Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/****************************************************************************
   2 * Driver for Solarflare Solarstorm network controllers and boards
   3 * Copyright 2010-2011 Solarflare Communications Inc.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms of the GNU General Public License version 2 as published
   7 * by the Free Software Foundation, incorporated herein by reference.
   8 */
   9#include <linux/pci.h>
  10#include <linux/module.h>
  11#include "net_driver.h"
  12#include "efx.h"
  13#include "nic.h"
  14#include "io.h"
  15#include "mcdi.h"
  16#include "filter.h"
  17#include "mcdi_pcol.h"
  18#include "regs.h"
  19#include "vfdi.h"
  20
  21/* Number of longs required to track all the VIs in a VF */
  22#define VI_MASK_LENGTH BITS_TO_LONGS(1 << EFX_VI_SCALE_MAX)
  23
  24/**
  25 * enum efx_vf_tx_filter_mode - TX MAC filtering behaviour
  26 * @VF_TX_FILTER_OFF: Disabled
  27 * @VF_TX_FILTER_AUTO: Enabled if MAC address assigned to VF and only
  28 *	2 TX queues allowed per VF.
  29 * @VF_TX_FILTER_ON: Enabled
  30 */
  31enum efx_vf_tx_filter_mode {
  32	VF_TX_FILTER_OFF,
  33	VF_TX_FILTER_AUTO,
  34	VF_TX_FILTER_ON,
  35};
  36
  37/**
  38 * struct efx_vf - Back-end resource and protocol state for a PCI VF
  39 * @efx: The Efx NIC owning this VF
  40 * @pci_rid: The PCI requester ID for this VF
  41 * @pci_name: The PCI name (formatted address) of this VF
  42 * @index: Index of VF within its port and PF.
  43 * @req: VFDI incoming request work item. Incoming USR_EV events are received
  44 *	by the NAPI handler, but must be handled by executing MCDI requests
  45 *	inside a work item.
  46 * @req_addr: VFDI incoming request DMA address (in VF's PCI address space).
  47 * @req_type: Expected next incoming (from VF) %VFDI_EV_TYPE member.
  48 * @req_seqno: Expected next incoming (from VF) %VFDI_EV_SEQ member.
  49 * @msg_seqno: Next %VFDI_EV_SEQ member to reply to VF. Protected by
  50 *	@status_lock
  51 * @busy: VFDI request queued to be processed or being processed. Receiving
  52 *	a VFDI request when @busy is set is an error condition.
  53 * @buf: Incoming VFDI requests are DMA from the VF into this buffer.
  54 * @buftbl_base: Buffer table entries for this VF start at this index.
  55 * @rx_filtering: Receive filtering has been requested by the VF driver.
  56 * @rx_filter_flags: The flags sent in the %VFDI_OP_INSERT_FILTER request.
  57 * @rx_filter_qid: VF relative qid for RX filter requested by VF.
  58 * @rx_filter_id: Receive MAC filter ID. Only one filter per VF is supported.
  59 * @tx_filter_mode: Transmit MAC filtering mode.
  60 * @tx_filter_id: Transmit MAC filter ID.
  61 * @addr: The MAC address and outer vlan tag of the VF.
  62 * @status_addr: VF DMA address of page for &struct vfdi_status updates.
  63 * @status_lock: Mutex protecting @msg_seqno, @status_addr, @addr,
  64 *	@peer_page_addrs and @peer_page_count from simultaneous
  65 *	updates by the VM and consumption by
  66 *	efx_sriov_update_vf_addr()
  67 * @peer_page_addrs: Pointer to an array of guest pages for local addresses.
  68 * @peer_page_count: Number of entries in @peer_page_count.
  69 * @evq0_addrs: Array of guest pages backing evq0.
  70 * @evq0_count: Number of entries in @evq0_addrs.
  71 * @flush_waitq: wait queue used by %VFDI_OP_FINI_ALL_QUEUES handler
  72 *	to wait for flush completions.
  73 * @txq_lock: Mutex for TX queue allocation.
  74 * @txq_mask: Mask of initialized transmit queues.
  75 * @txq_count: Number of initialized transmit queues.
  76 * @rxq_mask: Mask of initialized receive queues.
  77 * @rxq_count: Number of initialized receive queues.
  78 * @rxq_retry_mask: Mask or receive queues that need to be flushed again
  79 *	due to flush failure.
  80 * @rxq_retry_count: Number of receive queues in @rxq_retry_mask.
  81 * @reset_work: Work item to schedule a VF reset.
  82 */
  83struct efx_vf {
  84	struct efx_nic *efx;
  85	unsigned int pci_rid;
  86	char pci_name[13]; /* dddd:bb:dd.f */
  87	unsigned int index;
  88	struct work_struct req;
  89	u64 req_addr;
  90	int req_type;
  91	unsigned req_seqno;
  92	unsigned msg_seqno;
  93	bool busy;
  94	struct efx_buffer buf;
  95	unsigned buftbl_base;
  96	bool rx_filtering;
  97	enum efx_filter_flags rx_filter_flags;
  98	unsigned rx_filter_qid;
  99	int rx_filter_id;
 100	enum efx_vf_tx_filter_mode tx_filter_mode;
 101	int tx_filter_id;
 102	struct vfdi_endpoint addr;
 103	u64 status_addr;
 104	struct mutex status_lock;
 105	u64 *peer_page_addrs;
 106	unsigned peer_page_count;
 107	u64 evq0_addrs[EFX_MAX_VF_EVQ_SIZE * sizeof(efx_qword_t) /
 108		       EFX_BUF_SIZE];
 109	unsigned evq0_count;
 110	wait_queue_head_t flush_waitq;
 111	struct mutex txq_lock;
 112	unsigned long txq_mask[VI_MASK_LENGTH];
 113	unsigned txq_count;
 114	unsigned long rxq_mask[VI_MASK_LENGTH];
 115	unsigned rxq_count;
 116	unsigned long rxq_retry_mask[VI_MASK_LENGTH];
 117	atomic_t rxq_retry_count;
 118	struct work_struct reset_work;
 119};
 120
 121struct efx_memcpy_req {
 122	unsigned int from_rid;
 123	void *from_buf;
 124	u64 from_addr;
 125	unsigned int to_rid;
 126	u64 to_addr;
 127	unsigned length;
 128};
 129
 130/**
 131 * struct efx_local_addr - A MAC address on the vswitch without a VF.
 132 *
 133 * Siena does not have a switch, so VFs can't transmit data to each
 134 * other. Instead the VFs must be made aware of the local addresses
 135 * on the vswitch, so that they can arrange for an alternative
 136 * software datapath to be used.
 137 *
 138 * @link: List head for insertion into efx->local_addr_list.
 139 * @addr: Ethernet address
 140 */
 141struct efx_local_addr {
 142	struct list_head link;
 143	u8 addr[ETH_ALEN];
 144};
 145
 146/**
 147 * struct efx_endpoint_page - Page of vfdi_endpoint structures
 148 *
 149 * @link: List head for insertion into efx->local_page_list.
 150 * @ptr: Pointer to page.
 151 * @addr: DMA address of page.
 152 */
 153struct efx_endpoint_page {
 154	struct list_head link;
 155	void *ptr;
 156	dma_addr_t addr;
 157};
 158
 159/* Buffer table entries are reserved txq0,rxq0,evq0,txq1,rxq1,evq1 */
 160#define EFX_BUFTBL_TXQ_BASE(_vf, _qid)					\
 161	((_vf)->buftbl_base + EFX_VF_BUFTBL_PER_VI * (_qid))
 162#define EFX_BUFTBL_RXQ_BASE(_vf, _qid)					\
 163	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
 164	 (EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
 165#define EFX_BUFTBL_EVQ_BASE(_vf, _qid)					\
 166	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
 167	 (2 * EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
 168
 169#define EFX_FIELD_MASK(_field)			\
 170	((1 << _field ## _WIDTH) - 1)
 171
 172/* VFs can only use this many transmit channels */
 173static unsigned int vf_max_tx_channels = 2;
 174module_param(vf_max_tx_channels, uint, 0444);
 175MODULE_PARM_DESC(vf_max_tx_channels,
 176		 "Limit the number of TX channels VFs can use");
 177
 178static int max_vfs = -1;
 179module_param(max_vfs, int, 0444);
 180MODULE_PARM_DESC(max_vfs,
 181		 "Reduce the number of VFs initialized by the driver");
 182
 183/* Workqueue used by VFDI communication.  We can't use the global
 184 * workqueue because it may be running the VF driver's probe()
 185 * routine, which will be blocked there waiting for a VFDI response.
 186 */
 187static struct workqueue_struct *vfdi_workqueue;
 188
 189static unsigned abs_index(struct efx_vf *vf, unsigned index)
 190{
 191	return EFX_VI_BASE + vf->index * efx_vf_size(vf->efx) + index;
 192}
 193
 194static int efx_sriov_cmd(struct efx_nic *efx, bool enable,
 195			 unsigned *vi_scale_out, unsigned *vf_total_out)
 196{
 197	u8 inbuf[MC_CMD_SRIOV_IN_LEN];
 198	u8 outbuf[MC_CMD_SRIOV_OUT_LEN];
 199	unsigned vi_scale, vf_total;
 200	size_t outlen;
 201	int rc;
 202
 203	MCDI_SET_DWORD(inbuf, SRIOV_IN_ENABLE, enable ? 1 : 0);
 204	MCDI_SET_DWORD(inbuf, SRIOV_IN_VI_BASE, EFX_VI_BASE);
 205	MCDI_SET_DWORD(inbuf, SRIOV_IN_VF_COUNT, efx->vf_count);
 206
 207	rc = efx_mcdi_rpc(efx, MC_CMD_SRIOV, inbuf, MC_CMD_SRIOV_IN_LEN,
 208			  outbuf, MC_CMD_SRIOV_OUT_LEN, &outlen);
 209	if (rc)
 210		return rc;
 211	if (outlen < MC_CMD_SRIOV_OUT_LEN)
 212		return -EIO;
 213
 214	vf_total = MCDI_DWORD(outbuf, SRIOV_OUT_VF_TOTAL);
 215	vi_scale = MCDI_DWORD(outbuf, SRIOV_OUT_VI_SCALE);
 216	if (vi_scale > EFX_VI_SCALE_MAX)
 217		return -EOPNOTSUPP;
 218
 219	if (vi_scale_out)
 220		*vi_scale_out = vi_scale;
 221	if (vf_total_out)
 222		*vf_total_out = vf_total;
 223
 224	return 0;
 225}
 226
 227static void efx_sriov_usrev(struct efx_nic *efx, bool enabled)
 228{
 229	efx_oword_t reg;
 230
 231	EFX_POPULATE_OWORD_2(reg,
 232			     FRF_CZ_USREV_DIS, enabled ? 0 : 1,
 233			     FRF_CZ_DFLT_EVQ, efx->vfdi_channel->channel);
 234	efx_writeo(efx, &reg, FR_CZ_USR_EV_CFG);
 235}
 236
 237static int efx_sriov_memcpy(struct efx_nic *efx, struct efx_memcpy_req *req,
 238			    unsigned int count)
 239{
 240	u8 *inbuf, *record;
 241	unsigned int used;
 242	u32 from_rid, from_hi, from_lo;
 243	int rc;
 244
 245	mb();	/* Finish writing source/reading dest before DMA starts */
 246
 247	used = MC_CMD_MEMCPY_IN_LEN(count);
 248	if (WARN_ON(used > MCDI_CTL_SDU_LEN_MAX))
 249		return -ENOBUFS;
 250
 251	/* Allocate room for the largest request */
 252	inbuf = kzalloc(MCDI_CTL_SDU_LEN_MAX, GFP_KERNEL);
 253	if (inbuf == NULL)
 254		return -ENOMEM;
 255
 256	record = inbuf;
 257	MCDI_SET_DWORD(record, MEMCPY_IN_RECORD, count);
 258	while (count-- > 0) {
 259		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_RID,
 260			       req->to_rid);
 261		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR_LO,
 262			       (u32)req->to_addr);
 263		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR_HI,
 264			       (u32)(req->to_addr >> 32));
 265		if (req->from_buf == NULL) {
 266			from_rid = req->from_rid;
 267			from_lo = (u32)req->from_addr;
 268			from_hi = (u32)(req->from_addr >> 32);
 269		} else {
 270			if (WARN_ON(used + req->length > MCDI_CTL_SDU_LEN_MAX)) {
 271				rc = -ENOBUFS;
 272				goto out;
 273			}
 274
 275			from_rid = MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE;
 276			from_lo = used;
 277			from_hi = 0;
 278			memcpy(inbuf + used, req->from_buf, req->length);
 279			used += req->length;
 280		}
 281
 282		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_RID, from_rid);
 283		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR_LO,
 284			       from_lo);
 285		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR_HI,
 286			       from_hi);
 287		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_LENGTH,
 288			       req->length);
 289
 290		++req;
 291		record += MC_CMD_MEMCPY_IN_RECORD_LEN;
 292	}
 293
 294	rc = efx_mcdi_rpc(efx, MC_CMD_MEMCPY, inbuf, used, NULL, 0, NULL);
 295out:
 296	kfree(inbuf);
 297
 298	mb();	/* Don't write source/read dest before DMA is complete */
 299
 300	return rc;
 301}
 302
 303/* The TX filter is entirely controlled by this driver, and is modified
 304 * underneath the feet of the VF
 305 */
 306static void efx_sriov_reset_tx_filter(struct efx_vf *vf)
 307{
 308	struct efx_nic *efx = vf->efx;
 309	struct efx_filter_spec filter;
 310	u16 vlan;
 311	int rc;
 312
 313	if (vf->tx_filter_id != -1) {
 314		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
 315					  vf->tx_filter_id);
 316		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s tx filter %d\n",
 317			  vf->pci_name, vf->tx_filter_id);
 318		vf->tx_filter_id = -1;
 319	}
 320
 321	if (is_zero_ether_addr(vf->addr.mac_addr))
 322		return;
 323
 324	/* Turn on TX filtering automatically if not explicitly
 325	 * enabled or disabled.
 326	 */
 327	if (vf->tx_filter_mode == VF_TX_FILTER_AUTO && vf_max_tx_channels <= 2)
 328		vf->tx_filter_mode = VF_TX_FILTER_ON;
 329
 330	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
 331	efx_filter_init_tx(&filter, abs_index(vf, 0));
 332	rc = efx_filter_set_eth_local(&filter,
 333				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
 334				      vf->addr.mac_addr);
 335	BUG_ON(rc);
 336
 337	rc = efx_filter_insert_filter(efx, &filter, true);
 338	if (rc < 0) {
 339		netif_warn(efx, hw, efx->net_dev,
 340			   "Unable to migrate tx filter for vf %s\n",
 341			   vf->pci_name);
 342	} else {
 343		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s tx filter %d\n",
 344			  vf->pci_name, rc);
 345		vf->tx_filter_id = rc;
 346	}
 347}
 348
 349/* The RX filter is managed here on behalf of the VF driver */
 350static void efx_sriov_reset_rx_filter(struct efx_vf *vf)
 351{
 352	struct efx_nic *efx = vf->efx;
 353	struct efx_filter_spec filter;
 354	u16 vlan;
 355	int rc;
 356
 357	if (vf->rx_filter_id != -1) {
 358		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
 359					  vf->rx_filter_id);
 360		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s rx filter %d\n",
 361			  vf->pci_name, vf->rx_filter_id);
 362		vf->rx_filter_id = -1;
 363	}
 364
 365	if (!vf->rx_filtering || is_zero_ether_addr(vf->addr.mac_addr))
 366		return;
 367
 368	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
 369	efx_filter_init_rx(&filter, EFX_FILTER_PRI_REQUIRED,
 370			   vf->rx_filter_flags,
 371			   abs_index(vf, vf->rx_filter_qid));
 372	rc = efx_filter_set_eth_local(&filter,
 373				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
 374				      vf->addr.mac_addr);
 375	BUG_ON(rc);
 376
 377	rc = efx_filter_insert_filter(efx, &filter, true);
 378	if (rc < 0) {
 379		netif_warn(efx, hw, efx->net_dev,
 380			   "Unable to insert rx filter for vf %s\n",
 381			   vf->pci_name);
 382	} else {
 383		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s rx filter %d\n",
 384			  vf->pci_name, rc);
 385		vf->rx_filter_id = rc;
 386	}
 387}
 388
 389static void __efx_sriov_update_vf_addr(struct efx_vf *vf)
 390{
 391	efx_sriov_reset_tx_filter(vf);
 392	efx_sriov_reset_rx_filter(vf);
 393	queue_work(vfdi_workqueue, &vf->efx->peer_work);
 394}
 395
 396/* Push the peer list to this VF. The caller must hold status_lock to interlock
 397 * with VFDI requests, and they must be serialised against manipulation of
 398 * local_page_list, either by acquiring local_lock or by running from
 399 * efx_sriov_peer_work()
 400 */
 401static void __efx_sriov_push_vf_status(struct efx_vf *vf)
 402{
 403	struct efx_nic *efx = vf->efx;
 404	struct vfdi_status *status = efx->vfdi_status.addr;
 405	struct efx_memcpy_req copy[4];
 406	struct efx_endpoint_page *epp;
 407	unsigned int pos, count;
 408	unsigned data_offset;
 409	efx_qword_t event;
 410
 411	WARN_ON(!mutex_is_locked(&vf->status_lock));
 412	WARN_ON(!vf->status_addr);
 413
 414	status->local = vf->addr;
 415	status->generation_end = ++status->generation_start;
 416
 417	memset(copy, '\0', sizeof(copy));
 418	/* Write generation_start */
 419	copy[0].from_buf = &status->generation_start;
 420	copy[0].to_rid = vf->pci_rid;
 421	copy[0].to_addr = vf->status_addr + offsetof(struct vfdi_status,
 422						     generation_start);
 423	copy[0].length = sizeof(status->generation_start);
 424	/* DMA the rest of the structure (excluding the generations). This
 425	 * assumes that the non-generation portion of vfdi_status is in
 426	 * one chunk starting at the version member.
 427	 */
 428	data_offset = offsetof(struct vfdi_status, version);
 429	copy[1].from_rid = efx->pci_dev->devfn;
 430	copy[1].from_addr = efx->vfdi_status.dma_addr + data_offset;
 431	copy[1].to_rid = vf->pci_rid;
 432	copy[1].to_addr = vf->status_addr + data_offset;
 433	copy[1].length =  status->length - data_offset;
 434
 435	/* Copy the peer pages */
 436	pos = 2;
 437	count = 0;
 438	list_for_each_entry(epp, &efx->local_page_list, link) {
 439		if (count == vf->peer_page_count) {
 440			/* The VF driver will know they need to provide more
 441			 * pages because peer_addr_count is too large.
 442			 */
 443			break;
 444		}
 445		copy[pos].from_buf = NULL;
 446		copy[pos].from_rid = efx->pci_dev->devfn;
 447		copy[pos].from_addr = epp->addr;
 448		copy[pos].to_rid = vf->pci_rid;
 449		copy[pos].to_addr = vf->peer_page_addrs[count];
 450		copy[pos].length = EFX_PAGE_SIZE;
 451
 452		if (++pos == ARRAY_SIZE(copy)) {
 453			efx_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
 454			pos = 0;
 455		}
 456		++count;
 457	}
 458
 459	/* Write generation_end */
 460	copy[pos].from_buf = &status->generation_end;
 461	copy[pos].to_rid = vf->pci_rid;
 462	copy[pos].to_addr = vf->status_addr + offsetof(struct vfdi_status,
 463						       generation_end);
 464	copy[pos].length = sizeof(status->generation_end);
 465	efx_sriov_memcpy(efx, copy, pos + 1);
 466
 467	/* Notify the guest */
 468	EFX_POPULATE_QWORD_3(event,
 469			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
 470			     VFDI_EV_SEQ, (vf->msg_seqno & 0xff),
 471			     VFDI_EV_TYPE, VFDI_EV_TYPE_STATUS);
 472	++vf->msg_seqno;
 473	efx_generate_event(efx, EFX_VI_BASE + vf->index * efx_vf_size(efx),
 474			      &event);
 475}
 476
 477static void efx_sriov_bufs(struct efx_nic *efx, unsigned offset,
 478			   u64 *addr, unsigned count)
 479{
 480	efx_qword_t buf;
 481	unsigned pos;
 482
 483	for (pos = 0; pos < count; ++pos) {
 484		EFX_POPULATE_QWORD_3(buf,
 485				     FRF_AZ_BUF_ADR_REGION, 0,
 486				     FRF_AZ_BUF_ADR_FBUF,
 487				     addr ? addr[pos] >> 12 : 0,
 488				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
 489		efx_sram_writeq(efx, efx->membase + FR_BZ_BUF_FULL_TBL,
 490				&buf, offset + pos);
 491	}
 492}
 493
 494static bool bad_vf_index(struct efx_nic *efx, unsigned index)
 495{
 496	return index >= efx_vf_size(efx);
 497}
 498
 499static bool bad_buf_count(unsigned buf_count, unsigned max_entry_count)
 500{
 501	unsigned max_buf_count = max_entry_count *
 502		sizeof(efx_qword_t) / EFX_BUF_SIZE;
 503
 504	return ((buf_count & (buf_count - 1)) || buf_count > max_buf_count);
 505}
 506
 507/* Check that VI specified by per-port index belongs to a VF.
 508 * Optionally set VF index and VI index within the VF.
 509 */
 510static bool map_vi_index(struct efx_nic *efx, unsigned abs_index,
 511			 struct efx_vf **vf_out, unsigned *rel_index_out)
 512{
 513	unsigned vf_i;
 514
 515	if (abs_index < EFX_VI_BASE)
 516		return true;
 517	vf_i = (abs_index - EFX_VI_BASE) / efx_vf_size(efx);
 518	if (vf_i >= efx->vf_init_count)
 519		return true;
 520
 521	if (vf_out)
 522		*vf_out = efx->vf + vf_i;
 523	if (rel_index_out)
 524		*rel_index_out = abs_index % efx_vf_size(efx);
 525	return false;
 526}
 527
 528static int efx_vfdi_init_evq(struct efx_vf *vf)
 529{
 530	struct efx_nic *efx = vf->efx;
 531	struct vfdi_req *req = vf->buf.addr;
 532	unsigned vf_evq = req->u.init_evq.index;
 533	unsigned buf_count = req->u.init_evq.buf_count;
 534	unsigned abs_evq = abs_index(vf, vf_evq);
 535	unsigned buftbl = EFX_BUFTBL_EVQ_BASE(vf, vf_evq);
 536	efx_oword_t reg;
 537
 538	if (bad_vf_index(efx, vf_evq) ||
 539	    bad_buf_count(buf_count, EFX_MAX_VF_EVQ_SIZE)) {
 540		if (net_ratelimit())
 541			netif_err(efx, hw, efx->net_dev,
 542				  "ERROR: Invalid INIT_EVQ from %s: evq %d bufs %d\n",
 543				  vf->pci_name, vf_evq, buf_count);
 544		return VFDI_RC_EINVAL;
 545	}
 546
 547	efx_sriov_bufs(efx, buftbl, req->u.init_evq.addr, buf_count);
 548
 549	EFX_POPULATE_OWORD_3(reg,
 550			     FRF_CZ_TIMER_Q_EN, 1,
 551			     FRF_CZ_HOST_NOTIFY_MODE, 0,
 552			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
 553	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
 554	EFX_POPULATE_OWORD_3(reg,
 555			     FRF_AZ_EVQ_EN, 1,
 556			     FRF_AZ_EVQ_SIZE, __ffs(buf_count),
 557			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
 558	efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
 559
 560	if (vf_evq == 0) {
 561		memcpy(vf->evq0_addrs, req->u.init_evq.addr,
 562		       buf_count * sizeof(u64));
 563		vf->evq0_count = buf_count;
 564	}
 565
 566	return VFDI_RC_SUCCESS;
 567}
 568
 569static int efx_vfdi_init_rxq(struct efx_vf *vf)
 570{
 571	struct efx_nic *efx = vf->efx;
 572	struct vfdi_req *req = vf->buf.addr;
 573	unsigned vf_rxq = req->u.init_rxq.index;
 574	unsigned vf_evq = req->u.init_rxq.evq;
 575	unsigned buf_count = req->u.init_rxq.buf_count;
 576	unsigned buftbl = EFX_BUFTBL_RXQ_BASE(vf, vf_rxq);
 577	unsigned label;
 578	efx_oword_t reg;
 579
 580	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_rxq) ||
 581	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
 582		if (net_ratelimit())
 583			netif_err(efx, hw, efx->net_dev,
 584				  "ERROR: Invalid INIT_RXQ from %s: rxq %d evq %d "
 585				  "buf_count %d\n", vf->pci_name, vf_rxq,
 586				  vf_evq, buf_count);
 587		return VFDI_RC_EINVAL;
 588	}
 589	if (__test_and_set_bit(req->u.init_rxq.index, vf->rxq_mask))
 590		++vf->rxq_count;
 591	efx_sriov_bufs(efx, buftbl, req->u.init_rxq.addr, buf_count);
 592
 593	label = req->u.init_rxq.label & EFX_FIELD_MASK(FRF_AZ_RX_DESCQ_LABEL);
 594	EFX_POPULATE_OWORD_6(reg,
 595			     FRF_AZ_RX_DESCQ_BUF_BASE_ID, buftbl,
 596			     FRF_AZ_RX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
 597			     FRF_AZ_RX_DESCQ_LABEL, label,
 598			     FRF_AZ_RX_DESCQ_SIZE, __ffs(buf_count),
 599			     FRF_AZ_RX_DESCQ_JUMBO,
 600			     !!(req->u.init_rxq.flags &
 601				VFDI_RXQ_FLAG_SCATTER_EN),
 602			     FRF_AZ_RX_DESCQ_EN, 1);
 603	efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
 604			 abs_index(vf, vf_rxq));
 605
 606	return VFDI_RC_SUCCESS;
 607}
 608
 609static int efx_vfdi_init_txq(struct efx_vf *vf)
 610{
 611	struct efx_nic *efx = vf->efx;
 612	struct vfdi_req *req = vf->buf.addr;
 613	unsigned vf_txq = req->u.init_txq.index;
 614	unsigned vf_evq = req->u.init_txq.evq;
 615	unsigned buf_count = req->u.init_txq.buf_count;
 616	unsigned buftbl = EFX_BUFTBL_TXQ_BASE(vf, vf_txq);
 617	unsigned label, eth_filt_en;
 618	efx_oword_t reg;
 619
 620	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_txq) ||
 621	    vf_txq >= vf_max_tx_channels ||
 622	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
 623		if (net_ratelimit())
 624			netif_err(efx, hw, efx->net_dev,
 625				  "ERROR: Invalid INIT_TXQ from %s: txq %d evq %d "
 626				  "buf_count %d\n", vf->pci_name, vf_txq,
 627				  vf_evq, buf_count);
 628		return VFDI_RC_EINVAL;
 629	}
 630
 631	mutex_lock(&vf->txq_lock);
 632	if (__test_and_set_bit(req->u.init_txq.index, vf->txq_mask))
 633		++vf->txq_count;
 634	mutex_unlock(&vf->txq_lock);
 635	efx_sriov_bufs(efx, buftbl, req->u.init_txq.addr, buf_count);
 636
 637	eth_filt_en = vf->tx_filter_mode == VF_TX_FILTER_ON;
 638
 639	label = req->u.init_txq.label & EFX_FIELD_MASK(FRF_AZ_TX_DESCQ_LABEL);
 640	EFX_POPULATE_OWORD_8(reg,
 641			     FRF_CZ_TX_DPT_Q_MASK_WIDTH, min(efx->vi_scale, 1U),
 642			     FRF_CZ_TX_DPT_ETH_FILT_EN, eth_filt_en,
 643			     FRF_AZ_TX_DESCQ_EN, 1,
 644			     FRF_AZ_TX_DESCQ_BUF_BASE_ID, buftbl,
 645			     FRF_AZ_TX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
 646			     FRF_AZ_TX_DESCQ_LABEL, label,
 647			     FRF_AZ_TX_DESCQ_SIZE, __ffs(buf_count),
 648			     FRF_BZ_TX_NON_IP_DROP_DIS, 1);
 649	efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
 650			 abs_index(vf, vf_txq));
 651
 652	return VFDI_RC_SUCCESS;
 653}
 654
 655/* Returns true when efx_vfdi_fini_all_queues should wake */
 656static bool efx_vfdi_flush_wake(struct efx_vf *vf)
 657{
 658	/* Ensure that all updates are visible to efx_vfdi_fini_all_queues() */
 659	smp_mb();
 660
 661	return (!vf->txq_count && !vf->rxq_count) ||
 662		atomic_read(&vf->rxq_retry_count);
 663}
 664
 665static void efx_vfdi_flush_clear(struct efx_vf *vf)
 666{
 667	memset(vf->txq_mask, 0, sizeof(vf->txq_mask));
 668	vf->txq_count = 0;
 669	memset(vf->rxq_mask, 0, sizeof(vf->rxq_mask));
 670	vf->rxq_count = 0;
 671	memset(vf->rxq_retry_mask, 0, sizeof(vf->rxq_retry_mask));
 672	atomic_set(&vf->rxq_retry_count, 0);
 673}
 674
 675static int efx_vfdi_fini_all_queues(struct efx_vf *vf)
 676{
 677	struct efx_nic *efx = vf->efx;
 678	efx_oword_t reg;
 679	unsigned count = efx_vf_size(efx);
 680	unsigned vf_offset = EFX_VI_BASE + vf->index * efx_vf_size(efx);
 681	unsigned timeout = HZ;
 682	unsigned index, rxqs_count;
 683	__le32 *rxqs;
 684	int rc;
 685
 686	rxqs = kmalloc(count * sizeof(*rxqs), GFP_KERNEL);
 687	if (rxqs == NULL)
 688		return VFDI_RC_ENOMEM;
 689
 690	rtnl_lock();
 691	if (efx->fc_disable++ == 0)
 692		efx_mcdi_set_mac(efx);
 693	rtnl_unlock();
 694
 695	/* Flush all the initialized queues */
 696	rxqs_count = 0;
 697	for (index = 0; index < count; ++index) {
 698		if (test_bit(index, vf->txq_mask)) {
 699			EFX_POPULATE_OWORD_2(reg,
 700					     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
 701					     FRF_AZ_TX_FLUSH_DESCQ,
 702					     vf_offset + index);
 703			efx_writeo(efx, &reg, FR_AZ_TX_FLUSH_DESCQ);
 704		}
 705		if (test_bit(index, vf->rxq_mask))
 706			rxqs[rxqs_count++] = cpu_to_le32(vf_offset + index);
 707	}
 708
 709	atomic_set(&vf->rxq_retry_count, 0);
 710	while (timeout && (vf->rxq_count || vf->txq_count)) {
 711		rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, (u8 *)rxqs,
 712				  rxqs_count * sizeof(*rxqs), NULL, 0, NULL);
 713		WARN_ON(rc < 0);
 714
 715		timeout = wait_event_timeout(vf->flush_waitq,
 716					     efx_vfdi_flush_wake(vf),
 717					     timeout);
 718		rxqs_count = 0;
 719		for (index = 0; index < count; ++index) {
 720			if (test_and_clear_bit(index, vf->rxq_retry_mask)) {
 721				atomic_dec(&vf->rxq_retry_count);
 722				rxqs[rxqs_count++] =
 723					cpu_to_le32(vf_offset + index);
 724			}
 725		}
 726	}
 727
 728	rtnl_lock();
 729	if (--efx->fc_disable == 0)
 730		efx_mcdi_set_mac(efx);
 731	rtnl_unlock();
 732
 733	/* Irrespective of success/failure, fini the queues */
 734	EFX_ZERO_OWORD(reg);
 735	for (index = 0; index < count; ++index) {
 736		efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
 737				 vf_offset + index);
 738		efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
 739				 vf_offset + index);
 740		efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL,
 741				 vf_offset + index);
 742		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL,
 743				 vf_offset + index);
 744	}
 745	efx_sriov_bufs(efx, vf->buftbl_base, NULL,
 746		       EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx));
 747	kfree(rxqs);
 748	efx_vfdi_flush_clear(vf);
 749
 750	vf->evq0_count = 0;
 751
 752	return timeout ? 0 : VFDI_RC_ETIMEDOUT;
 753}
 754
 755static int efx_vfdi_insert_filter(struct efx_vf *vf)
 756{
 757	struct efx_nic *efx = vf->efx;
 758	struct vfdi_req *req = vf->buf.addr;
 759	unsigned vf_rxq = req->u.mac_filter.rxq;
 760	unsigned flags;
 761
 762	if (bad_vf_index(efx, vf_rxq) || vf->rx_filtering) {
 763		if (net_ratelimit())
 764			netif_err(efx, hw, efx->net_dev,
 765				  "ERROR: Invalid INSERT_FILTER from %s: rxq %d "
 766				  "flags 0x%x\n", vf->pci_name, vf_rxq,
 767				  req->u.mac_filter.flags);
 768		return VFDI_RC_EINVAL;
 769	}
 770
 771	flags = 0;
 772	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_RSS)
 773		flags |= EFX_FILTER_FLAG_RX_RSS;
 774	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_SCATTER)
 775		flags |= EFX_FILTER_FLAG_RX_SCATTER;
 776	vf->rx_filter_flags = flags;
 777	vf->rx_filter_qid = vf_rxq;
 778	vf->rx_filtering = true;
 779
 780	efx_sriov_reset_rx_filter(vf);
 781	queue_work(vfdi_workqueue, &efx->peer_work);
 782
 783	return VFDI_RC_SUCCESS;
 784}
 785
 786static int efx_vfdi_remove_all_filters(struct efx_vf *vf)
 787{
 788	vf->rx_filtering = false;
 789	efx_sriov_reset_rx_filter(vf);
 790	queue_work(vfdi_workqueue, &vf->efx->peer_work);
 791
 792	return VFDI_RC_SUCCESS;
 793}
 794
 795static int efx_vfdi_set_status_page(struct efx_vf *vf)
 796{
 797	struct efx_nic *efx = vf->efx;
 798	struct vfdi_req *req = vf->buf.addr;
 799	u64 page_count = req->u.set_status_page.peer_page_count;
 800	u64 max_page_count =
 801		(EFX_PAGE_SIZE -
 802		 offsetof(struct vfdi_req, u.set_status_page.peer_page_addr[0]))
 803		/ sizeof(req->u.set_status_page.peer_page_addr[0]);
 804
 805	if (!req->u.set_status_page.dma_addr || page_count > max_page_count) {
 806		if (net_ratelimit())
 807			netif_err(efx, hw, efx->net_dev,
 808				  "ERROR: Invalid SET_STATUS_PAGE from %s\n",
 809				  vf->pci_name);
 810		return VFDI_RC_EINVAL;
 811	}
 812
 813	mutex_lock(&efx->local_lock);
 814	mutex_lock(&vf->status_lock);
 815	vf->status_addr = req->u.set_status_page.dma_addr;
 816
 817	kfree(vf->peer_page_addrs);
 818	vf->peer_page_addrs = NULL;
 819	vf->peer_page_count = 0;
 820
 821	if (page_count) {
 822		vf->peer_page_addrs = kcalloc(page_count, sizeof(u64),
 823					      GFP_KERNEL);
 824		if (vf->peer_page_addrs) {
 825			memcpy(vf->peer_page_addrs,
 826			       req->u.set_status_page.peer_page_addr,
 827			       page_count * sizeof(u64));
 828			vf->peer_page_count = page_count;
 829		}
 830	}
 831
 832	__efx_sriov_push_vf_status(vf);
 833	mutex_unlock(&vf->status_lock);
 834	mutex_unlock(&efx->local_lock);
 835
 836	return VFDI_RC_SUCCESS;
 837}
 838
 839static int efx_vfdi_clear_status_page(struct efx_vf *vf)
 840{
 841	mutex_lock(&vf->status_lock);
 842	vf->status_addr = 0;
 843	mutex_unlock(&vf->status_lock);
 844
 845	return VFDI_RC_SUCCESS;
 846}
 847
 848typedef int (*efx_vfdi_op_t)(struct efx_vf *vf);
 849
 850static const efx_vfdi_op_t vfdi_ops[VFDI_OP_LIMIT] = {
 851	[VFDI_OP_INIT_EVQ] = efx_vfdi_init_evq,
 852	[VFDI_OP_INIT_TXQ] = efx_vfdi_init_txq,
 853	[VFDI_OP_INIT_RXQ] = efx_vfdi_init_rxq,
 854	[VFDI_OP_FINI_ALL_QUEUES] = efx_vfdi_fini_all_queues,
 855	[VFDI_OP_INSERT_FILTER] = efx_vfdi_insert_filter,
 856	[VFDI_OP_REMOVE_ALL_FILTERS] = efx_vfdi_remove_all_filters,
 857	[VFDI_OP_SET_STATUS_PAGE] = efx_vfdi_set_status_page,
 858	[VFDI_OP_CLEAR_STATUS_PAGE] = efx_vfdi_clear_status_page,
 859};
 860
 861static void efx_sriov_vfdi(struct work_struct *work)
 862{
 863	struct efx_vf *vf = container_of(work, struct efx_vf, req);
 864	struct efx_nic *efx = vf->efx;
 865	struct vfdi_req *req = vf->buf.addr;
 866	struct efx_memcpy_req copy[2];
 867	int rc;
 868
 869	/* Copy this page into the local address space */
 870	memset(copy, '\0', sizeof(copy));
 871	copy[0].from_rid = vf->pci_rid;
 872	copy[0].from_addr = vf->req_addr;
 873	copy[0].to_rid = efx->pci_dev->devfn;
 874	copy[0].to_addr = vf->buf.dma_addr;
 875	copy[0].length = EFX_PAGE_SIZE;
 876	rc = efx_sriov_memcpy(efx, copy, 1);
 877	if (rc) {
 878		/* If we can't get the request, we can't reply to the caller */
 879		if (net_ratelimit())
 880			netif_err(efx, hw, efx->net_dev,
 881				  "ERROR: Unable to fetch VFDI request from %s rc %d\n",
 882				  vf->pci_name, -rc);
 883		vf->busy = false;
 884		return;
 885	}
 886
 887	if (req->op < VFDI_OP_LIMIT && vfdi_ops[req->op] != NULL) {
 888		rc = vfdi_ops[req->op](vf);
 889		if (rc == 0) {
 890			netif_dbg(efx, hw, efx->net_dev,
 891				  "vfdi request %d from %s ok\n",
 892				  req->op, vf->pci_name);
 893		}
 894	} else {
 895		netif_dbg(efx, hw, efx->net_dev,
 896			  "ERROR: Unrecognised request %d from VF %s addr "
 897			  "%llx\n", req->op, vf->pci_name,
 898			  (unsigned long long)vf->req_addr);
 899		rc = VFDI_RC_EOPNOTSUPP;
 900	}
 901
 902	/* Allow subsequent VF requests */
 903	vf->busy = false;
 904	smp_wmb();
 905
 906	/* Respond to the request */
 907	req->rc = rc;
 908	req->op = VFDI_OP_RESPONSE;
 909
 910	memset(copy, '\0', sizeof(copy));
 911	copy[0].from_buf = &req->rc;
 912	copy[0].to_rid = vf->pci_rid;
 913	copy[0].to_addr = vf->req_addr + offsetof(struct vfdi_req, rc);
 914	copy[0].length = sizeof(req->rc);
 915	copy[1].from_buf = &req->op;
 916	copy[1].to_rid = vf->pci_rid;
 917	copy[1].to_addr = vf->req_addr + offsetof(struct vfdi_req, op);
 918	copy[1].length = sizeof(req->op);
 919
 920	(void) efx_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
 921}
 922
 923
 924
 925/* After a reset the event queues inside the guests no longer exist. Fill the
 926 * event ring in guest memory with VFDI reset events, then (re-initialise) the
 927 * event queue to raise an interrupt. The guest driver will then recover.
 928 */
 929static void efx_sriov_reset_vf(struct efx_vf *vf, struct efx_buffer *buffer)
 930{
 931	struct efx_nic *efx = vf->efx;
 932	struct efx_memcpy_req copy_req[4];
 933	efx_qword_t event;
 934	unsigned int pos, count, k, buftbl, abs_evq;
 935	efx_oword_t reg;
 936	efx_dword_t ptr;
 937	int rc;
 938
 939	BUG_ON(buffer->len != EFX_PAGE_SIZE);
 940
 941	if (!vf->evq0_count)
 942		return;
 943	BUG_ON(vf->evq0_count & (vf->evq0_count - 1));
 944
 945	mutex_lock(&vf->status_lock);
 946	EFX_POPULATE_QWORD_3(event,
 947			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
 948			     VFDI_EV_SEQ, vf->msg_seqno,
 949			     VFDI_EV_TYPE, VFDI_EV_TYPE_RESET);
 950	vf->msg_seqno++;
 951	for (pos = 0; pos < EFX_PAGE_SIZE; pos += sizeof(event))
 952		memcpy(buffer->addr + pos, &event, sizeof(event));
 953
 954	for (pos = 0; pos < vf->evq0_count; pos += count) {
 955		count = min_t(unsigned, vf->evq0_count - pos,
 956			      ARRAY_SIZE(copy_req));
 957		for (k = 0; k < count; k++) {
 958			copy_req[k].from_buf = NULL;
 959			copy_req[k].from_rid = efx->pci_dev->devfn;
 960			copy_req[k].from_addr = buffer->dma_addr;
 961			copy_req[k].to_rid = vf->pci_rid;
 962			copy_req[k].to_addr = vf->evq0_addrs[pos + k];
 963			copy_req[k].length = EFX_PAGE_SIZE;
 964		}
 965		rc = efx_sriov_memcpy(efx, copy_req, count);
 966		if (rc) {
 967			if (net_ratelimit())
 968				netif_err(efx, hw, efx->net_dev,
 969					  "ERROR: Unable to notify %s of reset"
 970					  ": %d\n", vf->pci_name, -rc);
 971			break;
 972		}
 973	}
 974
 975	/* Reinitialise, arm and trigger evq0 */
 976	abs_evq = abs_index(vf, 0);
 977	buftbl = EFX_BUFTBL_EVQ_BASE(vf, 0);
 978	efx_sriov_bufs(efx, buftbl, vf->evq0_addrs, vf->evq0_count);
 979
 980	EFX_POPULATE_OWORD_3(reg,
 981			     FRF_CZ_TIMER_Q_EN, 1,
 982			     FRF_CZ_HOST_NOTIFY_MODE, 0,
 983			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
 984	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
 985	EFX_POPULATE_OWORD_3(reg,
 986			     FRF_AZ_EVQ_EN, 1,
 987			     FRF_AZ_EVQ_SIZE, __ffs(vf->evq0_count),
 988			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
 989	efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
 990	EFX_POPULATE_DWORD_1(ptr, FRF_AZ_EVQ_RPTR, 0);
 991	efx_writed_table(efx, &ptr, FR_BZ_EVQ_RPTR, abs_evq);
 992
 993	mutex_unlock(&vf->status_lock);
 994}
 995
 996static void efx_sriov_reset_vf_work(struct work_struct *work)
 997{
 998	struct efx_vf *vf = container_of(work, struct efx_vf, req);
 999	struct efx_nic *efx = vf->efx;
1000	struct efx_buffer buf;
1001
1002	if (!efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE)) {
1003		efx_sriov_reset_vf(vf, &buf);
1004		efx_nic_free_buffer(efx, &buf);
1005	}
1006}
1007
1008static void efx_sriov_handle_no_channel(struct efx_nic *efx)
1009{
1010	netif_err(efx, drv, efx->net_dev,
1011		  "ERROR: IOV requires MSI-X and 1 additional interrupt"
1012		  "vector. IOV disabled\n");
1013	efx->vf_count = 0;
1014}
1015
1016static int efx_sriov_probe_channel(struct efx_channel *channel)
1017{
1018	channel->efx->vfdi_channel = channel;
1019	return 0;
1020}
1021
1022static void
1023efx_sriov_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
1024{
1025	snprintf(buf, len, "%s-iov", channel->efx->name);
1026}
1027
1028static const struct efx_channel_type efx_sriov_channel_type = {
1029	.handle_no_channel	= efx_sriov_handle_no_channel,
1030	.pre_probe		= efx_sriov_probe_channel,
1031	.get_name		= efx_sriov_get_channel_name,
1032	/* no copy operation; channel must not be reallocated */
1033	.keep_eventq		= true,
1034};
1035
1036void efx_sriov_probe(struct efx_nic *efx)
1037{
1038	unsigned count;
1039
1040	if (!max_vfs)
1041		return;
1042
1043	if (efx_sriov_cmd(efx, false, &efx->vi_scale, &count))
1044		return;
1045	if (count > 0 && count > max_vfs)
1046		count = max_vfs;
1047
1048	/* efx_nic_dimension_resources() will reduce vf_count as appopriate */
1049	efx->vf_count = count;
1050
1051	efx->extra_channel_type[EFX_EXTRA_CHANNEL_IOV] = &efx_sriov_channel_type;
1052}
1053
1054/* Copy the list of individual addresses into the vfdi_status.peers
1055 * array and auxillary pages, protected by %local_lock. Drop that lock
1056 * and then broadcast the address list to every VF.
1057 */
1058static void efx_sriov_peer_work(struct work_struct *data)
1059{
1060	struct efx_nic *efx = container_of(data, struct efx_nic, peer_work);
1061	struct vfdi_status *vfdi_status = efx->vfdi_status.addr;
1062	struct efx_vf *vf;
1063	struct efx_local_addr *local_addr;
1064	struct vfdi_endpoint *peer;
1065	struct efx_endpoint_page *epp;
1066	struct list_head pages;
1067	unsigned int peer_space;
1068	unsigned int peer_count;
1069	unsigned int pos;
1070
1071	mutex_lock(&efx->local_lock);
1072
1073	/* Move the existing peer pages off %local_page_list */
1074	INIT_LIST_HEAD(&pages);
1075	list_splice_tail_init(&efx->local_page_list, &pages);
1076
1077	/* Populate the VF addresses starting from entry 1 (entry 0 is
1078	 * the PF address)
1079	 */
1080	peer = vfdi_status->peers + 1;
1081	peer_space = ARRAY_SIZE(vfdi_status->peers) - 1;
1082	peer_count = 1;
1083	for (pos = 0; pos < efx->vf_count; ++pos) {
1084		vf = efx->vf + pos;
1085
1086		mutex_lock(&vf->status_lock);
1087		if (vf->rx_filtering && !is_zero_ether_addr(vf->addr.mac_addr)) {
1088			*peer++ = vf->addr;
1089			++peer_count;
1090			--peer_space;
1091			BUG_ON(peer_space == 0);
1092		}
1093		mutex_unlock(&vf->status_lock);
1094	}
1095
1096	/* Fill the remaining addresses */
1097	list_for_each_entry(local_addr, &efx->local_addr_list, link) {
1098		memcpy(peer->mac_addr, local_addr->addr, ETH_ALEN);
1099		peer->tci = 0;
1100		++peer;
1101		++peer_count;
1102		if (--peer_space == 0) {
1103			if (list_empty(&pages)) {
1104				epp = kmalloc(sizeof(*epp), GFP_KERNEL);
1105				if (!epp)
1106					break;
1107				epp->ptr = dma_alloc_coherent(
1108					&efx->pci_dev->dev, EFX_PAGE_SIZE,
1109					&epp->addr, GFP_KERNEL);
1110				if (!epp->ptr) {
1111					kfree(epp);
1112					break;
1113				}
1114			} else {
1115				epp = list_first_entry(
1116					&pages, struct efx_endpoint_page, link);
1117				list_del(&epp->link);
1118			}
1119
1120			list_add_tail(&epp->link, &efx->local_page_list);
1121			peer = (struct vfdi_endpoint *)epp->ptr;
1122			peer_space = EFX_PAGE_SIZE / sizeof(struct vfdi_endpoint);
1123		}
1124	}
1125	vfdi_status->peer_count = peer_count;
1126	mutex_unlock(&efx->local_lock);
1127
1128	/* Free any now unused endpoint pages */
1129	while (!list_empty(&pages)) {
1130		epp = list_first_entry(
1131			&pages, struct efx_endpoint_page, link);
1132		list_del(&epp->link);
1133		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1134				  epp->ptr, epp->addr);
1135		kfree(epp);
1136	}
1137
1138	/* Finally, push the pages */
1139	for (pos = 0; pos < efx->vf_count; ++pos) {
1140		vf = efx->vf + pos;
1141
1142		mutex_lock(&vf->status_lock);
1143		if (vf->status_addr)
1144			__efx_sriov_push_vf_status(vf);
1145		mutex_unlock(&vf->status_lock);
1146	}
1147}
1148
1149static void efx_sriov_free_local(struct efx_nic *efx)
1150{
1151	struct efx_local_addr *local_addr;
1152	struct efx_endpoint_page *epp;
1153
1154	while (!list_empty(&efx->local_addr_list)) {
1155		local_addr = list_first_entry(&efx->local_addr_list,
1156					      struct efx_local_addr, link);
1157		list_del(&local_addr->link);
1158		kfree(local_addr);
1159	}
1160
1161	while (!list_empty(&efx->local_page_list)) {
1162		epp = list_first_entry(&efx->local_page_list,
1163				       struct efx_endpoint_page, link);
1164		list_del(&epp->link);
1165		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1166				  epp->ptr, epp->addr);
1167		kfree(epp);
1168	}
1169}
1170
1171static int efx_sriov_vf_alloc(struct efx_nic *efx)
1172{
1173	unsigned index;
1174	struct efx_vf *vf;
1175
1176	efx->vf = kzalloc(sizeof(struct efx_vf) * efx->vf_count, GFP_KERNEL);
1177	if (!efx->vf)
1178		return -ENOMEM;
1179
1180	for (index = 0; index < efx->vf_count; ++index) {
1181		vf = efx->vf + index;
1182
1183		vf->efx = efx;
1184		vf->index = index;
1185		vf->rx_filter_id = -1;
1186		vf->tx_filter_mode = VF_TX_FILTER_AUTO;
1187		vf->tx_filter_id = -1;
1188		INIT_WORK(&vf->req, efx_sriov_vfdi);
1189		INIT_WORK(&vf->reset_work, efx_sriov_reset_vf_work);
1190		init_waitqueue_head(&vf->flush_waitq);
1191		mutex_init(&vf->status_lock);
1192		mutex_init(&vf->txq_lock);
1193	}
1194
1195	return 0;
1196}
1197
1198static void efx_sriov_vfs_fini(struct efx_nic *efx)
1199{
1200	struct efx_vf *vf;
1201	unsigned int pos;
1202
1203	for (pos = 0; pos < efx->vf_count; ++pos) {
1204		vf = efx->vf + pos;
1205
1206		efx_nic_free_buffer(efx, &vf->buf);
1207		kfree(vf->peer_page_addrs);
1208		vf->peer_page_addrs = NULL;
1209		vf->peer_page_count = 0;
1210
1211		vf->evq0_count = 0;
1212	}
1213}
1214
1215static int efx_sriov_vfs_init(struct efx_nic *efx)
1216{
1217	struct pci_dev *pci_dev = efx->pci_dev;
1218	unsigned index, devfn, sriov, buftbl_base;
1219	u16 offset, stride;
1220	struct efx_vf *vf;
1221	int rc;
1222
1223	sriov = pci_find_ext_capability(pci_dev, PCI_EXT_CAP_ID_SRIOV);
1224	if (!sriov)
1225		return -ENOENT;
1226
1227	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_OFFSET, &offset);
1228	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_STRIDE, &stride);
1229
1230	buftbl_base = efx->vf_buftbl_base;
1231	devfn = pci_dev->devfn + offset;
1232	for (index = 0; index < efx->vf_count; ++index) {
1233		vf = efx->vf + index;
1234
1235		/* Reserve buffer entries */
1236		vf->buftbl_base = buftbl_base;
1237		buftbl_base += EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx);
1238
1239		vf->pci_rid = devfn;
1240		snprintf(vf->pci_name, sizeof(vf->pci_name),
1241			 "%04x:%02x:%02x.%d",
1242			 pci_domain_nr(pci_dev->bus), pci_dev->bus->number,
1243			 PCI_SLOT(devfn), PCI_FUNC(devfn));
1244
1245		rc = efx_nic_alloc_buffer(efx, &vf->buf, EFX_PAGE_SIZE);
1246		if (rc)
1247			goto fail;
1248
1249		devfn += stride;
1250	}
1251
1252	return 0;
1253
1254fail:
1255	efx_sriov_vfs_fini(efx);
1256	return rc;
1257}
1258
1259int efx_sriov_init(struct efx_nic *efx)
1260{
1261	struct net_device *net_dev = efx->net_dev;
1262	struct vfdi_status *vfdi_status;
1263	int rc;
1264
1265	/* Ensure there's room for vf_channel */
1266	BUILD_BUG_ON(EFX_MAX_CHANNELS + 1 >= EFX_VI_BASE);
1267	/* Ensure that VI_BASE is aligned on VI_SCALE */
1268	BUILD_BUG_ON(EFX_VI_BASE & ((1 << EFX_VI_SCALE_MAX) - 1));
1269
1270	if (efx->vf_count == 0)
1271		return 0;
1272
1273	rc = efx_sriov_cmd(efx, true, NULL, NULL);
1274	if (rc)
1275		goto fail_cmd;
1276
1277	rc = efx_nic_alloc_buffer(efx, &efx->vfdi_status, sizeof(*vfdi_status));
1278	if (rc)
1279		goto fail_status;
1280	vfdi_status = efx->vfdi_status.addr;
1281	memset(vfdi_status, 0, sizeof(*vfdi_status));
1282	vfdi_status->version = 1;
1283	vfdi_status->length = sizeof(*vfdi_status);
1284	vfdi_status->max_tx_channels = vf_max_tx_channels;
1285	vfdi_status->vi_scale = efx->vi_scale;
1286	vfdi_status->rss_rxq_count = efx->rss_spread;
1287	vfdi_status->peer_count = 1 + efx->vf_count;
1288	vfdi_status->timer_quantum_ns = efx->timer_quantum_ns;
1289
1290	rc = efx_sriov_vf_alloc(efx);
1291	if (rc)
1292		goto fail_alloc;
1293
1294	mutex_init(&efx->local_lock);
1295	INIT_WORK(&efx->peer_work, efx_sriov_peer_work);
1296	INIT_LIST_HEAD(&efx->local_addr_list);
1297	INIT_LIST_HEAD(&efx->local_page_list);
1298
1299	rc = efx_sriov_vfs_init(efx);
1300	if (rc)
1301		goto fail_vfs;
1302
1303	rtnl_lock();
1304	memcpy(vfdi_status->peers[0].mac_addr,
1305	       net_dev->dev_addr, ETH_ALEN);
1306	efx->vf_init_count = efx->vf_count;
1307	rtnl_unlock();
1308
1309	efx_sriov_usrev(efx, true);
1310
1311	/* At this point we must be ready to accept VFDI requests */
1312
1313	rc = pci_enable_sriov(efx->pci_dev, efx->vf_count);
1314	if (rc)
1315		goto fail_pci;
1316
1317	netif_info(efx, probe, net_dev,
1318		   "enabled SR-IOV for %d VFs, %d VI per VF\n",
1319		   efx->vf_count, efx_vf_size(efx));
1320	return 0;
1321
1322fail_pci:
1323	efx_sriov_usrev(efx, false);
1324	rtnl_lock();
1325	efx->vf_init_count = 0;
1326	rtnl_unlock();
1327	efx_sriov_vfs_fini(efx);
1328fail_vfs:
1329	cancel_work_sync(&efx->peer_work);
1330	efx_sriov_free_local(efx);
1331	kfree(efx->vf);
1332fail_alloc:
1333	efx_nic_free_buffer(efx, &efx->vfdi_status);
1334fail_status:
1335	efx_sriov_cmd(efx, false, NULL, NULL);
1336fail_cmd:
1337	return rc;
1338}
1339
1340void efx_sriov_fini(struct efx_nic *efx)
1341{
1342	struct efx_vf *vf;
1343	unsigned int pos;
1344
1345	if (efx->vf_init_count == 0)
1346		return;
1347
1348	/* Disable all interfaces to reconfiguration */
1349	BUG_ON(efx->vfdi_channel->enabled);
1350	efx_sriov_usrev(efx, false);
1351	rtnl_lock();
1352	efx->vf_init_count = 0;
1353	rtnl_unlock();
1354
1355	/* Flush all reconfiguration work */
1356	for (pos = 0; pos < efx->vf_count; ++pos) {
1357		vf = efx->vf + pos;
1358		cancel_work_sync(&vf->req);
1359		cancel_work_sync(&vf->reset_work);
1360	}
1361	cancel_work_sync(&efx->peer_work);
1362
1363	pci_disable_sriov(efx->pci_dev);
1364
1365	/* Tear down back-end state */
1366	efx_sriov_vfs_fini(efx);
1367	efx_sriov_free_local(efx);
1368	kfree(efx->vf);
1369	efx_nic_free_buffer(efx, &efx->vfdi_status);
1370	efx_sriov_cmd(efx, false, NULL, NULL);
1371}
1372
1373void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event)
1374{
1375	struct efx_nic *efx = channel->efx;
1376	struct efx_vf *vf;
1377	unsigned qid, seq, type, data;
1378
1379	qid = EFX_QWORD_FIELD(*event, FSF_CZ_USER_QID);
1380
1381	/* USR_EV_REG_VALUE is dword0, so access the VFDI_EV fields directly */
1382	BUILD_BUG_ON(FSF_CZ_USER_EV_REG_VALUE_LBN != 0);
1383	seq = EFX_QWORD_FIELD(*event, VFDI_EV_SEQ);
1384	type = EFX_QWORD_FIELD(*event, VFDI_EV_TYPE);
1385	data = EFX_QWORD_FIELD(*event, VFDI_EV_DATA);
1386
1387	netif_vdbg(efx, hw, efx->net_dev,
1388		   "USR_EV event from qid %d seq 0x%x type %d data 0x%x\n",
1389		   qid, seq, type, data);
1390
1391	if (map_vi_index(efx, qid, &vf, NULL))
1392		return;
1393	if (vf->busy)
1394		goto error;
1395
1396	if (type == VFDI_EV_TYPE_REQ_WORD0) {
1397		/* Resynchronise */
1398		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1399		vf->req_seqno = seq + 1;
1400		vf->req_addr = 0;
1401	} else if (seq != (vf->req_seqno++ & 0xff) || type != vf->req_type)
1402		goto error;
1403
1404	switch (vf->req_type) {
1405	case VFDI_EV_TYPE_REQ_WORD0:
1406	case VFDI_EV_TYPE_REQ_WORD1:
1407	case VFDI_EV_TYPE_REQ_WORD2:
1408		vf->req_addr |= (u64)data << (vf->req_type << 4);
1409		++vf->req_type;
1410		return;
1411
1412	case VFDI_EV_TYPE_REQ_WORD3:
1413		vf->req_addr |= (u64)data << 48;
1414		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1415		vf->busy = true;
1416		queue_work(vfdi_workqueue, &vf->req);
1417		return;
1418	}
1419
1420error:
1421	if (net_ratelimit())
1422		netif_err(efx, hw, efx->net_dev,
1423			  "ERROR: Screaming VFDI request from %s\n",
1424			  vf->pci_name);
1425	/* Reset the request and sequence number */
1426	vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1427	vf->req_seqno = seq + 1;
1428}
1429
1430void efx_sriov_flr(struct efx_nic *efx, unsigned vf_i)
1431{
1432	struct efx_vf *vf;
1433
1434	if (vf_i > efx->vf_init_count)
1435		return;
1436	vf = efx->vf + vf_i;
1437	netif_info(efx, hw, efx->net_dev,
1438		   "FLR on VF %s\n", vf->pci_name);
1439
1440	vf->status_addr = 0;
1441	efx_vfdi_remove_all_filters(vf);
1442	efx_vfdi_flush_clear(vf);
1443
1444	vf->evq0_count = 0;
1445}
1446
1447void efx_sriov_mac_address_changed(struct efx_nic *efx)
1448{
1449	struct vfdi_status *vfdi_status = efx->vfdi_status.addr;
1450
1451	if (!efx->vf_init_count)
1452		return;
1453	memcpy(vfdi_status->peers[0].mac_addr,
1454	       efx->net_dev->dev_addr, ETH_ALEN);
1455	queue_work(vfdi_workqueue, &efx->peer_work);
1456}
1457
1458void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1459{
1460	struct efx_vf *vf;
1461	unsigned queue, qid;
1462
1463	queue = EFX_QWORD_FIELD(*event,  FSF_AZ_DRIVER_EV_SUBDATA);
1464	if (map_vi_index(efx, queue, &vf, &qid))
1465		return;
1466	/* Ignore flush completions triggered by an FLR */
1467	if (!test_bit(qid, vf->txq_mask))
1468		return;
1469
1470	__clear_bit(qid, vf->txq_mask);
1471	--vf->txq_count;
1472
1473	if (efx_vfdi_flush_wake(vf))
1474		wake_up(&vf->flush_waitq);
1475}
1476
1477void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1478{
1479	struct efx_vf *vf;
1480	unsigned ev_failed, queue, qid;
1481
1482	queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1483	ev_failed = EFX_QWORD_FIELD(*event,
1484				    FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1485	if (map_vi_index(efx, queue, &vf, &qid))
1486		return;
1487	if (!test_bit(qid, vf->rxq_mask))
1488		return;
1489
1490	if (ev_failed) {
1491		set_bit(qid, vf->rxq_retry_mask);
1492		atomic_inc(&vf->rxq_retry_count);
1493	} else {
1494		__clear_bit(qid, vf->rxq_mask);
1495		--vf->rxq_count;
1496	}
1497	if (efx_vfdi_flush_wake(vf))
1498		wake_up(&vf->flush_waitq);
1499}
1500
1501/* Called from napi. Schedule the reset work item */
1502void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq)
1503{
1504	struct efx_vf *vf;
1505	unsigned int rel;
1506
1507	if (map_vi_index(efx, dmaq, &vf, &rel))
1508		return;
1509
1510	if (net_ratelimit())
1511		netif_err(efx, hw, efx->net_dev,
1512			  "VF %d DMA Q %d reports descriptor fetch error.\n",
1513			  vf->index, rel);
1514	queue_work(vfdi_workqueue, &vf->reset_work);
1515}
1516
1517/* Reset all VFs */
1518void efx_sriov_reset(struct efx_nic *efx)
1519{
1520	unsigned int vf_i;
1521	struct efx_buffer buf;
1522	struct efx_vf *vf;
1523
1524	ASSERT_RTNL();
1525
1526	if (efx->vf_init_count == 0)
1527		return;
1528
1529	efx_sriov_usrev(efx, true);
1530	(void)efx_sriov_cmd(efx, true, NULL, NULL);
1531
1532	if (efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE))
1533		return;
1534
1535	for (vf_i = 0; vf_i < efx->vf_init_count; ++vf_i) {
1536		vf = efx->vf + vf_i;
1537		efx_sriov_reset_vf(vf, &buf);
1538	}
1539
1540	efx_nic_free_buffer(efx, &buf);
1541}
1542
1543int efx_init_sriov(void)
1544{
1545	/* A single threaded workqueue is sufficient. efx_sriov_vfdi() and
1546	 * efx_sriov_peer_work() spend almost all their time sleeping for
1547	 * MCDI to complete anyway
1548	 */
1549	vfdi_workqueue = create_singlethread_workqueue("sfc_vfdi");
1550	if (!vfdi_workqueue)
1551		return -ENOMEM;
1552
1553	return 0;
1554}
1555
1556void efx_fini_sriov(void)
1557{
1558	destroy_workqueue(vfdi_workqueue);
1559}
1560
1561int efx_sriov_set_vf_mac(struct net_device *net_dev, int vf_i, u8 *mac)
1562{
1563	struct efx_nic *efx = netdev_priv(net_dev);
1564	struct efx_vf *vf;
1565
1566	if (vf_i >= efx->vf_init_count)
1567		return -EINVAL;
1568	vf = efx->vf + vf_i;
1569
1570	mutex_lock(&vf->status_lock);
1571	memcpy(vf->addr.mac_addr, mac, ETH_ALEN);
1572	__efx_sriov_update_vf_addr(vf);
1573	mutex_unlock(&vf->status_lock);
1574
1575	return 0;
1576}
1577
1578int efx_sriov_set_vf_vlan(struct net_device *net_dev, int vf_i,
1579			  u16 vlan, u8 qos)
1580{
1581	struct efx_nic *efx = netdev_priv(net_dev);
1582	struct efx_vf *vf;
1583	u16 tci;
1584
1585	if (vf_i >= efx->vf_init_count)
1586		return -EINVAL;
1587	vf = efx->vf + vf_i;
1588
1589	mutex_lock(&vf->status_lock);
1590	tci = (vlan & VLAN_VID_MASK) | ((qos & 0x7) << VLAN_PRIO_SHIFT);
1591	vf->addr.tci = htons(tci);
1592	__efx_sriov_update_vf_addr(vf);
1593	mutex_unlock(&vf->status_lock);
1594
1595	return 0;
1596}
1597
1598int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf_i,
1599			      bool spoofchk)
1600{
1601	struct efx_nic *efx = netdev_priv(net_dev);
1602	struct efx_vf *vf;
1603	int rc;
1604
1605	if (vf_i >= efx->vf_init_count)
1606		return -EINVAL;
1607	vf = efx->vf + vf_i;
1608
1609	mutex_lock(&vf->txq_lock);
1610	if (vf->txq_count == 0) {
1611		vf->tx_filter_mode =
1612			spoofchk ? VF_TX_FILTER_ON : VF_TX_FILTER_OFF;
1613		rc = 0;
1614	} else {
1615		/* This cannot be changed while TX queues are running */
1616		rc = -EBUSY;
1617	}
1618	mutex_unlock(&vf->txq_lock);
1619	return rc;
1620}
1621
1622int efx_sriov_get_vf_config(struct net_device *net_dev, int vf_i,
1623			    struct ifla_vf_info *ivi)
1624{
1625	struct efx_nic *efx = netdev_priv(net_dev);
1626	struct efx_vf *vf;
1627	u16 tci;
1628
1629	if (vf_i >= efx->vf_init_count)
1630		return -EINVAL;
1631	vf = efx->vf + vf_i;
1632
1633	ivi->vf = vf_i;
1634	memcpy(ivi->mac, vf->addr.mac_addr, ETH_ALEN);
1635	ivi->tx_rate = 0;
1636	tci = ntohs(vf->addr.tci);
1637	ivi->vlan = tci & VLAN_VID_MASK;
1638	ivi->qos = (tci >> VLAN_PRIO_SHIFT) & 0x7;
1639	ivi->spoofchk = vf->tx_filter_mode == VF_TX_FILTER_ON;
1640
1641	return 0;
1642}
1643