Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (c) 2015-2021, 2023 Linaro Limited
  4 */
 
  5#include <linux/device.h>
  6#include <linux/err.h>
  7#include <linux/errno.h>
  8#include <linux/mm.h>
 
  9#include <linux/slab.h>
 10#include <linux/tee_drv.h>
 11#include <linux/types.h>
 
 12#include "optee_private.h"
 
 
 
 13
 14#define MAX_ARG_PARAM_COUNT	6
 15
 16/*
 17 * How much memory we allocate for each entry. This doesn't have to be a
 18 * single page, but it makes sense to keep at least keep it as multiples of
 19 * the page size.
 20 */
 21#define SHM_ENTRY_SIZE		PAGE_SIZE
 22
 23/*
 24 * We need to have a compile time constant to be able to determine the
 25 * maximum needed size of the bit field.
 26 */
 27#define MIN_ARG_SIZE		OPTEE_MSG_GET_ARG_SIZE(MAX_ARG_PARAM_COUNT)
 28#define MAX_ARG_COUNT_PER_ENTRY	(SHM_ENTRY_SIZE / MIN_ARG_SIZE)
 29
 30/*
 31 * Shared memory for argument structs are cached here. The number of
 32 * arguments structs that can fit is determined at runtime depending on the
 33 * needed RPC parameter count reported by secure world
 34 * (optee->rpc_param_count).
 35 */
 36struct optee_shm_arg_entry {
 37	struct list_head list_node;
 38	struct tee_shm *shm;
 39	DECLARE_BITMAP(map, MAX_ARG_COUNT_PER_ENTRY);
 40};
 41
 42void optee_cq_init(struct optee_call_queue *cq, int thread_count)
 
 43{
 44	mutex_init(&cq->mutex);
 45	INIT_LIST_HEAD(&cq->waiters);
 46
 47	/*
 48	 * If cq->total_thread_count is 0 then we're not trying to keep
 49	 * track of how many free threads we have, instead we're relying on
 50	 * the secure world to tell us when we're out of thread and have to
 51	 * wait for another thread to become available.
 52	 */
 53	cq->total_thread_count = thread_count;
 54	cq->free_thread_count = thread_count;
 55}
 56
 57void optee_cq_wait_init(struct optee_call_queue *cq,
 58			struct optee_call_waiter *w, bool sys_thread)
 59{
 60	unsigned int free_thread_threshold;
 61	bool need_wait = false;
 62
 63	memset(w, 0, sizeof(*w));
 64
 65	/*
 66	 * We're preparing to make a call to secure world. In case we can't
 67	 * allocate a thread in secure world we'll end up waiting in
 68	 * optee_cq_wait_for_completion().
 69	 *
 70	 * Normally if there's no contention in secure world the call will
 71	 * complete and we can cleanup directly with optee_cq_wait_final().
 72	 */
 73	mutex_lock(&cq->mutex);
 74
 75	/*
 76	 * We add ourselves to the queue, but we don't wait. This
 77	 * guarantees that we don't lose a completion if secure world
 78	 * returns busy and another thread just exited and try to complete
 79	 * someone.
 80	 */
 81	init_completion(&w->c);
 82	list_add_tail(&w->list_node, &cq->waiters);
 83	w->sys_thread = sys_thread;
 84
 85	if (cq->total_thread_count) {
 86		if (sys_thread || !cq->sys_thread_req_count)
 87			free_thread_threshold = 0;
 88		else
 89			free_thread_threshold = 1;
 90
 91		if (cq->free_thread_count > free_thread_threshold)
 92			cq->free_thread_count--;
 93		else
 94			need_wait = true;
 95	}
 96
 97	mutex_unlock(&cq->mutex);
 98
 99	while (need_wait) {
100		optee_cq_wait_for_completion(cq, w);
101		mutex_lock(&cq->mutex);
102
103		if (sys_thread || !cq->sys_thread_req_count)
104			free_thread_threshold = 0;
105		else
106			free_thread_threshold = 1;
107
108		if (cq->free_thread_count > free_thread_threshold) {
109			cq->free_thread_count--;
110			need_wait = false;
111		}
112
113		mutex_unlock(&cq->mutex);
114	}
115}
116
117void optee_cq_wait_for_completion(struct optee_call_queue *cq,
118				  struct optee_call_waiter *w)
119{
120	wait_for_completion(&w->c);
121
122	mutex_lock(&cq->mutex);
123
124	/* Move to end of list to get out of the way for other waiters */
125	list_del(&w->list_node);
126	reinit_completion(&w->c);
127	list_add_tail(&w->list_node, &cq->waiters);
128
129	mutex_unlock(&cq->mutex);
130}
131
132static void optee_cq_complete_one(struct optee_call_queue *cq)
133{
134	struct optee_call_waiter *w;
135
136	/* Wake a waiting system session if any, prior to a normal session */
137	list_for_each_entry(w, &cq->waiters, list_node) {
138		if (w->sys_thread && !completion_done(&w->c)) {
139			complete(&w->c);
140			return;
141		}
142	}
143
144	list_for_each_entry(w, &cq->waiters, list_node) {
145		if (!completion_done(&w->c)) {
146			complete(&w->c);
147			break;
148		}
149	}
150}
151
152void optee_cq_wait_final(struct optee_call_queue *cq,
153			 struct optee_call_waiter *w)
154{
155	/*
156	 * We're done with the call to secure world. The thread in secure
157	 * world that was used for this call is now available for some
158	 * other task to use.
159	 */
160	mutex_lock(&cq->mutex);
161
162	/* Get out of the list */
163	list_del(&w->list_node);
164
165	cq->free_thread_count++;
166
167	/* Wake up one eventual waiting task */
168	optee_cq_complete_one(cq);
169
170	/*
171	 * If we're completed we've got a completion from another task that
172	 * was just done with its call to secure world. Since yet another
173	 * thread now is available in secure world wake up another eventual
174	 * waiting task.
175	 */
176	if (completion_done(&w->c))
177		optee_cq_complete_one(cq);
178
179	mutex_unlock(&cq->mutex);
180}
181
182/* Count registered system sessions to reserved a system thread or not */
183static bool optee_cq_incr_sys_thread_count(struct optee_call_queue *cq)
184{
185	if (cq->total_thread_count <= 1)
186		return false;
187
188	mutex_lock(&cq->mutex);
189	cq->sys_thread_req_count++;
190	mutex_unlock(&cq->mutex);
191
192	return true;
193}
194
195static void optee_cq_decr_sys_thread_count(struct optee_call_queue *cq)
196{
197	mutex_lock(&cq->mutex);
198	cq->sys_thread_req_count--;
199	/* If there's someone waiting, let it resume */
200	optee_cq_complete_one(cq);
201	mutex_unlock(&cq->mutex);
202}
203
204/* Requires the filpstate mutex to be held */
205static struct optee_session *find_session(struct optee_context_data *ctxdata,
206					  u32 session_id)
207{
208	struct optee_session *sess;
209
210	list_for_each_entry(sess, &ctxdata->sess_list, list_node)
211		if (sess->session_id == session_id)
212			return sess;
213
214	return NULL;
215}
216
217void optee_shm_arg_cache_init(struct optee *optee, u32 flags)
218{
219	INIT_LIST_HEAD(&optee->shm_arg_cache.shm_args);
220	mutex_init(&optee->shm_arg_cache.mutex);
221	optee->shm_arg_cache.flags = flags;
222}
223
224void optee_shm_arg_cache_uninit(struct optee *optee)
225{
226	struct list_head *head = &optee->shm_arg_cache.shm_args;
227	struct optee_shm_arg_entry *entry;
228
229	mutex_destroy(&optee->shm_arg_cache.mutex);
230	while (!list_empty(head)) {
231		entry = list_first_entry(head, struct optee_shm_arg_entry,
232					 list_node);
233		list_del(&entry->list_node);
234		if (find_first_bit(entry->map, MAX_ARG_COUNT_PER_ENTRY) !=
235		     MAX_ARG_COUNT_PER_ENTRY) {
236			pr_err("Freeing non-free entry\n");
237		}
238		tee_shm_free(entry->shm);
239		kfree(entry);
240	}
241}
242
243size_t optee_msg_arg_size(size_t rpc_param_count)
244{
245	size_t sz = OPTEE_MSG_GET_ARG_SIZE(MAX_ARG_PARAM_COUNT);
246
247	if (rpc_param_count)
248		sz += OPTEE_MSG_GET_ARG_SIZE(rpc_param_count);
249
250	return sz;
251}
252
253/**
254 * optee_get_msg_arg() - Provide shared memory for argument struct
255 * @ctx:	Caller TEE context
256 * @num_params:	Number of parameter to store
257 * @entry_ret:	Entry pointer, needed when freeing the buffer
258 * @shm_ret:	Shared memory buffer
259 * @offs_ret:	Offset of argument strut in shared memory buffer
260 *
261 * @returns a pointer to the argument struct in memory, else an ERR_PTR
262 */
263struct optee_msg_arg *optee_get_msg_arg(struct tee_context *ctx,
264					size_t num_params,
265					struct optee_shm_arg_entry **entry_ret,
266					struct tee_shm **shm_ret,
267					u_int *offs_ret)
268{
269	struct optee *optee = tee_get_drvdata(ctx->teedev);
270	size_t sz = optee_msg_arg_size(optee->rpc_param_count);
271	struct optee_shm_arg_entry *entry;
272	struct optee_msg_arg *ma;
273	size_t args_per_entry;
274	u_long bit;
275	u_int offs;
276	void *res;
277
278	if (num_params > MAX_ARG_PARAM_COUNT)
279		return ERR_PTR(-EINVAL);
280
281	if (optee->shm_arg_cache.flags & OPTEE_SHM_ARG_SHARED)
282		args_per_entry = SHM_ENTRY_SIZE / sz;
283	else
284		args_per_entry = 1;
285
286	mutex_lock(&optee->shm_arg_cache.mutex);
287	list_for_each_entry(entry, &optee->shm_arg_cache.shm_args, list_node) {
288		bit = find_first_zero_bit(entry->map, MAX_ARG_COUNT_PER_ENTRY);
289		if (bit < args_per_entry)
290			goto have_entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
291	}
292
 
293	/*
294	 * No entry was found, let's allocate a new.
 
295	 */
296	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
297	if (!entry) {
298		res = ERR_PTR(-ENOMEM);
299		goto out;
300	}
301
302	if (optee->shm_arg_cache.flags & OPTEE_SHM_ARG_ALLOC_PRIV)
303		res = tee_shm_alloc_priv_buf(ctx, SHM_ENTRY_SIZE);
304	else
305		res = tee_shm_alloc_kernel_buf(ctx, SHM_ENTRY_SIZE);
306
307	if (IS_ERR(res)) {
308		kfree(entry);
309		goto out;
310	}
311	entry->shm = res;
312	list_add(&entry->list_node, &optee->shm_arg_cache.shm_args);
313	bit = 0;
314
315have_entry:
316	offs = bit * sz;
317	res = tee_shm_get_va(entry->shm, offs);
318	if (IS_ERR(res))
319		goto out;
320	ma = res;
321	set_bit(bit, entry->map);
322	memset(ma, 0, sz);
323	ma->num_params = num_params;
324	*entry_ret = entry;
325	*shm_ret = entry->shm;
326	*offs_ret = offs;
327out:
328	mutex_unlock(&optee->shm_arg_cache.mutex);
329	return res;
330}
331
332/**
333 * optee_free_msg_arg() - Free previsouly obtained shared memory
334 * @ctx:	Caller TEE context
335 * @entry:	Pointer returned when the shared memory was obtained
336 * @offs:	Offset of shared memory buffer to free
337 *
338 * This function frees the shared memory obtained with optee_get_msg_arg().
339 */
340void optee_free_msg_arg(struct tee_context *ctx,
341			struct optee_shm_arg_entry *entry, u_int offs)
342{
343	struct optee *optee = tee_get_drvdata(ctx->teedev);
344	size_t sz = optee_msg_arg_size(optee->rpc_param_count);
345	u_long bit;
346
347	if (offs > SHM_ENTRY_SIZE || offs % sz) {
348		pr_err("Invalid offs %u\n", offs);
349		return;
 
 
 
 
 
 
350	}
351	bit = offs / sz;
352
353	mutex_lock(&optee->shm_arg_cache.mutex);
 
 
354
355	if (!test_bit(bit, entry->map))
356		pr_err("Bit pos %lu is already free\n", bit);
357	clear_bit(bit, entry->map);
 
 
 
 
 
358
359	mutex_unlock(&optee->shm_arg_cache.mutex);
360}
361
362int optee_open_session(struct tee_context *ctx,
363		       struct tee_ioctl_open_session_arg *arg,
364		       struct tee_param *param)
365{
366	struct optee *optee = tee_get_drvdata(ctx->teedev);
367	struct optee_context_data *ctxdata = ctx->data;
368	struct optee_shm_arg_entry *entry;
369	struct tee_shm *shm;
370	struct optee_msg_arg *msg_arg;
 
371	struct optee_session *sess = NULL;
372	uuid_t client_uuid;
373	u_int offs;
374	int rc;
375
376	/* +2 for the meta parameters added below */
377	msg_arg = optee_get_msg_arg(ctx, arg->num_params + 2,
378				    &entry, &shm, &offs);
379	if (IS_ERR(msg_arg))
380		return PTR_ERR(msg_arg);
381
382	msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
383	msg_arg->cancel_id = arg->cancel_id;
384
385	/*
386	 * Initialize and add the meta parameters needed when opening a
387	 * session.
388	 */
389	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
390				  OPTEE_MSG_ATTR_META;
391	msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
392				  OPTEE_MSG_ATTR_META;
393	memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
394	msg_arg->params[1].u.value.c = arg->clnt_login;
395
396	rc = tee_session_calc_client_uuid(&client_uuid, arg->clnt_login,
397					  arg->clnt_uuid);
398	if (rc)
399		goto out;
400	export_uuid(msg_arg->params[1].u.octets, &client_uuid);
401
402	rc = optee->ops->to_msg_param(optee, msg_arg->params + 2,
403				      arg->num_params, param);
404	if (rc)
405		goto out;
406
407	sess = kzalloc(sizeof(*sess), GFP_KERNEL);
408	if (!sess) {
409		rc = -ENOMEM;
410		goto out;
411	}
412
413	if (optee->ops->do_call_with_arg(ctx, shm, offs,
414					 sess->use_sys_thread)) {
415		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
416		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
417	}
418
419	if (msg_arg->ret == TEEC_SUCCESS) {
420		/* A new session has been created, add it to the list. */
421		sess->session_id = msg_arg->session;
422		mutex_lock(&ctxdata->mutex);
423		list_add(&sess->list_node, &ctxdata->sess_list);
424		mutex_unlock(&ctxdata->mutex);
425	} else {
426		kfree(sess);
427	}
428
429	if (optee->ops->from_msg_param(optee, param, arg->num_params,
430				       msg_arg->params + 2)) {
431		arg->ret = TEEC_ERROR_COMMUNICATION;
432		arg->ret_origin = TEEC_ORIGIN_COMMS;
433		/* Close session again to avoid leakage */
434		optee_close_session(ctx, msg_arg->session);
435	} else {
436		arg->session = msg_arg->session;
437		arg->ret = msg_arg->ret;
438		arg->ret_origin = msg_arg->ret_origin;
439	}
440out:
441	optee_free_msg_arg(ctx, entry, offs);
442
443	return rc;
444}
445
446int optee_system_session(struct tee_context *ctx, u32 session)
447{
448	struct optee *optee = tee_get_drvdata(ctx->teedev);
449	struct optee_context_data *ctxdata = ctx->data;
450	struct optee_session *sess;
451	int rc = -EINVAL;
452
453	mutex_lock(&ctxdata->mutex);
454
455	sess = find_session(ctxdata, session);
456	if (sess && (sess->use_sys_thread ||
457		     optee_cq_incr_sys_thread_count(&optee->call_queue))) {
458		sess->use_sys_thread = true;
459		rc = 0;
460	}
461
462	mutex_unlock(&ctxdata->mutex);
463
464	return rc;
465}
466
467int optee_close_session_helper(struct tee_context *ctx, u32 session,
468			       bool system_thread)
469{
470	struct optee *optee = tee_get_drvdata(ctx->teedev);
471	struct optee_shm_arg_entry *entry;
472	struct optee_msg_arg *msg_arg;
473	struct tee_shm *shm;
474	u_int offs;
475
476	msg_arg = optee_get_msg_arg(ctx, 0, &entry, &shm, &offs);
477	if (IS_ERR(msg_arg))
478		return PTR_ERR(msg_arg);
479
480	msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
481	msg_arg->session = session;
482	optee->ops->do_call_with_arg(ctx, shm, offs, system_thread);
483
484	optee_free_msg_arg(ctx, entry, offs);
485
486	if (system_thread)
487		optee_cq_decr_sys_thread_count(&optee->call_queue);
488
489	return 0;
490}
491
492int optee_close_session(struct tee_context *ctx, u32 session)
493{
494	struct optee_context_data *ctxdata = ctx->data;
 
 
 
495	struct optee_session *sess;
496	bool system_thread;
497
498	/* Check that the session is valid and remove it from the list */
499	mutex_lock(&ctxdata->mutex);
500	sess = find_session(ctxdata, session);
501	if (sess)
502		list_del(&sess->list_node);
503	mutex_unlock(&ctxdata->mutex);
504	if (!sess)
505		return -EINVAL;
506	system_thread = sess->use_sys_thread;
507	kfree(sess);
508
509	return optee_close_session_helper(ctx, session, system_thread);
 
 
 
 
 
 
 
 
 
510}
511
512int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
513		      struct tee_param *param)
514{
515	struct optee *optee = tee_get_drvdata(ctx->teedev);
516	struct optee_context_data *ctxdata = ctx->data;
517	struct optee_shm_arg_entry *entry;
518	struct optee_msg_arg *msg_arg;
 
519	struct optee_session *sess;
520	struct tee_shm *shm;
521	bool system_thread;
522	u_int offs;
523	int rc;
524
525	/* Check that the session is valid */
526	mutex_lock(&ctxdata->mutex);
527	sess = find_session(ctxdata, arg->session);
528	if (sess)
529		system_thread = sess->use_sys_thread;
530	mutex_unlock(&ctxdata->mutex);
531	if (!sess)
532		return -EINVAL;
533
534	msg_arg = optee_get_msg_arg(ctx, arg->num_params,
535				    &entry, &shm, &offs);
536	if (IS_ERR(msg_arg))
537		return PTR_ERR(msg_arg);
538	msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
539	msg_arg->func = arg->func;
540	msg_arg->session = arg->session;
541	msg_arg->cancel_id = arg->cancel_id;
542
543	rc = optee->ops->to_msg_param(optee, msg_arg->params, arg->num_params,
544				      param);
545	if (rc)
546		goto out;
547
548	if (optee->ops->do_call_with_arg(ctx, shm, offs, system_thread)) {
549		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
550		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
551	}
552
553	if (optee->ops->from_msg_param(optee, param, arg->num_params,
554				       msg_arg->params)) {
555		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
556		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
557	}
558
559	arg->ret = msg_arg->ret;
560	arg->ret_origin = msg_arg->ret_origin;
561out:
562	optee_free_msg_arg(ctx, entry, offs);
563	return rc;
564}
565
566int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
567{
568	struct optee *optee = tee_get_drvdata(ctx->teedev);
569	struct optee_context_data *ctxdata = ctx->data;
570	struct optee_shm_arg_entry *entry;
571	struct optee_msg_arg *msg_arg;
 
572	struct optee_session *sess;
573	bool system_thread;
574	struct tee_shm *shm;
575	u_int offs;
576
577	/* Check that the session is valid */
578	mutex_lock(&ctxdata->mutex);
579	sess = find_session(ctxdata, session);
580	if (sess)
581		system_thread = sess->use_sys_thread;
582	mutex_unlock(&ctxdata->mutex);
583	if (!sess)
584		return -EINVAL;
585
586	msg_arg = optee_get_msg_arg(ctx, 0, &entry, &shm, &offs);
587	if (IS_ERR(msg_arg))
588		return PTR_ERR(msg_arg);
589
590	msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
591	msg_arg->session = session;
592	msg_arg->cancel_id = cancel_id;
593	optee->ops->do_call_with_arg(ctx, shm, offs, system_thread);
594
595	optee_free_msg_arg(ctx, entry, offs);
596	return 0;
597}
598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
599static bool is_normal_memory(pgprot_t p)
600{
601#if defined(CONFIG_ARM)
602	return (((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC) ||
603		((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEBACK));
604#elif defined(CONFIG_ARM64)
605	return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
606#else
607#error "Unsupported architecture"
608#endif
609}
610
611static int __check_mem_type(struct mm_struct *mm, unsigned long start,
612				unsigned long end)
613{
614	struct vm_area_struct *vma;
615	VMA_ITERATOR(vmi, mm, start);
616
617	for_each_vma_range(vmi, vma, end) {
618		if (!is_normal_memory(vma->vm_page_prot))
619			return -EINVAL;
620	}
621
622	return 0;
623}
624
625int optee_check_mem_type(unsigned long start, size_t num_pages)
626{
627	struct mm_struct *mm = current->mm;
628	int rc;
629
630	/*
631	 * Allow kernel address to register with OP-TEE as kernel
632	 * pages are configured as normal memory only.
633	 */
634	if (virt_addr_valid((void *)start) || is_vmalloc_addr((void *)start))
635		return 0;
636
637	mmap_read_lock(mm);
638	rc = __check_mem_type(mm, start, start + num_pages * PAGE_SIZE);
 
639	mmap_read_unlock(mm);
640
641	return rc;
642}
643
644static int simple_call_with_arg(struct tee_context *ctx, u32 cmd)
 
 
645{
646	struct optee *optee = tee_get_drvdata(ctx->teedev);
647	struct optee_shm_arg_entry *entry;
648	struct optee_msg_arg *msg_arg;
649	struct tee_shm *shm;
650	u_int offs;
 
651
652	msg_arg = optee_get_msg_arg(ctx, 0, &entry, &shm, &offs);
653	if (IS_ERR(msg_arg))
654		return PTR_ERR(msg_arg);
655
656	msg_arg->cmd = cmd;
657	optee->ops->do_call_with_arg(ctx, shm, offs, false);
 
658
659	optee_free_msg_arg(ctx, entry, offs);
660	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
661}
662
663int optee_do_bottom_half(struct tee_context *ctx)
664{
665	return simple_call_with_arg(ctx, OPTEE_MSG_CMD_DO_BOTTOM_HALF);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
666}
667
668int optee_stop_async_notif(struct tee_context *ctx)
 
 
669{
670	return simple_call_with_arg(ctx, OPTEE_MSG_CMD_STOP_ASYNC_NOTIF);
 
 
 
 
 
 
 
 
 
671}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (c) 2015, Linaro Limited
  4 */
  5#include <linux/arm-smccc.h>
  6#include <linux/device.h>
  7#include <linux/err.h>
  8#include <linux/errno.h>
  9#include <linux/mm.h>
 10#include <linux/sched.h>
 11#include <linux/slab.h>
 12#include <linux/tee_drv.h>
 13#include <linux/types.h>
 14#include <linux/uaccess.h>
 15#include "optee_private.h"
 16#include "optee_smc.h"
 17#define CREATE_TRACE_POINTS
 18#include "optee_trace.h"
 19
 20struct optee_call_waiter {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 21	struct list_head list_node;
 22	struct completion c;
 
 23};
 24
 25static void optee_cq_wait_init(struct optee_call_queue *cq,
 26			       struct optee_call_waiter *w)
 27{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 28	/*
 29	 * We're preparing to make a call to secure world. In case we can't
 30	 * allocate a thread in secure world we'll end up waiting in
 31	 * optee_cq_wait_for_completion().
 32	 *
 33	 * Normally if there's no contention in secure world the call will
 34	 * complete and we can cleanup directly with optee_cq_wait_final().
 35	 */
 36	mutex_lock(&cq->mutex);
 37
 38	/*
 39	 * We add ourselves to the queue, but we don't wait. This
 40	 * guarantees that we don't lose a completion if secure world
 41	 * returns busy and another thread just exited and try to complete
 42	 * someone.
 43	 */
 44	init_completion(&w->c);
 45	list_add_tail(&w->list_node, &cq->waiters);
 
 
 
 
 
 
 
 
 
 
 
 
 
 46
 47	mutex_unlock(&cq->mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 48}
 49
 50static void optee_cq_wait_for_completion(struct optee_call_queue *cq,
 51					 struct optee_call_waiter *w)
 52{
 53	wait_for_completion(&w->c);
 54
 55	mutex_lock(&cq->mutex);
 56
 57	/* Move to end of list to get out of the way for other waiters */
 58	list_del(&w->list_node);
 59	reinit_completion(&w->c);
 60	list_add_tail(&w->list_node, &cq->waiters);
 61
 62	mutex_unlock(&cq->mutex);
 63}
 64
 65static void optee_cq_complete_one(struct optee_call_queue *cq)
 66{
 67	struct optee_call_waiter *w;
 68
 
 
 
 
 
 
 
 
 69	list_for_each_entry(w, &cq->waiters, list_node) {
 70		if (!completion_done(&w->c)) {
 71			complete(&w->c);
 72			break;
 73		}
 74	}
 75}
 76
 77static void optee_cq_wait_final(struct optee_call_queue *cq,
 78				struct optee_call_waiter *w)
 79{
 80	/*
 81	 * We're done with the call to secure world. The thread in secure
 82	 * world that was used for this call is now available for some
 83	 * other task to use.
 84	 */
 85	mutex_lock(&cq->mutex);
 86
 87	/* Get out of the list */
 88	list_del(&w->list_node);
 89
 
 
 90	/* Wake up one eventual waiting task */
 91	optee_cq_complete_one(cq);
 92
 93	/*
 94	 * If we're completed we've got a completion from another task that
 95	 * was just done with its call to secure world. Since yet another
 96	 * thread now is available in secure world wake up another eventual
 97	 * waiting task.
 98	 */
 99	if (completion_done(&w->c))
100		optee_cq_complete_one(cq);
101
102	mutex_unlock(&cq->mutex);
103}
104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105/* Requires the filpstate mutex to be held */
106static struct optee_session *find_session(struct optee_context_data *ctxdata,
107					  u32 session_id)
108{
109	struct optee_session *sess;
110
111	list_for_each_entry(sess, &ctxdata->sess_list, list_node)
112		if (sess->session_id == session_id)
113			return sess;
114
115	return NULL;
116}
117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118/**
119 * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world
120 * @ctx:	calling context
121 * @parg:	physical address of message to pass to secure world
122 *
123 * Does and SMC to OP-TEE in secure world and handles eventual resulting
124 * Remote Procedure Calls (RPC) from OP-TEE.
125 *
126 * Returns return code from secure world, 0 is OK
127 */
128u32 optee_do_call_with_arg(struct tee_context *ctx, phys_addr_t parg)
 
 
 
 
129{
130	struct optee *optee = tee_get_drvdata(ctx->teedev);
131	struct optee_call_waiter w;
132	struct optee_rpc_param param = { };
133	struct optee_call_ctx call_ctx = { };
134	u32 ret;
135
136	param.a0 = OPTEE_SMC_CALL_WITH_ARG;
137	reg_pair_from_64(&param.a1, &param.a2, parg);
138	/* Initialize waiter */
139	optee_cq_wait_init(&optee->call_queue, &w);
140	while (true) {
141		struct arm_smccc_res res;
142
143		trace_optee_invoke_fn_begin(&param);
144		optee->invoke_fn(param.a0, param.a1, param.a2, param.a3,
145				 param.a4, param.a5, param.a6, param.a7,
146				 &res);
147		trace_optee_invoke_fn_end(&param, &res);
148
149		if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
150			/*
151			 * Out of threads in secure world, wait for a thread
152			 * become available.
153			 */
154			optee_cq_wait_for_completion(&optee->call_queue, &w);
155		} else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
156			cond_resched();
157			param.a0 = res.a0;
158			param.a1 = res.a1;
159			param.a2 = res.a2;
160			param.a3 = res.a3;
161			optee_handle_rpc(ctx, &param, &call_ctx);
162		} else {
163			ret = res.a0;
164			break;
165		}
166	}
167
168	optee_rpc_finalize_call(&call_ctx);
169	/*
170	 * We're done with our thread in secure world, if there's any
171	 * thread waiters wake up one.
172	 */
173	optee_cq_wait_final(&optee->call_queue, &w);
 
 
 
 
 
 
 
 
 
174
175	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176}
177
178static struct tee_shm *get_msg_arg(struct tee_context *ctx, size_t num_params,
179				   struct optee_msg_arg **msg_arg,
180				   phys_addr_t *msg_parg)
 
 
 
 
 
 
 
181{
182	int rc;
183	struct tee_shm *shm;
184	struct optee_msg_arg *ma;
185
186	shm = tee_shm_alloc(ctx, OPTEE_MSG_GET_ARG_SIZE(num_params),
187			    TEE_SHM_MAPPED | TEE_SHM_PRIV);
188	if (IS_ERR(shm))
189		return shm;
190
191	ma = tee_shm_get_va(shm, 0);
192	if (IS_ERR(ma)) {
193		rc = PTR_ERR(ma);
194		goto out;
195	}
 
196
197	rc = tee_shm_get_pa(shm, 0, msg_parg);
198	if (rc)
199		goto out;
200
201	memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params));
202	ma->num_params = num_params;
203	*msg_arg = ma;
204out:
205	if (rc) {
206		tee_shm_free(shm);
207		return ERR_PTR(rc);
208	}
209
210	return shm;
211}
212
213int optee_open_session(struct tee_context *ctx,
214		       struct tee_ioctl_open_session_arg *arg,
215		       struct tee_param *param)
216{
 
217	struct optee_context_data *ctxdata = ctx->data;
218	int rc;
219	struct tee_shm *shm;
220	struct optee_msg_arg *msg_arg;
221	phys_addr_t msg_parg;
222	struct optee_session *sess = NULL;
223	uuid_t client_uuid;
 
 
224
225	/* +2 for the meta parameters added below */
226	shm = get_msg_arg(ctx, arg->num_params + 2, &msg_arg, &msg_parg);
227	if (IS_ERR(shm))
228		return PTR_ERR(shm);
 
229
230	msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
231	msg_arg->cancel_id = arg->cancel_id;
232
233	/*
234	 * Initialize and add the meta parameters needed when opening a
235	 * session.
236	 */
237	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
238				  OPTEE_MSG_ATTR_META;
239	msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
240				  OPTEE_MSG_ATTR_META;
241	memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
242	msg_arg->params[1].u.value.c = arg->clnt_login;
243
244	rc = tee_session_calc_client_uuid(&client_uuid, arg->clnt_login,
245					  arg->clnt_uuid);
246	if (rc)
247		goto out;
248	export_uuid(msg_arg->params[1].u.octets, &client_uuid);
249
250	rc = optee_to_msg_param(msg_arg->params + 2, arg->num_params, param);
 
251	if (rc)
252		goto out;
253
254	sess = kzalloc(sizeof(*sess), GFP_KERNEL);
255	if (!sess) {
256		rc = -ENOMEM;
257		goto out;
258	}
259
260	if (optee_do_call_with_arg(ctx, msg_parg)) {
 
261		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
262		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
263	}
264
265	if (msg_arg->ret == TEEC_SUCCESS) {
266		/* A new session has been created, add it to the list. */
267		sess->session_id = msg_arg->session;
268		mutex_lock(&ctxdata->mutex);
269		list_add(&sess->list_node, &ctxdata->sess_list);
270		mutex_unlock(&ctxdata->mutex);
271	} else {
272		kfree(sess);
273	}
274
275	if (optee_from_msg_param(param, arg->num_params, msg_arg->params + 2)) {
 
276		arg->ret = TEEC_ERROR_COMMUNICATION;
277		arg->ret_origin = TEEC_ORIGIN_COMMS;
278		/* Close session again to avoid leakage */
279		optee_close_session(ctx, msg_arg->session);
280	} else {
281		arg->session = msg_arg->session;
282		arg->ret = msg_arg->ret;
283		arg->ret_origin = msg_arg->ret_origin;
284	}
285out:
286	tee_shm_free(shm);
287
288	return rc;
289}
290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
291int optee_close_session(struct tee_context *ctx, u32 session)
292{
293	struct optee_context_data *ctxdata = ctx->data;
294	struct tee_shm *shm;
295	struct optee_msg_arg *msg_arg;
296	phys_addr_t msg_parg;
297	struct optee_session *sess;
 
298
299	/* Check that the session is valid and remove it from the list */
300	mutex_lock(&ctxdata->mutex);
301	sess = find_session(ctxdata, session);
302	if (sess)
303		list_del(&sess->list_node);
304	mutex_unlock(&ctxdata->mutex);
305	if (!sess)
306		return -EINVAL;
 
307	kfree(sess);
308
309	shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
310	if (IS_ERR(shm))
311		return PTR_ERR(shm);
312
313	msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
314	msg_arg->session = session;
315	optee_do_call_with_arg(ctx, msg_parg);
316
317	tee_shm_free(shm);
318	return 0;
319}
320
321int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
322		      struct tee_param *param)
323{
 
324	struct optee_context_data *ctxdata = ctx->data;
325	struct tee_shm *shm;
326	struct optee_msg_arg *msg_arg;
327	phys_addr_t msg_parg;
328	struct optee_session *sess;
 
 
 
329	int rc;
330
331	/* Check that the session is valid */
332	mutex_lock(&ctxdata->mutex);
333	sess = find_session(ctxdata, arg->session);
 
 
334	mutex_unlock(&ctxdata->mutex);
335	if (!sess)
336		return -EINVAL;
337
338	shm = get_msg_arg(ctx, arg->num_params, &msg_arg, &msg_parg);
339	if (IS_ERR(shm))
340		return PTR_ERR(shm);
 
341	msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
342	msg_arg->func = arg->func;
343	msg_arg->session = arg->session;
344	msg_arg->cancel_id = arg->cancel_id;
345
346	rc = optee_to_msg_param(msg_arg->params, arg->num_params, param);
 
347	if (rc)
348		goto out;
349
350	if (optee_do_call_with_arg(ctx, msg_parg)) {
351		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
352		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
353	}
354
355	if (optee_from_msg_param(param, arg->num_params, msg_arg->params)) {
 
356		msg_arg->ret = TEEC_ERROR_COMMUNICATION;
357		msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
358	}
359
360	arg->ret = msg_arg->ret;
361	arg->ret_origin = msg_arg->ret_origin;
362out:
363	tee_shm_free(shm);
364	return rc;
365}
366
367int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
368{
 
369	struct optee_context_data *ctxdata = ctx->data;
370	struct tee_shm *shm;
371	struct optee_msg_arg *msg_arg;
372	phys_addr_t msg_parg;
373	struct optee_session *sess;
 
 
 
374
375	/* Check that the session is valid */
376	mutex_lock(&ctxdata->mutex);
377	sess = find_session(ctxdata, session);
 
 
378	mutex_unlock(&ctxdata->mutex);
379	if (!sess)
380		return -EINVAL;
381
382	shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
383	if (IS_ERR(shm))
384		return PTR_ERR(shm);
385
386	msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
387	msg_arg->session = session;
388	msg_arg->cancel_id = cancel_id;
389	optee_do_call_with_arg(ctx, msg_parg);
390
391	tee_shm_free(shm);
392	return 0;
393}
394
395/**
396 * optee_enable_shm_cache() - Enables caching of some shared memory allocation
397 *			      in OP-TEE
398 * @optee:	main service struct
399 */
400void optee_enable_shm_cache(struct optee *optee)
401{
402	struct optee_call_waiter w;
403
404	/* We need to retry until secure world isn't busy. */
405	optee_cq_wait_init(&optee->call_queue, &w);
406	while (true) {
407		struct arm_smccc_res res;
408
409		optee->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
410				 0, &res);
411		if (res.a0 == OPTEE_SMC_RETURN_OK)
412			break;
413		optee_cq_wait_for_completion(&optee->call_queue, &w);
414	}
415	optee_cq_wait_final(&optee->call_queue, &w);
416}
417
418/**
419 * __optee_disable_shm_cache() - Disables caching of some shared memory
420 *                               allocation in OP-TEE
421 * @optee:	main service struct
422 * @is_mapped:	true if the cached shared memory addresses were mapped by this
423 *		kernel, are safe to dereference, and should be freed
424 */
425static void __optee_disable_shm_cache(struct optee *optee, bool is_mapped)
426{
427	struct optee_call_waiter w;
428
429	/* We need to retry until secure world isn't busy. */
430	optee_cq_wait_init(&optee->call_queue, &w);
431	while (true) {
432		union {
433			struct arm_smccc_res smccc;
434			struct optee_smc_disable_shm_cache_result result;
435		} res;
436
437		optee->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
438				 0, &res.smccc);
439		if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
440			break; /* All shm's freed */
441		if (res.result.status == OPTEE_SMC_RETURN_OK) {
442			struct tee_shm *shm;
443
444			/*
445			 * Shared memory references that were not mapped by
446			 * this kernel must be ignored to prevent a crash.
447			 */
448			if (!is_mapped)
449				continue;
450
451			shm = reg_pair_to_ptr(res.result.shm_upper32,
452					      res.result.shm_lower32);
453			tee_shm_free(shm);
454		} else {
455			optee_cq_wait_for_completion(&optee->call_queue, &w);
456		}
457	}
458	optee_cq_wait_final(&optee->call_queue, &w);
459}
460
461/**
462 * optee_disable_shm_cache() - Disables caching of mapped shared memory
463 *                             allocations in OP-TEE
464 * @optee:	main service struct
465 */
466void optee_disable_shm_cache(struct optee *optee)
467{
468	return __optee_disable_shm_cache(optee, true);
469}
470
471/**
472 * optee_disable_unmapped_shm_cache() - Disables caching of shared memory
473 *                                      allocations in OP-TEE which are not
474 *                                      currently mapped
475 * @optee:	main service struct
476 */
477void optee_disable_unmapped_shm_cache(struct optee *optee)
478{
479	return __optee_disable_shm_cache(optee, false);
480}
481
482#define PAGELIST_ENTRIES_PER_PAGE				\
483	((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
484
485/**
486 * optee_fill_pages_list() - write list of user pages to given shared
487 * buffer.
488 *
489 * @dst: page-aligned buffer where list of pages will be stored
490 * @pages: array of pages that represents shared buffer
491 * @num_pages: number of entries in @pages
492 * @page_offset: offset of user buffer from page start
493 *
494 * @dst should be big enough to hold list of user page addresses and
495 *	links to the next pages of buffer
496 */
497void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
498			   size_t page_offset)
499{
500	int n = 0;
501	phys_addr_t optee_page;
502	/*
503	 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
504	 * for details.
505	 */
506	struct {
507		u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
508		u64 next_page_data;
509	} *pages_data;
510
511	/*
512	 * Currently OP-TEE uses 4k page size and it does not looks
513	 * like this will change in the future.  On other hand, there are
514	 * no know ARM architectures with page size < 4k.
515	 * Thus the next built assert looks redundant. But the following
516	 * code heavily relies on this assumption, so it is better be
517	 * safe than sorry.
518	 */
519	BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
520
521	pages_data = (void *)dst;
522	/*
523	 * If linux page is bigger than 4k, and user buffer offset is
524	 * larger than 4k/8k/12k/etc this will skip first 4k pages,
525	 * because they bear no value data for OP-TEE.
526	 */
527	optee_page = page_to_phys(*pages) +
528		round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
529
530	while (true) {
531		pages_data->pages_list[n++] = optee_page;
532
533		if (n == PAGELIST_ENTRIES_PER_PAGE) {
534			pages_data->next_page_data =
535				virt_to_phys(pages_data + 1);
536			pages_data++;
537			n = 0;
538		}
539
540		optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
541		if (!(optee_page & ~PAGE_MASK)) {
542			if (!--num_pages)
543				break;
544			pages++;
545			optee_page = page_to_phys(*pages);
546		}
547	}
548}
549
550/*
551 * The final entry in each pagelist page is a pointer to the next
552 * pagelist page.
553 */
554static size_t get_pages_list_size(size_t num_entries)
555{
556	int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
557
558	return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
559}
560
561u64 *optee_allocate_pages_list(size_t num_entries)
562{
563	return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
564}
565
566void optee_free_pages_list(void *list, size_t num_entries)
567{
568	free_pages_exact(list, get_pages_list_size(num_entries));
569}
570
571static bool is_normal_memory(pgprot_t p)
572{
573#if defined(CONFIG_ARM)
574	return (((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC) ||
575		((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEBACK));
576#elif defined(CONFIG_ARM64)
577	return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
578#else
579#error "Unuspported architecture"
580#endif
581}
582
583static int __check_mem_type(struct vm_area_struct *vma, unsigned long end)
 
584{
585	while (vma && is_normal_memory(vma->vm_page_prot)) {
586		if (vma->vm_end >= end)
587			return 0;
588		vma = vma->vm_next;
 
 
589	}
590
591	return -EINVAL;
592}
593
594static int check_mem_type(unsigned long start, size_t num_pages)
595{
596	struct mm_struct *mm = current->mm;
597	int rc;
598
599	/*
600	 * Allow kernel address to register with OP-TEE as kernel
601	 * pages are configured as normal memory only.
602	 */
603	if (virt_addr_valid(start))
604		return 0;
605
606	mmap_read_lock(mm);
607	rc = __check_mem_type(find_vma(mm, start),
608			      start + num_pages * PAGE_SIZE);
609	mmap_read_unlock(mm);
610
611	return rc;
612}
613
614int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
615		       struct page **pages, size_t num_pages,
616		       unsigned long start)
617{
618	struct tee_shm *shm_arg = NULL;
 
619	struct optee_msg_arg *msg_arg;
620	u64 *pages_list;
621	phys_addr_t msg_parg;
622	int rc;
623
624	if (!num_pages)
625		return -EINVAL;
 
626
627	rc = check_mem_type(start, num_pages);
628	if (rc)
629		return rc;
630
631	pages_list = optee_allocate_pages_list(num_pages);
632	if (!pages_list)
633		return -ENOMEM;
634
635	shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
636	if (IS_ERR(shm_arg)) {
637		rc = PTR_ERR(shm_arg);
638		goto out;
639	}
640
641	optee_fill_pages_list(pages_list, pages, num_pages,
642			      tee_shm_get_page_offset(shm));
643
644	msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
645	msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
646				OPTEE_MSG_ATTR_NONCONTIG;
647	msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
648	msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
649	/*
650	 * In the least bits of msg_arg->params->u.tmem.buf_ptr we
651	 * store buffer offset from 4k page, as described in OP-TEE ABI.
652	 */
653	msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
654	  (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
655
656	if (optee_do_call_with_arg(ctx, msg_parg) ||
657	    msg_arg->ret != TEEC_SUCCESS)
658		rc = -EINVAL;
659
660	tee_shm_free(shm_arg);
661out:
662	optee_free_pages_list(pages_list, num_pages);
663	return rc;
664}
665
666int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
667{
668	struct tee_shm *shm_arg;
669	struct optee_msg_arg *msg_arg;
670	phys_addr_t msg_parg;
671	int rc = 0;
672
673	shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
674	if (IS_ERR(shm_arg))
675		return PTR_ERR(shm_arg);
676
677	msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
678
679	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
680	msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
681
682	if (optee_do_call_with_arg(ctx, msg_parg) ||
683	    msg_arg->ret != TEEC_SUCCESS)
684		rc = -EINVAL;
685	tee_shm_free(shm_arg);
686	return rc;
687}
688
689int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
690			    struct page **pages, size_t num_pages,
691			    unsigned long start)
692{
693	/*
694	 * We don't want to register supplicant memory in OP-TEE.
695	 * Instead information about it will be passed in RPC code.
696	 */
697	return check_mem_type(start, num_pages);
698}
699
700int optee_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm)
701{
702	return 0;
703}