Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/****************************************************************************
  3 * Driver for Solarflare network controllers and boards
  4 * Copyright 2005-2006 Fen Systems Ltd.
  5 * Copyright 2005-2013 Solarflare Communications Inc.
 
 
 
 
  6 */
  7
  8#include <linux/pci.h>
  9#include <linux/tcp.h>
 10#include <linux/ip.h>
 11#include <linux/in.h>
 12#include <linux/ipv6.h>
 13#include <linux/slab.h>
 14#include <net/ipv6.h>
 15#include <linux/if_ether.h>
 16#include <linux/highmem.h>
 17#include <linux/cache.h>
 18#include "net_driver.h"
 19#include "efx.h"
 20#include "io.h"
 21#include "nic.h"
 22#include "tx.h"
 23#include "tx_common.h"
 24#include "workarounds.h"
 25#include "ef10_regs.h"
 26
 27#ifdef EFX_USE_PIO
 28
 
 29#define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
 30unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
 31
 32#endif /* EFX_USE_PIO */
 33
 34static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
 35					 struct efx_tx_buffer *buffer)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 36{
 37	unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
 38	struct efx_buffer *page_buf =
 39		&tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
 40	unsigned int offset =
 41		((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
 42
 43	if (unlikely(!page_buf->addr) &&
 44	    efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
 45				 GFP_ATOMIC))
 46		return NULL;
 47	buffer->dma_addr = page_buf->dma_addr + offset;
 48	buffer->unmap_len = 0;
 49	return (u8 *)page_buf->addr + offset;
 50}
 51
 52u8 *efx_tx_get_copy_buffer_limited(struct efx_tx_queue *tx_queue,
 53				   struct efx_tx_buffer *buffer, size_t len)
 54{
 55	if (len > EFX_TX_CB_SIZE)
 56		return NULL;
 57	return efx_tx_get_copy_buffer(tx_queue, buffer);
 58}
 59
 60static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
 61{
 62	/* We need to consider all queues that the net core sees as one */
 
 63	struct efx_nic *efx = txq1->efx;
 64	struct efx_tx_queue *txq2;
 65	unsigned int fill_level;
 66
 67	fill_level = efx_channel_tx_old_fill_level(txq1->channel);
 
 68	if (likely(fill_level < efx->txq_stop_thresh))
 69		return;
 70
 71	/* We used the stale old_read_count above, which gives us a
 72	 * pessimistic estimate of the fill level (which may even
 73	 * validly be >= efx->txq_entries).  Now try again using
 74	 * read_count (more likely to be a cache miss).
 75	 *
 76	 * If we read read_count and then conditionally stop the
 77	 * queue, it is possible for the completion path to race with
 78	 * us and complete all outstanding descriptors in the middle,
 79	 * after which there will be no more completions to wake it.
 80	 * Therefore we stop the queue first, then read read_count
 81	 * (with a memory barrier to ensure the ordering), then
 82	 * restart the queue if the fill level turns out to be low
 83	 * enough.
 84	 */
 85	netif_tx_stop_queue(txq1->core_txq);
 86	smp_mb();
 87	efx_for_each_channel_tx_queue(txq2, txq1->channel)
 88		txq2->old_read_count = READ_ONCE(txq2->read_count);
 89
 90	fill_level = efx_channel_tx_old_fill_level(txq1->channel);
 91	EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
 
 92	if (likely(fill_level < efx->txq_stop_thresh)) {
 93		smp_mb();
 94		if (likely(!efx->loopback_selftest))
 95			netif_tx_start_queue(txq1->core_txq);
 96	}
 97}
 98
 99static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
100				struct sk_buff *skb)
101{
102	unsigned int copy_len = skb->len;
103	struct efx_tx_buffer *buffer;
104	u8 *copy_buffer;
105	int rc;
106
107	EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);
108
109	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
110
111	copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
112	if (unlikely(!copy_buffer))
113		return -ENOMEM;
114
115	rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
116	EFX_WARN_ON_PARANOID(rc);
117	buffer->len = copy_len;
118
119	buffer->skb = skb;
120	buffer->flags = EFX_TX_BUF_SKB;
121
122	++tx_queue->insert_count;
123	return rc;
124}
125
126#ifdef EFX_USE_PIO
127
128struct efx_short_copy_buffer {
129	int used;
130	u8 buf[L1_CACHE_BYTES];
131};
132
133/* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
134 * Advances piobuf pointer. Leaves additional data in the copy buffer.
135 */
136static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
137				    u8 *data, int len,
138				    struct efx_short_copy_buffer *copy_buf)
139{
140	int block_len = len & ~(sizeof(copy_buf->buf) - 1);
141
142	__iowrite64_copy(*piobuf, data, block_len >> 3);
143	*piobuf += block_len;
144	len -= block_len;
145
146	if (len) {
147		data += block_len;
148		BUG_ON(copy_buf->used);
149		BUG_ON(len > sizeof(copy_buf->buf));
150		memcpy(copy_buf->buf, data, len);
151		copy_buf->used = len;
152	}
153}
154
155/* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
156 * Advances piobuf pointer. Leaves additional data in the copy buffer.
157 */
158static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
159				       u8 *data, int len,
160				       struct efx_short_copy_buffer *copy_buf)
161{
162	if (copy_buf->used) {
163		/* if the copy buffer is partially full, fill it up and write */
164		int copy_to_buf =
165			min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
166
167		memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
168		copy_buf->used += copy_to_buf;
169
170		/* if we didn't fill it up then we're done for now */
171		if (copy_buf->used < sizeof(copy_buf->buf))
172			return;
173
174		__iowrite64_copy(*piobuf, copy_buf->buf,
175				 sizeof(copy_buf->buf) >> 3);
176		*piobuf += sizeof(copy_buf->buf);
177		data += copy_to_buf;
178		len -= copy_to_buf;
179		copy_buf->used = 0;
180	}
181
182	efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
183}
184
185static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
186				  struct efx_short_copy_buffer *copy_buf)
187{
188	/* if there's anything in it, write the whole buffer, including junk */
189	if (copy_buf->used)
190		__iowrite64_copy(piobuf, copy_buf->buf,
191				 sizeof(copy_buf->buf) >> 3);
192}
193
194/* Traverse skb structure and copy fragments in to PIO buffer.
195 * Advances piobuf pointer.
196 */
197static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
198				     u8 __iomem **piobuf,
199				     struct efx_short_copy_buffer *copy_buf)
200{
201	int i;
202
203	efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
204				copy_buf);
205
206	for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
207		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
208		u8 *vaddr;
209
210		vaddr = kmap_local_page(skb_frag_page(f));
211
212		efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + skb_frag_off(f),
213					   skb_frag_size(f), copy_buf);
214		kunmap_local(vaddr);
215	}
216
217	EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list);
218}
219
220static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue,
221			       struct sk_buff *skb)
222{
223	struct efx_tx_buffer *buffer =
224		efx_tx_queue_get_insert_buffer(tx_queue);
225	u8 __iomem *piobuf = tx_queue->piobuf;
226
227	/* Copy to PIO buffer. Ensure the writes are padded to the end
228	 * of a cache line, as this is required for write-combining to be
229	 * effective on at least x86.
230	 */
231
232	if (skb_shinfo(skb)->nr_frags) {
233		/* The size of the copy buffer will ensure all writes
234		 * are the size of a cache line.
235		 */
236		struct efx_short_copy_buffer copy_buf;
237
238		copy_buf.used = 0;
239
240		efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
241					 &piobuf, &copy_buf);
242		efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
243	} else {
244		/* Pad the write to the size of a cache line.
245		 * We can do this because we know the skb_shared_info struct is
246		 * after the source, and the destination buffer is big enough.
247		 */
248		BUILD_BUG_ON(L1_CACHE_BYTES >
249			     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
250		__iowrite64_copy(tx_queue->piobuf, skb->data,
251				 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
252	}
253
254	buffer->skb = skb;
255	buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION;
256
257	EFX_POPULATE_QWORD_5(buffer->option,
258			     ESF_DZ_TX_DESC_IS_OPT, 1,
259			     ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
260			     ESF_DZ_TX_PIO_CONT, 0,
261			     ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
262			     ESF_DZ_TX_PIO_BUF_ADDR,
263			     tx_queue->piobuf_offset);
 
264	++tx_queue->insert_count;
265	return 0;
266}
267
268/* Decide whether we can use TX PIO, ie. write packet data directly into
269 * a buffer on the device.  This can reduce latency at the expense of
270 * throughput, so we only do this if both hardware and software TX rings
271 * are empty, including all queues for the channel.  This also ensures that
272 * only one packet at a time can be using the PIO buffer. If the xmit_more
273 * flag is set then we don't use this - there'll be another packet along
274 * shortly and we want to hold off the doorbell.
275 */
276static bool efx_tx_may_pio(struct efx_tx_queue *tx_queue)
277{
278	struct efx_channel *channel = tx_queue->channel;
279
280	if (!tx_queue->piobuf)
281		return false;
282
283	EFX_WARN_ON_ONCE_PARANOID(!channel->efx->type->option_descriptors);
284
285	efx_for_each_channel_tx_queue(tx_queue, channel)
286		if (!efx_nic_tx_is_empty(tx_queue, tx_queue->packet_write_count))
287			return false;
288
289	return true;
290}
291#endif /* EFX_USE_PIO */
292
293/* Send any pending traffic for a channel. xmit_more is shared across all
294 * queues for a channel, so we must check all of them.
295 */
296static void efx_tx_send_pending(struct efx_channel *channel)
297{
298	struct efx_tx_queue *q;
299
300	efx_for_each_channel_tx_queue(q, channel) {
301		if (q->xmit_pending)
302			efx_nic_push_buffers(q);
303	}
304}
305
306/*
307 * Add a socket buffer to a TX queue
308 *
309 * This maps all fragments of a socket buffer for DMA and adds them to
310 * the TX queue.  The queue's insert pointer will be incremented by
311 * the number of fragments in the socket buffer.
312 *
313 * If any DMA mapping fails, any mapped fragments will be unmapped,
314 * the queue's insert pointer will be restored to its original value.
315 *
316 * This function is split out from efx_hard_start_xmit to allow the
317 * loopback test to direct packets via specific TX queues.
318 *
319 * Returns NETDEV_TX_OK.
320 * You must hold netif_tx_lock() to call this function.
321 */
322netdev_tx_t __efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
323{
 
 
 
324	unsigned int old_insert_count = tx_queue->insert_count;
325	bool xmit_more = netdev_xmit_more();
326	bool data_mapped = false;
327	unsigned int segments;
328	unsigned int skb_len;
329	int rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
330
331	skb_len = skb->len;
332	segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
333	if (segments == 1)
334		segments = 0; /* Don't use TSO for a single segment. */
335
336	/* Handle TSO first - it's *possible* (although unlikely) that we might
337	 * be passed a packet to segment that's smaller than the copybreak/PIO
338	 * size limit.
339	 */
340	if (segments) {
341		switch (tx_queue->tso_version) {
342		case 1:
343			rc = efx_enqueue_skb_tso(tx_queue, skb, &data_mapped);
344			break;
345		case 2:
346			rc = efx_ef10_tx_tso_desc(tx_queue, skb, &data_mapped);
347			break;
348		case 0: /* No TSO on this queue, SW fallback needed */
349		default:
350			rc = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
351			break;
352		}
353		if (rc == -EINVAL) {
354			rc = efx_tx_tso_fallback(tx_queue, skb);
355			tx_queue->tso_fallbacks++;
356			if (rc == 0)
357				return 0;
358		}
359		if (rc)
360			goto err;
 
361#ifdef EFX_USE_PIO
362	} else if (skb_len <= efx_piobuf_size && !xmit_more &&
363		   efx_tx_may_pio(tx_queue)) {
364		/* Use PIO for short packets with an empty queue. */
365		if (efx_enqueue_skb_pio(tx_queue, skb))
366			goto err;
367		tx_queue->pio_packets++;
368		data_mapped = true;
369#endif
370	} else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
371		/* Pad short packets or coalesce short fragmented packets. */
372		if (efx_enqueue_skb_copy(tx_queue, skb))
373			goto err;
374		tx_queue->cb_packets++;
375		data_mapped = true;
376	}
377
378	/* Map for DMA and create descriptors if we haven't done so already. */
379	if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments)))
380		goto err;
381
382	efx_tx_maybe_stop_queue(tx_queue);
383
384	tx_queue->xmit_pending = true;
385
386	/* Pass off to hardware */
387	if (__netdev_tx_sent_queue(tx_queue->core_txq, skb_len, xmit_more))
388		efx_tx_send_pending(tx_queue->channel);
 
 
 
 
 
 
 
389
390	if (segments) {
391		tx_queue->tso_bursts++;
392		tx_queue->tso_packets += segments;
393		tx_queue->tx_packets  += segments;
394	} else {
395		tx_queue->tx_packets++;
396	}
397
 
 
398	return NETDEV_TX_OK;
399
 
 
 
 
 
400
401err:
402	efx_enqueue_unwind(tx_queue, old_insert_count);
403	dev_kfree_skb_any(skb);
404
405	/* If we're not expecting another transmit and we had something to push
406	 * on this queue or a partner queue then we need to push here to get the
407	 * previous packets out.
408	 */
409	if (!xmit_more)
410		efx_tx_send_pending(tx_queue->channel);
 
 
 
 
 
 
 
 
 
 
 
411
412	return NETDEV_TX_OK;
413}
414
415/* Transmit a packet from an XDP buffer
416 *
417 * Returns number of packets sent on success, error code otherwise.
418 * Runs in NAPI context, either in our poll (for XDP TX) or a different NIC
419 * (for XDP redirect).
420 */
421int efx_xdp_tx_buffers(struct efx_nic *efx, int n, struct xdp_frame **xdpfs,
422		       bool flush)
 
 
423{
424	struct efx_tx_buffer *tx_buffer;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
425	struct efx_tx_queue *tx_queue;
426	struct xdp_frame *xdpf;
427	dma_addr_t dma_addr;
428	unsigned int len;
429	int space;
430	int cpu;
431	int i = 0;
432
433	if (unlikely(n && !xdpfs))
434		return -EINVAL;
435	if (unlikely(!n))
436		return 0;
437
438	cpu = raw_smp_processor_id();
439	if (unlikely(cpu >= efx->xdp_tx_queue_count))
440		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
441
442	tx_queue = efx->xdp_tx_queues[cpu];
443	if (unlikely(!tx_queue))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
444		return -EINVAL;
445
446	if (!tx_queue->initialised)
 
 
447		return -EINVAL;
448
449	if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED)
450		HARD_TX_LOCK(efx->net_dev, tx_queue->core_txq, cpu);
451
452	/* If we're borrowing net stack queues we have to handle stop-restart
453	 * or we might block the queue and it will be considered as frozen
454	 */
455	if (efx->xdp_txq_queues_mode == EFX_XDP_TX_QUEUES_BORROWED) {
456		if (netif_tx_queue_stopped(tx_queue->core_txq))
457			goto unlock;
458		efx_tx_maybe_stop_queue(tx_queue);
459	}
460
461	/* Check for available space. We should never need multiple
462	 * descriptors per frame.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
463	 */
464	space = efx->txq_entries +
465		tx_queue->read_count - tx_queue->insert_count;
466
467	for (i = 0; i < n; i++) {
468		xdpf = xdpfs[i];
 
469
470		if (i >= space)
471			break;
 
 
 
 
472
473		/* We'll want a descriptor for this tx. */
474		prefetchw(__efx_tx_queue_get_insert_buffer(tx_queue));
475
476		len = xdpf->len;
 
 
477
478		/* Map for DMA. */
479		dma_addr = dma_map_single(&efx->pci_dev->dev,
480					  xdpf->data, len,
481					  DMA_TO_DEVICE);
482		if (dma_mapping_error(&efx->pci_dev->dev, dma_addr))
483			break;
484
485		/*  Create descriptor and set up for unmapping DMA. */
486		tx_buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
487		tx_buffer->xdpf = xdpf;
488		tx_buffer->flags = EFX_TX_BUF_XDP |
489				   EFX_TX_BUF_MAP_SINGLE;
490		tx_buffer->dma_offset = 0;
491		tx_buffer->unmap_len = len;
492		tx_queue->tx_packets++;
 
 
 
 
 
493	}
494
495	/* Pass mapped frames to hardware. */
496	if (flush && i > 0)
497		efx_nic_push_buffers(tx_queue);
 
 
 
 
 
 
 
498
499unlock:
500	if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED)
501		HARD_TX_UNLOCK(efx->net_dev, tx_queue->core_txq);
 
 
502
503	return i == 0 ? -EIO : i;
 
 
 
 
 
 
504}
505
506/* Initiate a packet transmission.  We use one channel per CPU
507 * (sharing when we have more CPUs than channels).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
508 *
509 * Context: non-blocking.
510 * Should always return NETDEV_TX_OK and consume the skb.
 
 
511 */
512netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
513				struct net_device *net_dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
514{
515	struct efx_nic *efx = efx_netdev_priv(net_dev);
516	struct efx_tx_queue *tx_queue;
517	unsigned index, type;
518
519	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
520	index = skb_get_queue_mapping(skb);
521	type = efx_tx_csum_type_skb(skb);
 
 
 
522
523	/* PTP "event" packet */
524	if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
525	    ((efx_ptp_use_mac_tx_timestamps(efx) && efx->ptp_data) ||
526	    unlikely(efx_ptp_is_ptp_tx(efx, skb)))) {
527		/* There may be existing transmits on the channel that are
528		 * waiting for this packet to trigger the doorbell write.
529		 * We need to send the packets at this point.
530		 */
531		efx_tx_send_pending(efx_get_tx_channel(efx, index));
532		return efx_ptp_tx(efx, skb);
533	}
 
 
 
534
535	tx_queue = efx_get_tx_queue(efx, index, type);
536	if (WARN_ON_ONCE(!tx_queue)) {
537		/* We don't have a TXQ of the right type.
538		 * This should never happen, as we don't advertise offload
539		 * features unless we can support them.
540		 */
541		dev_kfree_skb_any(skb);
542		/* If we're not expecting another transmit and we had something to push
543		 * on this queue or a partner queue then we need to push here to get the
544		 * previous packets out.
545		 */
546		if (!netdev_xmit_more())
547			efx_tx_send_pending(efx_get_tx_channel(efx, index));
548		return NETDEV_TX_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
549	}
550
551	return __efx_enqueue_skb(tx_queue, skb);
 
 
552}
553
554void efx_xmit_done_single(struct efx_tx_queue *tx_queue)
 
 
 
 
 
 
 
 
 
 
 
555{
556	unsigned int pkts_compl = 0, bytes_compl = 0;
557	unsigned int efv_pkts_compl = 0;
558	unsigned int read_ptr;
559	bool finished = false;
560
561	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
562
563	while (!finished) {
564		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
 
565
566		if (!efx_tx_buffer_in_use(buffer)) {
567			struct efx_nic *efx = tx_queue->efx;
 
568
569			netif_err(efx, hw, efx->net_dev,
570				  "TX queue %d spurious single TX completion\n",
571				  tx_queue->queue);
572			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
573			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
574		}
 
 
 
 
 
 
 
 
575
576		/* Need to check the flag before dequeueing. */
577		if (buffer->flags & EFX_TX_BUF_SKB)
578			finished = true;
579		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl,
580				   &efv_pkts_compl);
581
582		++tx_queue->read_count;
583		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
 
 
 
 
 
 
 
 
 
 
 
584	}
 
585
586	tx_queue->pkts_compl += pkts_compl;
587	tx_queue->bytes_compl += bytes_compl;
588
589	EFX_WARN_ON_PARANOID(pkts_compl + efv_pkts_compl != 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
590
591	efx_xmit_done_check_empty(tx_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
592}
593
594void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595{
596	struct efx_nic *efx = tx_queue->efx;
 
 
 
597
598	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
599	tx_queue->core_txq =
600		netdev_get_tx_queue(efx->net_dev,
601				    tx_queue->channel->channel);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
602}
v4.6
 
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2005-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include <linux/pci.h>
  12#include <linux/tcp.h>
  13#include <linux/ip.h>
  14#include <linux/in.h>
  15#include <linux/ipv6.h>
  16#include <linux/slab.h>
  17#include <net/ipv6.h>
  18#include <linux/if_ether.h>
  19#include <linux/highmem.h>
  20#include <linux/cache.h>
  21#include "net_driver.h"
  22#include "efx.h"
  23#include "io.h"
  24#include "nic.h"
 
 
  25#include "workarounds.h"
  26#include "ef10_regs.h"
  27
  28#ifdef EFX_USE_PIO
  29
  30#define EFX_PIOBUF_SIZE_MAX ER_DZ_TX_PIOBUF_SIZE
  31#define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
  32unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
  33
  34#endif /* EFX_USE_PIO */
  35
  36static inline unsigned int
  37efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
  38{
  39	return tx_queue->insert_count & tx_queue->ptr_mask;
  40}
  41
  42static inline struct efx_tx_buffer *
  43__efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
  44{
  45	return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
  46}
  47
  48static inline struct efx_tx_buffer *
  49efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
  50{
  51	struct efx_tx_buffer *buffer =
  52		__efx_tx_queue_get_insert_buffer(tx_queue);
  53
  54	EFX_BUG_ON_PARANOID(buffer->len);
  55	EFX_BUG_ON_PARANOID(buffer->flags);
  56	EFX_BUG_ON_PARANOID(buffer->unmap_len);
  57
  58	return buffer;
  59}
  60
  61static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
  62			       struct efx_tx_buffer *buffer,
  63			       unsigned int *pkts_compl,
  64			       unsigned int *bytes_compl)
  65{
  66	if (buffer->unmap_len) {
  67		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
  68		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
  69		if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
  70			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
  71					 DMA_TO_DEVICE);
  72		else
  73			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
  74				       DMA_TO_DEVICE);
  75		buffer->unmap_len = 0;
  76	}
  77
  78	if (buffer->flags & EFX_TX_BUF_SKB) {
  79		(*pkts_compl)++;
  80		(*bytes_compl) += buffer->skb->len;
  81		dev_consume_skb_any((struct sk_buff *)buffer->skb);
  82		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
  83			   "TX queue %d transmission id %x complete\n",
  84			   tx_queue->queue, tx_queue->read_count);
  85	} else if (buffer->flags & EFX_TX_BUF_HEAP) {
  86		kfree(buffer->heap_buf);
  87	}
  88
  89	buffer->len = 0;
  90	buffer->flags = 0;
  91}
  92
  93static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
  94			       struct sk_buff *skb);
  95
  96static inline unsigned
  97efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
  98{
  99	/* Depending on the NIC revision, we can use descriptor
 100	 * lengths up to 8K or 8K-1.  However, since PCI Express
 101	 * devices must split read requests at 4K boundaries, there is
 102	 * little benefit from using descriptors that cross those
 103	 * boundaries and we keep things simple by not doing so.
 104	 */
 105	unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
 106
 107	/* Work around hardware bug for unaligned buffers. */
 108	if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
 109		len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
 110
 111	return len;
 112}
 113
 114unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
 115{
 116	/* Header and payload descriptor for each output segment, plus
 117	 * one for every input fragment boundary within a segment
 118	 */
 119	unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
 120
 121	/* Possibly one more per segment for the alignment workaround,
 122	 * or for option descriptors
 123	 */
 124	if (EFX_WORKAROUND_5391(efx) || efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
 125		max_descs += EFX_TSO_MAX_SEGS;
 126
 127	/* Possibly more for PCIe page boundaries within input fragments */
 128	if (PAGE_SIZE > EFX_PAGE_SIZE)
 129		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
 130				   DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
 131
 132	return max_descs;
 
 
 
 
 133}
 134
 135static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
 136{
 137	/* We need to consider both queues that the net core sees as one */
 138	struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
 139	struct efx_nic *efx = txq1->efx;
 
 140	unsigned int fill_level;
 141
 142	fill_level = max(txq1->insert_count - txq1->old_read_count,
 143			 txq2->insert_count - txq2->old_read_count);
 144	if (likely(fill_level < efx->txq_stop_thresh))
 145		return;
 146
 147	/* We used the stale old_read_count above, which gives us a
 148	 * pessimistic estimate of the fill level (which may even
 149	 * validly be >= efx->txq_entries).  Now try again using
 150	 * read_count (more likely to be a cache miss).
 151	 *
 152	 * If we read read_count and then conditionally stop the
 153	 * queue, it is possible for the completion path to race with
 154	 * us and complete all outstanding descriptors in the middle,
 155	 * after which there will be no more completions to wake it.
 156	 * Therefore we stop the queue first, then read read_count
 157	 * (with a memory barrier to ensure the ordering), then
 158	 * restart the queue if the fill level turns out to be low
 159	 * enough.
 160	 */
 161	netif_tx_stop_queue(txq1->core_txq);
 162	smp_mb();
 163	txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
 164	txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
 165
 166	fill_level = max(txq1->insert_count - txq1->old_read_count,
 167			 txq2->insert_count - txq2->old_read_count);
 168	EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
 169	if (likely(fill_level < efx->txq_stop_thresh)) {
 170		smp_mb();
 171		if (likely(!efx->loopback_selftest))
 172			netif_tx_start_queue(txq1->core_txq);
 173	}
 174}
 175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 176#ifdef EFX_USE_PIO
 177
 178struct efx_short_copy_buffer {
 179	int used;
 180	u8 buf[L1_CACHE_BYTES];
 181};
 182
 183/* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
 184 * Advances piobuf pointer. Leaves additional data in the copy buffer.
 185 */
 186static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
 187				    u8 *data, int len,
 188				    struct efx_short_copy_buffer *copy_buf)
 189{
 190	int block_len = len & ~(sizeof(copy_buf->buf) - 1);
 191
 192	__iowrite64_copy(*piobuf, data, block_len >> 3);
 193	*piobuf += block_len;
 194	len -= block_len;
 195
 196	if (len) {
 197		data += block_len;
 198		BUG_ON(copy_buf->used);
 199		BUG_ON(len > sizeof(copy_buf->buf));
 200		memcpy(copy_buf->buf, data, len);
 201		copy_buf->used = len;
 202	}
 203}
 204
 205/* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
 206 * Advances piobuf pointer. Leaves additional data in the copy buffer.
 207 */
 208static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
 209				       u8 *data, int len,
 210				       struct efx_short_copy_buffer *copy_buf)
 211{
 212	if (copy_buf->used) {
 213		/* if the copy buffer is partially full, fill it up and write */
 214		int copy_to_buf =
 215			min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
 216
 217		memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
 218		copy_buf->used += copy_to_buf;
 219
 220		/* if we didn't fill it up then we're done for now */
 221		if (copy_buf->used < sizeof(copy_buf->buf))
 222			return;
 223
 224		__iowrite64_copy(*piobuf, copy_buf->buf,
 225				 sizeof(copy_buf->buf) >> 3);
 226		*piobuf += sizeof(copy_buf->buf);
 227		data += copy_to_buf;
 228		len -= copy_to_buf;
 229		copy_buf->used = 0;
 230	}
 231
 232	efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
 233}
 234
 235static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
 236				  struct efx_short_copy_buffer *copy_buf)
 237{
 238	/* if there's anything in it, write the whole buffer, including junk */
 239	if (copy_buf->used)
 240		__iowrite64_copy(piobuf, copy_buf->buf,
 241				 sizeof(copy_buf->buf) >> 3);
 242}
 243
 244/* Traverse skb structure and copy fragments in to PIO buffer.
 245 * Advances piobuf pointer.
 246 */
 247static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
 248				     u8 __iomem **piobuf,
 249				     struct efx_short_copy_buffer *copy_buf)
 250{
 251	int i;
 252
 253	efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
 254				copy_buf);
 255
 256	for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
 257		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
 258		u8 *vaddr;
 259
 260		vaddr = kmap_atomic(skb_frag_page(f));
 261
 262		efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
 263					   skb_frag_size(f), copy_buf);
 264		kunmap_atomic(vaddr);
 265	}
 266
 267	EFX_BUG_ON_PARANOID(skb_shinfo(skb)->frag_list);
 268}
 269
 270static struct efx_tx_buffer *
 271efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
 272{
 273	struct efx_tx_buffer *buffer =
 274		efx_tx_queue_get_insert_buffer(tx_queue);
 275	u8 __iomem *piobuf = tx_queue->piobuf;
 276
 277	/* Copy to PIO buffer. Ensure the writes are padded to the end
 278	 * of a cache line, as this is required for write-combining to be
 279	 * effective on at least x86.
 280	 */
 281
 282	if (skb_shinfo(skb)->nr_frags) {
 283		/* The size of the copy buffer will ensure all writes
 284		 * are the size of a cache line.
 285		 */
 286		struct efx_short_copy_buffer copy_buf;
 287
 288		copy_buf.used = 0;
 289
 290		efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
 291					 &piobuf, &copy_buf);
 292		efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
 293	} else {
 294		/* Pad the write to the size of a cache line.
 295		 * We can do this because we know the skb_shared_info sruct is
 296		 * after the source, and the destination buffer is big enough.
 297		 */
 298		BUILD_BUG_ON(L1_CACHE_BYTES >
 299			     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
 300		__iowrite64_copy(tx_queue->piobuf, skb->data,
 301				 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
 302	}
 303
 
 
 
 304	EFX_POPULATE_QWORD_5(buffer->option,
 305			     ESF_DZ_TX_DESC_IS_OPT, 1,
 306			     ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
 307			     ESF_DZ_TX_PIO_CONT, 0,
 308			     ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
 309			     ESF_DZ_TX_PIO_BUF_ADDR,
 310			     tx_queue->piobuf_offset);
 311	++tx_queue->pio_packets;
 312	++tx_queue->insert_count;
 313	return buffer;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314}
 315#endif /* EFX_USE_PIO */
 316
 
 
 
 
 
 
 
 
 
 
 
 
 
 317/*
 318 * Add a socket buffer to a TX queue
 319 *
 320 * This maps all fragments of a socket buffer for DMA and adds them to
 321 * the TX queue.  The queue's insert pointer will be incremented by
 322 * the number of fragments in the socket buffer.
 323 *
 324 * If any DMA mapping fails, any mapped fragments will be unmapped,
 325 * the queue's insert pointer will be restored to its original value.
 326 *
 327 * This function is split out from efx_hard_start_xmit to allow the
 328 * loopback test to direct packets via specific TX queues.
 329 *
 330 * Returns NETDEV_TX_OK.
 331 * You must hold netif_tx_lock() to call this function.
 332 */
 333netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
 334{
 335	struct efx_nic *efx = tx_queue->efx;
 336	struct device *dma_dev = &efx->pci_dev->dev;
 337	struct efx_tx_buffer *buffer;
 338	unsigned int old_insert_count = tx_queue->insert_count;
 339	skb_frag_t *fragment;
 340	unsigned int len, unmap_len = 0;
 341	dma_addr_t dma_addr, unmap_addr = 0;
 342	unsigned int dma_len;
 343	unsigned short dma_flags;
 344	int i = 0;
 345
 346	if (skb_shinfo(skb)->gso_size)
 347		return efx_enqueue_skb_tso(tx_queue, skb);
 348
 349	/* Get size of the initial fragment */
 350	len = skb_headlen(skb);
 351
 352	/* Pad if necessary */
 353	if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
 354		EFX_BUG_ON_PARANOID(skb->data_len);
 355		len = 32 + 1;
 356		if (skb_pad(skb, len - skb->len))
 357			return NETDEV_TX_OK;
 358	}
 359
 360	/* Consider using PIO for short packets */
 361#ifdef EFX_USE_PIO
 362	if (skb->len <= efx_piobuf_size && !skb->xmit_more &&
 363	    efx_nic_may_tx_pio(tx_queue)) {
 364		buffer = efx_enqueue_skb_pio(tx_queue, skb);
 365		dma_flags = EFX_TX_BUF_OPTION;
 366		goto finish_packet;
 367	}
 368#endif
 369
 370	/* Map for DMA.  Use dma_map_single rather than dma_map_page
 371	 * since this is more efficient on machines with sparse
 372	 * memory.
 
 
 
 
 
 373	 */
 374	dma_flags = EFX_TX_BUF_MAP_SINGLE;
 375	dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
 376
 377	/* Process all fragments */
 378	while (1) {
 379		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
 380			goto dma_err;
 381
 382		/* Store fields for marking in the per-fragment final
 383		 * descriptor */
 384		unmap_len = len;
 385		unmap_addr = dma_addr;
 386
 387		/* Add to TX queue, splitting across DMA boundaries */
 388		do {
 389			buffer = efx_tx_queue_get_insert_buffer(tx_queue);
 390
 391			dma_len = efx_max_tx_len(efx, dma_addr);
 392			if (likely(dma_len >= len))
 393				dma_len = len;
 394
 395			/* Fill out per descriptor fields */
 396			buffer->len = dma_len;
 397			buffer->dma_addr = dma_addr;
 398			buffer->flags = EFX_TX_BUF_CONT;
 399			len -= dma_len;
 400			dma_addr += dma_len;
 401			++tx_queue->insert_count;
 402		} while (len);
 403
 404		/* Transfer ownership of the unmapping to the final buffer */
 405		buffer->flags = EFX_TX_BUF_CONT | dma_flags;
 406		buffer->unmap_len = unmap_len;
 407		buffer->dma_offset = buffer->dma_addr - unmap_addr;
 408		unmap_len = 0;
 409
 410		/* Get address and size of next fragment */
 411		if (i >= skb_shinfo(skb)->nr_frags)
 412			break;
 413		fragment = &skb_shinfo(skb)->frags[i];
 414		len = skb_frag_size(fragment);
 415		i++;
 416		/* Map for DMA */
 417		dma_flags = 0;
 418		dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
 419					    DMA_TO_DEVICE);
 420	}
 421
 422	/* Transfer ownership of the skb to the final buffer */
 423#ifdef EFX_USE_PIO
 424finish_packet:
 
 
 
 
 
 
 425#endif
 426	buffer->skb = skb;
 427	buffer->flags = EFX_TX_BUF_SKB | dma_flags;
 
 
 
 
 
 428
 429	netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
 
 
 430
 431	efx_tx_maybe_stop_queue(tx_queue);
 432
 
 
 433	/* Pass off to hardware */
 434	if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq)) {
 435		struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
 436
 437		/* There could be packets left on the partner queue if those
 438		 * SKBs had skb->xmit_more set. If we do not push those they
 439		 * could be left for a long time and cause a netdev watchdog.
 440		 */
 441		if (txq2->xmit_more_available)
 442			efx_nic_push_buffers(txq2);
 443
 444		efx_nic_push_buffers(tx_queue);
 
 
 
 445	} else {
 446		tx_queue->xmit_more_available = skb->xmit_more;
 447	}
 448
 449	tx_queue->tx_packets++;
 450
 451	return NETDEV_TX_OK;
 452
 453 dma_err:
 454	netif_err(efx, tx_err, efx->net_dev,
 455		  " TX queue %d could not map skb with %d bytes %d "
 456		  "fragments for DMA\n", tx_queue->queue, skb->len,
 457		  skb_shinfo(skb)->nr_frags + 1);
 458
 459	/* Mark the packet as transmitted, and free the SKB ourselves */
 
 460	dev_kfree_skb_any(skb);
 461
 462	/* Work backwards until we hit the original insert pointer value */
 463	while (tx_queue->insert_count != old_insert_count) {
 464		unsigned int pkts_compl = 0, bytes_compl = 0;
 465		--tx_queue->insert_count;
 466		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
 467		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
 468	}
 469
 470	/* Free the fragment we were mid-way through pushing */
 471	if (unmap_len) {
 472		if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
 473			dma_unmap_single(dma_dev, unmap_addr, unmap_len,
 474					 DMA_TO_DEVICE);
 475		else
 476			dma_unmap_page(dma_dev, unmap_addr, unmap_len,
 477				       DMA_TO_DEVICE);
 478	}
 479
 480	return NETDEV_TX_OK;
 481}
 482
 483/* Remove packets from the TX queue
 484 *
 485 * This removes packets from the TX queue, up to and including the
 486 * specified index.
 
 487 */
 488static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
 489				unsigned int index,
 490				unsigned int *pkts_compl,
 491				unsigned int *bytes_compl)
 492{
 493	struct efx_nic *efx = tx_queue->efx;
 494	unsigned int stop_index, read_ptr;
 495
 496	stop_index = (index + 1) & tx_queue->ptr_mask;
 497	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
 498
 499	while (read_ptr != stop_index) {
 500		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
 501
 502		if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
 503		    unlikely(buffer->len == 0)) {
 504			netif_err(efx, tx_err, efx->net_dev,
 505				  "TX queue %d spurious TX completion id %x\n",
 506				  tx_queue->queue, read_ptr);
 507			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
 508			return;
 509		}
 510
 511		efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
 512
 513		++tx_queue->read_count;
 514		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
 515	}
 516}
 517
 518/* Initiate a packet transmission.  We use one channel per CPU
 519 * (sharing when we have more CPUs than channels).  On Falcon, the TX
 520 * completion events will be directed back to the CPU that transmitted
 521 * the packet, which should be cache-efficient.
 522 *
 523 * Context: non-blocking.
 524 * Note that returning anything other than NETDEV_TX_OK will cause the
 525 * OS to free the skb.
 526 */
 527netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
 528				struct net_device *net_dev)
 529{
 530	struct efx_nic *efx = netdev_priv(net_dev);
 531	struct efx_tx_queue *tx_queue;
 532	unsigned index, type;
 
 
 
 
 
 533
 534	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
 
 
 
 535
 536	/* PTP "event" packet */
 537	if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
 538	    unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
 539		return efx_ptp_tx(efx, skb);
 540	}
 541
 542	index = skb_get_queue_mapping(skb);
 543	type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
 544	if (index >= efx->n_tx_channels) {
 545		index -= efx->n_tx_channels;
 546		type |= EFX_TXQ_TYPE_HIGHPRI;
 547	}
 548	tx_queue = efx_get_tx_queue(efx, index, type);
 549
 550	return efx_enqueue_skb(tx_queue, skb);
 551}
 552
 553void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
 554{
 555	struct efx_nic *efx = tx_queue->efx;
 556
 557	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
 558	tx_queue->core_txq =
 559		netdev_get_tx_queue(efx->net_dev,
 560				    tx_queue->queue / EFX_TXQ_TYPES +
 561				    ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
 562				     efx->n_tx_channels : 0));
 563}
 564
 565int efx_setup_tc(struct net_device *net_dev, u32 handle, __be16 proto,
 566		 struct tc_to_netdev *ntc)
 567{
 568	struct efx_nic *efx = netdev_priv(net_dev);
 569	struct efx_channel *channel;
 570	struct efx_tx_queue *tx_queue;
 571	unsigned tc, num_tc;
 572	int rc;
 573
 574	if (ntc->type != TC_SETUP_MQPRIO)
 575		return -EINVAL;
 576
 577	num_tc = ntc->tc;
 578
 579	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
 580		return -EINVAL;
 581
 582	if (num_tc == net_dev->num_tc)
 583		return 0;
 584
 585	for (tc = 0; tc < num_tc; tc++) {
 586		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
 587		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
 
 
 
 
 588	}
 589
 590	if (num_tc > net_dev->num_tc) {
 591		/* Initialise high-priority queues as necessary */
 592		efx_for_each_channel(channel, efx) {
 593			efx_for_each_possible_channel_tx_queue(tx_queue,
 594							       channel) {
 595				if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
 596					continue;
 597				if (!tx_queue->buffer) {
 598					rc = efx_probe_tx_queue(tx_queue);
 599					if (rc)
 600						return rc;
 601				}
 602				if (!tx_queue->initialised)
 603					efx_init_tx_queue(tx_queue);
 604				efx_init_tx_queue_core_txq(tx_queue);
 605			}
 606		}
 607	} else {
 608		/* Reduce number of classes before number of queues */
 609		net_dev->num_tc = num_tc;
 610	}
 611
 612	rc = netif_set_real_num_tx_queues(net_dev,
 613					  max_t(int, num_tc, 1) *
 614					  efx->n_tx_channels);
 615	if (rc)
 616		return rc;
 617
 618	/* Do not destroy high-priority queues when they become
 619	 * unused.  We would have to flush them first, and it is
 620	 * fairly difficult to flush a subset of TX queues.  Leave
 621	 * it to efx_fini_channels().
 622	 */
 
 
 623
 624	net_dev->num_tc = num_tc;
 625	return 0;
 626}
 627
 628void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
 629{
 630	unsigned fill_level;
 631	struct efx_nic *efx = tx_queue->efx;
 632	struct efx_tx_queue *txq2;
 633	unsigned int pkts_compl = 0, bytes_compl = 0;
 634
 635	EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
 
 636
 637	efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
 638	tx_queue->pkts_compl += pkts_compl;
 639	tx_queue->bytes_compl += bytes_compl;
 640
 641	if (pkts_compl > 1)
 642		++tx_queue->merge_events;
 
 
 
 
 643
 644	/* See if we need to restart the netif queue.  This memory
 645	 * barrier ensures that we write read_count (inside
 646	 * efx_dequeue_buffers()) before reading the queue status.
 647	 */
 648	smp_mb();
 649	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
 650	    likely(efx->port_enabled) &&
 651	    likely(netif_device_present(efx->net_dev))) {
 652		txq2 = efx_tx_queue_partner(tx_queue);
 653		fill_level = max(tx_queue->insert_count - tx_queue->read_count,
 654				 txq2->insert_count - txq2->read_count);
 655		if (fill_level <= efx->txq_wake_thresh)
 656			netif_tx_wake_queue(tx_queue->core_txq);
 657	}
 658
 659	/* Check whether the hardware queue is now empty */
 660	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
 661		tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
 662		if (tx_queue->read_count == tx_queue->old_write_count) {
 663			smp_mb();
 664			tx_queue->empty_read_count =
 665				tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
 666		}
 667	}
 668}
 669
 670/* Size of page-based TSO header buffers.  Larger blocks must be
 671 * allocated from the heap.
 672 */
 673#define TSOH_STD_SIZE	128
 674#define TSOH_PER_PAGE	(PAGE_SIZE / TSOH_STD_SIZE)
 675
 676/* At most half the descriptors in the queue at any time will refer to
 677 * a TSO header buffer, since they must always be followed by a
 678 * payload descriptor referring to an skb.
 679 */
 680static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
 681{
 682	return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
 683}
 684
 685int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
 686{
 687	struct efx_nic *efx = tx_queue->efx;
 688	unsigned int entries;
 689	int rc;
 690
 691	/* Create the smallest power-of-two aligned ring */
 692	entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
 693	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
 694	tx_queue->ptr_mask = entries - 1;
 695
 696	netif_dbg(efx, probe, efx->net_dev,
 697		  "creating TX queue %d size %#x mask %#x\n",
 698		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
 699
 700	/* Allocate software ring */
 701	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
 702				   GFP_KERNEL);
 703	if (!tx_queue->buffer)
 704		return -ENOMEM;
 705
 706	if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
 707		tx_queue->tsoh_page =
 708			kcalloc(efx_tsoh_page_count(tx_queue),
 709				sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
 710		if (!tx_queue->tsoh_page) {
 711			rc = -ENOMEM;
 712			goto fail1;
 713		}
 714	}
 715
 716	/* Allocate hardware ring */
 717	rc = efx_nic_probe_tx(tx_queue);
 718	if (rc)
 719		goto fail2;
 720
 721	return 0;
 722
 723fail2:
 724	kfree(tx_queue->tsoh_page);
 725	tx_queue->tsoh_page = NULL;
 726fail1:
 727	kfree(tx_queue->buffer);
 728	tx_queue->buffer = NULL;
 729	return rc;
 730}
 731
 732void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
 733{
 734	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
 735		  "initialising TX queue %d\n", tx_queue->queue);
 736
 737	tx_queue->insert_count = 0;
 738	tx_queue->write_count = 0;
 739	tx_queue->old_write_count = 0;
 740	tx_queue->read_count = 0;
 741	tx_queue->old_read_count = 0;
 742	tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
 743	tx_queue->xmit_more_available = false;
 744
 745	/* Set up TX descriptor ring */
 746	efx_nic_init_tx(tx_queue);
 747
 748	tx_queue->initialised = true;
 749}
 750
 751void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
 752{
 753	struct efx_tx_buffer *buffer;
 754
 755	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
 756		  "shutting down TX queue %d\n", tx_queue->queue);
 757
 758	if (!tx_queue->buffer)
 759		return;
 760
 761	/* Free any buffers left in the ring */
 762	while (tx_queue->read_count != tx_queue->write_count) {
 763		unsigned int pkts_compl = 0, bytes_compl = 0;
 764		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
 765		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
 766
 767		++tx_queue->read_count;
 768	}
 769	tx_queue->xmit_more_available = false;
 770	netdev_tx_reset_queue(tx_queue->core_txq);
 771}
 772
 773void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
 774{
 775	int i;
 776
 777	if (!tx_queue->buffer)
 778		return;
 779
 780	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
 781		  "destroying TX queue %d\n", tx_queue->queue);
 782	efx_nic_remove_tx(tx_queue);
 783
 784	if (tx_queue->tsoh_page) {
 785		for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
 786			efx_nic_free_buffer(tx_queue->efx,
 787					    &tx_queue->tsoh_page[i]);
 788		kfree(tx_queue->tsoh_page);
 789		tx_queue->tsoh_page = NULL;
 790	}
 791
 792	kfree(tx_queue->buffer);
 793	tx_queue->buffer = NULL;
 794}
 795
 796
 797/* Efx TCP segmentation acceleration.
 798 *
 799 * Why?  Because by doing it here in the driver we can go significantly
 800 * faster than the GSO.
 801 *
 802 * Requires TX checksum offload support.
 803 */
 804
 805#define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
 806
 807/**
 808 * struct tso_state - TSO state for an SKB
 809 * @out_len: Remaining length in current segment
 810 * @seqnum: Current sequence number
 811 * @ipv4_id: Current IPv4 ID, host endian
 812 * @packet_space: Remaining space in current packet
 813 * @dma_addr: DMA address of current position
 814 * @in_len: Remaining length in current SKB fragment
 815 * @unmap_len: Length of SKB fragment
 816 * @unmap_addr: DMA address of SKB fragment
 817 * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
 818 * @protocol: Network protocol (after any VLAN header)
 819 * @ip_off: Offset of IP header
 820 * @tcp_off: Offset of TCP header
 821 * @header_len: Number of bytes of header
 822 * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
 823 * @header_dma_addr: Header DMA address, when using option descriptors
 824 * @header_unmap_len: Header DMA mapped length, or 0 if not using option
 825 *	descriptors
 826 *
 827 * The state used during segmentation.  It is put into this data structure
 828 * just to make it easy to pass into inline functions.
 829 */
 830struct tso_state {
 831	/* Output position */
 832	unsigned out_len;
 833	unsigned seqnum;
 834	u16 ipv4_id;
 835	unsigned packet_space;
 836
 837	/* Input position */
 838	dma_addr_t dma_addr;
 839	unsigned in_len;
 840	unsigned unmap_len;
 841	dma_addr_t unmap_addr;
 842	unsigned short dma_flags;
 843
 844	__be16 protocol;
 845	unsigned int ip_off;
 846	unsigned int tcp_off;
 847	unsigned header_len;
 848	unsigned int ip_base_len;
 849	dma_addr_t header_dma_addr;
 850	unsigned int header_unmap_len;
 851};
 852
 853
 854/*
 855 * Verify that our various assumptions about sk_buffs and the conditions
 856 * under which TSO will be attempted hold true.  Return the protocol number.
 857 */
 858static __be16 efx_tso_check_protocol(struct sk_buff *skb)
 859{
 860	__be16 protocol = skb->protocol;
 
 
 861
 862	EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
 863			    protocol);
 864	if (protocol == htons(ETH_P_8021Q)) {
 865		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
 866		protocol = veh->h_vlan_encapsulated_proto;
 867	}
 868
 869	if (protocol == htons(ETH_P_IP)) {
 870		EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
 871	} else {
 872		EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
 873		EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
 
 
 
 
 
 874	}
 875	EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
 876			     + (tcp_hdr(skb)->doff << 2u)) >
 877			    skb_headlen(skb));
 878
 879	return protocol;
 880}
 881
 882static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
 883			       struct efx_tx_buffer *buffer, unsigned int len)
 884{
 885	u8 *result;
 886
 887	EFX_BUG_ON_PARANOID(buffer->len);
 888	EFX_BUG_ON_PARANOID(buffer->flags);
 889	EFX_BUG_ON_PARANOID(buffer->unmap_len);
 890
 891	if (likely(len <= TSOH_STD_SIZE - NET_IP_ALIGN)) {
 892		unsigned index =
 893			(tx_queue->insert_count & tx_queue->ptr_mask) / 2;
 894		struct efx_buffer *page_buf =
 895			&tx_queue->tsoh_page[index / TSOH_PER_PAGE];
 896		unsigned offset =
 897			TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + NET_IP_ALIGN;
 898
 899		if (unlikely(!page_buf->addr) &&
 900		    efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
 901					 GFP_ATOMIC))
 902			return NULL;
 903
 904		result = (u8 *)page_buf->addr + offset;
 905		buffer->dma_addr = page_buf->dma_addr + offset;
 906		buffer->flags = EFX_TX_BUF_CONT;
 907	} else {
 908		tx_queue->tso_long_headers++;
 909
 910		buffer->heap_buf = kmalloc(NET_IP_ALIGN + len, GFP_ATOMIC);
 911		if (unlikely(!buffer->heap_buf))
 912			return NULL;
 913		result = (u8 *)buffer->heap_buf + NET_IP_ALIGN;
 914		buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
 915	}
 916
 917	buffer->len = len;
 918
 919	return result;
 920}
 921
 922/**
 923 * efx_tx_queue_insert - push descriptors onto the TX queue
 924 * @tx_queue:		Efx TX queue
 925 * @dma_addr:		DMA address of fragment
 926 * @len:		Length of fragment
 927 * @final_buffer:	The final buffer inserted into the queue
 928 *
 929 * Push descriptors onto the TX queue.
 930 */
 931static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
 932				dma_addr_t dma_addr, unsigned len,
 933				struct efx_tx_buffer **final_buffer)
 934{
 935	struct efx_tx_buffer *buffer;
 936	struct efx_nic *efx = tx_queue->efx;
 937	unsigned dma_len;
 
 938
 939	EFX_BUG_ON_PARANOID(len <= 0);
 940
 941	while (1) {
 942		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
 943		++tx_queue->insert_count;
 944
 945		EFX_BUG_ON_PARANOID(tx_queue->insert_count -
 946				    tx_queue->read_count >=
 947				    efx->txq_entries);
 948
 949		buffer->dma_addr = dma_addr;
 950
 951		dma_len = efx_max_tx_len(efx, dma_addr);
 952
 953		/* If there is enough space to send then do so */
 954		if (dma_len >= len)
 955			break;
 956
 957		buffer->len = dma_len;
 958		buffer->flags = EFX_TX_BUF_CONT;
 959		dma_addr += dma_len;
 960		len -= dma_len;
 961	}
 962
 963	EFX_BUG_ON_PARANOID(!len);
 964	buffer->len = len;
 965	*final_buffer = buffer;
 966}
 967
 968
 969/*
 970 * Put a TSO header into the TX queue.
 971 *
 972 * This is special-cased because we know that it is small enough to fit in
 973 * a single fragment, and we know it doesn't cross a page boundary.  It
 974 * also allows us to not worry about end-of-packet etc.
 975 */
 976static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
 977			      struct efx_tx_buffer *buffer, u8 *header)
 978{
 979	if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
 980		buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
 981						  header, buffer->len,
 982						  DMA_TO_DEVICE);
 983		if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
 984					       buffer->dma_addr))) {
 985			kfree(buffer->heap_buf);
 986			buffer->len = 0;
 987			buffer->flags = 0;
 988			return -ENOMEM;
 989		}
 990		buffer->unmap_len = buffer->len;
 991		buffer->dma_offset = 0;
 992		buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
 993	}
 994
 995	++tx_queue->insert_count;
 996	return 0;
 997}
 998
 
 
 
 
 
 999
1000/* Remove buffers put into a tx_queue.  None of the buffers must have
1001 * an skb attached.
1002 */
1003static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
1004			       unsigned int insert_count)
1005{
1006	struct efx_tx_buffer *buffer;
1007
1008	/* Work backwards until we hit the original insert pointer value */
1009	while (tx_queue->insert_count != insert_count) {
1010		--tx_queue->insert_count;
1011		buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
1012		efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
1013	}
1014}
1015
 
 
1016
1017/* Parse the SKB header and initialise state. */
1018static int tso_start(struct tso_state *st, struct efx_nic *efx,
1019		     struct efx_tx_queue *tx_queue,
1020		     const struct sk_buff *skb)
1021{
1022	struct device *dma_dev = &efx->pci_dev->dev;
1023	unsigned int header_len, in_len;
1024	bool use_opt_desc = false;
1025	dma_addr_t dma_addr;
1026
1027	if (tx_queue->tso_version == 1)
1028		use_opt_desc = true;
1029
1030	st->ip_off = skb_network_header(skb) - skb->data;
1031	st->tcp_off = skb_transport_header(skb) - skb->data;
1032	header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
1033	in_len = skb_headlen(skb) - header_len;
1034	st->header_len = header_len;
1035	st->in_len = in_len;
1036	if (st->protocol == htons(ETH_P_IP)) {
1037		st->ip_base_len = st->header_len - st->ip_off;
1038		st->ipv4_id = ntohs(ip_hdr(skb)->id);
1039	} else {
1040		st->ip_base_len = st->header_len - st->tcp_off;
1041		st->ipv4_id = 0;
1042	}
1043	st->seqnum = ntohl(tcp_hdr(skb)->seq);
1044
1045	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
1046	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
1047	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
1048
1049	st->out_len = skb->len - header_len;
1050
1051	if (!use_opt_desc) {
1052		st->header_unmap_len = 0;
1053
1054		if (likely(in_len == 0)) {
1055			st->dma_flags = 0;
1056			st->unmap_len = 0;
1057			return 0;
1058		}
1059
1060		dma_addr = dma_map_single(dma_dev, skb->data + header_len,
1061					  in_len, DMA_TO_DEVICE);
1062		st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
1063		st->dma_addr = dma_addr;
1064		st->unmap_addr = dma_addr;
1065		st->unmap_len = in_len;
1066	} else {
1067		dma_addr = dma_map_single(dma_dev, skb->data,
1068					  skb_headlen(skb), DMA_TO_DEVICE);
1069		st->header_dma_addr = dma_addr;
1070		st->header_unmap_len = skb_headlen(skb);
1071		st->dma_flags = 0;
1072		st->dma_addr = dma_addr + header_len;
1073		st->unmap_len = 0;
1074	}
1075
1076	return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
1077}
1078
1079static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
1080			    skb_frag_t *frag)
1081{
1082	st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
1083					  skb_frag_size(frag), DMA_TO_DEVICE);
1084	if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
1085		st->dma_flags = 0;
1086		st->unmap_len = skb_frag_size(frag);
1087		st->in_len = skb_frag_size(frag);
1088		st->dma_addr = st->unmap_addr;
1089		return 0;
1090	}
1091	return -ENOMEM;
1092}
1093
1094
1095/**
1096 * tso_fill_packet_with_fragment - form descriptors for the current fragment
1097 * @tx_queue:		Efx TX queue
1098 * @skb:		Socket buffer
1099 * @st:			TSO state
1100 *
1101 * Form descriptors for the current fragment, until we reach the end
1102 * of fragment or end-of-packet.
1103 */
1104static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
1105					  const struct sk_buff *skb,
1106					  struct tso_state *st)
1107{
1108	struct efx_tx_buffer *buffer;
1109	int n;
1110
1111	if (st->in_len == 0)
1112		return;
1113	if (st->packet_space == 0)
1114		return;
1115
1116	EFX_BUG_ON_PARANOID(st->in_len <= 0);
1117	EFX_BUG_ON_PARANOID(st->packet_space <= 0);
1118
1119	n = min(st->in_len, st->packet_space);
1120
1121	st->packet_space -= n;
1122	st->out_len -= n;
1123	st->in_len -= n;
1124
1125	efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
1126
1127	if (st->out_len == 0) {
1128		/* Transfer ownership of the skb */
1129		buffer->skb = skb;
1130		buffer->flags = EFX_TX_BUF_SKB;
1131	} else if (st->packet_space != 0) {
1132		buffer->flags = EFX_TX_BUF_CONT;
1133	}
1134
1135	if (st->in_len == 0) {
1136		/* Transfer ownership of the DMA mapping */
1137		buffer->unmap_len = st->unmap_len;
1138		buffer->dma_offset = buffer->unmap_len - buffer->len;
1139		buffer->flags |= st->dma_flags;
1140		st->unmap_len = 0;
1141	}
1142
1143	st->dma_addr += n;
1144}
1145
1146
1147/**
1148 * tso_start_new_packet - generate a new header and prepare for the new packet
1149 * @tx_queue:		Efx TX queue
1150 * @skb:		Socket buffer
1151 * @st:			TSO state
1152 *
1153 * Generate a new header and prepare for the new packet.  Return 0 on
1154 * success, or -%ENOMEM if failed to alloc header.
1155 */
1156static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1157				const struct sk_buff *skb,
1158				struct tso_state *st)
1159{
1160	struct efx_tx_buffer *buffer =
1161		efx_tx_queue_get_insert_buffer(tx_queue);
1162	bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
1163	u8 tcp_flags_clear;
1164
1165	if (!is_last) {
1166		st->packet_space = skb_shinfo(skb)->gso_size;
1167		tcp_flags_clear = 0x09; /* mask out FIN and PSH */
1168	} else {
1169		st->packet_space = st->out_len;
1170		tcp_flags_clear = 0x00;
1171	}
1172
1173	if (!st->header_unmap_len) {
1174		/* Allocate and insert a DMA-mapped header buffer. */
1175		struct tcphdr *tsoh_th;
1176		unsigned ip_length;
1177		u8 *header;
1178		int rc;
1179
1180		header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
1181		if (!header)
1182			return -ENOMEM;
1183
1184		tsoh_th = (struct tcphdr *)(header + st->tcp_off);
1185
1186		/* Copy and update the headers. */
1187		memcpy(header, skb->data, st->header_len);
1188
1189		tsoh_th->seq = htonl(st->seqnum);
1190		((u8 *)tsoh_th)[13] &= ~tcp_flags_clear;
1191
1192		ip_length = st->ip_base_len + st->packet_space;
1193
1194		if (st->protocol == htons(ETH_P_IP)) {
1195			struct iphdr *tsoh_iph =
1196				(struct iphdr *)(header + st->ip_off);
1197
1198			tsoh_iph->tot_len = htons(ip_length);
1199			tsoh_iph->id = htons(st->ipv4_id);
1200		} else {
1201			struct ipv6hdr *tsoh_iph =
1202				(struct ipv6hdr *)(header + st->ip_off);
1203
1204			tsoh_iph->payload_len = htons(ip_length);
1205		}
1206
1207		rc = efx_tso_put_header(tx_queue, buffer, header);
1208		if (unlikely(rc))
1209			return rc;
1210	} else {
1211		/* Send the original headers with a TSO option descriptor
1212		 * in front
1213		 */
1214		u8 tcp_flags = ((u8 *)tcp_hdr(skb))[13] & ~tcp_flags_clear;
1215
1216		buffer->flags = EFX_TX_BUF_OPTION;
1217		buffer->len = 0;
1218		buffer->unmap_len = 0;
1219		EFX_POPULATE_QWORD_5(buffer->option,
1220				     ESF_DZ_TX_DESC_IS_OPT, 1,
1221				     ESF_DZ_TX_OPTION_TYPE,
1222				     ESE_DZ_TX_OPTION_DESC_TSO,
1223				     ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
1224				     ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
1225				     ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
1226		++tx_queue->insert_count;
1227
1228		/* We mapped the headers in tso_start().  Unmap them
1229		 * when the last segment is completed.
1230		 */
1231		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
1232		buffer->dma_addr = st->header_dma_addr;
1233		buffer->len = st->header_len;
1234		if (is_last) {
1235			buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
1236			buffer->unmap_len = st->header_unmap_len;
1237			buffer->dma_offset = 0;
1238			/* Ensure we only unmap them once in case of a
1239			 * later DMA mapping error and rollback
1240			 */
1241			st->header_unmap_len = 0;
1242		} else {
1243			buffer->flags = EFX_TX_BUF_CONT;
1244			buffer->unmap_len = 0;
1245		}
1246		++tx_queue->insert_count;
1247	}
1248
1249	st->seqnum += skb_shinfo(skb)->gso_size;
1250
1251	/* Linux leaves suitable gaps in the IP ID space for us to fill. */
1252	++st->ipv4_id;
1253
1254	++tx_queue->tso_packets;
1255
1256	++tx_queue->tx_packets;
1257
1258	return 0;
1259}
1260
1261
1262/**
1263 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1264 * @tx_queue:		Efx TX queue
1265 * @skb:		Socket buffer
1266 *
1267 * Context: You must hold netif_tx_lock() to call this function.
1268 *
1269 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1270 * @skb was not enqueued.  In all cases @skb is consumed.  Return
1271 * %NETDEV_TX_OK.
1272 */
1273static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1274			       struct sk_buff *skb)
1275{
1276	struct efx_nic *efx = tx_queue->efx;
1277	unsigned int old_insert_count = tx_queue->insert_count;
1278	int frag_i, rc;
1279	struct tso_state state;
1280
1281	/* Find the packet protocol and sanity-check it */
1282	state.protocol = efx_tso_check_protocol(skb);
1283
1284	rc = tso_start(&state, efx, tx_queue, skb);
1285	if (rc)
1286		goto mem_err;
1287
1288	if (likely(state.in_len == 0)) {
1289		/* Grab the first payload fragment. */
1290		EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1291		frag_i = 0;
1292		rc = tso_get_fragment(&state, efx,
1293				      skb_shinfo(skb)->frags + frag_i);
1294		if (rc)
1295			goto mem_err;
1296	} else {
1297		/* Payload starts in the header area. */
1298		frag_i = -1;
1299	}
1300
1301	if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1302		goto mem_err;
1303
1304	while (1) {
1305		tso_fill_packet_with_fragment(tx_queue, skb, &state);
1306
1307		/* Move onto the next fragment? */
1308		if (state.in_len == 0) {
1309			if (++frag_i >= skb_shinfo(skb)->nr_frags)
1310				/* End of payload reached. */
1311				break;
1312			rc = tso_get_fragment(&state, efx,
1313					      skb_shinfo(skb)->frags + frag_i);
1314			if (rc)
1315				goto mem_err;
1316		}
1317
1318		/* Start at new packet? */
1319		if (state.packet_space == 0 &&
1320		    tso_start_new_packet(tx_queue, skb, &state) < 0)
1321			goto mem_err;
1322	}
1323
1324	netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1325
1326	efx_tx_maybe_stop_queue(tx_queue);
1327
1328	/* Pass off to hardware */
1329	if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq)) {
1330		struct efx_tx_queue *txq2 = efx_tx_queue_partner(tx_queue);
1331
1332		/* There could be packets left on the partner queue if those
1333		 * SKBs had skb->xmit_more set. If we do not push those they
1334		 * could be left for a long time and cause a netdev watchdog.
1335		 */
1336		if (txq2->xmit_more_available)
1337			efx_nic_push_buffers(txq2);
1338
1339		efx_nic_push_buffers(tx_queue);
1340	} else {
1341		tx_queue->xmit_more_available = skb->xmit_more;
1342	}
1343
1344	tx_queue->tso_bursts++;
1345	return NETDEV_TX_OK;
1346
1347 mem_err:
1348	netif_err(efx, tx_err, efx->net_dev,
1349		  "Out of memory for TSO headers, or DMA mapping error\n");
1350	dev_kfree_skb_any(skb);
1351
1352	/* Free the DMA mapping we were in the process of writing out */
1353	if (state.unmap_len) {
1354		if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
1355			dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
1356					 state.unmap_len, DMA_TO_DEVICE);
1357		else
1358			dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
1359				       state.unmap_len, DMA_TO_DEVICE);
1360	}
1361
1362	/* Free the header DMA mapping, if using option descriptors */
1363	if (state.header_unmap_len)
1364		dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
1365				 state.header_unmap_len, DMA_TO_DEVICE);
1366
1367	efx_enqueue_unwind(tx_queue, old_insert_count);
1368	return NETDEV_TX_OK;
1369}