Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/****************************************************************************
  3 * Driver for Solarflare network controllers and boards
  4 * Copyright 2005-2006 Fen Systems Ltd.
  5 * Copyright 2005-2013 Solarflare Communications Inc.
  6 */
  7
  8#include <linux/pci.h>
  9#include <linux/tcp.h>
 10#include <linux/ip.h>
 11#include <linux/in.h>
 12#include <linux/ipv6.h>
 13#include <linux/slab.h>
 14#include <net/ipv6.h>
 15#include <linux/if_ether.h>
 16#include <linux/highmem.h>
 17#include <linux/cache.h>
 18#include "net_driver.h"
 19#include "efx.h"
 20#include "io.h"
 21#include "nic.h"
 22#include "tx.h"
 23#include "tx_common.h"
 24#include "workarounds.h"
 25#include "ef10_regs.h"
 26
 27#ifdef EFX_USE_PIO
 28
 29#define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
 30unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
 31
 32#endif /* EFX_USE_PIO */
 33
 34static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
 35					 struct efx_tx_buffer *buffer)
 36{
 37	unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
 38	struct efx_buffer *page_buf =
 39		&tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
 40	unsigned int offset =
 41		((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
 42
 43	if (unlikely(!page_buf->addr) &&
 44	    efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
 45				 GFP_ATOMIC))
 46		return NULL;
 47	buffer->dma_addr = page_buf->dma_addr + offset;
 48	buffer->unmap_len = 0;
 49	return (u8 *)page_buf->addr + offset;
 50}
 51
 52u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue,
 53				   struct efx_tx_buffer *buffer, size_t len)
 54{
 55	if (len > EFX_TX_CB_SIZE)
 56		return NULL;
 57	return efx_tx_get_copy_buffer(tx_queue, buffer);
 58}
 59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 60static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
 61{
 62	/* We need to consider all queues that the net core sees as one */
 
 63	struct efx_nic *efx = txq1->efx;
 64	struct efx_tx_queue *txq2;
 65	unsigned int fill_level;
 66
 67	fill_level = efx_channel_tx_old_fill_level(txq1->channel);
 
 68	if (likely(fill_level < efx->txq_stop_thresh))
 69		return;
 70
 71	/* We used the stale old_read_count above, which gives us a
 72	 * pessimistic estimate of the fill level (which may even
 73	 * validly be >= efx->txq_entries).  Now try again using
 74	 * read_count (more likely to be a cache miss).
 75	 *
 76	 * If we read read_count and then conditionally stop the
 77	 * queue, it is possible for the completion path to race with
 78	 * us and complete all outstanding descriptors in the middle,
 79	 * after which there will be no more completions to wake it.
 80	 * Therefore we stop the queue first, then read read_count
 81	 * (with a memory barrier to ensure the ordering), then
 82	 * restart the queue if the fill level turns out to be low
 83	 * enough.
 84	 */
 85	netif_tx_stop_queue(txq1->core_txq);
 86	smp_mb();
 87	efx_for_each_channel_tx_queue(txq2, txq1->channel)
 88		txq2->old_read_count = READ_ONCE(txq2->read_count);
 89
 90	fill_level = efx_channel_tx_old_fill_level(txq1->channel);
 
 91	EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
 92	if (likely(fill_level < efx->txq_stop_thresh)) {
 93		smp_mb();
 94		if (likely(!efx->loopback_selftest))
 95			netif_tx_start_queue(txq1->core_txq);
 96	}
 97}
 98
 99static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
100				struct sk_buff *skb)
101{
102	unsigned int copy_len = skb->len;
103	struct efx_tx_buffer *buffer;
104	u8 *copy_buffer;
105	int rc;
106
107	EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);
108
109	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
110
111	copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
112	if (unlikely(!copy_buffer))
113		return -ENOMEM;
114
115	rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
116	EFX_WARN_ON_PARANOID(rc);
117	buffer->len = copy_len;
118
119	buffer->skb = skb;
120	buffer->flags = EFX_TX_BUF_SKB;
121
122	++tx_queue->insert_count;
123	return rc;
124}
125
126#ifdef EFX_USE_PIO
127
128struct efx_short_copy_buffer {
129	int used;
130	u8 buf[L1_CACHE_BYTES];
131};
132
133/* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
134 * Advances piobuf pointer. Leaves additional data in the copy buffer.
135 */
136static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
137				    u8 *data, int len,
138				    struct efx_short_copy_buffer *copy_buf)
139{
140	int block_len = len & ~(sizeof(copy_buf->buf) - 1);
141
142	__iowrite64_copy(*piobuf, data, block_len >> 3);
143	*piobuf += block_len;
144	len -= block_len;
145
146	if (len) {
147		data += block_len;
148		BUG_ON(copy_buf->used);
149		BUG_ON(len > sizeof(copy_buf->buf));
150		memcpy(copy_buf->buf, data, len);
151		copy_buf->used = len;
152	}
153}
154
155/* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
156 * Advances piobuf pointer. Leaves additional data in the copy buffer.
157 */
158static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
159				       u8 *data, int len,
160				       struct efx_short_copy_buffer *copy_buf)
161{
162	if (copy_buf->used) {
163		/* if the copy buffer is partially full, fill it up and write */
164		int copy_to_buf =
165			min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
166
167		memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
168		copy_buf->used += copy_to_buf;
169
170		/* if we didn't fill it up then we're done for now */
171		if (copy_buf->used < sizeof(copy_buf->buf))
172			return;
173
174		__iowrite64_copy(*piobuf, copy_buf->buf,
175				 sizeof(copy_buf->buf) >> 3);
176		*piobuf += sizeof(copy_buf->buf);
177		data += copy_to_buf;
178		len -= copy_to_buf;
179		copy_buf->used = 0;
180	}
181
182	efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
183}
184
185static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
186				  struct efx_short_copy_buffer *copy_buf)
187{
188	/* if there's anything in it, write the whole buffer, including junk */
189	if (copy_buf->used)
190		__iowrite64_copy(piobuf, copy_buf->buf,
191				 sizeof(copy_buf->buf) >> 3);
192}
193
194/* Traverse skb structure and copy fragments in to PIO buffer.
195 * Advances piobuf pointer.
196 */
197static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
198				     u8 __iomem **piobuf,
199				     struct efx_short_copy_buffer *copy_buf)
200{
201	int i;
202
203	efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
204				copy_buf);
205
206	for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
207		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
208		u8 *vaddr;
209
210		vaddr = kmap_local_page(skb_frag_page(f));
211
212		efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + skb_frag_off(f),
213					   skb_frag_size(f), copy_buf);
214		kunmap_local(vaddr);
215	}
216
217	EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list);
218}
219
220static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue,
221			       struct sk_buff *skb)
222{
223	struct efx_tx_buffer *buffer =
224		efx_tx_queue_get_insert_buffer(tx_queue);
225	u8 __iomem *piobuf = tx_queue->piobuf;
226
227	/* Copy to PIO buffer. Ensure the writes are padded to the end
228	 * of a cache line, as this is required for write-combining to be
229	 * effective on at least x86.
230	 */
231
232	if (skb_shinfo(skb)->nr_frags) {
233		/* The size of the copy buffer will ensure all writes
234		 * are the size of a cache line.
235		 */
236		struct efx_short_copy_buffer copy_buf;
237
238		copy_buf.used = 0;
239
240		efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
241					 &piobuf, &copy_buf);
242		efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
243	} else {
244		/* Pad the write to the size of a cache line.
245		 * We can do this because we know the skb_shared_info struct is
246		 * after the source, and the destination buffer is big enough.
247		 */
248		BUILD_BUG_ON(L1_CACHE_BYTES >
249			     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
250		__iowrite64_copy(tx_queue->piobuf, skb->data,
251				 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
252	}
253
254	buffer->skb = skb;
255	buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION;
256
257	EFX_POPULATE_QWORD_5(buffer->option,
258			     ESF_DZ_TX_DESC_IS_OPT, 1,
259			     ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
260			     ESF_DZ_TX_PIO_CONT, 0,
261			     ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
262			     ESF_DZ_TX_PIO_BUF_ADDR,
263			     tx_queue->piobuf_offset);
264	++tx_queue->insert_count;
265	return 0;
266}
 
 
 
 
 
 
 
 
 
267
268/* Decide whether we can use TX PIO, ie. write packet data directly into
269 * a buffer on the device.  This can reduce latency at the expense of
270 * throughput, so we only do this if both hardware and software TX rings
271 * are empty, including all queues for the channel.  This also ensures that
272 * only one packet at a time can be using the PIO buffer. If the xmit_more
273 * flag is set then we don't use this - there'll be another packet along
274 * shortly and we want to hold off the doorbell.
 
 
 
 
 
 
 
 
 
 
275 */
276static bool efx_tx_may_pio(struct efx_tx_queue *tx_queue)
 
277{
278	struct efx_channel *channel = tx_queue->channel;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
279
280	if (!tx_queue->piobuf)
281		return false;
 
 
282
283	EFX_WARN_ON_ONCE_PARANOID(!channel->efx->type->option_descriptors);
284
285	efx_for_each_channel_tx_queue(tx_queue, channel)
286		if (!efx_nic_tx_is_empty(tx_queue, tx_queue->packet_write_count))
287			return false;
 
 
 
 
 
 
 
 
 
 
 
 
288
289	return true;
 
 
 
 
 
 
 
 
 
 
 
290}
291#endif /* EFX_USE_PIO */
292
293/* Send any pending traffic for a channel. xmit_more is shared across all
294 * queues for a channel, so we must check all of them.
295 */
296static void efx_tx_send_pending(struct efx_channel *channel)
 
297{
298	struct efx_tx_queue *q;
 
 
299
300	efx_for_each_channel_tx_queue(q, channel) {
301		if (q->xmit_pending)
302			efx_nic_push_buffers(q);
 
 
303	}
304}
305
306/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
307 * Add a socket buffer to a TX queue
308 *
309 * This maps all fragments of a socket buffer for DMA and adds them to
310 * the TX queue.  The queue's insert pointer will be incremented by
311 * the number of fragments in the socket buffer.
312 *
313 * If any DMA mapping fails, any mapped fragments will be unmapped,
314 * the queue's insert pointer will be restored to its original value.
315 *
316 * This function is split out from efx_hard_start_xmit to allow the
317 * loopback test to direct packets via specific TX queues.
318 *
319 * Returns NETDEV_TX_OK.
320 * You must hold netif_tx_lock() to call this function.
321 */
322netdev_tx_t __efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
323{
324	unsigned int old_insert_count = tx_queue->insert_count;
325	bool xmit_more = netdev_xmit_more();
326	bool data_mapped = false;
327	unsigned int segments;
328	unsigned int skb_len;
329	int rc;
330
331	skb_len = skb->len;
332	segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
333	if (segments == 1)
334		segments = 0; /* Don't use TSO for a single segment. */
335
336	/* Handle TSO first - it's *possible* (although unlikely) that we might
337	 * be passed a packet to segment that's smaller than the copybreak/PIO
338	 * size limit.
339	 */
340	if (segments) {
341		switch (tx_queue->tso_version) {
342		case 1:
343			rc = efx_enqueue_skb_tso(tx_queue, skb, &data_mapped);
344			break;
345		case 2:
346			rc = efx_ef10_tx_tso_desc(tx_queue, skb, &data_mapped);
347			break;
348		case 0: /* No TSO on this queue, SW fallback needed */
349		default:
350			rc = -EINVAL;
351			break;
352		}
353		if (rc == -EINVAL) {
354			rc = efx_tx_tso_fallback(tx_queue, skb);
355			tx_queue->tso_fallbacks++;
356			if (rc == 0)
357				return 0;
358		}
359		if (rc)
360			goto err;
361#ifdef EFX_USE_PIO
362	} else if (skb_len <= efx_piobuf_size && !xmit_more &&
363		   efx_tx_may_pio(tx_queue)) {
364		/* Use PIO for short packets with an empty queue. */
365		if (efx_enqueue_skb_pio(tx_queue, skb))
366			goto err;
367		tx_queue->pio_packets++;
368		data_mapped = true;
369#endif
370	} else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
371		/* Pad short packets or coalesce short fragmented packets. */
372		if (efx_enqueue_skb_copy(tx_queue, skb))
373			goto err;
374		tx_queue->cb_packets++;
375		data_mapped = true;
376	}
377
378	/* Map for DMA and create descriptors if we haven't done so already. */
379	if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments)))
380		goto err;
381
382	efx_tx_maybe_stop_queue(tx_queue);
383
384	tx_queue->xmit_pending = true;
385
386	/* Pass off to hardware */
387	if (__netdev_tx_sent_queue(tx_queue->core_txq, skb_len, xmit_more))
388		efx_tx_send_pending(tx_queue->channel);
 
 
 
 
 
 
 
 
 
 
 
 
389
390	if (segments) {
391		tx_queue->tso_bursts++;
392		tx_queue->tso_packets += segments;
393		tx_queue->tx_packets  += segments;
394	} else {
395		tx_queue->tx_packets++;
396	}
397
398	return NETDEV_TX_OK;
399
400
401err:
402	efx_enqueue_unwind(tx_queue, old_insert_count);
403	dev_kfree_skb_any(skb);
404
405	/* If we're not expecting another transmit and we had something to push
406	 * on this queue or a partner queue then we need to push here to get the
407	 * previous packets out.
408	 */
409	if (!xmit_more)
410		efx_tx_send_pending(tx_queue->channel);
 
 
 
 
 
 
411
412	return NETDEV_TX_OK;
413}
414
415/* Transmit a packet from an XDP buffer
416 *
417 * Returns number of packets sent on success, error code otherwise.
418 * Runs in NAPI context, either in our poll (for XDP TX) or a different NIC
419 * (for XDP redirect).
420 */
421int efx_xdp_tx_buffers(struct efx_nic *efx, int n, struct xdp_frame **xdpfs,
422		       bool flush)
 
 
423{
424	struct efx_tx_buffer *tx_buffer;
425	struct efx_tx_queue *tx_queue;
426	struct xdp_frame *xdpf;
427	dma_addr_t dma_addr;
428	unsigned int len;
429	int space;
430	int cpu;
431	int i = 0;
432
433	if (unlikely(n && !xdpfs))
434		return -EINVAL;
435	if (unlikely(!n))
436		return 0;
437
438	cpu = raw_smp_processor_id();
439	if (unlikely(cpu >= efx->xdp_tx_queue_count))
440		return -EINVAL;
441
442	tx_queue = efx->xdp_tx_queues[cpu];
443	if (unlikely(!tx_queue))
444		return -EINVAL;
445
446	if (!tx_queue->initialised)
447		return -EINVAL;
448
449	if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED)
450		HARD_TX_LOCK(efx->net_dev, tx_queue->core_txq, cpu);
451
452	/* If we're borrowing net stack queues we have to handle stop-restart
453	 * or we might block the queue and it will be considered as frozen
454	 */
455	if (efx->xdp_txq_queues_mode == EFX_XDP_TX_QUEUES_BORROWED) {
456		if (netif_tx_queue_stopped(tx_queue->core_txq))
457			goto unlock;
458		efx_tx_maybe_stop_queue(tx_queue);
459	}
460
461	/* Check for available space. We should never need multiple
462	 * descriptors per frame.
463	 */
464	space = efx->txq_entries +
465		tx_queue->read_count - tx_queue->insert_count;
466
467	for (i = 0; i < n; i++) {
468		xdpf = xdpfs[i];
 
 
 
 
 
 
469
470		if (i >= space)
471			break;
472
473		/* We'll want a descriptor for this tx. */
474		prefetchw(__efx_tx_queue_get_insert_buffer(tx_queue));
475
476		len = xdpf->len;
477
478		/* Map for DMA. */
479		dma_addr = dma_map_single(&efx->pci_dev->dev,
480					  xdpf->data, len,
481					  DMA_TO_DEVICE);
482		if (dma_mapping_error(&efx->pci_dev->dev, dma_addr))
483			break;
484
485		/*  Create descriptor and set up for unmapping DMA. */
486		tx_buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
487		tx_buffer->xdpf = xdpf;
488		tx_buffer->flags = EFX_TX_BUF_XDP |
489				   EFX_TX_BUF_MAP_SINGLE;
490		tx_buffer->dma_offset = 0;
491		tx_buffer->unmap_len = len;
492		tx_queue->tx_packets++;
493	}
494
495	/* Pass mapped frames to hardware. */
496	if (flush && i > 0)
497		efx_nic_push_buffers(tx_queue);
498
499unlock:
500	if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED)
501		HARD_TX_UNLOCK(efx->net_dev, tx_queue->core_txq);
502
503	return i == 0 ? -EIO : i;
504}
505
506/* Initiate a packet transmission.  We use one channel per CPU
507 * (sharing when we have more CPUs than channels).
 
 
508 *
509 * Context: non-blocking.
510 * Should always return NETDEV_TX_OK and consume the skb.
 
511 */
512netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
513				struct net_device *net_dev)
514{
515	struct efx_nic *efx = efx_netdev_priv(net_dev);
516	struct efx_tx_queue *tx_queue;
517	unsigned index, type;
518
519	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
520	index = skb_get_queue_mapping(skb);
521	type = efx_tx_csum_type_skb(skb);
522
523	/* PTP "event" packet */
524	if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
525	    ((efx_ptp_use_mac_tx_timestamps(efx) && efx->ptp_data) ||
526	    unlikely(efx_ptp_is_ptp_tx(efx, skb)))) {
527		/* There may be existing transmits on the channel that are
528		 * waiting for this packet to trigger the doorbell write.
529		 * We need to send the packets at this point.
530		 */
531		efx_tx_send_pending(efx_get_tx_channel(efx, index));
532		return efx_ptp_tx(efx, skb);
533	}
534
 
 
 
 
 
 
535	tx_queue = efx_get_tx_queue(efx, index, type);
536	if (WARN_ON_ONCE(!tx_queue)) {
537		/* We don't have a TXQ of the right type.
538		 * This should never happen, as we don't advertise offload
539		 * features unless we can support them.
540		 */
541		dev_kfree_skb_any(skb);
542		/* If we're not expecting another transmit and we had something to push
543		 * on this queue or a partner queue then we need to push here to get the
544		 * previous packets out.
545		 */
546		if (!netdev_xmit_more())
547			efx_tx_send_pending(efx_get_tx_channel(efx, index));
548		return NETDEV_TX_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
549	}
550
551	return __efx_enqueue_skb(tx_queue, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
552}
553
554void efx_xmit_done_single(struct efx_tx_queue *tx_queue)
555{
 
 
 
556	unsigned int pkts_compl = 0, bytes_compl = 0;
557	unsigned int efv_pkts_compl = 0;
558	unsigned int read_ptr;
559	bool finished = false;
560
561	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
562
563	while (!finished) {
564		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
 
565
566		if (!efx_tx_buffer_in_use(buffer)) {
567			struct efx_nic *efx = tx_queue->efx;
568
569			netif_err(efx, hw, efx->net_dev,
570				  "TX queue %d spurious single TX completion\n",
571				  tx_queue->queue);
572			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
573			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
574		}
 
 
575
576		/* Need to check the flag before dequeueing. */
577		if (buffer->flags & EFX_TX_BUF_SKB)
578			finished = true;
579		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl,
580				   &efv_pkts_compl);
581
582		++tx_queue->read_count;
583		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
584	}
585
586	tx_queue->pkts_compl += pkts_compl;
587	tx_queue->bytes_compl += bytes_compl;
 
 
588
589	EFX_WARN_ON_PARANOID(pkts_compl + efv_pkts_compl != 1);
590
591	efx_xmit_done_check_empty(tx_queue);
 
 
 
 
 
 
592}
593
594void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
595{
596	struct efx_nic *efx = tx_queue->efx;
597
598	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
599	tx_queue->core_txq =
600		netdev_get_tx_queue(efx->net_dev,
601				    tx_queue->channel->channel);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
602}
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/****************************************************************************
  3 * Driver for Solarflare network controllers and boards
  4 * Copyright 2005-2006 Fen Systems Ltd.
  5 * Copyright 2005-2013 Solarflare Communications Inc.
  6 */
  7
  8#include <linux/pci.h>
  9#include <linux/tcp.h>
 10#include <linux/ip.h>
 11#include <linux/in.h>
 12#include <linux/ipv6.h>
 13#include <linux/slab.h>
 14#include <net/ipv6.h>
 15#include <linux/if_ether.h>
 16#include <linux/highmem.h>
 17#include <linux/cache.h>
 18#include "net_driver.h"
 19#include "efx.h"
 20#include "io.h"
 21#include "nic.h"
 22#include "tx.h"
 
 23#include "workarounds.h"
 24#include "ef10_regs.h"
 25
 26#ifdef EFX_USE_PIO
 27
 28#define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
 29unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
 30
 31#endif /* EFX_USE_PIO */
 32
 33static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
 34					 struct efx_tx_buffer *buffer)
 35{
 36	unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
 37	struct efx_buffer *page_buf =
 38		&tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
 39	unsigned int offset =
 40		((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
 41
 42	if (unlikely(!page_buf->addr) &&
 43	    efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
 44				 GFP_ATOMIC))
 45		return NULL;
 46	buffer->dma_addr = page_buf->dma_addr + offset;
 47	buffer->unmap_len = 0;
 48	return (u8 *)page_buf->addr + offset;
 49}
 50
 51u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue,
 52				   struct efx_tx_buffer *buffer, size_t len)
 53{
 54	if (len > EFX_TX_CB_SIZE)
 55		return NULL;
 56	return efx_tx_get_copy_buffer(tx_queue, buffer);
 57}
 58
 59static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
 60			       struct efx_tx_buffer *buffer,
 61			       unsigned int *pkts_compl,
 62			       unsigned int *bytes_compl)
 63{
 64	if (buffer->unmap_len) {
 65		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
 66		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
 67		if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
 68			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
 69					 DMA_TO_DEVICE);
 70		else
 71			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
 72				       DMA_TO_DEVICE);
 73		buffer->unmap_len = 0;
 74	}
 75
 76	if (buffer->flags & EFX_TX_BUF_SKB) {
 77		struct sk_buff *skb = (struct sk_buff *)buffer->skb;
 78
 79		EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
 80		(*pkts_compl)++;
 81		(*bytes_compl) += skb->len;
 82		if (tx_queue->timestamping &&
 83		    (tx_queue->completed_timestamp_major ||
 84		     tx_queue->completed_timestamp_minor)) {
 85			struct skb_shared_hwtstamps hwtstamp;
 86
 87			hwtstamp.hwtstamp =
 88				efx_ptp_nic_to_kernel_time(tx_queue);
 89			skb_tstamp_tx(skb, &hwtstamp);
 90
 91			tx_queue->completed_timestamp_major = 0;
 92			tx_queue->completed_timestamp_minor = 0;
 93		}
 94		dev_consume_skb_any((struct sk_buff *)buffer->skb);
 95		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
 96			   "TX queue %d transmission id %x complete\n",
 97			   tx_queue->queue, tx_queue->read_count);
 98	}
 99
100	buffer->len = 0;
101	buffer->flags = 0;
102}
103
104unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
105{
106	/* Header and payload descriptor for each output segment, plus
107	 * one for every input fragment boundary within a segment
108	 */
109	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
110
111	/* Possibly one more per segment for option descriptors */
112	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
113		max_descs += EFX_TSO_MAX_SEGS;
114
115	/* Possibly more for PCIe page boundaries within input fragments */
116	if (PAGE_SIZE > EFX_PAGE_SIZE)
117		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
118				   DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
119
120	return max_descs;
121}
122
123static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
124{
125	/* We need to consider both queues that the net core sees as one */
126	struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
127	struct efx_nic *efx = txq1->efx;
 
128	unsigned int fill_level;
129
130	fill_level = max(txq1->insert_count - txq1->old_read_count,
131			 txq2->insert_count - txq2->old_read_count);
132	if (likely(fill_level < efx->txq_stop_thresh))
133		return;
134
135	/* We used the stale old_read_count above, which gives us a
136	 * pessimistic estimate of the fill level (which may even
137	 * validly be >= efx->txq_entries).  Now try again using
138	 * read_count (more likely to be a cache miss).
139	 *
140	 * If we read read_count and then conditionally stop the
141	 * queue, it is possible for the completion path to race with
142	 * us and complete all outstanding descriptors in the middle,
143	 * after which there will be no more completions to wake it.
144	 * Therefore we stop the queue first, then read read_count
145	 * (with a memory barrier to ensure the ordering), then
146	 * restart the queue if the fill level turns out to be low
147	 * enough.
148	 */
149	netif_tx_stop_queue(txq1->core_txq);
150	smp_mb();
151	txq1->old_read_count = READ_ONCE(txq1->read_count);
152	txq2->old_read_count = READ_ONCE(txq2->read_count);
153
154	fill_level = max(txq1->insert_count - txq1->old_read_count,
155			 txq2->insert_count - txq2->old_read_count);
156	EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
157	if (likely(fill_level < efx->txq_stop_thresh)) {
158		smp_mb();
159		if (likely(!efx->loopback_selftest))
160			netif_tx_start_queue(txq1->core_txq);
161	}
162}
163
164static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
165				struct sk_buff *skb)
166{
167	unsigned int copy_len = skb->len;
168	struct efx_tx_buffer *buffer;
169	u8 *copy_buffer;
170	int rc;
171
172	EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);
173
174	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
175
176	copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
177	if (unlikely(!copy_buffer))
178		return -ENOMEM;
179
180	rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
181	EFX_WARN_ON_PARANOID(rc);
182	buffer->len = copy_len;
183
184	buffer->skb = skb;
185	buffer->flags = EFX_TX_BUF_SKB;
186
187	++tx_queue->insert_count;
188	return rc;
189}
190
191#ifdef EFX_USE_PIO
192
193struct efx_short_copy_buffer {
194	int used;
195	u8 buf[L1_CACHE_BYTES];
196};
197
198/* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
199 * Advances piobuf pointer. Leaves additional data in the copy buffer.
200 */
201static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
202				    u8 *data, int len,
203				    struct efx_short_copy_buffer *copy_buf)
204{
205	int block_len = len & ~(sizeof(copy_buf->buf) - 1);
206
207	__iowrite64_copy(*piobuf, data, block_len >> 3);
208	*piobuf += block_len;
209	len -= block_len;
210
211	if (len) {
212		data += block_len;
213		BUG_ON(copy_buf->used);
214		BUG_ON(len > sizeof(copy_buf->buf));
215		memcpy(copy_buf->buf, data, len);
216		copy_buf->used = len;
217	}
218}
219
220/* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
221 * Advances piobuf pointer. Leaves additional data in the copy buffer.
222 */
223static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
224				       u8 *data, int len,
225				       struct efx_short_copy_buffer *copy_buf)
226{
227	if (copy_buf->used) {
228		/* if the copy buffer is partially full, fill it up and write */
229		int copy_to_buf =
230			min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
231
232		memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
233		copy_buf->used += copy_to_buf;
234
235		/* if we didn't fill it up then we're done for now */
236		if (copy_buf->used < sizeof(copy_buf->buf))
237			return;
238
239		__iowrite64_copy(*piobuf, copy_buf->buf,
240				 sizeof(copy_buf->buf) >> 3);
241		*piobuf += sizeof(copy_buf->buf);
242		data += copy_to_buf;
243		len -= copy_to_buf;
244		copy_buf->used = 0;
245	}
246
247	efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
248}
249
250static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
251				  struct efx_short_copy_buffer *copy_buf)
252{
253	/* if there's anything in it, write the whole buffer, including junk */
254	if (copy_buf->used)
255		__iowrite64_copy(piobuf, copy_buf->buf,
256				 sizeof(copy_buf->buf) >> 3);
257}
258
259/* Traverse skb structure and copy fragments in to PIO buffer.
260 * Advances piobuf pointer.
261 */
262static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
263				     u8 __iomem **piobuf,
264				     struct efx_short_copy_buffer *copy_buf)
265{
266	int i;
267
268	efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
269				copy_buf);
270
271	for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
272		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
273		u8 *vaddr;
274
275		vaddr = kmap_atomic(skb_frag_page(f));
276
277		efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + skb_frag_off(f),
278					   skb_frag_size(f), copy_buf);
279		kunmap_atomic(vaddr);
280	}
281
282	EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list);
283}
284
285static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue,
286			       struct sk_buff *skb)
287{
288	struct efx_tx_buffer *buffer =
289		efx_tx_queue_get_insert_buffer(tx_queue);
290	u8 __iomem *piobuf = tx_queue->piobuf;
291
292	/* Copy to PIO buffer. Ensure the writes are padded to the end
293	 * of a cache line, as this is required for write-combining to be
294	 * effective on at least x86.
295	 */
296
297	if (skb_shinfo(skb)->nr_frags) {
298		/* The size of the copy buffer will ensure all writes
299		 * are the size of a cache line.
300		 */
301		struct efx_short_copy_buffer copy_buf;
302
303		copy_buf.used = 0;
304
305		efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
306					 &piobuf, &copy_buf);
307		efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
308	} else {
309		/* Pad the write to the size of a cache line.
310		 * We can do this because we know the skb_shared_info struct is
311		 * after the source, and the destination buffer is big enough.
312		 */
313		BUILD_BUG_ON(L1_CACHE_BYTES >
314			     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
315		__iowrite64_copy(tx_queue->piobuf, skb->data,
316				 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
317	}
318
319	buffer->skb = skb;
320	buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION;
321
322	EFX_POPULATE_QWORD_5(buffer->option,
323			     ESF_DZ_TX_DESC_IS_OPT, 1,
324			     ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
325			     ESF_DZ_TX_PIO_CONT, 0,
326			     ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
327			     ESF_DZ_TX_PIO_BUF_ADDR,
328			     tx_queue->piobuf_offset);
329	++tx_queue->insert_count;
330	return 0;
331}
332#endif /* EFX_USE_PIO */
333
334static struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
335					      dma_addr_t dma_addr,
336					      size_t len)
337{
338	const struct efx_nic_type *nic_type = tx_queue->efx->type;
339	struct efx_tx_buffer *buffer;
340	unsigned int dma_len;
341
342	/* Map the fragment taking account of NIC-dependent DMA limits. */
343	do {
344		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
345		dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
346
347		buffer->len = dma_len;
348		buffer->dma_addr = dma_addr;
349		buffer->flags = EFX_TX_BUF_CONT;
350		len -= dma_len;
351		dma_addr += dma_len;
352		++tx_queue->insert_count;
353	} while (len);
354
355	return buffer;
356}
357
358/* Map all data from an SKB for DMA and create descriptors on the queue.
359 */
360static int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
361			   unsigned int segment_count)
362{
363	struct efx_nic *efx = tx_queue->efx;
364	struct device *dma_dev = &efx->pci_dev->dev;
365	unsigned int frag_index, nr_frags;
366	dma_addr_t dma_addr, unmap_addr;
367	unsigned short dma_flags;
368	size_t len, unmap_len;
369
370	nr_frags = skb_shinfo(skb)->nr_frags;
371	frag_index = 0;
372
373	/* Map header data. */
374	len = skb_headlen(skb);
375	dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
376	dma_flags = EFX_TX_BUF_MAP_SINGLE;
377	unmap_len = len;
378	unmap_addr = dma_addr;
379
380	if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
381		return -EIO;
382
383	if (segment_count) {
384		/* For TSO we need to put the header in to a separate
385		 * descriptor. Map this separately if necessary.
386		 */
387		size_t header_len = skb_transport_header(skb) - skb->data +
388				(tcp_hdr(skb)->doff << 2u);
389
390		if (header_len != len) {
391			tx_queue->tso_long_headers++;
392			efx_tx_map_chunk(tx_queue, dma_addr, header_len);
393			len -= header_len;
394			dma_addr += header_len;
395		}
396	}
397
398	/* Add descriptors for each fragment. */
399	do {
400		struct efx_tx_buffer *buffer;
401		skb_frag_t *fragment;
402
403		buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
404
405		/* The final descriptor for a fragment is responsible for
406		 * unmapping the whole fragment.
407		 */
408		buffer->flags = EFX_TX_BUF_CONT | dma_flags;
409		buffer->unmap_len = unmap_len;
410		buffer->dma_offset = buffer->dma_addr - unmap_addr;
411
412		if (frag_index >= nr_frags) {
413			/* Store SKB details with the final buffer for
414			 * the completion.
415			 */
416			buffer->skb = skb;
417			buffer->flags = EFX_TX_BUF_SKB | dma_flags;
418			return 0;
419		}
420
421		/* Move on to the next fragment. */
422		fragment = &skb_shinfo(skb)->frags[frag_index++];
423		len = skb_frag_size(fragment);
424		dma_addr = skb_frag_dma_map(dma_dev, fragment,
425				0, len, DMA_TO_DEVICE);
426		dma_flags = 0;
427		unmap_len = len;
428		unmap_addr = dma_addr;
429
430		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
431			return -EIO;
432	} while (1);
433}
 
434
435/* Remove buffers put into a tx_queue for the current packet.
436 * None of the buffers must have an skb attached.
437 */
438static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
439			       unsigned int insert_count)
440{
441	struct efx_tx_buffer *buffer;
442	unsigned int bytes_compl = 0;
443	unsigned int pkts_compl = 0;
444
445	/* Work backwards until we hit the original insert pointer value */
446	while (tx_queue->insert_count != insert_count) {
447		--tx_queue->insert_count;
448		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
449		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
450	}
451}
452
453/*
454 * Fallback to software TSO.
455 *
456 * This is used if we are unable to send a GSO packet through hardware TSO.
457 * This should only ever happen due to per-queue restrictions - unsupported
458 * packets should first be filtered by the feature flags.
459 *
460 * Returns 0 on success, error code otherwise.
461 */
462static int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue,
463			       struct sk_buff *skb)
464{
465	struct sk_buff *segments, *next;
466
467	segments = skb_gso_segment(skb, 0);
468	if (IS_ERR(segments))
469		return PTR_ERR(segments);
470
471	dev_consume_skb_any(skb);
472	skb = segments;
473
474	while (skb) {
475		next = skb->next;
476		skb->next = NULL;
477
478		efx_enqueue_skb(tx_queue, skb);
479		skb = next;
480	}
481
482	return 0;
483}
484
485/*
486 * Add a socket buffer to a TX queue
487 *
488 * This maps all fragments of a socket buffer for DMA and adds them to
489 * the TX queue.  The queue's insert pointer will be incremented by
490 * the number of fragments in the socket buffer.
491 *
492 * If any DMA mapping fails, any mapped fragments will be unmapped,
493 * the queue's insert pointer will be restored to its original value.
494 *
495 * This function is split out from efx_hard_start_xmit to allow the
496 * loopback test to direct packets via specific TX queues.
497 *
498 * Returns NETDEV_TX_OK.
499 * You must hold netif_tx_lock() to call this function.
500 */
501netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
502{
503	unsigned int old_insert_count = tx_queue->insert_count;
504	bool xmit_more = netdev_xmit_more();
505	bool data_mapped = false;
506	unsigned int segments;
507	unsigned int skb_len;
508	int rc;
509
510	skb_len = skb->len;
511	segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
512	if (segments == 1)
513		segments = 0; /* Don't use TSO for a single segment. */
514
515	/* Handle TSO first - it's *possible* (although unlikely) that we might
516	 * be passed a packet to segment that's smaller than the copybreak/PIO
517	 * size limit.
518	 */
519	if (segments) {
520		EFX_WARN_ON_ONCE_PARANOID(!tx_queue->handle_tso);
521		rc = tx_queue->handle_tso(tx_queue, skb, &data_mapped);
 
 
 
 
 
 
 
 
 
 
522		if (rc == -EINVAL) {
523			rc = efx_tx_tso_fallback(tx_queue, skb);
524			tx_queue->tso_fallbacks++;
525			if (rc == 0)
526				return 0;
527		}
528		if (rc)
529			goto err;
530#ifdef EFX_USE_PIO
531	} else if (skb_len <= efx_piobuf_size && !xmit_more &&
532		   efx_nic_may_tx_pio(tx_queue)) {
533		/* Use PIO for short packets with an empty queue. */
534		if (efx_enqueue_skb_pio(tx_queue, skb))
535			goto err;
536		tx_queue->pio_packets++;
537		data_mapped = true;
538#endif
539	} else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
540		/* Pad short packets or coalesce short fragmented packets. */
541		if (efx_enqueue_skb_copy(tx_queue, skb))
542			goto err;
543		tx_queue->cb_packets++;
544		data_mapped = true;
545	}
546
547	/* Map for DMA and create descriptors if we haven't done so already. */
548	if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments)))
549		goto err;
550
551	efx_tx_maybe_stop_queue(tx_queue);
552
 
 
553	/* Pass off to hardware */
554	if (__netdev_tx_sent_queue(tx_queue->core_txq, skb_len, xmit_more)) {
555		struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
556
557		/* There could be packets left on the partner queue if
558		 * xmit_more was set. If we do not push those they
559		 * could be left for a long time and cause a netdev watchdog.
560		 */
561		if (txq2->xmit_more_available)
562			efx_nic_push_buffers(txq2);
563
564		efx_nic_push_buffers(tx_queue);
565	} else {
566		tx_queue->xmit_more_available = xmit_more;
567	}
568
569	if (segments) {
570		tx_queue->tso_bursts++;
571		tx_queue->tso_packets += segments;
572		tx_queue->tx_packets  += segments;
573	} else {
574		tx_queue->tx_packets++;
575	}
576
577	return NETDEV_TX_OK;
578
579
580err:
581	efx_enqueue_unwind(tx_queue, old_insert_count);
582	dev_kfree_skb_any(skb);
583
584	/* If we're not expecting another transmit and we had something to push
585	 * on this queue or a partner queue then we need to push here to get the
586	 * previous packets out.
587	 */
588	if (!xmit_more) {
589		struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
590
591		if (txq2->xmit_more_available)
592			efx_nic_push_buffers(txq2);
593
594		efx_nic_push_buffers(tx_queue);
595	}
596
597	return NETDEV_TX_OK;
598}
599
600/* Remove packets from the TX queue
601 *
602 * This removes packets from the TX queue, up to and including the
603 * specified index.
 
604 */
605static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
606				unsigned int index,
607				unsigned int *pkts_compl,
608				unsigned int *bytes_compl)
609{
610	struct efx_nic *efx = tx_queue->efx;
611	unsigned int stop_index, read_ptr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
612
613	stop_index = (index + 1) & tx_queue->ptr_mask;
614	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
 
 
 
 
 
 
615
616	while (read_ptr != stop_index) {
617		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
 
 
 
618
619		if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
620		    unlikely(buffer->len == 0)) {
621			netif_err(efx, tx_err, efx->net_dev,
622				  "TX queue %d spurious TX completion id %x\n",
623				  tx_queue->queue, read_ptr);
624			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
625			return;
626		}
627
628		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
 
629
630		++tx_queue->read_count;
631		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
632	}
 
 
 
 
 
 
 
 
 
 
633}
634
635/* Initiate a packet transmission.  We use one channel per CPU
636 * (sharing when we have more CPUs than channels).  On Falcon, the TX
637 * completion events will be directed back to the CPU that transmitted
638 * the packet, which should be cache-efficient.
639 *
640 * Context: non-blocking.
641 * Note that returning anything other than NETDEV_TX_OK will cause the
642 * OS to free the skb.
643 */
644netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
645				struct net_device *net_dev)
646{
647	struct efx_nic *efx = netdev_priv(net_dev);
648	struct efx_tx_queue *tx_queue;
649	unsigned index, type;
650
651	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
 
 
652
653	/* PTP "event" packet */
654	if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
655	    unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
 
 
 
 
 
 
656		return efx_ptp_tx(efx, skb);
657	}
658
659	index = skb_get_queue_mapping(skb);
660	type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
661	if (index >= efx->n_tx_channels) {
662		index -= efx->n_tx_channels;
663		type |= EFX_TXQ_TYPE_HIGHPRI;
664	}
665	tx_queue = efx_get_tx_queue(efx, index, type);
666
667	return efx_enqueue_skb(tx_queue, skb);
668}
669
670void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
671{
672	struct efx_nic *efx = tx_queue->efx;
673
674	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
675	tx_queue->core_txq =
676		netdev_get_tx_queue(efx->net_dev,
677				    tx_queue->queue / EFX_TXQ_TYPES +
678				    ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
679				     efx->n_tx_channels : 0));
680}
681
682int efx_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
683		 void *type_data)
684{
685	struct efx_nic *efx = netdev_priv(net_dev);
686	struct tc_mqprio_qopt *mqprio = type_data;
687	struct efx_channel *channel;
688	struct efx_tx_queue *tx_queue;
689	unsigned tc, num_tc;
690	int rc;
691
692	if (type != TC_SETUP_QDISC_MQPRIO)
693		return -EOPNOTSUPP;
694
695	num_tc = mqprio->num_tc;
696
697	if (num_tc > EFX_MAX_TX_TC)
698		return -EINVAL;
699
700	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
701
702	if (num_tc == net_dev->num_tc)
703		return 0;
704
705	for (tc = 0; tc < num_tc; tc++) {
706		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
707		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
708	}
709
710	if (num_tc > net_dev->num_tc) {
711		/* Initialise high-priority queues as necessary */
712		efx_for_each_channel(channel, efx) {
713			efx_for_each_possible_channel_tx_queue(tx_queue,
714							       channel) {
715				if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
716					continue;
717				if (!tx_queue->buffer) {
718					rc = efx_probe_tx_queue(tx_queue);
719					if (rc)
720						return rc;
721				}
722				if (!tx_queue->initialised)
723					efx_init_tx_queue(tx_queue);
724				efx_init_tx_queue_core_txq(tx_queue);
725			}
726		}
727	} else {
728		/* Reduce number of classes before number of queues */
729		net_dev->num_tc = num_tc;
730	}
731
732	rc = netif_set_real_num_tx_queues(net_dev,
733					  max_t(int, num_tc, 1) *
734					  efx->n_tx_channels);
735	if (rc)
736		return rc;
737
738	/* Do not destroy high-priority queues when they become
739	 * unused.  We would have to flush them first, and it is
740	 * fairly difficult to flush a subset of TX queues.  Leave
741	 * it to efx_fini_channels().
742	 */
743
744	net_dev->num_tc = num_tc;
745	return 0;
746}
747
748void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
749{
750	unsigned fill_level;
751	struct efx_nic *efx = tx_queue->efx;
752	struct efx_tx_queue *txq2;
753	unsigned int pkts_compl = 0, bytes_compl = 0;
 
 
 
754
755	EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
756
757	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
758	tx_queue->pkts_compl += pkts_compl;
759	tx_queue->bytes_compl += bytes_compl;
760
761	if (pkts_compl > 1)
762		++tx_queue->merge_events;
763
764	/* See if we need to restart the netif queue.  This memory
765	 * barrier ensures that we write read_count (inside
766	 * efx_dequeue_buffers()) before reading the queue status.
767	 */
768	smp_mb();
769	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
770	    likely(efx->port_enabled) &&
771	    likely(netif_device_present(efx->net_dev))) {
772		txq2 = efx_tx_queue_partner(tx_queue);
773		fill_level = max(tx_queue->insert_count - tx_queue->read_count,
774				 txq2->insert_count - txq2->read_count);
775		if (fill_level <= efx->txq_wake_thresh)
776			netif_tx_wake_queue(tx_queue->core_txq);
777	}
778
779	/* Check whether the hardware queue is now empty */
780	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
781		tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
782		if (tx_queue->read_count == tx_queue->old_write_count) {
783			smp_mb();
784			tx_queue->empty_read_count =
785				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
786		}
787	}
788}
789
790static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
791{
792	return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EFX_TX_CB_ORDER);
793}
 
794
795int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
796{
797	struct efx_nic *efx = tx_queue->efx;
798	unsigned int entries;
799	int rc;
800
801	/* Create the smallest power-of-two aligned ring */
802	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
803	EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
804	tx_queue->ptr_mask = entries - 1;
805
806	netif_dbg(efx, probe, efx->net_dev,
807		  "creating TX queue %d size %#x mask %#x\n",
808		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
809
810	/* Allocate software ring */
811	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
812				   GFP_KERNEL);
813	if (!tx_queue->buffer)
814		return -ENOMEM;
815
816	tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
817				    sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
818	if (!tx_queue->cb_page) {
819		rc = -ENOMEM;
820		goto fail1;
821	}
822
823	/* Allocate hardware ring */
824	rc = efx_nic_probe_tx(tx_queue);
825	if (rc)
826		goto fail2;
827
828	return 0;
829
830fail2:
831	kfree(tx_queue->cb_page);
832	tx_queue->cb_page = NULL;
833fail1:
834	kfree(tx_queue->buffer);
835	tx_queue->buffer = NULL;
836	return rc;
837}
838
839void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
840{
841	struct efx_nic *efx = tx_queue->efx;
842
843	netif_dbg(efx, drv, efx->net_dev,
844		  "initialising TX queue %d\n", tx_queue->queue);
845
846	tx_queue->insert_count = 0;
847	tx_queue->write_count = 0;
848	tx_queue->packet_write_count = 0;
849	tx_queue->old_write_count = 0;
850	tx_queue->read_count = 0;
851	tx_queue->old_read_count = 0;
852	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
853	tx_queue->xmit_more_available = false;
854	tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
855				  tx_queue->channel == efx_ptp_channel(efx));
856	tx_queue->completed_desc_ptr = tx_queue->ptr_mask;
857	tx_queue->completed_timestamp_major = 0;
858	tx_queue->completed_timestamp_minor = 0;
859
860	/* Set up default function pointers. These may get replaced by
861	 * efx_nic_init_tx() based off NIC/queue capabilities.
862	 */
863	tx_queue->handle_tso = efx_enqueue_skb_tso;
864
865	/* Set up TX descriptor ring */
866	efx_nic_init_tx(tx_queue);
867
868	tx_queue->initialised = true;
869}
870
871void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
872{
873	struct efx_tx_buffer *buffer;
874
875	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
876		  "shutting down TX queue %d\n", tx_queue->queue);
877
878	if (!tx_queue->buffer)
879		return;
880
881	/* Free any buffers left in the ring */
882	while (tx_queue->read_count != tx_queue->write_count) {
883		unsigned int pkts_compl = 0, bytes_compl = 0;
884		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
885		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
886
887		++tx_queue->read_count;
888	}
889	tx_queue->xmit_more_available = false;
890	netdev_tx_reset_queue(tx_queue->core_txq);
891}
892
893void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
894{
895	int i;
896
897	if (!tx_queue->buffer)
898		return;
899
900	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
901		  "destroying TX queue %d\n", tx_queue->queue);
902	efx_nic_remove_tx(tx_queue);
903
904	if (tx_queue->cb_page) {
905		for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
906			efx_nic_free_buffer(tx_queue->efx,
907					    &tx_queue->cb_page[i]);
908		kfree(tx_queue->cb_page);
909		tx_queue->cb_page = NULL;
910	}
911
912	kfree(tx_queue->buffer);
913	tx_queue->buffer = NULL;
914}