Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (c) 2015-2021, 2023 Linaro Limited
  4 */
 
  5#include <linux/device.h>
  6#include <linux/err.h>
  7#include <linux/errno.h>
  8#include <linux/mm.h>
  9#include <linux/slab.h>
 10#include <linux/tee_drv.h>
 11#include <linux/types.h>
 
 12#include "optee_private.h"
 
 13
 14#define MAX_ARG_PARAM_COUNT	6
 15
 16/*
 17 * How much memory we allocate for each entry. This doesn't have to be a
 18 * single page, but it makes sense to keep at least keep it as multiples of
 19 * the page size.
 20 */
 21#define SHM_ENTRY_SIZE		PAGE_SIZE
 22
 23/*
 24 * We need to have a compile time constant to be able to determine the
 25 * maximum needed size of the bit field.
 26 */
 27#define MIN_ARG_SIZE		OPTEE_MSG_GET_ARG_SIZE(MAX_ARG_PARAM_COUNT)
 28#define MAX_ARG_COUNT_PER_ENTRY	(SHM_ENTRY_SIZE / MIN_ARG_SIZE)
 29
 30/*
 31 * Shared memory for argument structs are cached here. The number of
 32 * arguments structs that can fit is determined at runtime depending on the
 33 * needed RPC parameter count reported by secure world
 34 * (optee->rpc_param_count).
 35 */
 36struct optee_shm_arg_entry {
 37	struct list_head list_node;
 38	struct tee_shm *shm;
 39	DECLARE_BITMAP(map, MAX_ARG_COUNT_PER_ENTRY);
 40};
 41
 42void optee_cq_init(struct optee_call_queue *cq, int thread_count)
 
 43{
 44	mutex_init(&cq->mutex);
 45	INIT_LIST_HEAD(&cq->waiters);
 46
 47	/*
 48	 * If cq->total_thread_count is 0 then we're not trying to keep
 49	 * track of how many free threads we have, instead we're relying on
 50	 * the secure world to tell us when we're out of thread and have to
 51	 * wait for another thread to become available.
 52	 */
 53	cq->total_thread_count = thread_count;
 54	cq->free_thread_count = thread_count;
 55}
 56
 57void optee_cq_wait_init(struct optee_call_queue *cq,
 58			struct optee_call_waiter *w, bool sys_thread)
 59{
 60	unsigned int free_thread_threshold;
 61	bool need_wait = false;
 62
 63	memset(w, 0, sizeof(*w));
 64
 65	/*
 66	 * We're preparing to make a call to secure world. In case we can't
 67	 * allocate a thread in secure world we'll end up waiting in
 68	 * optee_cq_wait_for_completion().
 69	 *
 70	 * Normally if there's no contention in secure world the call will
 71	 * complete and we can cleanup directly with optee_cq_wait_final().
 72	 */
 73	mutex_lock(&cq->mutex);
 74
 75	/*
 76	 * We add ourselves to the queue, but we don't wait. This
 77	 * guarantees that we don't lose a completion if secure world
 78	 * returns busy and another thread just exited and try to complete
 79	 * someone.
 80	 */
 81	init_completion(&w->c);
 82	list_add_tail(&w->list_node, &cq->waiters);
 83	w->sys_thread = sys_thread;
 84
 85	if (cq->total_thread_count) {
 86		if (sys_thread || !cq->sys_thread_req_count)
 87			free_thread_threshold = 0;
 88		else
 89			free_thread_threshold = 1;
 90
 91		if (cq->free_thread_count > free_thread_threshold)
 92			cq->free_thread_count--;
 93		else
 94			need_wait = true;
 95	}
 96
 97	mutex_unlock(&cq->mutex);
 98
 99	while (need_wait) {
100		optee_cq_wait_for_completion(cq, w);
101		mutex_lock(&cq->mutex);
102
103		if (sys_thread || !cq->sys_thread_req_count)
104			free_thread_threshold = 0;
105		else
106			free_thread_threshold = 1;
107
108		if (cq->free_thread_count > free_thread_threshold) {
109			cq->free_thread_count--;
110			need_wait = false;
111		}
112
113		mutex_unlock(&cq->mutex);
114	}
115}
116
117void optee_cq_wait_for_completion(struct optee_call_queue *cq,
118				  struct optee_call_waiter *w)
119{
120	wait_for_completion(&w->c);
121
122	mutex_lock(&cq->mutex);
123
124	/* Move to end of list to get out of the way for other waiters */
125	list_del(&w->list_node);
126	reinit_completion(&w->c);
127	list_add_tail(&w->list_node, &cq->waiters);
128
129	mutex_unlock(&cq->mutex);
130}
131
132static void optee_cq_complete_one(struct optee_call_queue *cq)
133{
134	struct optee_call_waiter *w;
135
136	/* Wake a waiting system session if any, prior to a normal session */
137	list_for_each_entry(w, &cq->waiters, list_node) {
138		if (w->sys_thread && !completion_done(&w->c)) {
139			complete(&w->c);
140			return;
141		}
142	}
143
144	list_for_each_entry(w, &cq->waiters, list_node) {
145		if (!completion_done(&w->c)) {
146			complete(&w->c);
147			break;
148		}
149	}
150}
151
152void optee_cq_wait_final(struct optee_call_queue *cq,
153			 struct optee_call_waiter *w)
154{
155	/*
156	 * We're done with the call to secure world. The thread in secure
157	 * world that was used for this call is now available for some
158	 * other task to use.
159	 */
160	mutex_lock(&cq->mutex);
161
162	/* Get out of the list */
163	list_del(&w->list_node);
164
165	cq->free_thread_count++;
166
167	/* Wake up one eventual waiting task */
168	optee_cq_complete_one(cq);
169
170	/*
171	 * If we're completed we've got a completion from another task that
172	 * was just done with its call to secure world. Since yet another
173	 * thread now is available in secure world wake up another eventual
174	 * waiting task.
175	 */
176	if (completion_done(&w->c))
177		optee_cq_complete_one(cq);
178
179	mutex_unlock(&cq->mutex);
180}
181
182/* Count registered system sessions to reserved a system thread or not */
183static bool optee_cq_incr_sys_thread_count(struct optee_call_queue *cq)
184{
185	if (cq->total_thread_count <= 1)
186		return false;
187
188	mutex_lock(&cq->mutex);
189	cq->sys_thread_req_count++;
190	mutex_unlock(&cq->mutex);
191
192	return true;
193}
194
195static void optee_cq_decr_sys_thread_count(struct optee_call_queue *cq)
196{
197	mutex_lock(&cq->mutex);
198	cq->sys_thread_req_count--;
199	/* If there's someone waiting, let it resume */
200	optee_cq_complete_one(cq);
201	mutex_unlock(&cq->mutex);
202}
203
204/* Requires the filpstate mutex to be held */
205static struct optee_session *find_session(struct optee_context_data *ctxdata,
206					  u32 session_id)
207{
208	struct optee_session *sess;
209
210	list_for_each_entry(sess, &ctxdata->sess_list, list_node)
211		if (sess->session_id == session_id)
212			return sess;
213
214	return NULL;
215}
216
217void optee_shm_arg_cache_init(struct optee *optee, u32 flags)
218{
219	INIT_LIST_HEAD(&optee->shm_arg_cache.shm_args);
220	mutex_init(&optee->shm_arg_cache.mutex);
221	optee->shm_arg_cache.flags = flags;
222}
223
224void optee_shm_arg_cache_uninit(struct optee *optee)
225{
226	struct list_head *head = &optee->shm_arg_cache.shm_args;
227	struct optee_shm_arg_entry *entry;
228
229	mutex_destroy(&optee->shm_arg_cache.mutex);
230	while (!list_empty(head)) {
231		entry = list_first_entry(head, struct optee_shm_arg_entry,
232					 list_node);
233		list_del(&entry->list_node);
234		if (find_first_bit(entry->map, MAX_ARG_COUNT_PER_ENTRY) !=
235		     MAX_ARG_COUNT_PER_ENTRY) {
236			pr_err("Freeing non-free entry\n");
237		}
238		tee_shm_free(entry->shm);
239		kfree(entry);
240	}
241}
242
243size_t optee_msg_arg_size(size_t rpc_param_count)
244{
245	size_t sz = OPTEE_MSG_GET_ARG_SIZE(MAX_ARG_PARAM_COUNT);
246
247	if (rpc_param_count)
248		sz += OPTEE_MSG_GET_ARG_SIZE(rpc_param_count);
249
250	return sz;
251}
252
253/**
254 * optee_get_msg_arg() - Provide shared memory for argument struct
255 * @ctx:	Caller TEE context
256 * @num_params:	Number of parameter to store
257 * @entry_ret:	Entry pointer, needed when freeing the buffer
258 * @shm_ret:	Shared memory buffer
259 * @offs_ret:	Offset of argument strut in shared memory buffer
260 *
261 * @returns a pointer to the argument struct in memory, else an ERR_PTR
 
 
 
262 */
263struct optee_msg_arg *optee_get_msg_arg(struct tee_context *ctx,
264					size_t num_params,
265					struct optee_shm_arg_entry **entry_ret,
266					struct tee_shm **shm_ret,
267					u_int *offs_ret)
268{
269	struct optee *optee = tee_get_drvdata(ctx->teedev);
270	size_t sz = optee_msg_arg_size(optee->rpc_param_count);
271	struct optee_shm_arg_entry *entry;
272	struct optee_msg_arg *ma;
273	size_t args_per_entry;
274	u_long bit;
275	u_int offs;
276	void *res;
277
278	if (num_params > MAX_ARG_PARAM_COUNT)
279		return ERR_PTR(-EINVAL);
280
281	if (optee->shm_arg_cache.flags & OPTEE_SHM_ARG_SHARED)
282		args_per_entry = SHM_ENTRY_SIZE / sz;
283	else
284		args_per_entry = 1;
285
286	mutex_lock(&optee->shm_arg_cache.mutex);
287	list_for_each_entry(entry, &optee->shm_arg_cache.shm_args, list_node) {
288		bit = find_first_zero_bit(entry->map, MAX_ARG_COUNT_PER_ENTRY);
289		if (bit < args_per_entry)
290			goto have_entry;
 
 
 
 
 
 
 
 
 
 
 
 
291	}
292
 
293	/*
294	 * No entry was found, let's allocate a new.
 
295	 */
296	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
297	if (!entry) {
298		res = ERR_PTR(-ENOMEM);
299		goto out;
300	}
301
302	if (optee->shm_arg_cache.flags & OPTEE_SHM_ARG_ALLOC_PRIV)
303		res = tee_shm_alloc_priv_buf(ctx, SHM_ENTRY_SIZE);
304	else
305		res = tee_shm_alloc_kernel_buf(ctx, SHM_ENTRY_SIZE);
306
307	if (IS_ERR(res)) {
308		kfree(entry);
309		goto out;
310	}
311	entry->shm = res;
312	list_add(&entry->list_node, &optee->shm_arg_cache.shm_args);
313	bit = 0;
314
315have_entry:
316	offs = bit * sz;
317	res = tee_shm_get_va(entry->shm, offs);
318	if (IS_ERR(res))
319		goto out;
320	ma = res;
321	set_bit(bit, entry->map);
322	memset(ma, 0, sz);
323	ma->num_params = num_params;
324	*entry_ret = entry;
325	*shm_ret = entry->shm;
326	*offs_ret = offs;
327out:
328	mutex_unlock(&optee->shm_arg_cache.mutex);
329	return res;
330}
331
332/**
333 * optee_free_msg_arg() - Free previsouly obtained shared memory
334 * @ctx:	Caller TEE context
335 * @entry:	Pointer returned when the shared memory was obtained
336 * @offs:	Offset of shared memory buffer to free
337 *
338 * This function frees the shared memory obtained with optee_get_msg_arg().
339 */
340void optee_free_msg_arg(struct tee_context *ctx,
341			struct optee_shm_arg_entry *entry, u_int offs)
342{
343	struct optee *optee = tee_get_drvdata(ctx->teedev);
344	size_t sz = optee_msg_arg_size(optee->rpc_param_count);
345	u_long bit;
346
347	if (offs > SHM_ENTRY_SIZE || offs % sz) {
348		pr_err("Invalid offs %u\n", offs);
349		return;
 
 
 
 
 
 
350	}
351	bit = offs / sz;
352
353	mutex_lock(&optee->shm_arg_cache.mutex);
 
 
354
355	if (!test_bit(bit, entry->map))
356		pr_err("Bit pos %lu is already free\n", bit);
357	clear_bit(bit, entry->map);
 
 
 
 
 
358
359	mutex_unlock(&optee->shm_arg_cache.mutex);
360}
361
362int optee_open_session(struct tee_context *ctx,
363		       struct tee_ioctl_open_session_arg *arg,
364		       struct tee_param *param)
365{
366	struct optee *optee = tee_get_drvdata(ctx->teedev);
367	struct optee_context_data *ctxdata = ctx->data;
368	struct optee_shm_arg_entry *entry;
369	struct tee_shm *shm;
370	struct optee_msg_arg *msg_arg;
 
371	struct optee_session *sess = NULL;
372	uuid_t client_uuid;
373	u_int offs;
374	int rc;
375
376	/* +2 for the meta parameters added below */
377	msg_arg = optee_get_msg_arg(ctx, arg->num_params + 2,
378				    &entry, &shm, &offs);
379	if (IS_ERR(msg_arg))
380		return PTR_ERR(msg_arg);
381
382	msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
383	msg_arg->cancel_id = arg->cancel_id;
384
385	/*
386	 * Initialize and add the meta parameters needed when opening a
387	 * session.
388	 */
389	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
390				  OPTEE_MSG_ATTR_META;
391	msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
392				  OPTEE_MSG_ATTR_META;
393	memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
 
394	msg_arg->params[1].u.value.c = arg->clnt_login;
395
396	rc = tee_session_calc_client_uuid(&client_uuid, arg->clnt_login,
397					  arg->clnt_uuid);
398	if (rc)
399		goto out;
400	export_uuid(msg_arg->params[1].u.octets, &client_uuid);
401
402	rc = optee->ops->to_msg_param(optee, msg_arg->params + 2,
403				      arg->num_params, param);
404	if (rc)
405		goto out;
406
407	sess = kzalloc(sizeof(*sess), GFP_KERNEL);
408	if (!sess) {
409		rc = -ENOMEM;
410		goto out;
411	}
412
413	if (optee->ops->do_call_with_arg(ctx, shm, offs,
414					 sess->use_sys_thread)) {
415		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
416		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
417	}
418
419	if (msg_arg->ret == TEEC_SUCCESS) {
420		/* A new session has been created, add it to the list. */
421		sess->session_id = msg_arg->session;
422		mutex_lock(&ctxdata->mutex);
423		list_add(&sess->list_node, &ctxdata->sess_list);
424		mutex_unlock(&ctxdata->mutex);
425	} else {
426		kfree(sess);
427	}
428
429	if (optee->ops->from_msg_param(optee, param, arg->num_params,
430				       msg_arg->params + 2)) {
431		arg->ret = TEEC_ERROR_COMMUNICATION;
432		arg->ret_origin = TEEC_ORIGIN_COMMS;
433		/* Close session again to avoid leakage */
434		optee_close_session(ctx, msg_arg->session);
435	} else {
436		arg->session = msg_arg->session;
437		arg->ret = msg_arg->ret;
438		arg->ret_origin = msg_arg->ret_origin;
439	}
440out:
441	optee_free_msg_arg(ctx, entry, offs);
442
443	return rc;
444}
445
446int optee_system_session(struct tee_context *ctx, u32 session)
447{
448	struct optee *optee = tee_get_drvdata(ctx->teedev);
449	struct optee_context_data *ctxdata = ctx->data;
450	struct optee_session *sess;
451	int rc = -EINVAL;
452
453	mutex_lock(&ctxdata->mutex);
454
455	sess = find_session(ctxdata, session);
456	if (sess && (sess->use_sys_thread ||
457		     optee_cq_incr_sys_thread_count(&optee->call_queue))) {
458		sess->use_sys_thread = true;
459		rc = 0;
460	}
461
462	mutex_unlock(&ctxdata->mutex);
463
464	return rc;
465}
466
467int optee_close_session_helper(struct tee_context *ctx, u32 session,
468			       bool system_thread)
469{
470	struct optee *optee = tee_get_drvdata(ctx->teedev);
471	struct optee_shm_arg_entry *entry;
472	struct optee_msg_arg *msg_arg;
473	struct tee_shm *shm;
474	u_int offs;
475
476	msg_arg = optee_get_msg_arg(ctx, 0, &entry, &shm, &offs);
477	if (IS_ERR(msg_arg))
478		return PTR_ERR(msg_arg);
479
480	msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
481	msg_arg->session = session;
482	optee->ops->do_call_with_arg(ctx, shm, offs, system_thread);
483
484	optee_free_msg_arg(ctx, entry, offs);
485
486	if (system_thread)
487		optee_cq_decr_sys_thread_count(&optee->call_queue);
488
489	return 0;
490}
491
492int optee_close_session(struct tee_context *ctx, u32 session)
493{
494	struct optee_context_data *ctxdata = ctx->data;
 
 
 
495	struct optee_session *sess;
496	bool system_thread;
497
498	/* Check that the session is valid and remove it from the list */
499	mutex_lock(&ctxdata->mutex);
500	sess = find_session(ctxdata, session);
501	if (sess)
502		list_del(&sess->list_node);
503	mutex_unlock(&ctxdata->mutex);
504	if (!sess)
505		return -EINVAL;
506	system_thread = sess->use_sys_thread;
507	kfree(sess);
508
509	return optee_close_session_helper(ctx, session, system_thread);
 
 
 
 
 
 
 
 
 
510}
511
512int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
513		      struct tee_param *param)
514{
515	struct optee *optee = tee_get_drvdata(ctx->teedev);
516	struct optee_context_data *ctxdata = ctx->data;
517	struct optee_shm_arg_entry *entry;
518	struct optee_msg_arg *msg_arg;
 
519	struct optee_session *sess;
520	struct tee_shm *shm;
521	bool system_thread;
522	u_int offs;
523	int rc;
524
525	/* Check that the session is valid */
526	mutex_lock(&ctxdata->mutex);
527	sess = find_session(ctxdata, arg->session);
528	if (sess)
529		system_thread = sess->use_sys_thread;
530	mutex_unlock(&ctxdata->mutex);
531	if (!sess)
532		return -EINVAL;
533
534	msg_arg = optee_get_msg_arg(ctx, arg->num_params,
535				    &entry, &shm, &offs);
536	if (IS_ERR(msg_arg))
537		return PTR_ERR(msg_arg);
538	msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
539	msg_arg->func = arg->func;
540	msg_arg->session = arg->session;
541	msg_arg->cancel_id = arg->cancel_id;
542
543	rc = optee->ops->to_msg_param(optee, msg_arg->params, arg->num_params,
544				      param);
545	if (rc)
546		goto out;
547
548	if (optee->ops->do_call_with_arg(ctx, shm, offs, system_thread)) {
549		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
550		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
551	}
552
553	if (optee->ops->from_msg_param(optee, param, arg->num_params,
554				       msg_arg->params)) {
555		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
556		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
557	}
558
559	arg->ret = msg_arg->ret;
560	arg->ret_origin = msg_arg->ret_origin;
561out:
562	optee_free_msg_arg(ctx, entry, offs);
563	return rc;
564}
565
566int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
567{
568	struct optee *optee = tee_get_drvdata(ctx->teedev);
569	struct optee_context_data *ctxdata = ctx->data;
570	struct optee_shm_arg_entry *entry;
571	struct optee_msg_arg *msg_arg;
 
572	struct optee_session *sess;
573	bool system_thread;
574	struct tee_shm *shm;
575	u_int offs;
576
577	/* Check that the session is valid */
578	mutex_lock(&ctxdata->mutex);
579	sess = find_session(ctxdata, session);
580	if (sess)
581		system_thread = sess->use_sys_thread;
582	mutex_unlock(&ctxdata->mutex);
583	if (!sess)
584		return -EINVAL;
585
586	msg_arg = optee_get_msg_arg(ctx, 0, &entry, &shm, &offs);
587	if (IS_ERR(msg_arg))
588		return PTR_ERR(msg_arg);
589
590	msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
591	msg_arg->session = session;
592	msg_arg->cancel_id = cancel_id;
593	optee->ops->do_call_with_arg(ctx, shm, offs, system_thread);
594
595	optee_free_msg_arg(ctx, entry, offs);
596	return 0;
597}
598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
599static bool is_normal_memory(pgprot_t p)
600{
601#if defined(CONFIG_ARM)
602	return (((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC) ||
603		((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEBACK));
604#elif defined(CONFIG_ARM64)
605	return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
606#else
607#error "Unsupported architecture"
608#endif
609}
610
611static int __check_mem_type(struct mm_struct *mm, unsigned long start,
612				unsigned long end)
613{
614	struct vm_area_struct *vma;
615	VMA_ITERATOR(vmi, mm, start);
616
617	for_each_vma_range(vmi, vma, end) {
618		if (!is_normal_memory(vma->vm_page_prot))
619			return -EINVAL;
620	}
621
622	return 0;
623}
624
625int optee_check_mem_type(unsigned long start, size_t num_pages)
626{
627	struct mm_struct *mm = current->mm;
628	int rc;
629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
630	/*
631	 * Allow kernel address to register with OP-TEE as kernel
632	 * pages are configured as normal memory only.
633	 */
634	if (virt_addr_valid((void *)start) || is_vmalloc_addr((void *)start))
635		return 0;
636
637	mmap_read_lock(mm);
638	rc = __check_mem_type(mm, start, start + num_pages * PAGE_SIZE);
639	mmap_read_unlock(mm);
640
 
 
 
641	return rc;
642}
643
644static int simple_call_with_arg(struct tee_context *ctx, u32 cmd)
645{
646	struct optee *optee = tee_get_drvdata(ctx->teedev);
647	struct optee_shm_arg_entry *entry;
648	struct optee_msg_arg *msg_arg;
649	struct tee_shm *shm;
650	u_int offs;
651
652	msg_arg = optee_get_msg_arg(ctx, 0, &entry, &shm, &offs);
653	if (IS_ERR(msg_arg))
654		return PTR_ERR(msg_arg);
655
656	msg_arg->cmd = cmd;
657	optee->ops->do_call_with_arg(ctx, shm, offs, false);
658
659	optee_free_msg_arg(ctx, entry, offs);
660	return 0;
 
 
 
 
 
 
 
 
 
661}
662
663int optee_do_bottom_half(struct tee_context *ctx)
 
 
664{
665	return simple_call_with_arg(ctx, OPTEE_MSG_CMD_DO_BOTTOM_HALF);
 
 
 
 
666}
667
668int optee_stop_async_notif(struct tee_context *ctx)
669{
670	return simple_call_with_arg(ctx, OPTEE_MSG_CMD_STOP_ASYNC_NOTIF);
671}
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (c) 2015, Linaro Limited
  4 */
  5#include <linux/arm-smccc.h>
  6#include <linux/device.h>
  7#include <linux/err.h>
  8#include <linux/errno.h>
  9#include <linux/mm.h>
 10#include <linux/slab.h>
 11#include <linux/tee_drv.h>
 12#include <linux/types.h>
 13#include <linux/uaccess.h>
 14#include "optee_private.h"
 15#include "optee_smc.h"
 16
 17struct optee_call_waiter {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 18	struct list_head list_node;
 19	struct completion c;
 
 20};
 21
 22static void optee_cq_wait_init(struct optee_call_queue *cq,
 23			       struct optee_call_waiter *w)
 24{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25	/*
 26	 * We're preparing to make a call to secure world. In case we can't
 27	 * allocate a thread in secure world we'll end up waiting in
 28	 * optee_cq_wait_for_completion().
 29	 *
 30	 * Normally if there's no contention in secure world the call will
 31	 * complete and we can cleanup directly with optee_cq_wait_final().
 32	 */
 33	mutex_lock(&cq->mutex);
 34
 35	/*
 36	 * We add ourselves to the queue, but we don't wait. This
 37	 * guarantees that we don't lose a completion if secure world
 38	 * returns busy and another thread just exited and try to complete
 39	 * someone.
 40	 */
 41	init_completion(&w->c);
 42	list_add_tail(&w->list_node, &cq->waiters);
 
 
 
 
 
 
 
 
 
 
 
 
 
 43
 44	mutex_unlock(&cq->mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 45}
 46
 47static void optee_cq_wait_for_completion(struct optee_call_queue *cq,
 48					 struct optee_call_waiter *w)
 49{
 50	wait_for_completion(&w->c);
 51
 52	mutex_lock(&cq->mutex);
 53
 54	/* Move to end of list to get out of the way for other waiters */
 55	list_del(&w->list_node);
 56	reinit_completion(&w->c);
 57	list_add_tail(&w->list_node, &cq->waiters);
 58
 59	mutex_unlock(&cq->mutex);
 60}
 61
 62static void optee_cq_complete_one(struct optee_call_queue *cq)
 63{
 64	struct optee_call_waiter *w;
 65
 
 
 
 
 
 
 
 
 66	list_for_each_entry(w, &cq->waiters, list_node) {
 67		if (!completion_done(&w->c)) {
 68			complete(&w->c);
 69			break;
 70		}
 71	}
 72}
 73
 74static void optee_cq_wait_final(struct optee_call_queue *cq,
 75				struct optee_call_waiter *w)
 76{
 77	/*
 78	 * We're done with the call to secure world. The thread in secure
 79	 * world that was used for this call is now available for some
 80	 * other task to use.
 81	 */
 82	mutex_lock(&cq->mutex);
 83
 84	/* Get out of the list */
 85	list_del(&w->list_node);
 86
 
 
 87	/* Wake up one eventual waiting task */
 88	optee_cq_complete_one(cq);
 89
 90	/*
 91	 * If we're completed we've got a completion from another task that
 92	 * was just done with its call to secure world. Since yet another
 93	 * thread now is available in secure world wake up another eventual
 94	 * waiting task.
 95	 */
 96	if (completion_done(&w->c))
 97		optee_cq_complete_one(cq);
 98
 99	mutex_unlock(&cq->mutex);
100}
101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102/* Requires the filpstate mutex to be held */
103static struct optee_session *find_session(struct optee_context_data *ctxdata,
104					  u32 session_id)
105{
106	struct optee_session *sess;
107
108	list_for_each_entry(sess, &ctxdata->sess_list, list_node)
109		if (sess->session_id == session_id)
110			return sess;
111
112	return NULL;
113}
114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115/**
116 * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world
117 * @ctx:	calling context
118 * @parg:	physical address of message to pass to secure world
 
 
 
119 *
120 * Does and SMC to OP-TEE in secure world and handles eventual resulting
121 * Remote Procedure Calls (RPC) from OP-TEE.
122 *
123 * Returns return code from secure world, 0 is OK
124 */
125u32 optee_do_call_with_arg(struct tee_context *ctx, phys_addr_t parg)
 
 
 
 
126{
127	struct optee *optee = tee_get_drvdata(ctx->teedev);
128	struct optee_call_waiter w;
129	struct optee_rpc_param param = { };
130	struct optee_call_ctx call_ctx = { };
131	u32 ret;
132
133	param.a0 = OPTEE_SMC_CALL_WITH_ARG;
134	reg_pair_from_64(&param.a1, &param.a2, parg);
135	/* Initialize waiter */
136	optee_cq_wait_init(&optee->call_queue, &w);
137	while (true) {
138		struct arm_smccc_res res;
139
140		optee->invoke_fn(param.a0, param.a1, param.a2, param.a3,
141				 param.a4, param.a5, param.a6, param.a7,
142				 &res);
143
144		if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
145			/*
146			 * Out of threads in secure world, wait for a thread
147			 * become available.
148			 */
149			optee_cq_wait_for_completion(&optee->call_queue, &w);
150		} else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
151			might_sleep();
152			param.a0 = res.a0;
153			param.a1 = res.a1;
154			param.a2 = res.a2;
155			param.a3 = res.a3;
156			optee_handle_rpc(ctx, &param, &call_ctx);
157		} else {
158			ret = res.a0;
159			break;
160		}
161	}
162
163	optee_rpc_finalize_call(&call_ctx);
164	/*
165	 * We're done with our thread in secure world, if there's any
166	 * thread waiters wake up one.
167	 */
168	optee_cq_wait_final(&optee->call_queue, &w);
 
 
 
 
 
 
 
 
 
169
170	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171}
172
173static struct tee_shm *get_msg_arg(struct tee_context *ctx, size_t num_params,
174				   struct optee_msg_arg **msg_arg,
175				   phys_addr_t *msg_parg)
 
 
 
 
 
 
 
176{
177	int rc;
178	struct tee_shm *shm;
179	struct optee_msg_arg *ma;
180
181	shm = tee_shm_alloc(ctx, OPTEE_MSG_GET_ARG_SIZE(num_params),
182			    TEE_SHM_MAPPED);
183	if (IS_ERR(shm))
184		return shm;
185
186	ma = tee_shm_get_va(shm, 0);
187	if (IS_ERR(ma)) {
188		rc = PTR_ERR(ma);
189		goto out;
190	}
 
191
192	rc = tee_shm_get_pa(shm, 0, msg_parg);
193	if (rc)
194		goto out;
195
196	memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params));
197	ma->num_params = num_params;
198	*msg_arg = ma;
199out:
200	if (rc) {
201		tee_shm_free(shm);
202		return ERR_PTR(rc);
203	}
204
205	return shm;
206}
207
208int optee_open_session(struct tee_context *ctx,
209		       struct tee_ioctl_open_session_arg *arg,
210		       struct tee_param *param)
211{
 
212	struct optee_context_data *ctxdata = ctx->data;
213	int rc;
214	struct tee_shm *shm;
215	struct optee_msg_arg *msg_arg;
216	phys_addr_t msg_parg;
217	struct optee_session *sess = NULL;
 
 
 
218
219	/* +2 for the meta parameters added below */
220	shm = get_msg_arg(ctx, arg->num_params + 2, &msg_arg, &msg_parg);
221	if (IS_ERR(shm))
222		return PTR_ERR(shm);
 
223
224	msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
225	msg_arg->cancel_id = arg->cancel_id;
226
227	/*
228	 * Initialize and add the meta parameters needed when opening a
229	 * session.
230	 */
231	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
232				  OPTEE_MSG_ATTR_META;
233	msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
234				  OPTEE_MSG_ATTR_META;
235	memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
236	memcpy(&msg_arg->params[1].u.value, arg->uuid, sizeof(arg->clnt_uuid));
237	msg_arg->params[1].u.value.c = arg->clnt_login;
238
239	rc = optee_to_msg_param(msg_arg->params + 2, arg->num_params, param);
 
 
 
 
 
 
 
240	if (rc)
241		goto out;
242
243	sess = kzalloc(sizeof(*sess), GFP_KERNEL);
244	if (!sess) {
245		rc = -ENOMEM;
246		goto out;
247	}
248
249	if (optee_do_call_with_arg(ctx, msg_parg)) {
 
250		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
251		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
252	}
253
254	if (msg_arg->ret == TEEC_SUCCESS) {
255		/* A new session has been created, add it to the list. */
256		sess->session_id = msg_arg->session;
257		mutex_lock(&ctxdata->mutex);
258		list_add(&sess->list_node, &ctxdata->sess_list);
259		mutex_unlock(&ctxdata->mutex);
260	} else {
261		kfree(sess);
262	}
263
264	if (optee_from_msg_param(param, arg->num_params, msg_arg->params + 2)) {
 
265		arg->ret = TEEC_ERROR_COMMUNICATION;
266		arg->ret_origin = TEEC_ORIGIN_COMMS;
267		/* Close session again to avoid leakage */
268		optee_close_session(ctx, msg_arg->session);
269	} else {
270		arg->session = msg_arg->session;
271		arg->ret = msg_arg->ret;
272		arg->ret_origin = msg_arg->ret_origin;
273	}
274out:
275	tee_shm_free(shm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
276
277	return rc;
278}
279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280int optee_close_session(struct tee_context *ctx, u32 session)
281{
282	struct optee_context_data *ctxdata = ctx->data;
283	struct tee_shm *shm;
284	struct optee_msg_arg *msg_arg;
285	phys_addr_t msg_parg;
286	struct optee_session *sess;
 
287
288	/* Check that the session is valid and remove it from the list */
289	mutex_lock(&ctxdata->mutex);
290	sess = find_session(ctxdata, session);
291	if (sess)
292		list_del(&sess->list_node);
293	mutex_unlock(&ctxdata->mutex);
294	if (!sess)
295		return -EINVAL;
 
296	kfree(sess);
297
298	shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
299	if (IS_ERR(shm))
300		return PTR_ERR(shm);
301
302	msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
303	msg_arg->session = session;
304	optee_do_call_with_arg(ctx, msg_parg);
305
306	tee_shm_free(shm);
307	return 0;
308}
309
310int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
311		      struct tee_param *param)
312{
 
313	struct optee_context_data *ctxdata = ctx->data;
314	struct tee_shm *shm;
315	struct optee_msg_arg *msg_arg;
316	phys_addr_t msg_parg;
317	struct optee_session *sess;
 
 
 
318	int rc;
319
320	/* Check that the session is valid */
321	mutex_lock(&ctxdata->mutex);
322	sess = find_session(ctxdata, arg->session);
 
 
323	mutex_unlock(&ctxdata->mutex);
324	if (!sess)
325		return -EINVAL;
326
327	shm = get_msg_arg(ctx, arg->num_params, &msg_arg, &msg_parg);
328	if (IS_ERR(shm))
329		return PTR_ERR(shm);
 
330	msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
331	msg_arg->func = arg->func;
332	msg_arg->session = arg->session;
333	msg_arg->cancel_id = arg->cancel_id;
334
335	rc = optee_to_msg_param(msg_arg->params, arg->num_params, param);
 
336	if (rc)
337		goto out;
338
339	if (optee_do_call_with_arg(ctx, msg_parg)) {
340		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
341		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
342	}
343
344	if (optee_from_msg_param(param, arg->num_params, msg_arg->params)) {
 
345		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
346		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
347	}
348
349	arg->ret = msg_arg->ret;
350	arg->ret_origin = msg_arg->ret_origin;
351out:
352	tee_shm_free(shm);
353	return rc;
354}
355
356int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
357{
 
358	struct optee_context_data *ctxdata = ctx->data;
359	struct tee_shm *shm;
360	struct optee_msg_arg *msg_arg;
361	phys_addr_t msg_parg;
362	struct optee_session *sess;
 
 
 
363
364	/* Check that the session is valid */
365	mutex_lock(&ctxdata->mutex);
366	sess = find_session(ctxdata, session);
 
 
367	mutex_unlock(&ctxdata->mutex);
368	if (!sess)
369		return -EINVAL;
370
371	shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
372	if (IS_ERR(shm))
373		return PTR_ERR(shm);
374
375	msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
376	msg_arg->session = session;
377	msg_arg->cancel_id = cancel_id;
378	optee_do_call_with_arg(ctx, msg_parg);
379
380	tee_shm_free(shm);
381	return 0;
382}
383
384/**
385 * optee_enable_shm_cache() - Enables caching of some shared memory allocation
386 *			      in OP-TEE
387 * @optee:	main service struct
388 */
389void optee_enable_shm_cache(struct optee *optee)
390{
391	struct optee_call_waiter w;
392
393	/* We need to retry until secure world isn't busy. */
394	optee_cq_wait_init(&optee->call_queue, &w);
395	while (true) {
396		struct arm_smccc_res res;
397
398		optee->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
399				 0, &res);
400		if (res.a0 == OPTEE_SMC_RETURN_OK)
401			break;
402		optee_cq_wait_for_completion(&optee->call_queue, &w);
403	}
404	optee_cq_wait_final(&optee->call_queue, &w);
405}
406
407/**
408 * optee_disable_shm_cache() - Disables caching of some shared memory allocation
409 *			      in OP-TEE
410 * @optee:	main service struct
411 */
412void optee_disable_shm_cache(struct optee *optee)
413{
414	struct optee_call_waiter w;
415
416	/* We need to retry until secure world isn't busy. */
417	optee_cq_wait_init(&optee->call_queue, &w);
418	while (true) {
419		union {
420			struct arm_smccc_res smccc;
421			struct optee_smc_disable_shm_cache_result result;
422		} res;
423
424		optee->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
425				 0, &res.smccc);
426		if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
427			break; /* All shm's freed */
428		if (res.result.status == OPTEE_SMC_RETURN_OK) {
429			struct tee_shm *shm;
430
431			shm = reg_pair_to_ptr(res.result.shm_upper32,
432					      res.result.shm_lower32);
433			tee_shm_free(shm);
434		} else {
435			optee_cq_wait_for_completion(&optee->call_queue, &w);
436		}
437	}
438	optee_cq_wait_final(&optee->call_queue, &w);
439}
440
441#define PAGELIST_ENTRIES_PER_PAGE				\
442	((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
443
444/**
445 * optee_fill_pages_list() - write list of user pages to given shared
446 * buffer.
447 *
448 * @dst: page-aligned buffer where list of pages will be stored
449 * @pages: array of pages that represents shared buffer
450 * @num_pages: number of entries in @pages
451 * @page_offset: offset of user buffer from page start
452 *
453 * @dst should be big enough to hold list of user page addresses and
454 *	links to the next pages of buffer
455 */
456void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
457			   size_t page_offset)
458{
459	int n = 0;
460	phys_addr_t optee_page;
461	/*
462	 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
463	 * for details.
464	 */
465	struct {
466		u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
467		u64 next_page_data;
468	} *pages_data;
469
470	/*
471	 * Currently OP-TEE uses 4k page size and it does not looks
472	 * like this will change in the future.  On other hand, there are
473	 * no know ARM architectures with page size < 4k.
474	 * Thus the next built assert looks redundant. But the following
475	 * code heavily relies on this assumption, so it is better be
476	 * safe than sorry.
477	 */
478	BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
479
480	pages_data = (void *)dst;
481	/*
482	 * If linux page is bigger than 4k, and user buffer offset is
483	 * larger than 4k/8k/12k/etc this will skip first 4k pages,
484	 * because they bear no value data for OP-TEE.
485	 */
486	optee_page = page_to_phys(*pages) +
487		round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
488
489	while (true) {
490		pages_data->pages_list[n++] = optee_page;
491
492		if (n == PAGELIST_ENTRIES_PER_PAGE) {
493			pages_data->next_page_data =
494				virt_to_phys(pages_data + 1);
495			pages_data++;
496			n = 0;
497		}
498
499		optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
500		if (!(optee_page & ~PAGE_MASK)) {
501			if (!--num_pages)
502				break;
503			pages++;
504			optee_page = page_to_phys(*pages);
505		}
506	}
507}
508
509/*
510 * The final entry in each pagelist page is a pointer to the next
511 * pagelist page.
512 */
513static size_t get_pages_list_size(size_t num_entries)
514{
515	int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
516
517	return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
518}
519
520u64 *optee_allocate_pages_list(size_t num_entries)
521{
522	return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
523}
524
525void optee_free_pages_list(void *list, size_t num_entries)
526{
527	free_pages_exact(list, get_pages_list_size(num_entries));
528}
529
530static bool is_normal_memory(pgprot_t p)
531{
532#if defined(CONFIG_ARM)
533	return (pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC;
 
534#elif defined(CONFIG_ARM64)
535	return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
536#else
537#error "Unuspported architecture"
538#endif
539}
540
541static int __check_mem_type(struct vm_area_struct *vma, unsigned long end)
 
542{
543	while (vma && is_normal_memory(vma->vm_page_prot)) {
544		if (vma->vm_end >= end)
545			return 0;
546		vma = vma->vm_next;
 
 
547	}
548
549	return -EINVAL;
550}
551
552static int check_mem_type(unsigned long start, size_t num_pages)
553{
554	struct mm_struct *mm = current->mm;
555	int rc;
556
557	down_read(&mm->mmap_sem);
558	rc = __check_mem_type(find_vma(mm, start),
559			      start + num_pages * PAGE_SIZE);
560	up_read(&mm->mmap_sem);
561
562	return rc;
563}
564
565int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
566		       struct page **pages, size_t num_pages,
567		       unsigned long start)
568{
569	struct tee_shm *shm_arg = NULL;
570	struct optee_msg_arg *msg_arg;
571	u64 *pages_list;
572	phys_addr_t msg_parg;
573	int rc;
574
575	if (!num_pages)
576		return -EINVAL;
577
578	rc = check_mem_type(start, num_pages);
579	if (rc)
580		return rc;
581
582	pages_list = optee_allocate_pages_list(num_pages);
583	if (!pages_list)
584		return -ENOMEM;
585
586	shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
587	if (IS_ERR(shm_arg)) {
588		rc = PTR_ERR(shm_arg);
589		goto out;
590	}
591
592	optee_fill_pages_list(pages_list, pages, num_pages,
593			      tee_shm_get_page_offset(shm));
594
595	msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
596	msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
597				OPTEE_MSG_ATTR_NONCONTIG;
598	msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
599	msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
600	/*
601	 * In the least bits of msg_arg->params->u.tmem.buf_ptr we
602	 * store buffer offset from 4k page, as described in OP-TEE ABI.
603	 */
604	msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
605	  (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
606
607	if (optee_do_call_with_arg(ctx, msg_parg) ||
608	    msg_arg->ret != TEEC_SUCCESS)
609		rc = -EINVAL;
610
611	tee_shm_free(shm_arg);
612out:
613	optee_free_pages_list(pages_list, num_pages);
614	return rc;
615}
616
617int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
618{
619	struct tee_shm *shm_arg;
 
620	struct optee_msg_arg *msg_arg;
621	phys_addr_t msg_parg;
622	int rc = 0;
 
 
 
 
623
624	shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
625	if (IS_ERR(shm_arg))
626		return PTR_ERR(shm_arg);
627
628	msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
629
630	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
631	msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
632
633	if (optee_do_call_with_arg(ctx, msg_parg) ||
634	    msg_arg->ret != TEEC_SUCCESS)
635		rc = -EINVAL;
636	tee_shm_free(shm_arg);
637	return rc;
638}
639
640int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
641			    struct page **pages, size_t num_pages,
642			    unsigned long start)
643{
644	/*
645	 * We don't want to register supplicant memory in OP-TEE.
646	 * Instead information about it will be passed in RPC code.
647	 */
648	return check_mem_type(start, num_pages);
649}
650
651int optee_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm)
652{
653	return 0;
654}