Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
Note: File does not exist in v6.8.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2010-2012 Solarflare Communications Inc.
   5 */
   6#include <linux/pci.h>
   7#include <linux/module.h>
   8#include "net_driver.h"
   9#include "efx.h"
  10#include "nic.h"
  11#include "io.h"
  12#include "mcdi.h"
  13#include "filter.h"
  14#include "mcdi_pcol.h"
  15#include "farch_regs.h"
  16#include "siena_sriov.h"
  17#include "vfdi.h"
  18
  19/* Number of longs required to track all the VIs in a VF */
  20#define VI_MASK_LENGTH BITS_TO_LONGS(1 << EFX_VI_SCALE_MAX)
  21
  22/* Maximum number of RX queues supported */
  23#define VF_MAX_RX_QUEUES 63
  24
  25/**
  26 * enum efx_vf_tx_filter_mode - TX MAC filtering behaviour
  27 * @VF_TX_FILTER_OFF: Disabled
  28 * @VF_TX_FILTER_AUTO: Enabled if MAC address assigned to VF and only
  29 *	2 TX queues allowed per VF.
  30 * @VF_TX_FILTER_ON: Enabled
  31 */
  32enum efx_vf_tx_filter_mode {
  33	VF_TX_FILTER_OFF,
  34	VF_TX_FILTER_AUTO,
  35	VF_TX_FILTER_ON,
  36};
  37
  38/**
  39 * struct siena_vf - Back-end resource and protocol state for a PCI VF
  40 * @efx: The Efx NIC owning this VF
  41 * @pci_rid: The PCI requester ID for this VF
  42 * @pci_name: The PCI name (formatted address) of this VF
  43 * @index: Index of VF within its port and PF.
  44 * @req: VFDI incoming request work item. Incoming USR_EV events are received
  45 *	by the NAPI handler, but must be handled by executing MCDI requests
  46 *	inside a work item.
  47 * @req_addr: VFDI incoming request DMA address (in VF's PCI address space).
  48 * @req_type: Expected next incoming (from VF) %VFDI_EV_TYPE member.
  49 * @req_seqno: Expected next incoming (from VF) %VFDI_EV_SEQ member.
  50 * @msg_seqno: Next %VFDI_EV_SEQ member to reply to VF. Protected by
  51 *	@status_lock
  52 * @busy: VFDI request queued to be processed or being processed. Receiving
  53 *	a VFDI request when @busy is set is an error condition.
  54 * @buf: Incoming VFDI requests are DMA from the VF into this buffer.
  55 * @buftbl_base: Buffer table entries for this VF start at this index.
  56 * @rx_filtering: Receive filtering has been requested by the VF driver.
  57 * @rx_filter_flags: The flags sent in the %VFDI_OP_INSERT_FILTER request.
  58 * @rx_filter_qid: VF relative qid for RX filter requested by VF.
  59 * @rx_filter_id: Receive MAC filter ID. Only one filter per VF is supported.
  60 * @tx_filter_mode: Transmit MAC filtering mode.
  61 * @tx_filter_id: Transmit MAC filter ID.
  62 * @addr: The MAC address and outer vlan tag of the VF.
  63 * @status_addr: VF DMA address of page for &struct vfdi_status updates.
  64 * @status_lock: Mutex protecting @msg_seqno, @status_addr, @addr,
  65 *	@peer_page_addrs and @peer_page_count from simultaneous
  66 *	updates by the VM and consumption by
  67 *	efx_siena_sriov_update_vf_addr()
  68 * @peer_page_addrs: Pointer to an array of guest pages for local addresses.
  69 * @peer_page_count: Number of entries in @peer_page_count.
  70 * @evq0_addrs: Array of guest pages backing evq0.
  71 * @evq0_count: Number of entries in @evq0_addrs.
  72 * @flush_waitq: wait queue used by %VFDI_OP_FINI_ALL_QUEUES handler
  73 *	to wait for flush completions.
  74 * @txq_lock: Mutex for TX queue allocation.
  75 * @txq_mask: Mask of initialized transmit queues.
  76 * @txq_count: Number of initialized transmit queues.
  77 * @rxq_mask: Mask of initialized receive queues.
  78 * @rxq_count: Number of initialized receive queues.
  79 * @rxq_retry_mask: Mask or receive queues that need to be flushed again
  80 *	due to flush failure.
  81 * @rxq_retry_count: Number of receive queues in @rxq_retry_mask.
  82 * @reset_work: Work item to schedule a VF reset.
  83 */
  84struct siena_vf {
  85	struct efx_nic *efx;
  86	unsigned int pci_rid;
  87	char pci_name[13]; /* dddd:bb:dd.f */
  88	unsigned int index;
  89	struct work_struct req;
  90	u64 req_addr;
  91	int req_type;
  92	unsigned req_seqno;
  93	unsigned msg_seqno;
  94	bool busy;
  95	struct efx_buffer buf;
  96	unsigned buftbl_base;
  97	bool rx_filtering;
  98	enum efx_filter_flags rx_filter_flags;
  99	unsigned rx_filter_qid;
 100	int rx_filter_id;
 101	enum efx_vf_tx_filter_mode tx_filter_mode;
 102	int tx_filter_id;
 103	struct vfdi_endpoint addr;
 104	u64 status_addr;
 105	struct mutex status_lock;
 106	u64 *peer_page_addrs;
 107	unsigned peer_page_count;
 108	u64 evq0_addrs[EFX_MAX_VF_EVQ_SIZE * sizeof(efx_qword_t) /
 109		       EFX_BUF_SIZE];
 110	unsigned evq0_count;
 111	wait_queue_head_t flush_waitq;
 112	struct mutex txq_lock;
 113	unsigned long txq_mask[VI_MASK_LENGTH];
 114	unsigned txq_count;
 115	unsigned long rxq_mask[VI_MASK_LENGTH];
 116	unsigned rxq_count;
 117	unsigned long rxq_retry_mask[VI_MASK_LENGTH];
 118	atomic_t rxq_retry_count;
 119	struct work_struct reset_work;
 120};
 121
 122struct efx_memcpy_req {
 123	unsigned int from_rid;
 124	void *from_buf;
 125	u64 from_addr;
 126	unsigned int to_rid;
 127	u64 to_addr;
 128	unsigned length;
 129};
 130
 131/**
 132 * struct efx_local_addr - A MAC address on the vswitch without a VF.
 133 *
 134 * Siena does not have a switch, so VFs can't transmit data to each
 135 * other. Instead the VFs must be made aware of the local addresses
 136 * on the vswitch, so that they can arrange for an alternative
 137 * software datapath to be used.
 138 *
 139 * @link: List head for insertion into efx->local_addr_list.
 140 * @addr: Ethernet address
 141 */
 142struct efx_local_addr {
 143	struct list_head link;
 144	u8 addr[ETH_ALEN];
 145};
 146
 147/**
 148 * struct efx_endpoint_page - Page of vfdi_endpoint structures
 149 *
 150 * @link: List head for insertion into efx->local_page_list.
 151 * @ptr: Pointer to page.
 152 * @addr: DMA address of page.
 153 */
 154struct efx_endpoint_page {
 155	struct list_head link;
 156	void *ptr;
 157	dma_addr_t addr;
 158};
 159
 160/* Buffer table entries are reserved txq0,rxq0,evq0,txq1,rxq1,evq1 */
 161#define EFX_BUFTBL_TXQ_BASE(_vf, _qid)					\
 162	((_vf)->buftbl_base + EFX_VF_BUFTBL_PER_VI * (_qid))
 163#define EFX_BUFTBL_RXQ_BASE(_vf, _qid)					\
 164	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
 165	 (EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
 166#define EFX_BUFTBL_EVQ_BASE(_vf, _qid)					\
 167	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
 168	 (2 * EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
 169
 170#define EFX_FIELD_MASK(_field)			\
 171	((1 << _field ## _WIDTH) - 1)
 172
 173/* VFs can only use this many transmit channels */
 174static unsigned int vf_max_tx_channels = 2;
 175module_param(vf_max_tx_channels, uint, 0444);
 176MODULE_PARM_DESC(vf_max_tx_channels,
 177		 "Limit the number of TX channels VFs can use");
 178
 179static int max_vfs = -1;
 180module_param(max_vfs, int, 0444);
 181MODULE_PARM_DESC(max_vfs,
 182		 "Reduce the number of VFs initialized by the driver");
 183
 184/* Workqueue used by VFDI communication.  We can't use the global
 185 * workqueue because it may be running the VF driver's probe()
 186 * routine, which will be blocked there waiting for a VFDI response.
 187 */
 188static struct workqueue_struct *vfdi_workqueue;
 189
 190static unsigned abs_index(struct siena_vf *vf, unsigned index)
 191{
 192	return EFX_VI_BASE + vf->index * efx_vf_size(vf->efx) + index;
 193}
 194
 195static int efx_siena_sriov_cmd(struct efx_nic *efx, bool enable,
 196			       unsigned *vi_scale_out, unsigned *vf_total_out)
 197{
 198	MCDI_DECLARE_BUF(inbuf, MC_CMD_SRIOV_IN_LEN);
 199	MCDI_DECLARE_BUF(outbuf, MC_CMD_SRIOV_OUT_LEN);
 200	unsigned vi_scale, vf_total;
 201	size_t outlen;
 202	int rc;
 203
 204	MCDI_SET_DWORD(inbuf, SRIOV_IN_ENABLE, enable ? 1 : 0);
 205	MCDI_SET_DWORD(inbuf, SRIOV_IN_VI_BASE, EFX_VI_BASE);
 206	MCDI_SET_DWORD(inbuf, SRIOV_IN_VF_COUNT, efx->vf_count);
 207
 208	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SRIOV, inbuf, MC_CMD_SRIOV_IN_LEN,
 209				outbuf, MC_CMD_SRIOV_OUT_LEN, &outlen);
 210	if (rc)
 211		return rc;
 212	if (outlen < MC_CMD_SRIOV_OUT_LEN)
 213		return -EIO;
 214
 215	vf_total = MCDI_DWORD(outbuf, SRIOV_OUT_VF_TOTAL);
 216	vi_scale = MCDI_DWORD(outbuf, SRIOV_OUT_VI_SCALE);
 217	if (vi_scale > EFX_VI_SCALE_MAX)
 218		return -EOPNOTSUPP;
 219
 220	if (vi_scale_out)
 221		*vi_scale_out = vi_scale;
 222	if (vf_total_out)
 223		*vf_total_out = vf_total;
 224
 225	return 0;
 226}
 227
 228static void efx_siena_sriov_usrev(struct efx_nic *efx, bool enabled)
 229{
 230	struct siena_nic_data *nic_data = efx->nic_data;
 231	efx_oword_t reg;
 232
 233	EFX_POPULATE_OWORD_2(reg,
 234			     FRF_CZ_USREV_DIS, enabled ? 0 : 1,
 235			     FRF_CZ_DFLT_EVQ, nic_data->vfdi_channel->channel);
 236	efx_writeo(efx, &reg, FR_CZ_USR_EV_CFG);
 237}
 238
 239static int efx_siena_sriov_memcpy(struct efx_nic *efx,
 240				  struct efx_memcpy_req *req,
 241				  unsigned int count)
 242{
 243	MCDI_DECLARE_BUF(inbuf, MCDI_CTL_SDU_LEN_MAX_V1);
 244	MCDI_DECLARE_STRUCT_PTR(record);
 245	unsigned int index, used;
 246	u64 from_addr;
 247	u32 from_rid;
 248	int rc;
 249
 250	mb();	/* Finish writing source/reading dest before DMA starts */
 251
 252	if (WARN_ON(count > MC_CMD_MEMCPY_IN_RECORD_MAXNUM))
 253		return -ENOBUFS;
 254	used = MC_CMD_MEMCPY_IN_LEN(count);
 255
 256	for (index = 0; index < count; index++) {
 257		record = MCDI_ARRAY_STRUCT_PTR(inbuf, MEMCPY_IN_RECORD, index);
 258		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_NUM_RECORDS,
 259			       count);
 260		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_RID,
 261			       req->to_rid);
 262		MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR,
 263			       req->to_addr);
 264		if (req->from_buf == NULL) {
 265			from_rid = req->from_rid;
 266			from_addr = req->from_addr;
 267		} else {
 268			if (WARN_ON(used + req->length >
 269				    MCDI_CTL_SDU_LEN_MAX_V1)) {
 270				rc = -ENOBUFS;
 271				goto out;
 272			}
 273
 274			from_rid = MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE;
 275			from_addr = used;
 276			memcpy(_MCDI_PTR(inbuf, used), req->from_buf,
 277			       req->length);
 278			used += req->length;
 279		}
 280
 281		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_RID, from_rid);
 282		MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR,
 283			       from_addr);
 284		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_LENGTH,
 285			       req->length);
 286
 287		++req;
 288	}
 289
 290	rc = efx_mcdi_rpc(efx, MC_CMD_MEMCPY, inbuf, used, NULL, 0, NULL);
 291out:
 292	mb();	/* Don't write source/read dest before DMA is complete */
 293
 294	return rc;
 295}
 296
 297/* The TX filter is entirely controlled by this driver, and is modified
 298 * underneath the feet of the VF
 299 */
 300static void efx_siena_sriov_reset_tx_filter(struct siena_vf *vf)
 301{
 302	struct efx_nic *efx = vf->efx;
 303	struct efx_filter_spec filter;
 304	u16 vlan;
 305	int rc;
 306
 307	if (vf->tx_filter_id != -1) {
 308		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
 309					  vf->tx_filter_id);
 310		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s tx filter %d\n",
 311			  vf->pci_name, vf->tx_filter_id);
 312		vf->tx_filter_id = -1;
 313	}
 314
 315	if (is_zero_ether_addr(vf->addr.mac_addr))
 316		return;
 317
 318	/* Turn on TX filtering automatically if not explicitly
 319	 * enabled or disabled.
 320	 */
 321	if (vf->tx_filter_mode == VF_TX_FILTER_AUTO && vf_max_tx_channels <= 2)
 322		vf->tx_filter_mode = VF_TX_FILTER_ON;
 323
 324	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
 325	efx_filter_init_tx(&filter, abs_index(vf, 0));
 326	rc = efx_filter_set_eth_local(&filter,
 327				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
 328				      vf->addr.mac_addr);
 329	BUG_ON(rc);
 330
 331	rc = efx_filter_insert_filter(efx, &filter, true);
 332	if (rc < 0) {
 333		netif_warn(efx, hw, efx->net_dev,
 334			   "Unable to migrate tx filter for vf %s\n",
 335			   vf->pci_name);
 336	} else {
 337		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s tx filter %d\n",
 338			  vf->pci_name, rc);
 339		vf->tx_filter_id = rc;
 340	}
 341}
 342
 343/* The RX filter is managed here on behalf of the VF driver */
 344static void efx_siena_sriov_reset_rx_filter(struct siena_vf *vf)
 345{
 346	struct efx_nic *efx = vf->efx;
 347	struct efx_filter_spec filter;
 348	u16 vlan;
 349	int rc;
 350
 351	if (vf->rx_filter_id != -1) {
 352		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
 353					  vf->rx_filter_id);
 354		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s rx filter %d\n",
 355			  vf->pci_name, vf->rx_filter_id);
 356		vf->rx_filter_id = -1;
 357	}
 358
 359	if (!vf->rx_filtering || is_zero_ether_addr(vf->addr.mac_addr))
 360		return;
 361
 362	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
 363	efx_filter_init_rx(&filter, EFX_FILTER_PRI_REQUIRED,
 364			   vf->rx_filter_flags,
 365			   abs_index(vf, vf->rx_filter_qid));
 366	rc = efx_filter_set_eth_local(&filter,
 367				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
 368				      vf->addr.mac_addr);
 369	BUG_ON(rc);
 370
 371	rc = efx_filter_insert_filter(efx, &filter, true);
 372	if (rc < 0) {
 373		netif_warn(efx, hw, efx->net_dev,
 374			   "Unable to insert rx filter for vf %s\n",
 375			   vf->pci_name);
 376	} else {
 377		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s rx filter %d\n",
 378			  vf->pci_name, rc);
 379		vf->rx_filter_id = rc;
 380	}
 381}
 382
 383static void __efx_siena_sriov_update_vf_addr(struct siena_vf *vf)
 384{
 385	struct efx_nic *efx = vf->efx;
 386	struct siena_nic_data *nic_data = efx->nic_data;
 387
 388	efx_siena_sriov_reset_tx_filter(vf);
 389	efx_siena_sriov_reset_rx_filter(vf);
 390	queue_work(vfdi_workqueue, &nic_data->peer_work);
 391}
 392
 393/* Push the peer list to this VF. The caller must hold status_lock to interlock
 394 * with VFDI requests, and they must be serialised against manipulation of
 395 * local_page_list, either by acquiring local_lock or by running from
 396 * efx_siena_sriov_peer_work()
 397 */
 398static void __efx_siena_sriov_push_vf_status(struct siena_vf *vf)
 399{
 400	struct efx_nic *efx = vf->efx;
 401	struct siena_nic_data *nic_data = efx->nic_data;
 402	struct vfdi_status *status = nic_data->vfdi_status.addr;
 403	struct efx_memcpy_req copy[4];
 404	struct efx_endpoint_page *epp;
 405	unsigned int pos, count;
 406	unsigned data_offset;
 407	efx_qword_t event;
 408
 409	WARN_ON(!mutex_is_locked(&vf->status_lock));
 410	WARN_ON(!vf->status_addr);
 411
 412	status->local = vf->addr;
 413	status->generation_end = ++status->generation_start;
 414
 415	memset(copy, '\0', sizeof(copy));
 416	/* Write generation_start */
 417	copy[0].from_buf = &status->generation_start;
 418	copy[0].to_rid = vf->pci_rid;
 419	copy[0].to_addr = vf->status_addr + offsetof(struct vfdi_status,
 420						     generation_start);
 421	copy[0].length = sizeof(status->generation_start);
 422	/* DMA the rest of the structure (excluding the generations). This
 423	 * assumes that the non-generation portion of vfdi_status is in
 424	 * one chunk starting at the version member.
 425	 */
 426	data_offset = offsetof(struct vfdi_status, version);
 427	copy[1].from_rid = efx->pci_dev->devfn;
 428	copy[1].from_addr = nic_data->vfdi_status.dma_addr + data_offset;
 429	copy[1].to_rid = vf->pci_rid;
 430	copy[1].to_addr = vf->status_addr + data_offset;
 431	copy[1].length =  status->length - data_offset;
 432
 433	/* Copy the peer pages */
 434	pos = 2;
 435	count = 0;
 436	list_for_each_entry(epp, &nic_data->local_page_list, link) {
 437		if (count == vf->peer_page_count) {
 438			/* The VF driver will know they need to provide more
 439			 * pages because peer_addr_count is too large.
 440			 */
 441			break;
 442		}
 443		copy[pos].from_buf = NULL;
 444		copy[pos].from_rid = efx->pci_dev->devfn;
 445		copy[pos].from_addr = epp->addr;
 446		copy[pos].to_rid = vf->pci_rid;
 447		copy[pos].to_addr = vf->peer_page_addrs[count];
 448		copy[pos].length = EFX_PAGE_SIZE;
 449
 450		if (++pos == ARRAY_SIZE(copy)) {
 451			efx_siena_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
 452			pos = 0;
 453		}
 454		++count;
 455	}
 456
 457	/* Write generation_end */
 458	copy[pos].from_buf = &status->generation_end;
 459	copy[pos].to_rid = vf->pci_rid;
 460	copy[pos].to_addr = vf->status_addr + offsetof(struct vfdi_status,
 461						       generation_end);
 462	copy[pos].length = sizeof(status->generation_end);
 463	efx_siena_sriov_memcpy(efx, copy, pos + 1);
 464
 465	/* Notify the guest */
 466	EFX_POPULATE_QWORD_3(event,
 467			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
 468			     VFDI_EV_SEQ, (vf->msg_seqno & 0xff),
 469			     VFDI_EV_TYPE, VFDI_EV_TYPE_STATUS);
 470	++vf->msg_seqno;
 471	efx_farch_generate_event(efx,
 472				 EFX_VI_BASE + vf->index * efx_vf_size(efx),
 473				 &event);
 474}
 475
 476static void efx_siena_sriov_bufs(struct efx_nic *efx, unsigned offset,
 477				 u64 *addr, unsigned count)
 478{
 479	efx_qword_t buf;
 480	unsigned pos;
 481
 482	for (pos = 0; pos < count; ++pos) {
 483		EFX_POPULATE_QWORD_3(buf,
 484				     FRF_AZ_BUF_ADR_REGION, 0,
 485				     FRF_AZ_BUF_ADR_FBUF,
 486				     addr ? addr[pos] >> 12 : 0,
 487				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
 488		efx_sram_writeq(efx, efx->membase + FR_BZ_BUF_FULL_TBL,
 489				&buf, offset + pos);
 490	}
 491}
 492
 493static bool bad_vf_index(struct efx_nic *efx, unsigned index)
 494{
 495	return index >= efx_vf_size(efx);
 496}
 497
 498static bool bad_buf_count(unsigned buf_count, unsigned max_entry_count)
 499{
 500	unsigned max_buf_count = max_entry_count *
 501		sizeof(efx_qword_t) / EFX_BUF_SIZE;
 502
 503	return ((buf_count & (buf_count - 1)) || buf_count > max_buf_count);
 504}
 505
 506/* Check that VI specified by per-port index belongs to a VF.
 507 * Optionally set VF index and VI index within the VF.
 508 */
 509static bool map_vi_index(struct efx_nic *efx, unsigned abs_index,
 510			 struct siena_vf **vf_out, unsigned *rel_index_out)
 511{
 512	struct siena_nic_data *nic_data = efx->nic_data;
 513	unsigned vf_i;
 514
 515	if (abs_index < EFX_VI_BASE)
 516		return true;
 517	vf_i = (abs_index - EFX_VI_BASE) / efx_vf_size(efx);
 518	if (vf_i >= efx->vf_init_count)
 519		return true;
 520
 521	if (vf_out)
 522		*vf_out = nic_data->vf + vf_i;
 523	if (rel_index_out)
 524		*rel_index_out = abs_index % efx_vf_size(efx);
 525	return false;
 526}
 527
 528static int efx_vfdi_init_evq(struct siena_vf *vf)
 529{
 530	struct efx_nic *efx = vf->efx;
 531	struct vfdi_req *req = vf->buf.addr;
 532	unsigned vf_evq = req->u.init_evq.index;
 533	unsigned buf_count = req->u.init_evq.buf_count;
 534	unsigned abs_evq = abs_index(vf, vf_evq);
 535	unsigned buftbl = EFX_BUFTBL_EVQ_BASE(vf, vf_evq);
 536	efx_oword_t reg;
 537
 538	if (bad_vf_index(efx, vf_evq) ||
 539	    bad_buf_count(buf_count, EFX_MAX_VF_EVQ_SIZE)) {
 540		if (net_ratelimit())
 541			netif_err(efx, hw, efx->net_dev,
 542				  "ERROR: Invalid INIT_EVQ from %s: evq %d bufs %d\n",
 543				  vf->pci_name, vf_evq, buf_count);
 544		return VFDI_RC_EINVAL;
 545	}
 546
 547	efx_siena_sriov_bufs(efx, buftbl, req->u.init_evq.addr, buf_count);
 548
 549	EFX_POPULATE_OWORD_3(reg,
 550			     FRF_CZ_TIMER_Q_EN, 1,
 551			     FRF_CZ_HOST_NOTIFY_MODE, 0,
 552			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
 553	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
 554	EFX_POPULATE_OWORD_3(reg,
 555			     FRF_AZ_EVQ_EN, 1,
 556			     FRF_AZ_EVQ_SIZE, __ffs(buf_count),
 557			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
 558	efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
 559
 560	if (vf_evq == 0) {
 561		memcpy(vf->evq0_addrs, req->u.init_evq.addr,
 562		       buf_count * sizeof(u64));
 563		vf->evq0_count = buf_count;
 564	}
 565
 566	return VFDI_RC_SUCCESS;
 567}
 568
 569static int efx_vfdi_init_rxq(struct siena_vf *vf)
 570{
 571	struct efx_nic *efx = vf->efx;
 572	struct vfdi_req *req = vf->buf.addr;
 573	unsigned vf_rxq = req->u.init_rxq.index;
 574	unsigned vf_evq = req->u.init_rxq.evq;
 575	unsigned buf_count = req->u.init_rxq.buf_count;
 576	unsigned buftbl = EFX_BUFTBL_RXQ_BASE(vf, vf_rxq);
 577	unsigned label;
 578	efx_oword_t reg;
 579
 580	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_rxq) ||
 581	    vf_rxq >= VF_MAX_RX_QUEUES ||
 582	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
 583		if (net_ratelimit())
 584			netif_err(efx, hw, efx->net_dev,
 585				  "ERROR: Invalid INIT_RXQ from %s: rxq %d evq %d "
 586				  "buf_count %d\n", vf->pci_name, vf_rxq,
 587				  vf_evq, buf_count);
 588		return VFDI_RC_EINVAL;
 589	}
 590	if (__test_and_set_bit(req->u.init_rxq.index, vf->rxq_mask))
 591		++vf->rxq_count;
 592	efx_siena_sriov_bufs(efx, buftbl, req->u.init_rxq.addr, buf_count);
 593
 594	label = req->u.init_rxq.label & EFX_FIELD_MASK(FRF_AZ_RX_DESCQ_LABEL);
 595	EFX_POPULATE_OWORD_6(reg,
 596			     FRF_AZ_RX_DESCQ_BUF_BASE_ID, buftbl,
 597			     FRF_AZ_RX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
 598			     FRF_AZ_RX_DESCQ_LABEL, label,
 599			     FRF_AZ_RX_DESCQ_SIZE, __ffs(buf_count),
 600			     FRF_AZ_RX_DESCQ_JUMBO,
 601			     !!(req->u.init_rxq.flags &
 602				VFDI_RXQ_FLAG_SCATTER_EN),
 603			     FRF_AZ_RX_DESCQ_EN, 1);
 604	efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
 605			 abs_index(vf, vf_rxq));
 606
 607	return VFDI_RC_SUCCESS;
 608}
 609
 610static int efx_vfdi_init_txq(struct siena_vf *vf)
 611{
 612	struct efx_nic *efx = vf->efx;
 613	struct vfdi_req *req = vf->buf.addr;
 614	unsigned vf_txq = req->u.init_txq.index;
 615	unsigned vf_evq = req->u.init_txq.evq;
 616	unsigned buf_count = req->u.init_txq.buf_count;
 617	unsigned buftbl = EFX_BUFTBL_TXQ_BASE(vf, vf_txq);
 618	unsigned label, eth_filt_en;
 619	efx_oword_t reg;
 620
 621	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_txq) ||
 622	    vf_txq >= vf_max_tx_channels ||
 623	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
 624		if (net_ratelimit())
 625			netif_err(efx, hw, efx->net_dev,
 626				  "ERROR: Invalid INIT_TXQ from %s: txq %d evq %d "
 627				  "buf_count %d\n", vf->pci_name, vf_txq,
 628				  vf_evq, buf_count);
 629		return VFDI_RC_EINVAL;
 630	}
 631
 632	mutex_lock(&vf->txq_lock);
 633	if (__test_and_set_bit(req->u.init_txq.index, vf->txq_mask))
 634		++vf->txq_count;
 635	mutex_unlock(&vf->txq_lock);
 636	efx_siena_sriov_bufs(efx, buftbl, req->u.init_txq.addr, buf_count);
 637
 638	eth_filt_en = vf->tx_filter_mode == VF_TX_FILTER_ON;
 639
 640	label = req->u.init_txq.label & EFX_FIELD_MASK(FRF_AZ_TX_DESCQ_LABEL);
 641	EFX_POPULATE_OWORD_8(reg,
 642			     FRF_CZ_TX_DPT_Q_MASK_WIDTH, min(efx->vi_scale, 1U),
 643			     FRF_CZ_TX_DPT_ETH_FILT_EN, eth_filt_en,
 644			     FRF_AZ_TX_DESCQ_EN, 1,
 645			     FRF_AZ_TX_DESCQ_BUF_BASE_ID, buftbl,
 646			     FRF_AZ_TX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
 647			     FRF_AZ_TX_DESCQ_LABEL, label,
 648			     FRF_AZ_TX_DESCQ_SIZE, __ffs(buf_count),
 649			     FRF_BZ_TX_NON_IP_DROP_DIS, 1);
 650	efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
 651			 abs_index(vf, vf_txq));
 652
 653	return VFDI_RC_SUCCESS;
 654}
 655
 656/* Returns true when efx_vfdi_fini_all_queues should wake */
 657static bool efx_vfdi_flush_wake(struct siena_vf *vf)
 658{
 659	/* Ensure that all updates are visible to efx_vfdi_fini_all_queues() */
 660	smp_mb();
 661
 662	return (!vf->txq_count && !vf->rxq_count) ||
 663		atomic_read(&vf->rxq_retry_count);
 664}
 665
 666static void efx_vfdi_flush_clear(struct siena_vf *vf)
 667{
 668	memset(vf->txq_mask, 0, sizeof(vf->txq_mask));
 669	vf->txq_count = 0;
 670	memset(vf->rxq_mask, 0, sizeof(vf->rxq_mask));
 671	vf->rxq_count = 0;
 672	memset(vf->rxq_retry_mask, 0, sizeof(vf->rxq_retry_mask));
 673	atomic_set(&vf->rxq_retry_count, 0);
 674}
 675
 676static int efx_vfdi_fini_all_queues(struct siena_vf *vf)
 677{
 678	struct efx_nic *efx = vf->efx;
 679	efx_oword_t reg;
 680	unsigned count = efx_vf_size(efx);
 681	unsigned vf_offset = EFX_VI_BASE + vf->index * efx_vf_size(efx);
 682	unsigned timeout = HZ;
 683	unsigned index, rxqs_count;
 684	MCDI_DECLARE_BUF(inbuf, MC_CMD_FLUSH_RX_QUEUES_IN_LENMAX);
 685	int rc;
 686
 687	BUILD_BUG_ON(VF_MAX_RX_QUEUES >
 688		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
 689
 690	rtnl_lock();
 691	siena_prepare_flush(efx);
 692	rtnl_unlock();
 693
 694	/* Flush all the initialized queues */
 695	rxqs_count = 0;
 696	for (index = 0; index < count; ++index) {
 697		if (test_bit(index, vf->txq_mask)) {
 698			EFX_POPULATE_OWORD_2(reg,
 699					     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
 700					     FRF_AZ_TX_FLUSH_DESCQ,
 701					     vf_offset + index);
 702			efx_writeo(efx, &reg, FR_AZ_TX_FLUSH_DESCQ);
 703		}
 704		if (test_bit(index, vf->rxq_mask)) {
 705			MCDI_SET_ARRAY_DWORD(
 706				inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
 707				rxqs_count, vf_offset + index);
 708			rxqs_count++;
 709		}
 710	}
 711
 712	atomic_set(&vf->rxq_retry_count, 0);
 713	while (timeout && (vf->rxq_count || vf->txq_count)) {
 714		rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
 715				  MC_CMD_FLUSH_RX_QUEUES_IN_LEN(rxqs_count),
 716				  NULL, 0, NULL);
 717		WARN_ON(rc < 0);
 718
 719		timeout = wait_event_timeout(vf->flush_waitq,
 720					     efx_vfdi_flush_wake(vf),
 721					     timeout);
 722		rxqs_count = 0;
 723		for (index = 0; index < count; ++index) {
 724			if (test_and_clear_bit(index, vf->rxq_retry_mask)) {
 725				atomic_dec(&vf->rxq_retry_count);
 726				MCDI_SET_ARRAY_DWORD(
 727					inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
 728					rxqs_count, vf_offset + index);
 729				rxqs_count++;
 730			}
 731		}
 732	}
 733
 734	rtnl_lock();
 735	siena_finish_flush(efx);
 736	rtnl_unlock();
 737
 738	/* Irrespective of success/failure, fini the queues */
 739	EFX_ZERO_OWORD(reg);
 740	for (index = 0; index < count; ++index) {
 741		efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
 742				 vf_offset + index);
 743		efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
 744				 vf_offset + index);
 745		efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL,
 746				 vf_offset + index);
 747		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL,
 748				 vf_offset + index);
 749	}
 750	efx_siena_sriov_bufs(efx, vf->buftbl_base, NULL,
 751			     EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx));
 752	efx_vfdi_flush_clear(vf);
 753
 754	vf->evq0_count = 0;
 755
 756	return timeout ? 0 : VFDI_RC_ETIMEDOUT;
 757}
 758
 759static int efx_vfdi_insert_filter(struct siena_vf *vf)
 760{
 761	struct efx_nic *efx = vf->efx;
 762	struct siena_nic_data *nic_data = efx->nic_data;
 763	struct vfdi_req *req = vf->buf.addr;
 764	unsigned vf_rxq = req->u.mac_filter.rxq;
 765	unsigned flags;
 766
 767	if (bad_vf_index(efx, vf_rxq) || vf->rx_filtering) {
 768		if (net_ratelimit())
 769			netif_err(efx, hw, efx->net_dev,
 770				  "ERROR: Invalid INSERT_FILTER from %s: rxq %d "
 771				  "flags 0x%x\n", vf->pci_name, vf_rxq,
 772				  req->u.mac_filter.flags);
 773		return VFDI_RC_EINVAL;
 774	}
 775
 776	flags = 0;
 777	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_RSS)
 778		flags |= EFX_FILTER_FLAG_RX_RSS;
 779	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_SCATTER)
 780		flags |= EFX_FILTER_FLAG_RX_SCATTER;
 781	vf->rx_filter_flags = flags;
 782	vf->rx_filter_qid = vf_rxq;
 783	vf->rx_filtering = true;
 784
 785	efx_siena_sriov_reset_rx_filter(vf);
 786	queue_work(vfdi_workqueue, &nic_data->peer_work);
 787
 788	return VFDI_RC_SUCCESS;
 789}
 790
 791static int efx_vfdi_remove_all_filters(struct siena_vf *vf)
 792{
 793	struct efx_nic *efx = vf->efx;
 794	struct siena_nic_data *nic_data = efx->nic_data;
 795
 796	vf->rx_filtering = false;
 797	efx_siena_sriov_reset_rx_filter(vf);
 798	queue_work(vfdi_workqueue, &nic_data->peer_work);
 799
 800	return VFDI_RC_SUCCESS;
 801}
 802
 803static int efx_vfdi_set_status_page(struct siena_vf *vf)
 804{
 805	struct efx_nic *efx = vf->efx;
 806	struct siena_nic_data *nic_data = efx->nic_data;
 807	struct vfdi_req *req = vf->buf.addr;
 808	u64 page_count = req->u.set_status_page.peer_page_count;
 809	u64 max_page_count =
 810		(EFX_PAGE_SIZE -
 811		 offsetof(struct vfdi_req, u.set_status_page.peer_page_addr[0]))
 812		/ sizeof(req->u.set_status_page.peer_page_addr[0]);
 813
 814	if (!req->u.set_status_page.dma_addr || page_count > max_page_count) {
 815		if (net_ratelimit())
 816			netif_err(efx, hw, efx->net_dev,
 817				  "ERROR: Invalid SET_STATUS_PAGE from %s\n",
 818				  vf->pci_name);
 819		return VFDI_RC_EINVAL;
 820	}
 821
 822	mutex_lock(&nic_data->local_lock);
 823	mutex_lock(&vf->status_lock);
 824	vf->status_addr = req->u.set_status_page.dma_addr;
 825
 826	kfree(vf->peer_page_addrs);
 827	vf->peer_page_addrs = NULL;
 828	vf->peer_page_count = 0;
 829
 830	if (page_count) {
 831		vf->peer_page_addrs = kcalloc(page_count, sizeof(u64),
 832					      GFP_KERNEL);
 833		if (vf->peer_page_addrs) {
 834			memcpy(vf->peer_page_addrs,
 835			       req->u.set_status_page.peer_page_addr,
 836			       page_count * sizeof(u64));
 837			vf->peer_page_count = page_count;
 838		}
 839	}
 840
 841	__efx_siena_sriov_push_vf_status(vf);
 842	mutex_unlock(&vf->status_lock);
 843	mutex_unlock(&nic_data->local_lock);
 844
 845	return VFDI_RC_SUCCESS;
 846}
 847
 848static int efx_vfdi_clear_status_page(struct siena_vf *vf)
 849{
 850	mutex_lock(&vf->status_lock);
 851	vf->status_addr = 0;
 852	mutex_unlock(&vf->status_lock);
 853
 854	return VFDI_RC_SUCCESS;
 855}
 856
 857typedef int (*efx_vfdi_op_t)(struct siena_vf *vf);
 858
 859static const efx_vfdi_op_t vfdi_ops[VFDI_OP_LIMIT] = {
 860	[VFDI_OP_INIT_EVQ] = efx_vfdi_init_evq,
 861	[VFDI_OP_INIT_TXQ] = efx_vfdi_init_txq,
 862	[VFDI_OP_INIT_RXQ] = efx_vfdi_init_rxq,
 863	[VFDI_OP_FINI_ALL_QUEUES] = efx_vfdi_fini_all_queues,
 864	[VFDI_OP_INSERT_FILTER] = efx_vfdi_insert_filter,
 865	[VFDI_OP_REMOVE_ALL_FILTERS] = efx_vfdi_remove_all_filters,
 866	[VFDI_OP_SET_STATUS_PAGE] = efx_vfdi_set_status_page,
 867	[VFDI_OP_CLEAR_STATUS_PAGE] = efx_vfdi_clear_status_page,
 868};
 869
 870static void efx_siena_sriov_vfdi(struct work_struct *work)
 871{
 872	struct siena_vf *vf = container_of(work, struct siena_vf, req);
 873	struct efx_nic *efx = vf->efx;
 874	struct vfdi_req *req = vf->buf.addr;
 875	struct efx_memcpy_req copy[2];
 876	int rc;
 877
 878	/* Copy this page into the local address space */
 879	memset(copy, '\0', sizeof(copy));
 880	copy[0].from_rid = vf->pci_rid;
 881	copy[0].from_addr = vf->req_addr;
 882	copy[0].to_rid = efx->pci_dev->devfn;
 883	copy[0].to_addr = vf->buf.dma_addr;
 884	copy[0].length = EFX_PAGE_SIZE;
 885	rc = efx_siena_sriov_memcpy(efx, copy, 1);
 886	if (rc) {
 887		/* If we can't get the request, we can't reply to the caller */
 888		if (net_ratelimit())
 889			netif_err(efx, hw, efx->net_dev,
 890				  "ERROR: Unable to fetch VFDI request from %s rc %d\n",
 891				  vf->pci_name, -rc);
 892		vf->busy = false;
 893		return;
 894	}
 895
 896	if (req->op < VFDI_OP_LIMIT && vfdi_ops[req->op] != NULL) {
 897		rc = vfdi_ops[req->op](vf);
 898		if (rc == 0) {
 899			netif_dbg(efx, hw, efx->net_dev,
 900				  "vfdi request %d from %s ok\n",
 901				  req->op, vf->pci_name);
 902		}
 903	} else {
 904		netif_dbg(efx, hw, efx->net_dev,
 905			  "ERROR: Unrecognised request %d from VF %s addr "
 906			  "%llx\n", req->op, vf->pci_name,
 907			  (unsigned long long)vf->req_addr);
 908		rc = VFDI_RC_EOPNOTSUPP;
 909	}
 910
 911	/* Allow subsequent VF requests */
 912	vf->busy = false;
 913	smp_wmb();
 914
 915	/* Respond to the request */
 916	req->rc = rc;
 917	req->op = VFDI_OP_RESPONSE;
 918
 919	memset(copy, '\0', sizeof(copy));
 920	copy[0].from_buf = &req->rc;
 921	copy[0].to_rid = vf->pci_rid;
 922	copy[0].to_addr = vf->req_addr + offsetof(struct vfdi_req, rc);
 923	copy[0].length = sizeof(req->rc);
 924	copy[1].from_buf = &req->op;
 925	copy[1].to_rid = vf->pci_rid;
 926	copy[1].to_addr = vf->req_addr + offsetof(struct vfdi_req, op);
 927	copy[1].length = sizeof(req->op);
 928
 929	(void)efx_siena_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
 930}
 931
 932
 933
 934/* After a reset the event queues inside the guests no longer exist. Fill the
 935 * event ring in guest memory with VFDI reset events, then (re-initialise) the
 936 * event queue to raise an interrupt. The guest driver will then recover.
 937 */
 938
 939static void efx_siena_sriov_reset_vf(struct siena_vf *vf,
 940				     struct efx_buffer *buffer)
 941{
 942	struct efx_nic *efx = vf->efx;
 943	struct efx_memcpy_req copy_req[4];
 944	efx_qword_t event;
 945	unsigned int pos, count, k, buftbl, abs_evq;
 946	efx_oword_t reg;
 947	efx_dword_t ptr;
 948	int rc;
 949
 950	BUG_ON(buffer->len != EFX_PAGE_SIZE);
 951
 952	if (!vf->evq0_count)
 953		return;
 954	BUG_ON(vf->evq0_count & (vf->evq0_count - 1));
 955
 956	mutex_lock(&vf->status_lock);
 957	EFX_POPULATE_QWORD_3(event,
 958			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
 959			     VFDI_EV_SEQ, vf->msg_seqno,
 960			     VFDI_EV_TYPE, VFDI_EV_TYPE_RESET);
 961	vf->msg_seqno++;
 962	for (pos = 0; pos < EFX_PAGE_SIZE; pos += sizeof(event))
 963		memcpy(buffer->addr + pos, &event, sizeof(event));
 964
 965	for (pos = 0; pos < vf->evq0_count; pos += count) {
 966		count = min_t(unsigned, vf->evq0_count - pos,
 967			      ARRAY_SIZE(copy_req));
 968		for (k = 0; k < count; k++) {
 969			copy_req[k].from_buf = NULL;
 970			copy_req[k].from_rid = efx->pci_dev->devfn;
 971			copy_req[k].from_addr = buffer->dma_addr;
 972			copy_req[k].to_rid = vf->pci_rid;
 973			copy_req[k].to_addr = vf->evq0_addrs[pos + k];
 974			copy_req[k].length = EFX_PAGE_SIZE;
 975		}
 976		rc = efx_siena_sriov_memcpy(efx, copy_req, count);
 977		if (rc) {
 978			if (net_ratelimit())
 979				netif_err(efx, hw, efx->net_dev,
 980					  "ERROR: Unable to notify %s of reset"
 981					  ": %d\n", vf->pci_name, -rc);
 982			break;
 983		}
 984	}
 985
 986	/* Reinitialise, arm and trigger evq0 */
 987	abs_evq = abs_index(vf, 0);
 988	buftbl = EFX_BUFTBL_EVQ_BASE(vf, 0);
 989	efx_siena_sriov_bufs(efx, buftbl, vf->evq0_addrs, vf->evq0_count);
 990
 991	EFX_POPULATE_OWORD_3(reg,
 992			     FRF_CZ_TIMER_Q_EN, 1,
 993			     FRF_CZ_HOST_NOTIFY_MODE, 0,
 994			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
 995	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
 996	EFX_POPULATE_OWORD_3(reg,
 997			     FRF_AZ_EVQ_EN, 1,
 998			     FRF_AZ_EVQ_SIZE, __ffs(vf->evq0_count),
 999			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
1000	efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
1001	EFX_POPULATE_DWORD_1(ptr, FRF_AZ_EVQ_RPTR, 0);
1002	efx_writed(efx, &ptr, FR_BZ_EVQ_RPTR + FR_BZ_EVQ_RPTR_STEP * abs_evq);
1003
1004	mutex_unlock(&vf->status_lock);
1005}
1006
1007static void efx_siena_sriov_reset_vf_work(struct work_struct *work)
1008{
1009	struct siena_vf *vf = container_of(work, struct siena_vf, req);
1010	struct efx_nic *efx = vf->efx;
1011	struct efx_buffer buf;
1012
1013	if (!efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO)) {
1014		efx_siena_sriov_reset_vf(vf, &buf);
1015		efx_nic_free_buffer(efx, &buf);
1016	}
1017}
1018
1019static void efx_siena_sriov_handle_no_channel(struct efx_nic *efx)
1020{
1021	netif_err(efx, drv, efx->net_dev,
1022		  "ERROR: IOV requires MSI-X and 1 additional interrupt"
1023		  "vector. IOV disabled\n");
1024	efx->vf_count = 0;
1025}
1026
1027static int efx_siena_sriov_probe_channel(struct efx_channel *channel)
1028{
1029	struct siena_nic_data *nic_data = channel->efx->nic_data;
1030	nic_data->vfdi_channel = channel;
1031
1032	return 0;
1033}
1034
1035static void
1036efx_siena_sriov_get_channel_name(struct efx_channel *channel,
1037				 char *buf, size_t len)
1038{
1039	snprintf(buf, len, "%s-iov", channel->efx->name);
1040}
1041
1042static const struct efx_channel_type efx_siena_sriov_channel_type = {
1043	.handle_no_channel	= efx_siena_sriov_handle_no_channel,
1044	.pre_probe		= efx_siena_sriov_probe_channel,
1045	.post_remove		= efx_channel_dummy_op_void,
1046	.get_name		= efx_siena_sriov_get_channel_name,
1047	/* no copy operation; channel must not be reallocated */
1048	.keep_eventq		= true,
1049};
1050
1051void efx_siena_sriov_probe(struct efx_nic *efx)
1052{
1053	unsigned count;
1054
1055	if (!max_vfs)
1056		return;
1057
1058	if (efx_siena_sriov_cmd(efx, false, &efx->vi_scale, &count)) {
1059		netif_info(efx, probe, efx->net_dev, "no SR-IOV VFs probed\n");
1060		return;
1061	}
1062	if (count > 0 && count > max_vfs)
1063		count = max_vfs;
1064
1065	/* efx_nic_dimension_resources() will reduce vf_count as appopriate */
1066	efx->vf_count = count;
1067
1068	efx->extra_channel_type[EFX_EXTRA_CHANNEL_IOV] = &efx_siena_sriov_channel_type;
1069}
1070
1071/* Copy the list of individual addresses into the vfdi_status.peers
1072 * array and auxiliary pages, protected by %local_lock. Drop that lock
1073 * and then broadcast the address list to every VF.
1074 */
1075static void efx_siena_sriov_peer_work(struct work_struct *data)
1076{
1077	struct siena_nic_data *nic_data = container_of(data,
1078						       struct siena_nic_data,
1079						       peer_work);
1080	struct efx_nic *efx = nic_data->efx;
1081	struct vfdi_status *vfdi_status = nic_data->vfdi_status.addr;
1082	struct siena_vf *vf;
1083	struct efx_local_addr *local_addr;
1084	struct vfdi_endpoint *peer;
1085	struct efx_endpoint_page *epp;
1086	struct list_head pages;
1087	unsigned int peer_space;
1088	unsigned int peer_count;
1089	unsigned int pos;
1090
1091	mutex_lock(&nic_data->local_lock);
1092
1093	/* Move the existing peer pages off %local_page_list */
1094	INIT_LIST_HEAD(&pages);
1095	list_splice_tail_init(&nic_data->local_page_list, &pages);
1096
1097	/* Populate the VF addresses starting from entry 1 (entry 0 is
1098	 * the PF address)
1099	 */
1100	peer = vfdi_status->peers + 1;
1101	peer_space = ARRAY_SIZE(vfdi_status->peers) - 1;
1102	peer_count = 1;
1103	for (pos = 0; pos < efx->vf_count; ++pos) {
1104		vf = nic_data->vf + pos;
1105
1106		mutex_lock(&vf->status_lock);
1107		if (vf->rx_filtering && !is_zero_ether_addr(vf->addr.mac_addr)) {
1108			*peer++ = vf->addr;
1109			++peer_count;
1110			--peer_space;
1111			BUG_ON(peer_space == 0);
1112		}
1113		mutex_unlock(&vf->status_lock);
1114	}
1115
1116	/* Fill the remaining addresses */
1117	list_for_each_entry(local_addr, &nic_data->local_addr_list, link) {
1118		ether_addr_copy(peer->mac_addr, local_addr->addr);
1119		peer->tci = 0;
1120		++peer;
1121		++peer_count;
1122		if (--peer_space == 0) {
1123			if (list_empty(&pages)) {
1124				epp = kmalloc(sizeof(*epp), GFP_KERNEL);
1125				if (!epp)
1126					break;
1127				epp->ptr = dma_alloc_coherent(
1128					&efx->pci_dev->dev, EFX_PAGE_SIZE,
1129					&epp->addr, GFP_KERNEL);
1130				if (!epp->ptr) {
1131					kfree(epp);
1132					break;
1133				}
1134			} else {
1135				epp = list_first_entry(
1136					&pages, struct efx_endpoint_page, link);
1137				list_del(&epp->link);
1138			}
1139
1140			list_add_tail(&epp->link, &nic_data->local_page_list);
1141			peer = (struct vfdi_endpoint *)epp->ptr;
1142			peer_space = EFX_PAGE_SIZE / sizeof(struct vfdi_endpoint);
1143		}
1144	}
1145	vfdi_status->peer_count = peer_count;
1146	mutex_unlock(&nic_data->local_lock);
1147
1148	/* Free any now unused endpoint pages */
1149	while (!list_empty(&pages)) {
1150		epp = list_first_entry(
1151			&pages, struct efx_endpoint_page, link);
1152		list_del(&epp->link);
1153		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1154				  epp->ptr, epp->addr);
1155		kfree(epp);
1156	}
1157
1158	/* Finally, push the pages */
1159	for (pos = 0; pos < efx->vf_count; ++pos) {
1160		vf = nic_data->vf + pos;
1161
1162		mutex_lock(&vf->status_lock);
1163		if (vf->status_addr)
1164			__efx_siena_sriov_push_vf_status(vf);
1165		mutex_unlock(&vf->status_lock);
1166	}
1167}
1168
1169static void efx_siena_sriov_free_local(struct efx_nic *efx)
1170{
1171	struct siena_nic_data *nic_data = efx->nic_data;
1172	struct efx_local_addr *local_addr;
1173	struct efx_endpoint_page *epp;
1174
1175	while (!list_empty(&nic_data->local_addr_list)) {
1176		local_addr = list_first_entry(&nic_data->local_addr_list,
1177					      struct efx_local_addr, link);
1178		list_del(&local_addr->link);
1179		kfree(local_addr);
1180	}
1181
1182	while (!list_empty(&nic_data->local_page_list)) {
1183		epp = list_first_entry(&nic_data->local_page_list,
1184				       struct efx_endpoint_page, link);
1185		list_del(&epp->link);
1186		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1187				  epp->ptr, epp->addr);
1188		kfree(epp);
1189	}
1190}
1191
1192static int efx_siena_sriov_vf_alloc(struct efx_nic *efx)
1193{
1194	unsigned index;
1195	struct siena_vf *vf;
1196	struct siena_nic_data *nic_data = efx->nic_data;
1197
1198	nic_data->vf = kcalloc(efx->vf_count, sizeof(*nic_data->vf),
1199			       GFP_KERNEL);
1200	if (!nic_data->vf)
1201		return -ENOMEM;
1202
1203	for (index = 0; index < efx->vf_count; ++index) {
1204		vf = nic_data->vf + index;
1205
1206		vf->efx = efx;
1207		vf->index = index;
1208		vf->rx_filter_id = -1;
1209		vf->tx_filter_mode = VF_TX_FILTER_AUTO;
1210		vf->tx_filter_id = -1;
1211		INIT_WORK(&vf->req, efx_siena_sriov_vfdi);
1212		INIT_WORK(&vf->reset_work, efx_siena_sriov_reset_vf_work);
1213		init_waitqueue_head(&vf->flush_waitq);
1214		mutex_init(&vf->status_lock);
1215		mutex_init(&vf->txq_lock);
1216	}
1217
1218	return 0;
1219}
1220
1221static void efx_siena_sriov_vfs_fini(struct efx_nic *efx)
1222{
1223	struct siena_nic_data *nic_data = efx->nic_data;
1224	struct siena_vf *vf;
1225	unsigned int pos;
1226
1227	for (pos = 0; pos < efx->vf_count; ++pos) {
1228		vf = nic_data->vf + pos;
1229
1230		efx_nic_free_buffer(efx, &vf->buf);
1231		kfree(vf->peer_page_addrs);
1232		vf->peer_page_addrs = NULL;
1233		vf->peer_page_count = 0;
1234
1235		vf->evq0_count = 0;
1236	}
1237}
1238
1239static int efx_siena_sriov_vfs_init(struct efx_nic *efx)
1240{
1241	struct pci_dev *pci_dev = efx->pci_dev;
1242	struct siena_nic_data *nic_data = efx->nic_data;
1243	unsigned index, devfn, sriov, buftbl_base;
1244	u16 offset, stride;
1245	struct siena_vf *vf;
1246	int rc;
1247
1248	sriov = pci_find_ext_capability(pci_dev, PCI_EXT_CAP_ID_SRIOV);
1249	if (!sriov)
1250		return -ENOENT;
1251
1252	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_OFFSET, &offset);
1253	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_STRIDE, &stride);
1254
1255	buftbl_base = nic_data->vf_buftbl_base;
1256	devfn = pci_dev->devfn + offset;
1257	for (index = 0; index < efx->vf_count; ++index) {
1258		vf = nic_data->vf + index;
1259
1260		/* Reserve buffer entries */
1261		vf->buftbl_base = buftbl_base;
1262		buftbl_base += EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx);
1263
1264		vf->pci_rid = devfn;
1265		snprintf(vf->pci_name, sizeof(vf->pci_name),
1266			 "%04x:%02x:%02x.%d",
1267			 pci_domain_nr(pci_dev->bus), pci_dev->bus->number,
1268			 PCI_SLOT(devfn), PCI_FUNC(devfn));
1269
1270		rc = efx_nic_alloc_buffer(efx, &vf->buf, EFX_PAGE_SIZE,
1271					  GFP_KERNEL);
1272		if (rc)
1273			goto fail;
1274
1275		devfn += stride;
1276	}
1277
1278	return 0;
1279
1280fail:
1281	efx_siena_sriov_vfs_fini(efx);
1282	return rc;
1283}
1284
1285int efx_siena_sriov_init(struct efx_nic *efx)
1286{
1287	struct net_device *net_dev = efx->net_dev;
1288	struct siena_nic_data *nic_data = efx->nic_data;
1289	struct vfdi_status *vfdi_status;
1290	int rc;
1291
1292	/* Ensure there's room for vf_channel */
1293	BUILD_BUG_ON(EFX_MAX_CHANNELS + 1 >= EFX_VI_BASE);
1294	/* Ensure that VI_BASE is aligned on VI_SCALE */
1295	BUILD_BUG_ON(EFX_VI_BASE & ((1 << EFX_VI_SCALE_MAX) - 1));
1296
1297	if (efx->vf_count == 0)
1298		return 0;
1299
1300	rc = efx_siena_sriov_cmd(efx, true, NULL, NULL);
1301	if (rc)
1302		goto fail_cmd;
1303
1304	rc = efx_nic_alloc_buffer(efx, &nic_data->vfdi_status,
1305				  sizeof(*vfdi_status), GFP_KERNEL);
1306	if (rc)
1307		goto fail_status;
1308	vfdi_status = nic_data->vfdi_status.addr;
1309	memset(vfdi_status, 0, sizeof(*vfdi_status));
1310	vfdi_status->version = 1;
1311	vfdi_status->length = sizeof(*vfdi_status);
1312	vfdi_status->max_tx_channels = vf_max_tx_channels;
1313	vfdi_status->vi_scale = efx->vi_scale;
1314	vfdi_status->rss_rxq_count = efx->rss_spread;
1315	vfdi_status->peer_count = 1 + efx->vf_count;
1316	vfdi_status->timer_quantum_ns = efx->timer_quantum_ns;
1317
1318	rc = efx_siena_sriov_vf_alloc(efx);
1319	if (rc)
1320		goto fail_alloc;
1321
1322	mutex_init(&nic_data->local_lock);
1323	INIT_WORK(&nic_data->peer_work, efx_siena_sriov_peer_work);
1324	INIT_LIST_HEAD(&nic_data->local_addr_list);
1325	INIT_LIST_HEAD(&nic_data->local_page_list);
1326
1327	rc = efx_siena_sriov_vfs_init(efx);
1328	if (rc)
1329		goto fail_vfs;
1330
1331	rtnl_lock();
1332	ether_addr_copy(vfdi_status->peers[0].mac_addr, net_dev->dev_addr);
1333	efx->vf_init_count = efx->vf_count;
1334	rtnl_unlock();
1335
1336	efx_siena_sriov_usrev(efx, true);
1337
1338	/* At this point we must be ready to accept VFDI requests */
1339
1340	rc = pci_enable_sriov(efx->pci_dev, efx->vf_count);
1341	if (rc)
1342		goto fail_pci;
1343
1344	netif_info(efx, probe, net_dev,
1345		   "enabled SR-IOV for %d VFs, %d VI per VF\n",
1346		   efx->vf_count, efx_vf_size(efx));
1347	return 0;
1348
1349fail_pci:
1350	efx_siena_sriov_usrev(efx, false);
1351	rtnl_lock();
1352	efx->vf_init_count = 0;
1353	rtnl_unlock();
1354	efx_siena_sriov_vfs_fini(efx);
1355fail_vfs:
1356	cancel_work_sync(&nic_data->peer_work);
1357	efx_siena_sriov_free_local(efx);
1358	kfree(nic_data->vf);
1359fail_alloc:
1360	efx_nic_free_buffer(efx, &nic_data->vfdi_status);
1361fail_status:
1362	efx_siena_sriov_cmd(efx, false, NULL, NULL);
1363fail_cmd:
1364	return rc;
1365}
1366
1367void efx_siena_sriov_fini(struct efx_nic *efx)
1368{
1369	struct siena_vf *vf;
1370	unsigned int pos;
1371	struct siena_nic_data *nic_data = efx->nic_data;
1372
1373	if (efx->vf_init_count == 0)
1374		return;
1375
1376	/* Disable all interfaces to reconfiguration */
1377	BUG_ON(nic_data->vfdi_channel->enabled);
1378	efx_siena_sriov_usrev(efx, false);
1379	rtnl_lock();
1380	efx->vf_init_count = 0;
1381	rtnl_unlock();
1382
1383	/* Flush all reconfiguration work */
1384	for (pos = 0; pos < efx->vf_count; ++pos) {
1385		vf = nic_data->vf + pos;
1386		cancel_work_sync(&vf->req);
1387		cancel_work_sync(&vf->reset_work);
1388	}
1389	cancel_work_sync(&nic_data->peer_work);
1390
1391	pci_disable_sriov(efx->pci_dev);
1392
1393	/* Tear down back-end state */
1394	efx_siena_sriov_vfs_fini(efx);
1395	efx_siena_sriov_free_local(efx);
1396	kfree(nic_data->vf);
1397	efx_nic_free_buffer(efx, &nic_data->vfdi_status);
1398	efx_siena_sriov_cmd(efx, false, NULL, NULL);
1399}
1400
1401void efx_siena_sriov_event(struct efx_channel *channel, efx_qword_t *event)
1402{
1403	struct efx_nic *efx = channel->efx;
1404	struct siena_vf *vf;
1405	unsigned qid, seq, type, data;
1406
1407	qid = EFX_QWORD_FIELD(*event, FSF_CZ_USER_QID);
1408
1409	/* USR_EV_REG_VALUE is dword0, so access the VFDI_EV fields directly */
1410	BUILD_BUG_ON(FSF_CZ_USER_EV_REG_VALUE_LBN != 0);
1411	seq = EFX_QWORD_FIELD(*event, VFDI_EV_SEQ);
1412	type = EFX_QWORD_FIELD(*event, VFDI_EV_TYPE);
1413	data = EFX_QWORD_FIELD(*event, VFDI_EV_DATA);
1414
1415	netif_vdbg(efx, hw, efx->net_dev,
1416		   "USR_EV event from qid %d seq 0x%x type %d data 0x%x\n",
1417		   qid, seq, type, data);
1418
1419	if (map_vi_index(efx, qid, &vf, NULL))
1420		return;
1421	if (vf->busy)
1422		goto error;
1423
1424	if (type == VFDI_EV_TYPE_REQ_WORD0) {
1425		/* Resynchronise */
1426		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1427		vf->req_seqno = seq + 1;
1428		vf->req_addr = 0;
1429	} else if (seq != (vf->req_seqno++ & 0xff) || type != vf->req_type)
1430		goto error;
1431
1432	switch (vf->req_type) {
1433	case VFDI_EV_TYPE_REQ_WORD0:
1434	case VFDI_EV_TYPE_REQ_WORD1:
1435	case VFDI_EV_TYPE_REQ_WORD2:
1436		vf->req_addr |= (u64)data << (vf->req_type << 4);
1437		++vf->req_type;
1438		return;
1439
1440	case VFDI_EV_TYPE_REQ_WORD3:
1441		vf->req_addr |= (u64)data << 48;
1442		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1443		vf->busy = true;
1444		queue_work(vfdi_workqueue, &vf->req);
1445		return;
1446	}
1447
1448error:
1449	if (net_ratelimit())
1450		netif_err(efx, hw, efx->net_dev,
1451			  "ERROR: Screaming VFDI request from %s\n",
1452			  vf->pci_name);
1453	/* Reset the request and sequence number */
1454	vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1455	vf->req_seqno = seq + 1;
1456}
1457
1458void efx_siena_sriov_flr(struct efx_nic *efx, unsigned vf_i)
1459{
1460	struct siena_nic_data *nic_data = efx->nic_data;
1461	struct siena_vf *vf;
1462
1463	if (vf_i > efx->vf_init_count)
1464		return;
1465	vf = nic_data->vf + vf_i;
1466	netif_info(efx, hw, efx->net_dev,
1467		   "FLR on VF %s\n", vf->pci_name);
1468
1469	vf->status_addr = 0;
1470	efx_vfdi_remove_all_filters(vf);
1471	efx_vfdi_flush_clear(vf);
1472
1473	vf->evq0_count = 0;
1474}
1475
1476int efx_siena_sriov_mac_address_changed(struct efx_nic *efx)
1477{
1478	struct siena_nic_data *nic_data = efx->nic_data;
1479	struct vfdi_status *vfdi_status = nic_data->vfdi_status.addr;
1480
1481	if (!efx->vf_init_count)
1482		return 0;
1483	ether_addr_copy(vfdi_status->peers[0].mac_addr,
1484			efx->net_dev->dev_addr);
1485	queue_work(vfdi_workqueue, &nic_data->peer_work);
1486
1487	return 0;
1488}
1489
1490void efx_siena_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1491{
1492	struct siena_vf *vf;
1493	unsigned queue, qid;
1494
1495	queue = EFX_QWORD_FIELD(*event,  FSF_AZ_DRIVER_EV_SUBDATA);
1496	if (map_vi_index(efx, queue, &vf, &qid))
1497		return;
1498	/* Ignore flush completions triggered by an FLR */
1499	if (!test_bit(qid, vf->txq_mask))
1500		return;
1501
1502	__clear_bit(qid, vf->txq_mask);
1503	--vf->txq_count;
1504
1505	if (efx_vfdi_flush_wake(vf))
1506		wake_up(&vf->flush_waitq);
1507}
1508
1509void efx_siena_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1510{
1511	struct siena_vf *vf;
1512	unsigned ev_failed, queue, qid;
1513
1514	queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1515	ev_failed = EFX_QWORD_FIELD(*event,
1516				    FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1517	if (map_vi_index(efx, queue, &vf, &qid))
1518		return;
1519	if (!test_bit(qid, vf->rxq_mask))
1520		return;
1521
1522	if (ev_failed) {
1523		set_bit(qid, vf->rxq_retry_mask);
1524		atomic_inc(&vf->rxq_retry_count);
1525	} else {
1526		__clear_bit(qid, vf->rxq_mask);
1527		--vf->rxq_count;
1528	}
1529	if (efx_vfdi_flush_wake(vf))
1530		wake_up(&vf->flush_waitq);
1531}
1532
1533/* Called from napi. Schedule the reset work item */
1534void efx_siena_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq)
1535{
1536	struct siena_vf *vf;
1537	unsigned int rel;
1538
1539	if (map_vi_index(efx, dmaq, &vf, &rel))
1540		return;
1541
1542	if (net_ratelimit())
1543		netif_err(efx, hw, efx->net_dev,
1544			  "VF %d DMA Q %d reports descriptor fetch error.\n",
1545			  vf->index, rel);
1546	queue_work(vfdi_workqueue, &vf->reset_work);
1547}
1548
1549/* Reset all VFs */
1550void efx_siena_sriov_reset(struct efx_nic *efx)
1551{
1552	struct siena_nic_data *nic_data = efx->nic_data;
1553	unsigned int vf_i;
1554	struct efx_buffer buf;
1555	struct siena_vf *vf;
1556
1557	ASSERT_RTNL();
1558
1559	if (efx->vf_init_count == 0)
1560		return;
1561
1562	efx_siena_sriov_usrev(efx, true);
1563	(void)efx_siena_sriov_cmd(efx, true, NULL, NULL);
1564
1565	if (efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO))
1566		return;
1567
1568	for (vf_i = 0; vf_i < efx->vf_init_count; ++vf_i) {
1569		vf = nic_data->vf + vf_i;
1570		efx_siena_sriov_reset_vf(vf, &buf);
1571	}
1572
1573	efx_nic_free_buffer(efx, &buf);
1574}
1575
1576int efx_init_sriov(void)
1577{
1578	/* A single threaded workqueue is sufficient. efx_siena_sriov_vfdi() and
1579	 * efx_siena_sriov_peer_work() spend almost all their time sleeping for
1580	 * MCDI to complete anyway
1581	 */
1582	vfdi_workqueue = create_singlethread_workqueue("sfc_vfdi");
1583	if (!vfdi_workqueue)
1584		return -ENOMEM;
1585	return 0;
1586}
1587
1588void efx_fini_sriov(void)
1589{
1590	destroy_workqueue(vfdi_workqueue);
1591}
1592
1593int efx_siena_sriov_set_vf_mac(struct efx_nic *efx, int vf_i, u8 *mac)
1594{
1595	struct siena_nic_data *nic_data = efx->nic_data;
1596	struct siena_vf *vf;
1597
1598	if (vf_i >= efx->vf_init_count)
1599		return -EINVAL;
1600	vf = nic_data->vf + vf_i;
1601
1602	mutex_lock(&vf->status_lock);
1603	ether_addr_copy(vf->addr.mac_addr, mac);
1604	__efx_siena_sriov_update_vf_addr(vf);
1605	mutex_unlock(&vf->status_lock);
1606
1607	return 0;
1608}
1609
1610int efx_siena_sriov_set_vf_vlan(struct efx_nic *efx, int vf_i,
1611				u16 vlan, u8 qos)
1612{
1613	struct siena_nic_data *nic_data = efx->nic_data;
1614	struct siena_vf *vf;
1615	u16 tci;
1616
1617	if (vf_i >= efx->vf_init_count)
1618		return -EINVAL;
1619	vf = nic_data->vf + vf_i;
1620
1621	mutex_lock(&vf->status_lock);
1622	tci = (vlan & VLAN_VID_MASK) | ((qos & 0x7) << VLAN_PRIO_SHIFT);
1623	vf->addr.tci = htons(tci);
1624	__efx_siena_sriov_update_vf_addr(vf);
1625	mutex_unlock(&vf->status_lock);
1626
1627	return 0;
1628}
1629
1630int efx_siena_sriov_set_vf_spoofchk(struct efx_nic *efx, int vf_i,
1631				    bool spoofchk)
1632{
1633	struct siena_nic_data *nic_data = efx->nic_data;
1634	struct siena_vf *vf;
1635	int rc;
1636
1637	if (vf_i >= efx->vf_init_count)
1638		return -EINVAL;
1639	vf = nic_data->vf + vf_i;
1640
1641	mutex_lock(&vf->txq_lock);
1642	if (vf->txq_count == 0) {
1643		vf->tx_filter_mode =
1644			spoofchk ? VF_TX_FILTER_ON : VF_TX_FILTER_OFF;
1645		rc = 0;
1646	} else {
1647		/* This cannot be changed while TX queues are running */
1648		rc = -EBUSY;
1649	}
1650	mutex_unlock(&vf->txq_lock);
1651	return rc;
1652}
1653
1654int efx_siena_sriov_get_vf_config(struct efx_nic *efx, int vf_i,
1655				  struct ifla_vf_info *ivi)
1656{
1657	struct siena_nic_data *nic_data = efx->nic_data;
1658	struct siena_vf *vf;
1659	u16 tci;
1660
1661	if (vf_i >= efx->vf_init_count)
1662		return -EINVAL;
1663	vf = nic_data->vf + vf_i;
1664
1665	ivi->vf = vf_i;
1666	ether_addr_copy(ivi->mac, vf->addr.mac_addr);
1667	ivi->max_tx_rate = 0;
1668	ivi->min_tx_rate = 0;
1669	tci = ntohs(vf->addr.tci);
1670	ivi->vlan = tci & VLAN_VID_MASK;
1671	ivi->qos = (tci >> VLAN_PRIO_SHIFT) & 0x7;
1672	ivi->spoofchk = vf->tx_filter_mode == VF_TX_FILTER_ON;
1673
1674	return 0;
1675}
1676
1677bool efx_siena_sriov_wanted(struct efx_nic *efx)
1678{
1679	return efx->vf_count != 0;
1680}
1681
1682int efx_siena_sriov_configure(struct efx_nic *efx, int num_vfs)
1683{
1684	return 0;
1685}