id = id;
2309		}
2310	}
2311
2312	ffs->gadget = cdev->gadget;
2313	ffs_data_get(ffs);
2314	return 0;
2315}
2316
2317static void functionfs_unbind(struct ffs_data *ffs)
2318{
2319	if (!WARN_ON(!ffs->gadget)) {
2320		/* dequeue before freeing ep0req */
2321		usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
2322		mutex_lock(&ffs->mutex);
2323		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
2324		ffs->ep0req = NULL;
2325		ffs->gadget = NULL;
2326		clear_bit(FFS_FL_BOUND, &ffs->flags);
2327		mutex_unlock(&ffs->mutex);
2328		ffs_data_put(ffs);
2329	}
2330}
2331
2332static int ffs_epfiles_create(struct ffs_data *ffs)
2333{
2334	struct ffs_epfile *epfile, *epfiles;
2335	unsigned i, count;
2336
2337	count = ffs->eps_count;
2338	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
2339	if (!epfiles)
2340		return -ENOMEM;
2341
2342	epfile = epfiles;
2343	for (i = 1; i <= count; ++i, ++epfile) {
2344		epfile->ffs = ffs;
2345		mutex_init(&epfile->mutex);
2346		mutex_init(&epfile->dmabufs_mutex);
2347		INIT_LIST_HEAD(&epfile->dmabufs);
2348		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2349			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
2350		else
2351			sprintf(epfile->name, "ep%u", i);
2352		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
2353						 epfile,
2354						 &ffs_epfile_operations);
2355		if (!epfile->dentry) {
2356			ffs_epfiles_destroy(epfiles, i - 1);
2357			return -ENOMEM;
2358		}
2359	}
2360
2361	ffs->epfiles = epfiles;
2362	return 0;
2363}
2364
2365static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
2366{
2367	struct ffs_epfile *epfile = epfiles;
2368
2369	for (; count; --count, ++epfile) {
2370		BUG_ON(mutex_is_locked(&epfile->mutex));
2371		if (epfile->dentry) {
2372			d_delete(epfile->dentry);
2373			dput(epfile->dentry);
2374			epfile->dentry = NULL;
2375		}
2376	}
2377
2378	kfree(epfiles);
2379}
2380
2381static void ffs_func_eps_disable(struct ffs_function *func)
2382{
2383	struct ffs_ep *ep;
2384	struct ffs_epfile *epfile;
2385	unsigned short count;
2386	unsigned long flags;
2387
2388	spin_lock_irqsave(&func->ffs->eps_lock, flags);
2389	count = func->ffs->eps_count;
2390	epfile = func->ffs->epfiles;
2391	ep = func->eps;
2392	while (count--) {
2393		/* pending requests get nuked */
2394		if (ep->ep)
2395			usb_ep_disable(ep->ep);
2396		++ep;
2397
2398		if (epfile) {
2399			epfile->ep = NULL;
2400			__ffs_epfile_read_buffer_free(epfile);
2401			++epfile;
2402		}
2403	}
2404	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2405}
2406
2407static int ffs_func_eps_enable(struct ffs_function *func)
2408{
2409	struct ffs_data *ffs;
2410	struct ffs_ep *ep;
2411	struct ffs_epfile *epfile;
2412	unsigned short count;
2413	unsigned long flags;
2414	int ret = 0;
2415
2416	spin_lock_irqsave(&func->ffs->eps_lock, flags);
2417	ffs = func->ffs;
2418	ep = func->eps;
2419	epfile = ffs->epfiles;
2420	count = ffs->eps_count;
2421	while(count--) {
2422		ep->ep->driver_data = ep;
2423
2424		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
2425		if (ret) {
2426			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
2427					__func__, ep->ep->name, ret);
2428			break;
2429		}
2430
2431		ret = usb_ep_enable(ep->ep);
2432		if (!ret) {
2433			epfile->ep = ep;
2434			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
2435			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
2436		} else {
2437			break;
2438		}
2439
2440		++ep;
2441		++epfile;
2442	}
2443
2444	wake_up_interruptible(&ffs->wait);
2445	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2446
2447	return ret;
2448}
2449
2450
2451/* Parsing and building descriptors and strings *****************************/
2452
2453/*
2454 * This validates if data pointed by data is a valid USB descriptor as
2455 * well as record how many interfaces, endpoints and strings are
2456 * required by given configuration.  Returns address after the
2457 * descriptor or NULL if data is invalid.
2458 */
2459
2460enum ffs_entity_type {
2461	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2462};
2463
2464enum ffs_os_desc_type {
2465	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2466};
2467
2468typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2469				   u8 *valuep,
2470				   struct usb_descriptor_header *desc,
2471				   void *priv);
2472
2473typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2474				    struct usb_os_desc_header *h, void *data,
2475				    unsigned len, void *priv);
2476
2477static int __must_check ffs_do_single_desc(char *data, unsigned len,
2478					   ffs_entity_callback entity,
2479					   void *priv, int *current_class, int *current_subclass)
2480{
2481	struct usb_descriptor_header *_ds = (void *)data;
2482	u8 length;
2483	int ret;
2484
2485	/* At least two bytes are required: length and type */
2486	if (len < 2) {
2487		pr_vdebug("descriptor too short\n");
2488		return -EINVAL;
2489	}
2490
2491	/* If we have at least as many bytes as the descriptor takes? */
2492	length = _ds->bLength;
2493	if (len < length) {
2494		pr_vdebug("descriptor longer then available data\n");
2495		return -EINVAL;
2496	}
2497
2498#define __entity_check_INTERFACE(val)  1
2499#define __entity_check_STRING(val)     (val)
2500#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2501#define __entity(type, val) do {					\
2502		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2503		if (!__entity_check_ ##type(val)) {			\
2504			pr_vdebug("invalid entity's value\n");		\
2505			return -EINVAL;					\
2506		}							\
2507		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2508		if (ret < 0) {						\
2509			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2510				 (val), ret);				\
2511			return ret;					\
2512		}							\
2513	} while (0)
2514
2515	/* Parse descriptor depending on type. */
2516	switch (_ds->bDescriptorType) {
2517	case USB_DT_DEVICE:
2518	case USB_DT_CONFIG:
2519	case USB_DT_STRING:
2520	case USB_DT_DEVICE_QUALIFIER:
2521		/* function can't have any of those */
2522		pr_vdebug("descriptor reserved for gadget: %d\n",
2523		      _ds->bDescriptorType);
2524		return -EINVAL;
2525
2526	case USB_DT_INTERFACE: {
2527		struct usb_interface_descriptor *ds = (void *)_ds;
2528		pr_vdebug("interface descriptor\n");
2529		if (length != sizeof *ds)
2530			goto inv_length;
2531
2532		__entity(INTERFACE, ds->bInterfaceNumber);
2533		if (ds->iInterface)
2534			__entity(STRING, ds->iInterface);
2535		*current_class = ds->bInterfaceClass;
2536		*current_subclass = ds->bInterfaceSubClass;
2537	}
2538		break;
2539
2540	case USB_DT_ENDPOINT: {
2541		struct usb_endpoint_descriptor *ds = (void *)_ds;
2542		pr_vdebug("endpoint descriptor\n");
2543		if (length != USB_DT_ENDPOINT_SIZE &&
2544		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2545			goto inv_length;
2546		__entity(ENDPOINT, ds->bEndpointAddress);
2547	}
2548		break;
2549
2550	case USB_TYPE_CLASS | 0x01:
2551		if (*current_class == USB_INTERFACE_CLASS_HID) {
2552			pr_vdebug("hid descriptor\n");
2553			if (length != sizeof(struct hid_descriptor))
2554				goto inv_length;
2555			break;
2556		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2557			pr_vdebug("ccid descriptor\n");
2558			if (length != sizeof(struct ccid_descriptor))
2559				goto inv_length;
2560			break;
2561		} else if (*current_class == USB_CLASS_APP_SPEC &&
2562			   *current_subclass == USB_SUBCLASS_DFU) {
2563			pr_vdebug("dfu functional descriptor\n");
2564			if (length != sizeof(struct usb_dfu_functional_descriptor))
2565				goto inv_length;
2566			break;
2567		} else {
2568			pr_vdebug("unknown descriptor: %d for class %d\n",
2569			      _ds->bDescriptorType, *current_class);
2570			return -EINVAL;
2571		}
2572
2573	case USB_DT_OTG:
2574		if (length != sizeof(struct usb_otg_descriptor))
2575			goto inv_length;
2576		break;
2577
2578	case USB_DT_INTERFACE_ASSOCIATION: {
2579		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2580		pr_vdebug("interface association descriptor\n");
2581		if (length != sizeof *ds)
2582			goto inv_length;
2583		if (ds->iFunction)
2584			__entity(STRING, ds->iFunction);
2585	}
2586		break;
2587
2588	case USB_DT_SS_ENDPOINT_COMP:
2589		pr_vdebug("EP SS companion descriptor\n");
2590		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2591			goto inv_length;
2592		break;
2593
2594	case USB_DT_OTHER_SPEED_CONFIG:
2595	case USB_DT_INTERFACE_POWER:
2596	case USB_DT_DEBUG:
2597	case USB_DT_SECURITY:
2598	case USB_DT_CS_RADIO_CONTROL:
2599		/* TODO */
2600		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2601		return -EINVAL;
2602
2603	default:
2604		/* We should never be here */
2605		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2606		return -EINVAL;
2607
2608inv_length:
2609		pr_vdebug("invalid length: %d (descriptor %d)\n",
2610			  _ds->bLength, _ds->bDescriptorType);
2611		return -EINVAL;
2612	}
2613
2614#undef __entity
2615#undef __entity_check_DESCRIPTOR
2616#undef __entity_check_INTERFACE
2617#undef __entity_check_STRING
2618#undef __entity_check_ENDPOINT
2619
2620	return length;
2621}
2622
2623static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2624				     ffs_entity_callback entity, void *priv)
2625{
2626	const unsigned _len = len;
2627	unsigned long num = 0;
2628	int current_class = -1;
2629	int current_subclass = -1;
2630
2631	for (;;) {
2632		int ret;
2633
2634		if (num == count)
2635			data = NULL;
2636
2637		/* Record "descriptor" entity */
2638		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2639		if (ret < 0) {
2640			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2641				 num, ret);
2642			return ret;
2643		}
2644
2645		if (!data)
2646			return _len - len;
2647
2648		ret = ffs_do_single_desc(data, len, entity, priv,
2649			&current_class, &current_subclass);
2650		if (ret < 0) {
2651			pr_debug("%s returns %d\n", __func__, ret);
2652			return ret;
2653		}
2654
2655		len -= ret;
2656		data += ret;
2657		++num;
2658	}
2659}
2660
2661static int __ffs_data_do_entity(enum ffs_entity_type type,
2662				u8 *valuep, struct usb_descriptor_header *desc,
2663				void *priv)
2664{
2665	struct ffs_desc_helper *helper = priv;
2666	struct usb_endpoint_descriptor *d;
2667
2668	switch (type) {
2669	case FFS_DESCRIPTOR:
2670		break;
2671
2672	case FFS_INTERFACE:
2673		/*
2674		 * Interfaces are indexed from zero so if we
2675		 * encountered interface "n" then there are at least
2676		 * "n+1" interfaces.
2677		 */
2678		if (*valuep >= helper->interfaces_count)
2679			helper->interfaces_count = *valuep + 1;
2680		break;
2681
2682	case FFS_STRING:
2683		/*
2684		 * Strings are indexed from 1 (0 is reserved
2685		 * for languages list)
2686		 */
2687		if (*valuep > helper->ffs->strings_count)
2688			helper->ffs->strings_count = *valuep;
2689		break;
2690
2691	case FFS_ENDPOINT:
2692		d = (void *)desc;
2693		helper->eps_count++;
2694		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2695			return -EINVAL;
2696		/* Check if descriptors for any speed were already parsed */
2697		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2698			helper->ffs->eps_addrmap[helper->eps_count] =
2699				d->bEndpointAddress;
2700		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2701				d->bEndpointAddress)
2702			return -EINVAL;
2703		break;
2704	}
2705
2706	return 0;
2707}
2708
2709static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2710				   struct usb_os_desc_header *desc)
2711{
2712	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2713	u16 w_index = le16_to_cpu(desc->wIndex);
2714
2715	if (bcd_version == 0x1) {
2716		pr_warn("bcdVersion must be 0x0100, stored in Little Endian order. "
2717			"Userspace driver should be fixed, accepting 0x0001 for compatibility.\n");
2718	} else if (bcd_version != 0x100) {
2719		pr_vdebug("unsupported os descriptors version: 0x%x\n",
2720			  bcd_version);
2721		return -EINVAL;
2722	}
2723	switch (w_index) {
2724	case 0x4:
2725		*next_type = FFS_OS_DESC_EXT_COMPAT;
2726		break;
2727	case 0x5:
2728		*next_type = FFS_OS_DESC_EXT_PROP;
2729		break;
2730	default:
2731		pr_vdebug("unsupported os descriptor type: %d", w_index);
2732		return -EINVAL;
2733	}
2734
2735	return sizeof(*desc);
2736}
2737
2738/*
2739 * Process all extended compatibility/extended property descriptors
2740 * of a feature descriptor
2741 */
2742static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2743					      enum ffs_os_desc_type type,
2744					      u16 feature_count,
2745					      ffs_os_desc_callback entity,
2746					      void *priv,
2747					      struct usb_os_desc_header *h)
2748{
2749	int ret;
2750	const unsigned _len = len;
2751
2752	/* loop over all ext compat/ext prop descriptors */
2753	while (feature_count--) {
2754		ret = entity(type, h, data, len, priv);
2755		if (ret < 0) {
2756			pr_debug("bad OS descriptor, type: %d\n", type);
2757			return ret;
2758		}
2759		data += ret;
2760		len -= ret;
2761	}
2762	return _len - len;
2763}
2764
2765/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2766static int __must_check ffs_do_os_descs(unsigned count,
2767					char *data, unsigned len,
2768					ffs_os_desc_callback entity, void *priv)
2769{
2770	const unsigned _len = len;
2771	unsigned long num = 0;
2772
2773	for (num = 0; num < count; ++num) {
2774		int ret;
2775		enum ffs_os_desc_type type;
2776		u16 feature_count;
2777		struct usb_os_desc_header *desc = (void *)data;
2778
2779		if (len < sizeof(*desc))
2780			return -EINVAL;
2781
2782		/*
2783		 * Record "descriptor" entity.
2784		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2785		 * Move the data pointer to the beginning of extended
2786		 * compatibilities proper or extended properties proper
2787		 * portions of the data
2788		 */
2789		if (le32_to_cpu(desc->dwLength) > len)
2790			return -EINVAL;
2791
2792		ret = __ffs_do_os_desc_header(&type, desc);
2793		if (ret < 0) {
2794			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2795				 num, ret);
2796			return ret;
2797		}
2798		/*
2799		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2800		 */
2801		feature_count = le16_to_cpu(desc->wCount);
2802		if (type == FFS_OS_DESC_EXT_COMPAT &&
2803		    (feature_count > 255 || desc->Reserved))
2804				return -EINVAL;
2805		len -= ret;
2806		data += ret;
2807
2808		/*
2809		 * Process all function/property descriptors
2810		 * of this Feature Descriptor
2811		 */
2812		ret = ffs_do_single_os_desc(data, len, type,
2813					    feature_count, entity, priv, desc);
2814		if (ret < 0) {
2815			pr_debug("%s returns %d\n", __func__, ret);
2816			return ret;
2817		}
2818
2819		len -= ret;
2820		data += ret;
2821	}
2822	return _len - len;
2823}
2824
2825/*
2826 * Validate contents of the buffer from userspace related to OS descriptors.
2827 */
2828static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2829				 struct usb_os_desc_header *h, void *data,
2830				 unsigned len, void *priv)
2831{
2832	struct ffs_data *ffs = priv;
2833	u8 length;
2834
2835	switch (type) {
2836	case FFS_OS_DESC_EXT_COMPAT: {
2837		struct usb_ext_compat_desc *d = data;
2838		int i;
2839
2840		if (len < sizeof(*d) ||
2841		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2842			return -EINVAL;
2843		if (d->Reserved1 != 1) {
2844			/*
2845			 * According to the spec, Reserved1 must be set to 1
2846			 * but older kernels incorrectly rejected non-zero
2847			 * values.  We fix it here to avoid returning EINVAL
2848			 * in response to values we used to accept.
2849			 */
2850			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2851			d->Reserved1 = 1;
2852		}
2853		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2854			if (d->Reserved2[i])
2855				return -EINVAL;
2856
2857		length = sizeof(struct usb_ext_compat_desc);
2858	}
2859		break;
2860	case FFS_OS_DESC_EXT_PROP: {
2861		struct usb_ext_prop_desc *d = data;
2862		u32 type, pdl;
2863		u16 pnl;
2864
2865		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2866			return -EINVAL;
2867		length = le32_to_cpu(d->dwSize);
2868		if (len < length)
2869			return -EINVAL;
2870		type = le32_to_cpu(d->dwPropertyDataType);
2871		if (type < USB_EXT_PROP_UNICODE ||
2872		    type > USB_EXT_PROP_UNICODE_MULTI) {
2873			pr_vdebug("unsupported os descriptor property type: %d",
2874				  type);
2875			return -EINVAL;
2876		}
2877		pnl = le16_to_cpu(d->wPropertyNameLength);
2878		if (length < 14 + pnl) {
2879			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2880				  length, pnl, type);
2881			return -EINVAL;
2882		}
2883		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2884		if (length != 14 + pnl + pdl) {
2885			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2886				  length, pnl, pdl, type);
2887			return -EINVAL;
2888		}
2889		++ffs->ms_os_descs_ext_prop_count;
2890		/* property name reported to the host as "WCHAR"s */
2891		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2892		ffs->ms_os_descs_ext_prop_data_len += pdl;
2893	}
2894		break;
2895	default:
2896		pr_vdebug("unknown descriptor: %d\n", type);
2897		return -EINVAL;
2898	}
2899	return length;
2900}
2901
2902static int __ffs_data_got_descs(struct ffs_data *ffs,
2903				char *const _data, size_t len)
2904{
2905	char *data = _data, *raw_descs;
2906	unsigned os_descs_count = 0, counts[3], flags;
2907	int ret = -EINVAL, i;
2908	struct ffs_desc_helper helper;
2909
2910	if (get_unaligned_le32(data + 4) != len)
2911		goto error;
2912
2913	switch (get_unaligned_le32(data)) {
2914	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2915		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2916		data += 8;
2917		len  -= 8;
2918		break;
2919	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2920		flags = get_unaligned_le32(data + 8);
2921		ffs->user_flags = flags;
2922		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2923			      FUNCTIONFS_HAS_HS_DESC |
2924			      FUNCTIONFS_HAS_SS_DESC |
2925			      FUNCTIONFS_HAS_MS_OS_DESC |
2926			      FUNCTIONFS_VIRTUAL_ADDR |
2927			      FUNCTIONFS_EVENTFD |
2928			      FUNCTIONFS_ALL_CTRL_RECIP |
2929			      FUNCTIONFS_CONFIG0_SETUP)) {
2930			ret = -ENOSYS;
2931			goto error;
2932		}
2933		data += 12;
2934		len  -= 12;
2935		break;
2936	default:
2937		goto error;
2938	}
2939
2940	if (flags & FUNCTIONFS_EVENTFD) {
2941		if (len < 4)
2942			goto error;
2943		ffs->ffs_eventfd =
2944			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2945		if (IS_ERR(ffs->ffs_eventfd)) {
2946			ret = PTR_ERR(ffs->ffs_eventfd);
2947			ffs->ffs_eventfd = NULL;
2948			goto error;
2949		}
2950		data += 4;
2951		len  -= 4;
2952	}
2953
2954	/* Read fs_count, hs_count and ss_count (if present) */
2955	for (i = 0; i < 3; ++i) {
2956		if (!(flags & (1 << i))) {
2957			counts[i] = 0;
2958		} else if (len < 4) {
2959			goto error;
2960		} else {
2961			counts[i] = get_unaligned_le32(data);
2962			data += 4;
2963			len  -= 4;
2964		}
2965	}
2966	if (flags & (1 << i)) {
2967		if (len < 4) {
2968			goto error;
2969		}
2970		os_descs_count = get_unaligned_le32(data);
2971		data += 4;
2972		len -= 4;
2973	}
2974
2975	/* Read descriptors */
2976	raw_descs = data;
2977	helper.ffs = ffs;
2978	for (i = 0; i < 3; ++i) {
2979		if (!counts[i])
2980			continue;
2981		helper.interfaces_count = 0;
2982		helper.eps_count = 0;
2983		ret = ffs_do_descs(counts[i], data, len,
2984				   __ffs_data_do_entity, &helper);
2985		if (ret < 0)
2986			goto error;
2987		if (!ffs->eps_count && !ffs->interfaces_count) {
2988			ffs->eps_count = helper.eps_count;
2989			ffs->interfaces_count = helper.interfaces_count;
2990		} else {
2991			if (ffs->eps_count != helper.eps_count) {
2992				ret = -EINVAL;
2993				goto error;
2994			}
2995			if (ffs->interfaces_count != helper.interfaces_count) {
2996				ret = -EINVAL;
2997				goto error;
2998			}
2999		}
3000		data += ret;
3001		len  -= ret;
3002	}
3003	if (os_descs_count) {
3004		ret = ffs_do_os_descs(os_descs_count, data, len,
3005				      __ffs_data_do_os_desc, ffs);
3006		if (ret < 0)
3007			goto error;
3008		data += ret;
3009		len -= ret;
3010	}
3011
3012	if (raw_descs == data || len) {
3013		ret = -EINVAL;
3014		goto error;
3015	}
3016
3017	ffs->raw_descs_data	= _data;
3018	ffs->raw_descs		= raw_descs;
3019	ffs->raw_descs_length	= data - raw_descs;
3020	ffs->fs_descs_count	= counts[0];
3021	ffs->hs_descs_count	= counts[1];
3022	ffs->ss_descs_count	= counts[2];
3023	ffs->ms_os_descs_count	= os_descs_count;
3024
3025	return 0;
3026
3027error:
3028	kfree(_data);
3029	return ret;
3030}
3031
3032static int __ffs_data_got_strings(struct ffs_data *ffs,
3033				  char *const _data, size_t len)
3034{
3035	u32 str_count, needed_count, lang_count;
3036	struct usb_gadget_strings **stringtabs, *t;
3037	const char *data = _data;
3038	struct usb_string *s;
3039
3040	if (len < 16 ||
3041	    get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
3042	    get_unaligned_le32(data + 4) != len)
3043		goto error;
3044	str_count  = get_unaligned_le32(data + 8);
3045	lang_count = get_unaligned_le32(data + 12);
3046
3047	/* if one is zero the other must be zero */
3048	if (!str_count != !lang_count)
3049		goto error;
3050
3051	/* Do we have at least as many strings as descriptors need? */
3052	needed_count = ffs->strings_count;
3053	if (str_count < needed_count)
3054		goto error;
3055
3056	/*
3057	 * If we don't need any strings just return and free all
3058	 * memory.
3059	 */
3060	if (!needed_count) {
3061		kfree(_data);
3062		return 0;
3063	}
3064
3065	/* Allocate everything in one chunk so there's less maintenance. */
3066	{
3067		unsigned i = 0;
3068		vla_group(d);
3069		vla_item(d, struct usb_gadget_strings *, stringtabs,
3070			size_add(lang_count, 1));
3071		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
3072		vla_item(d, struct usb_string, strings,
3073			size_mul(lang_count, (needed_count + 1)));
3074
3075		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
3076
3077		if (!vlabuf) {
3078			kfree(_data);
3079			return -ENOMEM;
3080		}
3081
3082		/* Initialize the VLA pointers */
3083		stringtabs = vla_ptr(vlabuf, d, stringtabs);
3084		t = vla_ptr(vlabuf, d, stringtab);
3085		i = lang_count;
3086		do {
3087			*stringtabs++ = t++;
3088		} while (--i);
3089		*stringtabs = NULL;
3090
3091		/* stringtabs = vlabuf = d_stringtabs for later kfree */
3092		stringtabs = vla_ptr(vlabuf, d, stringtabs);
3093		t = vla_ptr(vlabuf, d, stringtab);
3094		s = vla_ptr(vlabuf, d, strings);
3095	}
3096
3097	/* For each language */
3098	data += 16;
3099	len -= 16;
3100
3101	do { /* lang_count > 0 so we can use do-while */
3102		unsigned needed = needed_count;
3103		u32 str_per_lang = str_count;
3104
3105		if (len < 3)
3106			goto error_free;
3107		t->language = get_unaligned_le16(data);
3108		t->strings  = s;
3109		++t;
3110
3111		data += 2;
3112		len -= 2;
3113
3114		/* For each string */
3115		do { /* str_count > 0 so we can use do-while */
3116			size_t length = strnlen(data, len);
3117
3118			if (length == len)
3119				goto error_free;
3120
3121			/*
3122			 * User may provide more strings then we need,
3123			 * if that's the case we simply ignore the
3124			 * rest
3125			 */
3126			if (needed) {
3127				/*
3128				 * s->id will be set while adding
3129				 * function to configuration so for
3130				 * now just leave garbage here.
3131				 */
3132				s->s = data;
3133				--needed;
3134				++s;
3135			}
3136
3137			data += length + 1;
3138			len -= length + 1;
3139		} while (--str_per_lang);
3140
3141		s->id = 0;   /* terminator */
3142		s->s = NULL;
3143		++s;
3144
3145	} while (--lang_count);
3146
3147	/* Some garbage left? */
3148	if (len)
3149		goto error_free;
3150
3151	/* Done! */
3152	ffs->stringtabs = stringtabs;
3153	ffs->raw_strings = _data;
3154
3155	return 0;
3156
3157error_free:
3158	kfree(stringtabs);
3159error:
3160	kfree(_data);
3161	return -EINVAL;
3162}
3163
3164
3165/* Events handling and management *******************************************/
3166
3167static void __ffs_event_add(struct ffs_data *ffs,
3168			    enum usb_functionfs_event_type type)
3169{
3170	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
3171	int neg = 0;
3172
3173	/*
3174	 * Abort any unhandled setup
3175	 *
3176	 * We do not need to worry about some cmpxchg() changing value
3177	 * of ffs->setup_state without holding the lock because when
3178	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
3179	 * the source does nothing.
3180	 */
3181	if (ffs->setup_state == FFS_SETUP_PENDING)
3182		ffs->setup_state = FFS_SETUP_CANCELLED;
3183
3184	/*
3185	 * Logic of this function guarantees that there are at most four pending
3186	 * evens on ffs->ev.types queue.  This is important because the queue
3187	 * has space for four elements only and __ffs_ep0_read_events function
3188	 * depends on that limit as well.  If more event types are added, those
3189	 * limits have to be revisited or guaranteed to still hold.
3190	 */
3191	switch (type) {
3192	case FUNCTIONFS_RESUME:
3193		rem_type2 = FUNCTIONFS_SUSPEND;
3194		fallthrough;
3195	case FUNCTIONFS_SUSPEND:
3196	case FUNCTIONFS_SETUP:
3197		rem_type1 = type;
3198		/* Discard all similar events */
3199		break;
3200
3201	case FUNCTIONFS_BIND:
3202	case FUNCTIONFS_UNBIND:
3203	case FUNCTIONFS_DISABLE:
3204	case FUNCTIONFS_ENABLE:
3205		/* Discard everything other then power management. */
3206		rem_type1 = FUNCTIONFS_SUSPEND;
3207		rem_type2 = FUNCTIONFS_RESUME;
3208		neg = 1;
3209		break;
3210
3211	default:
3212		WARN(1, "%d: unknown event, this should not happen\n", type);
3213		return;
3214	}
3215
3216	{
3217		u8 *ev  = ffs->ev.types, *out = ev;
3218		unsigned n = ffs->ev.count;
3219		for (; n; --n, ++ev)
3220			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
3221				*out++ = *ev;
3222			else
3223				pr_vdebug("purging event %d\n", *ev);
3224		ffs->ev.count = out - ffs->ev.types;
3225	}
3226
3227	pr_vdebug("adding event %d\n", type);
3228	ffs->ev.types[ffs->ev.count++] = type;
3229	wake_up_locked(&ffs->ev.waitq);
3230	if (ffs->ffs_eventfd)
3231		eventfd_signal(ffs->ffs_eventfd);
3232}
3233
3234static void ffs_event_add(struct ffs_data *ffs,
3235			  enum usb_functionfs_event_type type)
3236{
3237	unsigned long flags;
3238	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3239	__ffs_event_add(ffs, type);
3240	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3241}
3242
3243/* Bind/unbind USB function hooks *******************************************/
3244
3245static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
3246{
3247	int i;
3248
3249	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
3250		if (ffs->eps_addrmap[i] == endpoint_address)
3251			return i;
3252	return -ENOENT;
3253}
3254
3255static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
3256				    struct usb_descriptor_header *desc,
3257				    void *priv)
3258{
3259	struct usb_endpoint_descriptor *ds = (void *)desc;
3260	struct ffs_function *func = priv;
3261	struct ffs_ep *ffs_ep;
3262	unsigned ep_desc_id;
3263	int idx;
3264	static const char *speed_names[] = { "full", "high", "super" };
3265
3266	if (type != FFS_DESCRIPTOR)
3267		return 0;
3268
3269	/*
3270	 * If ss_descriptors is not NULL, we are reading super speed
3271	 * descriptors; if hs_descriptors is not NULL, we are reading high
3272	 * speed descriptors; otherwise, we are reading full speed
3273	 * descriptors.
3274	 */
3275	if (func->function.ss_descriptors) {
3276		ep_desc_id = 2;
3277		func->function.ss_descriptors[(long)valuep] = desc;
3278	} else if (func->function.hs_descriptors) {
3279		ep_desc_id = 1;
3280		func->function.hs_descriptors[(long)valuep] = desc;
3281	} else {
3282		ep_desc_id = 0;
3283		func->function.fs_descriptors[(long)valuep]    = desc;
3284	}
3285
3286	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
3287		return 0;
3288
3289	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
3290	if (idx < 0)
3291		return idx;
3292
3293	ffs_ep = func->eps + idx;
3294
3295	if (ffs_ep->descs[ep_desc_id]) {
3296		pr_err("two %sspeed descriptors for EP %d\n",
3297			  speed_names[ep_desc_id],
3298			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
3299		return -EINVAL;
3300	}
3301	ffs_ep->descs[ep_desc_id] = ds;
3302
3303	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
3304	if (ffs_ep->ep) {
3305		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
3306		if (!ds->wMaxPacketSize)
3307			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
3308	} else {
3309		struct usb_request *req;
3310		struct usb_ep *ep;
3311		u8 bEndpointAddress;
3312		u16 wMaxPacketSize;
3313
3314		/*
3315		 * We back up bEndpointAddress because autoconfig overwrites
3316		 * it with physical endpoint address.
3317		 */
3318		bEndpointAddress = ds->bEndpointAddress;
3319		/*
3320		 * We back up wMaxPacketSize because autoconfig treats
3321		 * endpoint descriptors as if they were full speed.
3322		 */
3323		wMaxPacketSize = ds->wMaxPacketSize;
3324		pr_vdebug("autoconfig\n");
3325		ep = usb_ep_autoconfig(func->gadget, ds);
3326		if (!ep)
3327			return -ENOTSUPP;
3328		ep->driver_data = func->eps + idx;
3329
3330		req = usb_ep_alloc_request(ep, GFP_KERNEL);
3331		if (!req)
3332			return -ENOMEM;
3333
3334		ffs_ep->ep  = ep;
3335		ffs_ep->req = req;
3336		func->eps_revmap[ds->bEndpointAddress &
3337				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
3338		/*
3339		 * If we use virtual address mapping, we restore
3340		 * original bEndpointAddress value.
3341		 */
3342		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3343			ds->bEndpointAddress = bEndpointAddress;
3344		/*
3345		 * Restore wMaxPacketSize which was potentially
3346		 * overwritten by autoconfig.
3347		 */
3348		ds->wMaxPacketSize = wMaxPacketSize;
3349	}
3350	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
3351
3352	return 0;
3353}
3354
3355static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
3356				   struct usb_descriptor_header *desc,
3357				   void *priv)
3358{
3359	struct ffs_function *func = priv;
3360	unsigned idx;
3361	u8 newValue;
3362
3363	switch (type) {
3364	default:
3365	case FFS_DESCRIPTOR:
3366		/* Handled in previous pass by __ffs_func_bind_do_descs() */
3367		return 0;
3368
3369	case FFS_INTERFACE:
3370		idx = *valuep;
3371		if (func->interfaces_nums[idx] < 0) {
3372			int id = usb_interface_id(func->conf, &func->function);
3373			if (id < 0)
3374				return id;
3375			func->interfaces_nums[idx] = id;
3376		}
3377		newValue = func->interfaces_nums[idx];
3378		break;
3379
3380	case FFS_STRING:
3381		/* String' IDs are allocated when fsf_data is bound to cdev */
3382		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
3383		break;
3384
3385	case FFS_ENDPOINT:
3386		/*
3387		 * USB_DT_ENDPOINT are handled in
3388		 * __ffs_func_bind_do_descs().
3389		 */
3390		if (desc->bDescriptorType == USB_DT_ENDPOINT)
3391			return 0;
3392
3393		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
3394		if (!func->eps[idx].ep)
3395			return -EINVAL;
3396
3397		{
3398			struct usb_endpoint_descriptor **descs;
3399			descs = func->eps[idx].descs;
3400			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
3401		}
3402		break;
3403	}
3404
3405	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
3406	*valuep = newValue;
3407	return 0;
3408}
3409
3410static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
3411				      struct usb_os_desc_header *h, void *data,
3412				      unsigned len, void *priv)
3413{
3414	struct ffs_function *func = priv;
3415	u8 length = 0;
3416
3417	switch (type) {
3418	case FFS_OS_DESC_EXT_COMPAT: {
3419		struct usb_ext_compat_desc *desc = data;
3420		struct usb_os_desc_table *t;
3421
3422		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
3423		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3424		memcpy(t->os_desc->ext_compat_id, &desc->IDs,
3425		       sizeof_field(struct usb_ext_compat_desc, IDs));
3426		length = sizeof(*desc);
3427	}
3428		break;
3429	case FFS_OS_DESC_EXT_PROP: {
3430		struct usb_ext_prop_desc *desc = data;
3431		struct usb_os_desc_table *t;
3432		struct usb_os_desc_ext_prop *ext_prop;
3433		char *ext_prop_name;
3434		char *ext_prop_data;
3435
3436		t = &func->function.os_desc_table[h->interface];
3437		t->if_id = func->interfaces_nums[h->interface];
3438
3439		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3440		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3441
3442		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3443		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3444		ext_prop->data_len = le32_to_cpu(*(__le32 *)
3445			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3446		length = ext_prop->name_len + ext_prop->data_len + 14;
3447
3448		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3449		func->ffs->ms_os_descs_ext_prop_name_avail +=
3450			ext_prop->name_len;
3451
3452		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3453		func->ffs->ms_os_descs_ext_prop_data_avail +=
3454			ext_prop->data_len;
3455		memcpy(ext_prop_data,
3456		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
3457		       ext_prop->data_len);
3458		/* unicode data reported to the host as "WCHAR"s */
3459		switch (ext_prop->type) {
3460		case USB_EXT_PROP_UNICODE:
3461		case USB_EXT_PROP_UNICODE_ENV:
3462		case USB_EXT_PROP_UNICODE_LINK:
3463		case USB_EXT_PROP_UNICODE_MULTI:
3464			ext_prop->data_len *= 2;
3465			break;
3466		}
3467		ext_prop->data = ext_prop_data;
3468
3469		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3470		       ext_prop->name_len);
3471		/* property name reported to the host as "WCHAR"s */
3472		ext_prop->name_len *= 2;
3473		ext_prop->name = ext_prop_name;
3474
3475		t->os_desc->ext_prop_len +=
3476			ext_prop->name_len + ext_prop->data_len + 14;
3477		++t->os_desc->ext_prop_count;
3478		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3479	}
3480		break;
3481	default:
3482		pr_vdebug("unknown descriptor: %d\n", type);
3483	}
3484
3485	return length;
3486}
3487
3488static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3489						struct usb_configuration *c)
3490{
3491	struct ffs_function *func = ffs_func_from_usb(f);
3492	struct f_fs_opts *ffs_opts =
3493		container_of(f->fi, struct f_fs_opts, func_inst);
3494	struct ffs_data *ffs_data;
3495	int ret;
3496
3497	/*
3498	 * Legacy gadget triggers binding in functionfs_ready_callback,
3499	 * which already uses locking; taking the same lock here would
3500	 * cause a deadlock.
3501	 *
3502	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3503	 */
3504	if (!ffs_opts->no_configfs)
3505		ffs_dev_lock();
3506	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3507	ffs_data = ffs_opts->dev->ffs_data;
3508	if (!ffs_opts->no_configfs)
3509		ffs_dev_unlock();
3510	if (ret)
3511		return ERR_PTR(ret);
3512
3513	func->ffs = ffs_data;
3514	func->conf = c;
3515	func->gadget = c->cdev->gadget;
3516
3517	/*
3518	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3519	 * configurations are bound in sequence with list_for_each_entry,
3520	 * in each configuration its functions are bound in sequence
3521	 * with list_for_each_entry, so we assume no race condition
3522	 * with regard to ffs_opts->bound access
3523	 */
3524	if (!ffs_opts->refcnt) {
3525		ret = functionfs_bind(func->ffs, c->cdev);
3526		if (ret)
3527			return ERR_PTR(ret);
3528	}
3529	ffs_opts->refcnt++;
3530	func->function.strings = func->ffs->stringtabs;
3531
3532	return ffs_opts;
3533}
3534
3535static int _ffs_func_bind(struct usb_configuration *c,
3536			  struct usb_function *f)
3537{
3538	struct ffs_function *func = ffs_func_from_usb(f);
3539	struct ffs_data *ffs = func->ffs;
3540
3541	const int full = !!func->ffs->fs_descs_count;
3542	const int high = !!func->ffs->hs_descs_count;
3543	const int super = !!func->ffs->ss_descs_count;
3544
3545	int fs_len, hs_len, ss_len, ret, i;
3546	struct ffs_ep *eps_ptr;
3547
3548	/* Make it a single chunk, less management later on */
3549	vla_group(d);
3550	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3551	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3552		full ? ffs->fs_descs_count + 1 : 0);
3553	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3554		high ? ffs->hs_descs_count + 1 : 0);
3555	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3556		super ? ffs->ss_descs_count + 1 : 0);
3557	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3558	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3559			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3560	vla_item_with_sz(d, char[16], ext_compat,
3561			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3562	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3563			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3564	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3565			 ffs->ms_os_descs_ext_prop_count);
3566	vla_item_with_sz(d, char, ext_prop_name,
3567			 ffs->ms_os_descs_ext_prop_name_len);
3568	vla_item_with_sz(d, char, ext_prop_data,
3569			 ffs->ms_os_descs_ext_prop_data_len);
3570	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3571	char *vlabuf;
3572
3573	/* Has descriptors only for speeds gadget does not support */
3574	if (!(full | high | super))
3575		return -ENOTSUPP;
3576
3577	/* Allocate a single chunk, less management later on */
3578	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3579	if (!vlabuf)
3580		return -ENOMEM;
3581
3582	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3583	ffs->ms_os_descs_ext_prop_name_avail =
3584		vla_ptr(vlabuf, d, ext_prop_name);
3585	ffs->ms_os_descs_ext_prop_data_avail =
3586		vla_ptr(vlabuf, d, ext_prop_data);
3587
3588	/* Copy descriptors  */
3589	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3590	       ffs->raw_descs_length);
3591
3592	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3593	eps_ptr = vla_ptr(vlabuf, d, eps);
3594	for (i = 0; i < ffs->eps_count; i++)
3595		eps_ptr[i].num = -1;
3596
3597	/* Save pointers
3598	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3599	*/
3600	func->eps             = vla_ptr(vlabuf, d, eps);
3601	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3602
3603	/*
3604	 * Go through all the endpoint descriptors and allocate
3605	 * endpoints first, so that later we can rewrite the endpoint
3606	 * numbers without worrying that it may be described later on.
3607	 */
3608	if (full) {
3609		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3610		fs_len = ffs_do_descs(ffs->fs_descs_count,
3611				      vla_ptr(vlabuf, d, raw_descs),
3612				      d_raw_descs__sz,
3613				      __ffs_func_bind_do_descs, func);
3614		if (fs_len < 0) {
3615			ret = fs_len;
3616			goto error;
3617		}
3618	} else {
3619		fs_len = 0;
3620	}
3621
3622	if (high) {
3623		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3624		hs_len = ffs_do_descs(ffs->hs_descs_count,
3625				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3626				      d_raw_descs__sz - fs_len,
3627				      __ffs_func_bind_do_descs, func);
3628		if (hs_len < 0) {
3629			ret = hs_len;
3630			goto error;
3631		}
3632	} else {
3633		hs_len = 0;
3634	}
3635
3636	if (super) {
3637		func->function.ss_descriptors = func->function.ssp_descriptors =
3638			vla_ptr(vlabuf, d, ss_descs);
3639		ss_len = ffs_do_descs(ffs->ss_descs_count,
3640				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3641				d_raw_descs__sz - fs_len - hs_len,
3642				__ffs_func_bind_do_descs, func);
3643		if (ss_len < 0) {
3644			ret = ss_len;
3645			goto error;
3646		}
3647	} else {
3648		ss_len = 0;
3649	}
3650
3651	/*
3652	 * Now handle interface numbers allocation and interface and
3653	 * endpoint numbers rewriting.  We can do that in one go
3654	 * now.
3655	 */
3656	ret = ffs_do_descs(ffs->fs_descs_count +
3657			   (high ? ffs->hs_descs_count : 0) +
3658			   (super ? ffs->ss_descs_count : 0),
3659			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3660			   __ffs_func_bind_do_nums, func);
3661	if (ret < 0)
3662		goto error;
3663
3664	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3665	if (c->cdev->use_os_string) {
3666		for (i = 0; i < ffs->interfaces_count; ++i) {
3667			struct usb_os_desc *desc;
3668
3669			desc = func->function.os_desc_table[i].os_desc =
3670				vla_ptr(vlabuf, d, os_desc) +
3671				i * sizeof(struct usb_os_desc);
3672			desc->ext_compat_id =
3673				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3674			INIT_LIST_HEAD(&desc->ext_prop);
3675		}
3676		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3677				      vla_ptr(vlabuf, d, raw_descs) +
3678				      fs_len + hs_len + ss_len,
3679				      d_raw_descs__sz - fs_len - hs_len -
3680				      ss_len,
3681				      __ffs_func_bind_do_os_desc, func);
3682		if (ret < 0)
3683			goto error;
3684	}
3685	func->function.os_desc_n =
3686		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3687
3688	/* And we're done */
3689	ffs_event_add(ffs, FUNCTIONFS_BIND);
3690	return 0;
3691
3692error:
3693	/* XXX Do we need to release all claimed endpoints here? */
3694	return ret;
3695}
3696
3697static int ffs_func_bind(struct usb_configuration *c,
3698			 struct usb_function *f)
3699{
3700	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3701	struct ffs_function *func = ffs_func_from_usb(f);
3702	int ret;
3703
3704	if (IS_ERR(ffs_opts))
3705		return PTR_ERR(ffs_opts);
3706
3707	ret = _ffs_func_bind(c, f);
3708	if (ret && !--ffs_opts->refcnt)
3709		functionfs_unbind(func->ffs);
3710
3711	return ret;
3712}
3713
3714
3715/* Other USB function hooks *************************************************/
3716
3717static void ffs_reset_work(struct work_struct *work)
3718{
3719	struct ffs_data *ffs = container_of(work,
3720		struct ffs_data, reset_work);
3721	ffs_data_reset(ffs);
3722}
3723
3724static int ffs_func_get_alt(struct usb_function *f,
3725			    unsigned int interface)
3726{
3727	struct ffs_function *func = ffs_func_from_usb(f);
3728	int intf = ffs_func_revmap_intf(func, interface);
3729
3730	return (intf < 0) ? intf : func->cur_alt[interface];
3731}
3732
3733static int ffs_func_set_alt(struct usb_function *f,
3734			    unsigned interface, unsigned alt)
3735{
3736	struct ffs_function *func = ffs_func_from_usb(f);
3737	struct ffs_data *ffs = func->ffs;
3738	int ret = 0, intf;
3739
3740	if (alt > MAX_ALT_SETTINGS)
3741		return -EINVAL;
3742
3743	intf = ffs_func_revmap_intf(func, interface);
3744	if (intf < 0)
3745		return intf;
3746
3747	if (ffs->func)
3748		ffs_func_eps_disable(ffs->func);
3749
3750	if (ffs->state == FFS_DEACTIVATED) {
3751		ffs->state = FFS_CLOSING;
3752		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3753		schedule_work(&ffs->reset_work);
3754		return -ENODEV;
3755	}
3756
3757	if (ffs->state != FFS_ACTIVE)
3758		return -ENODEV;
3759
 
 
 
 
 
 
3760	ffs->func = func;
3761	ret = ffs_func_eps_enable(func);
3762	if (ret >= 0) {
3763		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3764		func->cur_alt[interface] = alt;
3765	}
3766	return ret;
3767}
3768
3769static void ffs_func_disable(struct usb_function *f)
3770{
3771	struct ffs_function *func = ffs_func_from_usb(f);
3772	struct ffs_data *ffs = func->ffs;
3773
3774	if (ffs->func)
3775		ffs_func_eps_disable(ffs->func);
3776
3777	if (ffs->state == FFS_DEACTIVATED) {
3778		ffs->state = FFS_CLOSING;
3779		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3780		schedule_work(&ffs->reset_work);
3781		return;
3782	}
3783
3784	if (ffs->state == FFS_ACTIVE) {
3785		ffs->func = NULL;
3786		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3787	}
3788}
3789
3790static int ffs_func_setup(struct usb_function *f,
3791			  const struct usb_ctrlrequest *creq)
3792{
3793	struct ffs_function *func = ffs_func_from_usb(f);
3794	struct ffs_data *ffs = func->ffs;
3795	unsigned long flags;
3796	int ret;
3797
3798	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3799	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3800	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3801	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3802	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3803
3804	/*
3805	 * Most requests directed to interface go through here
3806	 * (notable exceptions are set/get interface) so we need to
3807	 * handle them.  All other either handled by composite or
3808	 * passed to usb_configuration->setup() (if one is set).  No
3809	 * matter, we will handle requests directed to endpoint here
3810	 * as well (as it's straightforward).  Other request recipient
3811	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3812	 * is being used.
3813	 */
3814	if (ffs->state != FFS_ACTIVE)
3815		return -ENODEV;
3816
3817	switch (creq->bRequestType & USB_RECIP_MASK) {
3818	case USB_RECIP_INTERFACE:
3819		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3820		if (ret < 0)
3821			return ret;
3822		break;
3823
3824	case USB_RECIP_ENDPOINT:
3825		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3826		if (ret < 0)
3827			return ret;
3828		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3829			ret = func->ffs->eps_addrmap[ret];
3830		break;
3831
3832	default:
3833		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3834			ret = le16_to_cpu(creq->wIndex);
3835		else
3836			return -EOPNOTSUPP;
3837	}
3838
3839	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3840	ffs->ev.setup = *creq;
3841	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3842	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3843	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3844
3845	return ffs->ev.setup.wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3846}
3847
3848static bool ffs_func_req_match(struct usb_function *f,
3849			       const struct usb_ctrlrequest *creq,
3850			       bool config0)
3851{
3852	struct ffs_function *func = ffs_func_from_usb(f);
3853
3854	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3855		return false;
3856
3857	switch (creq->bRequestType & USB_RECIP_MASK) {
3858	case USB_RECIP_INTERFACE:
3859		return (ffs_func_revmap_intf(func,
3860					     le16_to_cpu(creq->wIndex)) >= 0);
3861	case USB_RECIP_ENDPOINT:
3862		return (ffs_func_revmap_ep(func,
3863					   le16_to_cpu(creq->wIndex)) >= 0);
3864	default:
3865		return (bool) (func->ffs->user_flags &
3866			       FUNCTIONFS_ALL_CTRL_RECIP);
3867	}
3868}
3869
3870static void ffs_func_suspend(struct usb_function *f)
3871{
3872	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3873}
3874
3875static void ffs_func_resume(struct usb_function *f)
3876{
3877	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3878}
3879
3880
3881/* Endpoint and interface numbers reverse mapping ***************************/
3882
3883static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3884{
3885	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3886	return num ? num : -EDOM;
3887}
3888
3889static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3890{
3891	short *nums = func->interfaces_nums;
3892	unsigned count = func->ffs->interfaces_count;
3893
3894	for (; count; --count, ++nums) {
3895		if (*nums >= 0 && *nums == intf)
3896			return nums - func->interfaces_nums;
3897	}
3898
3899	return -EDOM;
3900}
3901
3902
3903/* Devices management *******************************************************/
3904
3905static LIST_HEAD(ffs_devices);
3906
3907static struct ffs_dev *_ffs_do_find_dev(const char *name)
3908{
3909	struct ffs_dev *dev;
3910
3911	if (!name)
3912		return NULL;
3913
3914	list_for_each_entry(dev, &ffs_devices, entry) {
3915		if (strcmp(dev->name, name) == 0)
3916			return dev;
3917	}
3918
3919	return NULL;
3920}
3921
3922/*
3923 * ffs_lock must be taken by the caller of this function
3924 */
3925static struct ffs_dev *_ffs_get_single_dev(void)
3926{
3927	struct ffs_dev *dev;
3928
3929	if (list_is_singular(&ffs_devices)) {
3930		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3931		if (dev->single)
3932			return dev;
3933	}
3934
3935	return NULL;
3936}
3937
3938/*
3939 * ffs_lock must be taken by the caller of this function
3940 */
3941static struct ffs_dev *_ffs_find_dev(const char *name)
3942{
3943	struct ffs_dev *dev;
3944
3945	dev = _ffs_get_single_dev();
3946	if (dev)
3947		return dev;
3948
3949	return _ffs_do_find_dev(name);
3950}
3951
3952/* Configfs support *********************************************************/
3953
3954static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3955{
3956	return container_of(to_config_group(item), struct f_fs_opts,
3957			    func_inst.group);
3958}
3959
3960static ssize_t f_fs_opts_ready_show(struct config_item *item, char *page)
3961{
3962	struct f_fs_opts *opts = to_ffs_opts(item);
3963	int ready;
3964
3965	ffs_dev_lock();
3966	ready = opts->dev->desc_ready;
3967	ffs_dev_unlock();
3968
3969	return sprintf(page, "%d\n", ready);
3970}
3971
3972CONFIGFS_ATTR_RO(f_fs_opts_, ready);
3973
3974static struct configfs_attribute *ffs_attrs[] = {
3975	&f_fs_opts_attr_ready,
3976	NULL,
3977};
3978
3979static void ffs_attr_release(struct config_item *item)
3980{
3981	struct f_fs_opts *opts = to_ffs_opts(item);
3982
3983	usb_put_function_instance(&opts->func_inst);
3984}
3985
3986static struct configfs_item_operations ffs_item_ops = {
3987	.release	= ffs_attr_release,
3988};
3989
3990static const struct config_item_type ffs_func_type = {
3991	.ct_item_ops	= &ffs_item_ops,
3992	.ct_attrs	= ffs_attrs,
3993	.ct_owner	= THIS_MODULE,
3994};
3995
3996
3997/* Function registration interface ******************************************/
3998
3999static void ffs_free_inst(struct usb_function_instance *f)
4000{
4001	struct f_fs_opts *opts;
4002
4003	opts = to_f_fs_opts(f);
4004	ffs_release_dev(opts->dev);
4005	ffs_dev_lock();
4006	_ffs_free_dev(opts->dev);
4007	ffs_dev_unlock();
4008	kfree(opts);
4009}
4010
4011static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
4012{
4013	if (strlen(name) >= sizeof_field(struct ffs_dev, name))
4014		return -ENAMETOOLONG;
4015	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
4016}
4017
4018static struct usb_function_instance *ffs_alloc_inst(void)
4019{
4020	struct f_fs_opts *opts;
4021	struct ffs_dev *dev;
4022
4023	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
4024	if (!opts)
4025		return ERR_PTR(-ENOMEM);
4026
4027	opts->func_inst.set_inst_name = ffs_set_inst_name;
4028	opts->func_inst.free_func_inst = ffs_free_inst;
4029	ffs_dev_lock();
4030	dev = _ffs_alloc_dev();
4031	ffs_dev_unlock();
4032	if (IS_ERR(dev)) {
4033		kfree(opts);
4034		return ERR_CAST(dev);
4035	}
4036	opts->dev = dev;
4037	dev->opts = opts;
4038
4039	config_group_init_type_name(&opts->func_inst.group, "",
4040				    &ffs_func_type);
4041	return &opts->func_inst;
4042}
4043
4044static void ffs_free(struct usb_function *f)
4045{
4046	kfree(ffs_func_from_usb(f));
4047}
4048
4049static void ffs_func_unbind(struct usb_configuration *c,
4050			    struct usb_function *f)
4051{
4052	struct ffs_function *func = ffs_func_from_usb(f);
4053	struct ffs_data *ffs = func->ffs;
4054	struct f_fs_opts *opts =
4055		container_of(f->fi, struct f_fs_opts, func_inst);
4056	struct ffs_ep *ep = func->eps;
4057	unsigned count = ffs->eps_count;
4058	unsigned long flags;
4059
4060	if (ffs->func == func) {
4061		ffs_func_eps_disable(func);
4062		ffs->func = NULL;
4063	}
4064
4065	/* Drain any pending AIO completions */
4066	drain_workqueue(ffs->io_completion_wq);
4067
4068	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
4069	if (!--opts->refcnt)
4070		functionfs_unbind(ffs);
4071
4072	/* cleanup after autoconfig */
4073	spin_lock_irqsave(&func->ffs->eps_lock, flags);
4074	while (count--) {
4075		if (ep->ep && ep->req)
4076			usb_ep_free_request(ep->ep, ep->req);
4077		ep->req = NULL;
4078		++ep;
4079	}
4080	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
4081	kfree(func->eps);
4082	func->eps = NULL;
4083	/*
4084	 * eps, descriptors and interfaces_nums are allocated in the
4085	 * same chunk so only one free is required.
4086	 */
4087	func->function.fs_descriptors = NULL;
4088	func->function.hs_descriptors = NULL;
4089	func->function.ss_descriptors = NULL;
4090	func->function.ssp_descriptors = NULL;
4091	func->interfaces_nums = NULL;
4092
4093}
4094
4095static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
4096{
4097	struct ffs_function *func;
4098
4099	func = kzalloc(sizeof(*func), GFP_KERNEL);
4100	if (!func)
4101		return ERR_PTR(-ENOMEM);
4102
4103	func->function.name    = "Function FS Gadget";
4104
4105	func->function.bind    = ffs_func_bind;
4106	func->function.unbind  = ffs_func_unbind;
4107	func->function.set_alt = ffs_func_set_alt;
4108	func->function.get_alt = ffs_func_get_alt;
4109	func->function.disable = ffs_func_disable;
4110	func->function.setup   = ffs_func_setup;
4111	func->function.req_match = ffs_func_req_match;
4112	func->function.suspend = ffs_func_suspend;
4113	func->function.resume  = ffs_func_resume;
4114	func->function.free_func = ffs_free;
4115
4116	return &func->function;
4117}
4118
4119/*
4120 * ffs_lock must be taken by the caller of this function
4121 */
4122static struct ffs_dev *_ffs_alloc_dev(void)
4123{
4124	struct ffs_dev *dev;
4125	int ret;
4126
4127	if (_ffs_get_single_dev())
4128			return ERR_PTR(-EBUSY);
4129
4130	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4131	if (!dev)
4132		return ERR_PTR(-ENOMEM);
4133
4134	if (list_empty(&ffs_devices)) {
4135		ret = functionfs_init();
4136		if (ret) {
4137			kfree(dev);
4138			return ERR_PTR(ret);
4139		}
4140	}
4141
4142	list_add(&dev->entry, &ffs_devices);
4143
4144	return dev;
4145}
4146
4147int ffs_name_dev(struct ffs_dev *dev, const char *name)
4148{
4149	struct ffs_dev *existing;
4150	int ret = 0;
4151
4152	ffs_dev_lock();
4153
4154	existing = _ffs_do_find_dev(name);
4155	if (!existing)
4156		strscpy(dev->name, name, ARRAY_SIZE(dev->name));
4157	else if (existing != dev)
4158		ret = -EBUSY;
4159
4160	ffs_dev_unlock();
4161
4162	return ret;
4163}
4164EXPORT_SYMBOL_GPL(ffs_name_dev);
4165
4166int ffs_single_dev(struct ffs_dev *dev)
4167{
4168	int ret;
4169
4170	ret = 0;
4171	ffs_dev_lock();
4172
4173	if (!list_is_singular(&ffs_devices))
4174		ret = -EBUSY;
4175	else
4176		dev->single = true;
4177
4178	ffs_dev_unlock();
4179	return ret;
4180}
4181EXPORT_SYMBOL_GPL(ffs_single_dev);
4182
4183/*
4184 * ffs_lock must be taken by the caller of this function
4185 */
4186static void _ffs_free_dev(struct ffs_dev *dev)
4187{
4188	list_del(&dev->entry);
4189
4190	kfree(dev);
4191	if (list_empty(&ffs_devices))
4192		functionfs_cleanup();
4193}
4194
4195static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
4196{
4197	int ret = 0;
4198	struct ffs_dev *ffs_dev;
4199
4200	ffs_dev_lock();
4201
4202	ffs_dev = _ffs_find_dev(dev_name);
4203	if (!ffs_dev) {
4204		ret = -ENOENT;
4205	} else if (ffs_dev->mounted) {
4206		ret = -EBUSY;
4207	} else if (ffs_dev->ffs_acquire_dev_callback &&
4208		   ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
4209		ret = -ENOENT;
4210	} else {
4211		ffs_dev->mounted = true;
4212		ffs_dev->ffs_data = ffs_data;
4213		ffs_data->private_data = ffs_dev;
4214	}
4215
4216	ffs_dev_unlock();
4217	return ret;
4218}
4219
4220static void ffs_release_dev(struct ffs_dev *ffs_dev)
4221{
4222	ffs_dev_lock();
4223
4224	if (ffs_dev && ffs_dev->mounted) {
4225		ffs_dev->mounted = false;
4226		if (ffs_dev->ffs_data) {
4227			ffs_dev->ffs_data->private_data = NULL;
4228			ffs_dev->ffs_data = NULL;
4229		}
4230
4231		if (ffs_dev->ffs_release_dev_callback)
4232			ffs_dev->ffs_release_dev_callback(ffs_dev);
4233	}
4234
4235	ffs_dev_unlock();
4236}
4237
4238static int ffs_ready(struct ffs_data *ffs)
4239{
4240	struct ffs_dev *ffs_obj;
4241	int ret = 0;
4242
4243	ffs_dev_lock();
4244
4245	ffs_obj = ffs->private_data;
4246	if (!ffs_obj) {
4247		ret = -EINVAL;
4248		goto done;
4249	}
4250	if (WARN_ON(ffs_obj->desc_ready)) {
4251		ret = -EBUSY;
4252		goto done;
4253	}
4254
4255	ffs_obj->desc_ready = true;
4256
4257	if (ffs_obj->ffs_ready_callback) {
4258		ret = ffs_obj->ffs_ready_callback(ffs);
4259		if (ret)
4260			goto done;
4261	}
4262
4263	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
4264done:
4265	ffs_dev_unlock();
4266	return ret;
4267}
4268
4269static void ffs_closed(struct ffs_data *ffs)
4270{
4271	struct ffs_dev *ffs_obj;
4272	struct f_fs_opts *opts;
4273	struct config_item *ci;
4274
4275	ffs_dev_lock();
4276
4277	ffs_obj = ffs->private_data;
4278	if (!ffs_obj)
4279		goto done;
4280
4281	ffs_obj->desc_ready = false;
4282
4283	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
4284	    ffs_obj->ffs_closed_callback)
4285		ffs_obj->ffs_closed_callback(ffs);
4286
4287	if (ffs_obj->opts)
4288		opts = ffs_obj->opts;
4289	else
4290		goto done;
4291
4292	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
4293	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
4294		goto done;
4295
4296	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
4297	ffs_dev_unlock();
4298
4299	if (test_bit(FFS_FL_BOUND, &ffs->flags))
4300		unregister_gadget_item(ci);
4301	return;
4302done:
4303	ffs_dev_unlock();
4304}
4305
4306/* Misc helper functions ****************************************************/
4307
4308static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
4309{
4310	return nonblock
4311		? mutex_trylock(mutex) ? 0 : -EAGAIN
4312		: mutex_lock_interruptible(mutex);
4313}
4314
4315static char *ffs_prepare_buffer(const char __user *buf, size_t len)
4316{
4317	char *data;
4318
4319	if (!len)
4320		return NULL;
4321
4322	data = memdup_user(buf, len);
4323	if (IS_ERR(data))
4324		return data;
4325
4326	pr_vdebug("Buffer from user space:\n");
4327	ffs_dump_mem("", data, len);
4328
4329	return data;
4330}
4331
4332DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
4333MODULE_DESCRIPTION("user mode file system API for USB composite function controllers");
4334MODULE_LICENSE("GPL");
4335MODULE_AUTHOR("Michal Nazarewicz");