Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
Note: File does not exist in v6.8.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* drivers/net/ethernet/micrel/ks8851.c
   3 *
   4 * Copyright 2009 Simtec Electronics
   5 *	http://www.simtec.co.uk/
   6 *	Ben Dooks <ben@simtec.co.uk>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#define DEBUG
  12
  13#include <linux/interrupt.h>
  14#include <linux/module.h>
  15#include <linux/kernel.h>
  16#include <linux/netdevice.h>
  17#include <linux/etherdevice.h>
  18#include <linux/ethtool.h>
  19#include <linux/cache.h>
  20#include <linux/crc32.h>
  21#include <linux/mii.h>
  22#include <linux/eeprom_93cx6.h>
  23#include <linux/regulator/consumer.h>
  24
  25#include <linux/spi/spi.h>
  26#include <linux/gpio.h>
  27#include <linux/of_gpio.h>
  28#include <linux/of_net.h>
  29
  30#include "ks8851.h"
  31
  32/**
  33 * struct ks8851_rxctrl - KS8851 driver rx control
  34 * @mchash: Multicast hash-table data.
  35 * @rxcr1: KS_RXCR1 register setting
  36 * @rxcr2: KS_RXCR2 register setting
  37 *
  38 * Representation of the settings needs to control the receive filtering
  39 * such as the multicast hash-filter and the receive register settings. This
  40 * is used to make the job of working out if the receive settings change and
  41 * then issuing the new settings to the worker that will send the necessary
  42 * commands.
  43 */
  44struct ks8851_rxctrl {
  45	u16	mchash[4];
  46	u16	rxcr1;
  47	u16	rxcr2;
  48};
  49
  50/**
  51 * union ks8851_tx_hdr - tx header data
  52 * @txb: The header as bytes
  53 * @txw: The header as 16bit, little-endian words
  54 *
  55 * A dual representation of the tx header data to allow
  56 * access to individual bytes, and to allow 16bit accesses
  57 * with 16bit alignment.
  58 */
  59union ks8851_tx_hdr {
  60	u8	txb[6];
  61	__le16	txw[3];
  62};
  63
  64/**
  65 * struct ks8851_net - KS8851 driver private data
  66 * @netdev: The network device we're bound to
  67 * @spidev: The spi device we're bound to.
  68 * @lock: Lock to ensure that the device is not accessed when busy.
  69 * @statelock: Lock on this structure for tx list.
  70 * @mii: The MII state information for the mii calls.
  71 * @rxctrl: RX settings for @rxctrl_work.
  72 * @tx_work: Work queue for tx packets
  73 * @rxctrl_work: Work queue for updating RX mode and multicast lists
  74 * @txq: Queue of packets for transmission.
  75 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
  76 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
  77 * @txh: Space for generating packet TX header in DMA-able data
  78 * @rxd: Space for receiving SPI data, in DMA-able space.
  79 * @txd: Space for transmitting SPI data, in DMA-able space.
  80 * @msg_enable: The message flags controlling driver output (see ethtool).
  81 * @fid: Incrementing frame id tag.
  82 * @rc_ier: Cached copy of KS_IER.
  83 * @rc_ccr: Cached copy of KS_CCR.
  84 * @rc_rxqcr: Cached copy of KS_RXQCR.
  85 * @eeprom: 93CX6 EEPROM state for accessing on-board EEPROM.
  86 * @vdd_reg:	Optional regulator supplying the chip
  87 * @vdd_io: Optional digital power supply for IO
  88 * @gpio: Optional reset_n gpio
  89 *
  90 * The @lock ensures that the chip is protected when certain operations are
  91 * in progress. When the read or write packet transfer is in progress, most
  92 * of the chip registers are not ccessible until the transfer is finished and
  93 * the DMA has been de-asserted.
  94 *
  95 * The @statelock is used to protect information in the structure which may
  96 * need to be accessed via several sources, such as the network driver layer
  97 * or one of the work queues.
  98 *
  99 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
 100 * wants to DMA map them, it will not have any problems with data the driver
 101 * modifies.
 102 */
 103struct ks8851_net {
 104	struct net_device	*netdev;
 105	struct spi_device	*spidev;
 106	struct mutex		lock;
 107	spinlock_t		statelock;
 108
 109	union ks8851_tx_hdr	txh ____cacheline_aligned;
 110	u8			rxd[8];
 111	u8			txd[8];
 112
 113	u32			msg_enable ____cacheline_aligned;
 114	u16			tx_space;
 115	u8			fid;
 116
 117	u16			rc_ier;
 118	u16			rc_rxqcr;
 119	u16			rc_ccr;
 120
 121	struct mii_if_info	mii;
 122	struct ks8851_rxctrl	rxctrl;
 123
 124	struct work_struct	tx_work;
 125	struct work_struct	rxctrl_work;
 126
 127	struct sk_buff_head	txq;
 128
 129	struct spi_message	spi_msg1;
 130	struct spi_message	spi_msg2;
 131	struct spi_transfer	spi_xfer1;
 132	struct spi_transfer	spi_xfer2[2];
 133
 134	struct eeprom_93cx6	eeprom;
 135	struct regulator	*vdd_reg;
 136	struct regulator	*vdd_io;
 137	int			gpio;
 138};
 139
 140static int msg_enable;
 141
 142/* SPI frame opcodes */
 143#define KS_SPIOP_RD	(0x00)
 144#define KS_SPIOP_WR	(0x40)
 145#define KS_SPIOP_RXFIFO	(0x80)
 146#define KS_SPIOP_TXFIFO	(0xC0)
 147
 148/* shift for byte-enable data */
 149#define BYTE_EN(_x)	((_x) << 2)
 150
 151/* turn register number and byte-enable mask into data for start of packet */
 152#define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg)  << (8+2) | (_reg) >> 6)
 153
 154/* SPI register read/write calls.
 155 *
 156 * All these calls issue SPI transactions to access the chip's registers. They
 157 * all require that the necessary lock is held to prevent accesses when the
 158 * chip is busy transferring packet data (RX/TX FIFO accesses).
 159 */
 160
 161/**
 162 * ks8851_wrreg16 - write 16bit register value to chip
 163 * @ks: The chip state
 164 * @reg: The register address
 165 * @val: The value to write
 166 *
 167 * Issue a write to put the value @val into the register specified in @reg.
 168 */
 169static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
 170{
 171	struct spi_transfer *xfer = &ks->spi_xfer1;
 172	struct spi_message *msg = &ks->spi_msg1;
 173	__le16 txb[2];
 174	int ret;
 175
 176	txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
 177	txb[1] = cpu_to_le16(val);
 178
 179	xfer->tx_buf = txb;
 180	xfer->rx_buf = NULL;
 181	xfer->len = 4;
 182
 183	ret = spi_sync(ks->spidev, msg);
 184	if (ret < 0)
 185		netdev_err(ks->netdev, "spi_sync() failed\n");
 186}
 187
 188/**
 189 * ks8851_wrreg8 - write 8bit register value to chip
 190 * @ks: The chip state
 191 * @reg: The register address
 192 * @val: The value to write
 193 *
 194 * Issue a write to put the value @val into the register specified in @reg.
 195 */
 196static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
 197{
 198	struct spi_transfer *xfer = &ks->spi_xfer1;
 199	struct spi_message *msg = &ks->spi_msg1;
 200	__le16 txb[2];
 201	int ret;
 202	int bit;
 203
 204	bit = 1 << (reg & 3);
 205
 206	txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
 207	txb[1] = val;
 208
 209	xfer->tx_buf = txb;
 210	xfer->rx_buf = NULL;
 211	xfer->len = 3;
 212
 213	ret = spi_sync(ks->spidev, msg);
 214	if (ret < 0)
 215		netdev_err(ks->netdev, "spi_sync() failed\n");
 216}
 217
 218/**
 219 * ks8851_rdreg - issue read register command and return the data
 220 * @ks: The device state
 221 * @op: The register address and byte enables in message format.
 222 * @rxb: The RX buffer to return the result into
 223 * @rxl: The length of data expected.
 224 *
 225 * This is the low level read call that issues the necessary spi message(s)
 226 * to read data from the register specified in @op.
 227 */
 228static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
 229			 u8 *rxb, unsigned rxl)
 230{
 231	struct spi_transfer *xfer;
 232	struct spi_message *msg;
 233	__le16 *txb = (__le16 *)ks->txd;
 234	u8 *trx = ks->rxd;
 235	int ret;
 236
 237	txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
 238
 239	if (ks->spidev->master->flags & SPI_MASTER_HALF_DUPLEX) {
 240		msg = &ks->spi_msg2;
 241		xfer = ks->spi_xfer2;
 242
 243		xfer->tx_buf = txb;
 244		xfer->rx_buf = NULL;
 245		xfer->len = 2;
 246
 247		xfer++;
 248		xfer->tx_buf = NULL;
 249		xfer->rx_buf = trx;
 250		xfer->len = rxl;
 251	} else {
 252		msg = &ks->spi_msg1;
 253		xfer = &ks->spi_xfer1;
 254
 255		xfer->tx_buf = txb;
 256		xfer->rx_buf = trx;
 257		xfer->len = rxl + 2;
 258	}
 259
 260	ret = spi_sync(ks->spidev, msg);
 261	if (ret < 0)
 262		netdev_err(ks->netdev, "read: spi_sync() failed\n");
 263	else if (ks->spidev->master->flags & SPI_MASTER_HALF_DUPLEX)
 264		memcpy(rxb, trx, rxl);
 265	else
 266		memcpy(rxb, trx + 2, rxl);
 267}
 268
 269/**
 270 * ks8851_rdreg8 - read 8 bit register from device
 271 * @ks: The chip information
 272 * @reg: The register address
 273 *
 274 * Read a 8bit register from the chip, returning the result
 275*/
 276static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
 277{
 278	u8 rxb[1];
 279
 280	ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
 281	return rxb[0];
 282}
 283
 284/**
 285 * ks8851_rdreg16 - read 16 bit register from device
 286 * @ks: The chip information
 287 * @reg: The register address
 288 *
 289 * Read a 16bit register from the chip, returning the result
 290*/
 291static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
 292{
 293	__le16 rx = 0;
 294
 295	ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
 296	return le16_to_cpu(rx);
 297}
 298
 299/**
 300 * ks8851_rdreg32 - read 32 bit register from device
 301 * @ks: The chip information
 302 * @reg: The register address
 303 *
 304 * Read a 32bit register from the chip.
 305 *
 306 * Note, this read requires the address be aligned to 4 bytes.
 307*/
 308static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
 309{
 310	__le32 rx = 0;
 311
 312	WARN_ON(reg & 3);
 313
 314	ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
 315	return le32_to_cpu(rx);
 316}
 317
 318/**
 319 * ks8851_soft_reset - issue one of the soft reset to the device
 320 * @ks: The device state.
 321 * @op: The bit(s) to set in the GRR
 322 *
 323 * Issue the relevant soft-reset command to the device's GRR register
 324 * specified by @op.
 325 *
 326 * Note, the delays are in there as a caution to ensure that the reset
 327 * has time to take effect and then complete. Since the datasheet does
 328 * not currently specify the exact sequence, we have chosen something
 329 * that seems to work with our device.
 330 */
 331static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
 332{
 333	ks8851_wrreg16(ks, KS_GRR, op);
 334	mdelay(1);	/* wait a short time to effect reset */
 335	ks8851_wrreg16(ks, KS_GRR, 0);
 336	mdelay(1);	/* wait for condition to clear */
 337}
 338
 339/**
 340 * ks8851_set_powermode - set power mode of the device
 341 * @ks: The device state
 342 * @pwrmode: The power mode value to write to KS_PMECR.
 343 *
 344 * Change the power mode of the chip.
 345 */
 346static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
 347{
 348	unsigned pmecr;
 349
 350	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
 351
 352	pmecr = ks8851_rdreg16(ks, KS_PMECR);
 353	pmecr &= ~PMECR_PM_MASK;
 354	pmecr |= pwrmode;
 355
 356	ks8851_wrreg16(ks, KS_PMECR, pmecr);
 357}
 358
 359/**
 360 * ks8851_write_mac_addr - write mac address to device registers
 361 * @dev: The network device
 362 *
 363 * Update the KS8851 MAC address registers from the address in @dev.
 364 *
 365 * This call assumes that the chip is not running, so there is no need to
 366 * shutdown the RXQ process whilst setting this.
 367*/
 368static int ks8851_write_mac_addr(struct net_device *dev)
 369{
 370	struct ks8851_net *ks = netdev_priv(dev);
 371	int i;
 372
 373	mutex_lock(&ks->lock);
 374
 375	/*
 376	 * Wake up chip in case it was powered off when stopped; otherwise,
 377	 * the first write to the MAC address does not take effect.
 378	 */
 379	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 380	for (i = 0; i < ETH_ALEN; i++)
 381		ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
 382	if (!netif_running(dev))
 383		ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 384
 385	mutex_unlock(&ks->lock);
 386
 387	return 0;
 388}
 389
 390/**
 391 * ks8851_read_mac_addr - read mac address from device registers
 392 * @dev: The network device
 393 *
 394 * Update our copy of the KS8851 MAC address from the registers of @dev.
 395*/
 396static void ks8851_read_mac_addr(struct net_device *dev)
 397{
 398	struct ks8851_net *ks = netdev_priv(dev);
 399	int i;
 400
 401	mutex_lock(&ks->lock);
 402
 403	for (i = 0; i < ETH_ALEN; i++)
 404		dev->dev_addr[i] = ks8851_rdreg8(ks, KS_MAR(i));
 405
 406	mutex_unlock(&ks->lock);
 407}
 408
 409/**
 410 * ks8851_init_mac - initialise the mac address
 411 * @ks: The device structure
 412 *
 413 * Get or create the initial mac address for the device and then set that
 414 * into the station address register. A mac address supplied in the device
 415 * tree takes precedence. Otherwise, if there is an EEPROM present, then
 416 * we try that. If no valid mac address is found we use eth_random_addr()
 417 * to create a new one.
 418 */
 419static void ks8851_init_mac(struct ks8851_net *ks)
 420{
 421	struct net_device *dev = ks->netdev;
 422	const u8 *mac_addr;
 423
 424	mac_addr = of_get_mac_address(ks->spidev->dev.of_node);
 425	if (!IS_ERR(mac_addr)) {
 426		ether_addr_copy(dev->dev_addr, mac_addr);
 427		ks8851_write_mac_addr(dev);
 428		return;
 429	}
 430
 431	if (ks->rc_ccr & CCR_EEPROM) {
 432		ks8851_read_mac_addr(dev);
 433		if (is_valid_ether_addr(dev->dev_addr))
 434			return;
 435
 436		netdev_err(ks->netdev, "invalid mac address read %pM\n",
 437				dev->dev_addr);
 438	}
 439
 440	eth_hw_addr_random(dev);
 441	ks8851_write_mac_addr(dev);
 442}
 443
 444/**
 445 * ks8851_rdfifo - read data from the receive fifo
 446 * @ks: The device state.
 447 * @buff: The buffer address
 448 * @len: The length of the data to read
 449 *
 450 * Issue an RXQ FIFO read command and read the @len amount of data from
 451 * the FIFO into the buffer specified by @buff.
 452 */
 453static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
 454{
 455	struct spi_transfer *xfer = ks->spi_xfer2;
 456	struct spi_message *msg = &ks->spi_msg2;
 457	u8 txb[1];
 458	int ret;
 459
 460	netif_dbg(ks, rx_status, ks->netdev,
 461		  "%s: %d@%p\n", __func__, len, buff);
 462
 463	/* set the operation we're issuing */
 464	txb[0] = KS_SPIOP_RXFIFO;
 465
 466	xfer->tx_buf = txb;
 467	xfer->rx_buf = NULL;
 468	xfer->len = 1;
 469
 470	xfer++;
 471	xfer->rx_buf = buff;
 472	xfer->tx_buf = NULL;
 473	xfer->len = len;
 474
 475	ret = spi_sync(ks->spidev, msg);
 476	if (ret < 0)
 477		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
 478}
 479
 480/**
 481 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
 482 * @ks: The device state
 483 * @rxpkt: The data for the received packet
 484 *
 485 * Dump the initial data from the packet to dev_dbg().
 486*/
 487static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
 488{
 489	netdev_dbg(ks->netdev,
 490		   "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
 491		   rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
 492		   rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
 493		   rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
 494}
 495
 496/**
 497 * ks8851_rx_pkts - receive packets from the host
 498 * @ks: The device information.
 499 *
 500 * This is called from the IRQ work queue when the system detects that there
 501 * are packets in the receive queue. Find out how many packets there are and
 502 * read them from the FIFO.
 503 */
 504static void ks8851_rx_pkts(struct ks8851_net *ks)
 505{
 506	struct sk_buff *skb;
 507	unsigned rxfc;
 508	unsigned rxlen;
 509	unsigned rxstat;
 510	u32 rxh;
 511	u8 *rxpkt;
 512
 513	rxfc = ks8851_rdreg8(ks, KS_RXFC);
 514
 515	netif_dbg(ks, rx_status, ks->netdev,
 516		  "%s: %d packets\n", __func__, rxfc);
 517
 518	/* Currently we're issuing a read per packet, but we could possibly
 519	 * improve the code by issuing a single read, getting the receive
 520	 * header, allocating the packet and then reading the packet data
 521	 * out in one go.
 522	 *
 523	 * This form of operation would require us to hold the SPI bus'
 524	 * chipselect low during the entie transaction to avoid any
 525	 * reset to the data stream coming from the chip.
 526	 */
 527
 528	for (; rxfc != 0; rxfc--) {
 529		rxh = ks8851_rdreg32(ks, KS_RXFHSR);
 530		rxstat = rxh & 0xffff;
 531		rxlen = (rxh >> 16) & 0xfff;
 532
 533		netif_dbg(ks, rx_status, ks->netdev,
 534			  "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
 535
 536		/* the length of the packet includes the 32bit CRC */
 537
 538		/* set dma read address */
 539		ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
 540
 541		/* start DMA access */
 542		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
 543
 544		if (rxlen > 4) {
 545			unsigned int rxalign;
 546
 547			rxlen -= 4;
 548			rxalign = ALIGN(rxlen, 4);
 549			skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
 550			if (skb) {
 551
 552				/* 4 bytes of status header + 4 bytes of
 553				 * garbage: we put them before ethernet
 554				 * header, so that they are copied,
 555				 * but ignored.
 556				 */
 557
 558				rxpkt = skb_put(skb, rxlen) - 8;
 559
 560				ks8851_rdfifo(ks, rxpkt, rxalign + 8);
 561
 562				if (netif_msg_pktdata(ks))
 563					ks8851_dbg_dumpkkt(ks, rxpkt);
 564
 565				skb->protocol = eth_type_trans(skb, ks->netdev);
 566				netif_rx_ni(skb);
 567
 568				ks->netdev->stats.rx_packets++;
 569				ks->netdev->stats.rx_bytes += rxlen;
 570			}
 571		}
 572
 573		/* end DMA access and dequeue packet */
 574		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_RRXEF);
 575	}
 576}
 577
 578/**
 579 * ks8851_irq - IRQ handler for dealing with interrupt requests
 580 * @irq: IRQ number
 581 * @_ks: cookie
 582 *
 583 * This handler is invoked when the IRQ line asserts to find out what happened.
 584 * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
 585 * in thread context.
 586 *
 587 * Read the interrupt status, work out what needs to be done and then clear
 588 * any of the interrupts that are not needed.
 589 */
 590static irqreturn_t ks8851_irq(int irq, void *_ks)
 591{
 592	struct ks8851_net *ks = _ks;
 593	unsigned status;
 594	unsigned handled = 0;
 595
 596	mutex_lock(&ks->lock);
 597
 598	status = ks8851_rdreg16(ks, KS_ISR);
 599
 600	netif_dbg(ks, intr, ks->netdev,
 601		  "%s: status 0x%04x\n", __func__, status);
 602
 603	if (status & IRQ_LCI)
 604		handled |= IRQ_LCI;
 605
 606	if (status & IRQ_LDI) {
 607		u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
 608		pmecr &= ~PMECR_WKEVT_MASK;
 609		ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
 610
 611		handled |= IRQ_LDI;
 612	}
 613
 614	if (status & IRQ_RXPSI)
 615		handled |= IRQ_RXPSI;
 616
 617	if (status & IRQ_TXI) {
 618		handled |= IRQ_TXI;
 619
 620		/* no lock here, tx queue should have been stopped */
 621
 622		/* update our idea of how much tx space is available to the
 623		 * system */
 624		ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
 625
 626		netif_dbg(ks, intr, ks->netdev,
 627			  "%s: txspace %d\n", __func__, ks->tx_space);
 628	}
 629
 630	if (status & IRQ_RXI)
 631		handled |= IRQ_RXI;
 632
 633	if (status & IRQ_SPIBEI) {
 634		dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
 635		handled |= IRQ_SPIBEI;
 636	}
 637
 638	ks8851_wrreg16(ks, KS_ISR, handled);
 639
 640	if (status & IRQ_RXI) {
 641		/* the datasheet says to disable the rx interrupt during
 642		 * packet read-out, however we're masking the interrupt
 643		 * from the device so do not bother masking just the RX
 644		 * from the device. */
 645
 646		ks8851_rx_pkts(ks);
 647	}
 648
 649	/* if something stopped the rx process, probably due to wanting
 650	 * to change the rx settings, then do something about restarting
 651	 * it. */
 652	if (status & IRQ_RXPSI) {
 653		struct ks8851_rxctrl *rxc = &ks->rxctrl;
 654
 655		/* update the multicast hash table */
 656		ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
 657		ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
 658		ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
 659		ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
 660
 661		ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
 662		ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
 663	}
 664
 665	mutex_unlock(&ks->lock);
 666
 667	if (status & IRQ_LCI)
 668		mii_check_link(&ks->mii);
 669
 670	if (status & IRQ_TXI)
 671		netif_wake_queue(ks->netdev);
 672
 673	return IRQ_HANDLED;
 674}
 675
 676/**
 677 * calc_txlen - calculate size of message to send packet
 678 * @len: Length of data
 679 *
 680 * Returns the size of the TXFIFO message needed to send
 681 * this packet.
 682 */
 683static inline unsigned calc_txlen(unsigned len)
 684{
 685	return ALIGN(len + 4, 4);
 686}
 687
 688/**
 689 * ks8851_wrpkt - write packet to TX FIFO
 690 * @ks: The device state.
 691 * @txp: The sk_buff to transmit.
 692 * @irq: IRQ on completion of the packet.
 693 *
 694 * Send the @txp to the chip. This means creating the relevant packet header
 695 * specifying the length of the packet and the other information the chip
 696 * needs, such as IRQ on completion. Send the header and the packet data to
 697 * the device.
 698 */
 699static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
 700{
 701	struct spi_transfer *xfer = ks->spi_xfer2;
 702	struct spi_message *msg = &ks->spi_msg2;
 703	unsigned fid = 0;
 704	int ret;
 705
 706	netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
 707		  __func__, txp, txp->len, txp->data, irq);
 708
 709	fid = ks->fid++;
 710	fid &= TXFR_TXFID_MASK;
 711
 712	if (irq)
 713		fid |= TXFR_TXIC;	/* irq on completion */
 714
 715	/* start header at txb[1] to align txw entries */
 716	ks->txh.txb[1] = KS_SPIOP_TXFIFO;
 717	ks->txh.txw[1] = cpu_to_le16(fid);
 718	ks->txh.txw[2] = cpu_to_le16(txp->len);
 719
 720	xfer->tx_buf = &ks->txh.txb[1];
 721	xfer->rx_buf = NULL;
 722	xfer->len = 5;
 723
 724	xfer++;
 725	xfer->tx_buf = txp->data;
 726	xfer->rx_buf = NULL;
 727	xfer->len = ALIGN(txp->len, 4);
 728
 729	ret = spi_sync(ks->spidev, msg);
 730	if (ret < 0)
 731		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
 732}
 733
 734/**
 735 * ks8851_done_tx - update and then free skbuff after transmitting
 736 * @ks: The device state
 737 * @txb: The buffer transmitted
 738 */
 739static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
 740{
 741	struct net_device *dev = ks->netdev;
 742
 743	dev->stats.tx_bytes += txb->len;
 744	dev->stats.tx_packets++;
 745
 746	dev_kfree_skb(txb);
 747}
 748
 749/**
 750 * ks8851_tx_work - process tx packet(s)
 751 * @work: The work strucutre what was scheduled.
 752 *
 753 * This is called when a number of packets have been scheduled for
 754 * transmission and need to be sent to the device.
 755 */
 756static void ks8851_tx_work(struct work_struct *work)
 757{
 758	struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
 759	struct sk_buff *txb;
 760	bool last = skb_queue_empty(&ks->txq);
 761
 762	mutex_lock(&ks->lock);
 763
 764	while (!last) {
 765		txb = skb_dequeue(&ks->txq);
 766		last = skb_queue_empty(&ks->txq);
 767
 768		if (txb != NULL) {
 769			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
 770			ks8851_wrpkt(ks, txb, last);
 771			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 772			ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
 773
 774			ks8851_done_tx(ks, txb);
 775		}
 776	}
 777
 778	mutex_unlock(&ks->lock);
 779}
 780
 781/**
 782 * ks8851_net_open - open network device
 783 * @dev: The network device being opened.
 784 *
 785 * Called when the network device is marked active, such as a user executing
 786 * 'ifconfig up' on the device.
 787 */
 788static int ks8851_net_open(struct net_device *dev)
 789{
 790	struct ks8851_net *ks = netdev_priv(dev);
 791	int ret;
 792
 793	ret = request_threaded_irq(dev->irq, NULL, ks8851_irq,
 794				   IRQF_TRIGGER_LOW | IRQF_ONESHOT,
 795				   dev->name, ks);
 796	if (ret < 0) {
 797		netdev_err(dev, "failed to get irq\n");
 798		return ret;
 799	}
 800
 801	/* lock the card, even if we may not actually be doing anything
 802	 * else at the moment */
 803	mutex_lock(&ks->lock);
 804
 805	netif_dbg(ks, ifup, ks->netdev, "opening\n");
 806
 807	/* bring chip out of any power saving mode it was in */
 808	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 809
 810	/* issue a soft reset to the RX/TX QMU to put it into a known
 811	 * state. */
 812	ks8851_soft_reset(ks, GRR_QMU);
 813
 814	/* setup transmission parameters */
 815
 816	ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
 817				     TXCR_TXPE | /* pad to min length */
 818				     TXCR_TXCRC | /* add CRC */
 819				     TXCR_TXFCE)); /* enable flow control */
 820
 821	/* auto-increment tx data, reset tx pointer */
 822	ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
 823
 824	/* setup receiver control */
 825
 826	ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
 827				      RXCR1_RXFCE | /* enable flow control */
 828				      RXCR1_RXBE | /* broadcast enable */
 829				      RXCR1_RXUE | /* unicast enable */
 830				      RXCR1_RXE)); /* enable rx block */
 831
 832	/* transfer entire frames out in one go */
 833	ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
 834
 835	/* set receive counter timeouts */
 836	ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
 837	ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
 838	ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */
 839
 840	ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
 841			RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
 842			RXQCR_RXDTTE);  /* IRQ on time exceeded */
 843
 844	ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 845
 846	/* clear then enable interrupts */
 847
 848#define STD_IRQ (IRQ_LCI |	/* Link Change */	\
 849		 IRQ_TXI |	/* TX done */		\
 850		 IRQ_RXI |	/* RX done */		\
 851		 IRQ_SPIBEI |	/* SPI bus error */	\
 852		 IRQ_TXPSI |	/* TX process stop */	\
 853		 IRQ_RXPSI)	/* RX process stop */
 854
 855	ks->rc_ier = STD_IRQ;
 856	ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
 857	ks8851_wrreg16(ks, KS_IER, STD_IRQ);
 858
 859	netif_start_queue(ks->netdev);
 860
 861	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
 862
 863	mutex_unlock(&ks->lock);
 864	mii_check_link(&ks->mii);
 865	return 0;
 866}
 867
 868/**
 869 * ks8851_net_stop - close network device
 870 * @dev: The device being closed.
 871 *
 872 * Called to close down a network device which has been active. Cancell any
 873 * work, shutdown the RX and TX process and then place the chip into a low
 874 * power state whilst it is not being used.
 875 */
 876static int ks8851_net_stop(struct net_device *dev)
 877{
 878	struct ks8851_net *ks = netdev_priv(dev);
 879
 880	netif_info(ks, ifdown, dev, "shutting down\n");
 881
 882	netif_stop_queue(dev);
 883
 884	mutex_lock(&ks->lock);
 885	/* turn off the IRQs and ack any outstanding */
 886	ks8851_wrreg16(ks, KS_IER, 0x0000);
 887	ks8851_wrreg16(ks, KS_ISR, 0xffff);
 888	mutex_unlock(&ks->lock);
 889
 890	/* stop any outstanding work */
 891	flush_work(&ks->tx_work);
 892	flush_work(&ks->rxctrl_work);
 893
 894	mutex_lock(&ks->lock);
 895	/* shutdown RX process */
 896	ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
 897
 898	/* shutdown TX process */
 899	ks8851_wrreg16(ks, KS_TXCR, 0x0000);
 900
 901	/* set powermode to soft power down to save power */
 902	ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 903	mutex_unlock(&ks->lock);
 904
 905	/* ensure any queued tx buffers are dumped */
 906	while (!skb_queue_empty(&ks->txq)) {
 907		struct sk_buff *txb = skb_dequeue(&ks->txq);
 908
 909		netif_dbg(ks, ifdown, ks->netdev,
 910			  "%s: freeing txb %p\n", __func__, txb);
 911
 912		dev_kfree_skb(txb);
 913	}
 914
 915	free_irq(dev->irq, ks);
 916
 917	return 0;
 918}
 919
 920/**
 921 * ks8851_start_xmit - transmit packet
 922 * @skb: The buffer to transmit
 923 * @dev: The device used to transmit the packet.
 924 *
 925 * Called by the network layer to transmit the @skb. Queue the packet for
 926 * the device and schedule the necessary work to transmit the packet when
 927 * it is free.
 928 *
 929 * We do this to firstly avoid sleeping with the network device locked,
 930 * and secondly so we can round up more than one packet to transmit which
 931 * means we can try and avoid generating too many transmit done interrupts.
 932 */
 933static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
 934				     struct net_device *dev)
 935{
 936	struct ks8851_net *ks = netdev_priv(dev);
 937	unsigned needed = calc_txlen(skb->len);
 938	netdev_tx_t ret = NETDEV_TX_OK;
 939
 940	netif_dbg(ks, tx_queued, ks->netdev,
 941		  "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
 942
 943	spin_lock(&ks->statelock);
 944
 945	if (needed > ks->tx_space) {
 946		netif_stop_queue(dev);
 947		ret = NETDEV_TX_BUSY;
 948	} else {
 949		ks->tx_space -= needed;
 950		skb_queue_tail(&ks->txq, skb);
 951	}
 952
 953	spin_unlock(&ks->statelock);
 954	schedule_work(&ks->tx_work);
 955
 956	return ret;
 957}
 958
 959/**
 960 * ks8851_rxctrl_work - work handler to change rx mode
 961 * @work: The work structure this belongs to.
 962 *
 963 * Lock the device and issue the necessary changes to the receive mode from
 964 * the network device layer. This is done so that we can do this without
 965 * having to sleep whilst holding the network device lock.
 966 *
 967 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
 968 * receive parameters are programmed, we issue a write to disable the RXQ and
 969 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
 970 * complete. The interrupt handler then writes the new values into the chip.
 971 */
 972static void ks8851_rxctrl_work(struct work_struct *work)
 973{
 974	struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
 975
 976	mutex_lock(&ks->lock);
 977
 978	/* need to shutdown RXQ before modifying filter parameters */
 979	ks8851_wrreg16(ks, KS_RXCR1, 0x00);
 980
 981	mutex_unlock(&ks->lock);
 982}
 983
 984static void ks8851_set_rx_mode(struct net_device *dev)
 985{
 986	struct ks8851_net *ks = netdev_priv(dev);
 987	struct ks8851_rxctrl rxctrl;
 988
 989	memset(&rxctrl, 0, sizeof(rxctrl));
 990
 991	if (dev->flags & IFF_PROMISC) {
 992		/* interface to receive everything */
 993
 994		rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
 995	} else if (dev->flags & IFF_ALLMULTI) {
 996		/* accept all multicast packets */
 997
 998		rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
 999				RXCR1_RXPAFMA | RXCR1_RXMAFMA);
1000	} else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
1001		struct netdev_hw_addr *ha;
1002		u32 crc;
1003
1004		/* accept some multicast */
1005
1006		netdev_for_each_mc_addr(ha, dev) {
1007			crc = ether_crc(ETH_ALEN, ha->addr);
1008			crc >>= (32 - 6);  /* get top six bits */
1009
1010			rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
1011		}
1012
1013		rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
1014	} else {
1015		/* just accept broadcast / unicast */
1016		rxctrl.rxcr1 = RXCR1_RXPAFMA;
1017	}
1018
1019	rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
1020			 RXCR1_RXBE | /* broadcast enable */
1021			 RXCR1_RXE | /* RX process enable */
1022			 RXCR1_RXFCE); /* enable flow control */
1023
1024	rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
1025
1026	/* schedule work to do the actual set of the data if needed */
1027
1028	spin_lock(&ks->statelock);
1029
1030	if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
1031		memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
1032		schedule_work(&ks->rxctrl_work);
1033	}
1034
1035	spin_unlock(&ks->statelock);
1036}
1037
1038static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1039{
1040	struct sockaddr *sa = addr;
1041
1042	if (netif_running(dev))
1043		return -EBUSY;
1044
1045	if (!is_valid_ether_addr(sa->sa_data))
1046		return -EADDRNOTAVAIL;
1047
1048	memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1049	return ks8851_write_mac_addr(dev);
1050}
1051
1052static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1053{
1054	struct ks8851_net *ks = netdev_priv(dev);
1055
1056	if (!netif_running(dev))
1057		return -EINVAL;
1058
1059	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1060}
1061
1062static const struct net_device_ops ks8851_netdev_ops = {
1063	.ndo_open		= ks8851_net_open,
1064	.ndo_stop		= ks8851_net_stop,
1065	.ndo_do_ioctl		= ks8851_net_ioctl,
1066	.ndo_start_xmit		= ks8851_start_xmit,
1067	.ndo_set_mac_address	= ks8851_set_mac_address,
1068	.ndo_set_rx_mode	= ks8851_set_rx_mode,
1069	.ndo_validate_addr	= eth_validate_addr,
1070};
1071
1072/* ethtool support */
1073
1074static void ks8851_get_drvinfo(struct net_device *dev,
1075			       struct ethtool_drvinfo *di)
1076{
1077	strlcpy(di->driver, "KS8851", sizeof(di->driver));
1078	strlcpy(di->version, "1.00", sizeof(di->version));
1079	strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1080}
1081
1082static u32 ks8851_get_msglevel(struct net_device *dev)
1083{
1084	struct ks8851_net *ks = netdev_priv(dev);
1085	return ks->msg_enable;
1086}
1087
1088static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1089{
1090	struct ks8851_net *ks = netdev_priv(dev);
1091	ks->msg_enable = to;
1092}
1093
1094static int ks8851_get_link_ksettings(struct net_device *dev,
1095				     struct ethtool_link_ksettings *cmd)
1096{
1097	struct ks8851_net *ks = netdev_priv(dev);
1098
1099	mii_ethtool_get_link_ksettings(&ks->mii, cmd);
1100
1101	return 0;
1102}
1103
1104static int ks8851_set_link_ksettings(struct net_device *dev,
1105				     const struct ethtool_link_ksettings *cmd)
1106{
1107	struct ks8851_net *ks = netdev_priv(dev);
1108	return mii_ethtool_set_link_ksettings(&ks->mii, cmd);
1109}
1110
1111static u32 ks8851_get_link(struct net_device *dev)
1112{
1113	struct ks8851_net *ks = netdev_priv(dev);
1114	return mii_link_ok(&ks->mii);
1115}
1116
1117static int ks8851_nway_reset(struct net_device *dev)
1118{
1119	struct ks8851_net *ks = netdev_priv(dev);
1120	return mii_nway_restart(&ks->mii);
1121}
1122
1123/* EEPROM support */
1124
1125static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
1126{
1127	struct ks8851_net *ks = ee->data;
1128	unsigned val;
1129
1130	val = ks8851_rdreg16(ks, KS_EEPCR);
1131
1132	ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
1133	ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
1134	ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
1135}
1136
1137static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
1138{
1139	struct ks8851_net *ks = ee->data;
1140	unsigned val = EEPCR_EESA;	/* default - eeprom access on */
1141
1142	if (ee->drive_data)
1143		val |= EEPCR_EESRWA;
1144	if (ee->reg_data_in)
1145		val |= EEPCR_EEDO;
1146	if (ee->reg_data_clock)
1147		val |= EEPCR_EESCK;
1148	if (ee->reg_chip_select)
1149		val |= EEPCR_EECS;
1150
1151	ks8851_wrreg16(ks, KS_EEPCR, val);
1152}
1153
1154/**
1155 * ks8851_eeprom_claim - claim device EEPROM and activate the interface
1156 * @ks: The network device state.
1157 *
1158 * Check for the presence of an EEPROM, and then activate software access
1159 * to the device.
1160 */
1161static int ks8851_eeprom_claim(struct ks8851_net *ks)
1162{
1163	if (!(ks->rc_ccr & CCR_EEPROM))
1164		return -ENOENT;
1165
1166	mutex_lock(&ks->lock);
1167
1168	/* start with clock low, cs high */
1169	ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
1170	return 0;
1171}
1172
1173/**
1174 * ks8851_eeprom_release - release the EEPROM interface
1175 * @ks: The device state
1176 *
1177 * Release the software access to the device EEPROM
1178 */
1179static void ks8851_eeprom_release(struct ks8851_net *ks)
1180{
1181	unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
1182
1183	ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
1184	mutex_unlock(&ks->lock);
1185}
1186
1187#define KS_EEPROM_MAGIC (0x00008851)
1188
1189static int ks8851_set_eeprom(struct net_device *dev,
1190			     struct ethtool_eeprom *ee, u8 *data)
1191{
1192	struct ks8851_net *ks = netdev_priv(dev);
1193	int offset = ee->offset;
1194	int len = ee->len;
1195	u16 tmp;
1196
1197	/* currently only support byte writing */
1198	if (len != 1)
1199		return -EINVAL;
1200
1201	if (ee->magic != KS_EEPROM_MAGIC)
1202		return -EINVAL;
1203
1204	if (ks8851_eeprom_claim(ks))
1205		return -ENOENT;
1206
1207	eeprom_93cx6_wren(&ks->eeprom, true);
1208
1209	/* ethtool currently only supports writing bytes, which means
1210	 * we have to read/modify/write our 16bit EEPROMs */
1211
1212	eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
1213
1214	if (offset & 1) {
1215		tmp &= 0xff;
1216		tmp |= *data << 8;
1217	} else {
1218		tmp &= 0xff00;
1219		tmp |= *data;
1220	}
1221
1222	eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
1223	eeprom_93cx6_wren(&ks->eeprom, false);
1224
1225	ks8851_eeprom_release(ks);
1226
1227	return 0;
1228}
1229
1230static int ks8851_get_eeprom(struct net_device *dev,
1231			     struct ethtool_eeprom *ee, u8 *data)
1232{
1233	struct ks8851_net *ks = netdev_priv(dev);
1234	int offset = ee->offset;
1235	int len = ee->len;
1236
1237	/* must be 2 byte aligned */
1238	if (len & 1 || offset & 1)
1239		return -EINVAL;
1240
1241	if (ks8851_eeprom_claim(ks))
1242		return -ENOENT;
1243
1244	ee->magic = KS_EEPROM_MAGIC;
1245
1246	eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
1247	ks8851_eeprom_release(ks);
1248
1249	return 0;
1250}
1251
1252static int ks8851_get_eeprom_len(struct net_device *dev)
1253{
1254	struct ks8851_net *ks = netdev_priv(dev);
1255
1256	/* currently, we assume it is an 93C46 attached, so return 128 */
1257	return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
1258}
1259
1260static const struct ethtool_ops ks8851_ethtool_ops = {
1261	.get_drvinfo	= ks8851_get_drvinfo,
1262	.get_msglevel	= ks8851_get_msglevel,
1263	.set_msglevel	= ks8851_set_msglevel,
1264	.get_link	= ks8851_get_link,
1265	.nway_reset	= ks8851_nway_reset,
1266	.get_eeprom_len	= ks8851_get_eeprom_len,
1267	.get_eeprom	= ks8851_get_eeprom,
1268	.set_eeprom	= ks8851_set_eeprom,
1269	.get_link_ksettings = ks8851_get_link_ksettings,
1270	.set_link_ksettings = ks8851_set_link_ksettings,
1271};
1272
1273/* MII interface controls */
1274
1275/**
1276 * ks8851_phy_reg - convert MII register into a KS8851 register
1277 * @reg: MII register number.
1278 *
1279 * Return the KS8851 register number for the corresponding MII PHY register
1280 * if possible. Return zero if the MII register has no direct mapping to the
1281 * KS8851 register set.
1282 */
1283static int ks8851_phy_reg(int reg)
1284{
1285	switch (reg) {
1286	case MII_BMCR:
1287		return KS_P1MBCR;
1288	case MII_BMSR:
1289		return KS_P1MBSR;
1290	case MII_PHYSID1:
1291		return KS_PHY1ILR;
1292	case MII_PHYSID2:
1293		return KS_PHY1IHR;
1294	case MII_ADVERTISE:
1295		return KS_P1ANAR;
1296	case MII_LPA:
1297		return KS_P1ANLPR;
1298	}
1299
1300	return 0x0;
1301}
1302
1303/**
1304 * ks8851_phy_read - MII interface PHY register read.
1305 * @dev: The network device the PHY is on.
1306 * @phy_addr: Address of PHY (ignored as we only have one)
1307 * @reg: The register to read.
1308 *
1309 * This call reads data from the PHY register specified in @reg. Since the
1310 * device does not support all the MII registers, the non-existent values
1311 * are always returned as zero.
1312 *
1313 * We return zero for unsupported registers as the MII code does not check
1314 * the value returned for any error status, and simply returns it to the
1315 * caller. The mii-tool that the driver was tested with takes any -ve error
1316 * as real PHY capabilities, thus displaying incorrect data to the user.
1317 */
1318static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1319{
1320	struct ks8851_net *ks = netdev_priv(dev);
1321	int ksreg;
1322	int result;
1323
1324	ksreg = ks8851_phy_reg(reg);
1325	if (!ksreg)
1326		return 0x0;	/* no error return allowed, so use zero */
1327
1328	mutex_lock(&ks->lock);
1329	result = ks8851_rdreg16(ks, ksreg);
1330	mutex_unlock(&ks->lock);
1331
1332	return result;
1333}
1334
1335static void ks8851_phy_write(struct net_device *dev,
1336			     int phy, int reg, int value)
1337{
1338	struct ks8851_net *ks = netdev_priv(dev);
1339	int ksreg;
1340
1341	ksreg = ks8851_phy_reg(reg);
1342	if (ksreg) {
1343		mutex_lock(&ks->lock);
1344		ks8851_wrreg16(ks, ksreg, value);
1345		mutex_unlock(&ks->lock);
1346	}
1347}
1348
1349/**
1350 * ks8851_read_selftest - read the selftest memory info.
1351 * @ks: The device state
1352 *
1353 * Read and check the TX/RX memory selftest information.
1354 */
1355static int ks8851_read_selftest(struct ks8851_net *ks)
1356{
1357	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1358	int ret = 0;
1359	unsigned rd;
1360
1361	rd = ks8851_rdreg16(ks, KS_MBIR);
1362
1363	if ((rd & both_done) != both_done) {
1364		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1365		return 0;
1366	}
1367
1368	if (rd & MBIR_TXMBFA) {
1369		netdev_err(ks->netdev, "TX memory selftest fail\n");
1370		ret |= 1;
1371	}
1372
1373	if (rd & MBIR_RXMBFA) {
1374		netdev_err(ks->netdev, "RX memory selftest fail\n");
1375		ret |= 2;
1376	}
1377
1378	return 0;
1379}
1380
1381/* driver bus management functions */
1382
1383#ifdef CONFIG_PM_SLEEP
1384
1385static int ks8851_suspend(struct device *dev)
1386{
1387	struct ks8851_net *ks = dev_get_drvdata(dev);
1388	struct net_device *netdev = ks->netdev;
1389
1390	if (netif_running(netdev)) {
1391		netif_device_detach(netdev);
1392		ks8851_net_stop(netdev);
1393	}
1394
1395	return 0;
1396}
1397
1398static int ks8851_resume(struct device *dev)
1399{
1400	struct ks8851_net *ks = dev_get_drvdata(dev);
1401	struct net_device *netdev = ks->netdev;
1402
1403	if (netif_running(netdev)) {
1404		ks8851_net_open(netdev);
1405		netif_device_attach(netdev);
1406	}
1407
1408	return 0;
1409}
1410#endif
1411
1412static SIMPLE_DEV_PM_OPS(ks8851_pm_ops, ks8851_suspend, ks8851_resume);
1413
1414static int ks8851_probe(struct spi_device *spi)
1415{
1416	struct net_device *ndev;
1417	struct ks8851_net *ks;
1418	int ret;
1419	unsigned cider;
1420	int gpio;
1421
1422	ndev = alloc_etherdev(sizeof(struct ks8851_net));
1423	if (!ndev)
1424		return -ENOMEM;
1425
1426	spi->bits_per_word = 8;
1427
1428	ks = netdev_priv(ndev);
1429
1430	ks->netdev = ndev;
1431	ks->spidev = spi;
1432	ks->tx_space = 6144;
1433
1434	gpio = of_get_named_gpio_flags(spi->dev.of_node, "reset-gpios",
1435				       0, NULL);
1436	if (gpio == -EPROBE_DEFER) {
1437		ret = gpio;
1438		goto err_gpio;
1439	}
1440
1441	ks->gpio = gpio;
1442	if (gpio_is_valid(gpio)) {
1443		ret = devm_gpio_request_one(&spi->dev, gpio,
1444					    GPIOF_OUT_INIT_LOW, "ks8851_rst_n");
1445		if (ret) {
1446			dev_err(&spi->dev, "reset gpio request failed\n");
1447			goto err_gpio;
1448		}
1449	}
1450
1451	ks->vdd_io = devm_regulator_get(&spi->dev, "vdd-io");
1452	if (IS_ERR(ks->vdd_io)) {
1453		ret = PTR_ERR(ks->vdd_io);
1454		goto err_reg_io;
1455	}
1456
1457	ret = regulator_enable(ks->vdd_io);
1458	if (ret) {
1459		dev_err(&spi->dev, "regulator vdd_io enable fail: %d\n",
1460			ret);
1461		goto err_reg_io;
1462	}
1463
1464	ks->vdd_reg = devm_regulator_get(&spi->dev, "vdd");
1465	if (IS_ERR(ks->vdd_reg)) {
1466		ret = PTR_ERR(ks->vdd_reg);
1467		goto err_reg;
1468	}
1469
1470	ret = regulator_enable(ks->vdd_reg);
1471	if (ret) {
1472		dev_err(&spi->dev, "regulator vdd enable fail: %d\n",
1473			ret);
1474		goto err_reg;
1475	}
1476
1477	if (gpio_is_valid(gpio)) {
1478		usleep_range(10000, 11000);
1479		gpio_set_value(gpio, 1);
1480	}
1481
1482	mutex_init(&ks->lock);
1483	spin_lock_init(&ks->statelock);
1484
1485	INIT_WORK(&ks->tx_work, ks8851_tx_work);
1486	INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1487
1488	/* initialise pre-made spi transfer messages */
1489
1490	spi_message_init(&ks->spi_msg1);
1491	spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1492
1493	spi_message_init(&ks->spi_msg2);
1494	spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1495	spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1496
1497	/* setup EEPROM state */
1498
1499	ks->eeprom.data = ks;
1500	ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1501	ks->eeprom.register_read = ks8851_eeprom_regread;
1502	ks->eeprom.register_write = ks8851_eeprom_regwrite;
1503
1504	/* setup mii state */
1505	ks->mii.dev		= ndev;
1506	ks->mii.phy_id		= 1,
1507	ks->mii.phy_id_mask	= 1;
1508	ks->mii.reg_num_mask	= 0xf;
1509	ks->mii.mdio_read	= ks8851_phy_read;
1510	ks->mii.mdio_write	= ks8851_phy_write;
1511
1512	dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1513
1514	/* set the default message enable */
1515	ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1516						     NETIF_MSG_PROBE |
1517						     NETIF_MSG_LINK));
1518
1519	skb_queue_head_init(&ks->txq);
1520
1521	ndev->ethtool_ops = &ks8851_ethtool_ops;
1522	SET_NETDEV_DEV(ndev, &spi->dev);
1523
1524	spi_set_drvdata(spi, ks);
1525
1526	netif_carrier_off(ks->netdev);
1527	ndev->if_port = IF_PORT_100BASET;
1528	ndev->netdev_ops = &ks8851_netdev_ops;
1529	ndev->irq = spi->irq;
1530
1531	/* issue a global soft reset to reset the device. */
1532	ks8851_soft_reset(ks, GRR_GSR);
1533
1534	/* simple check for a valid chip being connected to the bus */
1535	cider = ks8851_rdreg16(ks, KS_CIDER);
1536	if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1537		dev_err(&spi->dev, "failed to read device ID\n");
1538		ret = -ENODEV;
1539		goto err_id;
1540	}
1541
1542	/* cache the contents of the CCR register for EEPROM, etc. */
1543	ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1544
1545	ks8851_read_selftest(ks);
1546	ks8851_init_mac(ks);
1547
1548	ret = register_netdev(ndev);
1549	if (ret) {
1550		dev_err(&spi->dev, "failed to register network device\n");
1551		goto err_netdev;
1552	}
1553
1554	netdev_info(ndev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1555		    CIDER_REV_GET(cider), ndev->dev_addr, ndev->irq,
1556		    ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1557
1558	return 0;
1559
1560err_netdev:
1561err_id:
1562	if (gpio_is_valid(gpio))
1563		gpio_set_value(gpio, 0);
1564	regulator_disable(ks->vdd_reg);
1565err_reg:
1566	regulator_disable(ks->vdd_io);
1567err_reg_io:
1568err_gpio:
1569	free_netdev(ndev);
1570	return ret;
1571}
1572
1573static int ks8851_remove(struct spi_device *spi)
1574{
1575	struct ks8851_net *priv = spi_get_drvdata(spi);
1576
1577	if (netif_msg_drv(priv))
1578		dev_info(&spi->dev, "remove\n");
1579
1580	unregister_netdev(priv->netdev);
1581	if (gpio_is_valid(priv->gpio))
1582		gpio_set_value(priv->gpio, 0);
1583	regulator_disable(priv->vdd_reg);
1584	regulator_disable(priv->vdd_io);
1585	free_netdev(priv->netdev);
1586
1587	return 0;
1588}
1589
1590static const struct of_device_id ks8851_match_table[] = {
1591	{ .compatible = "micrel,ks8851" },
1592	{ }
1593};
1594MODULE_DEVICE_TABLE(of, ks8851_match_table);
1595
1596static struct spi_driver ks8851_driver = {
1597	.driver = {
1598		.name = "ks8851",
1599		.of_match_table = ks8851_match_table,
1600		.pm = &ks8851_pm_ops,
1601	},
1602	.probe = ks8851_probe,
1603	.remove = ks8851_remove,
1604};
1605module_spi_driver(ks8851_driver);
1606
1607MODULE_DESCRIPTION("KS8851 Network driver");
1608MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1609MODULE_LICENSE("GPL");
1610
1611module_param_named(message, msg_enable, int, 0);
1612MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1613MODULE_ALIAS("spi:ks8851");