Linux Audio

Check our new training course

Loading...
   1/* drivers/net/ethernet/micrel/ks8851.c
   2 *
   3 * Copyright 2009 Simtec Electronics
   4 *	http://www.simtec.co.uk/
   5 *	Ben Dooks <ben@simtec.co.uk>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11
  12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13
  14#define DEBUG
  15
  16#include <linux/interrupt.h>
  17#include <linux/module.h>
  18#include <linux/kernel.h>
  19#include <linux/netdevice.h>
  20#include <linux/etherdevice.h>
  21#include <linux/ethtool.h>
  22#include <linux/cache.h>
  23#include <linux/crc32.h>
  24#include <linux/mii.h>
  25#include <linux/eeprom_93cx6.h>
  26
  27#include <linux/spi/spi.h>
  28
  29#include "ks8851.h"
  30
  31/**
  32 * struct ks8851_rxctrl - KS8851 driver rx control
  33 * @mchash: Multicast hash-table data.
  34 * @rxcr1: KS_RXCR1 register setting
  35 * @rxcr2: KS_RXCR2 register setting
  36 *
  37 * Representation of the settings needs to control the receive filtering
  38 * such as the multicast hash-filter and the receive register settings. This
  39 * is used to make the job of working out if the receive settings change and
  40 * then issuing the new settings to the worker that will send the necessary
  41 * commands.
  42 */
  43struct ks8851_rxctrl {
  44	u16	mchash[4];
  45	u16	rxcr1;
  46	u16	rxcr2;
  47};
  48
  49/**
  50 * union ks8851_tx_hdr - tx header data
  51 * @txb: The header as bytes
  52 * @txw: The header as 16bit, little-endian words
  53 *
  54 * A dual representation of the tx header data to allow
  55 * access to individual bytes, and to allow 16bit accesses
  56 * with 16bit alignment.
  57 */
  58union ks8851_tx_hdr {
  59	u8	txb[6];
  60	__le16	txw[3];
  61};
  62
  63/**
  64 * struct ks8851_net - KS8851 driver private data
  65 * @netdev: The network device we're bound to
  66 * @spidev: The spi device we're bound to.
  67 * @lock: Lock to ensure that the device is not accessed when busy.
  68 * @statelock: Lock on this structure for tx list.
  69 * @mii: The MII state information for the mii calls.
  70 * @rxctrl: RX settings for @rxctrl_work.
  71 * @tx_work: Work queue for tx packets
  72 * @irq_work: Work queue for servicing interrupts
  73 * @rxctrl_work: Work queue for updating RX mode and multicast lists
  74 * @txq: Queue of packets for transmission.
  75 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
  76 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
  77 * @txh: Space for generating packet TX header in DMA-able data
  78 * @rxd: Space for receiving SPI data, in DMA-able space.
  79 * @txd: Space for transmitting SPI data, in DMA-able space.
  80 * @msg_enable: The message flags controlling driver output (see ethtool).
  81 * @fid: Incrementing frame id tag.
  82 * @rc_ier: Cached copy of KS_IER.
  83 * @rc_ccr: Cached copy of KS_CCR.
  84 * @rc_rxqcr: Cached copy of KS_RXQCR.
  85 * @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom
  86 * @eeprom: 93CX6 EEPROM state for accessing on-board EEPROM.
  87 *
  88 * The @lock ensures that the chip is protected when certain operations are
  89 * in progress. When the read or write packet transfer is in progress, most
  90 * of the chip registers are not ccessible until the transfer is finished and
  91 * the DMA has been de-asserted.
  92 *
  93 * The @statelock is used to protect information in the structure which may
  94 * need to be accessed via several sources, such as the network driver layer
  95 * or one of the work queues.
  96 *
  97 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
  98 * wants to DMA map them, it will not have any problems with data the driver
  99 * modifies.
 100 */
 101struct ks8851_net {
 102	struct net_device	*netdev;
 103	struct spi_device	*spidev;
 104	struct mutex		lock;
 105	spinlock_t		statelock;
 106
 107	union ks8851_tx_hdr	txh ____cacheline_aligned;
 108	u8			rxd[8];
 109	u8			txd[8];
 110
 111	u32			msg_enable ____cacheline_aligned;
 112	u16			tx_space;
 113	u8			fid;
 114
 115	u16			rc_ier;
 116	u16			rc_rxqcr;
 117	u16			rc_ccr;
 118	u16			eeprom_size;
 119
 120	struct mii_if_info	mii;
 121	struct ks8851_rxctrl	rxctrl;
 122
 123	struct work_struct	tx_work;
 124	struct work_struct	irq_work;
 125	struct work_struct	rxctrl_work;
 126
 127	struct sk_buff_head	txq;
 128
 129	struct spi_message	spi_msg1;
 130	struct spi_message	spi_msg2;
 131	struct spi_transfer	spi_xfer1;
 132	struct spi_transfer	spi_xfer2[2];
 133
 134	struct eeprom_93cx6	eeprom;
 135};
 136
 137static int msg_enable;
 138
 139/* shift for byte-enable data */
 140#define BYTE_EN(_x)	((_x) << 2)
 141
 142/* turn register number and byte-enable mask into data for start of packet */
 143#define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg)  << (8+2) | (_reg) >> 6)
 144
 145/* SPI register read/write calls.
 146 *
 147 * All these calls issue SPI transactions to access the chip's registers. They
 148 * all require that the necessary lock is held to prevent accesses when the
 149 * chip is busy transferring packet data (RX/TX FIFO accesses).
 150 */
 151
 152/**
 153 * ks8851_wrreg16 - write 16bit register value to chip
 154 * @ks: The chip state
 155 * @reg: The register address
 156 * @val: The value to write
 157 *
 158 * Issue a write to put the value @val into the register specified in @reg.
 159 */
 160static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
 161{
 162	struct spi_transfer *xfer = &ks->spi_xfer1;
 163	struct spi_message *msg = &ks->spi_msg1;
 164	__le16 txb[2];
 165	int ret;
 166
 167	txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
 168	txb[1] = cpu_to_le16(val);
 169
 170	xfer->tx_buf = txb;
 171	xfer->rx_buf = NULL;
 172	xfer->len = 4;
 173
 174	ret = spi_sync(ks->spidev, msg);
 175	if (ret < 0)
 176		netdev_err(ks->netdev, "spi_sync() failed\n");
 177}
 178
 179/**
 180 * ks8851_wrreg8 - write 8bit register value to chip
 181 * @ks: The chip state
 182 * @reg: The register address
 183 * @val: The value to write
 184 *
 185 * Issue a write to put the value @val into the register specified in @reg.
 186 */
 187static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
 188{
 189	struct spi_transfer *xfer = &ks->spi_xfer1;
 190	struct spi_message *msg = &ks->spi_msg1;
 191	__le16 txb[2];
 192	int ret;
 193	int bit;
 194
 195	bit = 1 << (reg & 3);
 196
 197	txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
 198	txb[1] = val;
 199
 200	xfer->tx_buf = txb;
 201	xfer->rx_buf = NULL;
 202	xfer->len = 3;
 203
 204	ret = spi_sync(ks->spidev, msg);
 205	if (ret < 0)
 206		netdev_err(ks->netdev, "spi_sync() failed\n");
 207}
 208
 209/**
 210 * ks8851_rx_1msg - select whether to use one or two messages for spi read
 211 * @ks: The device structure
 212 *
 213 * Return whether to generate a single message with a tx and rx buffer
 214 * supplied to spi_sync(), or alternatively send the tx and rx buffers
 215 * as separate messages.
 216 *
 217 * Depending on the hardware in use, a single message may be more efficient
 218 * on interrupts or work done by the driver.
 219 *
 220 * This currently always returns true until we add some per-device data passed
 221 * from the platform code to specify which mode is better.
 222 */
 223static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
 224{
 225	return true;
 226}
 227
 228/**
 229 * ks8851_rdreg - issue read register command and return the data
 230 * @ks: The device state
 231 * @op: The register address and byte enables in message format.
 232 * @rxb: The RX buffer to return the result into
 233 * @rxl: The length of data expected.
 234 *
 235 * This is the low level read call that issues the necessary spi message(s)
 236 * to read data from the register specified in @op.
 237 */
 238static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
 239			 u8 *rxb, unsigned rxl)
 240{
 241	struct spi_transfer *xfer;
 242	struct spi_message *msg;
 243	__le16 *txb = (__le16 *)ks->txd;
 244	u8 *trx = ks->rxd;
 245	int ret;
 246
 247	txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
 248
 249	if (ks8851_rx_1msg(ks)) {
 250		msg = &ks->spi_msg1;
 251		xfer = &ks->spi_xfer1;
 252
 253		xfer->tx_buf = txb;
 254		xfer->rx_buf = trx;
 255		xfer->len = rxl + 2;
 256	} else {
 257		msg = &ks->spi_msg2;
 258		xfer = ks->spi_xfer2;
 259
 260		xfer->tx_buf = txb;
 261		xfer->rx_buf = NULL;
 262		xfer->len = 2;
 263
 264		xfer++;
 265		xfer->tx_buf = NULL;
 266		xfer->rx_buf = trx;
 267		xfer->len = rxl;
 268	}
 269
 270	ret = spi_sync(ks->spidev, msg);
 271	if (ret < 0)
 272		netdev_err(ks->netdev, "read: spi_sync() failed\n");
 273	else if (ks8851_rx_1msg(ks))
 274		memcpy(rxb, trx + 2, rxl);
 275	else
 276		memcpy(rxb, trx, rxl);
 277}
 278
 279/**
 280 * ks8851_rdreg8 - read 8 bit register from device
 281 * @ks: The chip information
 282 * @reg: The register address
 283 *
 284 * Read a 8bit register from the chip, returning the result
 285*/
 286static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
 287{
 288	u8 rxb[1];
 289
 290	ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
 291	return rxb[0];
 292}
 293
 294/**
 295 * ks8851_rdreg16 - read 16 bit register from device
 296 * @ks: The chip information
 297 * @reg: The register address
 298 *
 299 * Read a 16bit register from the chip, returning the result
 300*/
 301static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
 302{
 303	__le16 rx = 0;
 304
 305	ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
 306	return le16_to_cpu(rx);
 307}
 308
 309/**
 310 * ks8851_rdreg32 - read 32 bit register from device
 311 * @ks: The chip information
 312 * @reg: The register address
 313 *
 314 * Read a 32bit register from the chip.
 315 *
 316 * Note, this read requires the address be aligned to 4 bytes.
 317*/
 318static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
 319{
 320	__le32 rx = 0;
 321
 322	WARN_ON(reg & 3);
 323
 324	ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
 325	return le32_to_cpu(rx);
 326}
 327
 328/**
 329 * ks8851_soft_reset - issue one of the soft reset to the device
 330 * @ks: The device state.
 331 * @op: The bit(s) to set in the GRR
 332 *
 333 * Issue the relevant soft-reset command to the device's GRR register
 334 * specified by @op.
 335 *
 336 * Note, the delays are in there as a caution to ensure that the reset
 337 * has time to take effect and then complete. Since the datasheet does
 338 * not currently specify the exact sequence, we have chosen something
 339 * that seems to work with our device.
 340 */
 341static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
 342{
 343	ks8851_wrreg16(ks, KS_GRR, op);
 344	mdelay(1);	/* wait a short time to effect reset */
 345	ks8851_wrreg16(ks, KS_GRR, 0);
 346	mdelay(1);	/* wait for condition to clear */
 347}
 348
 349/**
 350 * ks8851_set_powermode - set power mode of the device
 351 * @ks: The device state
 352 * @pwrmode: The power mode value to write to KS_PMECR.
 353 *
 354 * Change the power mode of the chip.
 355 */
 356static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
 357{
 358	unsigned pmecr;
 359
 360	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
 361
 362	pmecr = ks8851_rdreg16(ks, KS_PMECR);
 363	pmecr &= ~PMECR_PM_MASK;
 364	pmecr |= pwrmode;
 365
 366	ks8851_wrreg16(ks, KS_PMECR, pmecr);
 367}
 368
 369/**
 370 * ks8851_write_mac_addr - write mac address to device registers
 371 * @dev: The network device
 372 *
 373 * Update the KS8851 MAC address registers from the address in @dev.
 374 *
 375 * This call assumes that the chip is not running, so there is no need to
 376 * shutdown the RXQ process whilst setting this.
 377*/
 378static int ks8851_write_mac_addr(struct net_device *dev)
 379{
 380	struct ks8851_net *ks = netdev_priv(dev);
 381	int i;
 382
 383	mutex_lock(&ks->lock);
 384
 385	/*
 386	 * Wake up chip in case it was powered off when stopped; otherwise,
 387	 * the first write to the MAC address does not take effect.
 388	 */
 389	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 390	for (i = 0; i < ETH_ALEN; i++)
 391		ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
 392	if (!netif_running(dev))
 393		ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 394
 395	mutex_unlock(&ks->lock);
 396
 397	return 0;
 398}
 399
 400/**
 401 * ks8851_read_mac_addr - read mac address from device registers
 402 * @dev: The network device
 403 *
 404 * Update our copy of the KS8851 MAC address from the registers of @dev.
 405*/
 406static void ks8851_read_mac_addr(struct net_device *dev)
 407{
 408	struct ks8851_net *ks = netdev_priv(dev);
 409	int i;
 410
 411	mutex_lock(&ks->lock);
 412
 413	for (i = 0; i < ETH_ALEN; i++)
 414		dev->dev_addr[i] = ks8851_rdreg8(ks, KS_MAR(i));
 415
 416	mutex_unlock(&ks->lock);
 417}
 418
 419/**
 420 * ks8851_init_mac - initialise the mac address
 421 * @ks: The device structure
 422 *
 423 * Get or create the initial mac address for the device and then set that
 424 * into the station address register. If there is an EEPROM present, then
 425 * we try that. If no valid mac address is found we use random_ether_addr()
 426 * to create a new one.
 427 */
 428static void ks8851_init_mac(struct ks8851_net *ks)
 429{
 430	struct net_device *dev = ks->netdev;
 431
 432	/* first, try reading what we've got already */
 433	if (ks->rc_ccr & CCR_EEPROM) {
 434		ks8851_read_mac_addr(dev);
 435		if (is_valid_ether_addr(dev->dev_addr))
 436			return;
 437
 438		netdev_err(ks->netdev, "invalid mac address read %pM\n",
 439				dev->dev_addr);
 440	}
 441
 442	eth_hw_addr_random(dev);
 443	ks8851_write_mac_addr(dev);
 444}
 445
 446/**
 447 * ks8851_irq - device interrupt handler
 448 * @irq: Interrupt number passed from the IRQ handler.
 449 * @pw: The private word passed to register_irq(), our struct ks8851_net.
 450 *
 451 * Disable the interrupt from happening again until we've processed the
 452 * current status by scheduling ks8851_irq_work().
 453 */
 454static irqreturn_t ks8851_irq(int irq, void *pw)
 455{
 456	struct ks8851_net *ks = pw;
 457
 458	disable_irq_nosync(irq);
 459	schedule_work(&ks->irq_work);
 460	return IRQ_HANDLED;
 461}
 462
 463/**
 464 * ks8851_rdfifo - read data from the receive fifo
 465 * @ks: The device state.
 466 * @buff: The buffer address
 467 * @len: The length of the data to read
 468 *
 469 * Issue an RXQ FIFO read command and read the @len amount of data from
 470 * the FIFO into the buffer specified by @buff.
 471 */
 472static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
 473{
 474	struct spi_transfer *xfer = ks->spi_xfer2;
 475	struct spi_message *msg = &ks->spi_msg2;
 476	u8 txb[1];
 477	int ret;
 478
 479	netif_dbg(ks, rx_status, ks->netdev,
 480		  "%s: %d@%p\n", __func__, len, buff);
 481
 482	/* set the operation we're issuing */
 483	txb[0] = KS_SPIOP_RXFIFO;
 484
 485	xfer->tx_buf = txb;
 486	xfer->rx_buf = NULL;
 487	xfer->len = 1;
 488
 489	xfer++;
 490	xfer->rx_buf = buff;
 491	xfer->tx_buf = NULL;
 492	xfer->len = len;
 493
 494	ret = spi_sync(ks->spidev, msg);
 495	if (ret < 0)
 496		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
 497}
 498
 499/**
 500 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
 501 * @ks: The device state
 502 * @rxpkt: The data for the received packet
 503 *
 504 * Dump the initial data from the packet to dev_dbg().
 505*/
 506static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
 507{
 508	netdev_dbg(ks->netdev,
 509		   "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
 510		   rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
 511		   rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
 512		   rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
 513}
 514
 515/**
 516 * ks8851_rx_pkts - receive packets from the host
 517 * @ks: The device information.
 518 *
 519 * This is called from the IRQ work queue when the system detects that there
 520 * are packets in the receive queue. Find out how many packets there are and
 521 * read them from the FIFO.
 522 */
 523static void ks8851_rx_pkts(struct ks8851_net *ks)
 524{
 525	struct sk_buff *skb;
 526	unsigned rxfc;
 527	unsigned rxlen;
 528	unsigned rxstat;
 529	u32 rxh;
 530	u8 *rxpkt;
 531
 532	rxfc = ks8851_rdreg8(ks, KS_RXFC);
 533
 534	netif_dbg(ks, rx_status, ks->netdev,
 535		  "%s: %d packets\n", __func__, rxfc);
 536
 537	/* Currently we're issuing a read per packet, but we could possibly
 538	 * improve the code by issuing a single read, getting the receive
 539	 * header, allocating the packet and then reading the packet data
 540	 * out in one go.
 541	 *
 542	 * This form of operation would require us to hold the SPI bus'
 543	 * chipselect low during the entie transaction to avoid any
 544	 * reset to the data stream coming from the chip.
 545	 */
 546
 547	for (; rxfc != 0; rxfc--) {
 548		rxh = ks8851_rdreg32(ks, KS_RXFHSR);
 549		rxstat = rxh & 0xffff;
 550		rxlen = rxh >> 16;
 551
 552		netif_dbg(ks, rx_status, ks->netdev,
 553			  "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
 554
 555		/* the length of the packet includes the 32bit CRC */
 556
 557		/* set dma read address */
 558		ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
 559
 560		/* start the packet dma process, and set auto-dequeue rx */
 561		ks8851_wrreg16(ks, KS_RXQCR,
 562			       ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
 563
 564		if (rxlen > 4) {
 565			unsigned int rxalign;
 566
 567			rxlen -= 4;
 568			rxalign = ALIGN(rxlen, 4);
 569			skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
 570			if (skb) {
 571
 572				/* 4 bytes of status header + 4 bytes of
 573				 * garbage: we put them before ethernet
 574				 * header, so that they are copied,
 575				 * but ignored.
 576				 */
 577
 578				rxpkt = skb_put(skb, rxlen) - 8;
 579
 580				ks8851_rdfifo(ks, rxpkt, rxalign + 8);
 581
 582				if (netif_msg_pktdata(ks))
 583					ks8851_dbg_dumpkkt(ks, rxpkt);
 584
 585				skb->protocol = eth_type_trans(skb, ks->netdev);
 586				netif_rx_ni(skb);
 587
 588				ks->netdev->stats.rx_packets++;
 589				ks->netdev->stats.rx_bytes += rxlen;
 590			}
 591		}
 592
 593		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 594	}
 595}
 596
 597/**
 598 * ks8851_irq_work - work queue handler for dealing with interrupt requests
 599 * @work: The work structure that was scheduled by schedule_work()
 600 *
 601 * This is the handler invoked when the ks8851_irq() is called to find out
 602 * what happened, as we cannot allow ourselves to sleep whilst waiting for
 603 * anything other process has the chip's lock.
 604 *
 605 * Read the interrupt status, work out what needs to be done and then clear
 606 * any of the interrupts that are not needed.
 607 */
 608static void ks8851_irq_work(struct work_struct *work)
 609{
 610	struct ks8851_net *ks = container_of(work, struct ks8851_net, irq_work);
 611	unsigned status;
 612	unsigned handled = 0;
 613
 614	mutex_lock(&ks->lock);
 615
 616	status = ks8851_rdreg16(ks, KS_ISR);
 617
 618	netif_dbg(ks, intr, ks->netdev,
 619		  "%s: status 0x%04x\n", __func__, status);
 620
 621	if (status & IRQ_LCI)
 622		handled |= IRQ_LCI;
 623
 624	if (status & IRQ_LDI) {
 625		u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
 626		pmecr &= ~PMECR_WKEVT_MASK;
 627		ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
 628
 629		handled |= IRQ_LDI;
 630	}
 631
 632	if (status & IRQ_RXPSI)
 633		handled |= IRQ_RXPSI;
 634
 635	if (status & IRQ_TXI) {
 636		handled |= IRQ_TXI;
 637
 638		/* no lock here, tx queue should have been stopped */
 639
 640		/* update our idea of how much tx space is available to the
 641		 * system */
 642		ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
 643
 644		netif_dbg(ks, intr, ks->netdev,
 645			  "%s: txspace %d\n", __func__, ks->tx_space);
 646	}
 647
 648	if (status & IRQ_RXI)
 649		handled |= IRQ_RXI;
 650
 651	if (status & IRQ_SPIBEI) {
 652		dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
 653		handled |= IRQ_SPIBEI;
 654	}
 655
 656	ks8851_wrreg16(ks, KS_ISR, handled);
 657
 658	if (status & IRQ_RXI) {
 659		/* the datasheet says to disable the rx interrupt during
 660		 * packet read-out, however we're masking the interrupt
 661		 * from the device so do not bother masking just the RX
 662		 * from the device. */
 663
 664		ks8851_rx_pkts(ks);
 665	}
 666
 667	/* if something stopped the rx process, probably due to wanting
 668	 * to change the rx settings, then do something about restarting
 669	 * it. */
 670	if (status & IRQ_RXPSI) {
 671		struct ks8851_rxctrl *rxc = &ks->rxctrl;
 672
 673		/* update the multicast hash table */
 674		ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
 675		ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
 676		ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
 677		ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
 678
 679		ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
 680		ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
 681	}
 682
 683	mutex_unlock(&ks->lock);
 684
 685	if (status & IRQ_LCI)
 686		mii_check_link(&ks->mii);
 687
 688	if (status & IRQ_TXI)
 689		netif_wake_queue(ks->netdev);
 690
 691	enable_irq(ks->netdev->irq);
 692}
 693
 694/**
 695 * calc_txlen - calculate size of message to send packet
 696 * @len: Length of data
 697 *
 698 * Returns the size of the TXFIFO message needed to send
 699 * this packet.
 700 */
 701static inline unsigned calc_txlen(unsigned len)
 702{
 703	return ALIGN(len + 4, 4);
 704}
 705
 706/**
 707 * ks8851_wrpkt - write packet to TX FIFO
 708 * @ks: The device state.
 709 * @txp: The sk_buff to transmit.
 710 * @irq: IRQ on completion of the packet.
 711 *
 712 * Send the @txp to the chip. This means creating the relevant packet header
 713 * specifying the length of the packet and the other information the chip
 714 * needs, such as IRQ on completion. Send the header and the packet data to
 715 * the device.
 716 */
 717static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
 718{
 719	struct spi_transfer *xfer = ks->spi_xfer2;
 720	struct spi_message *msg = &ks->spi_msg2;
 721	unsigned fid = 0;
 722	int ret;
 723
 724	netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
 725		  __func__, txp, txp->len, txp->data, irq);
 726
 727	fid = ks->fid++;
 728	fid &= TXFR_TXFID_MASK;
 729
 730	if (irq)
 731		fid |= TXFR_TXIC;	/* irq on completion */
 732
 733	/* start header at txb[1] to align txw entries */
 734	ks->txh.txb[1] = KS_SPIOP_TXFIFO;
 735	ks->txh.txw[1] = cpu_to_le16(fid);
 736	ks->txh.txw[2] = cpu_to_le16(txp->len);
 737
 738	xfer->tx_buf = &ks->txh.txb[1];
 739	xfer->rx_buf = NULL;
 740	xfer->len = 5;
 741
 742	xfer++;
 743	xfer->tx_buf = txp->data;
 744	xfer->rx_buf = NULL;
 745	xfer->len = ALIGN(txp->len, 4);
 746
 747	ret = spi_sync(ks->spidev, msg);
 748	if (ret < 0)
 749		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
 750}
 751
 752/**
 753 * ks8851_done_tx - update and then free skbuff after transmitting
 754 * @ks: The device state
 755 * @txb: The buffer transmitted
 756 */
 757static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
 758{
 759	struct net_device *dev = ks->netdev;
 760
 761	dev->stats.tx_bytes += txb->len;
 762	dev->stats.tx_packets++;
 763
 764	dev_kfree_skb(txb);
 765}
 766
 767/**
 768 * ks8851_tx_work - process tx packet(s)
 769 * @work: The work strucutre what was scheduled.
 770 *
 771 * This is called when a number of packets have been scheduled for
 772 * transmission and need to be sent to the device.
 773 */
 774static void ks8851_tx_work(struct work_struct *work)
 775{
 776	struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
 777	struct sk_buff *txb;
 778	bool last = skb_queue_empty(&ks->txq);
 779
 780	mutex_lock(&ks->lock);
 781
 782	while (!last) {
 783		txb = skb_dequeue(&ks->txq);
 784		last = skb_queue_empty(&ks->txq);
 785
 786		if (txb != NULL) {
 787			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
 788			ks8851_wrpkt(ks, txb, last);
 789			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 790			ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
 791
 792			ks8851_done_tx(ks, txb);
 793		}
 794	}
 795
 796	mutex_unlock(&ks->lock);
 797}
 798
 799/**
 800 * ks8851_net_open - open network device
 801 * @dev: The network device being opened.
 802 *
 803 * Called when the network device is marked active, such as a user executing
 804 * 'ifconfig up' on the device.
 805 */
 806static int ks8851_net_open(struct net_device *dev)
 807{
 808	struct ks8851_net *ks = netdev_priv(dev);
 809
 810	/* lock the card, even if we may not actually be doing anything
 811	 * else at the moment */
 812	mutex_lock(&ks->lock);
 813
 814	netif_dbg(ks, ifup, ks->netdev, "opening\n");
 815
 816	/* bring chip out of any power saving mode it was in */
 817	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 818
 819	/* issue a soft reset to the RX/TX QMU to put it into a known
 820	 * state. */
 821	ks8851_soft_reset(ks, GRR_QMU);
 822
 823	/* setup transmission parameters */
 824
 825	ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
 826				     TXCR_TXPE | /* pad to min length */
 827				     TXCR_TXCRC | /* add CRC */
 828				     TXCR_TXFCE)); /* enable flow control */
 829
 830	/* auto-increment tx data, reset tx pointer */
 831	ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
 832
 833	/* setup receiver control */
 834
 835	ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
 836				      RXCR1_RXFCE | /* enable flow control */
 837				      RXCR1_RXBE | /* broadcast enable */
 838				      RXCR1_RXUE | /* unicast enable */
 839				      RXCR1_RXE)); /* enable rx block */
 840
 841	/* transfer entire frames out in one go */
 842	ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
 843
 844	/* set receive counter timeouts */
 845	ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
 846	ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
 847	ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */
 848
 849	ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
 850			RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
 851			RXQCR_RXDTTE);  /* IRQ on time exceeded */
 852
 853	ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 854
 855	/* clear then enable interrupts */
 856
 857#define STD_IRQ (IRQ_LCI |	/* Link Change */	\
 858		 IRQ_TXI |	/* TX done */		\
 859		 IRQ_RXI |	/* RX done */		\
 860		 IRQ_SPIBEI |	/* SPI bus error */	\
 861		 IRQ_TXPSI |	/* TX process stop */	\
 862		 IRQ_RXPSI)	/* RX process stop */
 863
 864	ks->rc_ier = STD_IRQ;
 865	ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
 866	ks8851_wrreg16(ks, KS_IER, STD_IRQ);
 867
 868	netif_start_queue(ks->netdev);
 869
 870	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
 871
 872	mutex_unlock(&ks->lock);
 873	return 0;
 874}
 875
 876/**
 877 * ks8851_net_stop - close network device
 878 * @dev: The device being closed.
 879 *
 880 * Called to close down a network device which has been active. Cancell any
 881 * work, shutdown the RX and TX process and then place the chip into a low
 882 * power state whilst it is not being used.
 883 */
 884static int ks8851_net_stop(struct net_device *dev)
 885{
 886	struct ks8851_net *ks = netdev_priv(dev);
 887
 888	netif_info(ks, ifdown, dev, "shutting down\n");
 889
 890	netif_stop_queue(dev);
 891
 892	mutex_lock(&ks->lock);
 893	/* turn off the IRQs and ack any outstanding */
 894	ks8851_wrreg16(ks, KS_IER, 0x0000);
 895	ks8851_wrreg16(ks, KS_ISR, 0xffff);
 896	mutex_unlock(&ks->lock);
 897
 898	/* stop any outstanding work */
 899	flush_work(&ks->irq_work);
 900	flush_work(&ks->tx_work);
 901	flush_work(&ks->rxctrl_work);
 902
 903	mutex_lock(&ks->lock);
 904	/* shutdown RX process */
 905	ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
 906
 907	/* shutdown TX process */
 908	ks8851_wrreg16(ks, KS_TXCR, 0x0000);
 909
 910	/* set powermode to soft power down to save power */
 911	ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 912	mutex_unlock(&ks->lock);
 913
 914	/* ensure any queued tx buffers are dumped */
 915	while (!skb_queue_empty(&ks->txq)) {
 916		struct sk_buff *txb = skb_dequeue(&ks->txq);
 917
 918		netif_dbg(ks, ifdown, ks->netdev,
 919			  "%s: freeing txb %p\n", __func__, txb);
 920
 921		dev_kfree_skb(txb);
 922	}
 923
 924	return 0;
 925}
 926
 927/**
 928 * ks8851_start_xmit - transmit packet
 929 * @skb: The buffer to transmit
 930 * @dev: The device used to transmit the packet.
 931 *
 932 * Called by the network layer to transmit the @skb. Queue the packet for
 933 * the device and schedule the necessary work to transmit the packet when
 934 * it is free.
 935 *
 936 * We do this to firstly avoid sleeping with the network device locked,
 937 * and secondly so we can round up more than one packet to transmit which
 938 * means we can try and avoid generating too many transmit done interrupts.
 939 */
 940static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
 941				     struct net_device *dev)
 942{
 943	struct ks8851_net *ks = netdev_priv(dev);
 944	unsigned needed = calc_txlen(skb->len);
 945	netdev_tx_t ret = NETDEV_TX_OK;
 946
 947	netif_dbg(ks, tx_queued, ks->netdev,
 948		  "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
 949
 950	spin_lock(&ks->statelock);
 951
 952	if (needed > ks->tx_space) {
 953		netif_stop_queue(dev);
 954		ret = NETDEV_TX_BUSY;
 955	} else {
 956		ks->tx_space -= needed;
 957		skb_queue_tail(&ks->txq, skb);
 958	}
 959
 960	spin_unlock(&ks->statelock);
 961	schedule_work(&ks->tx_work);
 962
 963	return ret;
 964}
 965
 966/**
 967 * ks8851_rxctrl_work - work handler to change rx mode
 968 * @work: The work structure this belongs to.
 969 *
 970 * Lock the device and issue the necessary changes to the receive mode from
 971 * the network device layer. This is done so that we can do this without
 972 * having to sleep whilst holding the network device lock.
 973 *
 974 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
 975 * receive parameters are programmed, we issue a write to disable the RXQ and
 976 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
 977 * complete. The interrupt handler then writes the new values into the chip.
 978 */
 979static void ks8851_rxctrl_work(struct work_struct *work)
 980{
 981	struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
 982
 983	mutex_lock(&ks->lock);
 984
 985	/* need to shutdown RXQ before modifying filter parameters */
 986	ks8851_wrreg16(ks, KS_RXCR1, 0x00);
 987
 988	mutex_unlock(&ks->lock);
 989}
 990
 991static void ks8851_set_rx_mode(struct net_device *dev)
 992{
 993	struct ks8851_net *ks = netdev_priv(dev);
 994	struct ks8851_rxctrl rxctrl;
 995
 996	memset(&rxctrl, 0, sizeof(rxctrl));
 997
 998	if (dev->flags & IFF_PROMISC) {
 999		/* interface to receive everything */
1000
1001		rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
1002	} else if (dev->flags & IFF_ALLMULTI) {
1003		/* accept all multicast packets */
1004
1005		rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
1006				RXCR1_RXPAFMA | RXCR1_RXMAFMA);
1007	} else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
1008		struct netdev_hw_addr *ha;
1009		u32 crc;
1010
1011		/* accept some multicast */
1012
1013		netdev_for_each_mc_addr(ha, dev) {
1014			crc = ether_crc(ETH_ALEN, ha->addr);
1015			crc >>= (32 - 6);  /* get top six bits */
1016
1017			rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
1018		}
1019
1020		rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
1021	} else {
1022		/* just accept broadcast / unicast */
1023		rxctrl.rxcr1 = RXCR1_RXPAFMA;
1024	}
1025
1026	rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
1027			 RXCR1_RXBE | /* broadcast enable */
1028			 RXCR1_RXE | /* RX process enable */
1029			 RXCR1_RXFCE); /* enable flow control */
1030
1031	rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
1032
1033	/* schedule work to do the actual set of the data if needed */
1034
1035	spin_lock(&ks->statelock);
1036
1037	if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
1038		memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
1039		schedule_work(&ks->rxctrl_work);
1040	}
1041
1042	spin_unlock(&ks->statelock);
1043}
1044
1045static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1046{
1047	struct sockaddr *sa = addr;
1048
1049	if (netif_running(dev))
1050		return -EBUSY;
1051
1052	if (!is_valid_ether_addr(sa->sa_data))
1053		return -EADDRNOTAVAIL;
1054
1055	dev->addr_assign_type &= ~NET_ADDR_RANDOM;
1056	memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1057	return ks8851_write_mac_addr(dev);
1058}
1059
1060static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1061{
1062	struct ks8851_net *ks = netdev_priv(dev);
1063
1064	if (!netif_running(dev))
1065		return -EINVAL;
1066
1067	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1068}
1069
1070static const struct net_device_ops ks8851_netdev_ops = {
1071	.ndo_open		= ks8851_net_open,
1072	.ndo_stop		= ks8851_net_stop,
1073	.ndo_do_ioctl		= ks8851_net_ioctl,
1074	.ndo_start_xmit		= ks8851_start_xmit,
1075	.ndo_set_mac_address	= ks8851_set_mac_address,
1076	.ndo_set_rx_mode	= ks8851_set_rx_mode,
1077	.ndo_change_mtu		= eth_change_mtu,
1078	.ndo_validate_addr	= eth_validate_addr,
1079};
1080
1081/* ethtool support */
1082
1083static void ks8851_get_drvinfo(struct net_device *dev,
1084			       struct ethtool_drvinfo *di)
1085{
1086	strlcpy(di->driver, "KS8851", sizeof(di->driver));
1087	strlcpy(di->version, "1.00", sizeof(di->version));
1088	strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1089}
1090
1091static u32 ks8851_get_msglevel(struct net_device *dev)
1092{
1093	struct ks8851_net *ks = netdev_priv(dev);
1094	return ks->msg_enable;
1095}
1096
1097static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1098{
1099	struct ks8851_net *ks = netdev_priv(dev);
1100	ks->msg_enable = to;
1101}
1102
1103static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1104{
1105	struct ks8851_net *ks = netdev_priv(dev);
1106	return mii_ethtool_gset(&ks->mii, cmd);
1107}
1108
1109static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1110{
1111	struct ks8851_net *ks = netdev_priv(dev);
1112	return mii_ethtool_sset(&ks->mii, cmd);
1113}
1114
1115static u32 ks8851_get_link(struct net_device *dev)
1116{
1117	struct ks8851_net *ks = netdev_priv(dev);
1118	return mii_link_ok(&ks->mii);
1119}
1120
1121static int ks8851_nway_reset(struct net_device *dev)
1122{
1123	struct ks8851_net *ks = netdev_priv(dev);
1124	return mii_nway_restart(&ks->mii);
1125}
1126
1127/* EEPROM support */
1128
1129static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
1130{
1131	struct ks8851_net *ks = ee->data;
1132	unsigned val;
1133
1134	val = ks8851_rdreg16(ks, KS_EEPCR);
1135
1136	ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
1137	ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
1138	ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
1139}
1140
1141static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
1142{
1143	struct ks8851_net *ks = ee->data;
1144	unsigned val = EEPCR_EESA;	/* default - eeprom access on */
1145
1146	if (ee->drive_data)
1147		val |= EEPCR_EESRWA;
1148	if (ee->reg_data_in)
1149		val |= EEPCR_EEDO;
1150	if (ee->reg_data_clock)
1151		val |= EEPCR_EESCK;
1152	if (ee->reg_chip_select)
1153		val |= EEPCR_EECS;
1154
1155	ks8851_wrreg16(ks, KS_EEPCR, val);
1156}
1157
1158/**
1159 * ks8851_eeprom_claim - claim device EEPROM and activate the interface
1160 * @ks: The network device state.
1161 *
1162 * Check for the presence of an EEPROM, and then activate software access
1163 * to the device.
1164 */
1165static int ks8851_eeprom_claim(struct ks8851_net *ks)
1166{
1167	if (!(ks->rc_ccr & CCR_EEPROM))
1168		return -ENOENT;
1169
1170	mutex_lock(&ks->lock);
1171
1172	/* start with clock low, cs high */
1173	ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
1174	return 0;
1175}
1176
1177/**
1178 * ks8851_eeprom_release - release the EEPROM interface
1179 * @ks: The device state
1180 *
1181 * Release the software access to the device EEPROM
1182 */
1183static void ks8851_eeprom_release(struct ks8851_net *ks)
1184{
1185	unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
1186
1187	ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
1188	mutex_unlock(&ks->lock);
1189}
1190
1191#define KS_EEPROM_MAGIC (0x00008851)
1192
1193static int ks8851_set_eeprom(struct net_device *dev,
1194			     struct ethtool_eeprom *ee, u8 *data)
1195{
1196	struct ks8851_net *ks = netdev_priv(dev);
1197	int offset = ee->offset;
1198	int len = ee->len;
1199	u16 tmp;
1200
1201	/* currently only support byte writing */
1202	if (len != 1)
1203		return -EINVAL;
1204
1205	if (ee->magic != KS_EEPROM_MAGIC)
1206		return -EINVAL;
1207
1208	if (ks8851_eeprom_claim(ks))
1209		return -ENOENT;
1210
1211	eeprom_93cx6_wren(&ks->eeprom, true);
1212
1213	/* ethtool currently only supports writing bytes, which means
1214	 * we have to read/modify/write our 16bit EEPROMs */
1215
1216	eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
1217
1218	if (offset & 1) {
1219		tmp &= 0xff;
1220		tmp |= *data << 8;
1221	} else {
1222		tmp &= 0xff00;
1223		tmp |= *data;
1224	}
1225
1226	eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
1227	eeprom_93cx6_wren(&ks->eeprom, false);
1228
1229	ks8851_eeprom_release(ks);
1230
1231	return 0;
1232}
1233
1234static int ks8851_get_eeprom(struct net_device *dev,
1235			     struct ethtool_eeprom *ee, u8 *data)
1236{
1237	struct ks8851_net *ks = netdev_priv(dev);
1238	int offset = ee->offset;
1239	int len = ee->len;
1240
1241	/* must be 2 byte aligned */
1242	if (len & 1 || offset & 1)
1243		return -EINVAL;
1244
1245	if (ks8851_eeprom_claim(ks))
1246		return -ENOENT;
1247
1248	ee->magic = KS_EEPROM_MAGIC;
1249
1250	eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
1251	ks8851_eeprom_release(ks);
1252
1253	return 0;
1254}
1255
1256static int ks8851_get_eeprom_len(struct net_device *dev)
1257{
1258	struct ks8851_net *ks = netdev_priv(dev);
1259
1260	/* currently, we assume it is an 93C46 attached, so return 128 */
1261	return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
1262}
1263
1264static const struct ethtool_ops ks8851_ethtool_ops = {
1265	.get_drvinfo	= ks8851_get_drvinfo,
1266	.get_msglevel	= ks8851_get_msglevel,
1267	.set_msglevel	= ks8851_set_msglevel,
1268	.get_settings	= ks8851_get_settings,
1269	.set_settings	= ks8851_set_settings,
1270	.get_link	= ks8851_get_link,
1271	.nway_reset	= ks8851_nway_reset,
1272	.get_eeprom_len	= ks8851_get_eeprom_len,
1273	.get_eeprom	= ks8851_get_eeprom,
1274	.set_eeprom	= ks8851_set_eeprom,
1275};
1276
1277/* MII interface controls */
1278
1279/**
1280 * ks8851_phy_reg - convert MII register into a KS8851 register
1281 * @reg: MII register number.
1282 *
1283 * Return the KS8851 register number for the corresponding MII PHY register
1284 * if possible. Return zero if the MII register has no direct mapping to the
1285 * KS8851 register set.
1286 */
1287static int ks8851_phy_reg(int reg)
1288{
1289	switch (reg) {
1290	case MII_BMCR:
1291		return KS_P1MBCR;
1292	case MII_BMSR:
1293		return KS_P1MBSR;
1294	case MII_PHYSID1:
1295		return KS_PHY1ILR;
1296	case MII_PHYSID2:
1297		return KS_PHY1IHR;
1298	case MII_ADVERTISE:
1299		return KS_P1ANAR;
1300	case MII_LPA:
1301		return KS_P1ANLPR;
1302	}
1303
1304	return 0x0;
1305}
1306
1307/**
1308 * ks8851_phy_read - MII interface PHY register read.
1309 * @dev: The network device the PHY is on.
1310 * @phy_addr: Address of PHY (ignored as we only have one)
1311 * @reg: The register to read.
1312 *
1313 * This call reads data from the PHY register specified in @reg. Since the
1314 * device does not support all the MII registers, the non-existent values
1315 * are always returned as zero.
1316 *
1317 * We return zero for unsupported registers as the MII code does not check
1318 * the value returned for any error status, and simply returns it to the
1319 * caller. The mii-tool that the driver was tested with takes any -ve error
1320 * as real PHY capabilities, thus displaying incorrect data to the user.
1321 */
1322static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1323{
1324	struct ks8851_net *ks = netdev_priv(dev);
1325	int ksreg;
1326	int result;
1327
1328	ksreg = ks8851_phy_reg(reg);
1329	if (!ksreg)
1330		return 0x0;	/* no error return allowed, so use zero */
1331
1332	mutex_lock(&ks->lock);
1333	result = ks8851_rdreg16(ks, ksreg);
1334	mutex_unlock(&ks->lock);
1335
1336	return result;
1337}
1338
1339static void ks8851_phy_write(struct net_device *dev,
1340			     int phy, int reg, int value)
1341{
1342	struct ks8851_net *ks = netdev_priv(dev);
1343	int ksreg;
1344
1345	ksreg = ks8851_phy_reg(reg);
1346	if (ksreg) {
1347		mutex_lock(&ks->lock);
1348		ks8851_wrreg16(ks, ksreg, value);
1349		mutex_unlock(&ks->lock);
1350	}
1351}
1352
1353/**
1354 * ks8851_read_selftest - read the selftest memory info.
1355 * @ks: The device state
1356 *
1357 * Read and check the TX/RX memory selftest information.
1358 */
1359static int ks8851_read_selftest(struct ks8851_net *ks)
1360{
1361	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1362	int ret = 0;
1363	unsigned rd;
1364
1365	rd = ks8851_rdreg16(ks, KS_MBIR);
1366
1367	if ((rd & both_done) != both_done) {
1368		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1369		return 0;
1370	}
1371
1372	if (rd & MBIR_TXMBFA) {
1373		netdev_err(ks->netdev, "TX memory selftest fail\n");
1374		ret |= 1;
1375	}
1376
1377	if (rd & MBIR_RXMBFA) {
1378		netdev_err(ks->netdev, "RX memory selftest fail\n");
1379		ret |= 2;
1380	}
1381
1382	return 0;
1383}
1384
1385/* driver bus management functions */
1386
1387#ifdef CONFIG_PM
1388static int ks8851_suspend(struct spi_device *spi, pm_message_t state)
1389{
1390	struct ks8851_net *ks = dev_get_drvdata(&spi->dev);
1391	struct net_device *dev = ks->netdev;
1392
1393	if (netif_running(dev)) {
1394		netif_device_detach(dev);
1395		ks8851_net_stop(dev);
1396	}
1397
1398	return 0;
1399}
1400
1401static int ks8851_resume(struct spi_device *spi)
1402{
1403	struct ks8851_net *ks = dev_get_drvdata(&spi->dev);
1404	struct net_device *dev = ks->netdev;
1405
1406	if (netif_running(dev)) {
1407		ks8851_net_open(dev);
1408		netif_device_attach(dev);
1409	}
1410
1411	return 0;
1412}
1413#else
1414#define ks8851_suspend NULL
1415#define ks8851_resume NULL
1416#endif
1417
1418static int __devinit ks8851_probe(struct spi_device *spi)
1419{
1420	struct net_device *ndev;
1421	struct ks8851_net *ks;
1422	int ret;
1423	unsigned cider;
1424
1425	ndev = alloc_etherdev(sizeof(struct ks8851_net));
1426	if (!ndev)
1427		return -ENOMEM;
1428
1429	spi->bits_per_word = 8;
1430
1431	ks = netdev_priv(ndev);
1432
1433	ks->netdev = ndev;
1434	ks->spidev = spi;
1435	ks->tx_space = 6144;
1436
1437	mutex_init(&ks->lock);
1438	spin_lock_init(&ks->statelock);
1439
1440	INIT_WORK(&ks->tx_work, ks8851_tx_work);
1441	INIT_WORK(&ks->irq_work, ks8851_irq_work);
1442	INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1443
1444	/* initialise pre-made spi transfer messages */
1445
1446	spi_message_init(&ks->spi_msg1);
1447	spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1448
1449	spi_message_init(&ks->spi_msg2);
1450	spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1451	spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1452
1453	/* setup EEPROM state */
1454
1455	ks->eeprom.data = ks;
1456	ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1457	ks->eeprom.register_read = ks8851_eeprom_regread;
1458	ks->eeprom.register_write = ks8851_eeprom_regwrite;
1459
1460	/* setup mii state */
1461	ks->mii.dev		= ndev;
1462	ks->mii.phy_id		= 1,
1463	ks->mii.phy_id_mask	= 1;
1464	ks->mii.reg_num_mask	= 0xf;
1465	ks->mii.mdio_read	= ks8851_phy_read;
1466	ks->mii.mdio_write	= ks8851_phy_write;
1467
1468	dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1469
1470	/* set the default message enable */
1471	ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1472						     NETIF_MSG_PROBE |
1473						     NETIF_MSG_LINK));
1474
1475	skb_queue_head_init(&ks->txq);
1476
1477	SET_ETHTOOL_OPS(ndev, &ks8851_ethtool_ops);
1478	SET_NETDEV_DEV(ndev, &spi->dev);
1479
1480	dev_set_drvdata(&spi->dev, ks);
1481
1482	ndev->if_port = IF_PORT_100BASET;
1483	ndev->netdev_ops = &ks8851_netdev_ops;
1484	ndev->irq = spi->irq;
1485
1486	/* issue a global soft reset to reset the device. */
1487	ks8851_soft_reset(ks, GRR_GSR);
1488
1489	/* simple check for a valid chip being connected to the bus */
1490	cider = ks8851_rdreg16(ks, KS_CIDER);
1491	if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1492		dev_err(&spi->dev, "failed to read device ID\n");
1493		ret = -ENODEV;
1494		goto err_id;
1495	}
1496
1497	/* cache the contents of the CCR register for EEPROM, etc. */
1498	ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1499
1500	if (ks->rc_ccr & CCR_EEPROM)
1501		ks->eeprom_size = 128;
1502	else
1503		ks->eeprom_size = 0;
1504
1505	ks8851_read_selftest(ks);
1506	ks8851_init_mac(ks);
1507
1508	ret = request_irq(spi->irq, ks8851_irq, IRQF_TRIGGER_LOW,
1509			  ndev->name, ks);
1510	if (ret < 0) {
1511		dev_err(&spi->dev, "failed to get irq\n");
1512		goto err_irq;
1513	}
1514
1515	ret = register_netdev(ndev);
1516	if (ret) {
1517		dev_err(&spi->dev, "failed to register network device\n");
1518		goto err_netdev;
1519	}
1520
1521	netdev_info(ndev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1522		    CIDER_REV_GET(cider), ndev->dev_addr, ndev->irq,
1523		    ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1524
1525	return 0;
1526
1527
1528err_netdev:
1529	free_irq(ndev->irq, ks);
1530
1531err_id:
1532err_irq:
1533	free_netdev(ndev);
1534	return ret;
1535}
1536
1537static int __devexit ks8851_remove(struct spi_device *spi)
1538{
1539	struct ks8851_net *priv = dev_get_drvdata(&spi->dev);
1540
1541	if (netif_msg_drv(priv))
1542		dev_info(&spi->dev, "remove\n");
1543
1544	unregister_netdev(priv->netdev);
1545	free_irq(spi->irq, priv);
1546	free_netdev(priv->netdev);
1547
1548	return 0;
1549}
1550
1551static struct spi_driver ks8851_driver = {
1552	.driver = {
1553		.name = "ks8851",
1554		.owner = THIS_MODULE,
1555	},
1556	.probe = ks8851_probe,
1557	.remove = __devexit_p(ks8851_remove),
1558	.suspend = ks8851_suspend,
1559	.resume = ks8851_resume,
1560};
1561
1562static int __init ks8851_init(void)
1563{
1564	return spi_register_driver(&ks8851_driver);
1565}
1566
1567static void __exit ks8851_exit(void)
1568{
1569	spi_unregister_driver(&ks8851_driver);
1570}
1571
1572module_init(ks8851_init);
1573module_exit(ks8851_exit);
1574
1575MODULE_DESCRIPTION("KS8851 Network driver");
1576MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1577MODULE_LICENSE("GPL");
1578
1579module_param_named(message, msg_enable, int, 0);
1580MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1581MODULE_ALIAS("spi:ks8851");