Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/reboot.h>
23#include <linux/regmap.h>
24#include <linux/regulator/of_regulator.h>
25#include <linux/regulator/consumer.h>
26#include <linux/regulator/coupler.h>
27#include <linux/regulator/driver.h>
28#include <linux/regulator/machine.h>
29#include <linux/module.h>
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/regulator.h>
33
34#include "dummy.h"
35#include "internal.h"
36#include "regnl.h"
37
38static DEFINE_WW_CLASS(regulator_ww_class);
39static DEFINE_MUTEX(regulator_nesting_mutex);
40static DEFINE_MUTEX(regulator_list_mutex);
41static LIST_HEAD(regulator_map_list);
42static LIST_HEAD(regulator_ena_gpio_list);
43static LIST_HEAD(regulator_supply_alias_list);
44static LIST_HEAD(regulator_coupler_list);
45static bool has_full_constraints;
46
47static struct dentry *debugfs_root;
48
49/*
50 * struct regulator_map
51 *
52 * Used to provide symbolic supply names to devices.
53 */
54struct regulator_map {
55 struct list_head list;
56 const char *dev_name; /* The dev_name() for the consumer */
57 const char *supply;
58 struct regulator_dev *regulator;
59};
60
61/*
62 * struct regulator_enable_gpio
63 *
64 * Management for shared enable GPIO pin
65 */
66struct regulator_enable_gpio {
67 struct list_head list;
68 struct gpio_desc *gpiod;
69 u32 enable_count; /* a number of enabled shared GPIO */
70 u32 request_count; /* a number of requested shared GPIO */
71};
72
73/*
74 * struct regulator_supply_alias
75 *
76 * Used to map lookups for a supply onto an alternative device.
77 */
78struct regulator_supply_alias {
79 struct list_head list;
80 struct device *src_dev;
81 const char *src_supply;
82 struct device *alias_dev;
83 const char *alias_supply;
84};
85
86static int _regulator_is_enabled(struct regulator_dev *rdev);
87static int _regulator_disable(struct regulator *regulator);
88static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
89static int _regulator_get_current_limit(struct regulator_dev *rdev);
90static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91static int _notifier_call_chain(struct regulator_dev *rdev,
92 unsigned long event, void *data);
93static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94 int min_uV, int max_uV);
95static int regulator_balance_voltage(struct regulator_dev *rdev,
96 suspend_state_t state);
97static struct regulator *create_regulator(struct regulator_dev *rdev,
98 struct device *dev,
99 const char *supply_name);
100static void destroy_regulator(struct regulator *regulator);
101static void _regulator_put(struct regulator *regulator);
102
103const char *rdev_get_name(struct regulator_dev *rdev)
104{
105 if (rdev->constraints && rdev->constraints->name)
106 return rdev->constraints->name;
107 else if (rdev->desc->name)
108 return rdev->desc->name;
109 else
110 return "";
111}
112EXPORT_SYMBOL_GPL(rdev_get_name);
113
114static bool have_full_constraints(void)
115{
116 return has_full_constraints || of_have_populated_dt();
117}
118
119static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
120{
121 if (!rdev->constraints) {
122 rdev_err(rdev, "no constraints\n");
123 return false;
124 }
125
126 if (rdev->constraints->valid_ops_mask & ops)
127 return true;
128
129 return false;
130}
131
132/**
133 * regulator_lock_nested - lock a single regulator
134 * @rdev: regulator source
135 * @ww_ctx: w/w mutex acquire context
136 *
137 * This function can be called many times by one task on
138 * a single regulator and its mutex will be locked only
139 * once. If a task, which is calling this function is other
140 * than the one, which initially locked the mutex, it will
141 * wait on mutex.
142 */
143static inline int regulator_lock_nested(struct regulator_dev *rdev,
144 struct ww_acquire_ctx *ww_ctx)
145{
146 bool lock = false;
147 int ret = 0;
148
149 mutex_lock(®ulator_nesting_mutex);
150
151 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
152 if (rdev->mutex_owner == current)
153 rdev->ref_cnt++;
154 else
155 lock = true;
156
157 if (lock) {
158 mutex_unlock(®ulator_nesting_mutex);
159 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
160 mutex_lock(®ulator_nesting_mutex);
161 }
162 } else {
163 lock = true;
164 }
165
166 if (lock && ret != -EDEADLK) {
167 rdev->ref_cnt++;
168 rdev->mutex_owner = current;
169 }
170
171 mutex_unlock(®ulator_nesting_mutex);
172
173 return ret;
174}
175
176/**
177 * regulator_lock - lock a single regulator
178 * @rdev: regulator source
179 *
180 * This function can be called many times by one task on
181 * a single regulator and its mutex will be locked only
182 * once. If a task, which is calling this function is other
183 * than the one, which initially locked the mutex, it will
184 * wait on mutex.
185 */
186static void regulator_lock(struct regulator_dev *rdev)
187{
188 regulator_lock_nested(rdev, NULL);
189}
190
191/**
192 * regulator_unlock - unlock a single regulator
193 * @rdev: regulator_source
194 *
195 * This function unlocks the mutex when the
196 * reference counter reaches 0.
197 */
198static void regulator_unlock(struct regulator_dev *rdev)
199{
200 mutex_lock(®ulator_nesting_mutex);
201
202 if (--rdev->ref_cnt == 0) {
203 rdev->mutex_owner = NULL;
204 ww_mutex_unlock(&rdev->mutex);
205 }
206
207 WARN_ON_ONCE(rdev->ref_cnt < 0);
208
209 mutex_unlock(®ulator_nesting_mutex);
210}
211
212/**
213 * regulator_lock_two - lock two regulators
214 * @rdev1: first regulator
215 * @rdev2: second regulator
216 * @ww_ctx: w/w mutex acquire context
217 *
218 * Locks both rdevs using the regulator_ww_class.
219 */
220static void regulator_lock_two(struct regulator_dev *rdev1,
221 struct regulator_dev *rdev2,
222 struct ww_acquire_ctx *ww_ctx)
223{
224 struct regulator_dev *held, *contended;
225 int ret;
226
227 ww_acquire_init(ww_ctx, ®ulator_ww_class);
228
229 /* Try to just grab both of them */
230 ret = regulator_lock_nested(rdev1, ww_ctx);
231 WARN_ON(ret);
232 ret = regulator_lock_nested(rdev2, ww_ctx);
233 if (ret != -EDEADLOCK) {
234 WARN_ON(ret);
235 goto exit;
236 }
237
238 held = rdev1;
239 contended = rdev2;
240 while (true) {
241 regulator_unlock(held);
242
243 ww_mutex_lock_slow(&contended->mutex, ww_ctx);
244 contended->ref_cnt++;
245 contended->mutex_owner = current;
246 swap(held, contended);
247 ret = regulator_lock_nested(contended, ww_ctx);
248
249 if (ret != -EDEADLOCK) {
250 WARN_ON(ret);
251 break;
252 }
253 }
254
255exit:
256 ww_acquire_done(ww_ctx);
257}
258
259/**
260 * regulator_unlock_two - unlock two regulators
261 * @rdev1: first regulator
262 * @rdev2: second regulator
263 * @ww_ctx: w/w mutex acquire context
264 *
265 * The inverse of regulator_lock_two().
266 */
267
268static void regulator_unlock_two(struct regulator_dev *rdev1,
269 struct regulator_dev *rdev2,
270 struct ww_acquire_ctx *ww_ctx)
271{
272 regulator_unlock(rdev2);
273 regulator_unlock(rdev1);
274 ww_acquire_fini(ww_ctx);
275}
276
277static bool regulator_supply_is_couple(struct regulator_dev *rdev)
278{
279 struct regulator_dev *c_rdev;
280 int i;
281
282 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
283 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
284
285 if (rdev->supply->rdev == c_rdev)
286 return true;
287 }
288
289 return false;
290}
291
292static void regulator_unlock_recursive(struct regulator_dev *rdev,
293 unsigned int n_coupled)
294{
295 struct regulator_dev *c_rdev, *supply_rdev;
296 int i, supply_n_coupled;
297
298 for (i = n_coupled; i > 0; i--) {
299 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
300
301 if (!c_rdev)
302 continue;
303
304 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
305 supply_rdev = c_rdev->supply->rdev;
306 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
307
308 regulator_unlock_recursive(supply_rdev,
309 supply_n_coupled);
310 }
311
312 regulator_unlock(c_rdev);
313 }
314}
315
316static int regulator_lock_recursive(struct regulator_dev *rdev,
317 struct regulator_dev **new_contended_rdev,
318 struct regulator_dev **old_contended_rdev,
319 struct ww_acquire_ctx *ww_ctx)
320{
321 struct regulator_dev *c_rdev;
322 int i, err;
323
324 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
325 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
326
327 if (!c_rdev)
328 continue;
329
330 if (c_rdev != *old_contended_rdev) {
331 err = regulator_lock_nested(c_rdev, ww_ctx);
332 if (err) {
333 if (err == -EDEADLK) {
334 *new_contended_rdev = c_rdev;
335 goto err_unlock;
336 }
337
338 /* shouldn't happen */
339 WARN_ON_ONCE(err != -EALREADY);
340 }
341 } else {
342 *old_contended_rdev = NULL;
343 }
344
345 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
346 err = regulator_lock_recursive(c_rdev->supply->rdev,
347 new_contended_rdev,
348 old_contended_rdev,
349 ww_ctx);
350 if (err) {
351 regulator_unlock(c_rdev);
352 goto err_unlock;
353 }
354 }
355 }
356
357 return 0;
358
359err_unlock:
360 regulator_unlock_recursive(rdev, i);
361
362 return err;
363}
364
365/**
366 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
367 * regulators
368 * @rdev: regulator source
369 * @ww_ctx: w/w mutex acquire context
370 *
371 * Unlock all regulators related with rdev by coupling or supplying.
372 */
373static void regulator_unlock_dependent(struct regulator_dev *rdev,
374 struct ww_acquire_ctx *ww_ctx)
375{
376 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
377 ww_acquire_fini(ww_ctx);
378}
379
380/**
381 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
382 * @rdev: regulator source
383 * @ww_ctx: w/w mutex acquire context
384 *
385 * This function as a wrapper on regulator_lock_recursive(), which locks
386 * all regulators related with rdev by coupling or supplying.
387 */
388static void regulator_lock_dependent(struct regulator_dev *rdev,
389 struct ww_acquire_ctx *ww_ctx)
390{
391 struct regulator_dev *new_contended_rdev = NULL;
392 struct regulator_dev *old_contended_rdev = NULL;
393 int err;
394
395 mutex_lock(®ulator_list_mutex);
396
397 ww_acquire_init(ww_ctx, ®ulator_ww_class);
398
399 do {
400 if (new_contended_rdev) {
401 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
402 old_contended_rdev = new_contended_rdev;
403 old_contended_rdev->ref_cnt++;
404 old_contended_rdev->mutex_owner = current;
405 }
406
407 err = regulator_lock_recursive(rdev,
408 &new_contended_rdev,
409 &old_contended_rdev,
410 ww_ctx);
411
412 if (old_contended_rdev)
413 regulator_unlock(old_contended_rdev);
414
415 } while (err == -EDEADLK);
416
417 ww_acquire_done(ww_ctx);
418
419 mutex_unlock(®ulator_list_mutex);
420}
421
422/**
423 * of_get_child_regulator - get a child regulator device node
424 * based on supply name
425 * @parent: Parent device node
426 * @prop_name: Combination regulator supply name and "-supply"
427 *
428 * Traverse all child nodes.
429 * Extract the child regulator device node corresponding to the supply name.
430 * returns the device node corresponding to the regulator if found, else
431 * returns NULL.
432 */
433static struct device_node *of_get_child_regulator(struct device_node *parent,
434 const char *prop_name)
435{
436 struct device_node *regnode = NULL;
437 struct device_node *child = NULL;
438
439 for_each_child_of_node(parent, child) {
440 regnode = of_parse_phandle(child, prop_name, 0);
441
442 if (!regnode) {
443 regnode = of_get_child_regulator(child, prop_name);
444 if (regnode)
445 goto err_node_put;
446 } else {
447 goto err_node_put;
448 }
449 }
450 return NULL;
451
452err_node_put:
453 of_node_put(child);
454 return regnode;
455}
456
457/**
458 * of_get_regulator - get a regulator device node based on supply name
459 * @dev: Device pointer for the consumer (of regulator) device
460 * @supply: regulator supply name
461 *
462 * Extract the regulator device node corresponding to the supply name.
463 * returns the device node corresponding to the regulator if found, else
464 * returns NULL.
465 */
466static struct device_node *of_get_regulator(struct device *dev, const char *supply)
467{
468 struct device_node *regnode = NULL;
469 char prop_name[64]; /* 64 is max size of property name */
470
471 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
472
473 snprintf(prop_name, 64, "%s-supply", supply);
474 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
475
476 if (!regnode) {
477 regnode = of_get_child_regulator(dev->of_node, prop_name);
478 if (regnode)
479 return regnode;
480
481 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
482 prop_name, dev->of_node);
483 return NULL;
484 }
485 return regnode;
486}
487
488/* Platform voltage constraint check */
489int regulator_check_voltage(struct regulator_dev *rdev,
490 int *min_uV, int *max_uV)
491{
492 BUG_ON(*min_uV > *max_uV);
493
494 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
495 rdev_err(rdev, "voltage operation not allowed\n");
496 return -EPERM;
497 }
498
499 if (*max_uV > rdev->constraints->max_uV)
500 *max_uV = rdev->constraints->max_uV;
501 if (*min_uV < rdev->constraints->min_uV)
502 *min_uV = rdev->constraints->min_uV;
503
504 if (*min_uV > *max_uV) {
505 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
506 *min_uV, *max_uV);
507 return -EINVAL;
508 }
509
510 return 0;
511}
512
513/* return 0 if the state is valid */
514static int regulator_check_states(suspend_state_t state)
515{
516 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
517}
518
519/* Make sure we select a voltage that suits the needs of all
520 * regulator consumers
521 */
522int regulator_check_consumers(struct regulator_dev *rdev,
523 int *min_uV, int *max_uV,
524 suspend_state_t state)
525{
526 struct regulator *regulator;
527 struct regulator_voltage *voltage;
528
529 list_for_each_entry(regulator, &rdev->consumer_list, list) {
530 voltage = ®ulator->voltage[state];
531 /*
532 * Assume consumers that didn't say anything are OK
533 * with anything in the constraint range.
534 */
535 if (!voltage->min_uV && !voltage->max_uV)
536 continue;
537
538 if (*max_uV > voltage->max_uV)
539 *max_uV = voltage->max_uV;
540 if (*min_uV < voltage->min_uV)
541 *min_uV = voltage->min_uV;
542 }
543
544 if (*min_uV > *max_uV) {
545 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
546 *min_uV, *max_uV);
547 return -EINVAL;
548 }
549
550 return 0;
551}
552
553/* current constraint check */
554static int regulator_check_current_limit(struct regulator_dev *rdev,
555 int *min_uA, int *max_uA)
556{
557 BUG_ON(*min_uA > *max_uA);
558
559 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
560 rdev_err(rdev, "current operation not allowed\n");
561 return -EPERM;
562 }
563
564 if (*max_uA > rdev->constraints->max_uA)
565 *max_uA = rdev->constraints->max_uA;
566 if (*min_uA < rdev->constraints->min_uA)
567 *min_uA = rdev->constraints->min_uA;
568
569 if (*min_uA > *max_uA) {
570 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
571 *min_uA, *max_uA);
572 return -EINVAL;
573 }
574
575 return 0;
576}
577
578/* operating mode constraint check */
579static int regulator_mode_constrain(struct regulator_dev *rdev,
580 unsigned int *mode)
581{
582 switch (*mode) {
583 case REGULATOR_MODE_FAST:
584 case REGULATOR_MODE_NORMAL:
585 case REGULATOR_MODE_IDLE:
586 case REGULATOR_MODE_STANDBY:
587 break;
588 default:
589 rdev_err(rdev, "invalid mode %x specified\n", *mode);
590 return -EINVAL;
591 }
592
593 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
594 rdev_err(rdev, "mode operation not allowed\n");
595 return -EPERM;
596 }
597
598 /* The modes are bitmasks, the most power hungry modes having
599 * the lowest values. If the requested mode isn't supported
600 * try higher modes.
601 */
602 while (*mode) {
603 if (rdev->constraints->valid_modes_mask & *mode)
604 return 0;
605 *mode /= 2;
606 }
607
608 return -EINVAL;
609}
610
611static inline struct regulator_state *
612regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
613{
614 if (rdev->constraints == NULL)
615 return NULL;
616
617 switch (state) {
618 case PM_SUSPEND_STANDBY:
619 return &rdev->constraints->state_standby;
620 case PM_SUSPEND_MEM:
621 return &rdev->constraints->state_mem;
622 case PM_SUSPEND_MAX:
623 return &rdev->constraints->state_disk;
624 default:
625 return NULL;
626 }
627}
628
629static const struct regulator_state *
630regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
631{
632 const struct regulator_state *rstate;
633
634 rstate = regulator_get_suspend_state(rdev, state);
635 if (rstate == NULL)
636 return NULL;
637
638 /* If we have no suspend mode configuration don't set anything;
639 * only warn if the driver implements set_suspend_voltage or
640 * set_suspend_mode callback.
641 */
642 if (rstate->enabled != ENABLE_IN_SUSPEND &&
643 rstate->enabled != DISABLE_IN_SUSPEND) {
644 if (rdev->desc->ops->set_suspend_voltage ||
645 rdev->desc->ops->set_suspend_mode)
646 rdev_warn(rdev, "No configuration\n");
647 return NULL;
648 }
649
650 return rstate;
651}
652
653static ssize_t microvolts_show(struct device *dev,
654 struct device_attribute *attr, char *buf)
655{
656 struct regulator_dev *rdev = dev_get_drvdata(dev);
657 int uV;
658
659 regulator_lock(rdev);
660 uV = regulator_get_voltage_rdev(rdev);
661 regulator_unlock(rdev);
662
663 if (uV < 0)
664 return uV;
665 return sprintf(buf, "%d\n", uV);
666}
667static DEVICE_ATTR_RO(microvolts);
668
669static ssize_t microamps_show(struct device *dev,
670 struct device_attribute *attr, char *buf)
671{
672 struct regulator_dev *rdev = dev_get_drvdata(dev);
673
674 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
675}
676static DEVICE_ATTR_RO(microamps);
677
678static ssize_t name_show(struct device *dev, struct device_attribute *attr,
679 char *buf)
680{
681 struct regulator_dev *rdev = dev_get_drvdata(dev);
682
683 return sprintf(buf, "%s\n", rdev_get_name(rdev));
684}
685static DEVICE_ATTR_RO(name);
686
687static const char *regulator_opmode_to_str(int mode)
688{
689 switch (mode) {
690 case REGULATOR_MODE_FAST:
691 return "fast";
692 case REGULATOR_MODE_NORMAL:
693 return "normal";
694 case REGULATOR_MODE_IDLE:
695 return "idle";
696 case REGULATOR_MODE_STANDBY:
697 return "standby";
698 }
699 return "unknown";
700}
701
702static ssize_t regulator_print_opmode(char *buf, int mode)
703{
704 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
705}
706
707static ssize_t opmode_show(struct device *dev,
708 struct device_attribute *attr, char *buf)
709{
710 struct regulator_dev *rdev = dev_get_drvdata(dev);
711
712 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
713}
714static DEVICE_ATTR_RO(opmode);
715
716static ssize_t regulator_print_state(char *buf, int state)
717{
718 if (state > 0)
719 return sprintf(buf, "enabled\n");
720 else if (state == 0)
721 return sprintf(buf, "disabled\n");
722 else
723 return sprintf(buf, "unknown\n");
724}
725
726static ssize_t state_show(struct device *dev,
727 struct device_attribute *attr, char *buf)
728{
729 struct regulator_dev *rdev = dev_get_drvdata(dev);
730 ssize_t ret;
731
732 regulator_lock(rdev);
733 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
734 regulator_unlock(rdev);
735
736 return ret;
737}
738static DEVICE_ATTR_RO(state);
739
740static ssize_t status_show(struct device *dev,
741 struct device_attribute *attr, char *buf)
742{
743 struct regulator_dev *rdev = dev_get_drvdata(dev);
744 int status;
745 char *label;
746
747 status = rdev->desc->ops->get_status(rdev);
748 if (status < 0)
749 return status;
750
751 switch (status) {
752 case REGULATOR_STATUS_OFF:
753 label = "off";
754 break;
755 case REGULATOR_STATUS_ON:
756 label = "on";
757 break;
758 case REGULATOR_STATUS_ERROR:
759 label = "error";
760 break;
761 case REGULATOR_STATUS_FAST:
762 label = "fast";
763 break;
764 case REGULATOR_STATUS_NORMAL:
765 label = "normal";
766 break;
767 case REGULATOR_STATUS_IDLE:
768 label = "idle";
769 break;
770 case REGULATOR_STATUS_STANDBY:
771 label = "standby";
772 break;
773 case REGULATOR_STATUS_BYPASS:
774 label = "bypass";
775 break;
776 case REGULATOR_STATUS_UNDEFINED:
777 label = "undefined";
778 break;
779 default:
780 return -ERANGE;
781 }
782
783 return sprintf(buf, "%s\n", label);
784}
785static DEVICE_ATTR_RO(status);
786
787static ssize_t min_microamps_show(struct device *dev,
788 struct device_attribute *attr, char *buf)
789{
790 struct regulator_dev *rdev = dev_get_drvdata(dev);
791
792 if (!rdev->constraints)
793 return sprintf(buf, "constraint not defined\n");
794
795 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
796}
797static DEVICE_ATTR_RO(min_microamps);
798
799static ssize_t max_microamps_show(struct device *dev,
800 struct device_attribute *attr, char *buf)
801{
802 struct regulator_dev *rdev = dev_get_drvdata(dev);
803
804 if (!rdev->constraints)
805 return sprintf(buf, "constraint not defined\n");
806
807 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
808}
809static DEVICE_ATTR_RO(max_microamps);
810
811static ssize_t min_microvolts_show(struct device *dev,
812 struct device_attribute *attr, char *buf)
813{
814 struct regulator_dev *rdev = dev_get_drvdata(dev);
815
816 if (!rdev->constraints)
817 return sprintf(buf, "constraint not defined\n");
818
819 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
820}
821static DEVICE_ATTR_RO(min_microvolts);
822
823static ssize_t max_microvolts_show(struct device *dev,
824 struct device_attribute *attr, char *buf)
825{
826 struct regulator_dev *rdev = dev_get_drvdata(dev);
827
828 if (!rdev->constraints)
829 return sprintf(buf, "constraint not defined\n");
830
831 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
832}
833static DEVICE_ATTR_RO(max_microvolts);
834
835static ssize_t requested_microamps_show(struct device *dev,
836 struct device_attribute *attr, char *buf)
837{
838 struct regulator_dev *rdev = dev_get_drvdata(dev);
839 struct regulator *regulator;
840 int uA = 0;
841
842 regulator_lock(rdev);
843 list_for_each_entry(regulator, &rdev->consumer_list, list) {
844 if (regulator->enable_count)
845 uA += regulator->uA_load;
846 }
847 regulator_unlock(rdev);
848 return sprintf(buf, "%d\n", uA);
849}
850static DEVICE_ATTR_RO(requested_microamps);
851
852static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
853 char *buf)
854{
855 struct regulator_dev *rdev = dev_get_drvdata(dev);
856 return sprintf(buf, "%d\n", rdev->use_count);
857}
858static DEVICE_ATTR_RO(num_users);
859
860static ssize_t type_show(struct device *dev, struct device_attribute *attr,
861 char *buf)
862{
863 struct regulator_dev *rdev = dev_get_drvdata(dev);
864
865 switch (rdev->desc->type) {
866 case REGULATOR_VOLTAGE:
867 return sprintf(buf, "voltage\n");
868 case REGULATOR_CURRENT:
869 return sprintf(buf, "current\n");
870 }
871 return sprintf(buf, "unknown\n");
872}
873static DEVICE_ATTR_RO(type);
874
875static ssize_t suspend_mem_microvolts_show(struct device *dev,
876 struct device_attribute *attr, char *buf)
877{
878 struct regulator_dev *rdev = dev_get_drvdata(dev);
879
880 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
881}
882static DEVICE_ATTR_RO(suspend_mem_microvolts);
883
884static ssize_t suspend_disk_microvolts_show(struct device *dev,
885 struct device_attribute *attr, char *buf)
886{
887 struct regulator_dev *rdev = dev_get_drvdata(dev);
888
889 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
890}
891static DEVICE_ATTR_RO(suspend_disk_microvolts);
892
893static ssize_t suspend_standby_microvolts_show(struct device *dev,
894 struct device_attribute *attr, char *buf)
895{
896 struct regulator_dev *rdev = dev_get_drvdata(dev);
897
898 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
899}
900static DEVICE_ATTR_RO(suspend_standby_microvolts);
901
902static ssize_t suspend_mem_mode_show(struct device *dev,
903 struct device_attribute *attr, char *buf)
904{
905 struct regulator_dev *rdev = dev_get_drvdata(dev);
906
907 return regulator_print_opmode(buf,
908 rdev->constraints->state_mem.mode);
909}
910static DEVICE_ATTR_RO(suspend_mem_mode);
911
912static ssize_t suspend_disk_mode_show(struct device *dev,
913 struct device_attribute *attr, char *buf)
914{
915 struct regulator_dev *rdev = dev_get_drvdata(dev);
916
917 return regulator_print_opmode(buf,
918 rdev->constraints->state_disk.mode);
919}
920static DEVICE_ATTR_RO(suspend_disk_mode);
921
922static ssize_t suspend_standby_mode_show(struct device *dev,
923 struct device_attribute *attr, char *buf)
924{
925 struct regulator_dev *rdev = dev_get_drvdata(dev);
926
927 return regulator_print_opmode(buf,
928 rdev->constraints->state_standby.mode);
929}
930static DEVICE_ATTR_RO(suspend_standby_mode);
931
932static ssize_t suspend_mem_state_show(struct device *dev,
933 struct device_attribute *attr, char *buf)
934{
935 struct regulator_dev *rdev = dev_get_drvdata(dev);
936
937 return regulator_print_state(buf,
938 rdev->constraints->state_mem.enabled);
939}
940static DEVICE_ATTR_RO(suspend_mem_state);
941
942static ssize_t suspend_disk_state_show(struct device *dev,
943 struct device_attribute *attr, char *buf)
944{
945 struct regulator_dev *rdev = dev_get_drvdata(dev);
946
947 return regulator_print_state(buf,
948 rdev->constraints->state_disk.enabled);
949}
950static DEVICE_ATTR_RO(suspend_disk_state);
951
952static ssize_t suspend_standby_state_show(struct device *dev,
953 struct device_attribute *attr, char *buf)
954{
955 struct regulator_dev *rdev = dev_get_drvdata(dev);
956
957 return regulator_print_state(buf,
958 rdev->constraints->state_standby.enabled);
959}
960static DEVICE_ATTR_RO(suspend_standby_state);
961
962static ssize_t bypass_show(struct device *dev,
963 struct device_attribute *attr, char *buf)
964{
965 struct regulator_dev *rdev = dev_get_drvdata(dev);
966 const char *report;
967 bool bypass;
968 int ret;
969
970 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
971
972 if (ret != 0)
973 report = "unknown";
974 else if (bypass)
975 report = "enabled";
976 else
977 report = "disabled";
978
979 return sprintf(buf, "%s\n", report);
980}
981static DEVICE_ATTR_RO(bypass);
982
983#define REGULATOR_ERROR_ATTR(name, bit) \
984 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
985 char *buf) \
986 { \
987 int ret; \
988 unsigned int flags; \
989 struct regulator_dev *rdev = dev_get_drvdata(dev); \
990 ret = _regulator_get_error_flags(rdev, &flags); \
991 if (ret) \
992 return ret; \
993 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
994 } \
995 static DEVICE_ATTR_RO(name)
996
997REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
998REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
999REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
1000REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
1001REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1002REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1003REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1004REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1005REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1006
1007/* Calculate the new optimum regulator operating mode based on the new total
1008 * consumer load. All locks held by caller
1009 */
1010static int drms_uA_update(struct regulator_dev *rdev)
1011{
1012 struct regulator *sibling;
1013 int current_uA = 0, output_uV, input_uV, err;
1014 unsigned int mode;
1015
1016 /*
1017 * first check to see if we can set modes at all, otherwise just
1018 * tell the consumer everything is OK.
1019 */
1020 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1021 rdev_dbg(rdev, "DRMS operation not allowed\n");
1022 return 0;
1023 }
1024
1025 if (!rdev->desc->ops->get_optimum_mode &&
1026 !rdev->desc->ops->set_load)
1027 return 0;
1028
1029 if (!rdev->desc->ops->set_mode &&
1030 !rdev->desc->ops->set_load)
1031 return -EINVAL;
1032
1033 /* calc total requested load */
1034 list_for_each_entry(sibling, &rdev->consumer_list, list) {
1035 if (sibling->enable_count)
1036 current_uA += sibling->uA_load;
1037 }
1038
1039 current_uA += rdev->constraints->system_load;
1040
1041 if (rdev->desc->ops->set_load) {
1042 /* set the optimum mode for our new total regulator load */
1043 err = rdev->desc->ops->set_load(rdev, current_uA);
1044 if (err < 0)
1045 rdev_err(rdev, "failed to set load %d: %pe\n",
1046 current_uA, ERR_PTR(err));
1047 } else {
1048 /*
1049 * Unfortunately in some cases the constraints->valid_ops has
1050 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1051 * That's not really legit but we won't consider it a fatal
1052 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1053 * wasn't set.
1054 */
1055 if (!rdev->constraints->valid_modes_mask) {
1056 rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1057 return 0;
1058 }
1059
1060 /* get output voltage */
1061 output_uV = regulator_get_voltage_rdev(rdev);
1062
1063 /*
1064 * Don't return an error; if regulator driver cares about
1065 * output_uV then it's up to the driver to validate.
1066 */
1067 if (output_uV <= 0)
1068 rdev_dbg(rdev, "invalid output voltage found\n");
1069
1070 /* get input voltage */
1071 input_uV = 0;
1072 if (rdev->supply)
1073 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1074 if (input_uV <= 0)
1075 input_uV = rdev->constraints->input_uV;
1076
1077 /*
1078 * Don't return an error; if regulator driver cares about
1079 * input_uV then it's up to the driver to validate.
1080 */
1081 if (input_uV <= 0)
1082 rdev_dbg(rdev, "invalid input voltage found\n");
1083
1084 /* now get the optimum mode for our new total regulator load */
1085 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1086 output_uV, current_uA);
1087
1088 /* check the new mode is allowed */
1089 err = regulator_mode_constrain(rdev, &mode);
1090 if (err < 0) {
1091 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1092 current_uA, input_uV, output_uV, ERR_PTR(err));
1093 return err;
1094 }
1095
1096 err = rdev->desc->ops->set_mode(rdev, mode);
1097 if (err < 0)
1098 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1099 mode, ERR_PTR(err));
1100 }
1101
1102 return err;
1103}
1104
1105static int __suspend_set_state(struct regulator_dev *rdev,
1106 const struct regulator_state *rstate)
1107{
1108 int ret = 0;
1109
1110 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1111 rdev->desc->ops->set_suspend_enable)
1112 ret = rdev->desc->ops->set_suspend_enable(rdev);
1113 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1114 rdev->desc->ops->set_suspend_disable)
1115 ret = rdev->desc->ops->set_suspend_disable(rdev);
1116 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1117 ret = 0;
1118
1119 if (ret < 0) {
1120 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1121 return ret;
1122 }
1123
1124 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1125 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1126 if (ret < 0) {
1127 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1128 return ret;
1129 }
1130 }
1131
1132 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1133 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1134 if (ret < 0) {
1135 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1136 return ret;
1137 }
1138 }
1139
1140 return ret;
1141}
1142
1143static int suspend_set_initial_state(struct regulator_dev *rdev)
1144{
1145 const struct regulator_state *rstate;
1146
1147 rstate = regulator_get_suspend_state_check(rdev,
1148 rdev->constraints->initial_state);
1149 if (!rstate)
1150 return 0;
1151
1152 return __suspend_set_state(rdev, rstate);
1153}
1154
1155#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1156static void print_constraints_debug(struct regulator_dev *rdev)
1157{
1158 struct regulation_constraints *constraints = rdev->constraints;
1159 char buf[160] = "";
1160 size_t len = sizeof(buf) - 1;
1161 int count = 0;
1162 int ret;
1163
1164 if (constraints->min_uV && constraints->max_uV) {
1165 if (constraints->min_uV == constraints->max_uV)
1166 count += scnprintf(buf + count, len - count, "%d mV ",
1167 constraints->min_uV / 1000);
1168 else
1169 count += scnprintf(buf + count, len - count,
1170 "%d <--> %d mV ",
1171 constraints->min_uV / 1000,
1172 constraints->max_uV / 1000);
1173 }
1174
1175 if (!constraints->min_uV ||
1176 constraints->min_uV != constraints->max_uV) {
1177 ret = regulator_get_voltage_rdev(rdev);
1178 if (ret > 0)
1179 count += scnprintf(buf + count, len - count,
1180 "at %d mV ", ret / 1000);
1181 }
1182
1183 if (constraints->uV_offset)
1184 count += scnprintf(buf + count, len - count, "%dmV offset ",
1185 constraints->uV_offset / 1000);
1186
1187 if (constraints->min_uA && constraints->max_uA) {
1188 if (constraints->min_uA == constraints->max_uA)
1189 count += scnprintf(buf + count, len - count, "%d mA ",
1190 constraints->min_uA / 1000);
1191 else
1192 count += scnprintf(buf + count, len - count,
1193 "%d <--> %d mA ",
1194 constraints->min_uA / 1000,
1195 constraints->max_uA / 1000);
1196 }
1197
1198 if (!constraints->min_uA ||
1199 constraints->min_uA != constraints->max_uA) {
1200 ret = _regulator_get_current_limit(rdev);
1201 if (ret > 0)
1202 count += scnprintf(buf + count, len - count,
1203 "at %d mA ", ret / 1000);
1204 }
1205
1206 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1207 count += scnprintf(buf + count, len - count, "fast ");
1208 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1209 count += scnprintf(buf + count, len - count, "normal ");
1210 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1211 count += scnprintf(buf + count, len - count, "idle ");
1212 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1213 count += scnprintf(buf + count, len - count, "standby ");
1214
1215 if (!count)
1216 count = scnprintf(buf, len, "no parameters");
1217 else
1218 --count;
1219
1220 count += scnprintf(buf + count, len - count, ", %s",
1221 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1222
1223 rdev_dbg(rdev, "%s\n", buf);
1224}
1225#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1227#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1228
1229static void print_constraints(struct regulator_dev *rdev)
1230{
1231 struct regulation_constraints *constraints = rdev->constraints;
1232
1233 print_constraints_debug(rdev);
1234
1235 if ((constraints->min_uV != constraints->max_uV) &&
1236 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1237 rdev_warn(rdev,
1238 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1239}
1240
1241static int machine_constraints_voltage(struct regulator_dev *rdev,
1242 struct regulation_constraints *constraints)
1243{
1244 const struct regulator_ops *ops = rdev->desc->ops;
1245 int ret;
1246
1247 /* do we need to apply the constraint voltage */
1248 if (rdev->constraints->apply_uV &&
1249 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1250 int target_min, target_max;
1251 int current_uV = regulator_get_voltage_rdev(rdev);
1252
1253 if (current_uV == -ENOTRECOVERABLE) {
1254 /* This regulator can't be read and must be initialized */
1255 rdev_info(rdev, "Setting %d-%duV\n",
1256 rdev->constraints->min_uV,
1257 rdev->constraints->max_uV);
1258 _regulator_do_set_voltage(rdev,
1259 rdev->constraints->min_uV,
1260 rdev->constraints->max_uV);
1261 current_uV = regulator_get_voltage_rdev(rdev);
1262 }
1263
1264 if (current_uV < 0) {
1265 if (current_uV != -EPROBE_DEFER)
1266 rdev_err(rdev,
1267 "failed to get the current voltage: %pe\n",
1268 ERR_PTR(current_uV));
1269 return current_uV;
1270 }
1271
1272 /*
1273 * If we're below the minimum voltage move up to the
1274 * minimum voltage, if we're above the maximum voltage
1275 * then move down to the maximum.
1276 */
1277 target_min = current_uV;
1278 target_max = current_uV;
1279
1280 if (current_uV < rdev->constraints->min_uV) {
1281 target_min = rdev->constraints->min_uV;
1282 target_max = rdev->constraints->min_uV;
1283 }
1284
1285 if (current_uV > rdev->constraints->max_uV) {
1286 target_min = rdev->constraints->max_uV;
1287 target_max = rdev->constraints->max_uV;
1288 }
1289
1290 if (target_min != current_uV || target_max != current_uV) {
1291 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1292 current_uV, target_min, target_max);
1293 ret = _regulator_do_set_voltage(
1294 rdev, target_min, target_max);
1295 if (ret < 0) {
1296 rdev_err(rdev,
1297 "failed to apply %d-%duV constraint: %pe\n",
1298 target_min, target_max, ERR_PTR(ret));
1299 return ret;
1300 }
1301 }
1302 }
1303
1304 /* constrain machine-level voltage specs to fit
1305 * the actual range supported by this regulator.
1306 */
1307 if (ops->list_voltage && rdev->desc->n_voltages) {
1308 int count = rdev->desc->n_voltages;
1309 int i;
1310 int min_uV = INT_MAX;
1311 int max_uV = INT_MIN;
1312 int cmin = constraints->min_uV;
1313 int cmax = constraints->max_uV;
1314
1315 /* it's safe to autoconfigure fixed-voltage supplies
1316 * and the constraints are used by list_voltage.
1317 */
1318 if (count == 1 && !cmin) {
1319 cmin = 1;
1320 cmax = INT_MAX;
1321 constraints->min_uV = cmin;
1322 constraints->max_uV = cmax;
1323 }
1324
1325 /* voltage constraints are optional */
1326 if ((cmin == 0) && (cmax == 0))
1327 return 0;
1328
1329 /* else require explicit machine-level constraints */
1330 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1331 rdev_err(rdev, "invalid voltage constraints\n");
1332 return -EINVAL;
1333 }
1334
1335 /* no need to loop voltages if range is continuous */
1336 if (rdev->desc->continuous_voltage_range)
1337 return 0;
1338
1339 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1340 for (i = 0; i < count; i++) {
1341 int value;
1342
1343 value = ops->list_voltage(rdev, i);
1344 if (value <= 0)
1345 continue;
1346
1347 /* maybe adjust [min_uV..max_uV] */
1348 if (value >= cmin && value < min_uV)
1349 min_uV = value;
1350 if (value <= cmax && value > max_uV)
1351 max_uV = value;
1352 }
1353
1354 /* final: [min_uV..max_uV] valid iff constraints valid */
1355 if (max_uV < min_uV) {
1356 rdev_err(rdev,
1357 "unsupportable voltage constraints %u-%uuV\n",
1358 min_uV, max_uV);
1359 return -EINVAL;
1360 }
1361
1362 /* use regulator's subset of machine constraints */
1363 if (constraints->min_uV < min_uV) {
1364 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1365 constraints->min_uV, min_uV);
1366 constraints->min_uV = min_uV;
1367 }
1368 if (constraints->max_uV > max_uV) {
1369 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1370 constraints->max_uV, max_uV);
1371 constraints->max_uV = max_uV;
1372 }
1373 }
1374
1375 return 0;
1376}
1377
1378static int machine_constraints_current(struct regulator_dev *rdev,
1379 struct regulation_constraints *constraints)
1380{
1381 const struct regulator_ops *ops = rdev->desc->ops;
1382 int ret;
1383
1384 if (!constraints->min_uA && !constraints->max_uA)
1385 return 0;
1386
1387 if (constraints->min_uA > constraints->max_uA) {
1388 rdev_err(rdev, "Invalid current constraints\n");
1389 return -EINVAL;
1390 }
1391
1392 if (!ops->set_current_limit || !ops->get_current_limit) {
1393 rdev_warn(rdev, "Operation of current configuration missing\n");
1394 return 0;
1395 }
1396
1397 /* Set regulator current in constraints range */
1398 ret = ops->set_current_limit(rdev, constraints->min_uA,
1399 constraints->max_uA);
1400 if (ret < 0) {
1401 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1402 return ret;
1403 }
1404
1405 return 0;
1406}
1407
1408static int _regulator_do_enable(struct regulator_dev *rdev);
1409
1410static int notif_set_limit(struct regulator_dev *rdev,
1411 int (*set)(struct regulator_dev *, int, int, bool),
1412 int limit, int severity)
1413{
1414 bool enable;
1415
1416 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1417 enable = false;
1418 limit = 0;
1419 } else {
1420 enable = true;
1421 }
1422
1423 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1424 limit = 0;
1425
1426 return set(rdev, limit, severity, enable);
1427}
1428
1429static int handle_notify_limits(struct regulator_dev *rdev,
1430 int (*set)(struct regulator_dev *, int, int, bool),
1431 struct notification_limit *limits)
1432{
1433 int ret = 0;
1434
1435 if (!set)
1436 return -EOPNOTSUPP;
1437
1438 if (limits->prot)
1439 ret = notif_set_limit(rdev, set, limits->prot,
1440 REGULATOR_SEVERITY_PROT);
1441 if (ret)
1442 return ret;
1443
1444 if (limits->err)
1445 ret = notif_set_limit(rdev, set, limits->err,
1446 REGULATOR_SEVERITY_ERR);
1447 if (ret)
1448 return ret;
1449
1450 if (limits->warn)
1451 ret = notif_set_limit(rdev, set, limits->warn,
1452 REGULATOR_SEVERITY_WARN);
1453
1454 return ret;
1455}
1456/**
1457 * set_machine_constraints - sets regulator constraints
1458 * @rdev: regulator source
1459 *
1460 * Allows platform initialisation code to define and constrain
1461 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1462 * Constraints *must* be set by platform code in order for some
1463 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1464 * set_mode.
1465 */
1466static int set_machine_constraints(struct regulator_dev *rdev)
1467{
1468 int ret = 0;
1469 const struct regulator_ops *ops = rdev->desc->ops;
1470
1471 ret = machine_constraints_voltage(rdev, rdev->constraints);
1472 if (ret != 0)
1473 return ret;
1474
1475 ret = machine_constraints_current(rdev, rdev->constraints);
1476 if (ret != 0)
1477 return ret;
1478
1479 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1480 ret = ops->set_input_current_limit(rdev,
1481 rdev->constraints->ilim_uA);
1482 if (ret < 0) {
1483 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1484 return ret;
1485 }
1486 }
1487
1488 /* do we need to setup our suspend state */
1489 if (rdev->constraints->initial_state) {
1490 ret = suspend_set_initial_state(rdev);
1491 if (ret < 0) {
1492 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1493 return ret;
1494 }
1495 }
1496
1497 if (rdev->constraints->initial_mode) {
1498 if (!ops->set_mode) {
1499 rdev_err(rdev, "no set_mode operation\n");
1500 return -EINVAL;
1501 }
1502
1503 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1504 if (ret < 0) {
1505 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1506 return ret;
1507 }
1508 } else if (rdev->constraints->system_load) {
1509 /*
1510 * We'll only apply the initial system load if an
1511 * initial mode wasn't specified.
1512 */
1513 drms_uA_update(rdev);
1514 }
1515
1516 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1517 && ops->set_ramp_delay) {
1518 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1519 if (ret < 0) {
1520 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1521 return ret;
1522 }
1523 }
1524
1525 if (rdev->constraints->pull_down && ops->set_pull_down) {
1526 ret = ops->set_pull_down(rdev);
1527 if (ret < 0) {
1528 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1529 return ret;
1530 }
1531 }
1532
1533 if (rdev->constraints->soft_start && ops->set_soft_start) {
1534 ret = ops->set_soft_start(rdev);
1535 if (ret < 0) {
1536 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1537 return ret;
1538 }
1539 }
1540
1541 /*
1542 * Existing logic does not warn if over_current_protection is given as
1543 * a constraint but driver does not support that. I think we should
1544 * warn about this type of issues as it is possible someone changes
1545 * PMIC on board to another type - and the another PMIC's driver does
1546 * not support setting protection. Board composer may happily believe
1547 * the DT limits are respected - especially if the new PMIC HW also
1548 * supports protection but the driver does not. I won't change the logic
1549 * without hearing more experienced opinion on this though.
1550 *
1551 * If warning is seen as a good idea then we can merge handling the
1552 * over-curret protection and detection and get rid of this special
1553 * handling.
1554 */
1555 if (rdev->constraints->over_current_protection
1556 && ops->set_over_current_protection) {
1557 int lim = rdev->constraints->over_curr_limits.prot;
1558
1559 ret = ops->set_over_current_protection(rdev, lim,
1560 REGULATOR_SEVERITY_PROT,
1561 true);
1562 if (ret < 0) {
1563 rdev_err(rdev, "failed to set over current protection: %pe\n",
1564 ERR_PTR(ret));
1565 return ret;
1566 }
1567 }
1568
1569 if (rdev->constraints->over_current_detection)
1570 ret = handle_notify_limits(rdev,
1571 ops->set_over_current_protection,
1572 &rdev->constraints->over_curr_limits);
1573 if (ret) {
1574 if (ret != -EOPNOTSUPP) {
1575 rdev_err(rdev, "failed to set over current limits: %pe\n",
1576 ERR_PTR(ret));
1577 return ret;
1578 }
1579 rdev_warn(rdev,
1580 "IC does not support requested over-current limits\n");
1581 }
1582
1583 if (rdev->constraints->over_voltage_detection)
1584 ret = handle_notify_limits(rdev,
1585 ops->set_over_voltage_protection,
1586 &rdev->constraints->over_voltage_limits);
1587 if (ret) {
1588 if (ret != -EOPNOTSUPP) {
1589 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1590 ERR_PTR(ret));
1591 return ret;
1592 }
1593 rdev_warn(rdev,
1594 "IC does not support requested over voltage limits\n");
1595 }
1596
1597 if (rdev->constraints->under_voltage_detection)
1598 ret = handle_notify_limits(rdev,
1599 ops->set_under_voltage_protection,
1600 &rdev->constraints->under_voltage_limits);
1601 if (ret) {
1602 if (ret != -EOPNOTSUPP) {
1603 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1604 ERR_PTR(ret));
1605 return ret;
1606 }
1607 rdev_warn(rdev,
1608 "IC does not support requested under voltage limits\n");
1609 }
1610
1611 if (rdev->constraints->over_temp_detection)
1612 ret = handle_notify_limits(rdev,
1613 ops->set_thermal_protection,
1614 &rdev->constraints->temp_limits);
1615 if (ret) {
1616 if (ret != -EOPNOTSUPP) {
1617 rdev_err(rdev, "failed to set temperature limits %pe\n",
1618 ERR_PTR(ret));
1619 return ret;
1620 }
1621 rdev_warn(rdev,
1622 "IC does not support requested temperature limits\n");
1623 }
1624
1625 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1626 bool ad_state = (rdev->constraints->active_discharge ==
1627 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1628
1629 ret = ops->set_active_discharge(rdev, ad_state);
1630 if (ret < 0) {
1631 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1632 return ret;
1633 }
1634 }
1635
1636 /*
1637 * If there is no mechanism for controlling the regulator then
1638 * flag it as always_on so we don't end up duplicating checks
1639 * for this so much. Note that we could control the state of
1640 * a supply to control the output on a regulator that has no
1641 * direct control.
1642 */
1643 if (!rdev->ena_pin && !ops->enable) {
1644 if (rdev->supply_name && !rdev->supply)
1645 return -EPROBE_DEFER;
1646
1647 if (rdev->supply)
1648 rdev->constraints->always_on =
1649 rdev->supply->rdev->constraints->always_on;
1650 else
1651 rdev->constraints->always_on = true;
1652 }
1653
1654 /* If the constraints say the regulator should be on at this point
1655 * and we have control then make sure it is enabled.
1656 */
1657 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1658 /* If we want to enable this regulator, make sure that we know
1659 * the supplying regulator.
1660 */
1661 if (rdev->supply_name && !rdev->supply)
1662 return -EPROBE_DEFER;
1663
1664 /* If supplying regulator has already been enabled,
1665 * it's not intended to have use_count increment
1666 * when rdev is only boot-on.
1667 */
1668 if (rdev->supply &&
1669 (rdev->constraints->always_on ||
1670 !regulator_is_enabled(rdev->supply))) {
1671 ret = regulator_enable(rdev->supply);
1672 if (ret < 0) {
1673 _regulator_put(rdev->supply);
1674 rdev->supply = NULL;
1675 return ret;
1676 }
1677 }
1678
1679 ret = _regulator_do_enable(rdev);
1680 if (ret < 0 && ret != -EINVAL) {
1681 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1682 return ret;
1683 }
1684
1685 if (rdev->constraints->always_on)
1686 rdev->use_count++;
1687 } else if (rdev->desc->off_on_delay) {
1688 rdev->last_off = ktime_get();
1689 }
1690
1691 print_constraints(rdev);
1692 return 0;
1693}
1694
1695/**
1696 * set_supply - set regulator supply regulator
1697 * @rdev: regulator (locked)
1698 * @supply_rdev: supply regulator (locked))
1699 *
1700 * Called by platform initialisation code to set the supply regulator for this
1701 * regulator. This ensures that a regulators supply will also be enabled by the
1702 * core if it's child is enabled.
1703 */
1704static int set_supply(struct regulator_dev *rdev,
1705 struct regulator_dev *supply_rdev)
1706{
1707 int err;
1708
1709 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1710
1711 if (!try_module_get(supply_rdev->owner))
1712 return -ENODEV;
1713
1714 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1715 if (rdev->supply == NULL) {
1716 module_put(supply_rdev->owner);
1717 err = -ENOMEM;
1718 return err;
1719 }
1720 supply_rdev->open_count++;
1721
1722 return 0;
1723}
1724
1725/**
1726 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1727 * @rdev: regulator source
1728 * @consumer_dev_name: dev_name() string for device supply applies to
1729 * @supply: symbolic name for supply
1730 *
1731 * Allows platform initialisation code to map physical regulator
1732 * sources to symbolic names for supplies for use by devices. Devices
1733 * should use these symbolic names to request regulators, avoiding the
1734 * need to provide board-specific regulator names as platform data.
1735 */
1736static int set_consumer_device_supply(struct regulator_dev *rdev,
1737 const char *consumer_dev_name,
1738 const char *supply)
1739{
1740 struct regulator_map *node, *new_node;
1741 int has_dev;
1742
1743 if (supply == NULL)
1744 return -EINVAL;
1745
1746 if (consumer_dev_name != NULL)
1747 has_dev = 1;
1748 else
1749 has_dev = 0;
1750
1751 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1752 if (new_node == NULL)
1753 return -ENOMEM;
1754
1755 new_node->regulator = rdev;
1756 new_node->supply = supply;
1757
1758 if (has_dev) {
1759 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1760 if (new_node->dev_name == NULL) {
1761 kfree(new_node);
1762 return -ENOMEM;
1763 }
1764 }
1765
1766 mutex_lock(®ulator_list_mutex);
1767 list_for_each_entry(node, ®ulator_map_list, list) {
1768 if (node->dev_name && consumer_dev_name) {
1769 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1770 continue;
1771 } else if (node->dev_name || consumer_dev_name) {
1772 continue;
1773 }
1774
1775 if (strcmp(node->supply, supply) != 0)
1776 continue;
1777
1778 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1779 consumer_dev_name,
1780 dev_name(&node->regulator->dev),
1781 node->regulator->desc->name,
1782 supply,
1783 dev_name(&rdev->dev), rdev_get_name(rdev));
1784 goto fail;
1785 }
1786
1787 list_add(&new_node->list, ®ulator_map_list);
1788 mutex_unlock(®ulator_list_mutex);
1789
1790 return 0;
1791
1792fail:
1793 mutex_unlock(®ulator_list_mutex);
1794 kfree(new_node->dev_name);
1795 kfree(new_node);
1796 return -EBUSY;
1797}
1798
1799static void unset_regulator_supplies(struct regulator_dev *rdev)
1800{
1801 struct regulator_map *node, *n;
1802
1803 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1804 if (rdev == node->regulator) {
1805 list_del(&node->list);
1806 kfree(node->dev_name);
1807 kfree(node);
1808 }
1809 }
1810}
1811
1812#ifdef CONFIG_DEBUG_FS
1813static ssize_t constraint_flags_read_file(struct file *file,
1814 char __user *user_buf,
1815 size_t count, loff_t *ppos)
1816{
1817 const struct regulator *regulator = file->private_data;
1818 const struct regulation_constraints *c = regulator->rdev->constraints;
1819 char *buf;
1820 ssize_t ret;
1821
1822 if (!c)
1823 return 0;
1824
1825 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1826 if (!buf)
1827 return -ENOMEM;
1828
1829 ret = snprintf(buf, PAGE_SIZE,
1830 "always_on: %u\n"
1831 "boot_on: %u\n"
1832 "apply_uV: %u\n"
1833 "ramp_disable: %u\n"
1834 "soft_start: %u\n"
1835 "pull_down: %u\n"
1836 "over_current_protection: %u\n",
1837 c->always_on,
1838 c->boot_on,
1839 c->apply_uV,
1840 c->ramp_disable,
1841 c->soft_start,
1842 c->pull_down,
1843 c->over_current_protection);
1844
1845 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1846 kfree(buf);
1847
1848 return ret;
1849}
1850
1851#endif
1852
1853static const struct file_operations constraint_flags_fops = {
1854#ifdef CONFIG_DEBUG_FS
1855 .open = simple_open,
1856 .read = constraint_flags_read_file,
1857 .llseek = default_llseek,
1858#endif
1859};
1860
1861#define REG_STR_SIZE 64
1862
1863static struct regulator *create_regulator(struct regulator_dev *rdev,
1864 struct device *dev,
1865 const char *supply_name)
1866{
1867 struct regulator *regulator;
1868 int err = 0;
1869
1870 lockdep_assert_held_once(&rdev->mutex.base);
1871
1872 if (dev) {
1873 char buf[REG_STR_SIZE];
1874 int size;
1875
1876 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1877 dev->kobj.name, supply_name);
1878 if (size >= REG_STR_SIZE)
1879 return NULL;
1880
1881 supply_name = kstrdup(buf, GFP_KERNEL);
1882 if (supply_name == NULL)
1883 return NULL;
1884 } else {
1885 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1886 if (supply_name == NULL)
1887 return NULL;
1888 }
1889
1890 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1891 if (regulator == NULL) {
1892 kfree_const(supply_name);
1893 return NULL;
1894 }
1895
1896 regulator->rdev = rdev;
1897 regulator->supply_name = supply_name;
1898
1899 list_add(®ulator->list, &rdev->consumer_list);
1900
1901 if (dev) {
1902 regulator->dev = dev;
1903
1904 /* Add a link to the device sysfs entry */
1905 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1906 supply_name);
1907 if (err) {
1908 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1909 dev->kobj.name, ERR_PTR(err));
1910 /* non-fatal */
1911 }
1912 }
1913
1914 if (err != -EEXIST)
1915 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1916 if (IS_ERR(regulator->debugfs))
1917 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1918
1919 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1920 ®ulator->uA_load);
1921 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1922 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1923 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1924 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1925 debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1926 regulator, &constraint_flags_fops);
1927
1928 /*
1929 * Check now if the regulator is an always on regulator - if
1930 * it is then we don't need to do nearly so much work for
1931 * enable/disable calls.
1932 */
1933 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1934 _regulator_is_enabled(rdev))
1935 regulator->always_on = true;
1936
1937 return regulator;
1938}
1939
1940static int _regulator_get_enable_time(struct regulator_dev *rdev)
1941{
1942 if (rdev->constraints && rdev->constraints->enable_time)
1943 return rdev->constraints->enable_time;
1944 if (rdev->desc->ops->enable_time)
1945 return rdev->desc->ops->enable_time(rdev);
1946 return rdev->desc->enable_time;
1947}
1948
1949static struct regulator_supply_alias *regulator_find_supply_alias(
1950 struct device *dev, const char *supply)
1951{
1952 struct regulator_supply_alias *map;
1953
1954 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1955 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1956 return map;
1957
1958 return NULL;
1959}
1960
1961static void regulator_supply_alias(struct device **dev, const char **supply)
1962{
1963 struct regulator_supply_alias *map;
1964
1965 map = regulator_find_supply_alias(*dev, *supply);
1966 if (map) {
1967 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1968 *supply, map->alias_supply,
1969 dev_name(map->alias_dev));
1970 *dev = map->alias_dev;
1971 *supply = map->alias_supply;
1972 }
1973}
1974
1975static int regulator_match(struct device *dev, const void *data)
1976{
1977 struct regulator_dev *r = dev_to_rdev(dev);
1978
1979 return strcmp(rdev_get_name(r), data) == 0;
1980}
1981
1982static struct regulator_dev *regulator_lookup_by_name(const char *name)
1983{
1984 struct device *dev;
1985
1986 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1987
1988 return dev ? dev_to_rdev(dev) : NULL;
1989}
1990
1991/**
1992 * regulator_dev_lookup - lookup a regulator device.
1993 * @dev: device for regulator "consumer".
1994 * @supply: Supply name or regulator ID.
1995 *
1996 * If successful, returns a struct regulator_dev that corresponds to the name
1997 * @supply and with the embedded struct device refcount incremented by one.
1998 * The refcount must be dropped by calling put_device().
1999 * On failure one of the following ERR-PTR-encoded values is returned:
2000 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
2001 * in the future.
2002 */
2003static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2004 const char *supply)
2005{
2006 struct regulator_dev *r = NULL;
2007 struct device_node *node;
2008 struct regulator_map *map;
2009 const char *devname = NULL;
2010
2011 regulator_supply_alias(&dev, &supply);
2012
2013 /* first do a dt based lookup */
2014 if (dev && dev->of_node) {
2015 node = of_get_regulator(dev, supply);
2016 if (node) {
2017 r = of_find_regulator_by_node(node);
2018 of_node_put(node);
2019 if (r)
2020 return r;
2021
2022 /*
2023 * We have a node, but there is no device.
2024 * assume it has not registered yet.
2025 */
2026 return ERR_PTR(-EPROBE_DEFER);
2027 }
2028 }
2029
2030 /* if not found, try doing it non-dt way */
2031 if (dev)
2032 devname = dev_name(dev);
2033
2034 mutex_lock(®ulator_list_mutex);
2035 list_for_each_entry(map, ®ulator_map_list, list) {
2036 /* If the mapping has a device set up it must match */
2037 if (map->dev_name &&
2038 (!devname || strcmp(map->dev_name, devname)))
2039 continue;
2040
2041 if (strcmp(map->supply, supply) == 0 &&
2042 get_device(&map->regulator->dev)) {
2043 r = map->regulator;
2044 break;
2045 }
2046 }
2047 mutex_unlock(®ulator_list_mutex);
2048
2049 if (r)
2050 return r;
2051
2052 r = regulator_lookup_by_name(supply);
2053 if (r)
2054 return r;
2055
2056 return ERR_PTR(-ENODEV);
2057}
2058
2059static int regulator_resolve_supply(struct regulator_dev *rdev)
2060{
2061 struct regulator_dev *r;
2062 struct device *dev = rdev->dev.parent;
2063 struct ww_acquire_ctx ww_ctx;
2064 int ret = 0;
2065
2066 /* No supply to resolve? */
2067 if (!rdev->supply_name)
2068 return 0;
2069
2070 /* Supply already resolved? (fast-path without locking contention) */
2071 if (rdev->supply)
2072 return 0;
2073
2074 r = regulator_dev_lookup(dev, rdev->supply_name);
2075 if (IS_ERR(r)) {
2076 ret = PTR_ERR(r);
2077
2078 /* Did the lookup explicitly defer for us? */
2079 if (ret == -EPROBE_DEFER)
2080 goto out;
2081
2082 if (have_full_constraints()) {
2083 r = dummy_regulator_rdev;
2084 get_device(&r->dev);
2085 } else {
2086 dev_err(dev, "Failed to resolve %s-supply for %s\n",
2087 rdev->supply_name, rdev->desc->name);
2088 ret = -EPROBE_DEFER;
2089 goto out;
2090 }
2091 }
2092
2093 if (r == rdev) {
2094 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2095 rdev->desc->name, rdev->supply_name);
2096 if (!have_full_constraints()) {
2097 ret = -EINVAL;
2098 goto out;
2099 }
2100 r = dummy_regulator_rdev;
2101 get_device(&r->dev);
2102 }
2103
2104 /*
2105 * If the supply's parent device is not the same as the
2106 * regulator's parent device, then ensure the parent device
2107 * is bound before we resolve the supply, in case the parent
2108 * device get probe deferred and unregisters the supply.
2109 */
2110 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2111 if (!device_is_bound(r->dev.parent)) {
2112 put_device(&r->dev);
2113 ret = -EPROBE_DEFER;
2114 goto out;
2115 }
2116 }
2117
2118 /* Recursively resolve the supply of the supply */
2119 ret = regulator_resolve_supply(r);
2120 if (ret < 0) {
2121 put_device(&r->dev);
2122 goto out;
2123 }
2124
2125 /*
2126 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2127 * between rdev->supply null check and setting rdev->supply in
2128 * set_supply() from concurrent tasks.
2129 */
2130 regulator_lock_two(rdev, r, &ww_ctx);
2131
2132 /* Supply just resolved by a concurrent task? */
2133 if (rdev->supply) {
2134 regulator_unlock_two(rdev, r, &ww_ctx);
2135 put_device(&r->dev);
2136 goto out;
2137 }
2138
2139 ret = set_supply(rdev, r);
2140 if (ret < 0) {
2141 regulator_unlock_two(rdev, r, &ww_ctx);
2142 put_device(&r->dev);
2143 goto out;
2144 }
2145
2146 regulator_unlock_two(rdev, r, &ww_ctx);
2147
2148 /*
2149 * In set_machine_constraints() we may have turned this regulator on
2150 * but we couldn't propagate to the supply if it hadn't been resolved
2151 * yet. Do it now.
2152 */
2153 if (rdev->use_count) {
2154 ret = regulator_enable(rdev->supply);
2155 if (ret < 0) {
2156 _regulator_put(rdev->supply);
2157 rdev->supply = NULL;
2158 goto out;
2159 }
2160 }
2161
2162out:
2163 return ret;
2164}
2165
2166/* Internal regulator request function */
2167struct regulator *_regulator_get(struct device *dev, const char *id,
2168 enum regulator_get_type get_type)
2169{
2170 struct regulator_dev *rdev;
2171 struct regulator *regulator;
2172 struct device_link *link;
2173 int ret;
2174
2175 if (get_type >= MAX_GET_TYPE) {
2176 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2177 return ERR_PTR(-EINVAL);
2178 }
2179
2180 if (id == NULL) {
2181 pr_err("get() with no identifier\n");
2182 return ERR_PTR(-EINVAL);
2183 }
2184
2185 rdev = regulator_dev_lookup(dev, id);
2186 if (IS_ERR(rdev)) {
2187 ret = PTR_ERR(rdev);
2188
2189 /*
2190 * If regulator_dev_lookup() fails with error other
2191 * than -ENODEV our job here is done, we simply return it.
2192 */
2193 if (ret != -ENODEV)
2194 return ERR_PTR(ret);
2195
2196 if (!have_full_constraints()) {
2197 dev_warn(dev,
2198 "incomplete constraints, dummy supplies not allowed\n");
2199 return ERR_PTR(-ENODEV);
2200 }
2201
2202 switch (get_type) {
2203 case NORMAL_GET:
2204 /*
2205 * Assume that a regulator is physically present and
2206 * enabled, even if it isn't hooked up, and just
2207 * provide a dummy.
2208 */
2209 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2210 rdev = dummy_regulator_rdev;
2211 get_device(&rdev->dev);
2212 break;
2213
2214 case EXCLUSIVE_GET:
2215 dev_warn(dev,
2216 "dummy supplies not allowed for exclusive requests\n");
2217 fallthrough;
2218
2219 default:
2220 return ERR_PTR(-ENODEV);
2221 }
2222 }
2223
2224 if (rdev->exclusive) {
2225 regulator = ERR_PTR(-EPERM);
2226 put_device(&rdev->dev);
2227 return regulator;
2228 }
2229
2230 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2231 regulator = ERR_PTR(-EBUSY);
2232 put_device(&rdev->dev);
2233 return regulator;
2234 }
2235
2236 mutex_lock(®ulator_list_mutex);
2237 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2238 mutex_unlock(®ulator_list_mutex);
2239
2240 if (ret != 0) {
2241 regulator = ERR_PTR(-EPROBE_DEFER);
2242 put_device(&rdev->dev);
2243 return regulator;
2244 }
2245
2246 ret = regulator_resolve_supply(rdev);
2247 if (ret < 0) {
2248 regulator = ERR_PTR(ret);
2249 put_device(&rdev->dev);
2250 return regulator;
2251 }
2252
2253 if (!try_module_get(rdev->owner)) {
2254 regulator = ERR_PTR(-EPROBE_DEFER);
2255 put_device(&rdev->dev);
2256 return regulator;
2257 }
2258
2259 regulator_lock(rdev);
2260 regulator = create_regulator(rdev, dev, id);
2261 regulator_unlock(rdev);
2262 if (regulator == NULL) {
2263 regulator = ERR_PTR(-ENOMEM);
2264 module_put(rdev->owner);
2265 put_device(&rdev->dev);
2266 return regulator;
2267 }
2268
2269 rdev->open_count++;
2270 if (get_type == EXCLUSIVE_GET) {
2271 rdev->exclusive = 1;
2272
2273 ret = _regulator_is_enabled(rdev);
2274 if (ret > 0) {
2275 rdev->use_count = 1;
2276 regulator->enable_count = 1;
2277 } else {
2278 rdev->use_count = 0;
2279 regulator->enable_count = 0;
2280 }
2281 }
2282
2283 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2284 if (!IS_ERR_OR_NULL(link))
2285 regulator->device_link = true;
2286
2287 return regulator;
2288}
2289
2290/**
2291 * regulator_get - lookup and obtain a reference to a regulator.
2292 * @dev: device for regulator "consumer"
2293 * @id: Supply name or regulator ID.
2294 *
2295 * Returns a struct regulator corresponding to the regulator producer,
2296 * or IS_ERR() condition containing errno.
2297 *
2298 * Use of supply names configured via set_consumer_device_supply() is
2299 * strongly encouraged. It is recommended that the supply name used
2300 * should match the name used for the supply and/or the relevant
2301 * device pins in the datasheet.
2302 */
2303struct regulator *regulator_get(struct device *dev, const char *id)
2304{
2305 return _regulator_get(dev, id, NORMAL_GET);
2306}
2307EXPORT_SYMBOL_GPL(regulator_get);
2308
2309/**
2310 * regulator_get_exclusive - obtain exclusive access to a regulator.
2311 * @dev: device for regulator "consumer"
2312 * @id: Supply name or regulator ID.
2313 *
2314 * Returns a struct regulator corresponding to the regulator producer,
2315 * or IS_ERR() condition containing errno. Other consumers will be
2316 * unable to obtain this regulator while this reference is held and the
2317 * use count for the regulator will be initialised to reflect the current
2318 * state of the regulator.
2319 *
2320 * This is intended for use by consumers which cannot tolerate shared
2321 * use of the regulator such as those which need to force the
2322 * regulator off for correct operation of the hardware they are
2323 * controlling.
2324 *
2325 * Use of supply names configured via set_consumer_device_supply() is
2326 * strongly encouraged. It is recommended that the supply name used
2327 * should match the name used for the supply and/or the relevant
2328 * device pins in the datasheet.
2329 */
2330struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2331{
2332 return _regulator_get(dev, id, EXCLUSIVE_GET);
2333}
2334EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2335
2336/**
2337 * regulator_get_optional - obtain optional access to a regulator.
2338 * @dev: device for regulator "consumer"
2339 * @id: Supply name or regulator ID.
2340 *
2341 * Returns a struct regulator corresponding to the regulator producer,
2342 * or IS_ERR() condition containing errno.
2343 *
2344 * This is intended for use by consumers for devices which can have
2345 * some supplies unconnected in normal use, such as some MMC devices.
2346 * It can allow the regulator core to provide stub supplies for other
2347 * supplies requested using normal regulator_get() calls without
2348 * disrupting the operation of drivers that can handle absent
2349 * supplies.
2350 *
2351 * Use of supply names configured via set_consumer_device_supply() is
2352 * strongly encouraged. It is recommended that the supply name used
2353 * should match the name used for the supply and/or the relevant
2354 * device pins in the datasheet.
2355 */
2356struct regulator *regulator_get_optional(struct device *dev, const char *id)
2357{
2358 return _regulator_get(dev, id, OPTIONAL_GET);
2359}
2360EXPORT_SYMBOL_GPL(regulator_get_optional);
2361
2362static void destroy_regulator(struct regulator *regulator)
2363{
2364 struct regulator_dev *rdev = regulator->rdev;
2365
2366 debugfs_remove_recursive(regulator->debugfs);
2367
2368 if (regulator->dev) {
2369 if (regulator->device_link)
2370 device_link_remove(regulator->dev, &rdev->dev);
2371
2372 /* remove any sysfs entries */
2373 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2374 }
2375
2376 regulator_lock(rdev);
2377 list_del(®ulator->list);
2378
2379 rdev->open_count--;
2380 rdev->exclusive = 0;
2381 regulator_unlock(rdev);
2382
2383 kfree_const(regulator->supply_name);
2384 kfree(regulator);
2385}
2386
2387/* regulator_list_mutex lock held by regulator_put() */
2388static void _regulator_put(struct regulator *regulator)
2389{
2390 struct regulator_dev *rdev;
2391
2392 if (IS_ERR_OR_NULL(regulator))
2393 return;
2394
2395 lockdep_assert_held_once(®ulator_list_mutex);
2396
2397 /* Docs say you must disable before calling regulator_put() */
2398 WARN_ON(regulator->enable_count);
2399
2400 rdev = regulator->rdev;
2401
2402 destroy_regulator(regulator);
2403
2404 module_put(rdev->owner);
2405 put_device(&rdev->dev);
2406}
2407
2408/**
2409 * regulator_put - "free" the regulator source
2410 * @regulator: regulator source
2411 *
2412 * Note: drivers must ensure that all regulator_enable calls made on this
2413 * regulator source are balanced by regulator_disable calls prior to calling
2414 * this function.
2415 */
2416void regulator_put(struct regulator *regulator)
2417{
2418 mutex_lock(®ulator_list_mutex);
2419 _regulator_put(regulator);
2420 mutex_unlock(®ulator_list_mutex);
2421}
2422EXPORT_SYMBOL_GPL(regulator_put);
2423
2424/**
2425 * regulator_register_supply_alias - Provide device alias for supply lookup
2426 *
2427 * @dev: device that will be given as the regulator "consumer"
2428 * @id: Supply name or regulator ID
2429 * @alias_dev: device that should be used to lookup the supply
2430 * @alias_id: Supply name or regulator ID that should be used to lookup the
2431 * supply
2432 *
2433 * All lookups for id on dev will instead be conducted for alias_id on
2434 * alias_dev.
2435 */
2436int regulator_register_supply_alias(struct device *dev, const char *id,
2437 struct device *alias_dev,
2438 const char *alias_id)
2439{
2440 struct regulator_supply_alias *map;
2441
2442 map = regulator_find_supply_alias(dev, id);
2443 if (map)
2444 return -EEXIST;
2445
2446 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2447 if (!map)
2448 return -ENOMEM;
2449
2450 map->src_dev = dev;
2451 map->src_supply = id;
2452 map->alias_dev = alias_dev;
2453 map->alias_supply = alias_id;
2454
2455 list_add(&map->list, ®ulator_supply_alias_list);
2456
2457 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2458 id, dev_name(dev), alias_id, dev_name(alias_dev));
2459
2460 return 0;
2461}
2462EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2463
2464/**
2465 * regulator_unregister_supply_alias - Remove device alias
2466 *
2467 * @dev: device that will be given as the regulator "consumer"
2468 * @id: Supply name or regulator ID
2469 *
2470 * Remove a lookup alias if one exists for id on dev.
2471 */
2472void regulator_unregister_supply_alias(struct device *dev, const char *id)
2473{
2474 struct regulator_supply_alias *map;
2475
2476 map = regulator_find_supply_alias(dev, id);
2477 if (map) {
2478 list_del(&map->list);
2479 kfree(map);
2480 }
2481}
2482EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2483
2484/**
2485 * regulator_bulk_register_supply_alias - register multiple aliases
2486 *
2487 * @dev: device that will be given as the regulator "consumer"
2488 * @id: List of supply names or regulator IDs
2489 * @alias_dev: device that should be used to lookup the supply
2490 * @alias_id: List of supply names or regulator IDs that should be used to
2491 * lookup the supply
2492 * @num_id: Number of aliases to register
2493 *
2494 * @return 0 on success, an errno on failure.
2495 *
2496 * This helper function allows drivers to register several supply
2497 * aliases in one operation. If any of the aliases cannot be
2498 * registered any aliases that were registered will be removed
2499 * before returning to the caller.
2500 */
2501int regulator_bulk_register_supply_alias(struct device *dev,
2502 const char *const *id,
2503 struct device *alias_dev,
2504 const char *const *alias_id,
2505 int num_id)
2506{
2507 int i;
2508 int ret;
2509
2510 for (i = 0; i < num_id; ++i) {
2511 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2512 alias_id[i]);
2513 if (ret < 0)
2514 goto err;
2515 }
2516
2517 return 0;
2518
2519err:
2520 dev_err(dev,
2521 "Failed to create supply alias %s,%s -> %s,%s\n",
2522 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2523
2524 while (--i >= 0)
2525 regulator_unregister_supply_alias(dev, id[i]);
2526
2527 return ret;
2528}
2529EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2530
2531/**
2532 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2533 *
2534 * @dev: device that will be given as the regulator "consumer"
2535 * @id: List of supply names or regulator IDs
2536 * @num_id: Number of aliases to unregister
2537 *
2538 * This helper function allows drivers to unregister several supply
2539 * aliases in one operation.
2540 */
2541void regulator_bulk_unregister_supply_alias(struct device *dev,
2542 const char *const *id,
2543 int num_id)
2544{
2545 int i;
2546
2547 for (i = 0; i < num_id; ++i)
2548 regulator_unregister_supply_alias(dev, id[i]);
2549}
2550EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2551
2552
2553/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2554static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2555 const struct regulator_config *config)
2556{
2557 struct regulator_enable_gpio *pin, *new_pin;
2558 struct gpio_desc *gpiod;
2559
2560 gpiod = config->ena_gpiod;
2561 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2562
2563 mutex_lock(®ulator_list_mutex);
2564
2565 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2566 if (pin->gpiod == gpiod) {
2567 rdev_dbg(rdev, "GPIO is already used\n");
2568 goto update_ena_gpio_to_rdev;
2569 }
2570 }
2571
2572 if (new_pin == NULL) {
2573 mutex_unlock(®ulator_list_mutex);
2574 return -ENOMEM;
2575 }
2576
2577 pin = new_pin;
2578 new_pin = NULL;
2579
2580 pin->gpiod = gpiod;
2581 list_add(&pin->list, ®ulator_ena_gpio_list);
2582
2583update_ena_gpio_to_rdev:
2584 pin->request_count++;
2585 rdev->ena_pin = pin;
2586
2587 mutex_unlock(®ulator_list_mutex);
2588 kfree(new_pin);
2589
2590 return 0;
2591}
2592
2593static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2594{
2595 struct regulator_enable_gpio *pin, *n;
2596
2597 if (!rdev->ena_pin)
2598 return;
2599
2600 /* Free the GPIO only in case of no use */
2601 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2602 if (pin != rdev->ena_pin)
2603 continue;
2604
2605 if (--pin->request_count)
2606 break;
2607
2608 gpiod_put(pin->gpiod);
2609 list_del(&pin->list);
2610 kfree(pin);
2611 break;
2612 }
2613
2614 rdev->ena_pin = NULL;
2615}
2616
2617/**
2618 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2619 * @rdev: regulator_dev structure
2620 * @enable: enable GPIO at initial use?
2621 *
2622 * GPIO is enabled in case of initial use. (enable_count is 0)
2623 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2624 */
2625static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2626{
2627 struct regulator_enable_gpio *pin = rdev->ena_pin;
2628
2629 if (!pin)
2630 return -EINVAL;
2631
2632 if (enable) {
2633 /* Enable GPIO at initial use */
2634 if (pin->enable_count == 0)
2635 gpiod_set_value_cansleep(pin->gpiod, 1);
2636
2637 pin->enable_count++;
2638 } else {
2639 if (pin->enable_count > 1) {
2640 pin->enable_count--;
2641 return 0;
2642 }
2643
2644 /* Disable GPIO if not used */
2645 if (pin->enable_count <= 1) {
2646 gpiod_set_value_cansleep(pin->gpiod, 0);
2647 pin->enable_count = 0;
2648 }
2649 }
2650
2651 return 0;
2652}
2653
2654/**
2655 * _regulator_delay_helper - a delay helper function
2656 * @delay: time to delay in microseconds
2657 *
2658 * Delay for the requested amount of time as per the guidelines in:
2659 *
2660 * Documentation/timers/timers-howto.rst
2661 *
2662 * The assumption here is that these regulator operations will never used in
2663 * atomic context and therefore sleeping functions can be used.
2664 */
2665static void _regulator_delay_helper(unsigned int delay)
2666{
2667 unsigned int ms = delay / 1000;
2668 unsigned int us = delay % 1000;
2669
2670 if (ms > 0) {
2671 /*
2672 * For small enough values, handle super-millisecond
2673 * delays in the usleep_range() call below.
2674 */
2675 if (ms < 20)
2676 us += ms * 1000;
2677 else
2678 msleep(ms);
2679 }
2680
2681 /*
2682 * Give the scheduler some room to coalesce with any other
2683 * wakeup sources. For delays shorter than 10 us, don't even
2684 * bother setting up high-resolution timers and just busy-
2685 * loop.
2686 */
2687 if (us >= 10)
2688 usleep_range(us, us + 100);
2689 else
2690 udelay(us);
2691}
2692
2693/**
2694 * _regulator_check_status_enabled
2695 *
2696 * A helper function to check if the regulator status can be interpreted
2697 * as 'regulator is enabled'.
2698 * @rdev: the regulator device to check
2699 *
2700 * Return:
2701 * * 1 - if status shows regulator is in enabled state
2702 * * 0 - if not enabled state
2703 * * Error Value - as received from ops->get_status()
2704 */
2705static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2706{
2707 int ret = rdev->desc->ops->get_status(rdev);
2708
2709 if (ret < 0) {
2710 rdev_info(rdev, "get_status returned error: %d\n", ret);
2711 return ret;
2712 }
2713
2714 switch (ret) {
2715 case REGULATOR_STATUS_OFF:
2716 case REGULATOR_STATUS_ERROR:
2717 case REGULATOR_STATUS_UNDEFINED:
2718 return 0;
2719 default:
2720 return 1;
2721 }
2722}
2723
2724static int _regulator_do_enable(struct regulator_dev *rdev)
2725{
2726 int ret, delay;
2727
2728 /* Query before enabling in case configuration dependent. */
2729 ret = _regulator_get_enable_time(rdev);
2730 if (ret >= 0) {
2731 delay = ret;
2732 } else {
2733 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2734 delay = 0;
2735 }
2736
2737 trace_regulator_enable(rdev_get_name(rdev));
2738
2739 if (rdev->desc->off_on_delay) {
2740 /* if needed, keep a distance of off_on_delay from last time
2741 * this regulator was disabled.
2742 */
2743 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2744 s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2745
2746 if (remaining > 0)
2747 _regulator_delay_helper(remaining);
2748 }
2749
2750 if (rdev->ena_pin) {
2751 if (!rdev->ena_gpio_state) {
2752 ret = regulator_ena_gpio_ctrl(rdev, true);
2753 if (ret < 0)
2754 return ret;
2755 rdev->ena_gpio_state = 1;
2756 }
2757 } else if (rdev->desc->ops->enable) {
2758 ret = rdev->desc->ops->enable(rdev);
2759 if (ret < 0)
2760 return ret;
2761 } else {
2762 return -EINVAL;
2763 }
2764
2765 /* Allow the regulator to ramp; it would be useful to extend
2766 * this for bulk operations so that the regulators can ramp
2767 * together.
2768 */
2769 trace_regulator_enable_delay(rdev_get_name(rdev));
2770
2771 /* If poll_enabled_time is set, poll upto the delay calculated
2772 * above, delaying poll_enabled_time uS to check if the regulator
2773 * actually got enabled.
2774 * If the regulator isn't enabled after our delay helper has expired,
2775 * return -ETIMEDOUT.
2776 */
2777 if (rdev->desc->poll_enabled_time) {
2778 int time_remaining = delay;
2779
2780 while (time_remaining > 0) {
2781 _regulator_delay_helper(rdev->desc->poll_enabled_time);
2782
2783 if (rdev->desc->ops->get_status) {
2784 ret = _regulator_check_status_enabled(rdev);
2785 if (ret < 0)
2786 return ret;
2787 else if (ret)
2788 break;
2789 } else if (rdev->desc->ops->is_enabled(rdev))
2790 break;
2791
2792 time_remaining -= rdev->desc->poll_enabled_time;
2793 }
2794
2795 if (time_remaining <= 0) {
2796 rdev_err(rdev, "Enabled check timed out\n");
2797 return -ETIMEDOUT;
2798 }
2799 } else {
2800 _regulator_delay_helper(delay);
2801 }
2802
2803 trace_regulator_enable_complete(rdev_get_name(rdev));
2804
2805 return 0;
2806}
2807
2808/**
2809 * _regulator_handle_consumer_enable - handle that a consumer enabled
2810 * @regulator: regulator source
2811 *
2812 * Some things on a regulator consumer (like the contribution towards total
2813 * load on the regulator) only have an effect when the consumer wants the
2814 * regulator enabled. Explained in example with two consumers of the same
2815 * regulator:
2816 * consumer A: set_load(100); => total load = 0
2817 * consumer A: regulator_enable(); => total load = 100
2818 * consumer B: set_load(1000); => total load = 100
2819 * consumer B: regulator_enable(); => total load = 1100
2820 * consumer A: regulator_disable(); => total_load = 1000
2821 *
2822 * This function (together with _regulator_handle_consumer_disable) is
2823 * responsible for keeping track of the refcount for a given regulator consumer
2824 * and applying / unapplying these things.
2825 *
2826 * Returns 0 upon no error; -error upon error.
2827 */
2828static int _regulator_handle_consumer_enable(struct regulator *regulator)
2829{
2830 int ret;
2831 struct regulator_dev *rdev = regulator->rdev;
2832
2833 lockdep_assert_held_once(&rdev->mutex.base);
2834
2835 regulator->enable_count++;
2836 if (regulator->uA_load && regulator->enable_count == 1) {
2837 ret = drms_uA_update(rdev);
2838 if (ret)
2839 regulator->enable_count--;
2840 return ret;
2841 }
2842
2843 return 0;
2844}
2845
2846/**
2847 * _regulator_handle_consumer_disable - handle that a consumer disabled
2848 * @regulator: regulator source
2849 *
2850 * The opposite of _regulator_handle_consumer_enable().
2851 *
2852 * Returns 0 upon no error; -error upon error.
2853 */
2854static int _regulator_handle_consumer_disable(struct regulator *regulator)
2855{
2856 struct regulator_dev *rdev = regulator->rdev;
2857
2858 lockdep_assert_held_once(&rdev->mutex.base);
2859
2860 if (!regulator->enable_count) {
2861 rdev_err(rdev, "Underflow of regulator enable count\n");
2862 return -EINVAL;
2863 }
2864
2865 regulator->enable_count--;
2866 if (regulator->uA_load && regulator->enable_count == 0)
2867 return drms_uA_update(rdev);
2868
2869 return 0;
2870}
2871
2872/* locks held by regulator_enable() */
2873static int _regulator_enable(struct regulator *regulator)
2874{
2875 struct regulator_dev *rdev = regulator->rdev;
2876 int ret;
2877
2878 lockdep_assert_held_once(&rdev->mutex.base);
2879
2880 if (rdev->use_count == 0 && rdev->supply) {
2881 ret = _regulator_enable(rdev->supply);
2882 if (ret < 0)
2883 return ret;
2884 }
2885
2886 /* balance only if there are regulators coupled */
2887 if (rdev->coupling_desc.n_coupled > 1) {
2888 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2889 if (ret < 0)
2890 goto err_disable_supply;
2891 }
2892
2893 ret = _regulator_handle_consumer_enable(regulator);
2894 if (ret < 0)
2895 goto err_disable_supply;
2896
2897 if (rdev->use_count == 0) {
2898 /*
2899 * The regulator may already be enabled if it's not switchable
2900 * or was left on
2901 */
2902 ret = _regulator_is_enabled(rdev);
2903 if (ret == -EINVAL || ret == 0) {
2904 if (!regulator_ops_is_valid(rdev,
2905 REGULATOR_CHANGE_STATUS)) {
2906 ret = -EPERM;
2907 goto err_consumer_disable;
2908 }
2909
2910 ret = _regulator_do_enable(rdev);
2911 if (ret < 0)
2912 goto err_consumer_disable;
2913
2914 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2915 NULL);
2916 } else if (ret < 0) {
2917 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2918 goto err_consumer_disable;
2919 }
2920 /* Fallthrough on positive return values - already enabled */
2921 }
2922
2923 if (regulator->enable_count == 1)
2924 rdev->use_count++;
2925
2926 return 0;
2927
2928err_consumer_disable:
2929 _regulator_handle_consumer_disable(regulator);
2930
2931err_disable_supply:
2932 if (rdev->use_count == 0 && rdev->supply)
2933 _regulator_disable(rdev->supply);
2934
2935 return ret;
2936}
2937
2938/**
2939 * regulator_enable - enable regulator output
2940 * @regulator: regulator source
2941 *
2942 * Request that the regulator be enabled with the regulator output at
2943 * the predefined voltage or current value. Calls to regulator_enable()
2944 * must be balanced with calls to regulator_disable().
2945 *
2946 * NOTE: the output value can be set by other drivers, boot loader or may be
2947 * hardwired in the regulator.
2948 */
2949int regulator_enable(struct regulator *regulator)
2950{
2951 struct regulator_dev *rdev = regulator->rdev;
2952 struct ww_acquire_ctx ww_ctx;
2953 int ret;
2954
2955 regulator_lock_dependent(rdev, &ww_ctx);
2956 ret = _regulator_enable(regulator);
2957 regulator_unlock_dependent(rdev, &ww_ctx);
2958
2959 return ret;
2960}
2961EXPORT_SYMBOL_GPL(regulator_enable);
2962
2963static int _regulator_do_disable(struct regulator_dev *rdev)
2964{
2965 int ret;
2966
2967 trace_regulator_disable(rdev_get_name(rdev));
2968
2969 if (rdev->ena_pin) {
2970 if (rdev->ena_gpio_state) {
2971 ret = regulator_ena_gpio_ctrl(rdev, false);
2972 if (ret < 0)
2973 return ret;
2974 rdev->ena_gpio_state = 0;
2975 }
2976
2977 } else if (rdev->desc->ops->disable) {
2978 ret = rdev->desc->ops->disable(rdev);
2979 if (ret != 0)
2980 return ret;
2981 }
2982
2983 if (rdev->desc->off_on_delay)
2984 rdev->last_off = ktime_get_boottime();
2985
2986 trace_regulator_disable_complete(rdev_get_name(rdev));
2987
2988 return 0;
2989}
2990
2991/* locks held by regulator_disable() */
2992static int _regulator_disable(struct regulator *regulator)
2993{
2994 struct regulator_dev *rdev = regulator->rdev;
2995 int ret = 0;
2996
2997 lockdep_assert_held_once(&rdev->mutex.base);
2998
2999 if (WARN(regulator->enable_count == 0,
3000 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3001 return -EIO;
3002
3003 if (regulator->enable_count == 1) {
3004 /* disabling last enable_count from this regulator */
3005 /* are we the last user and permitted to disable ? */
3006 if (rdev->use_count == 1 &&
3007 (rdev->constraints && !rdev->constraints->always_on)) {
3008
3009 /* we are last user */
3010 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3011 ret = _notifier_call_chain(rdev,
3012 REGULATOR_EVENT_PRE_DISABLE,
3013 NULL);
3014 if (ret & NOTIFY_STOP_MASK)
3015 return -EINVAL;
3016
3017 ret = _regulator_do_disable(rdev);
3018 if (ret < 0) {
3019 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3020 _notifier_call_chain(rdev,
3021 REGULATOR_EVENT_ABORT_DISABLE,
3022 NULL);
3023 return ret;
3024 }
3025 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3026 NULL);
3027 }
3028
3029 rdev->use_count = 0;
3030 } else if (rdev->use_count > 1) {
3031 rdev->use_count--;
3032 }
3033 }
3034
3035 if (ret == 0)
3036 ret = _regulator_handle_consumer_disable(regulator);
3037
3038 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3039 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3040
3041 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3042 ret = _regulator_disable(rdev->supply);
3043
3044 return ret;
3045}
3046
3047/**
3048 * regulator_disable - disable regulator output
3049 * @regulator: regulator source
3050 *
3051 * Disable the regulator output voltage or current. Calls to
3052 * regulator_enable() must be balanced with calls to
3053 * regulator_disable().
3054 *
3055 * NOTE: this will only disable the regulator output if no other consumer
3056 * devices have it enabled, the regulator device supports disabling and
3057 * machine constraints permit this operation.
3058 */
3059int regulator_disable(struct regulator *regulator)
3060{
3061 struct regulator_dev *rdev = regulator->rdev;
3062 struct ww_acquire_ctx ww_ctx;
3063 int ret;
3064
3065 regulator_lock_dependent(rdev, &ww_ctx);
3066 ret = _regulator_disable(regulator);
3067 regulator_unlock_dependent(rdev, &ww_ctx);
3068
3069 return ret;
3070}
3071EXPORT_SYMBOL_GPL(regulator_disable);
3072
3073/* locks held by regulator_force_disable() */
3074static int _regulator_force_disable(struct regulator_dev *rdev)
3075{
3076 int ret = 0;
3077
3078 lockdep_assert_held_once(&rdev->mutex.base);
3079
3080 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3081 REGULATOR_EVENT_PRE_DISABLE, NULL);
3082 if (ret & NOTIFY_STOP_MASK)
3083 return -EINVAL;
3084
3085 ret = _regulator_do_disable(rdev);
3086 if (ret < 0) {
3087 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3088 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3089 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3090 return ret;
3091 }
3092
3093 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3094 REGULATOR_EVENT_DISABLE, NULL);
3095
3096 return 0;
3097}
3098
3099/**
3100 * regulator_force_disable - force disable regulator output
3101 * @regulator: regulator source
3102 *
3103 * Forcibly disable the regulator output voltage or current.
3104 * NOTE: this *will* disable the regulator output even if other consumer
3105 * devices have it enabled. This should be used for situations when device
3106 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3107 */
3108int regulator_force_disable(struct regulator *regulator)
3109{
3110 struct regulator_dev *rdev = regulator->rdev;
3111 struct ww_acquire_ctx ww_ctx;
3112 int ret;
3113
3114 regulator_lock_dependent(rdev, &ww_ctx);
3115
3116 ret = _regulator_force_disable(regulator->rdev);
3117
3118 if (rdev->coupling_desc.n_coupled > 1)
3119 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3120
3121 if (regulator->uA_load) {
3122 regulator->uA_load = 0;
3123 ret = drms_uA_update(rdev);
3124 }
3125
3126 if (rdev->use_count != 0 && rdev->supply)
3127 _regulator_disable(rdev->supply);
3128
3129 regulator_unlock_dependent(rdev, &ww_ctx);
3130
3131 return ret;
3132}
3133EXPORT_SYMBOL_GPL(regulator_force_disable);
3134
3135static void regulator_disable_work(struct work_struct *work)
3136{
3137 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3138 disable_work.work);
3139 struct ww_acquire_ctx ww_ctx;
3140 int count, i, ret;
3141 struct regulator *regulator;
3142 int total_count = 0;
3143
3144 regulator_lock_dependent(rdev, &ww_ctx);
3145
3146 /*
3147 * Workqueue functions queue the new work instance while the previous
3148 * work instance is being processed. Cancel the queued work instance
3149 * as the work instance under processing does the job of the queued
3150 * work instance.
3151 */
3152 cancel_delayed_work(&rdev->disable_work);
3153
3154 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3155 count = regulator->deferred_disables;
3156
3157 if (!count)
3158 continue;
3159
3160 total_count += count;
3161 regulator->deferred_disables = 0;
3162
3163 for (i = 0; i < count; i++) {
3164 ret = _regulator_disable(regulator);
3165 if (ret != 0)
3166 rdev_err(rdev, "Deferred disable failed: %pe\n",
3167 ERR_PTR(ret));
3168 }
3169 }
3170 WARN_ON(!total_count);
3171
3172 if (rdev->coupling_desc.n_coupled > 1)
3173 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3174
3175 regulator_unlock_dependent(rdev, &ww_ctx);
3176}
3177
3178/**
3179 * regulator_disable_deferred - disable regulator output with delay
3180 * @regulator: regulator source
3181 * @ms: milliseconds until the regulator is disabled
3182 *
3183 * Execute regulator_disable() on the regulator after a delay. This
3184 * is intended for use with devices that require some time to quiesce.
3185 *
3186 * NOTE: this will only disable the regulator output if no other consumer
3187 * devices have it enabled, the regulator device supports disabling and
3188 * machine constraints permit this operation.
3189 */
3190int regulator_disable_deferred(struct regulator *regulator, int ms)
3191{
3192 struct regulator_dev *rdev = regulator->rdev;
3193
3194 if (!ms)
3195 return regulator_disable(regulator);
3196
3197 regulator_lock(rdev);
3198 regulator->deferred_disables++;
3199 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3200 msecs_to_jiffies(ms));
3201 regulator_unlock(rdev);
3202
3203 return 0;
3204}
3205EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3206
3207static int _regulator_is_enabled(struct regulator_dev *rdev)
3208{
3209 /* A GPIO control always takes precedence */
3210 if (rdev->ena_pin)
3211 return rdev->ena_gpio_state;
3212
3213 /* If we don't know then assume that the regulator is always on */
3214 if (!rdev->desc->ops->is_enabled)
3215 return 1;
3216
3217 return rdev->desc->ops->is_enabled(rdev);
3218}
3219
3220static int _regulator_list_voltage(struct regulator_dev *rdev,
3221 unsigned selector, int lock)
3222{
3223 const struct regulator_ops *ops = rdev->desc->ops;
3224 int ret;
3225
3226 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3227 return rdev->desc->fixed_uV;
3228
3229 if (ops->list_voltage) {
3230 if (selector >= rdev->desc->n_voltages)
3231 return -EINVAL;
3232 if (selector < rdev->desc->linear_min_sel)
3233 return 0;
3234 if (lock)
3235 regulator_lock(rdev);
3236 ret = ops->list_voltage(rdev, selector);
3237 if (lock)
3238 regulator_unlock(rdev);
3239 } else if (rdev->is_switch && rdev->supply) {
3240 ret = _regulator_list_voltage(rdev->supply->rdev,
3241 selector, lock);
3242 } else {
3243 return -EINVAL;
3244 }
3245
3246 if (ret > 0) {
3247 if (ret < rdev->constraints->min_uV)
3248 ret = 0;
3249 else if (ret > rdev->constraints->max_uV)
3250 ret = 0;
3251 }
3252
3253 return ret;
3254}
3255
3256/**
3257 * regulator_is_enabled - is the regulator output enabled
3258 * @regulator: regulator source
3259 *
3260 * Returns positive if the regulator driver backing the source/client
3261 * has requested that the device be enabled, zero if it hasn't, else a
3262 * negative errno code.
3263 *
3264 * Note that the device backing this regulator handle can have multiple
3265 * users, so it might be enabled even if regulator_enable() was never
3266 * called for this particular source.
3267 */
3268int regulator_is_enabled(struct regulator *regulator)
3269{
3270 int ret;
3271
3272 if (regulator->always_on)
3273 return 1;
3274
3275 regulator_lock(regulator->rdev);
3276 ret = _regulator_is_enabled(regulator->rdev);
3277 regulator_unlock(regulator->rdev);
3278
3279 return ret;
3280}
3281EXPORT_SYMBOL_GPL(regulator_is_enabled);
3282
3283/**
3284 * regulator_count_voltages - count regulator_list_voltage() selectors
3285 * @regulator: regulator source
3286 *
3287 * Returns number of selectors, or negative errno. Selectors are
3288 * numbered starting at zero, and typically correspond to bitfields
3289 * in hardware registers.
3290 */
3291int regulator_count_voltages(struct regulator *regulator)
3292{
3293 struct regulator_dev *rdev = regulator->rdev;
3294
3295 if (rdev->desc->n_voltages)
3296 return rdev->desc->n_voltages;
3297
3298 if (!rdev->is_switch || !rdev->supply)
3299 return -EINVAL;
3300
3301 return regulator_count_voltages(rdev->supply);
3302}
3303EXPORT_SYMBOL_GPL(regulator_count_voltages);
3304
3305/**
3306 * regulator_list_voltage - enumerate supported voltages
3307 * @regulator: regulator source
3308 * @selector: identify voltage to list
3309 * Context: can sleep
3310 *
3311 * Returns a voltage that can be passed to @regulator_set_voltage(),
3312 * zero if this selector code can't be used on this system, or a
3313 * negative errno.
3314 */
3315int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3316{
3317 return _regulator_list_voltage(regulator->rdev, selector, 1);
3318}
3319EXPORT_SYMBOL_GPL(regulator_list_voltage);
3320
3321/**
3322 * regulator_get_regmap - get the regulator's register map
3323 * @regulator: regulator source
3324 *
3325 * Returns the register map for the given regulator, or an ERR_PTR value
3326 * if the regulator doesn't use regmap.
3327 */
3328struct regmap *regulator_get_regmap(struct regulator *regulator)
3329{
3330 struct regmap *map = regulator->rdev->regmap;
3331
3332 return map ? map : ERR_PTR(-EOPNOTSUPP);
3333}
3334
3335/**
3336 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3337 * @regulator: regulator source
3338 * @vsel_reg: voltage selector register, output parameter
3339 * @vsel_mask: mask for voltage selector bitfield, output parameter
3340 *
3341 * Returns the hardware register offset and bitmask used for setting the
3342 * regulator voltage. This might be useful when configuring voltage-scaling
3343 * hardware or firmware that can make I2C requests behind the kernel's back,
3344 * for example.
3345 *
3346 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3347 * and 0 is returned, otherwise a negative errno is returned.
3348 */
3349int regulator_get_hardware_vsel_register(struct regulator *regulator,
3350 unsigned *vsel_reg,
3351 unsigned *vsel_mask)
3352{
3353 struct regulator_dev *rdev = regulator->rdev;
3354 const struct regulator_ops *ops = rdev->desc->ops;
3355
3356 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3357 return -EOPNOTSUPP;
3358
3359 *vsel_reg = rdev->desc->vsel_reg;
3360 *vsel_mask = rdev->desc->vsel_mask;
3361
3362 return 0;
3363}
3364EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3365
3366/**
3367 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3368 * @regulator: regulator source
3369 * @selector: identify voltage to list
3370 *
3371 * Converts the selector to a hardware-specific voltage selector that can be
3372 * directly written to the regulator registers. The address of the voltage
3373 * register can be determined by calling @regulator_get_hardware_vsel_register.
3374 *
3375 * On error a negative errno is returned.
3376 */
3377int regulator_list_hardware_vsel(struct regulator *regulator,
3378 unsigned selector)
3379{
3380 struct regulator_dev *rdev = regulator->rdev;
3381 const struct regulator_ops *ops = rdev->desc->ops;
3382
3383 if (selector >= rdev->desc->n_voltages)
3384 return -EINVAL;
3385 if (selector < rdev->desc->linear_min_sel)
3386 return 0;
3387 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3388 return -EOPNOTSUPP;
3389
3390 return selector;
3391}
3392EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3393
3394/**
3395 * regulator_get_linear_step - return the voltage step size between VSEL values
3396 * @regulator: regulator source
3397 *
3398 * Returns the voltage step size between VSEL values for linear
3399 * regulators, or return 0 if the regulator isn't a linear regulator.
3400 */
3401unsigned int regulator_get_linear_step(struct regulator *regulator)
3402{
3403 struct regulator_dev *rdev = regulator->rdev;
3404
3405 return rdev->desc->uV_step;
3406}
3407EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3408
3409/**
3410 * regulator_is_supported_voltage - check if a voltage range can be supported
3411 *
3412 * @regulator: Regulator to check.
3413 * @min_uV: Minimum required voltage in uV.
3414 * @max_uV: Maximum required voltage in uV.
3415 *
3416 * Returns a boolean.
3417 */
3418int regulator_is_supported_voltage(struct regulator *regulator,
3419 int min_uV, int max_uV)
3420{
3421 struct regulator_dev *rdev = regulator->rdev;
3422 int i, voltages, ret;
3423
3424 /* If we can't change voltage check the current voltage */
3425 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3426 ret = regulator_get_voltage(regulator);
3427 if (ret >= 0)
3428 return min_uV <= ret && ret <= max_uV;
3429 else
3430 return ret;
3431 }
3432
3433 /* Any voltage within constrains range is fine? */
3434 if (rdev->desc->continuous_voltage_range)
3435 return min_uV >= rdev->constraints->min_uV &&
3436 max_uV <= rdev->constraints->max_uV;
3437
3438 ret = regulator_count_voltages(regulator);
3439 if (ret < 0)
3440 return 0;
3441 voltages = ret;
3442
3443 for (i = 0; i < voltages; i++) {
3444 ret = regulator_list_voltage(regulator, i);
3445
3446 if (ret >= min_uV && ret <= max_uV)
3447 return 1;
3448 }
3449
3450 return 0;
3451}
3452EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3453
3454static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3455 int max_uV)
3456{
3457 const struct regulator_desc *desc = rdev->desc;
3458
3459 if (desc->ops->map_voltage)
3460 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3461
3462 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3463 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3464
3465 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3466 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3467
3468 if (desc->ops->list_voltage ==
3469 regulator_list_voltage_pickable_linear_range)
3470 return regulator_map_voltage_pickable_linear_range(rdev,
3471 min_uV, max_uV);
3472
3473 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3474}
3475
3476static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3477 int min_uV, int max_uV,
3478 unsigned *selector)
3479{
3480 struct pre_voltage_change_data data;
3481 int ret;
3482
3483 data.old_uV = regulator_get_voltage_rdev(rdev);
3484 data.min_uV = min_uV;
3485 data.max_uV = max_uV;
3486 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3487 &data);
3488 if (ret & NOTIFY_STOP_MASK)
3489 return -EINVAL;
3490
3491 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3492 if (ret >= 0)
3493 return ret;
3494
3495 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3496 (void *)data.old_uV);
3497
3498 return ret;
3499}
3500
3501static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3502 int uV, unsigned selector)
3503{
3504 struct pre_voltage_change_data data;
3505 int ret;
3506
3507 data.old_uV = regulator_get_voltage_rdev(rdev);
3508 data.min_uV = uV;
3509 data.max_uV = uV;
3510 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3511 &data);
3512 if (ret & NOTIFY_STOP_MASK)
3513 return -EINVAL;
3514
3515 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3516 if (ret >= 0)
3517 return ret;
3518
3519 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3520 (void *)data.old_uV);
3521
3522 return ret;
3523}
3524
3525static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3526 int uV, int new_selector)
3527{
3528 const struct regulator_ops *ops = rdev->desc->ops;
3529 int diff, old_sel, curr_sel, ret;
3530
3531 /* Stepping is only needed if the regulator is enabled. */
3532 if (!_regulator_is_enabled(rdev))
3533 goto final_set;
3534
3535 if (!ops->get_voltage_sel)
3536 return -EINVAL;
3537
3538 old_sel = ops->get_voltage_sel(rdev);
3539 if (old_sel < 0)
3540 return old_sel;
3541
3542 diff = new_selector - old_sel;
3543 if (diff == 0)
3544 return 0; /* No change needed. */
3545
3546 if (diff > 0) {
3547 /* Stepping up. */
3548 for (curr_sel = old_sel + rdev->desc->vsel_step;
3549 curr_sel < new_selector;
3550 curr_sel += rdev->desc->vsel_step) {
3551 /*
3552 * Call the callback directly instead of using
3553 * _regulator_call_set_voltage_sel() as we don't
3554 * want to notify anyone yet. Same in the branch
3555 * below.
3556 */
3557 ret = ops->set_voltage_sel(rdev, curr_sel);
3558 if (ret)
3559 goto try_revert;
3560 }
3561 } else {
3562 /* Stepping down. */
3563 for (curr_sel = old_sel - rdev->desc->vsel_step;
3564 curr_sel > new_selector;
3565 curr_sel -= rdev->desc->vsel_step) {
3566 ret = ops->set_voltage_sel(rdev, curr_sel);
3567 if (ret)
3568 goto try_revert;
3569 }
3570 }
3571
3572final_set:
3573 /* The final selector will trigger the notifiers. */
3574 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3575
3576try_revert:
3577 /*
3578 * At least try to return to the previous voltage if setting a new
3579 * one failed.
3580 */
3581 (void)ops->set_voltage_sel(rdev, old_sel);
3582 return ret;
3583}
3584
3585static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3586 int old_uV, int new_uV)
3587{
3588 unsigned int ramp_delay = 0;
3589
3590 if (rdev->constraints->ramp_delay)
3591 ramp_delay = rdev->constraints->ramp_delay;
3592 else if (rdev->desc->ramp_delay)
3593 ramp_delay = rdev->desc->ramp_delay;
3594 else if (rdev->constraints->settling_time)
3595 return rdev->constraints->settling_time;
3596 else if (rdev->constraints->settling_time_up &&
3597 (new_uV > old_uV))
3598 return rdev->constraints->settling_time_up;
3599 else if (rdev->constraints->settling_time_down &&
3600 (new_uV < old_uV))
3601 return rdev->constraints->settling_time_down;
3602
3603 if (ramp_delay == 0)
3604 return 0;
3605
3606 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3607}
3608
3609static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3610 int min_uV, int max_uV)
3611{
3612 int ret;
3613 int delay = 0;
3614 int best_val = 0;
3615 unsigned int selector;
3616 int old_selector = -1;
3617 const struct regulator_ops *ops = rdev->desc->ops;
3618 int old_uV = regulator_get_voltage_rdev(rdev);
3619
3620 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3621
3622 min_uV += rdev->constraints->uV_offset;
3623 max_uV += rdev->constraints->uV_offset;
3624
3625 /*
3626 * If we can't obtain the old selector there is not enough
3627 * info to call set_voltage_time_sel().
3628 */
3629 if (_regulator_is_enabled(rdev) &&
3630 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3631 old_selector = ops->get_voltage_sel(rdev);
3632 if (old_selector < 0)
3633 return old_selector;
3634 }
3635
3636 if (ops->set_voltage) {
3637 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3638 &selector);
3639
3640 if (ret >= 0) {
3641 if (ops->list_voltage)
3642 best_val = ops->list_voltage(rdev,
3643 selector);
3644 else
3645 best_val = regulator_get_voltage_rdev(rdev);
3646 }
3647
3648 } else if (ops->set_voltage_sel) {
3649 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3650 if (ret >= 0) {
3651 best_val = ops->list_voltage(rdev, ret);
3652 if (min_uV <= best_val && max_uV >= best_val) {
3653 selector = ret;
3654 if (old_selector == selector)
3655 ret = 0;
3656 else if (rdev->desc->vsel_step)
3657 ret = _regulator_set_voltage_sel_step(
3658 rdev, best_val, selector);
3659 else
3660 ret = _regulator_call_set_voltage_sel(
3661 rdev, best_val, selector);
3662 } else {
3663 ret = -EINVAL;
3664 }
3665 }
3666 } else {
3667 ret = -EINVAL;
3668 }
3669
3670 if (ret)
3671 goto out;
3672
3673 if (ops->set_voltage_time_sel) {
3674 /*
3675 * Call set_voltage_time_sel if successfully obtained
3676 * old_selector
3677 */
3678 if (old_selector >= 0 && old_selector != selector)
3679 delay = ops->set_voltage_time_sel(rdev, old_selector,
3680 selector);
3681 } else {
3682 if (old_uV != best_val) {
3683 if (ops->set_voltage_time)
3684 delay = ops->set_voltage_time(rdev, old_uV,
3685 best_val);
3686 else
3687 delay = _regulator_set_voltage_time(rdev,
3688 old_uV,
3689 best_val);
3690 }
3691 }
3692
3693 if (delay < 0) {
3694 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3695 delay = 0;
3696 }
3697
3698 /* Insert any necessary delays */
3699 _regulator_delay_helper(delay);
3700
3701 if (best_val >= 0) {
3702 unsigned long data = best_val;
3703
3704 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3705 (void *)data);
3706 }
3707
3708out:
3709 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3710
3711 return ret;
3712}
3713
3714static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3715 int min_uV, int max_uV, suspend_state_t state)
3716{
3717 struct regulator_state *rstate;
3718 int uV, sel;
3719
3720 rstate = regulator_get_suspend_state(rdev, state);
3721 if (rstate == NULL)
3722 return -EINVAL;
3723
3724 if (min_uV < rstate->min_uV)
3725 min_uV = rstate->min_uV;
3726 if (max_uV > rstate->max_uV)
3727 max_uV = rstate->max_uV;
3728
3729 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3730 if (sel < 0)
3731 return sel;
3732
3733 uV = rdev->desc->ops->list_voltage(rdev, sel);
3734 if (uV >= min_uV && uV <= max_uV)
3735 rstate->uV = uV;
3736
3737 return 0;
3738}
3739
3740static int regulator_set_voltage_unlocked(struct regulator *regulator,
3741 int min_uV, int max_uV,
3742 suspend_state_t state)
3743{
3744 struct regulator_dev *rdev = regulator->rdev;
3745 struct regulator_voltage *voltage = ®ulator->voltage[state];
3746 int ret = 0;
3747 int old_min_uV, old_max_uV;
3748 int current_uV;
3749
3750 /* If we're setting the same range as last time the change
3751 * should be a noop (some cpufreq implementations use the same
3752 * voltage for multiple frequencies, for example).
3753 */
3754 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3755 goto out;
3756
3757 /* If we're trying to set a range that overlaps the current voltage,
3758 * return successfully even though the regulator does not support
3759 * changing the voltage.
3760 */
3761 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3762 current_uV = regulator_get_voltage_rdev(rdev);
3763 if (min_uV <= current_uV && current_uV <= max_uV) {
3764 voltage->min_uV = min_uV;
3765 voltage->max_uV = max_uV;
3766 goto out;
3767 }
3768 }
3769
3770 /* sanity check */
3771 if (!rdev->desc->ops->set_voltage &&
3772 !rdev->desc->ops->set_voltage_sel) {
3773 ret = -EINVAL;
3774 goto out;
3775 }
3776
3777 /* constraints check */
3778 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3779 if (ret < 0)
3780 goto out;
3781
3782 /* restore original values in case of error */
3783 old_min_uV = voltage->min_uV;
3784 old_max_uV = voltage->max_uV;
3785 voltage->min_uV = min_uV;
3786 voltage->max_uV = max_uV;
3787
3788 /* for not coupled regulators this will just set the voltage */
3789 ret = regulator_balance_voltage(rdev, state);
3790 if (ret < 0) {
3791 voltage->min_uV = old_min_uV;
3792 voltage->max_uV = old_max_uV;
3793 }
3794
3795out:
3796 return ret;
3797}
3798
3799int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3800 int max_uV, suspend_state_t state)
3801{
3802 int best_supply_uV = 0;
3803 int supply_change_uV = 0;
3804 int ret;
3805
3806 if (rdev->supply &&
3807 regulator_ops_is_valid(rdev->supply->rdev,
3808 REGULATOR_CHANGE_VOLTAGE) &&
3809 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3810 rdev->desc->ops->get_voltage_sel))) {
3811 int current_supply_uV;
3812 int selector;
3813
3814 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3815 if (selector < 0) {
3816 ret = selector;
3817 goto out;
3818 }
3819
3820 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3821 if (best_supply_uV < 0) {
3822 ret = best_supply_uV;
3823 goto out;
3824 }
3825
3826 best_supply_uV += rdev->desc->min_dropout_uV;
3827
3828 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3829 if (current_supply_uV < 0) {
3830 ret = current_supply_uV;
3831 goto out;
3832 }
3833
3834 supply_change_uV = best_supply_uV - current_supply_uV;
3835 }
3836
3837 if (supply_change_uV > 0) {
3838 ret = regulator_set_voltage_unlocked(rdev->supply,
3839 best_supply_uV, INT_MAX, state);
3840 if (ret) {
3841 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3842 ERR_PTR(ret));
3843 goto out;
3844 }
3845 }
3846
3847 if (state == PM_SUSPEND_ON)
3848 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3849 else
3850 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3851 max_uV, state);
3852 if (ret < 0)
3853 goto out;
3854
3855 if (supply_change_uV < 0) {
3856 ret = regulator_set_voltage_unlocked(rdev->supply,
3857 best_supply_uV, INT_MAX, state);
3858 if (ret)
3859 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3860 ERR_PTR(ret));
3861 /* No need to fail here */
3862 ret = 0;
3863 }
3864
3865out:
3866 return ret;
3867}
3868EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3869
3870static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3871 int *current_uV, int *min_uV)
3872{
3873 struct regulation_constraints *constraints = rdev->constraints;
3874
3875 /* Limit voltage change only if necessary */
3876 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3877 return 1;
3878
3879 if (*current_uV < 0) {
3880 *current_uV = regulator_get_voltage_rdev(rdev);
3881
3882 if (*current_uV < 0)
3883 return *current_uV;
3884 }
3885
3886 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3887 return 1;
3888
3889 /* Clamp target voltage within the given step */
3890 if (*current_uV < *min_uV)
3891 *min_uV = min(*current_uV + constraints->max_uV_step,
3892 *min_uV);
3893 else
3894 *min_uV = max(*current_uV - constraints->max_uV_step,
3895 *min_uV);
3896
3897 return 0;
3898}
3899
3900static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3901 int *current_uV,
3902 int *min_uV, int *max_uV,
3903 suspend_state_t state,
3904 int n_coupled)
3905{
3906 struct coupling_desc *c_desc = &rdev->coupling_desc;
3907 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3908 struct regulation_constraints *constraints = rdev->constraints;
3909 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3910 int max_current_uV = 0, min_current_uV = INT_MAX;
3911 int highest_min_uV = 0, target_uV, possible_uV;
3912 int i, ret, max_spread;
3913 bool done;
3914
3915 *current_uV = -1;
3916
3917 /*
3918 * If there are no coupled regulators, simply set the voltage
3919 * demanded by consumers.
3920 */
3921 if (n_coupled == 1) {
3922 /*
3923 * If consumers don't provide any demands, set voltage
3924 * to min_uV
3925 */
3926 desired_min_uV = constraints->min_uV;
3927 desired_max_uV = constraints->max_uV;
3928
3929 ret = regulator_check_consumers(rdev,
3930 &desired_min_uV,
3931 &desired_max_uV, state);
3932 if (ret < 0)
3933 return ret;
3934
3935 possible_uV = desired_min_uV;
3936 done = true;
3937
3938 goto finish;
3939 }
3940
3941 /* Find highest min desired voltage */
3942 for (i = 0; i < n_coupled; i++) {
3943 int tmp_min = 0;
3944 int tmp_max = INT_MAX;
3945
3946 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3947
3948 ret = regulator_check_consumers(c_rdevs[i],
3949 &tmp_min,
3950 &tmp_max, state);
3951 if (ret < 0)
3952 return ret;
3953
3954 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3955 if (ret < 0)
3956 return ret;
3957
3958 highest_min_uV = max(highest_min_uV, tmp_min);
3959
3960 if (i == 0) {
3961 desired_min_uV = tmp_min;
3962 desired_max_uV = tmp_max;
3963 }
3964 }
3965
3966 max_spread = constraints->max_spread[0];
3967
3968 /*
3969 * Let target_uV be equal to the desired one if possible.
3970 * If not, set it to minimum voltage, allowed by other coupled
3971 * regulators.
3972 */
3973 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3974
3975 /*
3976 * Find min and max voltages, which currently aren't violating
3977 * max_spread.
3978 */
3979 for (i = 1; i < n_coupled; i++) {
3980 int tmp_act;
3981
3982 if (!_regulator_is_enabled(c_rdevs[i]))
3983 continue;
3984
3985 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3986 if (tmp_act < 0)
3987 return tmp_act;
3988
3989 min_current_uV = min(tmp_act, min_current_uV);
3990 max_current_uV = max(tmp_act, max_current_uV);
3991 }
3992
3993 /* There aren't any other regulators enabled */
3994 if (max_current_uV == 0) {
3995 possible_uV = target_uV;
3996 } else {
3997 /*
3998 * Correct target voltage, so as it currently isn't
3999 * violating max_spread
4000 */
4001 possible_uV = max(target_uV, max_current_uV - max_spread);
4002 possible_uV = min(possible_uV, min_current_uV + max_spread);
4003 }
4004
4005 if (possible_uV > desired_max_uV)
4006 return -EINVAL;
4007
4008 done = (possible_uV == target_uV);
4009 desired_min_uV = possible_uV;
4010
4011finish:
4012 /* Apply max_uV_step constraint if necessary */
4013 if (state == PM_SUSPEND_ON) {
4014 ret = regulator_limit_voltage_step(rdev, current_uV,
4015 &desired_min_uV);
4016 if (ret < 0)
4017 return ret;
4018
4019 if (ret == 0)
4020 done = false;
4021 }
4022
4023 /* Set current_uV if wasn't done earlier in the code and if necessary */
4024 if (n_coupled > 1 && *current_uV == -1) {
4025
4026 if (_regulator_is_enabled(rdev)) {
4027 ret = regulator_get_voltage_rdev(rdev);
4028 if (ret < 0)
4029 return ret;
4030
4031 *current_uV = ret;
4032 } else {
4033 *current_uV = desired_min_uV;
4034 }
4035 }
4036
4037 *min_uV = desired_min_uV;
4038 *max_uV = desired_max_uV;
4039
4040 return done;
4041}
4042
4043int regulator_do_balance_voltage(struct regulator_dev *rdev,
4044 suspend_state_t state, bool skip_coupled)
4045{
4046 struct regulator_dev **c_rdevs;
4047 struct regulator_dev *best_rdev;
4048 struct coupling_desc *c_desc = &rdev->coupling_desc;
4049 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4050 unsigned int delta, best_delta;
4051 unsigned long c_rdev_done = 0;
4052 bool best_c_rdev_done;
4053
4054 c_rdevs = c_desc->coupled_rdevs;
4055 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4056
4057 /*
4058 * Find the best possible voltage change on each loop. Leave the loop
4059 * if there isn't any possible change.
4060 */
4061 do {
4062 best_c_rdev_done = false;
4063 best_delta = 0;
4064 best_min_uV = 0;
4065 best_max_uV = 0;
4066 best_c_rdev = 0;
4067 best_rdev = NULL;
4068
4069 /*
4070 * Find highest difference between optimal voltage
4071 * and current voltage.
4072 */
4073 for (i = 0; i < n_coupled; i++) {
4074 /*
4075 * optimal_uV is the best voltage that can be set for
4076 * i-th regulator at the moment without violating
4077 * max_spread constraint in order to balance
4078 * the coupled voltages.
4079 */
4080 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4081
4082 if (test_bit(i, &c_rdev_done))
4083 continue;
4084
4085 ret = regulator_get_optimal_voltage(c_rdevs[i],
4086 ¤t_uV,
4087 &optimal_uV,
4088 &optimal_max_uV,
4089 state, n_coupled);
4090 if (ret < 0)
4091 goto out;
4092
4093 delta = abs(optimal_uV - current_uV);
4094
4095 if (delta && best_delta <= delta) {
4096 best_c_rdev_done = ret;
4097 best_delta = delta;
4098 best_rdev = c_rdevs[i];
4099 best_min_uV = optimal_uV;
4100 best_max_uV = optimal_max_uV;
4101 best_c_rdev = i;
4102 }
4103 }
4104
4105 /* Nothing to change, return successfully */
4106 if (!best_rdev) {
4107 ret = 0;
4108 goto out;
4109 }
4110
4111 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4112 best_max_uV, state);
4113
4114 if (ret < 0)
4115 goto out;
4116
4117 if (best_c_rdev_done)
4118 set_bit(best_c_rdev, &c_rdev_done);
4119
4120 } while (n_coupled > 1);
4121
4122out:
4123 return ret;
4124}
4125
4126static int regulator_balance_voltage(struct regulator_dev *rdev,
4127 suspend_state_t state)
4128{
4129 struct coupling_desc *c_desc = &rdev->coupling_desc;
4130 struct regulator_coupler *coupler = c_desc->coupler;
4131 bool skip_coupled = false;
4132
4133 /*
4134 * If system is in a state other than PM_SUSPEND_ON, don't check
4135 * other coupled regulators.
4136 */
4137 if (state != PM_SUSPEND_ON)
4138 skip_coupled = true;
4139
4140 if (c_desc->n_resolved < c_desc->n_coupled) {
4141 rdev_err(rdev, "Not all coupled regulators registered\n");
4142 return -EPERM;
4143 }
4144
4145 /* Invoke custom balancer for customized couplers */
4146 if (coupler && coupler->balance_voltage)
4147 return coupler->balance_voltage(coupler, rdev, state);
4148
4149 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4150}
4151
4152/**
4153 * regulator_set_voltage - set regulator output voltage
4154 * @regulator: regulator source
4155 * @min_uV: Minimum required voltage in uV
4156 * @max_uV: Maximum acceptable voltage in uV
4157 *
4158 * Sets a voltage regulator to the desired output voltage. This can be set
4159 * during any regulator state. IOW, regulator can be disabled or enabled.
4160 *
4161 * If the regulator is enabled then the voltage will change to the new value
4162 * immediately otherwise if the regulator is disabled the regulator will
4163 * output at the new voltage when enabled.
4164 *
4165 * NOTE: If the regulator is shared between several devices then the lowest
4166 * request voltage that meets the system constraints will be used.
4167 * Regulator system constraints must be set for this regulator before
4168 * calling this function otherwise this call will fail.
4169 */
4170int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4171{
4172 struct ww_acquire_ctx ww_ctx;
4173 int ret;
4174
4175 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4176
4177 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4178 PM_SUSPEND_ON);
4179
4180 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4181
4182 return ret;
4183}
4184EXPORT_SYMBOL_GPL(regulator_set_voltage);
4185
4186static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4187 suspend_state_t state, bool en)
4188{
4189 struct regulator_state *rstate;
4190
4191 rstate = regulator_get_suspend_state(rdev, state);
4192 if (rstate == NULL)
4193 return -EINVAL;
4194
4195 if (!rstate->changeable)
4196 return -EPERM;
4197
4198 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4199
4200 return 0;
4201}
4202
4203int regulator_suspend_enable(struct regulator_dev *rdev,
4204 suspend_state_t state)
4205{
4206 return regulator_suspend_toggle(rdev, state, true);
4207}
4208EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4209
4210int regulator_suspend_disable(struct regulator_dev *rdev,
4211 suspend_state_t state)
4212{
4213 struct regulator *regulator;
4214 struct regulator_voltage *voltage;
4215
4216 /*
4217 * if any consumer wants this regulator device keeping on in
4218 * suspend states, don't set it as disabled.
4219 */
4220 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4221 voltage = ®ulator->voltage[state];
4222 if (voltage->min_uV || voltage->max_uV)
4223 return 0;
4224 }
4225
4226 return regulator_suspend_toggle(rdev, state, false);
4227}
4228EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4229
4230static int _regulator_set_suspend_voltage(struct regulator *regulator,
4231 int min_uV, int max_uV,
4232 suspend_state_t state)
4233{
4234 struct regulator_dev *rdev = regulator->rdev;
4235 struct regulator_state *rstate;
4236
4237 rstate = regulator_get_suspend_state(rdev, state);
4238 if (rstate == NULL)
4239 return -EINVAL;
4240
4241 if (rstate->min_uV == rstate->max_uV) {
4242 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4243 return -EPERM;
4244 }
4245
4246 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4247}
4248
4249int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4250 int max_uV, suspend_state_t state)
4251{
4252 struct ww_acquire_ctx ww_ctx;
4253 int ret;
4254
4255 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4256 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4257 return -EINVAL;
4258
4259 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4260
4261 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4262 max_uV, state);
4263
4264 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4265
4266 return ret;
4267}
4268EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4269
4270/**
4271 * regulator_set_voltage_time - get raise/fall time
4272 * @regulator: regulator source
4273 * @old_uV: starting voltage in microvolts
4274 * @new_uV: target voltage in microvolts
4275 *
4276 * Provided with the starting and ending voltage, this function attempts to
4277 * calculate the time in microseconds required to rise or fall to this new
4278 * voltage.
4279 */
4280int regulator_set_voltage_time(struct regulator *regulator,
4281 int old_uV, int new_uV)
4282{
4283 struct regulator_dev *rdev = regulator->rdev;
4284 const struct regulator_ops *ops = rdev->desc->ops;
4285 int old_sel = -1;
4286 int new_sel = -1;
4287 int voltage;
4288 int i;
4289
4290 if (ops->set_voltage_time)
4291 return ops->set_voltage_time(rdev, old_uV, new_uV);
4292 else if (!ops->set_voltage_time_sel)
4293 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4294
4295 /* Currently requires operations to do this */
4296 if (!ops->list_voltage || !rdev->desc->n_voltages)
4297 return -EINVAL;
4298
4299 for (i = 0; i < rdev->desc->n_voltages; i++) {
4300 /* We only look for exact voltage matches here */
4301 if (i < rdev->desc->linear_min_sel)
4302 continue;
4303
4304 if (old_sel >= 0 && new_sel >= 0)
4305 break;
4306
4307 voltage = regulator_list_voltage(regulator, i);
4308 if (voltage < 0)
4309 return -EINVAL;
4310 if (voltage == 0)
4311 continue;
4312 if (voltage == old_uV)
4313 old_sel = i;
4314 if (voltage == new_uV)
4315 new_sel = i;
4316 }
4317
4318 if (old_sel < 0 || new_sel < 0)
4319 return -EINVAL;
4320
4321 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4322}
4323EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4324
4325/**
4326 * regulator_set_voltage_time_sel - get raise/fall time
4327 * @rdev: regulator source device
4328 * @old_selector: selector for starting voltage
4329 * @new_selector: selector for target voltage
4330 *
4331 * Provided with the starting and target voltage selectors, this function
4332 * returns time in microseconds required to rise or fall to this new voltage
4333 *
4334 * Drivers providing ramp_delay in regulation_constraints can use this as their
4335 * set_voltage_time_sel() operation.
4336 */
4337int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4338 unsigned int old_selector,
4339 unsigned int new_selector)
4340{
4341 int old_volt, new_volt;
4342
4343 /* sanity check */
4344 if (!rdev->desc->ops->list_voltage)
4345 return -EINVAL;
4346
4347 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4348 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4349
4350 if (rdev->desc->ops->set_voltage_time)
4351 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4352 new_volt);
4353 else
4354 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4355}
4356EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4357
4358int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4359{
4360 int ret;
4361
4362 regulator_lock(rdev);
4363
4364 if (!rdev->desc->ops->set_voltage &&
4365 !rdev->desc->ops->set_voltage_sel) {
4366 ret = -EINVAL;
4367 goto out;
4368 }
4369
4370 /* balance only, if regulator is coupled */
4371 if (rdev->coupling_desc.n_coupled > 1)
4372 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4373 else
4374 ret = -EOPNOTSUPP;
4375
4376out:
4377 regulator_unlock(rdev);
4378 return ret;
4379}
4380
4381/**
4382 * regulator_sync_voltage - re-apply last regulator output voltage
4383 * @regulator: regulator source
4384 *
4385 * Re-apply the last configured voltage. This is intended to be used
4386 * where some external control source the consumer is cooperating with
4387 * has caused the configured voltage to change.
4388 */
4389int regulator_sync_voltage(struct regulator *regulator)
4390{
4391 struct regulator_dev *rdev = regulator->rdev;
4392 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4393 int ret, min_uV, max_uV;
4394
4395 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4396 return 0;
4397
4398 regulator_lock(rdev);
4399
4400 if (!rdev->desc->ops->set_voltage &&
4401 !rdev->desc->ops->set_voltage_sel) {
4402 ret = -EINVAL;
4403 goto out;
4404 }
4405
4406 /* This is only going to work if we've had a voltage configured. */
4407 if (!voltage->min_uV && !voltage->max_uV) {
4408 ret = -EINVAL;
4409 goto out;
4410 }
4411
4412 min_uV = voltage->min_uV;
4413 max_uV = voltage->max_uV;
4414
4415 /* This should be a paranoia check... */
4416 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4417 if (ret < 0)
4418 goto out;
4419
4420 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4421 if (ret < 0)
4422 goto out;
4423
4424 /* balance only, if regulator is coupled */
4425 if (rdev->coupling_desc.n_coupled > 1)
4426 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4427 else
4428 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4429
4430out:
4431 regulator_unlock(rdev);
4432 return ret;
4433}
4434EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4435
4436int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4437{
4438 int sel, ret;
4439 bool bypassed;
4440
4441 if (rdev->desc->ops->get_bypass) {
4442 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4443 if (ret < 0)
4444 return ret;
4445 if (bypassed) {
4446 /* if bypassed the regulator must have a supply */
4447 if (!rdev->supply) {
4448 rdev_err(rdev,
4449 "bypassed regulator has no supply!\n");
4450 return -EPROBE_DEFER;
4451 }
4452
4453 return regulator_get_voltage_rdev(rdev->supply->rdev);
4454 }
4455 }
4456
4457 if (rdev->desc->ops->get_voltage_sel) {
4458 sel = rdev->desc->ops->get_voltage_sel(rdev);
4459 if (sel < 0)
4460 return sel;
4461 ret = rdev->desc->ops->list_voltage(rdev, sel);
4462 } else if (rdev->desc->ops->get_voltage) {
4463 ret = rdev->desc->ops->get_voltage(rdev);
4464 } else if (rdev->desc->ops->list_voltage) {
4465 ret = rdev->desc->ops->list_voltage(rdev, 0);
4466 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4467 ret = rdev->desc->fixed_uV;
4468 } else if (rdev->supply) {
4469 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4470 } else if (rdev->supply_name) {
4471 return -EPROBE_DEFER;
4472 } else {
4473 return -EINVAL;
4474 }
4475
4476 if (ret < 0)
4477 return ret;
4478 return ret - rdev->constraints->uV_offset;
4479}
4480EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4481
4482/**
4483 * regulator_get_voltage - get regulator output voltage
4484 * @regulator: regulator source
4485 *
4486 * This returns the current regulator voltage in uV.
4487 *
4488 * NOTE: If the regulator is disabled it will return the voltage value. This
4489 * function should not be used to determine regulator state.
4490 */
4491int regulator_get_voltage(struct regulator *regulator)
4492{
4493 struct ww_acquire_ctx ww_ctx;
4494 int ret;
4495
4496 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4497 ret = regulator_get_voltage_rdev(regulator->rdev);
4498 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4499
4500 return ret;
4501}
4502EXPORT_SYMBOL_GPL(regulator_get_voltage);
4503
4504/**
4505 * regulator_set_current_limit - set regulator output current limit
4506 * @regulator: regulator source
4507 * @min_uA: Minimum supported current in uA
4508 * @max_uA: Maximum supported current in uA
4509 *
4510 * Sets current sink to the desired output current. This can be set during
4511 * any regulator state. IOW, regulator can be disabled or enabled.
4512 *
4513 * If the regulator is enabled then the current will change to the new value
4514 * immediately otherwise if the regulator is disabled the regulator will
4515 * output at the new current when enabled.
4516 *
4517 * NOTE: Regulator system constraints must be set for this regulator before
4518 * calling this function otherwise this call will fail.
4519 */
4520int regulator_set_current_limit(struct regulator *regulator,
4521 int min_uA, int max_uA)
4522{
4523 struct regulator_dev *rdev = regulator->rdev;
4524 int ret;
4525
4526 regulator_lock(rdev);
4527
4528 /* sanity check */
4529 if (!rdev->desc->ops->set_current_limit) {
4530 ret = -EINVAL;
4531 goto out;
4532 }
4533
4534 /* constraints check */
4535 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4536 if (ret < 0)
4537 goto out;
4538
4539 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4540out:
4541 regulator_unlock(rdev);
4542 return ret;
4543}
4544EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4545
4546static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4547{
4548 /* sanity check */
4549 if (!rdev->desc->ops->get_current_limit)
4550 return -EINVAL;
4551
4552 return rdev->desc->ops->get_current_limit(rdev);
4553}
4554
4555static int _regulator_get_current_limit(struct regulator_dev *rdev)
4556{
4557 int ret;
4558
4559 regulator_lock(rdev);
4560 ret = _regulator_get_current_limit_unlocked(rdev);
4561 regulator_unlock(rdev);
4562
4563 return ret;
4564}
4565
4566/**
4567 * regulator_get_current_limit - get regulator output current
4568 * @regulator: regulator source
4569 *
4570 * This returns the current supplied by the specified current sink in uA.
4571 *
4572 * NOTE: If the regulator is disabled it will return the current value. This
4573 * function should not be used to determine regulator state.
4574 */
4575int regulator_get_current_limit(struct regulator *regulator)
4576{
4577 return _regulator_get_current_limit(regulator->rdev);
4578}
4579EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4580
4581/**
4582 * regulator_set_mode - set regulator operating mode
4583 * @regulator: regulator source
4584 * @mode: operating mode - one of the REGULATOR_MODE constants
4585 *
4586 * Set regulator operating mode to increase regulator efficiency or improve
4587 * regulation performance.
4588 *
4589 * NOTE: Regulator system constraints must be set for this regulator before
4590 * calling this function otherwise this call will fail.
4591 */
4592int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4593{
4594 struct regulator_dev *rdev = regulator->rdev;
4595 int ret;
4596 int regulator_curr_mode;
4597
4598 regulator_lock(rdev);
4599
4600 /* sanity check */
4601 if (!rdev->desc->ops->set_mode) {
4602 ret = -EINVAL;
4603 goto out;
4604 }
4605
4606 /* return if the same mode is requested */
4607 if (rdev->desc->ops->get_mode) {
4608 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4609 if (regulator_curr_mode == mode) {
4610 ret = 0;
4611 goto out;
4612 }
4613 }
4614
4615 /* constraints check */
4616 ret = regulator_mode_constrain(rdev, &mode);
4617 if (ret < 0)
4618 goto out;
4619
4620 ret = rdev->desc->ops->set_mode(rdev, mode);
4621out:
4622 regulator_unlock(rdev);
4623 return ret;
4624}
4625EXPORT_SYMBOL_GPL(regulator_set_mode);
4626
4627static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4628{
4629 /* sanity check */
4630 if (!rdev->desc->ops->get_mode)
4631 return -EINVAL;
4632
4633 return rdev->desc->ops->get_mode(rdev);
4634}
4635
4636static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4637{
4638 int ret;
4639
4640 regulator_lock(rdev);
4641 ret = _regulator_get_mode_unlocked(rdev);
4642 regulator_unlock(rdev);
4643
4644 return ret;
4645}
4646
4647/**
4648 * regulator_get_mode - get regulator operating mode
4649 * @regulator: regulator source
4650 *
4651 * Get the current regulator operating mode.
4652 */
4653unsigned int regulator_get_mode(struct regulator *regulator)
4654{
4655 return _regulator_get_mode(regulator->rdev);
4656}
4657EXPORT_SYMBOL_GPL(regulator_get_mode);
4658
4659static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4660{
4661 int ret = 0;
4662
4663 if (rdev->use_cached_err) {
4664 spin_lock(&rdev->err_lock);
4665 ret = rdev->cached_err;
4666 spin_unlock(&rdev->err_lock);
4667 }
4668 return ret;
4669}
4670
4671static int _regulator_get_error_flags(struct regulator_dev *rdev,
4672 unsigned int *flags)
4673{
4674 int cached_flags, ret = 0;
4675
4676 regulator_lock(rdev);
4677
4678 cached_flags = rdev_get_cached_err_flags(rdev);
4679
4680 if (rdev->desc->ops->get_error_flags)
4681 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4682 else if (!rdev->use_cached_err)
4683 ret = -EINVAL;
4684
4685 *flags |= cached_flags;
4686
4687 regulator_unlock(rdev);
4688
4689 return ret;
4690}
4691
4692/**
4693 * regulator_get_error_flags - get regulator error information
4694 * @regulator: regulator source
4695 * @flags: pointer to store error flags
4696 *
4697 * Get the current regulator error information.
4698 */
4699int regulator_get_error_flags(struct regulator *regulator,
4700 unsigned int *flags)
4701{
4702 return _regulator_get_error_flags(regulator->rdev, flags);
4703}
4704EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4705
4706/**
4707 * regulator_set_load - set regulator load
4708 * @regulator: regulator source
4709 * @uA_load: load current
4710 *
4711 * Notifies the regulator core of a new device load. This is then used by
4712 * DRMS (if enabled by constraints) to set the most efficient regulator
4713 * operating mode for the new regulator loading.
4714 *
4715 * Consumer devices notify their supply regulator of the maximum power
4716 * they will require (can be taken from device datasheet in the power
4717 * consumption tables) when they change operational status and hence power
4718 * state. Examples of operational state changes that can affect power
4719 * consumption are :-
4720 *
4721 * o Device is opened / closed.
4722 * o Device I/O is about to begin or has just finished.
4723 * o Device is idling in between work.
4724 *
4725 * This information is also exported via sysfs to userspace.
4726 *
4727 * DRMS will sum the total requested load on the regulator and change
4728 * to the most efficient operating mode if platform constraints allow.
4729 *
4730 * NOTE: when a regulator consumer requests to have a regulator
4731 * disabled then any load that consumer requested no longer counts
4732 * toward the total requested load. If the regulator is re-enabled
4733 * then the previously requested load will start counting again.
4734 *
4735 * If a regulator is an always-on regulator then an individual consumer's
4736 * load will still be removed if that consumer is fully disabled.
4737 *
4738 * On error a negative errno is returned.
4739 */
4740int regulator_set_load(struct regulator *regulator, int uA_load)
4741{
4742 struct regulator_dev *rdev = regulator->rdev;
4743 int old_uA_load;
4744 int ret = 0;
4745
4746 regulator_lock(rdev);
4747 old_uA_load = regulator->uA_load;
4748 regulator->uA_load = uA_load;
4749 if (regulator->enable_count && old_uA_load != uA_load) {
4750 ret = drms_uA_update(rdev);
4751 if (ret < 0)
4752 regulator->uA_load = old_uA_load;
4753 }
4754 regulator_unlock(rdev);
4755
4756 return ret;
4757}
4758EXPORT_SYMBOL_GPL(regulator_set_load);
4759
4760/**
4761 * regulator_allow_bypass - allow the regulator to go into bypass mode
4762 *
4763 * @regulator: Regulator to configure
4764 * @enable: enable or disable bypass mode
4765 *
4766 * Allow the regulator to go into bypass mode if all other consumers
4767 * for the regulator also enable bypass mode and the machine
4768 * constraints allow this. Bypass mode means that the regulator is
4769 * simply passing the input directly to the output with no regulation.
4770 */
4771int regulator_allow_bypass(struct regulator *regulator, bool enable)
4772{
4773 struct regulator_dev *rdev = regulator->rdev;
4774 const char *name = rdev_get_name(rdev);
4775 int ret = 0;
4776
4777 if (!rdev->desc->ops->set_bypass)
4778 return 0;
4779
4780 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4781 return 0;
4782
4783 regulator_lock(rdev);
4784
4785 if (enable && !regulator->bypass) {
4786 rdev->bypass_count++;
4787
4788 if (rdev->bypass_count == rdev->open_count) {
4789 trace_regulator_bypass_enable(name);
4790
4791 ret = rdev->desc->ops->set_bypass(rdev, enable);
4792 if (ret != 0)
4793 rdev->bypass_count--;
4794 else
4795 trace_regulator_bypass_enable_complete(name);
4796 }
4797
4798 } else if (!enable && regulator->bypass) {
4799 rdev->bypass_count--;
4800
4801 if (rdev->bypass_count != rdev->open_count) {
4802 trace_regulator_bypass_disable(name);
4803
4804 ret = rdev->desc->ops->set_bypass(rdev, enable);
4805 if (ret != 0)
4806 rdev->bypass_count++;
4807 else
4808 trace_regulator_bypass_disable_complete(name);
4809 }
4810 }
4811
4812 if (ret == 0)
4813 regulator->bypass = enable;
4814
4815 regulator_unlock(rdev);
4816
4817 return ret;
4818}
4819EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4820
4821/**
4822 * regulator_register_notifier - register regulator event notifier
4823 * @regulator: regulator source
4824 * @nb: notifier block
4825 *
4826 * Register notifier block to receive regulator events.
4827 */
4828int regulator_register_notifier(struct regulator *regulator,
4829 struct notifier_block *nb)
4830{
4831 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4832 nb);
4833}
4834EXPORT_SYMBOL_GPL(regulator_register_notifier);
4835
4836/**
4837 * regulator_unregister_notifier - unregister regulator event notifier
4838 * @regulator: regulator source
4839 * @nb: notifier block
4840 *
4841 * Unregister regulator event notifier block.
4842 */
4843int regulator_unregister_notifier(struct regulator *regulator,
4844 struct notifier_block *nb)
4845{
4846 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4847 nb);
4848}
4849EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4850
4851/* notify regulator consumers and downstream regulator consumers.
4852 * Note mutex must be held by caller.
4853 */
4854static int _notifier_call_chain(struct regulator_dev *rdev,
4855 unsigned long event, void *data)
4856{
4857 /* call rdev chain first */
4858 int ret = blocking_notifier_call_chain(&rdev->notifier, event, data);
4859
4860 if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4861 struct device *parent = rdev->dev.parent;
4862 const char *rname = rdev_get_name(rdev);
4863 char name[32];
4864
4865 /* Avoid duplicate debugfs directory names */
4866 if (parent && rname == rdev->desc->name) {
4867 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4868 rname);
4869 rname = name;
4870 }
4871 reg_generate_netlink_event(rname, event);
4872 }
4873
4874 return ret;
4875}
4876
4877int _regulator_bulk_get(struct device *dev, int num_consumers,
4878 struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4879{
4880 int i;
4881 int ret;
4882
4883 for (i = 0; i < num_consumers; i++)
4884 consumers[i].consumer = NULL;
4885
4886 for (i = 0; i < num_consumers; i++) {
4887 consumers[i].consumer = _regulator_get(dev,
4888 consumers[i].supply, get_type);
4889 if (IS_ERR(consumers[i].consumer)) {
4890 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4891 "Failed to get supply '%s'",
4892 consumers[i].supply);
4893 consumers[i].consumer = NULL;
4894 goto err;
4895 }
4896
4897 if (consumers[i].init_load_uA > 0) {
4898 ret = regulator_set_load(consumers[i].consumer,
4899 consumers[i].init_load_uA);
4900 if (ret) {
4901 i++;
4902 goto err;
4903 }
4904 }
4905 }
4906
4907 return 0;
4908
4909err:
4910 while (--i >= 0)
4911 regulator_put(consumers[i].consumer);
4912
4913 return ret;
4914}
4915
4916/**
4917 * regulator_bulk_get - get multiple regulator consumers
4918 *
4919 * @dev: Device to supply
4920 * @num_consumers: Number of consumers to register
4921 * @consumers: Configuration of consumers; clients are stored here.
4922 *
4923 * @return 0 on success, an errno on failure.
4924 *
4925 * This helper function allows drivers to get several regulator
4926 * consumers in one operation. If any of the regulators cannot be
4927 * acquired then any regulators that were allocated will be freed
4928 * before returning to the caller.
4929 */
4930int regulator_bulk_get(struct device *dev, int num_consumers,
4931 struct regulator_bulk_data *consumers)
4932{
4933 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4934}
4935EXPORT_SYMBOL_GPL(regulator_bulk_get);
4936
4937static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4938{
4939 struct regulator_bulk_data *bulk = data;
4940
4941 bulk->ret = regulator_enable(bulk->consumer);
4942}
4943
4944/**
4945 * regulator_bulk_enable - enable multiple regulator consumers
4946 *
4947 * @num_consumers: Number of consumers
4948 * @consumers: Consumer data; clients are stored here.
4949 * @return 0 on success, an errno on failure
4950 *
4951 * This convenience API allows consumers to enable multiple regulator
4952 * clients in a single API call. If any consumers cannot be enabled
4953 * then any others that were enabled will be disabled again prior to
4954 * return.
4955 */
4956int regulator_bulk_enable(int num_consumers,
4957 struct regulator_bulk_data *consumers)
4958{
4959 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4960 int i;
4961 int ret = 0;
4962
4963 for (i = 0; i < num_consumers; i++) {
4964 async_schedule_domain(regulator_bulk_enable_async,
4965 &consumers[i], &async_domain);
4966 }
4967
4968 async_synchronize_full_domain(&async_domain);
4969
4970 /* If any consumer failed we need to unwind any that succeeded */
4971 for (i = 0; i < num_consumers; i++) {
4972 if (consumers[i].ret != 0) {
4973 ret = consumers[i].ret;
4974 goto err;
4975 }
4976 }
4977
4978 return 0;
4979
4980err:
4981 for (i = 0; i < num_consumers; i++) {
4982 if (consumers[i].ret < 0)
4983 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4984 ERR_PTR(consumers[i].ret));
4985 else
4986 regulator_disable(consumers[i].consumer);
4987 }
4988
4989 return ret;
4990}
4991EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4992
4993/**
4994 * regulator_bulk_disable - disable multiple regulator consumers
4995 *
4996 * @num_consumers: Number of consumers
4997 * @consumers: Consumer data; clients are stored here.
4998 * @return 0 on success, an errno on failure
4999 *
5000 * This convenience API allows consumers to disable multiple regulator
5001 * clients in a single API call. If any consumers cannot be disabled
5002 * then any others that were disabled will be enabled again prior to
5003 * return.
5004 */
5005int regulator_bulk_disable(int num_consumers,
5006 struct regulator_bulk_data *consumers)
5007{
5008 int i;
5009 int ret, r;
5010
5011 for (i = num_consumers - 1; i >= 0; --i) {
5012 ret = regulator_disable(consumers[i].consumer);
5013 if (ret != 0)
5014 goto err;
5015 }
5016
5017 return 0;
5018
5019err:
5020 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5021 for (++i; i < num_consumers; ++i) {
5022 r = regulator_enable(consumers[i].consumer);
5023 if (r != 0)
5024 pr_err("Failed to re-enable %s: %pe\n",
5025 consumers[i].supply, ERR_PTR(r));
5026 }
5027
5028 return ret;
5029}
5030EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5031
5032/**
5033 * regulator_bulk_force_disable - force disable multiple regulator consumers
5034 *
5035 * @num_consumers: Number of consumers
5036 * @consumers: Consumer data; clients are stored here.
5037 * @return 0 on success, an errno on failure
5038 *
5039 * This convenience API allows consumers to forcibly disable multiple regulator
5040 * clients in a single API call.
5041 * NOTE: This should be used for situations when device damage will
5042 * likely occur if the regulators are not disabled (e.g. over temp).
5043 * Although regulator_force_disable function call for some consumers can
5044 * return error numbers, the function is called for all consumers.
5045 */
5046int regulator_bulk_force_disable(int num_consumers,
5047 struct regulator_bulk_data *consumers)
5048{
5049 int i;
5050 int ret = 0;
5051
5052 for (i = 0; i < num_consumers; i++) {
5053 consumers[i].ret =
5054 regulator_force_disable(consumers[i].consumer);
5055
5056 /* Store first error for reporting */
5057 if (consumers[i].ret && !ret)
5058 ret = consumers[i].ret;
5059 }
5060
5061 return ret;
5062}
5063EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5064
5065/**
5066 * regulator_bulk_free - free multiple regulator consumers
5067 *
5068 * @num_consumers: Number of consumers
5069 * @consumers: Consumer data; clients are stored here.
5070 *
5071 * This convenience API allows consumers to free multiple regulator
5072 * clients in a single API call.
5073 */
5074void regulator_bulk_free(int num_consumers,
5075 struct regulator_bulk_data *consumers)
5076{
5077 int i;
5078
5079 for (i = 0; i < num_consumers; i++) {
5080 regulator_put(consumers[i].consumer);
5081 consumers[i].consumer = NULL;
5082 }
5083}
5084EXPORT_SYMBOL_GPL(regulator_bulk_free);
5085
5086/**
5087 * regulator_handle_critical - Handle events for system-critical regulators.
5088 * @rdev: The regulator device.
5089 * @event: The event being handled.
5090 *
5091 * This function handles critical events such as under-voltage, over-current,
5092 * and unknown errors for regulators deemed system-critical. On detecting such
5093 * events, it triggers a hardware protection shutdown with a defined timeout.
5094 */
5095static void regulator_handle_critical(struct regulator_dev *rdev,
5096 unsigned long event)
5097{
5098 const char *reason = NULL;
5099
5100 if (!rdev->constraints->system_critical)
5101 return;
5102
5103 switch (event) {
5104 case REGULATOR_EVENT_UNDER_VOLTAGE:
5105 reason = "System critical regulator: voltage drop detected";
5106 break;
5107 case REGULATOR_EVENT_OVER_CURRENT:
5108 reason = "System critical regulator: over-current detected";
5109 break;
5110 case REGULATOR_EVENT_FAIL:
5111 reason = "System critical regulator: unknown error";
5112 }
5113
5114 if (!reason)
5115 return;
5116
5117 hw_protection_shutdown(reason,
5118 rdev->constraints->uv_less_critical_window_ms);
5119}
5120
5121/**
5122 * regulator_notifier_call_chain - call regulator event notifier
5123 * @rdev: regulator source
5124 * @event: notifier block
5125 * @data: callback-specific data.
5126 *
5127 * Called by regulator drivers to notify clients a regulator event has
5128 * occurred.
5129 */
5130int regulator_notifier_call_chain(struct regulator_dev *rdev,
5131 unsigned long event, void *data)
5132{
5133 regulator_handle_critical(rdev, event);
5134
5135 _notifier_call_chain(rdev, event, data);
5136 return NOTIFY_DONE;
5137
5138}
5139EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5140
5141/**
5142 * regulator_mode_to_status - convert a regulator mode into a status
5143 *
5144 * @mode: Mode to convert
5145 *
5146 * Convert a regulator mode into a status.
5147 */
5148int regulator_mode_to_status(unsigned int mode)
5149{
5150 switch (mode) {
5151 case REGULATOR_MODE_FAST:
5152 return REGULATOR_STATUS_FAST;
5153 case REGULATOR_MODE_NORMAL:
5154 return REGULATOR_STATUS_NORMAL;
5155 case REGULATOR_MODE_IDLE:
5156 return REGULATOR_STATUS_IDLE;
5157 case REGULATOR_MODE_STANDBY:
5158 return REGULATOR_STATUS_STANDBY;
5159 default:
5160 return REGULATOR_STATUS_UNDEFINED;
5161 }
5162}
5163EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5164
5165static struct attribute *regulator_dev_attrs[] = {
5166 &dev_attr_name.attr,
5167 &dev_attr_num_users.attr,
5168 &dev_attr_type.attr,
5169 &dev_attr_microvolts.attr,
5170 &dev_attr_microamps.attr,
5171 &dev_attr_opmode.attr,
5172 &dev_attr_state.attr,
5173 &dev_attr_status.attr,
5174 &dev_attr_bypass.attr,
5175 &dev_attr_requested_microamps.attr,
5176 &dev_attr_min_microvolts.attr,
5177 &dev_attr_max_microvolts.attr,
5178 &dev_attr_min_microamps.attr,
5179 &dev_attr_max_microamps.attr,
5180 &dev_attr_under_voltage.attr,
5181 &dev_attr_over_current.attr,
5182 &dev_attr_regulation_out.attr,
5183 &dev_attr_fail.attr,
5184 &dev_attr_over_temp.attr,
5185 &dev_attr_under_voltage_warn.attr,
5186 &dev_attr_over_current_warn.attr,
5187 &dev_attr_over_voltage_warn.attr,
5188 &dev_attr_over_temp_warn.attr,
5189 &dev_attr_suspend_standby_state.attr,
5190 &dev_attr_suspend_mem_state.attr,
5191 &dev_attr_suspend_disk_state.attr,
5192 &dev_attr_suspend_standby_microvolts.attr,
5193 &dev_attr_suspend_mem_microvolts.attr,
5194 &dev_attr_suspend_disk_microvolts.attr,
5195 &dev_attr_suspend_standby_mode.attr,
5196 &dev_attr_suspend_mem_mode.attr,
5197 &dev_attr_suspend_disk_mode.attr,
5198 NULL
5199};
5200
5201/*
5202 * To avoid cluttering sysfs (and memory) with useless state, only
5203 * create attributes that can be meaningfully displayed.
5204 */
5205static umode_t regulator_attr_is_visible(struct kobject *kobj,
5206 struct attribute *attr, int idx)
5207{
5208 struct device *dev = kobj_to_dev(kobj);
5209 struct regulator_dev *rdev = dev_to_rdev(dev);
5210 const struct regulator_ops *ops = rdev->desc->ops;
5211 umode_t mode = attr->mode;
5212
5213 /* these three are always present */
5214 if (attr == &dev_attr_name.attr ||
5215 attr == &dev_attr_num_users.attr ||
5216 attr == &dev_attr_type.attr)
5217 return mode;
5218
5219 /* some attributes need specific methods to be displayed */
5220 if (attr == &dev_attr_microvolts.attr) {
5221 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5222 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5223 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5224 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5225 return mode;
5226 return 0;
5227 }
5228
5229 if (attr == &dev_attr_microamps.attr)
5230 return ops->get_current_limit ? mode : 0;
5231
5232 if (attr == &dev_attr_opmode.attr)
5233 return ops->get_mode ? mode : 0;
5234
5235 if (attr == &dev_attr_state.attr)
5236 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5237
5238 if (attr == &dev_attr_status.attr)
5239 return ops->get_status ? mode : 0;
5240
5241 if (attr == &dev_attr_bypass.attr)
5242 return ops->get_bypass ? mode : 0;
5243
5244 if (attr == &dev_attr_under_voltage.attr ||
5245 attr == &dev_attr_over_current.attr ||
5246 attr == &dev_attr_regulation_out.attr ||
5247 attr == &dev_attr_fail.attr ||
5248 attr == &dev_attr_over_temp.attr ||
5249 attr == &dev_attr_under_voltage_warn.attr ||
5250 attr == &dev_attr_over_current_warn.attr ||
5251 attr == &dev_attr_over_voltage_warn.attr ||
5252 attr == &dev_attr_over_temp_warn.attr)
5253 return ops->get_error_flags ? mode : 0;
5254
5255 /* constraints need specific supporting methods */
5256 if (attr == &dev_attr_min_microvolts.attr ||
5257 attr == &dev_attr_max_microvolts.attr)
5258 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5259
5260 if (attr == &dev_attr_min_microamps.attr ||
5261 attr == &dev_attr_max_microamps.attr)
5262 return ops->set_current_limit ? mode : 0;
5263
5264 if (attr == &dev_attr_suspend_standby_state.attr ||
5265 attr == &dev_attr_suspend_mem_state.attr ||
5266 attr == &dev_attr_suspend_disk_state.attr)
5267 return mode;
5268
5269 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5270 attr == &dev_attr_suspend_mem_microvolts.attr ||
5271 attr == &dev_attr_suspend_disk_microvolts.attr)
5272 return ops->set_suspend_voltage ? mode : 0;
5273
5274 if (attr == &dev_attr_suspend_standby_mode.attr ||
5275 attr == &dev_attr_suspend_mem_mode.attr ||
5276 attr == &dev_attr_suspend_disk_mode.attr)
5277 return ops->set_suspend_mode ? mode : 0;
5278
5279 return mode;
5280}
5281
5282static const struct attribute_group regulator_dev_group = {
5283 .attrs = regulator_dev_attrs,
5284 .is_visible = regulator_attr_is_visible,
5285};
5286
5287static const struct attribute_group *regulator_dev_groups[] = {
5288 ®ulator_dev_group,
5289 NULL
5290};
5291
5292static void regulator_dev_release(struct device *dev)
5293{
5294 struct regulator_dev *rdev = dev_get_drvdata(dev);
5295
5296 debugfs_remove_recursive(rdev->debugfs);
5297 kfree(rdev->constraints);
5298 of_node_put(rdev->dev.of_node);
5299 kfree(rdev);
5300}
5301
5302static void rdev_init_debugfs(struct regulator_dev *rdev)
5303{
5304 struct device *parent = rdev->dev.parent;
5305 const char *rname = rdev_get_name(rdev);
5306 char name[NAME_MAX];
5307
5308 /* Avoid duplicate debugfs directory names */
5309 if (parent && rname == rdev->desc->name) {
5310 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5311 rname);
5312 rname = name;
5313 }
5314
5315 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5316 if (IS_ERR(rdev->debugfs))
5317 rdev_dbg(rdev, "Failed to create debugfs directory\n");
5318
5319 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5320 &rdev->use_count);
5321 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5322 &rdev->open_count);
5323 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5324 &rdev->bypass_count);
5325}
5326
5327static int regulator_register_resolve_supply(struct device *dev, void *data)
5328{
5329 struct regulator_dev *rdev = dev_to_rdev(dev);
5330
5331 if (regulator_resolve_supply(rdev))
5332 rdev_dbg(rdev, "unable to resolve supply\n");
5333
5334 return 0;
5335}
5336
5337int regulator_coupler_register(struct regulator_coupler *coupler)
5338{
5339 mutex_lock(®ulator_list_mutex);
5340 list_add_tail(&coupler->list, ®ulator_coupler_list);
5341 mutex_unlock(®ulator_list_mutex);
5342
5343 return 0;
5344}
5345
5346static struct regulator_coupler *
5347regulator_find_coupler(struct regulator_dev *rdev)
5348{
5349 struct regulator_coupler *coupler;
5350 int err;
5351
5352 /*
5353 * Note that regulators are appended to the list and the generic
5354 * coupler is registered first, hence it will be attached at last
5355 * if nobody cared.
5356 */
5357 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5358 err = coupler->attach_regulator(coupler, rdev);
5359 if (!err) {
5360 if (!coupler->balance_voltage &&
5361 rdev->coupling_desc.n_coupled > 2)
5362 goto err_unsupported;
5363
5364 return coupler;
5365 }
5366
5367 if (err < 0)
5368 return ERR_PTR(err);
5369
5370 if (err == 1)
5371 continue;
5372
5373 break;
5374 }
5375
5376 return ERR_PTR(-EINVAL);
5377
5378err_unsupported:
5379 if (coupler->detach_regulator)
5380 coupler->detach_regulator(coupler, rdev);
5381
5382 rdev_err(rdev,
5383 "Voltage balancing for multiple regulator couples is unimplemented\n");
5384
5385 return ERR_PTR(-EPERM);
5386}
5387
5388static void regulator_resolve_coupling(struct regulator_dev *rdev)
5389{
5390 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5391 struct coupling_desc *c_desc = &rdev->coupling_desc;
5392 int n_coupled = c_desc->n_coupled;
5393 struct regulator_dev *c_rdev;
5394 int i;
5395
5396 for (i = 1; i < n_coupled; i++) {
5397 /* already resolved */
5398 if (c_desc->coupled_rdevs[i])
5399 continue;
5400
5401 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5402
5403 if (!c_rdev)
5404 continue;
5405
5406 if (c_rdev->coupling_desc.coupler != coupler) {
5407 rdev_err(rdev, "coupler mismatch with %s\n",
5408 rdev_get_name(c_rdev));
5409 return;
5410 }
5411
5412 c_desc->coupled_rdevs[i] = c_rdev;
5413 c_desc->n_resolved++;
5414
5415 regulator_resolve_coupling(c_rdev);
5416 }
5417}
5418
5419static void regulator_remove_coupling(struct regulator_dev *rdev)
5420{
5421 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5422 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5423 struct regulator_dev *__c_rdev, *c_rdev;
5424 unsigned int __n_coupled, n_coupled;
5425 int i, k;
5426 int err;
5427
5428 n_coupled = c_desc->n_coupled;
5429
5430 for (i = 1; i < n_coupled; i++) {
5431 c_rdev = c_desc->coupled_rdevs[i];
5432
5433 if (!c_rdev)
5434 continue;
5435
5436 regulator_lock(c_rdev);
5437
5438 __c_desc = &c_rdev->coupling_desc;
5439 __n_coupled = __c_desc->n_coupled;
5440
5441 for (k = 1; k < __n_coupled; k++) {
5442 __c_rdev = __c_desc->coupled_rdevs[k];
5443
5444 if (__c_rdev == rdev) {
5445 __c_desc->coupled_rdevs[k] = NULL;
5446 __c_desc->n_resolved--;
5447 break;
5448 }
5449 }
5450
5451 regulator_unlock(c_rdev);
5452
5453 c_desc->coupled_rdevs[i] = NULL;
5454 c_desc->n_resolved--;
5455 }
5456
5457 if (coupler && coupler->detach_regulator) {
5458 err = coupler->detach_regulator(coupler, rdev);
5459 if (err)
5460 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5461 ERR_PTR(err));
5462 }
5463
5464 kfree(rdev->coupling_desc.coupled_rdevs);
5465 rdev->coupling_desc.coupled_rdevs = NULL;
5466}
5467
5468static int regulator_init_coupling(struct regulator_dev *rdev)
5469{
5470 struct regulator_dev **coupled;
5471 int err, n_phandles;
5472
5473 if (!IS_ENABLED(CONFIG_OF))
5474 n_phandles = 0;
5475 else
5476 n_phandles = of_get_n_coupled(rdev);
5477
5478 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5479 if (!coupled)
5480 return -ENOMEM;
5481
5482 rdev->coupling_desc.coupled_rdevs = coupled;
5483
5484 /*
5485 * Every regulator should always have coupling descriptor filled with
5486 * at least pointer to itself.
5487 */
5488 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5489 rdev->coupling_desc.n_coupled = n_phandles + 1;
5490 rdev->coupling_desc.n_resolved++;
5491
5492 /* regulator isn't coupled */
5493 if (n_phandles == 0)
5494 return 0;
5495
5496 if (!of_check_coupling_data(rdev))
5497 return -EPERM;
5498
5499 mutex_lock(®ulator_list_mutex);
5500 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5501 mutex_unlock(®ulator_list_mutex);
5502
5503 if (IS_ERR(rdev->coupling_desc.coupler)) {
5504 err = PTR_ERR(rdev->coupling_desc.coupler);
5505 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5506 return err;
5507 }
5508
5509 return 0;
5510}
5511
5512static int generic_coupler_attach(struct regulator_coupler *coupler,
5513 struct regulator_dev *rdev)
5514{
5515 if (rdev->coupling_desc.n_coupled > 2) {
5516 rdev_err(rdev,
5517 "Voltage balancing for multiple regulator couples is unimplemented\n");
5518 return -EPERM;
5519 }
5520
5521 if (!rdev->constraints->always_on) {
5522 rdev_err(rdev,
5523 "Coupling of a non always-on regulator is unimplemented\n");
5524 return -ENOTSUPP;
5525 }
5526
5527 return 0;
5528}
5529
5530static struct regulator_coupler generic_regulator_coupler = {
5531 .attach_regulator = generic_coupler_attach,
5532};
5533
5534/**
5535 * regulator_register - register regulator
5536 * @dev: the device that drive the regulator
5537 * @regulator_desc: regulator to register
5538 * @cfg: runtime configuration for regulator
5539 *
5540 * Called by regulator drivers to register a regulator.
5541 * Returns a valid pointer to struct regulator_dev on success
5542 * or an ERR_PTR() on error.
5543 */
5544struct regulator_dev *
5545regulator_register(struct device *dev,
5546 const struct regulator_desc *regulator_desc,
5547 const struct regulator_config *cfg)
5548{
5549 const struct regulator_init_data *init_data;
5550 struct regulator_config *config = NULL;
5551 static atomic_t regulator_no = ATOMIC_INIT(-1);
5552 struct regulator_dev *rdev;
5553 bool dangling_cfg_gpiod = false;
5554 bool dangling_of_gpiod = false;
5555 int ret, i;
5556 bool resolved_early = false;
5557
5558 if (cfg == NULL)
5559 return ERR_PTR(-EINVAL);
5560 if (cfg->ena_gpiod)
5561 dangling_cfg_gpiod = true;
5562 if (regulator_desc == NULL) {
5563 ret = -EINVAL;
5564 goto rinse;
5565 }
5566
5567 WARN_ON(!dev || !cfg->dev);
5568
5569 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5570 ret = -EINVAL;
5571 goto rinse;
5572 }
5573
5574 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5575 regulator_desc->type != REGULATOR_CURRENT) {
5576 ret = -EINVAL;
5577 goto rinse;
5578 }
5579
5580 /* Only one of each should be implemented */
5581 WARN_ON(regulator_desc->ops->get_voltage &&
5582 regulator_desc->ops->get_voltage_sel);
5583 WARN_ON(regulator_desc->ops->set_voltage &&
5584 regulator_desc->ops->set_voltage_sel);
5585
5586 /* If we're using selectors we must implement list_voltage. */
5587 if (regulator_desc->ops->get_voltage_sel &&
5588 !regulator_desc->ops->list_voltage) {
5589 ret = -EINVAL;
5590 goto rinse;
5591 }
5592 if (regulator_desc->ops->set_voltage_sel &&
5593 !regulator_desc->ops->list_voltage) {
5594 ret = -EINVAL;
5595 goto rinse;
5596 }
5597
5598 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5599 if (rdev == NULL) {
5600 ret = -ENOMEM;
5601 goto rinse;
5602 }
5603 device_initialize(&rdev->dev);
5604 dev_set_drvdata(&rdev->dev, rdev);
5605 rdev->dev.class = ®ulator_class;
5606 spin_lock_init(&rdev->err_lock);
5607
5608 /*
5609 * Duplicate the config so the driver could override it after
5610 * parsing init data.
5611 */
5612 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5613 if (config == NULL) {
5614 ret = -ENOMEM;
5615 goto clean;
5616 }
5617
5618 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5619 &rdev->dev.of_node);
5620
5621 /*
5622 * Sometimes not all resources are probed already so we need to take
5623 * that into account. This happens most the time if the ena_gpiod comes
5624 * from a gpio extender or something else.
5625 */
5626 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5627 ret = -EPROBE_DEFER;
5628 goto clean;
5629 }
5630
5631 /*
5632 * We need to keep track of any GPIO descriptor coming from the
5633 * device tree until we have handled it over to the core. If the
5634 * config that was passed in to this function DOES NOT contain
5635 * a descriptor, and the config after this call DOES contain
5636 * a descriptor, we definitely got one from parsing the device
5637 * tree.
5638 */
5639 if (!cfg->ena_gpiod && config->ena_gpiod)
5640 dangling_of_gpiod = true;
5641 if (!init_data) {
5642 init_data = config->init_data;
5643 rdev->dev.of_node = of_node_get(config->of_node);
5644 }
5645
5646 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5647 rdev->reg_data = config->driver_data;
5648 rdev->owner = regulator_desc->owner;
5649 rdev->desc = regulator_desc;
5650 if (config->regmap)
5651 rdev->regmap = config->regmap;
5652 else if (dev_get_regmap(dev, NULL))
5653 rdev->regmap = dev_get_regmap(dev, NULL);
5654 else if (dev->parent)
5655 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5656 INIT_LIST_HEAD(&rdev->consumer_list);
5657 INIT_LIST_HEAD(&rdev->list);
5658 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5659 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5660
5661 if (init_data && init_data->supply_regulator)
5662 rdev->supply_name = init_data->supply_regulator;
5663 else if (regulator_desc->supply_name)
5664 rdev->supply_name = regulator_desc->supply_name;
5665
5666 /* register with sysfs */
5667 rdev->dev.parent = config->dev;
5668 dev_set_name(&rdev->dev, "regulator.%lu",
5669 (unsigned long) atomic_inc_return(®ulator_no));
5670
5671 /* set regulator constraints */
5672 if (init_data)
5673 rdev->constraints = kmemdup(&init_data->constraints,
5674 sizeof(*rdev->constraints),
5675 GFP_KERNEL);
5676 else
5677 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5678 GFP_KERNEL);
5679 if (!rdev->constraints) {
5680 ret = -ENOMEM;
5681 goto wash;
5682 }
5683
5684 if ((rdev->supply_name && !rdev->supply) &&
5685 (rdev->constraints->always_on ||
5686 rdev->constraints->boot_on)) {
5687 ret = regulator_resolve_supply(rdev);
5688 if (ret)
5689 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5690 ERR_PTR(ret));
5691
5692 resolved_early = true;
5693 }
5694
5695 /* perform any regulator specific init */
5696 if (init_data && init_data->regulator_init) {
5697 ret = init_data->regulator_init(rdev->reg_data);
5698 if (ret < 0)
5699 goto wash;
5700 }
5701
5702 if (config->ena_gpiod) {
5703 ret = regulator_ena_gpio_request(rdev, config);
5704 if (ret != 0) {
5705 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5706 ERR_PTR(ret));
5707 goto wash;
5708 }
5709 /* The regulator core took over the GPIO descriptor */
5710 dangling_cfg_gpiod = false;
5711 dangling_of_gpiod = false;
5712 }
5713
5714 ret = set_machine_constraints(rdev);
5715 if (ret == -EPROBE_DEFER && !resolved_early) {
5716 /* Regulator might be in bypass mode and so needs its supply
5717 * to set the constraints
5718 */
5719 /* FIXME: this currently triggers a chicken-and-egg problem
5720 * when creating -SUPPLY symlink in sysfs to a regulator
5721 * that is just being created
5722 */
5723 rdev_dbg(rdev, "will resolve supply early: %s\n",
5724 rdev->supply_name);
5725 ret = regulator_resolve_supply(rdev);
5726 if (!ret)
5727 ret = set_machine_constraints(rdev);
5728 else
5729 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5730 ERR_PTR(ret));
5731 }
5732 if (ret < 0)
5733 goto wash;
5734
5735 ret = regulator_init_coupling(rdev);
5736 if (ret < 0)
5737 goto wash;
5738
5739 /* add consumers devices */
5740 if (init_data) {
5741 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5742 ret = set_consumer_device_supply(rdev,
5743 init_data->consumer_supplies[i].dev_name,
5744 init_data->consumer_supplies[i].supply);
5745 if (ret < 0) {
5746 dev_err(dev, "Failed to set supply %s\n",
5747 init_data->consumer_supplies[i].supply);
5748 goto unset_supplies;
5749 }
5750 }
5751 }
5752
5753 if (!rdev->desc->ops->get_voltage &&
5754 !rdev->desc->ops->list_voltage &&
5755 !rdev->desc->fixed_uV)
5756 rdev->is_switch = true;
5757
5758 ret = device_add(&rdev->dev);
5759 if (ret != 0)
5760 goto unset_supplies;
5761
5762 rdev_init_debugfs(rdev);
5763
5764 /* try to resolve regulators coupling since a new one was registered */
5765 mutex_lock(®ulator_list_mutex);
5766 regulator_resolve_coupling(rdev);
5767 mutex_unlock(®ulator_list_mutex);
5768
5769 /* try to resolve regulators supply since a new one was registered */
5770 class_for_each_device(®ulator_class, NULL, NULL,
5771 regulator_register_resolve_supply);
5772 kfree(config);
5773 return rdev;
5774
5775unset_supplies:
5776 mutex_lock(®ulator_list_mutex);
5777 unset_regulator_supplies(rdev);
5778 regulator_remove_coupling(rdev);
5779 mutex_unlock(®ulator_list_mutex);
5780wash:
5781 regulator_put(rdev->supply);
5782 kfree(rdev->coupling_desc.coupled_rdevs);
5783 mutex_lock(®ulator_list_mutex);
5784 regulator_ena_gpio_free(rdev);
5785 mutex_unlock(®ulator_list_mutex);
5786clean:
5787 if (dangling_of_gpiod)
5788 gpiod_put(config->ena_gpiod);
5789 kfree(config);
5790 put_device(&rdev->dev);
5791rinse:
5792 if (dangling_cfg_gpiod)
5793 gpiod_put(cfg->ena_gpiod);
5794 return ERR_PTR(ret);
5795}
5796EXPORT_SYMBOL_GPL(regulator_register);
5797
5798/**
5799 * regulator_unregister - unregister regulator
5800 * @rdev: regulator to unregister
5801 *
5802 * Called by regulator drivers to unregister a regulator.
5803 */
5804void regulator_unregister(struct regulator_dev *rdev)
5805{
5806 if (rdev == NULL)
5807 return;
5808
5809 if (rdev->supply) {
5810 while (rdev->use_count--)
5811 regulator_disable(rdev->supply);
5812 regulator_put(rdev->supply);
5813 }
5814
5815 flush_work(&rdev->disable_work.work);
5816
5817 mutex_lock(®ulator_list_mutex);
5818
5819 WARN_ON(rdev->open_count);
5820 regulator_remove_coupling(rdev);
5821 unset_regulator_supplies(rdev);
5822 list_del(&rdev->list);
5823 regulator_ena_gpio_free(rdev);
5824 device_unregister(&rdev->dev);
5825
5826 mutex_unlock(®ulator_list_mutex);
5827}
5828EXPORT_SYMBOL_GPL(regulator_unregister);
5829
5830#ifdef CONFIG_SUSPEND
5831/**
5832 * regulator_suspend - prepare regulators for system wide suspend
5833 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5834 *
5835 * Configure each regulator with it's suspend operating parameters for state.
5836 */
5837static int regulator_suspend(struct device *dev)
5838{
5839 struct regulator_dev *rdev = dev_to_rdev(dev);
5840 suspend_state_t state = pm_suspend_target_state;
5841 int ret;
5842 const struct regulator_state *rstate;
5843
5844 rstate = regulator_get_suspend_state_check(rdev, state);
5845 if (!rstate)
5846 return 0;
5847
5848 regulator_lock(rdev);
5849 ret = __suspend_set_state(rdev, rstate);
5850 regulator_unlock(rdev);
5851
5852 return ret;
5853}
5854
5855static int regulator_resume(struct device *dev)
5856{
5857 suspend_state_t state = pm_suspend_target_state;
5858 struct regulator_dev *rdev = dev_to_rdev(dev);
5859 struct regulator_state *rstate;
5860 int ret = 0;
5861
5862 rstate = regulator_get_suspend_state(rdev, state);
5863 if (rstate == NULL)
5864 return 0;
5865
5866 /* Avoid grabbing the lock if we don't need to */
5867 if (!rdev->desc->ops->resume)
5868 return 0;
5869
5870 regulator_lock(rdev);
5871
5872 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5873 rstate->enabled == DISABLE_IN_SUSPEND)
5874 ret = rdev->desc->ops->resume(rdev);
5875
5876 regulator_unlock(rdev);
5877
5878 return ret;
5879}
5880#else /* !CONFIG_SUSPEND */
5881
5882#define regulator_suspend NULL
5883#define regulator_resume NULL
5884
5885#endif /* !CONFIG_SUSPEND */
5886
5887#ifdef CONFIG_PM
5888static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5889 .suspend = regulator_suspend,
5890 .resume = regulator_resume,
5891};
5892#endif
5893
5894struct class regulator_class = {
5895 .name = "regulator",
5896 .dev_release = regulator_dev_release,
5897 .dev_groups = regulator_dev_groups,
5898#ifdef CONFIG_PM
5899 .pm = ®ulator_pm_ops,
5900#endif
5901};
5902/**
5903 * regulator_has_full_constraints - the system has fully specified constraints
5904 *
5905 * Calling this function will cause the regulator API to disable all
5906 * regulators which have a zero use count and don't have an always_on
5907 * constraint in a late_initcall.
5908 *
5909 * The intention is that this will become the default behaviour in a
5910 * future kernel release so users are encouraged to use this facility
5911 * now.
5912 */
5913void regulator_has_full_constraints(void)
5914{
5915 has_full_constraints = 1;
5916}
5917EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5918
5919/**
5920 * rdev_get_drvdata - get rdev regulator driver data
5921 * @rdev: regulator
5922 *
5923 * Get rdev regulator driver private data. This call can be used in the
5924 * regulator driver context.
5925 */
5926void *rdev_get_drvdata(struct regulator_dev *rdev)
5927{
5928 return rdev->reg_data;
5929}
5930EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5931
5932/**
5933 * regulator_get_drvdata - get regulator driver data
5934 * @regulator: regulator
5935 *
5936 * Get regulator driver private data. This call can be used in the consumer
5937 * driver context when non API regulator specific functions need to be called.
5938 */
5939void *regulator_get_drvdata(struct regulator *regulator)
5940{
5941 return regulator->rdev->reg_data;
5942}
5943EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5944
5945/**
5946 * regulator_set_drvdata - set regulator driver data
5947 * @regulator: regulator
5948 * @data: data
5949 */
5950void regulator_set_drvdata(struct regulator *regulator, void *data)
5951{
5952 regulator->rdev->reg_data = data;
5953}
5954EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5955
5956/**
5957 * rdev_get_id - get regulator ID
5958 * @rdev: regulator
5959 */
5960int rdev_get_id(struct regulator_dev *rdev)
5961{
5962 return rdev->desc->id;
5963}
5964EXPORT_SYMBOL_GPL(rdev_get_id);
5965
5966struct device *rdev_get_dev(struct regulator_dev *rdev)
5967{
5968 return &rdev->dev;
5969}
5970EXPORT_SYMBOL_GPL(rdev_get_dev);
5971
5972struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5973{
5974 return rdev->regmap;
5975}
5976EXPORT_SYMBOL_GPL(rdev_get_regmap);
5977
5978void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5979{
5980 return reg_init_data->driver_data;
5981}
5982EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5983
5984#ifdef CONFIG_DEBUG_FS
5985static int supply_map_show(struct seq_file *sf, void *data)
5986{
5987 struct regulator_map *map;
5988
5989 list_for_each_entry(map, ®ulator_map_list, list) {
5990 seq_printf(sf, "%s -> %s.%s\n",
5991 rdev_get_name(map->regulator), map->dev_name,
5992 map->supply);
5993 }
5994
5995 return 0;
5996}
5997DEFINE_SHOW_ATTRIBUTE(supply_map);
5998
5999struct summary_data {
6000 struct seq_file *s;
6001 struct regulator_dev *parent;
6002 int level;
6003};
6004
6005static void regulator_summary_show_subtree(struct seq_file *s,
6006 struct regulator_dev *rdev,
6007 int level);
6008
6009static int regulator_summary_show_children(struct device *dev, void *data)
6010{
6011 struct regulator_dev *rdev = dev_to_rdev(dev);
6012 struct summary_data *summary_data = data;
6013
6014 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6015 regulator_summary_show_subtree(summary_data->s, rdev,
6016 summary_data->level + 1);
6017
6018 return 0;
6019}
6020
6021static void regulator_summary_show_subtree(struct seq_file *s,
6022 struct regulator_dev *rdev,
6023 int level)
6024{
6025 struct regulation_constraints *c;
6026 struct regulator *consumer;
6027 struct summary_data summary_data;
6028 unsigned int opmode;
6029
6030 if (!rdev)
6031 return;
6032
6033 opmode = _regulator_get_mode_unlocked(rdev);
6034 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6035 level * 3 + 1, "",
6036 30 - level * 3, rdev_get_name(rdev),
6037 rdev->use_count, rdev->open_count, rdev->bypass_count,
6038 regulator_opmode_to_str(opmode));
6039
6040 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6041 seq_printf(s, "%5dmA ",
6042 _regulator_get_current_limit_unlocked(rdev) / 1000);
6043
6044 c = rdev->constraints;
6045 if (c) {
6046 switch (rdev->desc->type) {
6047 case REGULATOR_VOLTAGE:
6048 seq_printf(s, "%5dmV %5dmV ",
6049 c->min_uV / 1000, c->max_uV / 1000);
6050 break;
6051 case REGULATOR_CURRENT:
6052 seq_printf(s, "%5dmA %5dmA ",
6053 c->min_uA / 1000, c->max_uA / 1000);
6054 break;
6055 }
6056 }
6057
6058 seq_puts(s, "\n");
6059
6060 list_for_each_entry(consumer, &rdev->consumer_list, list) {
6061 if (consumer->dev && consumer->dev->class == ®ulator_class)
6062 continue;
6063
6064 seq_printf(s, "%*s%-*s ",
6065 (level + 1) * 3 + 1, "",
6066 30 - (level + 1) * 3,
6067 consumer->supply_name ? consumer->supply_name :
6068 consumer->dev ? dev_name(consumer->dev) : "deviceless");
6069
6070 switch (rdev->desc->type) {
6071 case REGULATOR_VOLTAGE:
6072 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6073 consumer->enable_count,
6074 consumer->uA_load / 1000,
6075 consumer->uA_load && !consumer->enable_count ?
6076 '*' : ' ',
6077 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6078 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6079 break;
6080 case REGULATOR_CURRENT:
6081 break;
6082 }
6083
6084 seq_puts(s, "\n");
6085 }
6086
6087 summary_data.s = s;
6088 summary_data.level = level;
6089 summary_data.parent = rdev;
6090
6091 class_for_each_device(®ulator_class, NULL, &summary_data,
6092 regulator_summary_show_children);
6093}
6094
6095struct summary_lock_data {
6096 struct ww_acquire_ctx *ww_ctx;
6097 struct regulator_dev **new_contended_rdev;
6098 struct regulator_dev **old_contended_rdev;
6099};
6100
6101static int regulator_summary_lock_one(struct device *dev, void *data)
6102{
6103 struct regulator_dev *rdev = dev_to_rdev(dev);
6104 struct summary_lock_data *lock_data = data;
6105 int ret = 0;
6106
6107 if (rdev != *lock_data->old_contended_rdev) {
6108 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6109
6110 if (ret == -EDEADLK)
6111 *lock_data->new_contended_rdev = rdev;
6112 else
6113 WARN_ON_ONCE(ret);
6114 } else {
6115 *lock_data->old_contended_rdev = NULL;
6116 }
6117
6118 return ret;
6119}
6120
6121static int regulator_summary_unlock_one(struct device *dev, void *data)
6122{
6123 struct regulator_dev *rdev = dev_to_rdev(dev);
6124 struct summary_lock_data *lock_data = data;
6125
6126 if (lock_data) {
6127 if (rdev == *lock_data->new_contended_rdev)
6128 return -EDEADLK;
6129 }
6130
6131 regulator_unlock(rdev);
6132
6133 return 0;
6134}
6135
6136static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6137 struct regulator_dev **new_contended_rdev,
6138 struct regulator_dev **old_contended_rdev)
6139{
6140 struct summary_lock_data lock_data;
6141 int ret;
6142
6143 lock_data.ww_ctx = ww_ctx;
6144 lock_data.new_contended_rdev = new_contended_rdev;
6145 lock_data.old_contended_rdev = old_contended_rdev;
6146
6147 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
6148 regulator_summary_lock_one);
6149 if (ret)
6150 class_for_each_device(®ulator_class, NULL, &lock_data,
6151 regulator_summary_unlock_one);
6152
6153 return ret;
6154}
6155
6156static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6157{
6158 struct regulator_dev *new_contended_rdev = NULL;
6159 struct regulator_dev *old_contended_rdev = NULL;
6160 int err;
6161
6162 mutex_lock(®ulator_list_mutex);
6163
6164 ww_acquire_init(ww_ctx, ®ulator_ww_class);
6165
6166 do {
6167 if (new_contended_rdev) {
6168 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6169 old_contended_rdev = new_contended_rdev;
6170 old_contended_rdev->ref_cnt++;
6171 old_contended_rdev->mutex_owner = current;
6172 }
6173
6174 err = regulator_summary_lock_all(ww_ctx,
6175 &new_contended_rdev,
6176 &old_contended_rdev);
6177
6178 if (old_contended_rdev)
6179 regulator_unlock(old_contended_rdev);
6180
6181 } while (err == -EDEADLK);
6182
6183 ww_acquire_done(ww_ctx);
6184}
6185
6186static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6187{
6188 class_for_each_device(®ulator_class, NULL, NULL,
6189 regulator_summary_unlock_one);
6190 ww_acquire_fini(ww_ctx);
6191
6192 mutex_unlock(®ulator_list_mutex);
6193}
6194
6195static int regulator_summary_show_roots(struct device *dev, void *data)
6196{
6197 struct regulator_dev *rdev = dev_to_rdev(dev);
6198 struct seq_file *s = data;
6199
6200 if (!rdev->supply)
6201 regulator_summary_show_subtree(s, rdev, 0);
6202
6203 return 0;
6204}
6205
6206static int regulator_summary_show(struct seq_file *s, void *data)
6207{
6208 struct ww_acquire_ctx ww_ctx;
6209
6210 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
6211 seq_puts(s, "---------------------------------------------------------------------------------------\n");
6212
6213 regulator_summary_lock(&ww_ctx);
6214
6215 class_for_each_device(®ulator_class, NULL, s,
6216 regulator_summary_show_roots);
6217
6218 regulator_summary_unlock(&ww_ctx);
6219
6220 return 0;
6221}
6222DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6223#endif /* CONFIG_DEBUG_FS */
6224
6225static int __init regulator_init(void)
6226{
6227 int ret;
6228
6229 ret = class_register(®ulator_class);
6230
6231 debugfs_root = debugfs_create_dir("regulator", NULL);
6232 if (IS_ERR(debugfs_root))
6233 pr_debug("regulator: Failed to create debugfs directory\n");
6234
6235#ifdef CONFIG_DEBUG_FS
6236 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6237 &supply_map_fops);
6238
6239 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6240 NULL, ®ulator_summary_fops);
6241#endif
6242 regulator_dummy_init();
6243
6244 regulator_coupler_register(&generic_regulator_coupler);
6245
6246 return ret;
6247}
6248
6249/* init early to allow our consumers to complete system booting */
6250core_initcall(regulator_init);
6251
6252static int regulator_late_cleanup(struct device *dev, void *data)
6253{
6254 struct regulator_dev *rdev = dev_to_rdev(dev);
6255 struct regulation_constraints *c = rdev->constraints;
6256 int ret;
6257
6258 if (c && c->always_on)
6259 return 0;
6260
6261 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6262 return 0;
6263
6264 regulator_lock(rdev);
6265
6266 if (rdev->use_count)
6267 goto unlock;
6268
6269 /* If reading the status failed, assume that it's off. */
6270 if (_regulator_is_enabled(rdev) <= 0)
6271 goto unlock;
6272
6273 if (have_full_constraints()) {
6274 /* We log since this may kill the system if it goes
6275 * wrong.
6276 */
6277 rdev_info(rdev, "disabling\n");
6278 ret = _regulator_do_disable(rdev);
6279 if (ret != 0)
6280 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6281 } else {
6282 /* The intention is that in future we will
6283 * assume that full constraints are provided
6284 * so warn even if we aren't going to do
6285 * anything here.
6286 */
6287 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6288 }
6289
6290unlock:
6291 regulator_unlock(rdev);
6292
6293 return 0;
6294}
6295
6296static bool regulator_ignore_unused;
6297static int __init regulator_ignore_unused_setup(char *__unused)
6298{
6299 regulator_ignore_unused = true;
6300 return 1;
6301}
6302__setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6303
6304static void regulator_init_complete_work_function(struct work_struct *work)
6305{
6306 /*
6307 * Regulators may had failed to resolve their input supplies
6308 * when were registered, either because the input supply was
6309 * not registered yet or because its parent device was not
6310 * bound yet. So attempt to resolve the input supplies for
6311 * pending regulators before trying to disable unused ones.
6312 */
6313 class_for_each_device(®ulator_class, NULL, NULL,
6314 regulator_register_resolve_supply);
6315
6316 /*
6317 * For debugging purposes, it may be useful to prevent unused
6318 * regulators from being disabled.
6319 */
6320 if (regulator_ignore_unused) {
6321 pr_warn("regulator: Not disabling unused regulators\n");
6322 return;
6323 }
6324
6325 /* If we have a full configuration then disable any regulators
6326 * we have permission to change the status for and which are
6327 * not in use or always_on. This is effectively the default
6328 * for DT and ACPI as they have full constraints.
6329 */
6330 class_for_each_device(®ulator_class, NULL, NULL,
6331 regulator_late_cleanup);
6332}
6333
6334static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6335 regulator_init_complete_work_function);
6336
6337static int __init regulator_init_complete(void)
6338{
6339 /*
6340 * Since DT doesn't provide an idiomatic mechanism for
6341 * enabling full constraints and since it's much more natural
6342 * with DT to provide them just assume that a DT enabled
6343 * system has full constraints.
6344 */
6345 if (of_have_populated_dt())
6346 has_full_constraints = true;
6347
6348 /*
6349 * We punt completion for an arbitrary amount of time since
6350 * systems like distros will load many drivers from userspace
6351 * so consumers might not always be ready yet, this is
6352 * particularly an issue with laptops where this might bounce
6353 * the display off then on. Ideally we'd get a notification
6354 * from userspace when this happens but we don't so just wait
6355 * a bit and hope we waited long enough. It'd be better if
6356 * we'd only do this on systems that need it, and a kernel
6357 * command line option might be useful.
6358 */
6359 schedule_delayed_work(®ulator_init_complete_work,
6360 msecs_to_jiffies(30000));
6361
6362 return 0;
6363}
6364late_initcall_sync(regulator_init_complete);
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/regmap.h>
23#include <linux/regulator/of_regulator.h>
24#include <linux/regulator/consumer.h>
25#include <linux/regulator/coupler.h>
26#include <linux/regulator/driver.h>
27#include <linux/regulator/machine.h>
28#include <linux/module.h>
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/regulator.h>
32
33#include "dummy.h"
34#include "internal.h"
35
36#define rdev_crit(rdev, fmt, ...) \
37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38#define rdev_err(rdev, fmt, ...) \
39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40#define rdev_warn(rdev, fmt, ...) \
41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_info(rdev, fmt, ...) \
43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_dbg(rdev, fmt, ...) \
45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47static DEFINE_WW_CLASS(regulator_ww_class);
48static DEFINE_MUTEX(regulator_nesting_mutex);
49static DEFINE_MUTEX(regulator_list_mutex);
50static LIST_HEAD(regulator_map_list);
51static LIST_HEAD(regulator_ena_gpio_list);
52static LIST_HEAD(regulator_supply_alias_list);
53static LIST_HEAD(regulator_coupler_list);
54static bool has_full_constraints;
55
56static struct dentry *debugfs_root;
57
58/*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
66 const char *supply;
67 struct regulator_dev *regulator;
68};
69
70/*
71 * struct regulator_enable_gpio
72 *
73 * Management for shared enable GPIO pin
74 */
75struct regulator_enable_gpio {
76 struct list_head list;
77 struct gpio_desc *gpiod;
78 u32 enable_count; /* a number of enabled shared GPIO */
79 u32 request_count; /* a number of requested shared GPIO */
80};
81
82/*
83 * struct regulator_supply_alias
84 *
85 * Used to map lookups for a supply onto an alternative device.
86 */
87struct regulator_supply_alias {
88 struct list_head list;
89 struct device *src_dev;
90 const char *src_supply;
91 struct device *alias_dev;
92 const char *alias_supply;
93};
94
95static int _regulator_is_enabled(struct regulator_dev *rdev);
96static int _regulator_disable(struct regulator *regulator);
97static int _regulator_get_current_limit(struct regulator_dev *rdev);
98static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99static int _notifier_call_chain(struct regulator_dev *rdev,
100 unsigned long event, void *data);
101static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 int min_uV, int max_uV);
103static int regulator_balance_voltage(struct regulator_dev *rdev,
104 suspend_state_t state);
105static struct regulator *create_regulator(struct regulator_dev *rdev,
106 struct device *dev,
107 const char *supply_name);
108static void _regulator_put(struct regulator *regulator);
109
110const char *rdev_get_name(struct regulator_dev *rdev)
111{
112 if (rdev->constraints && rdev->constraints->name)
113 return rdev->constraints->name;
114 else if (rdev->desc->name)
115 return rdev->desc->name;
116 else
117 return "";
118}
119
120static bool have_full_constraints(void)
121{
122 return has_full_constraints || of_have_populated_dt();
123}
124
125static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
126{
127 if (!rdev->constraints) {
128 rdev_err(rdev, "no constraints\n");
129 return false;
130 }
131
132 if (rdev->constraints->valid_ops_mask & ops)
133 return true;
134
135 return false;
136}
137
138/**
139 * regulator_lock_nested - lock a single regulator
140 * @rdev: regulator source
141 * @ww_ctx: w/w mutex acquire context
142 *
143 * This function can be called many times by one task on
144 * a single regulator and its mutex will be locked only
145 * once. If a task, which is calling this function is other
146 * than the one, which initially locked the mutex, it will
147 * wait on mutex.
148 */
149static inline int regulator_lock_nested(struct regulator_dev *rdev,
150 struct ww_acquire_ctx *ww_ctx)
151{
152 bool lock = false;
153 int ret = 0;
154
155 mutex_lock(®ulator_nesting_mutex);
156
157 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
158 if (rdev->mutex_owner == current)
159 rdev->ref_cnt++;
160 else
161 lock = true;
162
163 if (lock) {
164 mutex_unlock(®ulator_nesting_mutex);
165 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
166 mutex_lock(®ulator_nesting_mutex);
167 }
168 } else {
169 lock = true;
170 }
171
172 if (lock && ret != -EDEADLK) {
173 rdev->ref_cnt++;
174 rdev->mutex_owner = current;
175 }
176
177 mutex_unlock(®ulator_nesting_mutex);
178
179 return ret;
180}
181
182/**
183 * regulator_lock - lock a single regulator
184 * @rdev: regulator source
185 *
186 * This function can be called many times by one task on
187 * a single regulator and its mutex will be locked only
188 * once. If a task, which is calling this function is other
189 * than the one, which initially locked the mutex, it will
190 * wait on mutex.
191 */
192void regulator_lock(struct regulator_dev *rdev)
193{
194 regulator_lock_nested(rdev, NULL);
195}
196EXPORT_SYMBOL_GPL(regulator_lock);
197
198/**
199 * regulator_unlock - unlock a single regulator
200 * @rdev: regulator_source
201 *
202 * This function unlocks the mutex when the
203 * reference counter reaches 0.
204 */
205void regulator_unlock(struct regulator_dev *rdev)
206{
207 mutex_lock(®ulator_nesting_mutex);
208
209 if (--rdev->ref_cnt == 0) {
210 rdev->mutex_owner = NULL;
211 ww_mutex_unlock(&rdev->mutex);
212 }
213
214 WARN_ON_ONCE(rdev->ref_cnt < 0);
215
216 mutex_unlock(®ulator_nesting_mutex);
217}
218EXPORT_SYMBOL_GPL(regulator_unlock);
219
220static bool regulator_supply_is_couple(struct regulator_dev *rdev)
221{
222 struct regulator_dev *c_rdev;
223 int i;
224
225 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
226 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
227
228 if (rdev->supply->rdev == c_rdev)
229 return true;
230 }
231
232 return false;
233}
234
235static void regulator_unlock_recursive(struct regulator_dev *rdev,
236 unsigned int n_coupled)
237{
238 struct regulator_dev *c_rdev;
239 int i;
240
241 for (i = n_coupled; i > 0; i--) {
242 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
243
244 if (!c_rdev)
245 continue;
246
247 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
248 regulator_unlock_recursive(
249 c_rdev->supply->rdev,
250 c_rdev->coupling_desc.n_coupled);
251
252 regulator_unlock(c_rdev);
253 }
254}
255
256static int regulator_lock_recursive(struct regulator_dev *rdev,
257 struct regulator_dev **new_contended_rdev,
258 struct regulator_dev **old_contended_rdev,
259 struct ww_acquire_ctx *ww_ctx)
260{
261 struct regulator_dev *c_rdev;
262 int i, err;
263
264 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
265 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
266
267 if (!c_rdev)
268 continue;
269
270 if (c_rdev != *old_contended_rdev) {
271 err = regulator_lock_nested(c_rdev, ww_ctx);
272 if (err) {
273 if (err == -EDEADLK) {
274 *new_contended_rdev = c_rdev;
275 goto err_unlock;
276 }
277
278 /* shouldn't happen */
279 WARN_ON_ONCE(err != -EALREADY);
280 }
281 } else {
282 *old_contended_rdev = NULL;
283 }
284
285 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
286 err = regulator_lock_recursive(c_rdev->supply->rdev,
287 new_contended_rdev,
288 old_contended_rdev,
289 ww_ctx);
290 if (err) {
291 regulator_unlock(c_rdev);
292 goto err_unlock;
293 }
294 }
295 }
296
297 return 0;
298
299err_unlock:
300 regulator_unlock_recursive(rdev, i);
301
302 return err;
303}
304
305/**
306 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
307 * regulators
308 * @rdev: regulator source
309 * @ww_ctx: w/w mutex acquire context
310 *
311 * Unlock all regulators related with rdev by coupling or supplying.
312 */
313static void regulator_unlock_dependent(struct regulator_dev *rdev,
314 struct ww_acquire_ctx *ww_ctx)
315{
316 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
317 ww_acquire_fini(ww_ctx);
318}
319
320/**
321 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
322 * @rdev: regulator source
323 * @ww_ctx: w/w mutex acquire context
324 *
325 * This function as a wrapper on regulator_lock_recursive(), which locks
326 * all regulators related with rdev by coupling or supplying.
327 */
328static void regulator_lock_dependent(struct regulator_dev *rdev,
329 struct ww_acquire_ctx *ww_ctx)
330{
331 struct regulator_dev *new_contended_rdev = NULL;
332 struct regulator_dev *old_contended_rdev = NULL;
333 int err;
334
335 mutex_lock(®ulator_list_mutex);
336
337 ww_acquire_init(ww_ctx, ®ulator_ww_class);
338
339 do {
340 if (new_contended_rdev) {
341 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
342 old_contended_rdev = new_contended_rdev;
343 old_contended_rdev->ref_cnt++;
344 }
345
346 err = regulator_lock_recursive(rdev,
347 &new_contended_rdev,
348 &old_contended_rdev,
349 ww_ctx);
350
351 if (old_contended_rdev)
352 regulator_unlock(old_contended_rdev);
353
354 } while (err == -EDEADLK);
355
356 ww_acquire_done(ww_ctx);
357
358 mutex_unlock(®ulator_list_mutex);
359}
360
361/**
362 * of_get_child_regulator - get a child regulator device node
363 * based on supply name
364 * @parent: Parent device node
365 * @prop_name: Combination regulator supply name and "-supply"
366 *
367 * Traverse all child nodes.
368 * Extract the child regulator device node corresponding to the supply name.
369 * returns the device node corresponding to the regulator if found, else
370 * returns NULL.
371 */
372static struct device_node *of_get_child_regulator(struct device_node *parent,
373 const char *prop_name)
374{
375 struct device_node *regnode = NULL;
376 struct device_node *child = NULL;
377
378 for_each_child_of_node(parent, child) {
379 regnode = of_parse_phandle(child, prop_name, 0);
380
381 if (!regnode) {
382 regnode = of_get_child_regulator(child, prop_name);
383 if (regnode)
384 goto err_node_put;
385 } else {
386 goto err_node_put;
387 }
388 }
389 return NULL;
390
391err_node_put:
392 of_node_put(child);
393 return regnode;
394}
395
396/**
397 * of_get_regulator - get a regulator device node based on supply name
398 * @dev: Device pointer for the consumer (of regulator) device
399 * @supply: regulator supply name
400 *
401 * Extract the regulator device node corresponding to the supply name.
402 * returns the device node corresponding to the regulator if found, else
403 * returns NULL.
404 */
405static struct device_node *of_get_regulator(struct device *dev, const char *supply)
406{
407 struct device_node *regnode = NULL;
408 char prop_name[32]; /* 32 is max size of property name */
409
410 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
411
412 snprintf(prop_name, 32, "%s-supply", supply);
413 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
414
415 if (!regnode) {
416 regnode = of_get_child_regulator(dev->of_node, prop_name);
417 if (regnode)
418 return regnode;
419
420 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
421 prop_name, dev->of_node);
422 return NULL;
423 }
424 return regnode;
425}
426
427/* Platform voltage constraint check */
428int regulator_check_voltage(struct regulator_dev *rdev,
429 int *min_uV, int *max_uV)
430{
431 BUG_ON(*min_uV > *max_uV);
432
433 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
434 rdev_err(rdev, "voltage operation not allowed\n");
435 return -EPERM;
436 }
437
438 if (*max_uV > rdev->constraints->max_uV)
439 *max_uV = rdev->constraints->max_uV;
440 if (*min_uV < rdev->constraints->min_uV)
441 *min_uV = rdev->constraints->min_uV;
442
443 if (*min_uV > *max_uV) {
444 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
445 *min_uV, *max_uV);
446 return -EINVAL;
447 }
448
449 return 0;
450}
451
452/* return 0 if the state is valid */
453static int regulator_check_states(suspend_state_t state)
454{
455 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
456}
457
458/* Make sure we select a voltage that suits the needs of all
459 * regulator consumers
460 */
461int regulator_check_consumers(struct regulator_dev *rdev,
462 int *min_uV, int *max_uV,
463 suspend_state_t state)
464{
465 struct regulator *regulator;
466 struct regulator_voltage *voltage;
467
468 list_for_each_entry(regulator, &rdev->consumer_list, list) {
469 voltage = ®ulator->voltage[state];
470 /*
471 * Assume consumers that didn't say anything are OK
472 * with anything in the constraint range.
473 */
474 if (!voltage->min_uV && !voltage->max_uV)
475 continue;
476
477 if (*max_uV > voltage->max_uV)
478 *max_uV = voltage->max_uV;
479 if (*min_uV < voltage->min_uV)
480 *min_uV = voltage->min_uV;
481 }
482
483 if (*min_uV > *max_uV) {
484 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
485 *min_uV, *max_uV);
486 return -EINVAL;
487 }
488
489 return 0;
490}
491
492/* current constraint check */
493static int regulator_check_current_limit(struct regulator_dev *rdev,
494 int *min_uA, int *max_uA)
495{
496 BUG_ON(*min_uA > *max_uA);
497
498 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
499 rdev_err(rdev, "current operation not allowed\n");
500 return -EPERM;
501 }
502
503 if (*max_uA > rdev->constraints->max_uA)
504 *max_uA = rdev->constraints->max_uA;
505 if (*min_uA < rdev->constraints->min_uA)
506 *min_uA = rdev->constraints->min_uA;
507
508 if (*min_uA > *max_uA) {
509 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
510 *min_uA, *max_uA);
511 return -EINVAL;
512 }
513
514 return 0;
515}
516
517/* operating mode constraint check */
518static int regulator_mode_constrain(struct regulator_dev *rdev,
519 unsigned int *mode)
520{
521 switch (*mode) {
522 case REGULATOR_MODE_FAST:
523 case REGULATOR_MODE_NORMAL:
524 case REGULATOR_MODE_IDLE:
525 case REGULATOR_MODE_STANDBY:
526 break;
527 default:
528 rdev_err(rdev, "invalid mode %x specified\n", *mode);
529 return -EINVAL;
530 }
531
532 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
533 rdev_err(rdev, "mode operation not allowed\n");
534 return -EPERM;
535 }
536
537 /* The modes are bitmasks, the most power hungry modes having
538 * the lowest values. If the requested mode isn't supported
539 * try higher modes. */
540 while (*mode) {
541 if (rdev->constraints->valid_modes_mask & *mode)
542 return 0;
543 *mode /= 2;
544 }
545
546 return -EINVAL;
547}
548
549static inline struct regulator_state *
550regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
551{
552 if (rdev->constraints == NULL)
553 return NULL;
554
555 switch (state) {
556 case PM_SUSPEND_STANDBY:
557 return &rdev->constraints->state_standby;
558 case PM_SUSPEND_MEM:
559 return &rdev->constraints->state_mem;
560 case PM_SUSPEND_MAX:
561 return &rdev->constraints->state_disk;
562 default:
563 return NULL;
564 }
565}
566
567static ssize_t regulator_uV_show(struct device *dev,
568 struct device_attribute *attr, char *buf)
569{
570 struct regulator_dev *rdev = dev_get_drvdata(dev);
571 int uV;
572
573 regulator_lock(rdev);
574 uV = regulator_get_voltage_rdev(rdev);
575 regulator_unlock(rdev);
576
577 if (uV < 0)
578 return uV;
579 return sprintf(buf, "%d\n", uV);
580}
581static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
582
583static ssize_t regulator_uA_show(struct device *dev,
584 struct device_attribute *attr, char *buf)
585{
586 struct regulator_dev *rdev = dev_get_drvdata(dev);
587
588 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
589}
590static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
591
592static ssize_t name_show(struct device *dev, struct device_attribute *attr,
593 char *buf)
594{
595 struct regulator_dev *rdev = dev_get_drvdata(dev);
596
597 return sprintf(buf, "%s\n", rdev_get_name(rdev));
598}
599static DEVICE_ATTR_RO(name);
600
601static const char *regulator_opmode_to_str(int mode)
602{
603 switch (mode) {
604 case REGULATOR_MODE_FAST:
605 return "fast";
606 case REGULATOR_MODE_NORMAL:
607 return "normal";
608 case REGULATOR_MODE_IDLE:
609 return "idle";
610 case REGULATOR_MODE_STANDBY:
611 return "standby";
612 }
613 return "unknown";
614}
615
616static ssize_t regulator_print_opmode(char *buf, int mode)
617{
618 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
619}
620
621static ssize_t regulator_opmode_show(struct device *dev,
622 struct device_attribute *attr, char *buf)
623{
624 struct regulator_dev *rdev = dev_get_drvdata(dev);
625
626 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
627}
628static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
629
630static ssize_t regulator_print_state(char *buf, int state)
631{
632 if (state > 0)
633 return sprintf(buf, "enabled\n");
634 else if (state == 0)
635 return sprintf(buf, "disabled\n");
636 else
637 return sprintf(buf, "unknown\n");
638}
639
640static ssize_t regulator_state_show(struct device *dev,
641 struct device_attribute *attr, char *buf)
642{
643 struct regulator_dev *rdev = dev_get_drvdata(dev);
644 ssize_t ret;
645
646 regulator_lock(rdev);
647 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
648 regulator_unlock(rdev);
649
650 return ret;
651}
652static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
653
654static ssize_t regulator_status_show(struct device *dev,
655 struct device_attribute *attr, char *buf)
656{
657 struct regulator_dev *rdev = dev_get_drvdata(dev);
658 int status;
659 char *label;
660
661 status = rdev->desc->ops->get_status(rdev);
662 if (status < 0)
663 return status;
664
665 switch (status) {
666 case REGULATOR_STATUS_OFF:
667 label = "off";
668 break;
669 case REGULATOR_STATUS_ON:
670 label = "on";
671 break;
672 case REGULATOR_STATUS_ERROR:
673 label = "error";
674 break;
675 case REGULATOR_STATUS_FAST:
676 label = "fast";
677 break;
678 case REGULATOR_STATUS_NORMAL:
679 label = "normal";
680 break;
681 case REGULATOR_STATUS_IDLE:
682 label = "idle";
683 break;
684 case REGULATOR_STATUS_STANDBY:
685 label = "standby";
686 break;
687 case REGULATOR_STATUS_BYPASS:
688 label = "bypass";
689 break;
690 case REGULATOR_STATUS_UNDEFINED:
691 label = "undefined";
692 break;
693 default:
694 return -ERANGE;
695 }
696
697 return sprintf(buf, "%s\n", label);
698}
699static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
700
701static ssize_t regulator_min_uA_show(struct device *dev,
702 struct device_attribute *attr, char *buf)
703{
704 struct regulator_dev *rdev = dev_get_drvdata(dev);
705
706 if (!rdev->constraints)
707 return sprintf(buf, "constraint not defined\n");
708
709 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
710}
711static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
712
713static ssize_t regulator_max_uA_show(struct device *dev,
714 struct device_attribute *attr, char *buf)
715{
716 struct regulator_dev *rdev = dev_get_drvdata(dev);
717
718 if (!rdev->constraints)
719 return sprintf(buf, "constraint not defined\n");
720
721 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
722}
723static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
724
725static ssize_t regulator_min_uV_show(struct device *dev,
726 struct device_attribute *attr, char *buf)
727{
728 struct regulator_dev *rdev = dev_get_drvdata(dev);
729
730 if (!rdev->constraints)
731 return sprintf(buf, "constraint not defined\n");
732
733 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
734}
735static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
736
737static ssize_t regulator_max_uV_show(struct device *dev,
738 struct device_attribute *attr, char *buf)
739{
740 struct regulator_dev *rdev = dev_get_drvdata(dev);
741
742 if (!rdev->constraints)
743 return sprintf(buf, "constraint not defined\n");
744
745 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
746}
747static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
748
749static ssize_t regulator_total_uA_show(struct device *dev,
750 struct device_attribute *attr, char *buf)
751{
752 struct regulator_dev *rdev = dev_get_drvdata(dev);
753 struct regulator *regulator;
754 int uA = 0;
755
756 regulator_lock(rdev);
757 list_for_each_entry(regulator, &rdev->consumer_list, list) {
758 if (regulator->enable_count)
759 uA += regulator->uA_load;
760 }
761 regulator_unlock(rdev);
762 return sprintf(buf, "%d\n", uA);
763}
764static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
765
766static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
767 char *buf)
768{
769 struct regulator_dev *rdev = dev_get_drvdata(dev);
770 return sprintf(buf, "%d\n", rdev->use_count);
771}
772static DEVICE_ATTR_RO(num_users);
773
774static ssize_t type_show(struct device *dev, struct device_attribute *attr,
775 char *buf)
776{
777 struct regulator_dev *rdev = dev_get_drvdata(dev);
778
779 switch (rdev->desc->type) {
780 case REGULATOR_VOLTAGE:
781 return sprintf(buf, "voltage\n");
782 case REGULATOR_CURRENT:
783 return sprintf(buf, "current\n");
784 }
785 return sprintf(buf, "unknown\n");
786}
787static DEVICE_ATTR_RO(type);
788
789static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
790 struct device_attribute *attr, char *buf)
791{
792 struct regulator_dev *rdev = dev_get_drvdata(dev);
793
794 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
795}
796static DEVICE_ATTR(suspend_mem_microvolts, 0444,
797 regulator_suspend_mem_uV_show, NULL);
798
799static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
800 struct device_attribute *attr, char *buf)
801{
802 struct regulator_dev *rdev = dev_get_drvdata(dev);
803
804 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
805}
806static DEVICE_ATTR(suspend_disk_microvolts, 0444,
807 regulator_suspend_disk_uV_show, NULL);
808
809static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
810 struct device_attribute *attr, char *buf)
811{
812 struct regulator_dev *rdev = dev_get_drvdata(dev);
813
814 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
815}
816static DEVICE_ATTR(suspend_standby_microvolts, 0444,
817 regulator_suspend_standby_uV_show, NULL);
818
819static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
820 struct device_attribute *attr, char *buf)
821{
822 struct regulator_dev *rdev = dev_get_drvdata(dev);
823
824 return regulator_print_opmode(buf,
825 rdev->constraints->state_mem.mode);
826}
827static DEVICE_ATTR(suspend_mem_mode, 0444,
828 regulator_suspend_mem_mode_show, NULL);
829
830static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
831 struct device_attribute *attr, char *buf)
832{
833 struct regulator_dev *rdev = dev_get_drvdata(dev);
834
835 return regulator_print_opmode(buf,
836 rdev->constraints->state_disk.mode);
837}
838static DEVICE_ATTR(suspend_disk_mode, 0444,
839 regulator_suspend_disk_mode_show, NULL);
840
841static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
842 struct device_attribute *attr, char *buf)
843{
844 struct regulator_dev *rdev = dev_get_drvdata(dev);
845
846 return regulator_print_opmode(buf,
847 rdev->constraints->state_standby.mode);
848}
849static DEVICE_ATTR(suspend_standby_mode, 0444,
850 regulator_suspend_standby_mode_show, NULL);
851
852static ssize_t regulator_suspend_mem_state_show(struct device *dev,
853 struct device_attribute *attr, char *buf)
854{
855 struct regulator_dev *rdev = dev_get_drvdata(dev);
856
857 return regulator_print_state(buf,
858 rdev->constraints->state_mem.enabled);
859}
860static DEVICE_ATTR(suspend_mem_state, 0444,
861 regulator_suspend_mem_state_show, NULL);
862
863static ssize_t regulator_suspend_disk_state_show(struct device *dev,
864 struct device_attribute *attr, char *buf)
865{
866 struct regulator_dev *rdev = dev_get_drvdata(dev);
867
868 return regulator_print_state(buf,
869 rdev->constraints->state_disk.enabled);
870}
871static DEVICE_ATTR(suspend_disk_state, 0444,
872 regulator_suspend_disk_state_show, NULL);
873
874static ssize_t regulator_suspend_standby_state_show(struct device *dev,
875 struct device_attribute *attr, char *buf)
876{
877 struct regulator_dev *rdev = dev_get_drvdata(dev);
878
879 return regulator_print_state(buf,
880 rdev->constraints->state_standby.enabled);
881}
882static DEVICE_ATTR(suspend_standby_state, 0444,
883 regulator_suspend_standby_state_show, NULL);
884
885static ssize_t regulator_bypass_show(struct device *dev,
886 struct device_attribute *attr, char *buf)
887{
888 struct regulator_dev *rdev = dev_get_drvdata(dev);
889 const char *report;
890 bool bypass;
891 int ret;
892
893 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
894
895 if (ret != 0)
896 report = "unknown";
897 else if (bypass)
898 report = "enabled";
899 else
900 report = "disabled";
901
902 return sprintf(buf, "%s\n", report);
903}
904static DEVICE_ATTR(bypass, 0444,
905 regulator_bypass_show, NULL);
906
907/* Calculate the new optimum regulator operating mode based on the new total
908 * consumer load. All locks held by caller */
909static int drms_uA_update(struct regulator_dev *rdev)
910{
911 struct regulator *sibling;
912 int current_uA = 0, output_uV, input_uV, err;
913 unsigned int mode;
914
915 /*
916 * first check to see if we can set modes at all, otherwise just
917 * tell the consumer everything is OK.
918 */
919 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
920 rdev_dbg(rdev, "DRMS operation not allowed\n");
921 return 0;
922 }
923
924 if (!rdev->desc->ops->get_optimum_mode &&
925 !rdev->desc->ops->set_load)
926 return 0;
927
928 if (!rdev->desc->ops->set_mode &&
929 !rdev->desc->ops->set_load)
930 return -EINVAL;
931
932 /* calc total requested load */
933 list_for_each_entry(sibling, &rdev->consumer_list, list) {
934 if (sibling->enable_count)
935 current_uA += sibling->uA_load;
936 }
937
938 current_uA += rdev->constraints->system_load;
939
940 if (rdev->desc->ops->set_load) {
941 /* set the optimum mode for our new total regulator load */
942 err = rdev->desc->ops->set_load(rdev, current_uA);
943 if (err < 0)
944 rdev_err(rdev, "failed to set load %d\n", current_uA);
945 } else {
946 /* get output voltage */
947 output_uV = regulator_get_voltage_rdev(rdev);
948 if (output_uV <= 0) {
949 rdev_err(rdev, "invalid output voltage found\n");
950 return -EINVAL;
951 }
952
953 /* get input voltage */
954 input_uV = 0;
955 if (rdev->supply)
956 input_uV = regulator_get_voltage(rdev->supply);
957 if (input_uV <= 0)
958 input_uV = rdev->constraints->input_uV;
959 if (input_uV <= 0) {
960 rdev_err(rdev, "invalid input voltage found\n");
961 return -EINVAL;
962 }
963
964 /* now get the optimum mode for our new total regulator load */
965 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
966 output_uV, current_uA);
967
968 /* check the new mode is allowed */
969 err = regulator_mode_constrain(rdev, &mode);
970 if (err < 0) {
971 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
972 current_uA, input_uV, output_uV);
973 return err;
974 }
975
976 err = rdev->desc->ops->set_mode(rdev, mode);
977 if (err < 0)
978 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
979 }
980
981 return err;
982}
983
984static int suspend_set_state(struct regulator_dev *rdev,
985 suspend_state_t state)
986{
987 int ret = 0;
988 struct regulator_state *rstate;
989
990 rstate = regulator_get_suspend_state(rdev, state);
991 if (rstate == NULL)
992 return 0;
993
994 /* If we have no suspend mode configuration don't set anything;
995 * only warn if the driver implements set_suspend_voltage or
996 * set_suspend_mode callback.
997 */
998 if (rstate->enabled != ENABLE_IN_SUSPEND &&
999 rstate->enabled != DISABLE_IN_SUSPEND) {
1000 if (rdev->desc->ops->set_suspend_voltage ||
1001 rdev->desc->ops->set_suspend_mode)
1002 rdev_warn(rdev, "No configuration\n");
1003 return 0;
1004 }
1005
1006 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1007 rdev->desc->ops->set_suspend_enable)
1008 ret = rdev->desc->ops->set_suspend_enable(rdev);
1009 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1010 rdev->desc->ops->set_suspend_disable)
1011 ret = rdev->desc->ops->set_suspend_disable(rdev);
1012 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1013 ret = 0;
1014
1015 if (ret < 0) {
1016 rdev_err(rdev, "failed to enabled/disable\n");
1017 return ret;
1018 }
1019
1020 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1021 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1022 if (ret < 0) {
1023 rdev_err(rdev, "failed to set voltage\n");
1024 return ret;
1025 }
1026 }
1027
1028 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1029 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1030 if (ret < 0) {
1031 rdev_err(rdev, "failed to set mode\n");
1032 return ret;
1033 }
1034 }
1035
1036 return ret;
1037}
1038
1039static void print_constraints(struct regulator_dev *rdev)
1040{
1041 struct regulation_constraints *constraints = rdev->constraints;
1042 char buf[160] = "";
1043 size_t len = sizeof(buf) - 1;
1044 int count = 0;
1045 int ret;
1046
1047 if (constraints->min_uV && constraints->max_uV) {
1048 if (constraints->min_uV == constraints->max_uV)
1049 count += scnprintf(buf + count, len - count, "%d mV ",
1050 constraints->min_uV / 1000);
1051 else
1052 count += scnprintf(buf + count, len - count,
1053 "%d <--> %d mV ",
1054 constraints->min_uV / 1000,
1055 constraints->max_uV / 1000);
1056 }
1057
1058 if (!constraints->min_uV ||
1059 constraints->min_uV != constraints->max_uV) {
1060 ret = regulator_get_voltage_rdev(rdev);
1061 if (ret > 0)
1062 count += scnprintf(buf + count, len - count,
1063 "at %d mV ", ret / 1000);
1064 }
1065
1066 if (constraints->uV_offset)
1067 count += scnprintf(buf + count, len - count, "%dmV offset ",
1068 constraints->uV_offset / 1000);
1069
1070 if (constraints->min_uA && constraints->max_uA) {
1071 if (constraints->min_uA == constraints->max_uA)
1072 count += scnprintf(buf + count, len - count, "%d mA ",
1073 constraints->min_uA / 1000);
1074 else
1075 count += scnprintf(buf + count, len - count,
1076 "%d <--> %d mA ",
1077 constraints->min_uA / 1000,
1078 constraints->max_uA / 1000);
1079 }
1080
1081 if (!constraints->min_uA ||
1082 constraints->min_uA != constraints->max_uA) {
1083 ret = _regulator_get_current_limit(rdev);
1084 if (ret > 0)
1085 count += scnprintf(buf + count, len - count,
1086 "at %d mA ", ret / 1000);
1087 }
1088
1089 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1090 count += scnprintf(buf + count, len - count, "fast ");
1091 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1092 count += scnprintf(buf + count, len - count, "normal ");
1093 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1094 count += scnprintf(buf + count, len - count, "idle ");
1095 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1096 count += scnprintf(buf + count, len - count, "standby");
1097
1098 if (!count)
1099 scnprintf(buf, len, "no parameters");
1100
1101 rdev_dbg(rdev, "%s\n", buf);
1102
1103 if ((constraints->min_uV != constraints->max_uV) &&
1104 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1105 rdev_warn(rdev,
1106 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1107}
1108
1109static int machine_constraints_voltage(struct regulator_dev *rdev,
1110 struct regulation_constraints *constraints)
1111{
1112 const struct regulator_ops *ops = rdev->desc->ops;
1113 int ret;
1114
1115 /* do we need to apply the constraint voltage */
1116 if (rdev->constraints->apply_uV &&
1117 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1118 int target_min, target_max;
1119 int current_uV = regulator_get_voltage_rdev(rdev);
1120
1121 if (current_uV == -ENOTRECOVERABLE) {
1122 /* This regulator can't be read and must be initialized */
1123 rdev_info(rdev, "Setting %d-%duV\n",
1124 rdev->constraints->min_uV,
1125 rdev->constraints->max_uV);
1126 _regulator_do_set_voltage(rdev,
1127 rdev->constraints->min_uV,
1128 rdev->constraints->max_uV);
1129 current_uV = regulator_get_voltage_rdev(rdev);
1130 }
1131
1132 if (current_uV < 0) {
1133 rdev_err(rdev,
1134 "failed to get the current voltage(%d)\n",
1135 current_uV);
1136 return current_uV;
1137 }
1138
1139 /*
1140 * If we're below the minimum voltage move up to the
1141 * minimum voltage, if we're above the maximum voltage
1142 * then move down to the maximum.
1143 */
1144 target_min = current_uV;
1145 target_max = current_uV;
1146
1147 if (current_uV < rdev->constraints->min_uV) {
1148 target_min = rdev->constraints->min_uV;
1149 target_max = rdev->constraints->min_uV;
1150 }
1151
1152 if (current_uV > rdev->constraints->max_uV) {
1153 target_min = rdev->constraints->max_uV;
1154 target_max = rdev->constraints->max_uV;
1155 }
1156
1157 if (target_min != current_uV || target_max != current_uV) {
1158 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1159 current_uV, target_min, target_max);
1160 ret = _regulator_do_set_voltage(
1161 rdev, target_min, target_max);
1162 if (ret < 0) {
1163 rdev_err(rdev,
1164 "failed to apply %d-%duV constraint(%d)\n",
1165 target_min, target_max, ret);
1166 return ret;
1167 }
1168 }
1169 }
1170
1171 /* constrain machine-level voltage specs to fit
1172 * the actual range supported by this regulator.
1173 */
1174 if (ops->list_voltage && rdev->desc->n_voltages) {
1175 int count = rdev->desc->n_voltages;
1176 int i;
1177 int min_uV = INT_MAX;
1178 int max_uV = INT_MIN;
1179 int cmin = constraints->min_uV;
1180 int cmax = constraints->max_uV;
1181
1182 /* it's safe to autoconfigure fixed-voltage supplies
1183 and the constraints are used by list_voltage. */
1184 if (count == 1 && !cmin) {
1185 cmin = 1;
1186 cmax = INT_MAX;
1187 constraints->min_uV = cmin;
1188 constraints->max_uV = cmax;
1189 }
1190
1191 /* voltage constraints are optional */
1192 if ((cmin == 0) && (cmax == 0))
1193 return 0;
1194
1195 /* else require explicit machine-level constraints */
1196 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1197 rdev_err(rdev, "invalid voltage constraints\n");
1198 return -EINVAL;
1199 }
1200
1201 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1202 for (i = 0; i < count; i++) {
1203 int value;
1204
1205 value = ops->list_voltage(rdev, i);
1206 if (value <= 0)
1207 continue;
1208
1209 /* maybe adjust [min_uV..max_uV] */
1210 if (value >= cmin && value < min_uV)
1211 min_uV = value;
1212 if (value <= cmax && value > max_uV)
1213 max_uV = value;
1214 }
1215
1216 /* final: [min_uV..max_uV] valid iff constraints valid */
1217 if (max_uV < min_uV) {
1218 rdev_err(rdev,
1219 "unsupportable voltage constraints %u-%uuV\n",
1220 min_uV, max_uV);
1221 return -EINVAL;
1222 }
1223
1224 /* use regulator's subset of machine constraints */
1225 if (constraints->min_uV < min_uV) {
1226 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1227 constraints->min_uV, min_uV);
1228 constraints->min_uV = min_uV;
1229 }
1230 if (constraints->max_uV > max_uV) {
1231 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1232 constraints->max_uV, max_uV);
1233 constraints->max_uV = max_uV;
1234 }
1235 }
1236
1237 return 0;
1238}
1239
1240static int machine_constraints_current(struct regulator_dev *rdev,
1241 struct regulation_constraints *constraints)
1242{
1243 const struct regulator_ops *ops = rdev->desc->ops;
1244 int ret;
1245
1246 if (!constraints->min_uA && !constraints->max_uA)
1247 return 0;
1248
1249 if (constraints->min_uA > constraints->max_uA) {
1250 rdev_err(rdev, "Invalid current constraints\n");
1251 return -EINVAL;
1252 }
1253
1254 if (!ops->set_current_limit || !ops->get_current_limit) {
1255 rdev_warn(rdev, "Operation of current configuration missing\n");
1256 return 0;
1257 }
1258
1259 /* Set regulator current in constraints range */
1260 ret = ops->set_current_limit(rdev, constraints->min_uA,
1261 constraints->max_uA);
1262 if (ret < 0) {
1263 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1264 return ret;
1265 }
1266
1267 return 0;
1268}
1269
1270static int _regulator_do_enable(struct regulator_dev *rdev);
1271
1272/**
1273 * set_machine_constraints - sets regulator constraints
1274 * @rdev: regulator source
1275 * @constraints: constraints to apply
1276 *
1277 * Allows platform initialisation code to define and constrain
1278 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1279 * Constraints *must* be set by platform code in order for some
1280 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1281 * set_mode.
1282 */
1283static int set_machine_constraints(struct regulator_dev *rdev,
1284 const struct regulation_constraints *constraints)
1285{
1286 int ret = 0;
1287 const struct regulator_ops *ops = rdev->desc->ops;
1288
1289 if (constraints)
1290 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1291 GFP_KERNEL);
1292 else
1293 rdev->constraints = kzalloc(sizeof(*constraints),
1294 GFP_KERNEL);
1295 if (!rdev->constraints)
1296 return -ENOMEM;
1297
1298 ret = machine_constraints_voltage(rdev, rdev->constraints);
1299 if (ret != 0)
1300 return ret;
1301
1302 ret = machine_constraints_current(rdev, rdev->constraints);
1303 if (ret != 0)
1304 return ret;
1305
1306 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1307 ret = ops->set_input_current_limit(rdev,
1308 rdev->constraints->ilim_uA);
1309 if (ret < 0) {
1310 rdev_err(rdev, "failed to set input limit\n");
1311 return ret;
1312 }
1313 }
1314
1315 /* do we need to setup our suspend state */
1316 if (rdev->constraints->initial_state) {
1317 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1318 if (ret < 0) {
1319 rdev_err(rdev, "failed to set suspend state\n");
1320 return ret;
1321 }
1322 }
1323
1324 if (rdev->constraints->initial_mode) {
1325 if (!ops->set_mode) {
1326 rdev_err(rdev, "no set_mode operation\n");
1327 return -EINVAL;
1328 }
1329
1330 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1331 if (ret < 0) {
1332 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1333 return ret;
1334 }
1335 } else if (rdev->constraints->system_load) {
1336 /*
1337 * We'll only apply the initial system load if an
1338 * initial mode wasn't specified.
1339 */
1340 drms_uA_update(rdev);
1341 }
1342
1343 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1344 && ops->set_ramp_delay) {
1345 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1346 if (ret < 0) {
1347 rdev_err(rdev, "failed to set ramp_delay\n");
1348 return ret;
1349 }
1350 }
1351
1352 if (rdev->constraints->pull_down && ops->set_pull_down) {
1353 ret = ops->set_pull_down(rdev);
1354 if (ret < 0) {
1355 rdev_err(rdev, "failed to set pull down\n");
1356 return ret;
1357 }
1358 }
1359
1360 if (rdev->constraints->soft_start && ops->set_soft_start) {
1361 ret = ops->set_soft_start(rdev);
1362 if (ret < 0) {
1363 rdev_err(rdev, "failed to set soft start\n");
1364 return ret;
1365 }
1366 }
1367
1368 if (rdev->constraints->over_current_protection
1369 && ops->set_over_current_protection) {
1370 ret = ops->set_over_current_protection(rdev);
1371 if (ret < 0) {
1372 rdev_err(rdev, "failed to set over current protection\n");
1373 return ret;
1374 }
1375 }
1376
1377 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1378 bool ad_state = (rdev->constraints->active_discharge ==
1379 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1380
1381 ret = ops->set_active_discharge(rdev, ad_state);
1382 if (ret < 0) {
1383 rdev_err(rdev, "failed to set active discharge\n");
1384 return ret;
1385 }
1386 }
1387
1388 /* If the constraints say the regulator should be on at this point
1389 * and we have control then make sure it is enabled.
1390 */
1391 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1392 if (rdev->supply) {
1393 ret = regulator_enable(rdev->supply);
1394 if (ret < 0) {
1395 _regulator_put(rdev->supply);
1396 rdev->supply = NULL;
1397 return ret;
1398 }
1399 }
1400
1401 ret = _regulator_do_enable(rdev);
1402 if (ret < 0 && ret != -EINVAL) {
1403 rdev_err(rdev, "failed to enable\n");
1404 return ret;
1405 }
1406 rdev->use_count++;
1407 }
1408
1409 print_constraints(rdev);
1410 return 0;
1411}
1412
1413/**
1414 * set_supply - set regulator supply regulator
1415 * @rdev: regulator name
1416 * @supply_rdev: supply regulator name
1417 *
1418 * Called by platform initialisation code to set the supply regulator for this
1419 * regulator. This ensures that a regulators supply will also be enabled by the
1420 * core if it's child is enabled.
1421 */
1422static int set_supply(struct regulator_dev *rdev,
1423 struct regulator_dev *supply_rdev)
1424{
1425 int err;
1426
1427 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1428
1429 if (!try_module_get(supply_rdev->owner))
1430 return -ENODEV;
1431
1432 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1433 if (rdev->supply == NULL) {
1434 err = -ENOMEM;
1435 return err;
1436 }
1437 supply_rdev->open_count++;
1438
1439 return 0;
1440}
1441
1442/**
1443 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1444 * @rdev: regulator source
1445 * @consumer_dev_name: dev_name() string for device supply applies to
1446 * @supply: symbolic name for supply
1447 *
1448 * Allows platform initialisation code to map physical regulator
1449 * sources to symbolic names for supplies for use by devices. Devices
1450 * should use these symbolic names to request regulators, avoiding the
1451 * need to provide board-specific regulator names as platform data.
1452 */
1453static int set_consumer_device_supply(struct regulator_dev *rdev,
1454 const char *consumer_dev_name,
1455 const char *supply)
1456{
1457 struct regulator_map *node;
1458 int has_dev;
1459
1460 if (supply == NULL)
1461 return -EINVAL;
1462
1463 if (consumer_dev_name != NULL)
1464 has_dev = 1;
1465 else
1466 has_dev = 0;
1467
1468 list_for_each_entry(node, ®ulator_map_list, list) {
1469 if (node->dev_name && consumer_dev_name) {
1470 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1471 continue;
1472 } else if (node->dev_name || consumer_dev_name) {
1473 continue;
1474 }
1475
1476 if (strcmp(node->supply, supply) != 0)
1477 continue;
1478
1479 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1480 consumer_dev_name,
1481 dev_name(&node->regulator->dev),
1482 node->regulator->desc->name,
1483 supply,
1484 dev_name(&rdev->dev), rdev_get_name(rdev));
1485 return -EBUSY;
1486 }
1487
1488 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1489 if (node == NULL)
1490 return -ENOMEM;
1491
1492 node->regulator = rdev;
1493 node->supply = supply;
1494
1495 if (has_dev) {
1496 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1497 if (node->dev_name == NULL) {
1498 kfree(node);
1499 return -ENOMEM;
1500 }
1501 }
1502
1503 list_add(&node->list, ®ulator_map_list);
1504 return 0;
1505}
1506
1507static void unset_regulator_supplies(struct regulator_dev *rdev)
1508{
1509 struct regulator_map *node, *n;
1510
1511 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1512 if (rdev == node->regulator) {
1513 list_del(&node->list);
1514 kfree(node->dev_name);
1515 kfree(node);
1516 }
1517 }
1518}
1519
1520#ifdef CONFIG_DEBUG_FS
1521static ssize_t constraint_flags_read_file(struct file *file,
1522 char __user *user_buf,
1523 size_t count, loff_t *ppos)
1524{
1525 const struct regulator *regulator = file->private_data;
1526 const struct regulation_constraints *c = regulator->rdev->constraints;
1527 char *buf;
1528 ssize_t ret;
1529
1530 if (!c)
1531 return 0;
1532
1533 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1534 if (!buf)
1535 return -ENOMEM;
1536
1537 ret = snprintf(buf, PAGE_SIZE,
1538 "always_on: %u\n"
1539 "boot_on: %u\n"
1540 "apply_uV: %u\n"
1541 "ramp_disable: %u\n"
1542 "soft_start: %u\n"
1543 "pull_down: %u\n"
1544 "over_current_protection: %u\n",
1545 c->always_on,
1546 c->boot_on,
1547 c->apply_uV,
1548 c->ramp_disable,
1549 c->soft_start,
1550 c->pull_down,
1551 c->over_current_protection);
1552
1553 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1554 kfree(buf);
1555
1556 return ret;
1557}
1558
1559#endif
1560
1561static const struct file_operations constraint_flags_fops = {
1562#ifdef CONFIG_DEBUG_FS
1563 .open = simple_open,
1564 .read = constraint_flags_read_file,
1565 .llseek = default_llseek,
1566#endif
1567};
1568
1569#define REG_STR_SIZE 64
1570
1571static struct regulator *create_regulator(struct regulator_dev *rdev,
1572 struct device *dev,
1573 const char *supply_name)
1574{
1575 struct regulator *regulator;
1576 char buf[REG_STR_SIZE];
1577 int err, size;
1578
1579 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1580 if (regulator == NULL)
1581 return NULL;
1582
1583 regulator_lock(rdev);
1584 regulator->rdev = rdev;
1585 list_add(®ulator->list, &rdev->consumer_list);
1586
1587 if (dev) {
1588 regulator->dev = dev;
1589
1590 /* Add a link to the device sysfs entry */
1591 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1592 dev->kobj.name, supply_name);
1593 if (size >= REG_STR_SIZE)
1594 goto overflow_err;
1595
1596 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1597 if (regulator->supply_name == NULL)
1598 goto overflow_err;
1599
1600 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1601 buf);
1602 if (err) {
1603 rdev_dbg(rdev, "could not add device link %s err %d\n",
1604 dev->kobj.name, err);
1605 /* non-fatal */
1606 }
1607 } else {
1608 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1609 if (regulator->supply_name == NULL)
1610 goto overflow_err;
1611 }
1612
1613 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1614 rdev->debugfs);
1615 if (!regulator->debugfs) {
1616 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1617 } else {
1618 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1619 ®ulator->uA_load);
1620 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1621 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1622 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1623 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1624 debugfs_create_file("constraint_flags", 0444,
1625 regulator->debugfs, regulator,
1626 &constraint_flags_fops);
1627 }
1628
1629 /*
1630 * Check now if the regulator is an always on regulator - if
1631 * it is then we don't need to do nearly so much work for
1632 * enable/disable calls.
1633 */
1634 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1635 _regulator_is_enabled(rdev))
1636 regulator->always_on = true;
1637
1638 regulator_unlock(rdev);
1639 return regulator;
1640overflow_err:
1641 list_del(®ulator->list);
1642 kfree(regulator);
1643 regulator_unlock(rdev);
1644 return NULL;
1645}
1646
1647static int _regulator_get_enable_time(struct regulator_dev *rdev)
1648{
1649 if (rdev->constraints && rdev->constraints->enable_time)
1650 return rdev->constraints->enable_time;
1651 if (rdev->desc->ops->enable_time)
1652 return rdev->desc->ops->enable_time(rdev);
1653 return rdev->desc->enable_time;
1654}
1655
1656static struct regulator_supply_alias *regulator_find_supply_alias(
1657 struct device *dev, const char *supply)
1658{
1659 struct regulator_supply_alias *map;
1660
1661 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1662 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1663 return map;
1664
1665 return NULL;
1666}
1667
1668static void regulator_supply_alias(struct device **dev, const char **supply)
1669{
1670 struct regulator_supply_alias *map;
1671
1672 map = regulator_find_supply_alias(*dev, *supply);
1673 if (map) {
1674 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1675 *supply, map->alias_supply,
1676 dev_name(map->alias_dev));
1677 *dev = map->alias_dev;
1678 *supply = map->alias_supply;
1679 }
1680}
1681
1682static int regulator_match(struct device *dev, const void *data)
1683{
1684 struct regulator_dev *r = dev_to_rdev(dev);
1685
1686 return strcmp(rdev_get_name(r), data) == 0;
1687}
1688
1689static struct regulator_dev *regulator_lookup_by_name(const char *name)
1690{
1691 struct device *dev;
1692
1693 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1694
1695 return dev ? dev_to_rdev(dev) : NULL;
1696}
1697
1698/**
1699 * regulator_dev_lookup - lookup a regulator device.
1700 * @dev: device for regulator "consumer".
1701 * @supply: Supply name or regulator ID.
1702 *
1703 * If successful, returns a struct regulator_dev that corresponds to the name
1704 * @supply and with the embedded struct device refcount incremented by one.
1705 * The refcount must be dropped by calling put_device().
1706 * On failure one of the following ERR-PTR-encoded values is returned:
1707 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1708 * in the future.
1709 */
1710static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1711 const char *supply)
1712{
1713 struct regulator_dev *r = NULL;
1714 struct device_node *node;
1715 struct regulator_map *map;
1716 const char *devname = NULL;
1717
1718 regulator_supply_alias(&dev, &supply);
1719
1720 /* first do a dt based lookup */
1721 if (dev && dev->of_node) {
1722 node = of_get_regulator(dev, supply);
1723 if (node) {
1724 r = of_find_regulator_by_node(node);
1725 if (r)
1726 return r;
1727
1728 /*
1729 * We have a node, but there is no device.
1730 * assume it has not registered yet.
1731 */
1732 return ERR_PTR(-EPROBE_DEFER);
1733 }
1734 }
1735
1736 /* if not found, try doing it non-dt way */
1737 if (dev)
1738 devname = dev_name(dev);
1739
1740 mutex_lock(®ulator_list_mutex);
1741 list_for_each_entry(map, ®ulator_map_list, list) {
1742 /* If the mapping has a device set up it must match */
1743 if (map->dev_name &&
1744 (!devname || strcmp(map->dev_name, devname)))
1745 continue;
1746
1747 if (strcmp(map->supply, supply) == 0 &&
1748 get_device(&map->regulator->dev)) {
1749 r = map->regulator;
1750 break;
1751 }
1752 }
1753 mutex_unlock(®ulator_list_mutex);
1754
1755 if (r)
1756 return r;
1757
1758 r = regulator_lookup_by_name(supply);
1759 if (r)
1760 return r;
1761
1762 return ERR_PTR(-ENODEV);
1763}
1764
1765static int regulator_resolve_supply(struct regulator_dev *rdev)
1766{
1767 struct regulator_dev *r;
1768 struct device *dev = rdev->dev.parent;
1769 int ret;
1770
1771 /* No supply to resolve? */
1772 if (!rdev->supply_name)
1773 return 0;
1774
1775 /* Supply already resolved? */
1776 if (rdev->supply)
1777 return 0;
1778
1779 r = regulator_dev_lookup(dev, rdev->supply_name);
1780 if (IS_ERR(r)) {
1781 ret = PTR_ERR(r);
1782
1783 /* Did the lookup explicitly defer for us? */
1784 if (ret == -EPROBE_DEFER)
1785 return ret;
1786
1787 if (have_full_constraints()) {
1788 r = dummy_regulator_rdev;
1789 get_device(&r->dev);
1790 } else {
1791 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1792 rdev->supply_name, rdev->desc->name);
1793 return -EPROBE_DEFER;
1794 }
1795 }
1796
1797 /*
1798 * If the supply's parent device is not the same as the
1799 * regulator's parent device, then ensure the parent device
1800 * is bound before we resolve the supply, in case the parent
1801 * device get probe deferred and unregisters the supply.
1802 */
1803 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1804 if (!device_is_bound(r->dev.parent)) {
1805 put_device(&r->dev);
1806 return -EPROBE_DEFER;
1807 }
1808 }
1809
1810 /* Recursively resolve the supply of the supply */
1811 ret = regulator_resolve_supply(r);
1812 if (ret < 0) {
1813 put_device(&r->dev);
1814 return ret;
1815 }
1816
1817 ret = set_supply(rdev, r);
1818 if (ret < 0) {
1819 put_device(&r->dev);
1820 return ret;
1821 }
1822
1823 /*
1824 * In set_machine_constraints() we may have turned this regulator on
1825 * but we couldn't propagate to the supply if it hadn't been resolved
1826 * yet. Do it now.
1827 */
1828 if (rdev->use_count) {
1829 ret = regulator_enable(rdev->supply);
1830 if (ret < 0) {
1831 _regulator_put(rdev->supply);
1832 rdev->supply = NULL;
1833 return ret;
1834 }
1835 }
1836
1837 return 0;
1838}
1839
1840/* Internal regulator request function */
1841struct regulator *_regulator_get(struct device *dev, const char *id,
1842 enum regulator_get_type get_type)
1843{
1844 struct regulator_dev *rdev;
1845 struct regulator *regulator;
1846 const char *devname = dev ? dev_name(dev) : "deviceless";
1847 int ret;
1848
1849 if (get_type >= MAX_GET_TYPE) {
1850 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1851 return ERR_PTR(-EINVAL);
1852 }
1853
1854 if (id == NULL) {
1855 pr_err("get() with no identifier\n");
1856 return ERR_PTR(-EINVAL);
1857 }
1858
1859 rdev = regulator_dev_lookup(dev, id);
1860 if (IS_ERR(rdev)) {
1861 ret = PTR_ERR(rdev);
1862
1863 /*
1864 * If regulator_dev_lookup() fails with error other
1865 * than -ENODEV our job here is done, we simply return it.
1866 */
1867 if (ret != -ENODEV)
1868 return ERR_PTR(ret);
1869
1870 if (!have_full_constraints()) {
1871 dev_warn(dev,
1872 "incomplete constraints, dummy supplies not allowed\n");
1873 return ERR_PTR(-ENODEV);
1874 }
1875
1876 switch (get_type) {
1877 case NORMAL_GET:
1878 /*
1879 * Assume that a regulator is physically present and
1880 * enabled, even if it isn't hooked up, and just
1881 * provide a dummy.
1882 */
1883 dev_warn(dev,
1884 "%s supply %s not found, using dummy regulator\n",
1885 devname, id);
1886 rdev = dummy_regulator_rdev;
1887 get_device(&rdev->dev);
1888 break;
1889
1890 case EXCLUSIVE_GET:
1891 dev_warn(dev,
1892 "dummy supplies not allowed for exclusive requests\n");
1893 /* fall through */
1894
1895 default:
1896 return ERR_PTR(-ENODEV);
1897 }
1898 }
1899
1900 if (rdev->exclusive) {
1901 regulator = ERR_PTR(-EPERM);
1902 put_device(&rdev->dev);
1903 return regulator;
1904 }
1905
1906 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1907 regulator = ERR_PTR(-EBUSY);
1908 put_device(&rdev->dev);
1909 return regulator;
1910 }
1911
1912 mutex_lock(®ulator_list_mutex);
1913 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1914 mutex_unlock(®ulator_list_mutex);
1915
1916 if (ret != 0) {
1917 regulator = ERR_PTR(-EPROBE_DEFER);
1918 put_device(&rdev->dev);
1919 return regulator;
1920 }
1921
1922 ret = regulator_resolve_supply(rdev);
1923 if (ret < 0) {
1924 regulator = ERR_PTR(ret);
1925 put_device(&rdev->dev);
1926 return regulator;
1927 }
1928
1929 if (!try_module_get(rdev->owner)) {
1930 regulator = ERR_PTR(-EPROBE_DEFER);
1931 put_device(&rdev->dev);
1932 return regulator;
1933 }
1934
1935 regulator = create_regulator(rdev, dev, id);
1936 if (regulator == NULL) {
1937 regulator = ERR_PTR(-ENOMEM);
1938 put_device(&rdev->dev);
1939 module_put(rdev->owner);
1940 return regulator;
1941 }
1942
1943 rdev->open_count++;
1944 if (get_type == EXCLUSIVE_GET) {
1945 rdev->exclusive = 1;
1946
1947 ret = _regulator_is_enabled(rdev);
1948 if (ret > 0)
1949 rdev->use_count = 1;
1950 else
1951 rdev->use_count = 0;
1952 }
1953
1954 device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1955
1956 return regulator;
1957}
1958
1959/**
1960 * regulator_get - lookup and obtain a reference to a regulator.
1961 * @dev: device for regulator "consumer"
1962 * @id: Supply name or regulator ID.
1963 *
1964 * Returns a struct regulator corresponding to the regulator producer,
1965 * or IS_ERR() condition containing errno.
1966 *
1967 * Use of supply names configured via regulator_set_device_supply() is
1968 * strongly encouraged. It is recommended that the supply name used
1969 * should match the name used for the supply and/or the relevant
1970 * device pins in the datasheet.
1971 */
1972struct regulator *regulator_get(struct device *dev, const char *id)
1973{
1974 return _regulator_get(dev, id, NORMAL_GET);
1975}
1976EXPORT_SYMBOL_GPL(regulator_get);
1977
1978/**
1979 * regulator_get_exclusive - obtain exclusive access to a regulator.
1980 * @dev: device for regulator "consumer"
1981 * @id: Supply name or regulator ID.
1982 *
1983 * Returns a struct regulator corresponding to the regulator producer,
1984 * or IS_ERR() condition containing errno. Other consumers will be
1985 * unable to obtain this regulator while this reference is held and the
1986 * use count for the regulator will be initialised to reflect the current
1987 * state of the regulator.
1988 *
1989 * This is intended for use by consumers which cannot tolerate shared
1990 * use of the regulator such as those which need to force the
1991 * regulator off for correct operation of the hardware they are
1992 * controlling.
1993 *
1994 * Use of supply names configured via regulator_set_device_supply() is
1995 * strongly encouraged. It is recommended that the supply name used
1996 * should match the name used for the supply and/or the relevant
1997 * device pins in the datasheet.
1998 */
1999struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2000{
2001 return _regulator_get(dev, id, EXCLUSIVE_GET);
2002}
2003EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2004
2005/**
2006 * regulator_get_optional - obtain optional access to a regulator.
2007 * @dev: device for regulator "consumer"
2008 * @id: Supply name or regulator ID.
2009 *
2010 * Returns a struct regulator corresponding to the regulator producer,
2011 * or IS_ERR() condition containing errno.
2012 *
2013 * This is intended for use by consumers for devices which can have
2014 * some supplies unconnected in normal use, such as some MMC devices.
2015 * It can allow the regulator core to provide stub supplies for other
2016 * supplies requested using normal regulator_get() calls without
2017 * disrupting the operation of drivers that can handle absent
2018 * supplies.
2019 *
2020 * Use of supply names configured via regulator_set_device_supply() is
2021 * strongly encouraged. It is recommended that the supply name used
2022 * should match the name used for the supply and/or the relevant
2023 * device pins in the datasheet.
2024 */
2025struct regulator *regulator_get_optional(struct device *dev, const char *id)
2026{
2027 return _regulator_get(dev, id, OPTIONAL_GET);
2028}
2029EXPORT_SYMBOL_GPL(regulator_get_optional);
2030
2031/* regulator_list_mutex lock held by regulator_put() */
2032static void _regulator_put(struct regulator *regulator)
2033{
2034 struct regulator_dev *rdev;
2035
2036 if (IS_ERR_OR_NULL(regulator))
2037 return;
2038
2039 lockdep_assert_held_once(®ulator_list_mutex);
2040
2041 /* Docs say you must disable before calling regulator_put() */
2042 WARN_ON(regulator->enable_count);
2043
2044 rdev = regulator->rdev;
2045
2046 debugfs_remove_recursive(regulator->debugfs);
2047
2048 if (regulator->dev) {
2049 device_link_remove(regulator->dev, &rdev->dev);
2050
2051 /* remove any sysfs entries */
2052 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2053 }
2054
2055 regulator_lock(rdev);
2056 list_del(®ulator->list);
2057
2058 rdev->open_count--;
2059 rdev->exclusive = 0;
2060 put_device(&rdev->dev);
2061 regulator_unlock(rdev);
2062
2063 kfree_const(regulator->supply_name);
2064 kfree(regulator);
2065
2066 module_put(rdev->owner);
2067}
2068
2069/**
2070 * regulator_put - "free" the regulator source
2071 * @regulator: regulator source
2072 *
2073 * Note: drivers must ensure that all regulator_enable calls made on this
2074 * regulator source are balanced by regulator_disable calls prior to calling
2075 * this function.
2076 */
2077void regulator_put(struct regulator *regulator)
2078{
2079 mutex_lock(®ulator_list_mutex);
2080 _regulator_put(regulator);
2081 mutex_unlock(®ulator_list_mutex);
2082}
2083EXPORT_SYMBOL_GPL(regulator_put);
2084
2085/**
2086 * regulator_register_supply_alias - Provide device alias for supply lookup
2087 *
2088 * @dev: device that will be given as the regulator "consumer"
2089 * @id: Supply name or regulator ID
2090 * @alias_dev: device that should be used to lookup the supply
2091 * @alias_id: Supply name or regulator ID that should be used to lookup the
2092 * supply
2093 *
2094 * All lookups for id on dev will instead be conducted for alias_id on
2095 * alias_dev.
2096 */
2097int regulator_register_supply_alias(struct device *dev, const char *id,
2098 struct device *alias_dev,
2099 const char *alias_id)
2100{
2101 struct regulator_supply_alias *map;
2102
2103 map = regulator_find_supply_alias(dev, id);
2104 if (map)
2105 return -EEXIST;
2106
2107 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2108 if (!map)
2109 return -ENOMEM;
2110
2111 map->src_dev = dev;
2112 map->src_supply = id;
2113 map->alias_dev = alias_dev;
2114 map->alias_supply = alias_id;
2115
2116 list_add(&map->list, ®ulator_supply_alias_list);
2117
2118 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2119 id, dev_name(dev), alias_id, dev_name(alias_dev));
2120
2121 return 0;
2122}
2123EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2124
2125/**
2126 * regulator_unregister_supply_alias - Remove device alias
2127 *
2128 * @dev: device that will be given as the regulator "consumer"
2129 * @id: Supply name or regulator ID
2130 *
2131 * Remove a lookup alias if one exists for id on dev.
2132 */
2133void regulator_unregister_supply_alias(struct device *dev, const char *id)
2134{
2135 struct regulator_supply_alias *map;
2136
2137 map = regulator_find_supply_alias(dev, id);
2138 if (map) {
2139 list_del(&map->list);
2140 kfree(map);
2141 }
2142}
2143EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2144
2145/**
2146 * regulator_bulk_register_supply_alias - register multiple aliases
2147 *
2148 * @dev: device that will be given as the regulator "consumer"
2149 * @id: List of supply names or regulator IDs
2150 * @alias_dev: device that should be used to lookup the supply
2151 * @alias_id: List of supply names or regulator IDs that should be used to
2152 * lookup the supply
2153 * @num_id: Number of aliases to register
2154 *
2155 * @return 0 on success, an errno on failure.
2156 *
2157 * This helper function allows drivers to register several supply
2158 * aliases in one operation. If any of the aliases cannot be
2159 * registered any aliases that were registered will be removed
2160 * before returning to the caller.
2161 */
2162int regulator_bulk_register_supply_alias(struct device *dev,
2163 const char *const *id,
2164 struct device *alias_dev,
2165 const char *const *alias_id,
2166 int num_id)
2167{
2168 int i;
2169 int ret;
2170
2171 for (i = 0; i < num_id; ++i) {
2172 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2173 alias_id[i]);
2174 if (ret < 0)
2175 goto err;
2176 }
2177
2178 return 0;
2179
2180err:
2181 dev_err(dev,
2182 "Failed to create supply alias %s,%s -> %s,%s\n",
2183 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2184
2185 while (--i >= 0)
2186 regulator_unregister_supply_alias(dev, id[i]);
2187
2188 return ret;
2189}
2190EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2191
2192/**
2193 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2194 *
2195 * @dev: device that will be given as the regulator "consumer"
2196 * @id: List of supply names or regulator IDs
2197 * @num_id: Number of aliases to unregister
2198 *
2199 * This helper function allows drivers to unregister several supply
2200 * aliases in one operation.
2201 */
2202void regulator_bulk_unregister_supply_alias(struct device *dev,
2203 const char *const *id,
2204 int num_id)
2205{
2206 int i;
2207
2208 for (i = 0; i < num_id; ++i)
2209 regulator_unregister_supply_alias(dev, id[i]);
2210}
2211EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2212
2213
2214/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2215static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2216 const struct regulator_config *config)
2217{
2218 struct regulator_enable_gpio *pin;
2219 struct gpio_desc *gpiod;
2220
2221 gpiod = config->ena_gpiod;
2222
2223 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2224 if (pin->gpiod == gpiod) {
2225 rdev_dbg(rdev, "GPIO is already used\n");
2226 goto update_ena_gpio_to_rdev;
2227 }
2228 }
2229
2230 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2231 if (pin == NULL)
2232 return -ENOMEM;
2233
2234 pin->gpiod = gpiod;
2235 list_add(&pin->list, ®ulator_ena_gpio_list);
2236
2237update_ena_gpio_to_rdev:
2238 pin->request_count++;
2239 rdev->ena_pin = pin;
2240 return 0;
2241}
2242
2243static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2244{
2245 struct regulator_enable_gpio *pin, *n;
2246
2247 if (!rdev->ena_pin)
2248 return;
2249
2250 /* Free the GPIO only in case of no use */
2251 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2252 if (pin->gpiod == rdev->ena_pin->gpiod) {
2253 if (pin->request_count <= 1) {
2254 pin->request_count = 0;
2255 gpiod_put(pin->gpiod);
2256 list_del(&pin->list);
2257 kfree(pin);
2258 rdev->ena_pin = NULL;
2259 return;
2260 } else {
2261 pin->request_count--;
2262 }
2263 }
2264 }
2265}
2266
2267/**
2268 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2269 * @rdev: regulator_dev structure
2270 * @enable: enable GPIO at initial use?
2271 *
2272 * GPIO is enabled in case of initial use. (enable_count is 0)
2273 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2274 */
2275static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2276{
2277 struct regulator_enable_gpio *pin = rdev->ena_pin;
2278
2279 if (!pin)
2280 return -EINVAL;
2281
2282 if (enable) {
2283 /* Enable GPIO at initial use */
2284 if (pin->enable_count == 0)
2285 gpiod_set_value_cansleep(pin->gpiod, 1);
2286
2287 pin->enable_count++;
2288 } else {
2289 if (pin->enable_count > 1) {
2290 pin->enable_count--;
2291 return 0;
2292 }
2293
2294 /* Disable GPIO if not used */
2295 if (pin->enable_count <= 1) {
2296 gpiod_set_value_cansleep(pin->gpiod, 0);
2297 pin->enable_count = 0;
2298 }
2299 }
2300
2301 return 0;
2302}
2303
2304/**
2305 * _regulator_enable_delay - a delay helper function
2306 * @delay: time to delay in microseconds
2307 *
2308 * Delay for the requested amount of time as per the guidelines in:
2309 *
2310 * Documentation/timers/timers-howto.rst
2311 *
2312 * The assumption here is that regulators will never be enabled in
2313 * atomic context and therefore sleeping functions can be used.
2314 */
2315static void _regulator_enable_delay(unsigned int delay)
2316{
2317 unsigned int ms = delay / 1000;
2318 unsigned int us = delay % 1000;
2319
2320 if (ms > 0) {
2321 /*
2322 * For small enough values, handle super-millisecond
2323 * delays in the usleep_range() call below.
2324 */
2325 if (ms < 20)
2326 us += ms * 1000;
2327 else
2328 msleep(ms);
2329 }
2330
2331 /*
2332 * Give the scheduler some room to coalesce with any other
2333 * wakeup sources. For delays shorter than 10 us, don't even
2334 * bother setting up high-resolution timers and just busy-
2335 * loop.
2336 */
2337 if (us >= 10)
2338 usleep_range(us, us + 100);
2339 else
2340 udelay(us);
2341}
2342
2343static int _regulator_do_enable(struct regulator_dev *rdev)
2344{
2345 int ret, delay;
2346
2347 /* Query before enabling in case configuration dependent. */
2348 ret = _regulator_get_enable_time(rdev);
2349 if (ret >= 0) {
2350 delay = ret;
2351 } else {
2352 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2353 delay = 0;
2354 }
2355
2356 trace_regulator_enable(rdev_get_name(rdev));
2357
2358 if (rdev->desc->off_on_delay) {
2359 /* if needed, keep a distance of off_on_delay from last time
2360 * this regulator was disabled.
2361 */
2362 unsigned long start_jiffy = jiffies;
2363 unsigned long intended, max_delay, remaining;
2364
2365 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2366 intended = rdev->last_off_jiffy + max_delay;
2367
2368 if (time_before(start_jiffy, intended)) {
2369 /* calc remaining jiffies to deal with one-time
2370 * timer wrapping.
2371 * in case of multiple timer wrapping, either it can be
2372 * detected by out-of-range remaining, or it cannot be
2373 * detected and we get a penalty of
2374 * _regulator_enable_delay().
2375 */
2376 remaining = intended - start_jiffy;
2377 if (remaining <= max_delay)
2378 _regulator_enable_delay(
2379 jiffies_to_usecs(remaining));
2380 }
2381 }
2382
2383 if (rdev->ena_pin) {
2384 if (!rdev->ena_gpio_state) {
2385 ret = regulator_ena_gpio_ctrl(rdev, true);
2386 if (ret < 0)
2387 return ret;
2388 rdev->ena_gpio_state = 1;
2389 }
2390 } else if (rdev->desc->ops->enable) {
2391 ret = rdev->desc->ops->enable(rdev);
2392 if (ret < 0)
2393 return ret;
2394 } else {
2395 return -EINVAL;
2396 }
2397
2398 /* Allow the regulator to ramp; it would be useful to extend
2399 * this for bulk operations so that the regulators can ramp
2400 * together. */
2401 trace_regulator_enable_delay(rdev_get_name(rdev));
2402
2403 _regulator_enable_delay(delay);
2404
2405 trace_regulator_enable_complete(rdev_get_name(rdev));
2406
2407 return 0;
2408}
2409
2410/**
2411 * _regulator_handle_consumer_enable - handle that a consumer enabled
2412 * @regulator: regulator source
2413 *
2414 * Some things on a regulator consumer (like the contribution towards total
2415 * load on the regulator) only have an effect when the consumer wants the
2416 * regulator enabled. Explained in example with two consumers of the same
2417 * regulator:
2418 * consumer A: set_load(100); => total load = 0
2419 * consumer A: regulator_enable(); => total load = 100
2420 * consumer B: set_load(1000); => total load = 100
2421 * consumer B: regulator_enable(); => total load = 1100
2422 * consumer A: regulator_disable(); => total_load = 1000
2423 *
2424 * This function (together with _regulator_handle_consumer_disable) is
2425 * responsible for keeping track of the refcount for a given regulator consumer
2426 * and applying / unapplying these things.
2427 *
2428 * Returns 0 upon no error; -error upon error.
2429 */
2430static int _regulator_handle_consumer_enable(struct regulator *regulator)
2431{
2432 struct regulator_dev *rdev = regulator->rdev;
2433
2434 lockdep_assert_held_once(&rdev->mutex.base);
2435
2436 regulator->enable_count++;
2437 if (regulator->uA_load && regulator->enable_count == 1)
2438 return drms_uA_update(rdev);
2439
2440 return 0;
2441}
2442
2443/**
2444 * _regulator_handle_consumer_disable - handle that a consumer disabled
2445 * @regulator: regulator source
2446 *
2447 * The opposite of _regulator_handle_consumer_enable().
2448 *
2449 * Returns 0 upon no error; -error upon error.
2450 */
2451static int _regulator_handle_consumer_disable(struct regulator *regulator)
2452{
2453 struct regulator_dev *rdev = regulator->rdev;
2454
2455 lockdep_assert_held_once(&rdev->mutex.base);
2456
2457 if (!regulator->enable_count) {
2458 rdev_err(rdev, "Underflow of regulator enable count\n");
2459 return -EINVAL;
2460 }
2461
2462 regulator->enable_count--;
2463 if (regulator->uA_load && regulator->enable_count == 0)
2464 return drms_uA_update(rdev);
2465
2466 return 0;
2467}
2468
2469/* locks held by regulator_enable() */
2470static int _regulator_enable(struct regulator *regulator)
2471{
2472 struct regulator_dev *rdev = regulator->rdev;
2473 int ret;
2474
2475 lockdep_assert_held_once(&rdev->mutex.base);
2476
2477 if (rdev->use_count == 0 && rdev->supply) {
2478 ret = _regulator_enable(rdev->supply);
2479 if (ret < 0)
2480 return ret;
2481 }
2482
2483 /* balance only if there are regulators coupled */
2484 if (rdev->coupling_desc.n_coupled > 1) {
2485 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2486 if (ret < 0)
2487 goto err_disable_supply;
2488 }
2489
2490 ret = _regulator_handle_consumer_enable(regulator);
2491 if (ret < 0)
2492 goto err_disable_supply;
2493
2494 if (rdev->use_count == 0) {
2495 /* The regulator may on if it's not switchable or left on */
2496 ret = _regulator_is_enabled(rdev);
2497 if (ret == -EINVAL || ret == 0) {
2498 if (!regulator_ops_is_valid(rdev,
2499 REGULATOR_CHANGE_STATUS)) {
2500 ret = -EPERM;
2501 goto err_consumer_disable;
2502 }
2503
2504 ret = _regulator_do_enable(rdev);
2505 if (ret < 0)
2506 goto err_consumer_disable;
2507
2508 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2509 NULL);
2510 } else if (ret < 0) {
2511 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2512 goto err_consumer_disable;
2513 }
2514 /* Fallthrough on positive return values - already enabled */
2515 }
2516
2517 rdev->use_count++;
2518
2519 return 0;
2520
2521err_consumer_disable:
2522 _regulator_handle_consumer_disable(regulator);
2523
2524err_disable_supply:
2525 if (rdev->use_count == 0 && rdev->supply)
2526 _regulator_disable(rdev->supply);
2527
2528 return ret;
2529}
2530
2531/**
2532 * regulator_enable - enable regulator output
2533 * @regulator: regulator source
2534 *
2535 * Request that the regulator be enabled with the regulator output at
2536 * the predefined voltage or current value. Calls to regulator_enable()
2537 * must be balanced with calls to regulator_disable().
2538 *
2539 * NOTE: the output value can be set by other drivers, boot loader or may be
2540 * hardwired in the regulator.
2541 */
2542int regulator_enable(struct regulator *regulator)
2543{
2544 struct regulator_dev *rdev = regulator->rdev;
2545 struct ww_acquire_ctx ww_ctx;
2546 int ret;
2547
2548 regulator_lock_dependent(rdev, &ww_ctx);
2549 ret = _regulator_enable(regulator);
2550 regulator_unlock_dependent(rdev, &ww_ctx);
2551
2552 return ret;
2553}
2554EXPORT_SYMBOL_GPL(regulator_enable);
2555
2556static int _regulator_do_disable(struct regulator_dev *rdev)
2557{
2558 int ret;
2559
2560 trace_regulator_disable(rdev_get_name(rdev));
2561
2562 if (rdev->ena_pin) {
2563 if (rdev->ena_gpio_state) {
2564 ret = regulator_ena_gpio_ctrl(rdev, false);
2565 if (ret < 0)
2566 return ret;
2567 rdev->ena_gpio_state = 0;
2568 }
2569
2570 } else if (rdev->desc->ops->disable) {
2571 ret = rdev->desc->ops->disable(rdev);
2572 if (ret != 0)
2573 return ret;
2574 }
2575
2576 /* cares about last_off_jiffy only if off_on_delay is required by
2577 * device.
2578 */
2579 if (rdev->desc->off_on_delay)
2580 rdev->last_off_jiffy = jiffies;
2581
2582 trace_regulator_disable_complete(rdev_get_name(rdev));
2583
2584 return 0;
2585}
2586
2587/* locks held by regulator_disable() */
2588static int _regulator_disable(struct regulator *regulator)
2589{
2590 struct regulator_dev *rdev = regulator->rdev;
2591 int ret = 0;
2592
2593 lockdep_assert_held_once(&rdev->mutex.base);
2594
2595 if (WARN(rdev->use_count <= 0,
2596 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2597 return -EIO;
2598
2599 /* are we the last user and permitted to disable ? */
2600 if (rdev->use_count == 1 &&
2601 (rdev->constraints && !rdev->constraints->always_on)) {
2602
2603 /* we are last user */
2604 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2605 ret = _notifier_call_chain(rdev,
2606 REGULATOR_EVENT_PRE_DISABLE,
2607 NULL);
2608 if (ret & NOTIFY_STOP_MASK)
2609 return -EINVAL;
2610
2611 ret = _regulator_do_disable(rdev);
2612 if (ret < 0) {
2613 rdev_err(rdev, "failed to disable\n");
2614 _notifier_call_chain(rdev,
2615 REGULATOR_EVENT_ABORT_DISABLE,
2616 NULL);
2617 return ret;
2618 }
2619 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2620 NULL);
2621 }
2622
2623 rdev->use_count = 0;
2624 } else if (rdev->use_count > 1) {
2625 rdev->use_count--;
2626 }
2627
2628 if (ret == 0)
2629 ret = _regulator_handle_consumer_disable(regulator);
2630
2631 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2632 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2633
2634 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2635 ret = _regulator_disable(rdev->supply);
2636
2637 return ret;
2638}
2639
2640/**
2641 * regulator_disable - disable regulator output
2642 * @regulator: regulator source
2643 *
2644 * Disable the regulator output voltage or current. Calls to
2645 * regulator_enable() must be balanced with calls to
2646 * regulator_disable().
2647 *
2648 * NOTE: this will only disable the regulator output if no other consumer
2649 * devices have it enabled, the regulator device supports disabling and
2650 * machine constraints permit this operation.
2651 */
2652int regulator_disable(struct regulator *regulator)
2653{
2654 struct regulator_dev *rdev = regulator->rdev;
2655 struct ww_acquire_ctx ww_ctx;
2656 int ret;
2657
2658 regulator_lock_dependent(rdev, &ww_ctx);
2659 ret = _regulator_disable(regulator);
2660 regulator_unlock_dependent(rdev, &ww_ctx);
2661
2662 return ret;
2663}
2664EXPORT_SYMBOL_GPL(regulator_disable);
2665
2666/* locks held by regulator_force_disable() */
2667static int _regulator_force_disable(struct regulator_dev *rdev)
2668{
2669 int ret = 0;
2670
2671 lockdep_assert_held_once(&rdev->mutex.base);
2672
2673 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2674 REGULATOR_EVENT_PRE_DISABLE, NULL);
2675 if (ret & NOTIFY_STOP_MASK)
2676 return -EINVAL;
2677
2678 ret = _regulator_do_disable(rdev);
2679 if (ret < 0) {
2680 rdev_err(rdev, "failed to force disable\n");
2681 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2682 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2683 return ret;
2684 }
2685
2686 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2687 REGULATOR_EVENT_DISABLE, NULL);
2688
2689 return 0;
2690}
2691
2692/**
2693 * regulator_force_disable - force disable regulator output
2694 * @regulator: regulator source
2695 *
2696 * Forcibly disable the regulator output voltage or current.
2697 * NOTE: this *will* disable the regulator output even if other consumer
2698 * devices have it enabled. This should be used for situations when device
2699 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2700 */
2701int regulator_force_disable(struct regulator *regulator)
2702{
2703 struct regulator_dev *rdev = regulator->rdev;
2704 struct ww_acquire_ctx ww_ctx;
2705 int ret;
2706
2707 regulator_lock_dependent(rdev, &ww_ctx);
2708
2709 ret = _regulator_force_disable(regulator->rdev);
2710
2711 if (rdev->coupling_desc.n_coupled > 1)
2712 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2713
2714 if (regulator->uA_load) {
2715 regulator->uA_load = 0;
2716 ret = drms_uA_update(rdev);
2717 }
2718
2719 if (rdev->use_count != 0 && rdev->supply)
2720 _regulator_disable(rdev->supply);
2721
2722 regulator_unlock_dependent(rdev, &ww_ctx);
2723
2724 return ret;
2725}
2726EXPORT_SYMBOL_GPL(regulator_force_disable);
2727
2728static void regulator_disable_work(struct work_struct *work)
2729{
2730 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2731 disable_work.work);
2732 struct ww_acquire_ctx ww_ctx;
2733 int count, i, ret;
2734 struct regulator *regulator;
2735 int total_count = 0;
2736
2737 regulator_lock_dependent(rdev, &ww_ctx);
2738
2739 /*
2740 * Workqueue functions queue the new work instance while the previous
2741 * work instance is being processed. Cancel the queued work instance
2742 * as the work instance under processing does the job of the queued
2743 * work instance.
2744 */
2745 cancel_delayed_work(&rdev->disable_work);
2746
2747 list_for_each_entry(regulator, &rdev->consumer_list, list) {
2748 count = regulator->deferred_disables;
2749
2750 if (!count)
2751 continue;
2752
2753 total_count += count;
2754 regulator->deferred_disables = 0;
2755
2756 for (i = 0; i < count; i++) {
2757 ret = _regulator_disable(regulator);
2758 if (ret != 0)
2759 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2760 }
2761 }
2762 WARN_ON(!total_count);
2763
2764 if (rdev->coupling_desc.n_coupled > 1)
2765 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2766
2767 regulator_unlock_dependent(rdev, &ww_ctx);
2768}
2769
2770/**
2771 * regulator_disable_deferred - disable regulator output with delay
2772 * @regulator: regulator source
2773 * @ms: milliseconds until the regulator is disabled
2774 *
2775 * Execute regulator_disable() on the regulator after a delay. This
2776 * is intended for use with devices that require some time to quiesce.
2777 *
2778 * NOTE: this will only disable the regulator output if no other consumer
2779 * devices have it enabled, the regulator device supports disabling and
2780 * machine constraints permit this operation.
2781 */
2782int regulator_disable_deferred(struct regulator *regulator, int ms)
2783{
2784 struct regulator_dev *rdev = regulator->rdev;
2785
2786 if (!ms)
2787 return regulator_disable(regulator);
2788
2789 regulator_lock(rdev);
2790 regulator->deferred_disables++;
2791 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2792 msecs_to_jiffies(ms));
2793 regulator_unlock(rdev);
2794
2795 return 0;
2796}
2797EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2798
2799static int _regulator_is_enabled(struct regulator_dev *rdev)
2800{
2801 /* A GPIO control always takes precedence */
2802 if (rdev->ena_pin)
2803 return rdev->ena_gpio_state;
2804
2805 /* If we don't know then assume that the regulator is always on */
2806 if (!rdev->desc->ops->is_enabled)
2807 return 1;
2808
2809 return rdev->desc->ops->is_enabled(rdev);
2810}
2811
2812static int _regulator_list_voltage(struct regulator_dev *rdev,
2813 unsigned selector, int lock)
2814{
2815 const struct regulator_ops *ops = rdev->desc->ops;
2816 int ret;
2817
2818 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2819 return rdev->desc->fixed_uV;
2820
2821 if (ops->list_voltage) {
2822 if (selector >= rdev->desc->n_voltages)
2823 return -EINVAL;
2824 if (lock)
2825 regulator_lock(rdev);
2826 ret = ops->list_voltage(rdev, selector);
2827 if (lock)
2828 regulator_unlock(rdev);
2829 } else if (rdev->is_switch && rdev->supply) {
2830 ret = _regulator_list_voltage(rdev->supply->rdev,
2831 selector, lock);
2832 } else {
2833 return -EINVAL;
2834 }
2835
2836 if (ret > 0) {
2837 if (ret < rdev->constraints->min_uV)
2838 ret = 0;
2839 else if (ret > rdev->constraints->max_uV)
2840 ret = 0;
2841 }
2842
2843 return ret;
2844}
2845
2846/**
2847 * regulator_is_enabled - is the regulator output enabled
2848 * @regulator: regulator source
2849 *
2850 * Returns positive if the regulator driver backing the source/client
2851 * has requested that the device be enabled, zero if it hasn't, else a
2852 * negative errno code.
2853 *
2854 * Note that the device backing this regulator handle can have multiple
2855 * users, so it might be enabled even if regulator_enable() was never
2856 * called for this particular source.
2857 */
2858int regulator_is_enabled(struct regulator *regulator)
2859{
2860 int ret;
2861
2862 if (regulator->always_on)
2863 return 1;
2864
2865 regulator_lock(regulator->rdev);
2866 ret = _regulator_is_enabled(regulator->rdev);
2867 regulator_unlock(regulator->rdev);
2868
2869 return ret;
2870}
2871EXPORT_SYMBOL_GPL(regulator_is_enabled);
2872
2873/**
2874 * regulator_count_voltages - count regulator_list_voltage() selectors
2875 * @regulator: regulator source
2876 *
2877 * Returns number of selectors, or negative errno. Selectors are
2878 * numbered starting at zero, and typically correspond to bitfields
2879 * in hardware registers.
2880 */
2881int regulator_count_voltages(struct regulator *regulator)
2882{
2883 struct regulator_dev *rdev = regulator->rdev;
2884
2885 if (rdev->desc->n_voltages)
2886 return rdev->desc->n_voltages;
2887
2888 if (!rdev->is_switch || !rdev->supply)
2889 return -EINVAL;
2890
2891 return regulator_count_voltages(rdev->supply);
2892}
2893EXPORT_SYMBOL_GPL(regulator_count_voltages);
2894
2895/**
2896 * regulator_list_voltage - enumerate supported voltages
2897 * @regulator: regulator source
2898 * @selector: identify voltage to list
2899 * Context: can sleep
2900 *
2901 * Returns a voltage that can be passed to @regulator_set_voltage(),
2902 * zero if this selector code can't be used on this system, or a
2903 * negative errno.
2904 */
2905int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2906{
2907 return _regulator_list_voltage(regulator->rdev, selector, 1);
2908}
2909EXPORT_SYMBOL_GPL(regulator_list_voltage);
2910
2911/**
2912 * regulator_get_regmap - get the regulator's register map
2913 * @regulator: regulator source
2914 *
2915 * Returns the register map for the given regulator, or an ERR_PTR value
2916 * if the regulator doesn't use regmap.
2917 */
2918struct regmap *regulator_get_regmap(struct regulator *regulator)
2919{
2920 struct regmap *map = regulator->rdev->regmap;
2921
2922 return map ? map : ERR_PTR(-EOPNOTSUPP);
2923}
2924
2925/**
2926 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2927 * @regulator: regulator source
2928 * @vsel_reg: voltage selector register, output parameter
2929 * @vsel_mask: mask for voltage selector bitfield, output parameter
2930 *
2931 * Returns the hardware register offset and bitmask used for setting the
2932 * regulator voltage. This might be useful when configuring voltage-scaling
2933 * hardware or firmware that can make I2C requests behind the kernel's back,
2934 * for example.
2935 *
2936 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2937 * and 0 is returned, otherwise a negative errno is returned.
2938 */
2939int regulator_get_hardware_vsel_register(struct regulator *regulator,
2940 unsigned *vsel_reg,
2941 unsigned *vsel_mask)
2942{
2943 struct regulator_dev *rdev = regulator->rdev;
2944 const struct regulator_ops *ops = rdev->desc->ops;
2945
2946 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2947 return -EOPNOTSUPP;
2948
2949 *vsel_reg = rdev->desc->vsel_reg;
2950 *vsel_mask = rdev->desc->vsel_mask;
2951
2952 return 0;
2953}
2954EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2955
2956/**
2957 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2958 * @regulator: regulator source
2959 * @selector: identify voltage to list
2960 *
2961 * Converts the selector to a hardware-specific voltage selector that can be
2962 * directly written to the regulator registers. The address of the voltage
2963 * register can be determined by calling @regulator_get_hardware_vsel_register.
2964 *
2965 * On error a negative errno is returned.
2966 */
2967int regulator_list_hardware_vsel(struct regulator *regulator,
2968 unsigned selector)
2969{
2970 struct regulator_dev *rdev = regulator->rdev;
2971 const struct regulator_ops *ops = rdev->desc->ops;
2972
2973 if (selector >= rdev->desc->n_voltages)
2974 return -EINVAL;
2975 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2976 return -EOPNOTSUPP;
2977
2978 return selector;
2979}
2980EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2981
2982/**
2983 * regulator_get_linear_step - return the voltage step size between VSEL values
2984 * @regulator: regulator source
2985 *
2986 * Returns the voltage step size between VSEL values for linear
2987 * regulators, or return 0 if the regulator isn't a linear regulator.
2988 */
2989unsigned int regulator_get_linear_step(struct regulator *regulator)
2990{
2991 struct regulator_dev *rdev = regulator->rdev;
2992
2993 return rdev->desc->uV_step;
2994}
2995EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2996
2997/**
2998 * regulator_is_supported_voltage - check if a voltage range can be supported
2999 *
3000 * @regulator: Regulator to check.
3001 * @min_uV: Minimum required voltage in uV.
3002 * @max_uV: Maximum required voltage in uV.
3003 *
3004 * Returns a boolean.
3005 */
3006int regulator_is_supported_voltage(struct regulator *regulator,
3007 int min_uV, int max_uV)
3008{
3009 struct regulator_dev *rdev = regulator->rdev;
3010 int i, voltages, ret;
3011
3012 /* If we can't change voltage check the current voltage */
3013 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3014 ret = regulator_get_voltage(regulator);
3015 if (ret >= 0)
3016 return min_uV <= ret && ret <= max_uV;
3017 else
3018 return ret;
3019 }
3020
3021 /* Any voltage within constrains range is fine? */
3022 if (rdev->desc->continuous_voltage_range)
3023 return min_uV >= rdev->constraints->min_uV &&
3024 max_uV <= rdev->constraints->max_uV;
3025
3026 ret = regulator_count_voltages(regulator);
3027 if (ret < 0)
3028 return 0;
3029 voltages = ret;
3030
3031 for (i = 0; i < voltages; i++) {
3032 ret = regulator_list_voltage(regulator, i);
3033
3034 if (ret >= min_uV && ret <= max_uV)
3035 return 1;
3036 }
3037
3038 return 0;
3039}
3040EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3041
3042static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3043 int max_uV)
3044{
3045 const struct regulator_desc *desc = rdev->desc;
3046
3047 if (desc->ops->map_voltage)
3048 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3049
3050 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3051 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3052
3053 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3054 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3055
3056 if (desc->ops->list_voltage ==
3057 regulator_list_voltage_pickable_linear_range)
3058 return regulator_map_voltage_pickable_linear_range(rdev,
3059 min_uV, max_uV);
3060
3061 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3062}
3063
3064static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3065 int min_uV, int max_uV,
3066 unsigned *selector)
3067{
3068 struct pre_voltage_change_data data;
3069 int ret;
3070
3071 data.old_uV = regulator_get_voltage_rdev(rdev);
3072 data.min_uV = min_uV;
3073 data.max_uV = max_uV;
3074 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3075 &data);
3076 if (ret & NOTIFY_STOP_MASK)
3077 return -EINVAL;
3078
3079 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3080 if (ret >= 0)
3081 return ret;
3082
3083 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3084 (void *)data.old_uV);
3085
3086 return ret;
3087}
3088
3089static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3090 int uV, unsigned selector)
3091{
3092 struct pre_voltage_change_data data;
3093 int ret;
3094
3095 data.old_uV = regulator_get_voltage_rdev(rdev);
3096 data.min_uV = uV;
3097 data.max_uV = uV;
3098 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3099 &data);
3100 if (ret & NOTIFY_STOP_MASK)
3101 return -EINVAL;
3102
3103 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3104 if (ret >= 0)
3105 return ret;
3106
3107 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3108 (void *)data.old_uV);
3109
3110 return ret;
3111}
3112
3113static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3114 int uV, int new_selector)
3115{
3116 const struct regulator_ops *ops = rdev->desc->ops;
3117 int diff, old_sel, curr_sel, ret;
3118
3119 /* Stepping is only needed if the regulator is enabled. */
3120 if (!_regulator_is_enabled(rdev))
3121 goto final_set;
3122
3123 if (!ops->get_voltage_sel)
3124 return -EINVAL;
3125
3126 old_sel = ops->get_voltage_sel(rdev);
3127 if (old_sel < 0)
3128 return old_sel;
3129
3130 diff = new_selector - old_sel;
3131 if (diff == 0)
3132 return 0; /* No change needed. */
3133
3134 if (diff > 0) {
3135 /* Stepping up. */
3136 for (curr_sel = old_sel + rdev->desc->vsel_step;
3137 curr_sel < new_selector;
3138 curr_sel += rdev->desc->vsel_step) {
3139 /*
3140 * Call the callback directly instead of using
3141 * _regulator_call_set_voltage_sel() as we don't
3142 * want to notify anyone yet. Same in the branch
3143 * below.
3144 */
3145 ret = ops->set_voltage_sel(rdev, curr_sel);
3146 if (ret)
3147 goto try_revert;
3148 }
3149 } else {
3150 /* Stepping down. */
3151 for (curr_sel = old_sel - rdev->desc->vsel_step;
3152 curr_sel > new_selector;
3153 curr_sel -= rdev->desc->vsel_step) {
3154 ret = ops->set_voltage_sel(rdev, curr_sel);
3155 if (ret)
3156 goto try_revert;
3157 }
3158 }
3159
3160final_set:
3161 /* The final selector will trigger the notifiers. */
3162 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3163
3164try_revert:
3165 /*
3166 * At least try to return to the previous voltage if setting a new
3167 * one failed.
3168 */
3169 (void)ops->set_voltage_sel(rdev, old_sel);
3170 return ret;
3171}
3172
3173static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3174 int old_uV, int new_uV)
3175{
3176 unsigned int ramp_delay = 0;
3177
3178 if (rdev->constraints->ramp_delay)
3179 ramp_delay = rdev->constraints->ramp_delay;
3180 else if (rdev->desc->ramp_delay)
3181 ramp_delay = rdev->desc->ramp_delay;
3182 else if (rdev->constraints->settling_time)
3183 return rdev->constraints->settling_time;
3184 else if (rdev->constraints->settling_time_up &&
3185 (new_uV > old_uV))
3186 return rdev->constraints->settling_time_up;
3187 else if (rdev->constraints->settling_time_down &&
3188 (new_uV < old_uV))
3189 return rdev->constraints->settling_time_down;
3190
3191 if (ramp_delay == 0) {
3192 rdev_dbg(rdev, "ramp_delay not set\n");
3193 return 0;
3194 }
3195
3196 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3197}
3198
3199static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3200 int min_uV, int max_uV)
3201{
3202 int ret;
3203 int delay = 0;
3204 int best_val = 0;
3205 unsigned int selector;
3206 int old_selector = -1;
3207 const struct regulator_ops *ops = rdev->desc->ops;
3208 int old_uV = regulator_get_voltage_rdev(rdev);
3209
3210 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3211
3212 min_uV += rdev->constraints->uV_offset;
3213 max_uV += rdev->constraints->uV_offset;
3214
3215 /*
3216 * If we can't obtain the old selector there is not enough
3217 * info to call set_voltage_time_sel().
3218 */
3219 if (_regulator_is_enabled(rdev) &&
3220 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3221 old_selector = ops->get_voltage_sel(rdev);
3222 if (old_selector < 0)
3223 return old_selector;
3224 }
3225
3226 if (ops->set_voltage) {
3227 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3228 &selector);
3229
3230 if (ret >= 0) {
3231 if (ops->list_voltage)
3232 best_val = ops->list_voltage(rdev,
3233 selector);
3234 else
3235 best_val = regulator_get_voltage_rdev(rdev);
3236 }
3237
3238 } else if (ops->set_voltage_sel) {
3239 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3240 if (ret >= 0) {
3241 best_val = ops->list_voltage(rdev, ret);
3242 if (min_uV <= best_val && max_uV >= best_val) {
3243 selector = ret;
3244 if (old_selector == selector)
3245 ret = 0;
3246 else if (rdev->desc->vsel_step)
3247 ret = _regulator_set_voltage_sel_step(
3248 rdev, best_val, selector);
3249 else
3250 ret = _regulator_call_set_voltage_sel(
3251 rdev, best_val, selector);
3252 } else {
3253 ret = -EINVAL;
3254 }
3255 }
3256 } else {
3257 ret = -EINVAL;
3258 }
3259
3260 if (ret)
3261 goto out;
3262
3263 if (ops->set_voltage_time_sel) {
3264 /*
3265 * Call set_voltage_time_sel if successfully obtained
3266 * old_selector
3267 */
3268 if (old_selector >= 0 && old_selector != selector)
3269 delay = ops->set_voltage_time_sel(rdev, old_selector,
3270 selector);
3271 } else {
3272 if (old_uV != best_val) {
3273 if (ops->set_voltage_time)
3274 delay = ops->set_voltage_time(rdev, old_uV,
3275 best_val);
3276 else
3277 delay = _regulator_set_voltage_time(rdev,
3278 old_uV,
3279 best_val);
3280 }
3281 }
3282
3283 if (delay < 0) {
3284 rdev_warn(rdev, "failed to get delay: %d\n", delay);
3285 delay = 0;
3286 }
3287
3288 /* Insert any necessary delays */
3289 if (delay >= 1000) {
3290 mdelay(delay / 1000);
3291 udelay(delay % 1000);
3292 } else if (delay) {
3293 udelay(delay);
3294 }
3295
3296 if (best_val >= 0) {
3297 unsigned long data = best_val;
3298
3299 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3300 (void *)data);
3301 }
3302
3303out:
3304 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3305
3306 return ret;
3307}
3308
3309static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3310 int min_uV, int max_uV, suspend_state_t state)
3311{
3312 struct regulator_state *rstate;
3313 int uV, sel;
3314
3315 rstate = regulator_get_suspend_state(rdev, state);
3316 if (rstate == NULL)
3317 return -EINVAL;
3318
3319 if (min_uV < rstate->min_uV)
3320 min_uV = rstate->min_uV;
3321 if (max_uV > rstate->max_uV)
3322 max_uV = rstate->max_uV;
3323
3324 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3325 if (sel < 0)
3326 return sel;
3327
3328 uV = rdev->desc->ops->list_voltage(rdev, sel);
3329 if (uV >= min_uV && uV <= max_uV)
3330 rstate->uV = uV;
3331
3332 return 0;
3333}
3334
3335static int regulator_set_voltage_unlocked(struct regulator *regulator,
3336 int min_uV, int max_uV,
3337 suspend_state_t state)
3338{
3339 struct regulator_dev *rdev = regulator->rdev;
3340 struct regulator_voltage *voltage = ®ulator->voltage[state];
3341 int ret = 0;
3342 int old_min_uV, old_max_uV;
3343 int current_uV;
3344
3345 /* If we're setting the same range as last time the change
3346 * should be a noop (some cpufreq implementations use the same
3347 * voltage for multiple frequencies, for example).
3348 */
3349 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3350 goto out;
3351
3352 /* If we're trying to set a range that overlaps the current voltage,
3353 * return successfully even though the regulator does not support
3354 * changing the voltage.
3355 */
3356 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3357 current_uV = regulator_get_voltage_rdev(rdev);
3358 if (min_uV <= current_uV && current_uV <= max_uV) {
3359 voltage->min_uV = min_uV;
3360 voltage->max_uV = max_uV;
3361 goto out;
3362 }
3363 }
3364
3365 /* sanity check */
3366 if (!rdev->desc->ops->set_voltage &&
3367 !rdev->desc->ops->set_voltage_sel) {
3368 ret = -EINVAL;
3369 goto out;
3370 }
3371
3372 /* constraints check */
3373 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3374 if (ret < 0)
3375 goto out;
3376
3377 /* restore original values in case of error */
3378 old_min_uV = voltage->min_uV;
3379 old_max_uV = voltage->max_uV;
3380 voltage->min_uV = min_uV;
3381 voltage->max_uV = max_uV;
3382
3383 /* for not coupled regulators this will just set the voltage */
3384 ret = regulator_balance_voltage(rdev, state);
3385 if (ret < 0) {
3386 voltage->min_uV = old_min_uV;
3387 voltage->max_uV = old_max_uV;
3388 }
3389
3390out:
3391 return ret;
3392}
3393
3394int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3395 int max_uV, suspend_state_t state)
3396{
3397 int best_supply_uV = 0;
3398 int supply_change_uV = 0;
3399 int ret;
3400
3401 if (rdev->supply &&
3402 regulator_ops_is_valid(rdev->supply->rdev,
3403 REGULATOR_CHANGE_VOLTAGE) &&
3404 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3405 rdev->desc->ops->get_voltage_sel))) {
3406 int current_supply_uV;
3407 int selector;
3408
3409 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3410 if (selector < 0) {
3411 ret = selector;
3412 goto out;
3413 }
3414
3415 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3416 if (best_supply_uV < 0) {
3417 ret = best_supply_uV;
3418 goto out;
3419 }
3420
3421 best_supply_uV += rdev->desc->min_dropout_uV;
3422
3423 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3424 if (current_supply_uV < 0) {
3425 ret = current_supply_uV;
3426 goto out;
3427 }
3428
3429 supply_change_uV = best_supply_uV - current_supply_uV;
3430 }
3431
3432 if (supply_change_uV > 0) {
3433 ret = regulator_set_voltage_unlocked(rdev->supply,
3434 best_supply_uV, INT_MAX, state);
3435 if (ret) {
3436 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3437 ret);
3438 goto out;
3439 }
3440 }
3441
3442 if (state == PM_SUSPEND_ON)
3443 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3444 else
3445 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3446 max_uV, state);
3447 if (ret < 0)
3448 goto out;
3449
3450 if (supply_change_uV < 0) {
3451 ret = regulator_set_voltage_unlocked(rdev->supply,
3452 best_supply_uV, INT_MAX, state);
3453 if (ret)
3454 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3455 ret);
3456 /* No need to fail here */
3457 ret = 0;
3458 }
3459
3460out:
3461 return ret;
3462}
3463
3464static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3465 int *current_uV, int *min_uV)
3466{
3467 struct regulation_constraints *constraints = rdev->constraints;
3468
3469 /* Limit voltage change only if necessary */
3470 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3471 return 1;
3472
3473 if (*current_uV < 0) {
3474 *current_uV = regulator_get_voltage_rdev(rdev);
3475
3476 if (*current_uV < 0)
3477 return *current_uV;
3478 }
3479
3480 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3481 return 1;
3482
3483 /* Clamp target voltage within the given step */
3484 if (*current_uV < *min_uV)
3485 *min_uV = min(*current_uV + constraints->max_uV_step,
3486 *min_uV);
3487 else
3488 *min_uV = max(*current_uV - constraints->max_uV_step,
3489 *min_uV);
3490
3491 return 0;
3492}
3493
3494static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3495 int *current_uV,
3496 int *min_uV, int *max_uV,
3497 suspend_state_t state,
3498 int n_coupled)
3499{
3500 struct coupling_desc *c_desc = &rdev->coupling_desc;
3501 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3502 struct regulation_constraints *constraints = rdev->constraints;
3503 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3504 int max_current_uV = 0, min_current_uV = INT_MAX;
3505 int highest_min_uV = 0, target_uV, possible_uV;
3506 int i, ret, max_spread;
3507 bool done;
3508
3509 *current_uV = -1;
3510
3511 /*
3512 * If there are no coupled regulators, simply set the voltage
3513 * demanded by consumers.
3514 */
3515 if (n_coupled == 1) {
3516 /*
3517 * If consumers don't provide any demands, set voltage
3518 * to min_uV
3519 */
3520 desired_min_uV = constraints->min_uV;
3521 desired_max_uV = constraints->max_uV;
3522
3523 ret = regulator_check_consumers(rdev,
3524 &desired_min_uV,
3525 &desired_max_uV, state);
3526 if (ret < 0)
3527 return ret;
3528
3529 possible_uV = desired_min_uV;
3530 done = true;
3531
3532 goto finish;
3533 }
3534
3535 /* Find highest min desired voltage */
3536 for (i = 0; i < n_coupled; i++) {
3537 int tmp_min = 0;
3538 int tmp_max = INT_MAX;
3539
3540 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3541
3542 ret = regulator_check_consumers(c_rdevs[i],
3543 &tmp_min,
3544 &tmp_max, state);
3545 if (ret < 0)
3546 return ret;
3547
3548 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3549 if (ret < 0)
3550 return ret;
3551
3552 highest_min_uV = max(highest_min_uV, tmp_min);
3553
3554 if (i == 0) {
3555 desired_min_uV = tmp_min;
3556 desired_max_uV = tmp_max;
3557 }
3558 }
3559
3560 max_spread = constraints->max_spread[0];
3561
3562 /*
3563 * Let target_uV be equal to the desired one if possible.
3564 * If not, set it to minimum voltage, allowed by other coupled
3565 * regulators.
3566 */
3567 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3568
3569 /*
3570 * Find min and max voltages, which currently aren't violating
3571 * max_spread.
3572 */
3573 for (i = 1; i < n_coupled; i++) {
3574 int tmp_act;
3575
3576 if (!_regulator_is_enabled(c_rdevs[i]))
3577 continue;
3578
3579 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3580 if (tmp_act < 0)
3581 return tmp_act;
3582
3583 min_current_uV = min(tmp_act, min_current_uV);
3584 max_current_uV = max(tmp_act, max_current_uV);
3585 }
3586
3587 /* There aren't any other regulators enabled */
3588 if (max_current_uV == 0) {
3589 possible_uV = target_uV;
3590 } else {
3591 /*
3592 * Correct target voltage, so as it currently isn't
3593 * violating max_spread
3594 */
3595 possible_uV = max(target_uV, max_current_uV - max_spread);
3596 possible_uV = min(possible_uV, min_current_uV + max_spread);
3597 }
3598
3599 if (possible_uV > desired_max_uV)
3600 return -EINVAL;
3601
3602 done = (possible_uV == target_uV);
3603 desired_min_uV = possible_uV;
3604
3605finish:
3606 /* Apply max_uV_step constraint if necessary */
3607 if (state == PM_SUSPEND_ON) {
3608 ret = regulator_limit_voltage_step(rdev, current_uV,
3609 &desired_min_uV);
3610 if (ret < 0)
3611 return ret;
3612
3613 if (ret == 0)
3614 done = false;
3615 }
3616
3617 /* Set current_uV if wasn't done earlier in the code and if necessary */
3618 if (n_coupled > 1 && *current_uV == -1) {
3619
3620 if (_regulator_is_enabled(rdev)) {
3621 ret = regulator_get_voltage_rdev(rdev);
3622 if (ret < 0)
3623 return ret;
3624
3625 *current_uV = ret;
3626 } else {
3627 *current_uV = desired_min_uV;
3628 }
3629 }
3630
3631 *min_uV = desired_min_uV;
3632 *max_uV = desired_max_uV;
3633
3634 return done;
3635}
3636
3637static int regulator_balance_voltage(struct regulator_dev *rdev,
3638 suspend_state_t state)
3639{
3640 struct regulator_dev **c_rdevs;
3641 struct regulator_dev *best_rdev;
3642 struct coupling_desc *c_desc = &rdev->coupling_desc;
3643 struct regulator_coupler *coupler = c_desc->coupler;
3644 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3645 unsigned int delta, best_delta;
3646 unsigned long c_rdev_done = 0;
3647 bool best_c_rdev_done;
3648
3649 c_rdevs = c_desc->coupled_rdevs;
3650 n_coupled = c_desc->n_coupled;
3651
3652 /*
3653 * If system is in a state other than PM_SUSPEND_ON, don't check
3654 * other coupled regulators.
3655 */
3656 if (state != PM_SUSPEND_ON)
3657 n_coupled = 1;
3658
3659 if (c_desc->n_resolved < n_coupled) {
3660 rdev_err(rdev, "Not all coupled regulators registered\n");
3661 return -EPERM;
3662 }
3663
3664 /* Invoke custom balancer for customized couplers */
3665 if (coupler && coupler->balance_voltage)
3666 return coupler->balance_voltage(coupler, rdev, state);
3667
3668 /*
3669 * Find the best possible voltage change on each loop. Leave the loop
3670 * if there isn't any possible change.
3671 */
3672 do {
3673 best_c_rdev_done = false;
3674 best_delta = 0;
3675 best_min_uV = 0;
3676 best_max_uV = 0;
3677 best_c_rdev = 0;
3678 best_rdev = NULL;
3679
3680 /*
3681 * Find highest difference between optimal voltage
3682 * and current voltage.
3683 */
3684 for (i = 0; i < n_coupled; i++) {
3685 /*
3686 * optimal_uV is the best voltage that can be set for
3687 * i-th regulator at the moment without violating
3688 * max_spread constraint in order to balance
3689 * the coupled voltages.
3690 */
3691 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3692
3693 if (test_bit(i, &c_rdev_done))
3694 continue;
3695
3696 ret = regulator_get_optimal_voltage(c_rdevs[i],
3697 ¤t_uV,
3698 &optimal_uV,
3699 &optimal_max_uV,
3700 state, n_coupled);
3701 if (ret < 0)
3702 goto out;
3703
3704 delta = abs(optimal_uV - current_uV);
3705
3706 if (delta && best_delta <= delta) {
3707 best_c_rdev_done = ret;
3708 best_delta = delta;
3709 best_rdev = c_rdevs[i];
3710 best_min_uV = optimal_uV;
3711 best_max_uV = optimal_max_uV;
3712 best_c_rdev = i;
3713 }
3714 }
3715
3716 /* Nothing to change, return successfully */
3717 if (!best_rdev) {
3718 ret = 0;
3719 goto out;
3720 }
3721
3722 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3723 best_max_uV, state);
3724
3725 if (ret < 0)
3726 goto out;
3727
3728 if (best_c_rdev_done)
3729 set_bit(best_c_rdev, &c_rdev_done);
3730
3731 } while (n_coupled > 1);
3732
3733out:
3734 return ret;
3735}
3736
3737/**
3738 * regulator_set_voltage - set regulator output voltage
3739 * @regulator: regulator source
3740 * @min_uV: Minimum required voltage in uV
3741 * @max_uV: Maximum acceptable voltage in uV
3742 *
3743 * Sets a voltage regulator to the desired output voltage. This can be set
3744 * during any regulator state. IOW, regulator can be disabled or enabled.
3745 *
3746 * If the regulator is enabled then the voltage will change to the new value
3747 * immediately otherwise if the regulator is disabled the regulator will
3748 * output at the new voltage when enabled.
3749 *
3750 * NOTE: If the regulator is shared between several devices then the lowest
3751 * request voltage that meets the system constraints will be used.
3752 * Regulator system constraints must be set for this regulator before
3753 * calling this function otherwise this call will fail.
3754 */
3755int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3756{
3757 struct ww_acquire_ctx ww_ctx;
3758 int ret;
3759
3760 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3761
3762 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3763 PM_SUSPEND_ON);
3764
3765 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3766
3767 return ret;
3768}
3769EXPORT_SYMBOL_GPL(regulator_set_voltage);
3770
3771static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3772 suspend_state_t state, bool en)
3773{
3774 struct regulator_state *rstate;
3775
3776 rstate = regulator_get_suspend_state(rdev, state);
3777 if (rstate == NULL)
3778 return -EINVAL;
3779
3780 if (!rstate->changeable)
3781 return -EPERM;
3782
3783 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3784
3785 return 0;
3786}
3787
3788int regulator_suspend_enable(struct regulator_dev *rdev,
3789 suspend_state_t state)
3790{
3791 return regulator_suspend_toggle(rdev, state, true);
3792}
3793EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3794
3795int regulator_suspend_disable(struct regulator_dev *rdev,
3796 suspend_state_t state)
3797{
3798 struct regulator *regulator;
3799 struct regulator_voltage *voltage;
3800
3801 /*
3802 * if any consumer wants this regulator device keeping on in
3803 * suspend states, don't set it as disabled.
3804 */
3805 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3806 voltage = ®ulator->voltage[state];
3807 if (voltage->min_uV || voltage->max_uV)
3808 return 0;
3809 }
3810
3811 return regulator_suspend_toggle(rdev, state, false);
3812}
3813EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3814
3815static int _regulator_set_suspend_voltage(struct regulator *regulator,
3816 int min_uV, int max_uV,
3817 suspend_state_t state)
3818{
3819 struct regulator_dev *rdev = regulator->rdev;
3820 struct regulator_state *rstate;
3821
3822 rstate = regulator_get_suspend_state(rdev, state);
3823 if (rstate == NULL)
3824 return -EINVAL;
3825
3826 if (rstate->min_uV == rstate->max_uV) {
3827 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3828 return -EPERM;
3829 }
3830
3831 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3832}
3833
3834int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3835 int max_uV, suspend_state_t state)
3836{
3837 struct ww_acquire_ctx ww_ctx;
3838 int ret;
3839
3840 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3841 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3842 return -EINVAL;
3843
3844 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3845
3846 ret = _regulator_set_suspend_voltage(regulator, min_uV,
3847 max_uV, state);
3848
3849 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3850
3851 return ret;
3852}
3853EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3854
3855/**
3856 * regulator_set_voltage_time - get raise/fall time
3857 * @regulator: regulator source
3858 * @old_uV: starting voltage in microvolts
3859 * @new_uV: target voltage in microvolts
3860 *
3861 * Provided with the starting and ending voltage, this function attempts to
3862 * calculate the time in microseconds required to rise or fall to this new
3863 * voltage.
3864 */
3865int regulator_set_voltage_time(struct regulator *regulator,
3866 int old_uV, int new_uV)
3867{
3868 struct regulator_dev *rdev = regulator->rdev;
3869 const struct regulator_ops *ops = rdev->desc->ops;
3870 int old_sel = -1;
3871 int new_sel = -1;
3872 int voltage;
3873 int i;
3874
3875 if (ops->set_voltage_time)
3876 return ops->set_voltage_time(rdev, old_uV, new_uV);
3877 else if (!ops->set_voltage_time_sel)
3878 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3879
3880 /* Currently requires operations to do this */
3881 if (!ops->list_voltage || !rdev->desc->n_voltages)
3882 return -EINVAL;
3883
3884 for (i = 0; i < rdev->desc->n_voltages; i++) {
3885 /* We only look for exact voltage matches here */
3886 voltage = regulator_list_voltage(regulator, i);
3887 if (voltage < 0)
3888 return -EINVAL;
3889 if (voltage == 0)
3890 continue;
3891 if (voltage == old_uV)
3892 old_sel = i;
3893 if (voltage == new_uV)
3894 new_sel = i;
3895 }
3896
3897 if (old_sel < 0 || new_sel < 0)
3898 return -EINVAL;
3899
3900 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3901}
3902EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3903
3904/**
3905 * regulator_set_voltage_time_sel - get raise/fall time
3906 * @rdev: regulator source device
3907 * @old_selector: selector for starting voltage
3908 * @new_selector: selector for target voltage
3909 *
3910 * Provided with the starting and target voltage selectors, this function
3911 * returns time in microseconds required to rise or fall to this new voltage
3912 *
3913 * Drivers providing ramp_delay in regulation_constraints can use this as their
3914 * set_voltage_time_sel() operation.
3915 */
3916int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3917 unsigned int old_selector,
3918 unsigned int new_selector)
3919{
3920 int old_volt, new_volt;
3921
3922 /* sanity check */
3923 if (!rdev->desc->ops->list_voltage)
3924 return -EINVAL;
3925
3926 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3927 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3928
3929 if (rdev->desc->ops->set_voltage_time)
3930 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3931 new_volt);
3932 else
3933 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3934}
3935EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3936
3937/**
3938 * regulator_sync_voltage - re-apply last regulator output voltage
3939 * @regulator: regulator source
3940 *
3941 * Re-apply the last configured voltage. This is intended to be used
3942 * where some external control source the consumer is cooperating with
3943 * has caused the configured voltage to change.
3944 */
3945int regulator_sync_voltage(struct regulator *regulator)
3946{
3947 struct regulator_dev *rdev = regulator->rdev;
3948 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
3949 int ret, min_uV, max_uV;
3950
3951 regulator_lock(rdev);
3952
3953 if (!rdev->desc->ops->set_voltage &&
3954 !rdev->desc->ops->set_voltage_sel) {
3955 ret = -EINVAL;
3956 goto out;
3957 }
3958
3959 /* This is only going to work if we've had a voltage configured. */
3960 if (!voltage->min_uV && !voltage->max_uV) {
3961 ret = -EINVAL;
3962 goto out;
3963 }
3964
3965 min_uV = voltage->min_uV;
3966 max_uV = voltage->max_uV;
3967
3968 /* This should be a paranoia check... */
3969 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3970 if (ret < 0)
3971 goto out;
3972
3973 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3974 if (ret < 0)
3975 goto out;
3976
3977 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3978
3979out:
3980 regulator_unlock(rdev);
3981 return ret;
3982}
3983EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3984
3985int regulator_get_voltage_rdev(struct regulator_dev *rdev)
3986{
3987 int sel, ret;
3988 bool bypassed;
3989
3990 if (rdev->desc->ops->get_bypass) {
3991 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3992 if (ret < 0)
3993 return ret;
3994 if (bypassed) {
3995 /* if bypassed the regulator must have a supply */
3996 if (!rdev->supply) {
3997 rdev_err(rdev,
3998 "bypassed regulator has no supply!\n");
3999 return -EPROBE_DEFER;
4000 }
4001
4002 return regulator_get_voltage_rdev(rdev->supply->rdev);
4003 }
4004 }
4005
4006 if (rdev->desc->ops->get_voltage_sel) {
4007 sel = rdev->desc->ops->get_voltage_sel(rdev);
4008 if (sel < 0)
4009 return sel;
4010 ret = rdev->desc->ops->list_voltage(rdev, sel);
4011 } else if (rdev->desc->ops->get_voltage) {
4012 ret = rdev->desc->ops->get_voltage(rdev);
4013 } else if (rdev->desc->ops->list_voltage) {
4014 ret = rdev->desc->ops->list_voltage(rdev, 0);
4015 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4016 ret = rdev->desc->fixed_uV;
4017 } else if (rdev->supply) {
4018 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4019 } else {
4020 return -EINVAL;
4021 }
4022
4023 if (ret < 0)
4024 return ret;
4025 return ret - rdev->constraints->uV_offset;
4026}
4027
4028/**
4029 * regulator_get_voltage - get regulator output voltage
4030 * @regulator: regulator source
4031 *
4032 * This returns the current regulator voltage in uV.
4033 *
4034 * NOTE: If the regulator is disabled it will return the voltage value. This
4035 * function should not be used to determine regulator state.
4036 */
4037int regulator_get_voltage(struct regulator *regulator)
4038{
4039 struct ww_acquire_ctx ww_ctx;
4040 int ret;
4041
4042 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4043 ret = regulator_get_voltage_rdev(regulator->rdev);
4044 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4045
4046 return ret;
4047}
4048EXPORT_SYMBOL_GPL(regulator_get_voltage);
4049
4050/**
4051 * regulator_set_current_limit - set regulator output current limit
4052 * @regulator: regulator source
4053 * @min_uA: Minimum supported current in uA
4054 * @max_uA: Maximum supported current in uA
4055 *
4056 * Sets current sink to the desired output current. This can be set during
4057 * any regulator state. IOW, regulator can be disabled or enabled.
4058 *
4059 * If the regulator is enabled then the current will change to the new value
4060 * immediately otherwise if the regulator is disabled the regulator will
4061 * output at the new current when enabled.
4062 *
4063 * NOTE: Regulator system constraints must be set for this regulator before
4064 * calling this function otherwise this call will fail.
4065 */
4066int regulator_set_current_limit(struct regulator *regulator,
4067 int min_uA, int max_uA)
4068{
4069 struct regulator_dev *rdev = regulator->rdev;
4070 int ret;
4071
4072 regulator_lock(rdev);
4073
4074 /* sanity check */
4075 if (!rdev->desc->ops->set_current_limit) {
4076 ret = -EINVAL;
4077 goto out;
4078 }
4079
4080 /* constraints check */
4081 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4082 if (ret < 0)
4083 goto out;
4084
4085 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4086out:
4087 regulator_unlock(rdev);
4088 return ret;
4089}
4090EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4091
4092static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4093{
4094 /* sanity check */
4095 if (!rdev->desc->ops->get_current_limit)
4096 return -EINVAL;
4097
4098 return rdev->desc->ops->get_current_limit(rdev);
4099}
4100
4101static int _regulator_get_current_limit(struct regulator_dev *rdev)
4102{
4103 int ret;
4104
4105 regulator_lock(rdev);
4106 ret = _regulator_get_current_limit_unlocked(rdev);
4107 regulator_unlock(rdev);
4108
4109 return ret;
4110}
4111
4112/**
4113 * regulator_get_current_limit - get regulator output current
4114 * @regulator: regulator source
4115 *
4116 * This returns the current supplied by the specified current sink in uA.
4117 *
4118 * NOTE: If the regulator is disabled it will return the current value. This
4119 * function should not be used to determine regulator state.
4120 */
4121int regulator_get_current_limit(struct regulator *regulator)
4122{
4123 return _regulator_get_current_limit(regulator->rdev);
4124}
4125EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4126
4127/**
4128 * regulator_set_mode - set regulator operating mode
4129 * @regulator: regulator source
4130 * @mode: operating mode - one of the REGULATOR_MODE constants
4131 *
4132 * Set regulator operating mode to increase regulator efficiency or improve
4133 * regulation performance.
4134 *
4135 * NOTE: Regulator system constraints must be set for this regulator before
4136 * calling this function otherwise this call will fail.
4137 */
4138int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4139{
4140 struct regulator_dev *rdev = regulator->rdev;
4141 int ret;
4142 int regulator_curr_mode;
4143
4144 regulator_lock(rdev);
4145
4146 /* sanity check */
4147 if (!rdev->desc->ops->set_mode) {
4148 ret = -EINVAL;
4149 goto out;
4150 }
4151
4152 /* return if the same mode is requested */
4153 if (rdev->desc->ops->get_mode) {
4154 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4155 if (regulator_curr_mode == mode) {
4156 ret = 0;
4157 goto out;
4158 }
4159 }
4160
4161 /* constraints check */
4162 ret = regulator_mode_constrain(rdev, &mode);
4163 if (ret < 0)
4164 goto out;
4165
4166 ret = rdev->desc->ops->set_mode(rdev, mode);
4167out:
4168 regulator_unlock(rdev);
4169 return ret;
4170}
4171EXPORT_SYMBOL_GPL(regulator_set_mode);
4172
4173static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4174{
4175 /* sanity check */
4176 if (!rdev->desc->ops->get_mode)
4177 return -EINVAL;
4178
4179 return rdev->desc->ops->get_mode(rdev);
4180}
4181
4182static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4183{
4184 int ret;
4185
4186 regulator_lock(rdev);
4187 ret = _regulator_get_mode_unlocked(rdev);
4188 regulator_unlock(rdev);
4189
4190 return ret;
4191}
4192
4193/**
4194 * regulator_get_mode - get regulator operating mode
4195 * @regulator: regulator source
4196 *
4197 * Get the current regulator operating mode.
4198 */
4199unsigned int regulator_get_mode(struct regulator *regulator)
4200{
4201 return _regulator_get_mode(regulator->rdev);
4202}
4203EXPORT_SYMBOL_GPL(regulator_get_mode);
4204
4205static int _regulator_get_error_flags(struct regulator_dev *rdev,
4206 unsigned int *flags)
4207{
4208 int ret;
4209
4210 regulator_lock(rdev);
4211
4212 /* sanity check */
4213 if (!rdev->desc->ops->get_error_flags) {
4214 ret = -EINVAL;
4215 goto out;
4216 }
4217
4218 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4219out:
4220 regulator_unlock(rdev);
4221 return ret;
4222}
4223
4224/**
4225 * regulator_get_error_flags - get regulator error information
4226 * @regulator: regulator source
4227 * @flags: pointer to store error flags
4228 *
4229 * Get the current regulator error information.
4230 */
4231int regulator_get_error_flags(struct regulator *regulator,
4232 unsigned int *flags)
4233{
4234 return _regulator_get_error_flags(regulator->rdev, flags);
4235}
4236EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4237
4238/**
4239 * regulator_set_load - set regulator load
4240 * @regulator: regulator source
4241 * @uA_load: load current
4242 *
4243 * Notifies the regulator core of a new device load. This is then used by
4244 * DRMS (if enabled by constraints) to set the most efficient regulator
4245 * operating mode for the new regulator loading.
4246 *
4247 * Consumer devices notify their supply regulator of the maximum power
4248 * they will require (can be taken from device datasheet in the power
4249 * consumption tables) when they change operational status and hence power
4250 * state. Examples of operational state changes that can affect power
4251 * consumption are :-
4252 *
4253 * o Device is opened / closed.
4254 * o Device I/O is about to begin or has just finished.
4255 * o Device is idling in between work.
4256 *
4257 * This information is also exported via sysfs to userspace.
4258 *
4259 * DRMS will sum the total requested load on the regulator and change
4260 * to the most efficient operating mode if platform constraints allow.
4261 *
4262 * NOTE: when a regulator consumer requests to have a regulator
4263 * disabled then any load that consumer requested no longer counts
4264 * toward the total requested load. If the regulator is re-enabled
4265 * then the previously requested load will start counting again.
4266 *
4267 * If a regulator is an always-on regulator then an individual consumer's
4268 * load will still be removed if that consumer is fully disabled.
4269 *
4270 * On error a negative errno is returned.
4271 */
4272int regulator_set_load(struct regulator *regulator, int uA_load)
4273{
4274 struct regulator_dev *rdev = regulator->rdev;
4275 int old_uA_load;
4276 int ret = 0;
4277
4278 regulator_lock(rdev);
4279 old_uA_load = regulator->uA_load;
4280 regulator->uA_load = uA_load;
4281 if (regulator->enable_count && old_uA_load != uA_load) {
4282 ret = drms_uA_update(rdev);
4283 if (ret < 0)
4284 regulator->uA_load = old_uA_load;
4285 }
4286 regulator_unlock(rdev);
4287
4288 return ret;
4289}
4290EXPORT_SYMBOL_GPL(regulator_set_load);
4291
4292/**
4293 * regulator_allow_bypass - allow the regulator to go into bypass mode
4294 *
4295 * @regulator: Regulator to configure
4296 * @enable: enable or disable bypass mode
4297 *
4298 * Allow the regulator to go into bypass mode if all other consumers
4299 * for the regulator also enable bypass mode and the machine
4300 * constraints allow this. Bypass mode means that the regulator is
4301 * simply passing the input directly to the output with no regulation.
4302 */
4303int regulator_allow_bypass(struct regulator *regulator, bool enable)
4304{
4305 struct regulator_dev *rdev = regulator->rdev;
4306 int ret = 0;
4307
4308 if (!rdev->desc->ops->set_bypass)
4309 return 0;
4310
4311 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4312 return 0;
4313
4314 regulator_lock(rdev);
4315
4316 if (enable && !regulator->bypass) {
4317 rdev->bypass_count++;
4318
4319 if (rdev->bypass_count == rdev->open_count) {
4320 ret = rdev->desc->ops->set_bypass(rdev, enable);
4321 if (ret != 0)
4322 rdev->bypass_count--;
4323 }
4324
4325 } else if (!enable && regulator->bypass) {
4326 rdev->bypass_count--;
4327
4328 if (rdev->bypass_count != rdev->open_count) {
4329 ret = rdev->desc->ops->set_bypass(rdev, enable);
4330 if (ret != 0)
4331 rdev->bypass_count++;
4332 }
4333 }
4334
4335 if (ret == 0)
4336 regulator->bypass = enable;
4337
4338 regulator_unlock(rdev);
4339
4340 return ret;
4341}
4342EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4343
4344/**
4345 * regulator_register_notifier - register regulator event notifier
4346 * @regulator: regulator source
4347 * @nb: notifier block
4348 *
4349 * Register notifier block to receive regulator events.
4350 */
4351int regulator_register_notifier(struct regulator *regulator,
4352 struct notifier_block *nb)
4353{
4354 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4355 nb);
4356}
4357EXPORT_SYMBOL_GPL(regulator_register_notifier);
4358
4359/**
4360 * regulator_unregister_notifier - unregister regulator event notifier
4361 * @regulator: regulator source
4362 * @nb: notifier block
4363 *
4364 * Unregister regulator event notifier block.
4365 */
4366int regulator_unregister_notifier(struct regulator *regulator,
4367 struct notifier_block *nb)
4368{
4369 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4370 nb);
4371}
4372EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4373
4374/* notify regulator consumers and downstream regulator consumers.
4375 * Note mutex must be held by caller.
4376 */
4377static int _notifier_call_chain(struct regulator_dev *rdev,
4378 unsigned long event, void *data)
4379{
4380 /* call rdev chain first */
4381 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4382}
4383
4384/**
4385 * regulator_bulk_get - get multiple regulator consumers
4386 *
4387 * @dev: Device to supply
4388 * @num_consumers: Number of consumers to register
4389 * @consumers: Configuration of consumers; clients are stored here.
4390 *
4391 * @return 0 on success, an errno on failure.
4392 *
4393 * This helper function allows drivers to get several regulator
4394 * consumers in one operation. If any of the regulators cannot be
4395 * acquired then any regulators that were allocated will be freed
4396 * before returning to the caller.
4397 */
4398int regulator_bulk_get(struct device *dev, int num_consumers,
4399 struct regulator_bulk_data *consumers)
4400{
4401 int i;
4402 int ret;
4403
4404 for (i = 0; i < num_consumers; i++)
4405 consumers[i].consumer = NULL;
4406
4407 for (i = 0; i < num_consumers; i++) {
4408 consumers[i].consumer = regulator_get(dev,
4409 consumers[i].supply);
4410 if (IS_ERR(consumers[i].consumer)) {
4411 ret = PTR_ERR(consumers[i].consumer);
4412 consumers[i].consumer = NULL;
4413 goto err;
4414 }
4415 }
4416
4417 return 0;
4418
4419err:
4420 if (ret != -EPROBE_DEFER)
4421 dev_err(dev, "Failed to get supply '%s': %d\n",
4422 consumers[i].supply, ret);
4423 else
4424 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4425 consumers[i].supply);
4426
4427 while (--i >= 0)
4428 regulator_put(consumers[i].consumer);
4429
4430 return ret;
4431}
4432EXPORT_SYMBOL_GPL(regulator_bulk_get);
4433
4434static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4435{
4436 struct regulator_bulk_data *bulk = data;
4437
4438 bulk->ret = regulator_enable(bulk->consumer);
4439}
4440
4441/**
4442 * regulator_bulk_enable - enable multiple regulator consumers
4443 *
4444 * @num_consumers: Number of consumers
4445 * @consumers: Consumer data; clients are stored here.
4446 * @return 0 on success, an errno on failure
4447 *
4448 * This convenience API allows consumers to enable multiple regulator
4449 * clients in a single API call. If any consumers cannot be enabled
4450 * then any others that were enabled will be disabled again prior to
4451 * return.
4452 */
4453int regulator_bulk_enable(int num_consumers,
4454 struct regulator_bulk_data *consumers)
4455{
4456 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4457 int i;
4458 int ret = 0;
4459
4460 for (i = 0; i < num_consumers; i++) {
4461 async_schedule_domain(regulator_bulk_enable_async,
4462 &consumers[i], &async_domain);
4463 }
4464
4465 async_synchronize_full_domain(&async_domain);
4466
4467 /* If any consumer failed we need to unwind any that succeeded */
4468 for (i = 0; i < num_consumers; i++) {
4469 if (consumers[i].ret != 0) {
4470 ret = consumers[i].ret;
4471 goto err;
4472 }
4473 }
4474
4475 return 0;
4476
4477err:
4478 for (i = 0; i < num_consumers; i++) {
4479 if (consumers[i].ret < 0)
4480 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4481 consumers[i].ret);
4482 else
4483 regulator_disable(consumers[i].consumer);
4484 }
4485
4486 return ret;
4487}
4488EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4489
4490/**
4491 * regulator_bulk_disable - disable multiple regulator consumers
4492 *
4493 * @num_consumers: Number of consumers
4494 * @consumers: Consumer data; clients are stored here.
4495 * @return 0 on success, an errno on failure
4496 *
4497 * This convenience API allows consumers to disable multiple regulator
4498 * clients in a single API call. If any consumers cannot be disabled
4499 * then any others that were disabled will be enabled again prior to
4500 * return.
4501 */
4502int regulator_bulk_disable(int num_consumers,
4503 struct regulator_bulk_data *consumers)
4504{
4505 int i;
4506 int ret, r;
4507
4508 for (i = num_consumers - 1; i >= 0; --i) {
4509 ret = regulator_disable(consumers[i].consumer);
4510 if (ret != 0)
4511 goto err;
4512 }
4513
4514 return 0;
4515
4516err:
4517 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4518 for (++i; i < num_consumers; ++i) {
4519 r = regulator_enable(consumers[i].consumer);
4520 if (r != 0)
4521 pr_err("Failed to re-enable %s: %d\n",
4522 consumers[i].supply, r);
4523 }
4524
4525 return ret;
4526}
4527EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4528
4529/**
4530 * regulator_bulk_force_disable - force disable multiple regulator consumers
4531 *
4532 * @num_consumers: Number of consumers
4533 * @consumers: Consumer data; clients are stored here.
4534 * @return 0 on success, an errno on failure
4535 *
4536 * This convenience API allows consumers to forcibly disable multiple regulator
4537 * clients in a single API call.
4538 * NOTE: This should be used for situations when device damage will
4539 * likely occur if the regulators are not disabled (e.g. over temp).
4540 * Although regulator_force_disable function call for some consumers can
4541 * return error numbers, the function is called for all consumers.
4542 */
4543int regulator_bulk_force_disable(int num_consumers,
4544 struct regulator_bulk_data *consumers)
4545{
4546 int i;
4547 int ret = 0;
4548
4549 for (i = 0; i < num_consumers; i++) {
4550 consumers[i].ret =
4551 regulator_force_disable(consumers[i].consumer);
4552
4553 /* Store first error for reporting */
4554 if (consumers[i].ret && !ret)
4555 ret = consumers[i].ret;
4556 }
4557
4558 return ret;
4559}
4560EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4561
4562/**
4563 * regulator_bulk_free - free multiple regulator consumers
4564 *
4565 * @num_consumers: Number of consumers
4566 * @consumers: Consumer data; clients are stored here.
4567 *
4568 * This convenience API allows consumers to free multiple regulator
4569 * clients in a single API call.
4570 */
4571void regulator_bulk_free(int num_consumers,
4572 struct regulator_bulk_data *consumers)
4573{
4574 int i;
4575
4576 for (i = 0; i < num_consumers; i++) {
4577 regulator_put(consumers[i].consumer);
4578 consumers[i].consumer = NULL;
4579 }
4580}
4581EXPORT_SYMBOL_GPL(regulator_bulk_free);
4582
4583/**
4584 * regulator_notifier_call_chain - call regulator event notifier
4585 * @rdev: regulator source
4586 * @event: notifier block
4587 * @data: callback-specific data.
4588 *
4589 * Called by regulator drivers to notify clients a regulator event has
4590 * occurred. We also notify regulator clients downstream.
4591 * Note lock must be held by caller.
4592 */
4593int regulator_notifier_call_chain(struct regulator_dev *rdev,
4594 unsigned long event, void *data)
4595{
4596 lockdep_assert_held_once(&rdev->mutex.base);
4597
4598 _notifier_call_chain(rdev, event, data);
4599 return NOTIFY_DONE;
4600
4601}
4602EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4603
4604/**
4605 * regulator_mode_to_status - convert a regulator mode into a status
4606 *
4607 * @mode: Mode to convert
4608 *
4609 * Convert a regulator mode into a status.
4610 */
4611int regulator_mode_to_status(unsigned int mode)
4612{
4613 switch (mode) {
4614 case REGULATOR_MODE_FAST:
4615 return REGULATOR_STATUS_FAST;
4616 case REGULATOR_MODE_NORMAL:
4617 return REGULATOR_STATUS_NORMAL;
4618 case REGULATOR_MODE_IDLE:
4619 return REGULATOR_STATUS_IDLE;
4620 case REGULATOR_MODE_STANDBY:
4621 return REGULATOR_STATUS_STANDBY;
4622 default:
4623 return REGULATOR_STATUS_UNDEFINED;
4624 }
4625}
4626EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4627
4628static struct attribute *regulator_dev_attrs[] = {
4629 &dev_attr_name.attr,
4630 &dev_attr_num_users.attr,
4631 &dev_attr_type.attr,
4632 &dev_attr_microvolts.attr,
4633 &dev_attr_microamps.attr,
4634 &dev_attr_opmode.attr,
4635 &dev_attr_state.attr,
4636 &dev_attr_status.attr,
4637 &dev_attr_bypass.attr,
4638 &dev_attr_requested_microamps.attr,
4639 &dev_attr_min_microvolts.attr,
4640 &dev_attr_max_microvolts.attr,
4641 &dev_attr_min_microamps.attr,
4642 &dev_attr_max_microamps.attr,
4643 &dev_attr_suspend_standby_state.attr,
4644 &dev_attr_suspend_mem_state.attr,
4645 &dev_attr_suspend_disk_state.attr,
4646 &dev_attr_suspend_standby_microvolts.attr,
4647 &dev_attr_suspend_mem_microvolts.attr,
4648 &dev_attr_suspend_disk_microvolts.attr,
4649 &dev_attr_suspend_standby_mode.attr,
4650 &dev_attr_suspend_mem_mode.attr,
4651 &dev_attr_suspend_disk_mode.attr,
4652 NULL
4653};
4654
4655/*
4656 * To avoid cluttering sysfs (and memory) with useless state, only
4657 * create attributes that can be meaningfully displayed.
4658 */
4659static umode_t regulator_attr_is_visible(struct kobject *kobj,
4660 struct attribute *attr, int idx)
4661{
4662 struct device *dev = kobj_to_dev(kobj);
4663 struct regulator_dev *rdev = dev_to_rdev(dev);
4664 const struct regulator_ops *ops = rdev->desc->ops;
4665 umode_t mode = attr->mode;
4666
4667 /* these three are always present */
4668 if (attr == &dev_attr_name.attr ||
4669 attr == &dev_attr_num_users.attr ||
4670 attr == &dev_attr_type.attr)
4671 return mode;
4672
4673 /* some attributes need specific methods to be displayed */
4674 if (attr == &dev_attr_microvolts.attr) {
4675 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4676 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4677 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4678 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4679 return mode;
4680 return 0;
4681 }
4682
4683 if (attr == &dev_attr_microamps.attr)
4684 return ops->get_current_limit ? mode : 0;
4685
4686 if (attr == &dev_attr_opmode.attr)
4687 return ops->get_mode ? mode : 0;
4688
4689 if (attr == &dev_attr_state.attr)
4690 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4691
4692 if (attr == &dev_attr_status.attr)
4693 return ops->get_status ? mode : 0;
4694
4695 if (attr == &dev_attr_bypass.attr)
4696 return ops->get_bypass ? mode : 0;
4697
4698 /* constraints need specific supporting methods */
4699 if (attr == &dev_attr_min_microvolts.attr ||
4700 attr == &dev_attr_max_microvolts.attr)
4701 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4702
4703 if (attr == &dev_attr_min_microamps.attr ||
4704 attr == &dev_attr_max_microamps.attr)
4705 return ops->set_current_limit ? mode : 0;
4706
4707 if (attr == &dev_attr_suspend_standby_state.attr ||
4708 attr == &dev_attr_suspend_mem_state.attr ||
4709 attr == &dev_attr_suspend_disk_state.attr)
4710 return mode;
4711
4712 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4713 attr == &dev_attr_suspend_mem_microvolts.attr ||
4714 attr == &dev_attr_suspend_disk_microvolts.attr)
4715 return ops->set_suspend_voltage ? mode : 0;
4716
4717 if (attr == &dev_attr_suspend_standby_mode.attr ||
4718 attr == &dev_attr_suspend_mem_mode.attr ||
4719 attr == &dev_attr_suspend_disk_mode.attr)
4720 return ops->set_suspend_mode ? mode : 0;
4721
4722 return mode;
4723}
4724
4725static const struct attribute_group regulator_dev_group = {
4726 .attrs = regulator_dev_attrs,
4727 .is_visible = regulator_attr_is_visible,
4728};
4729
4730static const struct attribute_group *regulator_dev_groups[] = {
4731 ®ulator_dev_group,
4732 NULL
4733};
4734
4735static void regulator_dev_release(struct device *dev)
4736{
4737 struct regulator_dev *rdev = dev_get_drvdata(dev);
4738
4739 kfree(rdev->constraints);
4740 of_node_put(rdev->dev.of_node);
4741 kfree(rdev);
4742}
4743
4744static void rdev_init_debugfs(struct regulator_dev *rdev)
4745{
4746 struct device *parent = rdev->dev.parent;
4747 const char *rname = rdev_get_name(rdev);
4748 char name[NAME_MAX];
4749
4750 /* Avoid duplicate debugfs directory names */
4751 if (parent && rname == rdev->desc->name) {
4752 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4753 rname);
4754 rname = name;
4755 }
4756
4757 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4758 if (!rdev->debugfs) {
4759 rdev_warn(rdev, "Failed to create debugfs directory\n");
4760 return;
4761 }
4762
4763 debugfs_create_u32("use_count", 0444, rdev->debugfs,
4764 &rdev->use_count);
4765 debugfs_create_u32("open_count", 0444, rdev->debugfs,
4766 &rdev->open_count);
4767 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4768 &rdev->bypass_count);
4769}
4770
4771static int regulator_register_resolve_supply(struct device *dev, void *data)
4772{
4773 struct regulator_dev *rdev = dev_to_rdev(dev);
4774
4775 if (regulator_resolve_supply(rdev))
4776 rdev_dbg(rdev, "unable to resolve supply\n");
4777
4778 return 0;
4779}
4780
4781int regulator_coupler_register(struct regulator_coupler *coupler)
4782{
4783 mutex_lock(®ulator_list_mutex);
4784 list_add_tail(&coupler->list, ®ulator_coupler_list);
4785 mutex_unlock(®ulator_list_mutex);
4786
4787 return 0;
4788}
4789
4790static struct regulator_coupler *
4791regulator_find_coupler(struct regulator_dev *rdev)
4792{
4793 struct regulator_coupler *coupler;
4794 int err;
4795
4796 /*
4797 * Note that regulators are appended to the list and the generic
4798 * coupler is registered first, hence it will be attached at last
4799 * if nobody cared.
4800 */
4801 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
4802 err = coupler->attach_regulator(coupler, rdev);
4803 if (!err) {
4804 if (!coupler->balance_voltage &&
4805 rdev->coupling_desc.n_coupled > 2)
4806 goto err_unsupported;
4807
4808 return coupler;
4809 }
4810
4811 if (err < 0)
4812 return ERR_PTR(err);
4813
4814 if (err == 1)
4815 continue;
4816
4817 break;
4818 }
4819
4820 return ERR_PTR(-EINVAL);
4821
4822err_unsupported:
4823 if (coupler->detach_regulator)
4824 coupler->detach_regulator(coupler, rdev);
4825
4826 rdev_err(rdev,
4827 "Voltage balancing for multiple regulator couples is unimplemented\n");
4828
4829 return ERR_PTR(-EPERM);
4830}
4831
4832static void regulator_resolve_coupling(struct regulator_dev *rdev)
4833{
4834 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4835 struct coupling_desc *c_desc = &rdev->coupling_desc;
4836 int n_coupled = c_desc->n_coupled;
4837 struct regulator_dev *c_rdev;
4838 int i;
4839
4840 for (i = 1; i < n_coupled; i++) {
4841 /* already resolved */
4842 if (c_desc->coupled_rdevs[i])
4843 continue;
4844
4845 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4846
4847 if (!c_rdev)
4848 continue;
4849
4850 if (c_rdev->coupling_desc.coupler != coupler) {
4851 rdev_err(rdev, "coupler mismatch with %s\n",
4852 rdev_get_name(c_rdev));
4853 return;
4854 }
4855
4856 regulator_lock(c_rdev);
4857
4858 c_desc->coupled_rdevs[i] = c_rdev;
4859 c_desc->n_resolved++;
4860
4861 regulator_unlock(c_rdev);
4862
4863 regulator_resolve_coupling(c_rdev);
4864 }
4865}
4866
4867static void regulator_remove_coupling(struct regulator_dev *rdev)
4868{
4869 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4870 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4871 struct regulator_dev *__c_rdev, *c_rdev;
4872 unsigned int __n_coupled, n_coupled;
4873 int i, k;
4874 int err;
4875
4876 n_coupled = c_desc->n_coupled;
4877
4878 for (i = 1; i < n_coupled; i++) {
4879 c_rdev = c_desc->coupled_rdevs[i];
4880
4881 if (!c_rdev)
4882 continue;
4883
4884 regulator_lock(c_rdev);
4885
4886 __c_desc = &c_rdev->coupling_desc;
4887 __n_coupled = __c_desc->n_coupled;
4888
4889 for (k = 1; k < __n_coupled; k++) {
4890 __c_rdev = __c_desc->coupled_rdevs[k];
4891
4892 if (__c_rdev == rdev) {
4893 __c_desc->coupled_rdevs[k] = NULL;
4894 __c_desc->n_resolved--;
4895 break;
4896 }
4897 }
4898
4899 regulator_unlock(c_rdev);
4900
4901 c_desc->coupled_rdevs[i] = NULL;
4902 c_desc->n_resolved--;
4903 }
4904
4905 if (coupler && coupler->detach_regulator) {
4906 err = coupler->detach_regulator(coupler, rdev);
4907 if (err)
4908 rdev_err(rdev, "failed to detach from coupler: %d\n",
4909 err);
4910 }
4911
4912 kfree(rdev->coupling_desc.coupled_rdevs);
4913 rdev->coupling_desc.coupled_rdevs = NULL;
4914}
4915
4916static int regulator_init_coupling(struct regulator_dev *rdev)
4917{
4918 int err, n_phandles;
4919 size_t alloc_size;
4920
4921 if (!IS_ENABLED(CONFIG_OF))
4922 n_phandles = 0;
4923 else
4924 n_phandles = of_get_n_coupled(rdev);
4925
4926 alloc_size = sizeof(*rdev) * (n_phandles + 1);
4927
4928 rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
4929 if (!rdev->coupling_desc.coupled_rdevs)
4930 return -ENOMEM;
4931
4932 /*
4933 * Every regulator should always have coupling descriptor filled with
4934 * at least pointer to itself.
4935 */
4936 rdev->coupling_desc.coupled_rdevs[0] = rdev;
4937 rdev->coupling_desc.n_coupled = n_phandles + 1;
4938 rdev->coupling_desc.n_resolved++;
4939
4940 /* regulator isn't coupled */
4941 if (n_phandles == 0)
4942 return 0;
4943
4944 if (!of_check_coupling_data(rdev))
4945 return -EPERM;
4946
4947 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
4948 if (IS_ERR(rdev->coupling_desc.coupler)) {
4949 err = PTR_ERR(rdev->coupling_desc.coupler);
4950 rdev_err(rdev, "failed to get coupler: %d\n", err);
4951 return err;
4952 }
4953
4954 return 0;
4955}
4956
4957static int generic_coupler_attach(struct regulator_coupler *coupler,
4958 struct regulator_dev *rdev)
4959{
4960 if (rdev->coupling_desc.n_coupled > 2) {
4961 rdev_err(rdev,
4962 "Voltage balancing for multiple regulator couples is unimplemented\n");
4963 return -EPERM;
4964 }
4965
4966 return 0;
4967}
4968
4969static struct regulator_coupler generic_regulator_coupler = {
4970 .attach_regulator = generic_coupler_attach,
4971};
4972
4973/**
4974 * regulator_register - register regulator
4975 * @regulator_desc: regulator to register
4976 * @cfg: runtime configuration for regulator
4977 *
4978 * Called by regulator drivers to register a regulator.
4979 * Returns a valid pointer to struct regulator_dev on success
4980 * or an ERR_PTR() on error.
4981 */
4982struct regulator_dev *
4983regulator_register(const struct regulator_desc *regulator_desc,
4984 const struct regulator_config *cfg)
4985{
4986 const struct regulation_constraints *constraints = NULL;
4987 const struct regulator_init_data *init_data;
4988 struct regulator_config *config = NULL;
4989 static atomic_t regulator_no = ATOMIC_INIT(-1);
4990 struct regulator_dev *rdev;
4991 bool dangling_cfg_gpiod = false;
4992 bool dangling_of_gpiod = false;
4993 struct device *dev;
4994 int ret, i;
4995
4996 if (cfg == NULL)
4997 return ERR_PTR(-EINVAL);
4998 if (cfg->ena_gpiod)
4999 dangling_cfg_gpiod = true;
5000 if (regulator_desc == NULL) {
5001 ret = -EINVAL;
5002 goto rinse;
5003 }
5004
5005 dev = cfg->dev;
5006 WARN_ON(!dev);
5007
5008 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5009 ret = -EINVAL;
5010 goto rinse;
5011 }
5012
5013 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5014 regulator_desc->type != REGULATOR_CURRENT) {
5015 ret = -EINVAL;
5016 goto rinse;
5017 }
5018
5019 /* Only one of each should be implemented */
5020 WARN_ON(regulator_desc->ops->get_voltage &&
5021 regulator_desc->ops->get_voltage_sel);
5022 WARN_ON(regulator_desc->ops->set_voltage &&
5023 regulator_desc->ops->set_voltage_sel);
5024
5025 /* If we're using selectors we must implement list_voltage. */
5026 if (regulator_desc->ops->get_voltage_sel &&
5027 !regulator_desc->ops->list_voltage) {
5028 ret = -EINVAL;
5029 goto rinse;
5030 }
5031 if (regulator_desc->ops->set_voltage_sel &&
5032 !regulator_desc->ops->list_voltage) {
5033 ret = -EINVAL;
5034 goto rinse;
5035 }
5036
5037 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5038 if (rdev == NULL) {
5039 ret = -ENOMEM;
5040 goto rinse;
5041 }
5042
5043 /*
5044 * Duplicate the config so the driver could override it after
5045 * parsing init data.
5046 */
5047 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5048 if (config == NULL) {
5049 kfree(rdev);
5050 ret = -ENOMEM;
5051 goto rinse;
5052 }
5053
5054 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5055 &rdev->dev.of_node);
5056
5057 /*
5058 * Sometimes not all resources are probed already so we need to take
5059 * that into account. This happens most the time if the ena_gpiod comes
5060 * from a gpio extender or something else.
5061 */
5062 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5063 kfree(config);
5064 kfree(rdev);
5065 ret = -EPROBE_DEFER;
5066 goto rinse;
5067 }
5068
5069 /*
5070 * We need to keep track of any GPIO descriptor coming from the
5071 * device tree until we have handled it over to the core. If the
5072 * config that was passed in to this function DOES NOT contain
5073 * a descriptor, and the config after this call DOES contain
5074 * a descriptor, we definitely got one from parsing the device
5075 * tree.
5076 */
5077 if (!cfg->ena_gpiod && config->ena_gpiod)
5078 dangling_of_gpiod = true;
5079 if (!init_data) {
5080 init_data = config->init_data;
5081 rdev->dev.of_node = of_node_get(config->of_node);
5082 }
5083
5084 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5085 rdev->reg_data = config->driver_data;
5086 rdev->owner = regulator_desc->owner;
5087 rdev->desc = regulator_desc;
5088 if (config->regmap)
5089 rdev->regmap = config->regmap;
5090 else if (dev_get_regmap(dev, NULL))
5091 rdev->regmap = dev_get_regmap(dev, NULL);
5092 else if (dev->parent)
5093 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5094 INIT_LIST_HEAD(&rdev->consumer_list);
5095 INIT_LIST_HEAD(&rdev->list);
5096 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5097 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5098
5099 /* preform any regulator specific init */
5100 if (init_data && init_data->regulator_init) {
5101 ret = init_data->regulator_init(rdev->reg_data);
5102 if (ret < 0)
5103 goto clean;
5104 }
5105
5106 if (config->ena_gpiod) {
5107 mutex_lock(®ulator_list_mutex);
5108 ret = regulator_ena_gpio_request(rdev, config);
5109 mutex_unlock(®ulator_list_mutex);
5110 if (ret != 0) {
5111 rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5112 ret);
5113 goto clean;
5114 }
5115 /* The regulator core took over the GPIO descriptor */
5116 dangling_cfg_gpiod = false;
5117 dangling_of_gpiod = false;
5118 }
5119
5120 /* register with sysfs */
5121 rdev->dev.class = ®ulator_class;
5122 rdev->dev.parent = dev;
5123 dev_set_name(&rdev->dev, "regulator.%lu",
5124 (unsigned long) atomic_inc_return(®ulator_no));
5125
5126 /* set regulator constraints */
5127 if (init_data)
5128 constraints = &init_data->constraints;
5129
5130 if (init_data && init_data->supply_regulator)
5131 rdev->supply_name = init_data->supply_regulator;
5132 else if (regulator_desc->supply_name)
5133 rdev->supply_name = regulator_desc->supply_name;
5134
5135 /*
5136 * Attempt to resolve the regulator supply, if specified,
5137 * but don't return an error if we fail because we will try
5138 * to resolve it again later as more regulators are added.
5139 */
5140 if (regulator_resolve_supply(rdev))
5141 rdev_dbg(rdev, "unable to resolve supply\n");
5142
5143 ret = set_machine_constraints(rdev, constraints);
5144 if (ret < 0)
5145 goto wash;
5146
5147 mutex_lock(®ulator_list_mutex);
5148 ret = regulator_init_coupling(rdev);
5149 mutex_unlock(®ulator_list_mutex);
5150 if (ret < 0)
5151 goto wash;
5152
5153 /* add consumers devices */
5154 if (init_data) {
5155 mutex_lock(®ulator_list_mutex);
5156 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5157 ret = set_consumer_device_supply(rdev,
5158 init_data->consumer_supplies[i].dev_name,
5159 init_data->consumer_supplies[i].supply);
5160 if (ret < 0) {
5161 mutex_unlock(®ulator_list_mutex);
5162 dev_err(dev, "Failed to set supply %s\n",
5163 init_data->consumer_supplies[i].supply);
5164 goto unset_supplies;
5165 }
5166 }
5167 mutex_unlock(®ulator_list_mutex);
5168 }
5169
5170 if (!rdev->desc->ops->get_voltage &&
5171 !rdev->desc->ops->list_voltage &&
5172 !rdev->desc->fixed_uV)
5173 rdev->is_switch = true;
5174
5175 dev_set_drvdata(&rdev->dev, rdev);
5176 ret = device_register(&rdev->dev);
5177 if (ret != 0) {
5178 put_device(&rdev->dev);
5179 goto unset_supplies;
5180 }
5181
5182 rdev_init_debugfs(rdev);
5183
5184 /* try to resolve regulators coupling since a new one was registered */
5185 mutex_lock(®ulator_list_mutex);
5186 regulator_resolve_coupling(rdev);
5187 mutex_unlock(®ulator_list_mutex);
5188
5189 /* try to resolve regulators supply since a new one was registered */
5190 class_for_each_device(®ulator_class, NULL, NULL,
5191 regulator_register_resolve_supply);
5192 kfree(config);
5193 return rdev;
5194
5195unset_supplies:
5196 mutex_lock(®ulator_list_mutex);
5197 unset_regulator_supplies(rdev);
5198 regulator_remove_coupling(rdev);
5199 mutex_unlock(®ulator_list_mutex);
5200wash:
5201 kfree(rdev->constraints);
5202 mutex_lock(®ulator_list_mutex);
5203 regulator_ena_gpio_free(rdev);
5204 mutex_unlock(®ulator_list_mutex);
5205clean:
5206 if (dangling_of_gpiod)
5207 gpiod_put(config->ena_gpiod);
5208 kfree(rdev);
5209 kfree(config);
5210rinse:
5211 if (dangling_cfg_gpiod)
5212 gpiod_put(cfg->ena_gpiod);
5213 return ERR_PTR(ret);
5214}
5215EXPORT_SYMBOL_GPL(regulator_register);
5216
5217/**
5218 * regulator_unregister - unregister regulator
5219 * @rdev: regulator to unregister
5220 *
5221 * Called by regulator drivers to unregister a regulator.
5222 */
5223void regulator_unregister(struct regulator_dev *rdev)
5224{
5225 if (rdev == NULL)
5226 return;
5227
5228 if (rdev->supply) {
5229 while (rdev->use_count--)
5230 regulator_disable(rdev->supply);
5231 regulator_put(rdev->supply);
5232 }
5233
5234 flush_work(&rdev->disable_work.work);
5235
5236 mutex_lock(®ulator_list_mutex);
5237
5238 debugfs_remove_recursive(rdev->debugfs);
5239 WARN_ON(rdev->open_count);
5240 regulator_remove_coupling(rdev);
5241 unset_regulator_supplies(rdev);
5242 list_del(&rdev->list);
5243 regulator_ena_gpio_free(rdev);
5244 device_unregister(&rdev->dev);
5245
5246 mutex_unlock(®ulator_list_mutex);
5247}
5248EXPORT_SYMBOL_GPL(regulator_unregister);
5249
5250#ifdef CONFIG_SUSPEND
5251/**
5252 * regulator_suspend - prepare regulators for system wide suspend
5253 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5254 *
5255 * Configure each regulator with it's suspend operating parameters for state.
5256 */
5257static int regulator_suspend(struct device *dev)
5258{
5259 struct regulator_dev *rdev = dev_to_rdev(dev);
5260 suspend_state_t state = pm_suspend_target_state;
5261 int ret;
5262
5263 regulator_lock(rdev);
5264 ret = suspend_set_state(rdev, state);
5265 regulator_unlock(rdev);
5266
5267 return ret;
5268}
5269
5270static int regulator_resume(struct device *dev)
5271{
5272 suspend_state_t state = pm_suspend_target_state;
5273 struct regulator_dev *rdev = dev_to_rdev(dev);
5274 struct regulator_state *rstate;
5275 int ret = 0;
5276
5277 rstate = regulator_get_suspend_state(rdev, state);
5278 if (rstate == NULL)
5279 return 0;
5280
5281 regulator_lock(rdev);
5282
5283 if (rdev->desc->ops->resume &&
5284 (rstate->enabled == ENABLE_IN_SUSPEND ||
5285 rstate->enabled == DISABLE_IN_SUSPEND))
5286 ret = rdev->desc->ops->resume(rdev);
5287
5288 regulator_unlock(rdev);
5289
5290 return ret;
5291}
5292#else /* !CONFIG_SUSPEND */
5293
5294#define regulator_suspend NULL
5295#define regulator_resume NULL
5296
5297#endif /* !CONFIG_SUSPEND */
5298
5299#ifdef CONFIG_PM
5300static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5301 .suspend = regulator_suspend,
5302 .resume = regulator_resume,
5303};
5304#endif
5305
5306struct class regulator_class = {
5307 .name = "regulator",
5308 .dev_release = regulator_dev_release,
5309 .dev_groups = regulator_dev_groups,
5310#ifdef CONFIG_PM
5311 .pm = ®ulator_pm_ops,
5312#endif
5313};
5314/**
5315 * regulator_has_full_constraints - the system has fully specified constraints
5316 *
5317 * Calling this function will cause the regulator API to disable all
5318 * regulators which have a zero use count and don't have an always_on
5319 * constraint in a late_initcall.
5320 *
5321 * The intention is that this will become the default behaviour in a
5322 * future kernel release so users are encouraged to use this facility
5323 * now.
5324 */
5325void regulator_has_full_constraints(void)
5326{
5327 has_full_constraints = 1;
5328}
5329EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5330
5331/**
5332 * rdev_get_drvdata - get rdev regulator driver data
5333 * @rdev: regulator
5334 *
5335 * Get rdev regulator driver private data. This call can be used in the
5336 * regulator driver context.
5337 */
5338void *rdev_get_drvdata(struct regulator_dev *rdev)
5339{
5340 return rdev->reg_data;
5341}
5342EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5343
5344/**
5345 * regulator_get_drvdata - get regulator driver data
5346 * @regulator: regulator
5347 *
5348 * Get regulator driver private data. This call can be used in the consumer
5349 * driver context when non API regulator specific functions need to be called.
5350 */
5351void *regulator_get_drvdata(struct regulator *regulator)
5352{
5353 return regulator->rdev->reg_data;
5354}
5355EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5356
5357/**
5358 * regulator_set_drvdata - set regulator driver data
5359 * @regulator: regulator
5360 * @data: data
5361 */
5362void regulator_set_drvdata(struct regulator *regulator, void *data)
5363{
5364 regulator->rdev->reg_data = data;
5365}
5366EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5367
5368/**
5369 * regulator_get_id - get regulator ID
5370 * @rdev: regulator
5371 */
5372int rdev_get_id(struct regulator_dev *rdev)
5373{
5374 return rdev->desc->id;
5375}
5376EXPORT_SYMBOL_GPL(rdev_get_id);
5377
5378struct device *rdev_get_dev(struct regulator_dev *rdev)
5379{
5380 return &rdev->dev;
5381}
5382EXPORT_SYMBOL_GPL(rdev_get_dev);
5383
5384struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5385{
5386 return rdev->regmap;
5387}
5388EXPORT_SYMBOL_GPL(rdev_get_regmap);
5389
5390void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5391{
5392 return reg_init_data->driver_data;
5393}
5394EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5395
5396#ifdef CONFIG_DEBUG_FS
5397static int supply_map_show(struct seq_file *sf, void *data)
5398{
5399 struct regulator_map *map;
5400
5401 list_for_each_entry(map, ®ulator_map_list, list) {
5402 seq_printf(sf, "%s -> %s.%s\n",
5403 rdev_get_name(map->regulator), map->dev_name,
5404 map->supply);
5405 }
5406
5407 return 0;
5408}
5409DEFINE_SHOW_ATTRIBUTE(supply_map);
5410
5411struct summary_data {
5412 struct seq_file *s;
5413 struct regulator_dev *parent;
5414 int level;
5415};
5416
5417static void regulator_summary_show_subtree(struct seq_file *s,
5418 struct regulator_dev *rdev,
5419 int level);
5420
5421static int regulator_summary_show_children(struct device *dev, void *data)
5422{
5423 struct regulator_dev *rdev = dev_to_rdev(dev);
5424 struct summary_data *summary_data = data;
5425
5426 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5427 regulator_summary_show_subtree(summary_data->s, rdev,
5428 summary_data->level + 1);
5429
5430 return 0;
5431}
5432
5433static void regulator_summary_show_subtree(struct seq_file *s,
5434 struct regulator_dev *rdev,
5435 int level)
5436{
5437 struct regulation_constraints *c;
5438 struct regulator *consumer;
5439 struct summary_data summary_data;
5440 unsigned int opmode;
5441
5442 if (!rdev)
5443 return;
5444
5445 opmode = _regulator_get_mode_unlocked(rdev);
5446 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5447 level * 3 + 1, "",
5448 30 - level * 3, rdev_get_name(rdev),
5449 rdev->use_count, rdev->open_count, rdev->bypass_count,
5450 regulator_opmode_to_str(opmode));
5451
5452 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5453 seq_printf(s, "%5dmA ",
5454 _regulator_get_current_limit_unlocked(rdev) / 1000);
5455
5456 c = rdev->constraints;
5457 if (c) {
5458 switch (rdev->desc->type) {
5459 case REGULATOR_VOLTAGE:
5460 seq_printf(s, "%5dmV %5dmV ",
5461 c->min_uV / 1000, c->max_uV / 1000);
5462 break;
5463 case REGULATOR_CURRENT:
5464 seq_printf(s, "%5dmA %5dmA ",
5465 c->min_uA / 1000, c->max_uA / 1000);
5466 break;
5467 }
5468 }
5469
5470 seq_puts(s, "\n");
5471
5472 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5473 if (consumer->dev && consumer->dev->class == ®ulator_class)
5474 continue;
5475
5476 seq_printf(s, "%*s%-*s ",
5477 (level + 1) * 3 + 1, "",
5478 30 - (level + 1) * 3,
5479 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5480
5481 switch (rdev->desc->type) {
5482 case REGULATOR_VOLTAGE:
5483 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5484 consumer->enable_count,
5485 consumer->uA_load / 1000,
5486 consumer->uA_load && !consumer->enable_count ?
5487 '*' : ' ',
5488 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5489 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5490 break;
5491 case REGULATOR_CURRENT:
5492 break;
5493 }
5494
5495 seq_puts(s, "\n");
5496 }
5497
5498 summary_data.s = s;
5499 summary_data.level = level;
5500 summary_data.parent = rdev;
5501
5502 class_for_each_device(®ulator_class, NULL, &summary_data,
5503 regulator_summary_show_children);
5504}
5505
5506struct summary_lock_data {
5507 struct ww_acquire_ctx *ww_ctx;
5508 struct regulator_dev **new_contended_rdev;
5509 struct regulator_dev **old_contended_rdev;
5510};
5511
5512static int regulator_summary_lock_one(struct device *dev, void *data)
5513{
5514 struct regulator_dev *rdev = dev_to_rdev(dev);
5515 struct summary_lock_data *lock_data = data;
5516 int ret = 0;
5517
5518 if (rdev != *lock_data->old_contended_rdev) {
5519 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5520
5521 if (ret == -EDEADLK)
5522 *lock_data->new_contended_rdev = rdev;
5523 else
5524 WARN_ON_ONCE(ret);
5525 } else {
5526 *lock_data->old_contended_rdev = NULL;
5527 }
5528
5529 return ret;
5530}
5531
5532static int regulator_summary_unlock_one(struct device *dev, void *data)
5533{
5534 struct regulator_dev *rdev = dev_to_rdev(dev);
5535 struct summary_lock_data *lock_data = data;
5536
5537 if (lock_data) {
5538 if (rdev == *lock_data->new_contended_rdev)
5539 return -EDEADLK;
5540 }
5541
5542 regulator_unlock(rdev);
5543
5544 return 0;
5545}
5546
5547static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5548 struct regulator_dev **new_contended_rdev,
5549 struct regulator_dev **old_contended_rdev)
5550{
5551 struct summary_lock_data lock_data;
5552 int ret;
5553
5554 lock_data.ww_ctx = ww_ctx;
5555 lock_data.new_contended_rdev = new_contended_rdev;
5556 lock_data.old_contended_rdev = old_contended_rdev;
5557
5558 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
5559 regulator_summary_lock_one);
5560 if (ret)
5561 class_for_each_device(®ulator_class, NULL, &lock_data,
5562 regulator_summary_unlock_one);
5563
5564 return ret;
5565}
5566
5567static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5568{
5569 struct regulator_dev *new_contended_rdev = NULL;
5570 struct regulator_dev *old_contended_rdev = NULL;
5571 int err;
5572
5573 mutex_lock(®ulator_list_mutex);
5574
5575 ww_acquire_init(ww_ctx, ®ulator_ww_class);
5576
5577 do {
5578 if (new_contended_rdev) {
5579 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5580 old_contended_rdev = new_contended_rdev;
5581 old_contended_rdev->ref_cnt++;
5582 }
5583
5584 err = regulator_summary_lock_all(ww_ctx,
5585 &new_contended_rdev,
5586 &old_contended_rdev);
5587
5588 if (old_contended_rdev)
5589 regulator_unlock(old_contended_rdev);
5590
5591 } while (err == -EDEADLK);
5592
5593 ww_acquire_done(ww_ctx);
5594}
5595
5596static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5597{
5598 class_for_each_device(®ulator_class, NULL, NULL,
5599 regulator_summary_unlock_one);
5600 ww_acquire_fini(ww_ctx);
5601
5602 mutex_unlock(®ulator_list_mutex);
5603}
5604
5605static int regulator_summary_show_roots(struct device *dev, void *data)
5606{
5607 struct regulator_dev *rdev = dev_to_rdev(dev);
5608 struct seq_file *s = data;
5609
5610 if (!rdev->supply)
5611 regulator_summary_show_subtree(s, rdev, 0);
5612
5613 return 0;
5614}
5615
5616static int regulator_summary_show(struct seq_file *s, void *data)
5617{
5618 struct ww_acquire_ctx ww_ctx;
5619
5620 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
5621 seq_puts(s, "---------------------------------------------------------------------------------------\n");
5622
5623 regulator_summary_lock(&ww_ctx);
5624
5625 class_for_each_device(®ulator_class, NULL, s,
5626 regulator_summary_show_roots);
5627
5628 regulator_summary_unlock(&ww_ctx);
5629
5630 return 0;
5631}
5632DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5633#endif /* CONFIG_DEBUG_FS */
5634
5635static int __init regulator_init(void)
5636{
5637 int ret;
5638
5639 ret = class_register(®ulator_class);
5640
5641 debugfs_root = debugfs_create_dir("regulator", NULL);
5642 if (!debugfs_root)
5643 pr_warn("regulator: Failed to create debugfs directory\n");
5644
5645#ifdef CONFIG_DEBUG_FS
5646 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5647 &supply_map_fops);
5648
5649 debugfs_create_file("regulator_summary", 0444, debugfs_root,
5650 NULL, ®ulator_summary_fops);
5651#endif
5652 regulator_dummy_init();
5653
5654 regulator_coupler_register(&generic_regulator_coupler);
5655
5656 return ret;
5657}
5658
5659/* init early to allow our consumers to complete system booting */
5660core_initcall(regulator_init);
5661
5662static int regulator_late_cleanup(struct device *dev, void *data)
5663{
5664 struct regulator_dev *rdev = dev_to_rdev(dev);
5665 const struct regulator_ops *ops = rdev->desc->ops;
5666 struct regulation_constraints *c = rdev->constraints;
5667 int enabled, ret;
5668
5669 if (c && c->always_on)
5670 return 0;
5671
5672 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5673 return 0;
5674
5675 regulator_lock(rdev);
5676
5677 if (rdev->use_count)
5678 goto unlock;
5679
5680 /* If we can't read the status assume it's on. */
5681 if (ops->is_enabled)
5682 enabled = ops->is_enabled(rdev);
5683 else
5684 enabled = 1;
5685
5686 if (!enabled)
5687 goto unlock;
5688
5689 if (have_full_constraints()) {
5690 /* We log since this may kill the system if it goes
5691 * wrong. */
5692 rdev_info(rdev, "disabling\n");
5693 ret = _regulator_do_disable(rdev);
5694 if (ret != 0)
5695 rdev_err(rdev, "couldn't disable: %d\n", ret);
5696 } else {
5697 /* The intention is that in future we will
5698 * assume that full constraints are provided
5699 * so warn even if we aren't going to do
5700 * anything here.
5701 */
5702 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5703 }
5704
5705unlock:
5706 regulator_unlock(rdev);
5707
5708 return 0;
5709}
5710
5711static void regulator_init_complete_work_function(struct work_struct *work)
5712{
5713 /*
5714 * Regulators may had failed to resolve their input supplies
5715 * when were registered, either because the input supply was
5716 * not registered yet or because its parent device was not
5717 * bound yet. So attempt to resolve the input supplies for
5718 * pending regulators before trying to disable unused ones.
5719 */
5720 class_for_each_device(®ulator_class, NULL, NULL,
5721 regulator_register_resolve_supply);
5722
5723 /* If we have a full configuration then disable any regulators
5724 * we have permission to change the status for and which are
5725 * not in use or always_on. This is effectively the default
5726 * for DT and ACPI as they have full constraints.
5727 */
5728 class_for_each_device(®ulator_class, NULL, NULL,
5729 regulator_late_cleanup);
5730}
5731
5732static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5733 regulator_init_complete_work_function);
5734
5735static int __init regulator_init_complete(void)
5736{
5737 /*
5738 * Since DT doesn't provide an idiomatic mechanism for
5739 * enabling full constraints and since it's much more natural
5740 * with DT to provide them just assume that a DT enabled
5741 * system has full constraints.
5742 */
5743 if (of_have_populated_dt())
5744 has_full_constraints = true;
5745
5746 /*
5747 * We punt completion for an arbitrary amount of time since
5748 * systems like distros will load many drivers from userspace
5749 * so consumers might not always be ready yet, this is
5750 * particularly an issue with laptops where this might bounce
5751 * the display off then on. Ideally we'd get a notification
5752 * from userspace when this happens but we don't so just wait
5753 * a bit and hope we waited long enough. It'd be better if
5754 * we'd only do this on systems that need it, and a kernel
5755 * command line option might be useful.
5756 */
5757 schedule_delayed_work(®ulator_init_complete_work,
5758 msecs_to_jiffies(30000));
5759
5760 return 0;
5761}
5762late_initcall_sync(regulator_init_complete);