Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* drivers/net/ethernet/freescale/gianfar.c
   3 *
   4 * Gianfar Ethernet Driver
   5 * This driver is designed for the non-CPM ethernet controllers
   6 * on the 85xx and 83xx family of integrated processors
   7 * Based on 8260_io/fcc_enet.c
   8 *
   9 * Author: Andy Fleming
  10 * Maintainer: Kumar Gala
  11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  12 *
  13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
  14 * Copyright 2007 MontaVista Software, Inc.
  15 *
  16 *  Gianfar:  AKA Lambda Draconis, "Dragon"
  17 *  RA 11 31 24.2
  18 *  Dec +69 19 52
  19 *  V 3.84
  20 *  B-V +1.62
  21 *
  22 *  Theory of operation
  23 *
  24 *  The driver is initialized through of_device. Configuration information
  25 *  is therefore conveyed through an OF-style device tree.
  26 *
  27 *  The Gianfar Ethernet Controller uses a ring of buffer
  28 *  descriptors.  The beginning is indicated by a register
  29 *  pointing to the physical address of the start of the ring.
  30 *  The end is determined by a "wrap" bit being set in the
  31 *  last descriptor of the ring.
  32 *
  33 *  When a packet is received, the RXF bit in the
  34 *  IEVENT register is set, triggering an interrupt when the
  35 *  corresponding bit in the IMASK register is also set (if
  36 *  interrupt coalescing is active, then the interrupt may not
  37 *  happen immediately, but will wait until either a set number
  38 *  of frames or amount of time have passed).  In NAPI, the
  39 *  interrupt handler will signal there is work to be done, and
  40 *  exit. This method will start at the last known empty
  41 *  descriptor, and process every subsequent descriptor until there
  42 *  are none left with data (NAPI will stop after a set number of
  43 *  packets to give time to other tasks, but will eventually
  44 *  process all the packets).  The data arrives inside a
  45 *  pre-allocated skb, and so after the skb is passed up to the
  46 *  stack, a new skb must be allocated, and the address field in
  47 *  the buffer descriptor must be updated to indicate this new
  48 *  skb.
  49 *
  50 *  When the kernel requests that a packet be transmitted, the
  51 *  driver starts where it left off last time, and points the
  52 *  descriptor at the buffer which was passed in.  The driver
  53 *  then informs the DMA engine that there are packets ready to
  54 *  be transmitted.  Once the controller is finished transmitting
  55 *  the packet, an interrupt may be triggered (under the same
  56 *  conditions as for reception, but depending on the TXF bit).
  57 *  The driver then cleans up the buffer.
  58 */
  59
  60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 
  61
  62#include <linux/kernel.h>
  63#include <linux/platform_device.h>
  64#include <linux/string.h>
  65#include <linux/errno.h>
  66#include <linux/unistd.h>
  67#include <linux/slab.h>
  68#include <linux/interrupt.h>
  69#include <linux/delay.h>
  70#include <linux/netdevice.h>
  71#include <linux/etherdevice.h>
  72#include <linux/skbuff.h>
  73#include <linux/if_vlan.h>
  74#include <linux/spinlock.h>
  75#include <linux/mm.h>
  76#include <linux/of_address.h>
  77#include <linux/of_irq.h>
  78#include <linux/of_mdio.h>
 
  79#include <linux/ip.h>
  80#include <linux/tcp.h>
  81#include <linux/udp.h>
  82#include <linux/in.h>
  83#include <linux/net_tstamp.h>
  84
  85#include <asm/io.h>
  86#ifdef CONFIG_PPC
  87#include <asm/reg.h>
  88#include <asm/mpc85xx.h>
  89#endif
  90#include <asm/irq.h>
  91#include <linux/uaccess.h>
  92#include <linux/module.h>
  93#include <linux/dma-mapping.h>
  94#include <linux/crc32.h>
  95#include <linux/mii.h>
  96#include <linux/phy.h>
  97#include <linux/phy_fixed.h>
  98#include <linux/of.h>
  99#include <linux/of_net.h>
 100
 101#include "gianfar.h"
 102
 103#define TX_TIMEOUT      (5*HZ)
 104
 
 
 105MODULE_AUTHOR("Freescale Semiconductor, Inc");
 106MODULE_DESCRIPTION("Gianfar Ethernet Driver");
 107MODULE_LICENSE("GPL");
 108
 109static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 110			    dma_addr_t buf)
 111{
 112	u32 lstatus;
 113
 114	bdp->bufPtr = cpu_to_be32(buf);
 115
 116	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
 117	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
 118		lstatus |= BD_LFLAG(RXBD_WRAP);
 119
 120	gfar_wmb();
 121
 122	bdp->lstatus = cpu_to_be32(lstatus);
 123}
 124
 125static void gfar_init_tx_rx_base(struct gfar_private *priv)
 126{
 127	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 128	u32 __iomem *baddr;
 129	int i;
 130
 131	baddr = &regs->tbase0;
 132	for (i = 0; i < priv->num_tx_queues; i++) {
 133		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
 134		baddr += 2;
 135	}
 136
 137	baddr = &regs->rbase0;
 138	for (i = 0; i < priv->num_rx_queues; i++) {
 139		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
 140		baddr += 2;
 141	}
 142}
 143
 144static void gfar_init_rqprm(struct gfar_private *priv)
 145{
 146	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 147	u32 __iomem *baddr;
 148	int i;
 149
 150	baddr = &regs->rqprm0;
 151	for (i = 0; i < priv->num_rx_queues; i++) {
 152		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
 153			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
 154		baddr++;
 155	}
 156}
 157
 158static void gfar_rx_offload_en(struct gfar_private *priv)
 159{
 160	/* set this when rx hw offload (TOE) functions are being used */
 161	priv->uses_rxfcb = 0;
 162
 163	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
 164		priv->uses_rxfcb = 1;
 165
 166	if (priv->hwts_rx_en || priv->rx_filer_enable)
 167		priv->uses_rxfcb = 1;
 168}
 169
 170static void gfar_mac_rx_config(struct gfar_private *priv)
 171{
 172	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 173	u32 rctrl = 0;
 174
 175	if (priv->rx_filer_enable) {
 176		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
 177		/* Program the RIR0 reg with the required distribution */
 178		gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
 
 
 
 179	}
 180
 181	/* Restore PROMISC mode */
 182	if (priv->ndev->flags & IFF_PROMISC)
 183		rctrl |= RCTRL_PROM;
 184
 185	if (priv->ndev->features & NETIF_F_RXCSUM)
 186		rctrl |= RCTRL_CHECKSUMMING;
 187
 188	if (priv->extended_hash)
 189		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
 190
 191	if (priv->padding) {
 192		rctrl &= ~RCTRL_PAL_MASK;
 193		rctrl |= RCTRL_PADDING(priv->padding);
 194	}
 195
 196	/* Enable HW time stamping if requested from user space */
 197	if (priv->hwts_rx_en)
 198		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
 199
 200	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
 201		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
 202
 203	/* Clear the LFC bit */
 204	gfar_write(&regs->rctrl, rctrl);
 205	/* Init flow control threshold values */
 206	gfar_init_rqprm(priv);
 207	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
 208	rctrl |= RCTRL_LFC;
 209
 210	/* Init rctrl based on our settings */
 211	gfar_write(&regs->rctrl, rctrl);
 212}
 213
 214static void gfar_mac_tx_config(struct gfar_private *priv)
 215{
 216	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 217	u32 tctrl = 0;
 218
 219	if (priv->ndev->features & NETIF_F_IP_CSUM)
 220		tctrl |= TCTRL_INIT_CSUM;
 221
 222	if (priv->prio_sched_en)
 223		tctrl |= TCTRL_TXSCHED_PRIO;
 224	else {
 225		tctrl |= TCTRL_TXSCHED_WRRS;
 226		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
 227		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
 228	}
 229
 230	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
 231		tctrl |= TCTRL_VLINS;
 232
 233	gfar_write(&regs->tctrl, tctrl);
 234}
 235
 236static void gfar_configure_coalescing(struct gfar_private *priv,
 237			       unsigned long tx_mask, unsigned long rx_mask)
 238{
 239	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 240	u32 __iomem *baddr;
 241
 242	if (priv->mode == MQ_MG_MODE) {
 243		int i = 0;
 244
 245		baddr = &regs->txic0;
 246		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
 247			gfar_write(baddr + i, 0);
 248			if (likely(priv->tx_queue[i]->txcoalescing))
 249				gfar_write(baddr + i, priv->tx_queue[i]->txic);
 250		}
 251
 252		baddr = &regs->rxic0;
 253		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
 254			gfar_write(baddr + i, 0);
 255			if (likely(priv->rx_queue[i]->rxcoalescing))
 256				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
 257		}
 258	} else {
 259		/* Backward compatible case -- even if we enable
 260		 * multiple queues, there's only single reg to program
 261		 */
 262		gfar_write(&regs->txic, 0);
 263		if (likely(priv->tx_queue[0]->txcoalescing))
 264			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
 265
 266		gfar_write(&regs->rxic, 0);
 267		if (unlikely(priv->rx_queue[0]->rxcoalescing))
 268			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
 269	}
 270}
 271
 272static void gfar_configure_coalescing_all(struct gfar_private *priv)
 273{
 274	gfar_configure_coalescing(priv, 0xFF, 0xFF);
 275}
 276
 277static void gfar_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
 278{
 279	struct gfar_private *priv = netdev_priv(dev);
 
 
 280	int i;
 281
 282	for (i = 0; i < priv->num_rx_queues; i++) {
 283		stats->rx_packets += priv->rx_queue[i]->stats.rx_packets;
 284		stats->rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
 285		stats->rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
 286	}
 287
 
 
 
 
 288	for (i = 0; i < priv->num_tx_queues; i++) {
 289		stats->tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
 290		stats->tx_packets += priv->tx_queue[i]->stats.tx_packets;
 291	}
 292
 293	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
 294		struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
 295		unsigned long flags;
 296		u32 rdrp, car, car_before;
 297		u64 rdrp_offset;
 298
 299		spin_lock_irqsave(&priv->rmon_overflow.lock, flags);
 300		car = gfar_read(&rmon->car1) & CAR1_C1RDR;
 301		do {
 302			car_before = car;
 303			rdrp = gfar_read(&rmon->rdrp);
 304			car = gfar_read(&rmon->car1) & CAR1_C1RDR;
 305		} while (car != car_before);
 306		if (car) {
 307			priv->rmon_overflow.rdrp++;
 308			gfar_write(&rmon->car1, car);
 309		}
 310		rdrp_offset = priv->rmon_overflow.rdrp;
 311		spin_unlock_irqrestore(&priv->rmon_overflow.lock, flags);
 312
 313		stats->rx_missed_errors = rdrp + (rdrp_offset << 16);
 314	}
 315}
 316
 317/* Set the appropriate hash bit for the given addr */
 318/* The algorithm works like so:
 319 * 1) Take the Destination Address (ie the multicast address), and
 320 * do a CRC on it (little endian), and reverse the bits of the
 321 * result.
 322 * 2) Use the 8 most significant bits as a hash into a 256-entry
 323 * table.  The table is controlled through 8 32-bit registers:
 324 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
 325 * gaddr7.  This means that the 3 most significant bits in the
 326 * hash index which gaddr register to use, and the 5 other bits
 327 * indicate which bit (assuming an IBM numbering scheme, which
 328 * for PowerPC (tm) is usually the case) in the register holds
 329 * the entry.
 330 */
 331static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
 332{
 333	u32 tempval;
 334	struct gfar_private *priv = netdev_priv(dev);
 335	u32 result = ether_crc(ETH_ALEN, addr);
 336	int width = priv->hash_width;
 337	u8 whichbit = (result >> (32 - width)) & 0x1f;
 338	u8 whichreg = result >> (32 - width + 5);
 339	u32 value = (1 << (31-whichbit));
 340
 341	tempval = gfar_read(priv->hash_regs[whichreg]);
 342	tempval |= value;
 343	gfar_write(priv->hash_regs[whichreg], tempval);
 344}
 345
 346/* There are multiple MAC Address register pairs on some controllers
 347 * This function sets the numth pair to a given address
 348 */
 349static void gfar_set_mac_for_addr(struct net_device *dev, int num,
 350				  const u8 *addr)
 351{
 352	struct gfar_private *priv = netdev_priv(dev);
 353	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 354	u32 tempval;
 355	u32 __iomem *macptr = &regs->macstnaddr1;
 356
 357	macptr += num*2;
 358
 359	/* For a station address of 0x12345678ABCD in transmission
 360	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
 361	 * MACnADDR2 is set to 0x34120000.
 362	 */
 363	tempval = (addr[5] << 24) | (addr[4] << 16) |
 364		  (addr[3] << 8)  |  addr[2];
 365
 366	gfar_write(macptr, tempval);
 367
 368	tempval = (addr[1] << 24) | (addr[0] << 16);
 369
 370	gfar_write(macptr+1, tempval);
 371}
 372
 373static int gfar_set_mac_addr(struct net_device *dev, void *p)
 374{
 375	int ret;
 376
 377	ret = eth_mac_addr(dev, p);
 378	if (ret)
 379		return ret;
 380
 381	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
 382
 383	return 0;
 384}
 385
 386static void gfar_ints_disable(struct gfar_private *priv)
 387{
 388	int i;
 389	for (i = 0; i < priv->num_grps; i++) {
 390		struct gfar __iomem *regs = priv->gfargrp[i].regs;
 391		/* Clear IEVENT */
 392		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
 393
 394		/* Initialize IMASK */
 395		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
 396	}
 397}
 398
 399static void gfar_ints_enable(struct gfar_private *priv)
 400{
 401	int i;
 402	for (i = 0; i < priv->num_grps; i++) {
 403		struct gfar __iomem *regs = priv->gfargrp[i].regs;
 404		/* Unmask the interrupts we look for */
 405		gfar_write(&regs->imask,
 406			   IMASK_DEFAULT | priv->rmon_overflow.imask);
 407	}
 408}
 409
 410static int gfar_alloc_tx_queues(struct gfar_private *priv)
 411{
 412	int i;
 413
 414	for (i = 0; i < priv->num_tx_queues; i++) {
 415		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
 416					    GFP_KERNEL);
 417		if (!priv->tx_queue[i])
 418			return -ENOMEM;
 419
 420		priv->tx_queue[i]->tx_skbuff = NULL;
 421		priv->tx_queue[i]->qindex = i;
 422		priv->tx_queue[i]->dev = priv->ndev;
 423		spin_lock_init(&(priv->tx_queue[i]->txlock));
 424	}
 425	return 0;
 426}
 427
 428static int gfar_alloc_rx_queues(struct gfar_private *priv)
 429{
 430	int i;
 431
 432	for (i = 0; i < priv->num_rx_queues; i++) {
 433		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
 434					    GFP_KERNEL);
 435		if (!priv->rx_queue[i])
 436			return -ENOMEM;
 437
 438		priv->rx_queue[i]->qindex = i;
 439		priv->rx_queue[i]->ndev = priv->ndev;
 440	}
 441	return 0;
 442}
 443
 444static void gfar_free_tx_queues(struct gfar_private *priv)
 445{
 446	int i;
 447
 448	for (i = 0; i < priv->num_tx_queues; i++)
 449		kfree(priv->tx_queue[i]);
 450}
 451
 452static void gfar_free_rx_queues(struct gfar_private *priv)
 453{
 454	int i;
 455
 456	for (i = 0; i < priv->num_rx_queues; i++)
 457		kfree(priv->rx_queue[i]);
 458}
 459
 460static void unmap_group_regs(struct gfar_private *priv)
 461{
 462	int i;
 463
 464	for (i = 0; i < MAXGROUPS; i++)
 465		if (priv->gfargrp[i].regs)
 466			iounmap(priv->gfargrp[i].regs);
 467}
 468
 469static void free_gfar_dev(struct gfar_private *priv)
 470{
 471	int i, j;
 472
 473	for (i = 0; i < priv->num_grps; i++)
 474		for (j = 0; j < GFAR_NUM_IRQS; j++) {
 475			kfree(priv->gfargrp[i].irqinfo[j]);
 476			priv->gfargrp[i].irqinfo[j] = NULL;
 477		}
 478
 479	free_netdev(priv->ndev);
 480}
 481
 482static void disable_napi(struct gfar_private *priv)
 483{
 484	int i;
 485
 486	for (i = 0; i < priv->num_grps; i++) {
 487		napi_disable(&priv->gfargrp[i].napi_rx);
 488		napi_disable(&priv->gfargrp[i].napi_tx);
 489	}
 490}
 491
 492static void enable_napi(struct gfar_private *priv)
 493{
 494	int i;
 495
 496	for (i = 0; i < priv->num_grps; i++) {
 497		napi_enable(&priv->gfargrp[i].napi_rx);
 498		napi_enable(&priv->gfargrp[i].napi_tx);
 499	}
 500}
 501
 502static int gfar_parse_group(struct device_node *np,
 503			    struct gfar_private *priv, const char *model)
 504{
 505	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
 506	int i;
 507
 508	for (i = 0; i < GFAR_NUM_IRQS; i++) {
 509		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
 510					  GFP_KERNEL);
 511		if (!grp->irqinfo[i])
 512			return -ENOMEM;
 513	}
 514
 515	grp->regs = of_iomap(np, 0);
 516	if (!grp->regs)
 517		return -ENOMEM;
 518
 519	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
 520
 521	/* If we aren't the FEC we have multiple interrupts */
 522	if (model && strcasecmp(model, "FEC")) {
 523		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
 524		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
 525		if (!gfar_irq(grp, TX)->irq ||
 526		    !gfar_irq(grp, RX)->irq ||
 527		    !gfar_irq(grp, ER)->irq)
 528			return -EINVAL;
 529	}
 530
 531	grp->priv = priv;
 532	spin_lock_init(&grp->grplock);
 533	if (priv->mode == MQ_MG_MODE) {
 534		/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
 
 
 535		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 536		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 537	} else {
 538		grp->rx_bit_map = 0xFF;
 539		grp->tx_bit_map = 0xFF;
 540	}
 541
 542	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
 543	 * right to left, so we need to revert the 8 bits to get the q index
 544	 */
 545	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
 546	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
 547
 548	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
 549	 * also assign queues to groups
 550	 */
 551	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
 552		if (!grp->rx_queue)
 553			grp->rx_queue = priv->rx_queue[i];
 554		grp->num_rx_queues++;
 555		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
 556		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
 557		priv->rx_queue[i]->grp = grp;
 558	}
 559
 560	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
 561		if (!grp->tx_queue)
 562			grp->tx_queue = priv->tx_queue[i];
 563		grp->num_tx_queues++;
 564		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
 565		priv->tqueue |= (TQUEUE_EN0 >> i);
 566		priv->tx_queue[i]->grp = grp;
 567	}
 568
 569	priv->num_grps++;
 570
 571	return 0;
 572}
 573
 574static int gfar_of_group_count(struct device_node *np)
 575{
 576	struct device_node *child;
 577	int num = 0;
 578
 579	for_each_available_child_of_node(np, child)
 580		if (of_node_name_eq(child, "queue-group"))
 581			num++;
 582
 583	return num;
 584}
 585
 586/* Reads the controller's registers to determine what interface
 587 * connects it to the PHY.
 588 */
 589static phy_interface_t gfar_get_interface(struct net_device *dev)
 590{
 591	struct gfar_private *priv = netdev_priv(dev);
 592	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 593	u32 ecntrl;
 594
 595	ecntrl = gfar_read(&regs->ecntrl);
 596
 597	if (ecntrl & ECNTRL_SGMII_MODE)
 598		return PHY_INTERFACE_MODE_SGMII;
 599
 600	if (ecntrl & ECNTRL_TBI_MODE) {
 601		if (ecntrl & ECNTRL_REDUCED_MODE)
 602			return PHY_INTERFACE_MODE_RTBI;
 603		else
 604			return PHY_INTERFACE_MODE_TBI;
 605	}
 606
 607	if (ecntrl & ECNTRL_REDUCED_MODE) {
 608		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
 609			return PHY_INTERFACE_MODE_RMII;
 610		}
 611		else {
 612			phy_interface_t interface = priv->interface;
 613
 614			/* This isn't autodetected right now, so it must
 615			 * be set by the device tree or platform code.
 616			 */
 617			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
 618				return PHY_INTERFACE_MODE_RGMII_ID;
 619
 620			return PHY_INTERFACE_MODE_RGMII;
 621		}
 622	}
 623
 624	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
 625		return PHY_INTERFACE_MODE_GMII;
 626
 627	return PHY_INTERFACE_MODE_MII;
 628}
 629
 630static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
 631{
 632	const char *model;
 
 633	int err = 0, i;
 634	phy_interface_t interface;
 635	struct net_device *dev = NULL;
 636	struct gfar_private *priv = NULL;
 637	struct device_node *np = ofdev->dev.of_node;
 638	struct device_node *child = NULL;
 639	u32 stash_len = 0;
 640	u32 stash_idx = 0;
 641	unsigned int num_tx_qs, num_rx_qs;
 642	unsigned short mode;
 643
 644	if (!np)
 645		return -ENODEV;
 646
 647	if (of_device_is_compatible(np, "fsl,etsec2"))
 648		mode = MQ_MG_MODE;
 649	else
 
 650		mode = SQ_SG_MODE;
 
 
 651
 652	if (mode == SQ_SG_MODE) {
 653		num_tx_qs = 1;
 654		num_rx_qs = 1;
 655	} else { /* MQ_MG_MODE */
 656		/* get the actual number of supported groups */
 657		unsigned int num_grps = gfar_of_group_count(np);
 658
 659		if (num_grps == 0 || num_grps > MAXGROUPS) {
 660			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
 661				num_grps);
 662			pr_err("Cannot do alloc_etherdev, aborting\n");
 663			return -EINVAL;
 664		}
 665
 666		num_tx_qs = num_grps; /* one txq per int group */
 667		num_rx_qs = num_grps; /* one rxq per int group */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 668	}
 669
 670	if (num_tx_qs > MAX_TX_QS) {
 671		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
 672		       num_tx_qs, MAX_TX_QS);
 673		pr_err("Cannot do alloc_etherdev, aborting\n");
 674		return -EINVAL;
 675	}
 676
 677	if (num_rx_qs > MAX_RX_QS) {
 678		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
 679		       num_rx_qs, MAX_RX_QS);
 680		pr_err("Cannot do alloc_etherdev, aborting\n");
 681		return -EINVAL;
 682	}
 683
 684	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
 685	dev = *pdev;
 686	if (NULL == dev)
 687		return -ENOMEM;
 688
 689	priv = netdev_priv(dev);
 690	priv->ndev = dev;
 691
 692	priv->mode = mode;
 
 693
 694	priv->num_tx_queues = num_tx_qs;
 695	netif_set_real_num_rx_queues(dev, num_rx_qs);
 696	priv->num_rx_queues = num_rx_qs;
 697
 698	err = gfar_alloc_tx_queues(priv);
 699	if (err)
 700		goto tx_alloc_failed;
 701
 702	err = gfar_alloc_rx_queues(priv);
 703	if (err)
 704		goto rx_alloc_failed;
 705
 706	err = of_property_read_string(np, "model", &model);
 707	if (err) {
 708		pr_err("Device model property missing, aborting\n");
 709		goto rx_alloc_failed;
 710	}
 711
 712	/* Init Rx queue filer rule set linked list */
 713	INIT_LIST_HEAD(&priv->rx_list.list);
 714	priv->rx_list.count = 0;
 715	mutex_init(&priv->rx_queue_access);
 716
 717	for (i = 0; i < MAXGROUPS; i++)
 718		priv->gfargrp[i].regs = NULL;
 719
 720	/* Parse and initialize group specific information */
 721	if (priv->mode == MQ_MG_MODE) {
 722		for_each_available_child_of_node(np, child) {
 723			if (!of_node_name_eq(child, "queue-group"))
 724				continue;
 725
 726			err = gfar_parse_group(child, priv, model);
 727			if (err) {
 728				of_node_put(child);
 729				goto err_grp_init;
 730			}
 731		}
 732	} else { /* SQ_SG_MODE */
 733		err = gfar_parse_group(np, priv, model);
 734		if (err)
 735			goto err_grp_init;
 736	}
 737
 738	if (of_property_read_bool(np, "bd-stash")) {
 739		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
 740		priv->bd_stash_en = 1;
 741	}
 742
 743	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
 744
 745	if (err == 0)
 746		priv->rx_stash_size = stash_len;
 747
 748	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
 749
 750	if (err == 0)
 751		priv->rx_stash_index = stash_idx;
 752
 753	if (stash_len || stash_idx)
 754		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
 755
 756	err = of_get_ethdev_address(np, dev);
 757	if (err) {
 758		eth_hw_addr_random(dev);
 759		dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
 760	}
 761
 762	if (model && !strcasecmp(model, "TSEC"))
 763		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 764				     FSL_GIANFAR_DEV_HAS_COALESCE |
 765				     FSL_GIANFAR_DEV_HAS_RMON |
 766				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
 767
 768	if (model && !strcasecmp(model, "eTSEC"))
 769		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 770				     FSL_GIANFAR_DEV_HAS_COALESCE |
 771				     FSL_GIANFAR_DEV_HAS_RMON |
 772				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
 773				     FSL_GIANFAR_DEV_HAS_CSUM |
 774				     FSL_GIANFAR_DEV_HAS_VLAN |
 775				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
 776				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
 777				     FSL_GIANFAR_DEV_HAS_TIMER |
 778				     FSL_GIANFAR_DEV_HAS_RX_FILER;
 779
 780	/* Use PHY connection type from the DT node if one is specified there.
 781	 * rgmii-id really needs to be specified. Other types can be
 782	 * detected by hardware
 783	 */
 784	err = of_get_phy_mode(np, &interface);
 785	if (!err)
 786		priv->interface = interface;
 787	else
 788		priv->interface = gfar_get_interface(dev);
 789
 790	if (of_property_read_bool(np, "fsl,magic-packet"))
 791		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
 792
 793	if (of_property_read_bool(np, "fsl,wake-on-filer"))
 794		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
 795
 796	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
 797
 798	/* In the case of a fixed PHY, the DT node associated
 799	 * to the PHY is the Ethernet MAC DT node.
 800	 */
 801	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
 802		err = of_phy_register_fixed_link(np);
 803		if (err)
 804			goto err_grp_init;
 805
 806		priv->phy_node = of_node_get(np);
 807	}
 808
 809	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
 810	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
 811
 812	return 0;
 813
 814err_grp_init:
 815	unmap_group_regs(priv);
 816rx_alloc_failed:
 817	gfar_free_rx_queues(priv);
 818tx_alloc_failed:
 819	gfar_free_tx_queues(priv);
 820	free_gfar_dev(priv);
 821	return err;
 822}
 823
 824static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
 825				   u32 class)
 826{
 827	u32 rqfpr = FPR_FILER_MASK;
 828	u32 rqfcr = 0x0;
 829
 830	rqfar--;
 831	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
 832	priv->ftp_rqfpr[rqfar] = rqfpr;
 833	priv->ftp_rqfcr[rqfar] = rqfcr;
 834	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 835
 836	rqfar--;
 837	rqfcr = RQFCR_CMP_NOMATCH;
 838	priv->ftp_rqfpr[rqfar] = rqfpr;
 839	priv->ftp_rqfcr[rqfar] = rqfcr;
 840	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 841
 842	rqfar--;
 843	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
 844	rqfpr = class;
 845	priv->ftp_rqfcr[rqfar] = rqfcr;
 846	priv->ftp_rqfpr[rqfar] = rqfpr;
 847	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 848
 849	rqfar--;
 850	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
 851	rqfpr = class;
 852	priv->ftp_rqfcr[rqfar] = rqfcr;
 853	priv->ftp_rqfpr[rqfar] = rqfpr;
 854	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 855
 856	return rqfar;
 857}
 858
 859static void gfar_init_filer_table(struct gfar_private *priv)
 860{
 861	int i = 0x0;
 862	u32 rqfar = MAX_FILER_IDX;
 863	u32 rqfcr = 0x0;
 864	u32 rqfpr = FPR_FILER_MASK;
 865
 866	/* Default rule */
 867	rqfcr = RQFCR_CMP_MATCH;
 868	priv->ftp_rqfcr[rqfar] = rqfcr;
 869	priv->ftp_rqfpr[rqfar] = rqfpr;
 870	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 871
 872	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
 873	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
 874	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
 875	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
 876	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
 877	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
 878
 879	/* cur_filer_idx indicated the first non-masked rule */
 880	priv->cur_filer_idx = rqfar;
 881
 882	/* Rest are masked rules */
 883	rqfcr = RQFCR_CMP_NOMATCH;
 884	for (i = 0; i < rqfar; i++) {
 885		priv->ftp_rqfcr[i] = rqfcr;
 886		priv->ftp_rqfpr[i] = rqfpr;
 887		gfar_write_filer(priv, i, rqfcr, rqfpr);
 888	}
 889}
 890
 891#ifdef CONFIG_PPC
 892static void __gfar_detect_errata_83xx(struct gfar_private *priv)
 893{
 894	unsigned int pvr = mfspr(SPRN_PVR);
 895	unsigned int svr = mfspr(SPRN_SVR);
 896	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
 897	unsigned int rev = svr & 0xffff;
 898
 899	/* MPC8313 Rev 2.0 and higher; All MPC837x */
 900	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
 901	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 902		priv->errata |= GFAR_ERRATA_74;
 903
 904	/* MPC8313 and MPC837x all rev */
 905	if ((pvr == 0x80850010 && mod == 0x80b0) ||
 906	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 907		priv->errata |= GFAR_ERRATA_76;
 908
 909	/* MPC8313 Rev < 2.0 */
 910	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
 911		priv->errata |= GFAR_ERRATA_12;
 912}
 913
 914static void __gfar_detect_errata_85xx(struct gfar_private *priv)
 915{
 916	unsigned int svr = mfspr(SPRN_SVR);
 917
 918	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
 919		priv->errata |= GFAR_ERRATA_12;
 920	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
 921	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
 922	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
 923	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
 924		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
 925}
 926#endif
 927
 928static void gfar_detect_errata(struct gfar_private *priv)
 929{
 930	struct device *dev = &priv->ofdev->dev;
 931
 932	/* no plans to fix */
 933	priv->errata |= GFAR_ERRATA_A002;
 934
 935#ifdef CONFIG_PPC
 936	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
 937		__gfar_detect_errata_85xx(priv);
 938	else /* non-mpc85xx parts, i.e. e300 core based */
 939		__gfar_detect_errata_83xx(priv);
 940#endif
 941
 942	if (priv->errata)
 943		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
 944			 priv->errata);
 945}
 946
 947static void gfar_init_addr_hash_table(struct gfar_private *priv)
 948{
 949	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 950
 951	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
 952		priv->extended_hash = 1;
 953		priv->hash_width = 9;
 954
 955		priv->hash_regs[0] = &regs->igaddr0;
 956		priv->hash_regs[1] = &regs->igaddr1;
 957		priv->hash_regs[2] = &regs->igaddr2;
 958		priv->hash_regs[3] = &regs->igaddr3;
 959		priv->hash_regs[4] = &regs->igaddr4;
 960		priv->hash_regs[5] = &regs->igaddr5;
 961		priv->hash_regs[6] = &regs->igaddr6;
 962		priv->hash_regs[7] = &regs->igaddr7;
 963		priv->hash_regs[8] = &regs->gaddr0;
 964		priv->hash_regs[9] = &regs->gaddr1;
 965		priv->hash_regs[10] = &regs->gaddr2;
 966		priv->hash_regs[11] = &regs->gaddr3;
 967		priv->hash_regs[12] = &regs->gaddr4;
 968		priv->hash_regs[13] = &regs->gaddr5;
 969		priv->hash_regs[14] = &regs->gaddr6;
 970		priv->hash_regs[15] = &regs->gaddr7;
 971
 972	} else {
 973		priv->extended_hash = 0;
 974		priv->hash_width = 8;
 975
 976		priv->hash_regs[0] = &regs->gaddr0;
 977		priv->hash_regs[1] = &regs->gaddr1;
 978		priv->hash_regs[2] = &regs->gaddr2;
 979		priv->hash_regs[3] = &regs->gaddr3;
 980		priv->hash_regs[4] = &regs->gaddr4;
 981		priv->hash_regs[5] = &regs->gaddr5;
 982		priv->hash_regs[6] = &regs->gaddr6;
 983		priv->hash_regs[7] = &regs->gaddr7;
 984	}
 985}
 986
 987static int __gfar_is_rx_idle(struct gfar_private *priv)
 988{
 989	u32 res;
 990
 991	/* Normaly TSEC should not hang on GRS commands, so we should
 992	 * actually wait for IEVENT_GRSC flag.
 993	 */
 994	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
 995		return 0;
 996
 997	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
 998	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
 999	 * and the Rx can be safely reset.
1000	 */
1001	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1002	res &= 0x7f807f80;
1003	if ((res & 0xffff) == (res >> 16))
1004		return 1;
1005
1006	return 0;
1007}
1008
1009/* Halt the receive and transmit queues */
1010static void gfar_halt_nodisable(struct gfar_private *priv)
1011{
1012	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1013	u32 tempval;
1014	unsigned int timeout;
1015	int stopped;
1016
1017	gfar_ints_disable(priv);
1018
1019	if (gfar_is_dma_stopped(priv))
1020		return;
1021
1022	/* Stop the DMA, and wait for it to stop */
1023	tempval = gfar_read(&regs->dmactrl);
1024	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1025	gfar_write(&regs->dmactrl, tempval);
1026
1027retry:
1028	timeout = 1000;
1029	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1030		cpu_relax();
1031		timeout--;
1032	}
1033
1034	if (!timeout)
1035		stopped = gfar_is_dma_stopped(priv);
1036
1037	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1038	    !__gfar_is_rx_idle(priv))
1039		goto retry;
1040}
1041
1042/* Halt the receive and transmit queues */
1043static void gfar_halt(struct gfar_private *priv)
1044{
1045	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1046	u32 tempval;
1047
1048	/* Dissable the Rx/Tx hw queues */
1049	gfar_write(&regs->rqueue, 0);
1050	gfar_write(&regs->tqueue, 0);
1051
1052	mdelay(10);
1053
1054	gfar_halt_nodisable(priv);
1055
1056	/* Disable Rx/Tx DMA */
1057	tempval = gfar_read(&regs->maccfg1);
1058	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1059	gfar_write(&regs->maccfg1, tempval);
1060}
1061
1062static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1063{
1064	struct txbd8 *txbdp;
1065	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1066	int i, j;
1067
1068	txbdp = tx_queue->tx_bd_base;
1069
1070	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1071		if (!tx_queue->tx_skbuff[i])
1072			continue;
1073
1074		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1075				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1076		txbdp->lstatus = 0;
1077		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1078		     j++) {
1079			txbdp++;
1080			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1081				       be16_to_cpu(txbdp->length),
1082				       DMA_TO_DEVICE);
1083		}
1084		txbdp++;
1085		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1086		tx_queue->tx_skbuff[i] = NULL;
1087	}
1088	kfree(tx_queue->tx_skbuff);
1089	tx_queue->tx_skbuff = NULL;
1090}
1091
1092static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1093{
1094	int i;
1095
1096	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1097
1098	dev_kfree_skb(rx_queue->skb);
1099
1100	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1101		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1102
1103		rxbdp->lstatus = 0;
1104		rxbdp->bufPtr = 0;
1105		rxbdp++;
1106
1107		if (!rxb->page)
1108			continue;
1109
1110		dma_unmap_page(rx_queue->dev, rxb->dma,
1111			       PAGE_SIZE, DMA_FROM_DEVICE);
1112		__free_page(rxb->page);
1113
1114		rxb->page = NULL;
1115	}
1116
1117	kfree(rx_queue->rx_buff);
1118	rx_queue->rx_buff = NULL;
1119}
1120
1121/* If there are any tx skbs or rx skbs still around, free them.
1122 * Then free tx_skbuff and rx_skbuff
1123 */
1124static void free_skb_resources(struct gfar_private *priv)
1125{
1126	struct gfar_priv_tx_q *tx_queue = NULL;
1127	struct gfar_priv_rx_q *rx_queue = NULL;
1128	int i;
1129
1130	/* Go through all the buffer descriptors and free their data buffers */
1131	for (i = 0; i < priv->num_tx_queues; i++) {
1132		struct netdev_queue *txq;
1133
1134		tx_queue = priv->tx_queue[i];
1135		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1136		if (tx_queue->tx_skbuff)
1137			free_skb_tx_queue(tx_queue);
1138		netdev_tx_reset_queue(txq);
1139	}
1140
1141	for (i = 0; i < priv->num_rx_queues; i++) {
1142		rx_queue = priv->rx_queue[i];
1143		if (rx_queue->rx_buff)
1144			free_skb_rx_queue(rx_queue);
1145	}
1146
1147	dma_free_coherent(priv->dev,
1148			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1149			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1150			  priv->tx_queue[0]->tx_bd_base,
1151			  priv->tx_queue[0]->tx_bd_dma_base);
1152}
1153
1154void stop_gfar(struct net_device *dev)
1155{
1156	struct gfar_private *priv = netdev_priv(dev);
1157
1158	netif_tx_stop_all_queues(dev);
1159
1160	smp_mb__before_atomic();
1161	set_bit(GFAR_DOWN, &priv->state);
1162	smp_mb__after_atomic();
1163
1164	disable_napi(priv);
1165
1166	/* disable ints and gracefully shut down Rx/Tx DMA */
1167	gfar_halt(priv);
1168
1169	phy_stop(dev->phydev);
1170
1171	free_skb_resources(priv);
1172}
1173
1174static void gfar_start(struct gfar_private *priv)
1175{
1176	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1177	u32 tempval;
1178	int i = 0;
1179
1180	/* Enable Rx/Tx hw queues */
1181	gfar_write(&regs->rqueue, priv->rqueue);
1182	gfar_write(&regs->tqueue, priv->tqueue);
1183
1184	/* Initialize DMACTRL to have WWR and WOP */
1185	tempval = gfar_read(&regs->dmactrl);
1186	tempval |= DMACTRL_INIT_SETTINGS;
1187	gfar_write(&regs->dmactrl, tempval);
1188
1189	/* Make sure we aren't stopped */
1190	tempval = gfar_read(&regs->dmactrl);
1191	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1192	gfar_write(&regs->dmactrl, tempval);
1193
1194	for (i = 0; i < priv->num_grps; i++) {
1195		regs = priv->gfargrp[i].regs;
1196		/* Clear THLT/RHLT, so that the DMA starts polling now */
1197		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1198		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1199	}
1200
1201	/* Enable Rx/Tx DMA */
1202	tempval = gfar_read(&regs->maccfg1);
1203	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1204	gfar_write(&regs->maccfg1, tempval);
1205
1206	gfar_ints_enable(priv);
1207
1208	netif_trans_update(priv->ndev); /* prevent tx timeout */
1209}
1210
1211static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1212{
1213	struct page *page;
1214	dma_addr_t addr;
1215
1216	page = dev_alloc_page();
1217	if (unlikely(!page))
1218		return false;
1219
1220	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1221	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1222		__free_page(page);
1223
1224		return false;
1225	}
1226
1227	rxb->dma = addr;
1228	rxb->page = page;
1229	rxb->page_offset = 0;
1230
1231	return true;
1232}
1233
1234static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1235{
1236	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1237	struct gfar_extra_stats *estats = &priv->extra_stats;
1238
1239	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1240	atomic64_inc(&estats->rx_alloc_err);
1241}
1242
1243static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1244				int alloc_cnt)
1245{
1246	struct rxbd8 *bdp;
1247	struct gfar_rx_buff *rxb;
1248	int i;
1249
1250	i = rx_queue->next_to_use;
1251	bdp = &rx_queue->rx_bd_base[i];
1252	rxb = &rx_queue->rx_buff[i];
1253
1254	while (alloc_cnt--) {
1255		/* try reuse page */
1256		if (unlikely(!rxb->page)) {
1257			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1258				gfar_rx_alloc_err(rx_queue);
1259				break;
1260			}
1261		}
1262
1263		/* Setup the new RxBD */
1264		gfar_init_rxbdp(rx_queue, bdp,
1265				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1266
1267		/* Update to the next pointer */
1268		bdp++;
1269		rxb++;
1270
1271		if (unlikely(++i == rx_queue->rx_ring_size)) {
1272			i = 0;
1273			bdp = rx_queue->rx_bd_base;
1274			rxb = rx_queue->rx_buff;
1275		}
1276	}
1277
1278	rx_queue->next_to_use = i;
1279	rx_queue->next_to_alloc = i;
1280}
1281
1282static void gfar_init_bds(struct net_device *ndev)
1283{
1284	struct gfar_private *priv = netdev_priv(ndev);
1285	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1286	struct gfar_priv_tx_q *tx_queue = NULL;
1287	struct gfar_priv_rx_q *rx_queue = NULL;
1288	struct txbd8 *txbdp;
1289	u32 __iomem *rfbptr;
1290	int i, j;
1291
1292	for (i = 0; i < priv->num_tx_queues; i++) {
1293		tx_queue = priv->tx_queue[i];
1294		/* Initialize some variables in our dev structure */
1295		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1296		tx_queue->dirty_tx = tx_queue->tx_bd_base;
1297		tx_queue->cur_tx = tx_queue->tx_bd_base;
1298		tx_queue->skb_curtx = 0;
1299		tx_queue->skb_dirtytx = 0;
1300
1301		/* Initialize Transmit Descriptor Ring */
1302		txbdp = tx_queue->tx_bd_base;
1303		for (j = 0; j < tx_queue->tx_ring_size; j++) {
1304			txbdp->lstatus = 0;
1305			txbdp->bufPtr = 0;
1306			txbdp++;
1307		}
1308
1309		/* Set the last descriptor in the ring to indicate wrap */
1310		txbdp--;
1311		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1312					    TXBD_WRAP);
1313	}
1314
1315	rfbptr = &regs->rfbptr0;
1316	for (i = 0; i < priv->num_rx_queues; i++) {
1317		rx_queue = priv->rx_queue[i];
1318
1319		rx_queue->next_to_clean = 0;
1320		rx_queue->next_to_use = 0;
1321		rx_queue->next_to_alloc = 0;
1322
1323		/* make sure next_to_clean != next_to_use after this
1324		 * by leaving at least 1 unused descriptor
1325		 */
1326		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1327
1328		rx_queue->rfbptr = rfbptr;
1329		rfbptr += 2;
1330	}
1331}
1332
1333static int gfar_alloc_skb_resources(struct net_device *ndev)
1334{
1335	void *vaddr;
1336	dma_addr_t addr;
1337	int i, j;
1338	struct gfar_private *priv = netdev_priv(ndev);
1339	struct device *dev = priv->dev;
1340	struct gfar_priv_tx_q *tx_queue = NULL;
1341	struct gfar_priv_rx_q *rx_queue = NULL;
1342
1343	priv->total_tx_ring_size = 0;
1344	for (i = 0; i < priv->num_tx_queues; i++)
1345		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1346
1347	priv->total_rx_ring_size = 0;
1348	for (i = 0; i < priv->num_rx_queues; i++)
1349		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1350
1351	/* Allocate memory for the buffer descriptors */
1352	vaddr = dma_alloc_coherent(dev,
1353				   (priv->total_tx_ring_size *
1354				    sizeof(struct txbd8)) +
1355				   (priv->total_rx_ring_size *
1356				    sizeof(struct rxbd8)),
1357				   &addr, GFP_KERNEL);
1358	if (!vaddr)
1359		return -ENOMEM;
1360
1361	for (i = 0; i < priv->num_tx_queues; i++) {
1362		tx_queue = priv->tx_queue[i];
1363		tx_queue->tx_bd_base = vaddr;
1364		tx_queue->tx_bd_dma_base = addr;
1365		tx_queue->dev = ndev;
1366		/* enet DMA only understands physical addresses */
1367		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1368		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1369	}
1370
1371	/* Start the rx descriptor ring where the tx ring leaves off */
1372	for (i = 0; i < priv->num_rx_queues; i++) {
1373		rx_queue = priv->rx_queue[i];
1374		rx_queue->rx_bd_base = vaddr;
1375		rx_queue->rx_bd_dma_base = addr;
1376		rx_queue->ndev = ndev;
1377		rx_queue->dev = dev;
1378		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1379		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1380	}
1381
1382	/* Setup the skbuff rings */
1383	for (i = 0; i < priv->num_tx_queues; i++) {
1384		tx_queue = priv->tx_queue[i];
1385		tx_queue->tx_skbuff =
1386			kmalloc_array(tx_queue->tx_ring_size,
1387				      sizeof(*tx_queue->tx_skbuff),
1388				      GFP_KERNEL);
1389		if (!tx_queue->tx_skbuff)
1390			goto cleanup;
1391
1392		for (j = 0; j < tx_queue->tx_ring_size; j++)
1393			tx_queue->tx_skbuff[j] = NULL;
1394	}
1395
1396	for (i = 0; i < priv->num_rx_queues; i++) {
1397		rx_queue = priv->rx_queue[i];
1398		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1399					    sizeof(*rx_queue->rx_buff),
1400					    GFP_KERNEL);
1401		if (!rx_queue->rx_buff)
1402			goto cleanup;
1403	}
1404
1405	gfar_init_bds(ndev);
1406
1407	return 0;
1408
1409cleanup:
1410	free_skb_resources(priv);
1411	return -ENOMEM;
1412}
1413
1414/* Bring the controller up and running */
1415int startup_gfar(struct net_device *ndev)
1416{
1417	struct gfar_private *priv = netdev_priv(ndev);
1418	int err;
1419
1420	gfar_mac_reset(priv);
1421
1422	err = gfar_alloc_skb_resources(ndev);
1423	if (err)
1424		return err;
1425
1426	gfar_init_tx_rx_base(priv);
1427
1428	smp_mb__before_atomic();
1429	clear_bit(GFAR_DOWN, &priv->state);
1430	smp_mb__after_atomic();
1431
1432	/* Start Rx/Tx DMA and enable the interrupts */
1433	gfar_start(priv);
1434
1435	/* force link state update after mac reset */
1436	priv->oldlink = 0;
1437	priv->oldspeed = 0;
1438	priv->oldduplex = -1;
1439
1440	phy_start(ndev->phydev);
1441
1442	enable_napi(priv);
1443
1444	netif_tx_wake_all_queues(ndev);
1445
1446	return 0;
1447}
1448
1449static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1450{
1451	struct net_device *ndev = priv->ndev;
1452	struct phy_device *phydev = ndev->phydev;
1453	u32 val = 0;
1454
1455	if (!phydev->duplex)
1456		return val;
1457
1458	if (!priv->pause_aneg_en) {
1459		if (priv->tx_pause_en)
1460			val |= MACCFG1_TX_FLOW;
1461		if (priv->rx_pause_en)
1462			val |= MACCFG1_RX_FLOW;
1463	} else {
1464		u16 lcl_adv, rmt_adv;
1465		u8 flowctrl;
1466		/* get link partner capabilities */
1467		rmt_adv = 0;
1468		if (phydev->pause)
1469			rmt_adv = LPA_PAUSE_CAP;
1470		if (phydev->asym_pause)
1471			rmt_adv |= LPA_PAUSE_ASYM;
1472
1473		lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1474		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1475		if (flowctrl & FLOW_CTRL_TX)
1476			val |= MACCFG1_TX_FLOW;
1477		if (flowctrl & FLOW_CTRL_RX)
1478			val |= MACCFG1_RX_FLOW;
1479	}
1480
1481	return val;
1482}
1483
1484static noinline void gfar_update_link_state(struct gfar_private *priv)
1485{
1486	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1487	struct net_device *ndev = priv->ndev;
1488	struct phy_device *phydev = ndev->phydev;
1489	struct gfar_priv_rx_q *rx_queue = NULL;
1490	int i;
1491
1492	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1493		return;
1494
1495	if (phydev->link) {
1496		u32 tempval1 = gfar_read(&regs->maccfg1);
1497		u32 tempval = gfar_read(&regs->maccfg2);
1498		u32 ecntrl = gfar_read(&regs->ecntrl);
1499		u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1500
1501		if (phydev->duplex != priv->oldduplex) {
1502			if (!(phydev->duplex))
1503				tempval &= ~(MACCFG2_FULL_DUPLEX);
1504			else
1505				tempval |= MACCFG2_FULL_DUPLEX;
1506
1507			priv->oldduplex = phydev->duplex;
1508		}
1509
1510		if (phydev->speed != priv->oldspeed) {
1511			switch (phydev->speed) {
1512			case 1000:
1513				tempval =
1514				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1515
1516				ecntrl &= ~(ECNTRL_R100);
1517				break;
1518			case 100:
1519			case 10:
1520				tempval =
1521				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1522
1523				/* Reduced mode distinguishes
1524				 * between 10 and 100
1525				 */
1526				if (phydev->speed == SPEED_100)
1527					ecntrl |= ECNTRL_R100;
1528				else
1529					ecntrl &= ~(ECNTRL_R100);
1530				break;
1531			default:
1532				netif_warn(priv, link, priv->ndev,
1533					   "Ack!  Speed (%d) is not 10/100/1000!\n",
1534					   phydev->speed);
1535				break;
1536			}
1537
1538			priv->oldspeed = phydev->speed;
1539		}
1540
1541		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1542		tempval1 |= gfar_get_flowctrl_cfg(priv);
1543
1544		/* Turn last free buffer recording on */
1545		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1546			for (i = 0; i < priv->num_rx_queues; i++) {
1547				u32 bdp_dma;
1548
1549				rx_queue = priv->rx_queue[i];
1550				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1551				gfar_write(rx_queue->rfbptr, bdp_dma);
1552			}
1553
1554			priv->tx_actual_en = 1;
1555		}
1556
1557		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1558			priv->tx_actual_en = 0;
1559
1560		gfar_write(&regs->maccfg1, tempval1);
1561		gfar_write(&regs->maccfg2, tempval);
1562		gfar_write(&regs->ecntrl, ecntrl);
1563
1564		if (!priv->oldlink)
1565			priv->oldlink = 1;
1566
1567	} else if (priv->oldlink) {
1568		priv->oldlink = 0;
1569		priv->oldspeed = 0;
1570		priv->oldduplex = -1;
1571	}
1572
1573	if (netif_msg_link(priv))
1574		phy_print_status(phydev);
1575}
1576
1577/* Called every time the controller might need to be made
1578 * aware of new link state.  The PHY code conveys this
1579 * information through variables in the phydev structure, and this
1580 * function converts those variables into the appropriate
1581 * register values, and can bring down the device if needed.
1582 */
1583static void adjust_link(struct net_device *dev)
1584{
1585	struct gfar_private *priv = netdev_priv(dev);
1586	struct phy_device *phydev = dev->phydev;
1587
1588	if (unlikely(phydev->link != priv->oldlink ||
1589		     (phydev->link && (phydev->duplex != priv->oldduplex ||
1590				       phydev->speed != priv->oldspeed))))
1591		gfar_update_link_state(priv);
1592}
1593
1594/* Initialize TBI PHY interface for communicating with the
1595 * SERDES lynx PHY on the chip.  We communicate with this PHY
1596 * through the MDIO bus on each controller, treating it as a
1597 * "normal" PHY at the address found in the TBIPA register.  We assume
1598 * that the TBIPA register is valid.  Either the MDIO bus code will set
1599 * it to a value that doesn't conflict with other PHYs on the bus, or the
1600 * value doesn't matter, as there are no other PHYs on the bus.
1601 */
1602static void gfar_configure_serdes(struct net_device *dev)
1603{
1604	struct gfar_private *priv = netdev_priv(dev);
1605	struct phy_device *tbiphy;
1606
1607	if (!priv->tbi_node) {
1608		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1609				    "device tree specify a tbi-handle\n");
1610		return;
1611	}
1612
1613	tbiphy = of_phy_find_device(priv->tbi_node);
1614	if (!tbiphy) {
1615		dev_err(&dev->dev, "error: Could not get TBI device\n");
1616		return;
1617	}
1618
1619	/* If the link is already up, we must already be ok, and don't need to
1620	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1621	 * everything for us?  Resetting it takes the link down and requires
1622	 * several seconds for it to come back.
1623	 */
1624	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1625		put_device(&tbiphy->mdio.dev);
1626		return;
1627	}
1628
1629	/* Single clk mode, mii mode off(for serdes communication) */
1630	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1631
1632	phy_write(tbiphy, MII_ADVERTISE,
1633		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1634		  ADVERTISE_1000XPSE_ASYM);
1635
1636	phy_write(tbiphy, MII_BMCR,
1637		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1638		  BMCR_SPEED1000);
1639
1640	put_device(&tbiphy->mdio.dev);
1641}
1642
1643/* Initializes driver's PHY state, and attaches to the PHY.
1644 * Returns 0 on success.
1645 */
1646static int init_phy(struct net_device *dev)
1647{
1648	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1649	struct gfar_private *priv = netdev_priv(dev);
1650	phy_interface_t interface = priv->interface;
1651	struct phy_device *phydev;
1652	struct ethtool_eee edata;
1653
1654	linkmode_set_bit_array(phy_10_100_features_array,
1655			       ARRAY_SIZE(phy_10_100_features_array),
1656			       mask);
1657	linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1658	linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1659	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1660		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1661
1662	priv->oldlink = 0;
1663	priv->oldspeed = 0;
1664	priv->oldduplex = -1;
1665
1666	phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1667				interface);
1668	if (!phydev) {
1669		dev_err(&dev->dev, "could not attach to PHY\n");
1670		return -ENODEV;
1671	}
1672
1673	if (interface == PHY_INTERFACE_MODE_SGMII)
1674		gfar_configure_serdes(dev);
1675
1676	/* Remove any features not supported by the controller */
1677	linkmode_and(phydev->supported, phydev->supported, mask);
1678	linkmode_copy(phydev->advertising, phydev->supported);
1679
1680	/* Add support for flow control */
1681	phy_support_asym_pause(phydev);
1682
1683	/* disable EEE autoneg, EEE not supported by eTSEC */
1684	memset(&edata, 0, sizeof(struct ethtool_eee));
1685	phy_ethtool_set_eee(phydev, &edata);
1686
1687	return 0;
1688}
1689
1690static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1691{
1692	struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1693
1694	memset(fcb, 0, GMAC_FCB_LEN);
1695
1696	return fcb;
1697}
1698
1699static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1700				    int fcb_length)
1701{
1702	/* If we're here, it's a IP packet with a TCP or UDP
1703	 * payload.  We set it to checksum, using a pseudo-header
1704	 * we provide
1705	 */
1706	u8 flags = TXFCB_DEFAULT;
1707
1708	/* Tell the controller what the protocol is
1709	 * And provide the already calculated phcs
1710	 */
1711	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1712		flags |= TXFCB_UDP;
1713		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1714	} else
1715		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1716
1717	/* l3os is the distance between the start of the
1718	 * frame (skb->data) and the start of the IP hdr.
1719	 * l4os is the distance between the start of the
1720	 * l3 hdr and the l4 hdr
1721	 */
1722	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1723	fcb->l4os = skb_network_header_len(skb);
1724
1725	fcb->flags = flags;
1726}
1727
1728static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1729{
1730	fcb->flags |= TXFCB_VLN;
1731	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1732}
1733
1734static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1735				      struct txbd8 *base, int ring_size)
1736{
1737	struct txbd8 *new_bd = bdp + stride;
1738
1739	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1740}
1741
1742static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1743				      int ring_size)
1744{
1745	return skip_txbd(bdp, 1, base, ring_size);
1746}
1747
1748/* eTSEC12: csum generation not supported for some fcb offsets */
1749static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1750				       unsigned long fcb_addr)
1751{
1752	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1753	       (fcb_addr % 0x20) > 0x18);
1754}
1755
1756/* eTSEC76: csum generation for frames larger than 2500 may
1757 * cause excess delays before start of transmission
1758 */
1759static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1760				       unsigned int len)
1761{
1762	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1763	       (len > 2500));
1764}
1765
1766/* This is called by the kernel when a frame is ready for transmission.
1767 * It is pointed to by the dev->hard_start_xmit function pointer
1768 */
1769static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1770{
1771	struct gfar_private *priv = netdev_priv(dev);
1772	struct gfar_priv_tx_q *tx_queue = NULL;
1773	struct netdev_queue *txq;
1774	struct gfar __iomem *regs = NULL;
1775	struct txfcb *fcb = NULL;
1776	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1777	u32 lstatus;
1778	skb_frag_t *frag;
1779	int i, rq = 0;
1780	int do_tstamp, do_csum, do_vlan;
1781	u32 bufaddr;
1782	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1783
1784	rq = skb->queue_mapping;
1785	tx_queue = priv->tx_queue[rq];
1786	txq = netdev_get_tx_queue(dev, rq);
1787	base = tx_queue->tx_bd_base;
1788	regs = tx_queue->grp->regs;
1789
1790	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1791	do_vlan = skb_vlan_tag_present(skb);
1792	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1793		    priv->hwts_tx_en;
1794
1795	if (do_csum || do_vlan)
1796		fcb_len = GMAC_FCB_LEN;
1797
1798	/* check if time stamp should be generated */
1799	if (unlikely(do_tstamp))
1800		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1801
1802	/* make space for additional header when fcb is needed */
1803	if (fcb_len) {
1804		if (unlikely(skb_cow_head(skb, fcb_len))) {
 
 
 
1805			dev->stats.tx_errors++;
1806			dev_kfree_skb_any(skb);
1807			return NETDEV_TX_OK;
1808		}
 
 
 
 
 
1809	}
1810
1811	/* total number of fragments in the SKB */
1812	nr_frags = skb_shinfo(skb)->nr_frags;
1813
1814	/* calculate the required number of TxBDs for this skb */
1815	if (unlikely(do_tstamp))
1816		nr_txbds = nr_frags + 2;
1817	else
1818		nr_txbds = nr_frags + 1;
1819
1820	/* check if there is space to queue this packet */
1821	if (nr_txbds > tx_queue->num_txbdfree) {
1822		/* no space, stop the queue */
1823		netif_tx_stop_queue(txq);
1824		dev->stats.tx_fifo_errors++;
1825		return NETDEV_TX_BUSY;
1826	}
1827
1828	/* Update transmit stats */
1829	bytes_sent = skb->len;
1830	tx_queue->stats.tx_bytes += bytes_sent;
1831	/* keep Tx bytes on wire for BQL accounting */
1832	GFAR_CB(skb)->bytes_sent = bytes_sent;
1833	tx_queue->stats.tx_packets++;
1834
1835	txbdp = txbdp_start = tx_queue->cur_tx;
1836	lstatus = be32_to_cpu(txbdp->lstatus);
1837
1838	/* Add TxPAL between FCB and frame if required */
1839	if (unlikely(do_tstamp)) {
1840		skb_push(skb, GMAC_TXPAL_LEN);
1841		memset(skb->data, 0, GMAC_TXPAL_LEN);
1842	}
1843
1844	/* Add TxFCB if required */
1845	if (fcb_len) {
1846		fcb = gfar_add_fcb(skb);
1847		lstatus |= BD_LFLAG(TXBD_TOE);
1848	}
1849
1850	/* Set up checksumming */
1851	if (do_csum) {
1852		gfar_tx_checksum(skb, fcb, fcb_len);
1853
1854		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1855		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
1856			__skb_pull(skb, GMAC_FCB_LEN);
1857			skb_checksum_help(skb);
1858			if (do_vlan || do_tstamp) {
1859				/* put back a new fcb for vlan/tstamp TOE */
1860				fcb = gfar_add_fcb(skb);
1861			} else {
1862				/* Tx TOE not used */
1863				lstatus &= ~(BD_LFLAG(TXBD_TOE));
1864				fcb = NULL;
1865			}
1866		}
1867	}
1868
1869	if (do_vlan)
1870		gfar_tx_vlan(skb, fcb);
1871
1872	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1873				 DMA_TO_DEVICE);
1874	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1875		goto dma_map_err;
1876
1877	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1878
1879	/* Time stamp insertion requires one additional TxBD */
1880	if (unlikely(do_tstamp))
1881		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1882						 tx_queue->tx_ring_size);
1883
1884	if (likely(!nr_frags)) {
1885		if (likely(!do_tstamp))
1886			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1887	} else {
1888		u32 lstatus_start = lstatus;
1889
1890		/* Place the fragment addresses and lengths into the TxBDs */
1891		frag = &skb_shinfo(skb)->frags[0];
1892		for (i = 0; i < nr_frags; i++, frag++) {
1893			unsigned int size;
1894
1895			/* Point at the next BD, wrapping as needed */
1896			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1897
1898			size = skb_frag_size(frag);
1899
1900			lstatus = be32_to_cpu(txbdp->lstatus) | size |
1901				  BD_LFLAG(TXBD_READY);
1902
1903			/* Handle the last BD specially */
1904			if (i == nr_frags - 1)
1905				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1906
1907			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1908						   size, DMA_TO_DEVICE);
1909			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1910				goto dma_map_err;
1911
1912			/* set the TxBD length and buffer pointer */
1913			txbdp->bufPtr = cpu_to_be32(bufaddr);
1914			txbdp->lstatus = cpu_to_be32(lstatus);
1915		}
1916
1917		lstatus = lstatus_start;
1918	}
1919
1920	/* If time stamping is requested one additional TxBD must be set up. The
1921	 * first TxBD points to the FCB and must have a data length of
1922	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1923	 * the full frame length.
1924	 */
1925	if (unlikely(do_tstamp)) {
1926		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1927
1928		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1929		bufaddr += fcb_len;
1930
1931		lstatus_ts |= BD_LFLAG(TXBD_READY) |
1932			      (skb_headlen(skb) - fcb_len);
1933		if (!nr_frags)
1934			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1935
1936		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1937		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1938		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1939
1940		/* Setup tx hardware time stamping */
1941		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1942		fcb->ptp = 1;
1943	} else {
1944		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1945	}
1946
1947	skb_tx_timestamp(skb);
1948	netdev_tx_sent_queue(txq, bytes_sent);
1949
1950	gfar_wmb();
1951
1952	txbdp_start->lstatus = cpu_to_be32(lstatus);
1953
1954	gfar_wmb(); /* force lstatus write before tx_skbuff */
1955
1956	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1957
1958	/* Update the current skb pointer to the next entry we will use
1959	 * (wrapping if necessary)
1960	 */
1961	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1962			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1963
1964	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1965
1966	/* We can work in parallel with gfar_clean_tx_ring(), except
1967	 * when modifying num_txbdfree. Note that we didn't grab the lock
1968	 * when we were reading the num_txbdfree and checking for available
1969	 * space, that's because outside of this function it can only grow.
1970	 */
1971	spin_lock_bh(&tx_queue->txlock);
1972	/* reduce TxBD free count */
1973	tx_queue->num_txbdfree -= (nr_txbds);
1974	spin_unlock_bh(&tx_queue->txlock);
1975
1976	/* If the next BD still needs to be cleaned up, then the bds
1977	 * are full.  We need to tell the kernel to stop sending us stuff.
1978	 */
1979	if (!tx_queue->num_txbdfree) {
1980		netif_tx_stop_queue(txq);
1981
1982		dev->stats.tx_fifo_errors++;
1983	}
1984
1985	/* Tell the DMA to go go go */
1986	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
1987
1988	return NETDEV_TX_OK;
1989
1990dma_map_err:
1991	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
1992	if (do_tstamp)
1993		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1994	for (i = 0; i < nr_frags; i++) {
1995		lstatus = be32_to_cpu(txbdp->lstatus);
1996		if (!(lstatus & BD_LFLAG(TXBD_READY)))
1997			break;
1998
1999		lstatus &= ~BD_LFLAG(TXBD_READY);
2000		txbdp->lstatus = cpu_to_be32(lstatus);
2001		bufaddr = be32_to_cpu(txbdp->bufPtr);
2002		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2003			       DMA_TO_DEVICE);
2004		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2005	}
2006	gfar_wmb();
2007	dev_kfree_skb_any(skb);
2008	return NETDEV_TX_OK;
2009}
2010
2011/* Changes the mac address if the controller is not running. */
2012static int gfar_set_mac_address(struct net_device *dev)
2013{
2014	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2015
2016	return 0;
2017}
2018
2019static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2020{
2021	struct gfar_private *priv = netdev_priv(dev);
2022
2023	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2024		cpu_relax();
2025
2026	if (dev->flags & IFF_UP)
2027		stop_gfar(dev);
2028
2029	dev->mtu = new_mtu;
2030
2031	if (dev->flags & IFF_UP)
2032		startup_gfar(dev);
2033
2034	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2035
2036	return 0;
2037}
2038
2039static void reset_gfar(struct net_device *ndev)
2040{
2041	struct gfar_private *priv = netdev_priv(ndev);
2042
2043	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2044		cpu_relax();
2045
2046	stop_gfar(ndev);
2047	startup_gfar(ndev);
2048
2049	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2050}
2051
2052/* gfar_reset_task gets scheduled when a packet has not been
2053 * transmitted after a set amount of time.
2054 * For now, assume that clearing out all the structures, and
2055 * starting over will fix the problem.
2056 */
2057static void gfar_reset_task(struct work_struct *work)
2058{
2059	struct gfar_private *priv = container_of(work, struct gfar_private,
2060						 reset_task);
2061	reset_gfar(priv->ndev);
2062}
2063
2064static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2065{
2066	struct gfar_private *priv = netdev_priv(dev);
2067
2068	dev->stats.tx_errors++;
2069	schedule_work(&priv->reset_task);
2070}
2071
2072static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2073{
2074	struct hwtstamp_config config;
2075	struct gfar_private *priv = netdev_priv(netdev);
2076
2077	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2078		return -EFAULT;
2079
 
 
 
 
2080	switch (config.tx_type) {
2081	case HWTSTAMP_TX_OFF:
2082		priv->hwts_tx_en = 0;
2083		break;
2084	case HWTSTAMP_TX_ON:
2085		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2086			return -ERANGE;
2087		priv->hwts_tx_en = 1;
2088		break;
2089	default:
2090		return -ERANGE;
2091	}
2092
2093	switch (config.rx_filter) {
2094	case HWTSTAMP_FILTER_NONE:
2095		if (priv->hwts_rx_en) {
2096			priv->hwts_rx_en = 0;
2097			reset_gfar(netdev);
2098		}
2099		break;
2100	default:
2101		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2102			return -ERANGE;
2103		if (!priv->hwts_rx_en) {
2104			priv->hwts_rx_en = 1;
2105			reset_gfar(netdev);
2106		}
2107		config.rx_filter = HWTSTAMP_FILTER_ALL;
2108		break;
2109	}
2110
2111	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2112		-EFAULT : 0;
2113}
2114
2115static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2116{
2117	struct hwtstamp_config config;
2118	struct gfar_private *priv = netdev_priv(netdev);
2119
2120	config.flags = 0;
2121	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2122	config.rx_filter = (priv->hwts_rx_en ?
2123			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2124
2125	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2126		-EFAULT : 0;
2127}
2128
2129static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2130{
2131	struct phy_device *phydev = dev->phydev;
2132
2133	if (!netif_running(dev))
2134		return -EINVAL;
2135
2136	if (cmd == SIOCSHWTSTAMP)
2137		return gfar_hwtstamp_set(dev, rq);
2138	if (cmd == SIOCGHWTSTAMP)
2139		return gfar_hwtstamp_get(dev, rq);
2140
2141	if (!phydev)
2142		return -ENODEV;
2143
2144	return phy_mii_ioctl(phydev, rq, cmd);
2145}
2146
2147/* Interrupt Handler for Transmit complete */
2148static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2149{
2150	struct net_device *dev = tx_queue->dev;
2151	struct netdev_queue *txq;
2152	struct gfar_private *priv = netdev_priv(dev);
2153	struct txbd8 *bdp, *next = NULL;
2154	struct txbd8 *lbdp = NULL;
2155	struct txbd8 *base = tx_queue->tx_bd_base;
2156	struct sk_buff *skb;
2157	int skb_dirtytx;
2158	int tx_ring_size = tx_queue->tx_ring_size;
2159	int frags = 0, nr_txbds = 0;
2160	int i;
2161	int howmany = 0;
2162	int tqi = tx_queue->qindex;
2163	unsigned int bytes_sent = 0;
2164	u32 lstatus;
2165	size_t buflen;
2166
2167	txq = netdev_get_tx_queue(dev, tqi);
2168	bdp = tx_queue->dirty_tx;
2169	skb_dirtytx = tx_queue->skb_dirtytx;
2170
2171	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2172		bool do_tstamp;
2173
2174		do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2175			    priv->hwts_tx_en;
2176
2177		frags = skb_shinfo(skb)->nr_frags;
2178
2179		/* When time stamping, one additional TxBD must be freed.
2180		 * Also, we need to dma_unmap_single() the TxPAL.
2181		 */
2182		if (unlikely(do_tstamp))
2183			nr_txbds = frags + 2;
2184		else
2185			nr_txbds = frags + 1;
2186
2187		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2188
2189		lstatus = be32_to_cpu(lbdp->lstatus);
2190
2191		/* Only clean completed frames */
2192		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2193		    (lstatus & BD_LENGTH_MASK))
2194			break;
2195
2196		if (unlikely(do_tstamp)) {
2197			next = next_txbd(bdp, base, tx_ring_size);
2198			buflen = be16_to_cpu(next->length) +
2199				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2200		} else
2201			buflen = be16_to_cpu(bdp->length);
2202
2203		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2204				 buflen, DMA_TO_DEVICE);
2205
2206		if (unlikely(do_tstamp)) {
2207			struct skb_shared_hwtstamps shhwtstamps;
2208			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2209					  ~0x7UL);
2210
2211			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2212			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2213			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2214			skb_tstamp_tx(skb, &shhwtstamps);
2215			gfar_clear_txbd_status(bdp);
2216			bdp = next;
2217		}
2218
2219		gfar_clear_txbd_status(bdp);
2220		bdp = next_txbd(bdp, base, tx_ring_size);
2221
2222		for (i = 0; i < frags; i++) {
2223			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2224				       be16_to_cpu(bdp->length),
2225				       DMA_TO_DEVICE);
2226			gfar_clear_txbd_status(bdp);
2227			bdp = next_txbd(bdp, base, tx_ring_size);
2228		}
2229
2230		bytes_sent += GFAR_CB(skb)->bytes_sent;
2231
2232		dev_kfree_skb_any(skb);
2233
2234		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2235
2236		skb_dirtytx = (skb_dirtytx + 1) &
2237			      TX_RING_MOD_MASK(tx_ring_size);
2238
2239		howmany++;
2240		spin_lock(&tx_queue->txlock);
2241		tx_queue->num_txbdfree += nr_txbds;
2242		spin_unlock(&tx_queue->txlock);
2243	}
2244
2245	/* If we freed a buffer, we can restart transmission, if necessary */
2246	if (tx_queue->num_txbdfree &&
2247	    netif_tx_queue_stopped(txq) &&
2248	    !(test_bit(GFAR_DOWN, &priv->state)))
2249		netif_wake_subqueue(priv->ndev, tqi);
2250
2251	/* Update dirty indicators */
2252	tx_queue->skb_dirtytx = skb_dirtytx;
2253	tx_queue->dirty_tx = bdp;
2254
2255	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2256}
2257
2258static void count_errors(u32 lstatus, struct net_device *ndev)
2259{
2260	struct gfar_private *priv = netdev_priv(ndev);
2261	struct net_device_stats *stats = &ndev->stats;
2262	struct gfar_extra_stats *estats = &priv->extra_stats;
2263
2264	/* If the packet was truncated, none of the other errors matter */
2265	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2266		stats->rx_length_errors++;
2267
2268		atomic64_inc(&estats->rx_trunc);
2269
2270		return;
2271	}
2272	/* Count the errors, if there were any */
2273	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2274		stats->rx_length_errors++;
2275
2276		if (lstatus & BD_LFLAG(RXBD_LARGE))
2277			atomic64_inc(&estats->rx_large);
2278		else
2279			atomic64_inc(&estats->rx_short);
2280	}
2281	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2282		stats->rx_frame_errors++;
2283		atomic64_inc(&estats->rx_nonoctet);
2284	}
2285	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2286		atomic64_inc(&estats->rx_crcerr);
2287		stats->rx_crc_errors++;
2288	}
2289	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2290		atomic64_inc(&estats->rx_overrun);
2291		stats->rx_over_errors++;
2292	}
2293}
2294
2295static irqreturn_t gfar_receive(int irq, void *grp_id)
2296{
2297	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2298	unsigned long flags;
2299	u32 imask, ievent;
2300
2301	ievent = gfar_read(&grp->regs->ievent);
2302
2303	if (unlikely(ievent & IEVENT_FGPI)) {
2304		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2305		return IRQ_HANDLED;
2306	}
2307
2308	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2309		spin_lock_irqsave(&grp->grplock, flags);
2310		imask = gfar_read(&grp->regs->imask);
2311		imask &= IMASK_RX_DISABLED | grp->priv->rmon_overflow.imask;
2312		gfar_write(&grp->regs->imask, imask);
2313		spin_unlock_irqrestore(&grp->grplock, flags);
2314		__napi_schedule(&grp->napi_rx);
2315	} else {
2316		/* Clear IEVENT, so interrupts aren't called again
2317		 * because of the packets that have already arrived.
2318		 */
2319		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2320	}
2321
2322	return IRQ_HANDLED;
2323}
2324
2325/* Interrupt Handler for Transmit complete */
2326static irqreturn_t gfar_transmit(int irq, void *grp_id)
2327{
2328	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2329	unsigned long flags;
2330	u32 imask;
2331
2332	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2333		spin_lock_irqsave(&grp->grplock, flags);
2334		imask = gfar_read(&grp->regs->imask);
2335		imask &= IMASK_TX_DISABLED | grp->priv->rmon_overflow.imask;
2336		gfar_write(&grp->regs->imask, imask);
2337		spin_unlock_irqrestore(&grp->grplock, flags);
2338		__napi_schedule(&grp->napi_tx);
2339	} else {
2340		/* Clear IEVENT, so interrupts aren't called again
2341		 * because of the packets that have already arrived.
2342		 */
2343		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2344	}
2345
2346	return IRQ_HANDLED;
2347}
2348
2349static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2350			     struct sk_buff *skb, bool first)
2351{
2352	int size = lstatus & BD_LENGTH_MASK;
2353	struct page *page = rxb->page;
2354
2355	if (likely(first)) {
2356		skb_put(skb, size);
2357	} else {
2358		/* the last fragments' length contains the full frame length */
2359		if (lstatus & BD_LFLAG(RXBD_LAST))
2360			size -= skb->len;
2361
2362		WARN(size < 0, "gianfar: rx fragment size underflow");
2363		if (size < 0)
2364			return false;
2365
2366		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2367				rxb->page_offset + RXBUF_ALIGNMENT,
2368				size, GFAR_RXB_TRUESIZE);
2369	}
2370
2371	/* try reuse page */
2372	if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2373		return false;
2374
2375	/* change offset to the other half */
2376	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2377
2378	page_ref_inc(page);
2379
2380	return true;
2381}
2382
2383static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2384			       struct gfar_rx_buff *old_rxb)
2385{
2386	struct gfar_rx_buff *new_rxb;
2387	u16 nta = rxq->next_to_alloc;
2388
2389	new_rxb = &rxq->rx_buff[nta];
2390
2391	/* find next buf that can reuse a page */
2392	nta++;
2393	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2394
2395	/* copy page reference */
2396	*new_rxb = *old_rxb;
2397
2398	/* sync for use by the device */
2399	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2400					 old_rxb->page_offset,
2401					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2402}
2403
2404static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2405					    u32 lstatus, struct sk_buff *skb)
2406{
2407	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2408	struct page *page = rxb->page;
2409	bool first = false;
2410
2411	if (likely(!skb)) {
2412		void *buff_addr = page_address(page) + rxb->page_offset;
2413
2414		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2415		if (unlikely(!skb)) {
2416			gfar_rx_alloc_err(rx_queue);
2417			return NULL;
2418		}
2419		skb_reserve(skb, RXBUF_ALIGNMENT);
2420		first = true;
2421	}
2422
2423	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2424				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2425
2426	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2427		/* reuse the free half of the page */
2428		gfar_reuse_rx_page(rx_queue, rxb);
2429	} else {
2430		/* page cannot be reused, unmap it */
2431		dma_unmap_page(rx_queue->dev, rxb->dma,
2432			       PAGE_SIZE, DMA_FROM_DEVICE);
2433	}
2434
2435	/* clear rxb content */
2436	rxb->page = NULL;
2437
2438	return skb;
2439}
2440
2441static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2442{
2443	/* If valid headers were found, and valid sums
2444	 * were verified, then we tell the kernel that no
2445	 * checksumming is necessary.  Otherwise, it is [FIXME]
2446	 */
2447	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2448	    (RXFCB_CIP | RXFCB_CTU))
2449		skb->ip_summed = CHECKSUM_UNNECESSARY;
2450	else
2451		skb_checksum_none_assert(skb);
2452}
2453
2454/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2455static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2456{
2457	struct gfar_private *priv = netdev_priv(ndev);
2458	struct rxfcb *fcb = NULL;
2459
2460	/* fcb is at the beginning if exists */
2461	fcb = (struct rxfcb *)skb->data;
2462
2463	/* Remove the FCB from the skb
2464	 * Remove the padded bytes, if there are any
2465	 */
2466	if (priv->uses_rxfcb)
2467		skb_pull(skb, GMAC_FCB_LEN);
2468
2469	/* Get receive timestamp from the skb */
2470	if (priv->hwts_rx_en) {
2471		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2472		u64 *ns = (u64 *) skb->data;
2473
2474		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2475		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2476	}
2477
2478	if (priv->padding)
2479		skb_pull(skb, priv->padding);
2480
2481	/* Trim off the FCS */
2482	pskb_trim(skb, skb->len - ETH_FCS_LEN);
2483
2484	if (ndev->features & NETIF_F_RXCSUM)
2485		gfar_rx_checksum(skb, fcb);
2486
2487	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2488	 * Even if vlan rx accel is disabled, on some chips
2489	 * RXFCB_VLN is pseudo randomly set.
2490	 */
2491	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2492	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
2493		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2494				       be16_to_cpu(fcb->vlctl));
2495}
2496
2497/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2498 * until the budget/quota has been reached. Returns the number
2499 * of frames handled
2500 */
2501static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2502			      int rx_work_limit)
2503{
2504	struct net_device *ndev = rx_queue->ndev;
2505	struct gfar_private *priv = netdev_priv(ndev);
2506	struct rxbd8 *bdp;
2507	int i, howmany = 0;
2508	struct sk_buff *skb = rx_queue->skb;
2509	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2510	unsigned int total_bytes = 0, total_pkts = 0;
2511
2512	/* Get the first full descriptor */
2513	i = rx_queue->next_to_clean;
2514
2515	while (rx_work_limit--) {
2516		u32 lstatus;
2517
2518		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2519			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2520			cleaned_cnt = 0;
2521		}
2522
2523		bdp = &rx_queue->rx_bd_base[i];
2524		lstatus = be32_to_cpu(bdp->lstatus);
2525		if (lstatus & BD_LFLAG(RXBD_EMPTY))
2526			break;
2527
2528		/* lost RXBD_LAST descriptor due to overrun */
2529		if (skb &&
2530		    (lstatus & BD_LFLAG(RXBD_FIRST))) {
2531			/* discard faulty buffer */
2532			dev_kfree_skb(skb);
2533			skb = NULL;
2534			rx_queue->stats.rx_dropped++;
2535
2536			/* can continue normally */
2537		}
2538
2539		/* order rx buffer descriptor reads */
2540		rmb();
2541
2542		/* fetch next to clean buffer from the ring */
2543		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2544		if (unlikely(!skb))
2545			break;
2546
2547		cleaned_cnt++;
2548		howmany++;
2549
2550		if (unlikely(++i == rx_queue->rx_ring_size))
2551			i = 0;
2552
2553		rx_queue->next_to_clean = i;
2554
2555		/* fetch next buffer if not the last in frame */
2556		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2557			continue;
2558
2559		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2560			count_errors(lstatus, ndev);
2561
2562			/* discard faulty buffer */
2563			dev_kfree_skb(skb);
2564			skb = NULL;
2565			rx_queue->stats.rx_dropped++;
2566			continue;
2567		}
2568
2569		gfar_process_frame(ndev, skb);
2570
2571		/* Increment the number of packets */
2572		total_pkts++;
2573		total_bytes += skb->len;
2574
2575		skb_record_rx_queue(skb, rx_queue->qindex);
2576
2577		skb->protocol = eth_type_trans(skb, ndev);
2578
2579		/* Send the packet up the stack */
2580		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2581
2582		skb = NULL;
2583	}
2584
2585	/* Store incomplete frames for completion */
2586	rx_queue->skb = skb;
2587
2588	rx_queue->stats.rx_packets += total_pkts;
2589	rx_queue->stats.rx_bytes += total_bytes;
2590
2591	if (cleaned_cnt)
2592		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2593
2594	/* Update Last Free RxBD pointer for LFC */
2595	if (unlikely(priv->tx_actual_en)) {
2596		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2597
2598		gfar_write(rx_queue->rfbptr, bdp_dma);
2599	}
2600
2601	return howmany;
2602}
2603
2604static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2605{
2606	struct gfar_priv_grp *gfargrp =
2607		container_of(napi, struct gfar_priv_grp, napi_rx);
2608	struct gfar __iomem *regs = gfargrp->regs;
2609	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2610	int work_done = 0;
2611
2612	/* Clear IEVENT, so interrupts aren't called again
2613	 * because of the packets that have already arrived
2614	 */
2615	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2616
2617	work_done = gfar_clean_rx_ring(rx_queue, budget);
2618
2619	if (work_done < budget) {
2620		u32 imask;
2621		napi_complete_done(napi, work_done);
2622		/* Clear the halt bit in RSTAT */
2623		gfar_write(&regs->rstat, gfargrp->rstat);
2624
2625		spin_lock_irq(&gfargrp->grplock);
2626		imask = gfar_read(&regs->imask);
2627		imask |= IMASK_RX_DEFAULT;
2628		gfar_write(&regs->imask, imask);
2629		spin_unlock_irq(&gfargrp->grplock);
2630	}
2631
2632	return work_done;
2633}
2634
2635static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2636{
2637	struct gfar_priv_grp *gfargrp =
2638		container_of(napi, struct gfar_priv_grp, napi_tx);
2639	struct gfar __iomem *regs = gfargrp->regs;
2640	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2641	u32 imask;
2642
2643	/* Clear IEVENT, so interrupts aren't called again
2644	 * because of the packets that have already arrived
2645	 */
2646	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2647
2648	/* run Tx cleanup to completion */
2649	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2650		gfar_clean_tx_ring(tx_queue);
2651
2652	napi_complete(napi);
2653
2654	spin_lock_irq(&gfargrp->grplock);
2655	imask = gfar_read(&regs->imask);
2656	imask |= IMASK_TX_DEFAULT;
2657	gfar_write(&regs->imask, imask);
2658	spin_unlock_irq(&gfargrp->grplock);
2659
2660	return 0;
2661}
2662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2663/* GFAR error interrupt handler */
2664static irqreturn_t gfar_error(int irq, void *grp_id)
2665{
2666	struct gfar_priv_grp *gfargrp = grp_id;
2667	struct gfar __iomem *regs = gfargrp->regs;
2668	struct gfar_private *priv= gfargrp->priv;
2669	struct net_device *dev = priv->ndev;
2670
2671	/* Save ievent for future reference */
2672	u32 events = gfar_read(&regs->ievent);
2673
2674	/* Clear IEVENT */
2675	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2676
2677	/* Magic Packet is not an error. */
2678	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2679	    (events & IEVENT_MAG))
2680		events &= ~IEVENT_MAG;
2681
2682	/* Hmm... */
2683	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2684		netdev_dbg(dev,
2685			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2686			   events, gfar_read(&regs->imask));
2687
2688	/* Update the error counters */
2689	if (events & IEVENT_TXE) {
2690		dev->stats.tx_errors++;
2691
2692		if (events & IEVENT_LC)
2693			dev->stats.tx_window_errors++;
2694		if (events & IEVENT_CRL)
2695			dev->stats.tx_aborted_errors++;
2696		if (events & IEVENT_XFUN) {
2697			netif_dbg(priv, tx_err, dev,
2698				  "TX FIFO underrun, packet dropped\n");
2699			dev->stats.tx_dropped++;
2700			atomic64_inc(&priv->extra_stats.tx_underrun);
2701
2702			schedule_work(&priv->reset_task);
2703		}
2704		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2705	}
2706	if (events & IEVENT_MSRO) {
2707		struct rmon_mib __iomem *rmon = &regs->rmon;
2708		u32 car;
2709
2710		spin_lock(&priv->rmon_overflow.lock);
2711		car = gfar_read(&rmon->car1) & CAR1_C1RDR;
2712		if (car) {
2713			priv->rmon_overflow.rdrp++;
2714			gfar_write(&rmon->car1, car);
2715		}
2716		spin_unlock(&priv->rmon_overflow.lock);
2717	}
2718	if (events & IEVENT_BSY) {
2719		dev->stats.rx_over_errors++;
2720		atomic64_inc(&priv->extra_stats.rx_bsy);
2721
2722		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2723			  gfar_read(&regs->rstat));
2724	}
2725	if (events & IEVENT_BABR) {
2726		dev->stats.rx_errors++;
2727		atomic64_inc(&priv->extra_stats.rx_babr);
2728
2729		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2730	}
2731	if (events & IEVENT_EBERR) {
2732		atomic64_inc(&priv->extra_stats.eberr);
2733		netif_dbg(priv, rx_err, dev, "bus error\n");
2734	}
2735	if (events & IEVENT_RXC)
2736		netif_dbg(priv, rx_status, dev, "control frame\n");
2737
2738	if (events & IEVENT_BABT) {
2739		atomic64_inc(&priv->extra_stats.tx_babt);
2740		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2741	}
2742	return IRQ_HANDLED;
2743}
2744
2745/* The interrupt handler for devices with one interrupt */
2746static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2747{
2748	struct gfar_priv_grp *gfargrp = grp_id;
2749
2750	/* Save ievent for future reference */
2751	u32 events = gfar_read(&gfargrp->regs->ievent);
2752
2753	/* Check for reception */
2754	if (events & IEVENT_RX_MASK)
2755		gfar_receive(irq, grp_id);
2756
2757	/* Check for transmit completion */
2758	if (events & IEVENT_TX_MASK)
2759		gfar_transmit(irq, grp_id);
2760
2761	/* Check for errors */
2762	if (events & IEVENT_ERR_MASK)
2763		gfar_error(irq, grp_id);
2764
2765	return IRQ_HANDLED;
2766}
2767
2768#ifdef CONFIG_NET_POLL_CONTROLLER
2769/* Polling 'interrupt' - used by things like netconsole to send skbs
2770 * without having to re-enable interrupts. It's not called while
2771 * the interrupt routine is executing.
2772 */
2773static void gfar_netpoll(struct net_device *dev)
2774{
2775	struct gfar_private *priv = netdev_priv(dev);
2776	int i;
2777
2778	/* If the device has multiple interrupts, run tx/rx */
2779	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2780		for (i = 0; i < priv->num_grps; i++) {
2781			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2782
2783			disable_irq(gfar_irq(grp, TX)->irq);
2784			disable_irq(gfar_irq(grp, RX)->irq);
2785			disable_irq(gfar_irq(grp, ER)->irq);
2786			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2787			enable_irq(gfar_irq(grp, ER)->irq);
2788			enable_irq(gfar_irq(grp, RX)->irq);
2789			enable_irq(gfar_irq(grp, TX)->irq);
2790		}
2791	} else {
2792		for (i = 0; i < priv->num_grps; i++) {
2793			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2794
2795			disable_irq(gfar_irq(grp, TX)->irq);
2796			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2797			enable_irq(gfar_irq(grp, TX)->irq);
2798		}
2799	}
2800}
2801#endif
2802
2803static void free_grp_irqs(struct gfar_priv_grp *grp)
2804{
2805	free_irq(gfar_irq(grp, TX)->irq, grp);
2806	free_irq(gfar_irq(grp, RX)->irq, grp);
2807	free_irq(gfar_irq(grp, ER)->irq, grp);
2808}
2809
2810static int register_grp_irqs(struct gfar_priv_grp *grp)
2811{
2812	struct gfar_private *priv = grp->priv;
2813	struct net_device *dev = priv->ndev;
2814	int err;
2815
2816	/* If the device has multiple interrupts, register for
2817	 * them.  Otherwise, only register for the one
2818	 */
2819	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2820		/* Install our interrupt handlers for Error,
2821		 * Transmit, and Receive
2822		 */
2823		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2824				  gfar_irq(grp, ER)->name, grp);
2825		if (err < 0) {
2826			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2827				  gfar_irq(grp, ER)->irq);
2828
2829			goto err_irq_fail;
2830		}
2831		enable_irq_wake(gfar_irq(grp, ER)->irq);
2832
2833		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2834				  gfar_irq(grp, TX)->name, grp);
2835		if (err < 0) {
2836			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2837				  gfar_irq(grp, TX)->irq);
2838			goto tx_irq_fail;
2839		}
2840		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2841				  gfar_irq(grp, RX)->name, grp);
2842		if (err < 0) {
2843			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2844				  gfar_irq(grp, RX)->irq);
2845			goto rx_irq_fail;
2846		}
2847		enable_irq_wake(gfar_irq(grp, RX)->irq);
2848
2849	} else {
2850		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2851				  gfar_irq(grp, TX)->name, grp);
2852		if (err < 0) {
2853			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2854				  gfar_irq(grp, TX)->irq);
2855			goto err_irq_fail;
2856		}
2857		enable_irq_wake(gfar_irq(grp, TX)->irq);
2858	}
2859
2860	return 0;
2861
2862rx_irq_fail:
2863	free_irq(gfar_irq(grp, TX)->irq, grp);
2864tx_irq_fail:
2865	free_irq(gfar_irq(grp, ER)->irq, grp);
2866err_irq_fail:
2867	return err;
2868
2869}
2870
2871static void gfar_free_irq(struct gfar_private *priv)
2872{
2873	int i;
2874
2875	/* Free the IRQs */
2876	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2877		for (i = 0; i < priv->num_grps; i++)
2878			free_grp_irqs(&priv->gfargrp[i]);
2879	} else {
2880		for (i = 0; i < priv->num_grps; i++)
2881			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2882				 &priv->gfargrp[i]);
2883	}
2884}
2885
2886static int gfar_request_irq(struct gfar_private *priv)
2887{
2888	int err, i, j;
2889
2890	for (i = 0; i < priv->num_grps; i++) {
2891		err = register_grp_irqs(&priv->gfargrp[i]);
2892		if (err) {
2893			for (j = 0; j < i; j++)
2894				free_grp_irqs(&priv->gfargrp[j]);
2895			return err;
2896		}
2897	}
2898
2899	return 0;
2900}
2901
2902/* Called when something needs to use the ethernet device
2903 * Returns 0 for success.
2904 */
2905static int gfar_enet_open(struct net_device *dev)
2906{
2907	struct gfar_private *priv = netdev_priv(dev);
2908	int err;
2909
2910	err = init_phy(dev);
2911	if (err)
2912		return err;
2913
2914	err = gfar_request_irq(priv);
2915	if (err)
2916		return err;
2917
2918	err = startup_gfar(dev);
2919	if (err)
2920		return err;
2921
2922	return err;
2923}
2924
2925/* Stops the kernel queue, and halts the controller */
2926static int gfar_close(struct net_device *dev)
2927{
2928	struct gfar_private *priv = netdev_priv(dev);
2929
2930	cancel_work_sync(&priv->reset_task);
2931	stop_gfar(dev);
2932
2933	/* Disconnect from the PHY */
2934	phy_disconnect(dev->phydev);
2935
2936	gfar_free_irq(priv);
2937
2938	return 0;
2939}
2940
2941/* Clears each of the exact match registers to zero, so they
2942 * don't interfere with normal reception
2943 */
2944static void gfar_clear_exact_match(struct net_device *dev)
2945{
2946	int idx;
2947	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
2948
2949	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
2950		gfar_set_mac_for_addr(dev, idx, zero_arr);
2951}
2952
2953/* Update the hash table based on the current list of multicast
2954 * addresses we subscribe to.  Also, change the promiscuity of
2955 * the device based on the flags (this function is called
2956 * whenever dev->flags is changed
2957 */
2958static void gfar_set_multi(struct net_device *dev)
2959{
2960	struct netdev_hw_addr *ha;
2961	struct gfar_private *priv = netdev_priv(dev);
2962	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2963	u32 tempval;
2964
2965	if (dev->flags & IFF_PROMISC) {
2966		/* Set RCTRL to PROM */
2967		tempval = gfar_read(&regs->rctrl);
2968		tempval |= RCTRL_PROM;
2969		gfar_write(&regs->rctrl, tempval);
2970	} else {
2971		/* Set RCTRL to not PROM */
2972		tempval = gfar_read(&regs->rctrl);
2973		tempval &= ~(RCTRL_PROM);
2974		gfar_write(&regs->rctrl, tempval);
2975	}
2976
2977	if (dev->flags & IFF_ALLMULTI) {
2978		/* Set the hash to rx all multicast frames */
2979		gfar_write(&regs->igaddr0, 0xffffffff);
2980		gfar_write(&regs->igaddr1, 0xffffffff);
2981		gfar_write(&regs->igaddr2, 0xffffffff);
2982		gfar_write(&regs->igaddr3, 0xffffffff);
2983		gfar_write(&regs->igaddr4, 0xffffffff);
2984		gfar_write(&regs->igaddr5, 0xffffffff);
2985		gfar_write(&regs->igaddr6, 0xffffffff);
2986		gfar_write(&regs->igaddr7, 0xffffffff);
2987		gfar_write(&regs->gaddr0, 0xffffffff);
2988		gfar_write(&regs->gaddr1, 0xffffffff);
2989		gfar_write(&regs->gaddr2, 0xffffffff);
2990		gfar_write(&regs->gaddr3, 0xffffffff);
2991		gfar_write(&regs->gaddr4, 0xffffffff);
2992		gfar_write(&regs->gaddr5, 0xffffffff);
2993		gfar_write(&regs->gaddr6, 0xffffffff);
2994		gfar_write(&regs->gaddr7, 0xffffffff);
2995	} else {
2996		int em_num;
2997		int idx;
2998
2999		/* zero out the hash */
3000		gfar_write(&regs->igaddr0, 0x0);
3001		gfar_write(&regs->igaddr1, 0x0);
3002		gfar_write(&regs->igaddr2, 0x0);
3003		gfar_write(&regs->igaddr3, 0x0);
3004		gfar_write(&regs->igaddr4, 0x0);
3005		gfar_write(&regs->igaddr5, 0x0);
3006		gfar_write(&regs->igaddr6, 0x0);
3007		gfar_write(&regs->igaddr7, 0x0);
3008		gfar_write(&regs->gaddr0, 0x0);
3009		gfar_write(&regs->gaddr1, 0x0);
3010		gfar_write(&regs->gaddr2, 0x0);
3011		gfar_write(&regs->gaddr3, 0x0);
3012		gfar_write(&regs->gaddr4, 0x0);
3013		gfar_write(&regs->gaddr5, 0x0);
3014		gfar_write(&regs->gaddr6, 0x0);
3015		gfar_write(&regs->gaddr7, 0x0);
3016
3017		/* If we have extended hash tables, we need to
3018		 * clear the exact match registers to prepare for
3019		 * setting them
3020		 */
3021		if (priv->extended_hash) {
3022			em_num = GFAR_EM_NUM + 1;
3023			gfar_clear_exact_match(dev);
3024			idx = 1;
3025		} else {
3026			idx = 0;
3027			em_num = 0;
3028		}
3029
3030		if (netdev_mc_empty(dev))
3031			return;
3032
3033		/* Parse the list, and set the appropriate bits */
3034		netdev_for_each_mc_addr(ha, dev) {
3035			if (idx < em_num) {
3036				gfar_set_mac_for_addr(dev, idx, ha->addr);
3037				idx++;
3038			} else
3039				gfar_set_hash_for_addr(dev, ha->addr);
3040		}
3041	}
3042}
3043
3044void gfar_mac_reset(struct gfar_private *priv)
3045{
3046	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3047	u32 tempval;
3048
3049	/* Reset MAC layer */
3050	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
3051
3052	/* We need to delay at least 3 TX clocks */
3053	udelay(3);
3054
3055	/* the soft reset bit is not self-resetting, so we need to
3056	 * clear it before resuming normal operation
3057	 */
3058	gfar_write(&regs->maccfg1, 0);
3059
3060	udelay(3);
3061
3062	gfar_rx_offload_en(priv);
3063
3064	/* Initialize the max receive frame/buffer lengths */
3065	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3066	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
3067
3068	/* Initialize the Minimum Frame Length Register */
3069	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
3070
3071	/* Initialize MACCFG2. */
3072	tempval = MACCFG2_INIT_SETTINGS;
3073
3074	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3075	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
3076	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
3077	 */
3078	if (gfar_has_errata(priv, GFAR_ERRATA_74))
3079		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3080
3081	gfar_write(&regs->maccfg2, tempval);
3082
3083	/* Clear mac addr hash registers */
3084	gfar_write(&regs->igaddr0, 0);
3085	gfar_write(&regs->igaddr1, 0);
3086	gfar_write(&regs->igaddr2, 0);
3087	gfar_write(&regs->igaddr3, 0);
3088	gfar_write(&regs->igaddr4, 0);
3089	gfar_write(&regs->igaddr5, 0);
3090	gfar_write(&regs->igaddr6, 0);
3091	gfar_write(&regs->igaddr7, 0);
3092
3093	gfar_write(&regs->gaddr0, 0);
3094	gfar_write(&regs->gaddr1, 0);
3095	gfar_write(&regs->gaddr2, 0);
3096	gfar_write(&regs->gaddr3, 0);
3097	gfar_write(&regs->gaddr4, 0);
3098	gfar_write(&regs->gaddr5, 0);
3099	gfar_write(&regs->gaddr6, 0);
3100	gfar_write(&regs->gaddr7, 0);
3101
3102	if (priv->extended_hash)
3103		gfar_clear_exact_match(priv->ndev);
3104
3105	gfar_mac_rx_config(priv);
3106
3107	gfar_mac_tx_config(priv);
3108
3109	gfar_set_mac_address(priv->ndev);
3110
3111	gfar_set_multi(priv->ndev);
3112
3113	/* clear ievent and imask before configuring coalescing */
3114	gfar_ints_disable(priv);
3115
3116	/* Configure the coalescing support */
3117	gfar_configure_coalescing_all(priv);
3118}
3119
3120static void gfar_hw_init(struct gfar_private *priv)
3121{
3122	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3123	u32 attrs;
3124
3125	/* Stop the DMA engine now, in case it was running before
3126	 * (The firmware could have used it, and left it running).
3127	 */
3128	gfar_halt(priv);
3129
3130	gfar_mac_reset(priv);
3131
3132	/* Zero out the rmon mib registers if it has them */
3133	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3134		memset_io(&regs->rmon, 0, offsetof(struct rmon_mib, car1));
3135
3136		/* Mask off the CAM interrupts */
3137		gfar_write(&regs->rmon.cam1, 0xffffffff);
3138		gfar_write(&regs->rmon.cam2, 0xffffffff);
3139		/* Clear the CAR registers (w1c style) */
3140		gfar_write(&regs->rmon.car1, 0xffffffff);
3141		gfar_write(&regs->rmon.car2, 0xffffffff);
3142	}
3143
3144	/* Initialize ECNTRL */
3145	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
3146
3147	/* Set the extraction length and index */
3148	attrs = ATTRELI_EL(priv->rx_stash_size) |
3149		ATTRELI_EI(priv->rx_stash_index);
3150
3151	gfar_write(&regs->attreli, attrs);
3152
3153	/* Start with defaults, and add stashing
3154	 * depending on driver parameters
3155	 */
3156	attrs = ATTR_INIT_SETTINGS;
3157
3158	if (priv->bd_stash_en)
3159		attrs |= ATTR_BDSTASH;
3160
3161	if (priv->rx_stash_size != 0)
3162		attrs |= ATTR_BUFSTASH;
3163
3164	gfar_write(&regs->attr, attrs);
3165
3166	/* FIFO configs */
3167	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3168	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3169	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3170
3171	/* Program the interrupt steering regs, only for MG devices */
3172	if (priv->num_grps > 1)
3173		gfar_write_isrg(priv);
3174}
3175
3176static const struct net_device_ops gfar_netdev_ops = {
3177	.ndo_open = gfar_enet_open,
3178	.ndo_start_xmit = gfar_start_xmit,
3179	.ndo_stop = gfar_close,
3180	.ndo_change_mtu = gfar_change_mtu,
3181	.ndo_set_features = gfar_set_features,
3182	.ndo_set_rx_mode = gfar_set_multi,
3183	.ndo_tx_timeout = gfar_timeout,
3184	.ndo_eth_ioctl = gfar_ioctl,
3185	.ndo_get_stats64 = gfar_get_stats64,
3186	.ndo_change_carrier = fixed_phy_change_carrier,
3187	.ndo_set_mac_address = gfar_set_mac_addr,
3188	.ndo_validate_addr = eth_validate_addr,
3189#ifdef CONFIG_NET_POLL_CONTROLLER
3190	.ndo_poll_controller = gfar_netpoll,
3191#endif
3192};
3193
3194/* Set up the ethernet device structure, private data,
3195 * and anything else we need before we start
3196 */
3197static int gfar_probe(struct platform_device *ofdev)
3198{
3199	struct device_node *np = ofdev->dev.of_node;
3200	struct net_device *dev = NULL;
3201	struct gfar_private *priv = NULL;
3202	int err = 0, i;
3203
3204	err = gfar_of_init(ofdev, &dev);
3205
3206	if (err)
3207		return err;
3208
3209	priv = netdev_priv(dev);
3210	priv->ndev = dev;
3211	priv->ofdev = ofdev;
3212	priv->dev = &ofdev->dev;
3213	SET_NETDEV_DEV(dev, &ofdev->dev);
3214
3215	INIT_WORK(&priv->reset_task, gfar_reset_task);
3216
3217	platform_set_drvdata(ofdev, priv);
3218
3219	gfar_detect_errata(priv);
3220
3221	/* Set the dev->base_addr to the gfar reg region */
3222	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3223
3224	/* Fill in the dev structure */
3225	dev->watchdog_timeo = TX_TIMEOUT;
3226	/* MTU range: 50 - 9586 */
3227	dev->mtu = 1500;
3228	dev->min_mtu = 50;
3229	dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3230	dev->netdev_ops = &gfar_netdev_ops;
3231	dev->ethtool_ops = &gfar_ethtool_ops;
3232
3233	/* Register for napi ...We are registering NAPI for each grp */
3234	for (i = 0; i < priv->num_grps; i++) {
3235		netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3236			       gfar_poll_rx_sq);
3237		netif_napi_add_tx_weight(dev, &priv->gfargrp[i].napi_tx,
3238					 gfar_poll_tx_sq, 2);
 
 
 
 
 
 
 
3239	}
3240
3241	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3242		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3243				   NETIF_F_RXCSUM;
3244		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3245				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3246	}
3247
3248	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3249		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3250				    NETIF_F_HW_VLAN_CTAG_RX;
3251		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3252	}
3253
3254	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3255
3256	gfar_init_addr_hash_table(priv);
3257
3258	/* Insert receive time stamps into padding alignment bytes, and
3259	 * plus 2 bytes padding to ensure the cpu alignment.
3260	 */
3261	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3262		priv->padding = 8 + DEFAULT_PADDING;
3263
3264	if (dev->features & NETIF_F_IP_CSUM ||
3265	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3266		dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
3267
3268	/* Initializing some of the rx/tx queue level parameters */
3269	for (i = 0; i < priv->num_tx_queues; i++) {
3270		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3271		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3272		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3273		priv->tx_queue[i]->txic = DEFAULT_TXIC;
3274	}
3275
3276	for (i = 0; i < priv->num_rx_queues; i++) {
3277		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3278		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3279		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3280	}
3281
3282	/* Always enable rx filer if available */
3283	priv->rx_filer_enable =
3284	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3285	/* Enable most messages by default */
3286	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3287	/* use pritority h/w tx queue scheduling for single queue devices */
3288	if (priv->num_tx_queues == 1)
3289		priv->prio_sched_en = 1;
3290
3291	set_bit(GFAR_DOWN, &priv->state);
3292
3293	gfar_hw_init(priv);
3294
3295	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3296		struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
3297
3298		spin_lock_init(&priv->rmon_overflow.lock);
3299		priv->rmon_overflow.imask = IMASK_MSRO;
3300		gfar_write(&rmon->cam1, gfar_read(&rmon->cam1) & ~CAM1_M1RDR);
3301	}
3302
3303	/* Carrier starts down, phylib will bring it up */
3304	netif_carrier_off(dev);
3305
3306	err = register_netdev(dev);
3307
3308	if (err) {
3309		pr_err("%s: Cannot register net device, aborting\n", dev->name);
3310		goto register_fail;
3311	}
3312
3313	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3314		priv->wol_supported |= GFAR_WOL_MAGIC;
3315
3316	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3317	    priv->rx_filer_enable)
3318		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3319
3320	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3321
3322	/* fill out IRQ number and name fields */
3323	for (i = 0; i < priv->num_grps; i++) {
3324		struct gfar_priv_grp *grp = &priv->gfargrp[i];
3325		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3326			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3327				dev->name, "_g", '0' + i, "_tx");
3328			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3329				dev->name, "_g", '0' + i, "_rx");
3330			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3331				dev->name, "_g", '0' + i, "_er");
3332		} else
3333			strcpy(gfar_irq(grp, TX)->name, dev->name);
3334	}
3335
3336	/* Initialize the filer table */
3337	gfar_init_filer_table(priv);
3338
3339	/* Print out the device info */
3340	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3341
3342	/* Even more device info helps when determining which kernel
3343	 * provided which set of benchmarks.
3344	 */
3345	netdev_info(dev, "Running with NAPI enabled\n");
3346	for (i = 0; i < priv->num_rx_queues; i++)
3347		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3348			    i, priv->rx_queue[i]->rx_ring_size);
3349	for (i = 0; i < priv->num_tx_queues; i++)
3350		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3351			    i, priv->tx_queue[i]->tx_ring_size);
3352
3353	return 0;
3354
3355register_fail:
3356	if (of_phy_is_fixed_link(np))
3357		of_phy_deregister_fixed_link(np);
3358	unmap_group_regs(priv);
3359	gfar_free_rx_queues(priv);
3360	gfar_free_tx_queues(priv);
3361	of_node_put(priv->phy_node);
3362	of_node_put(priv->tbi_node);
3363	free_gfar_dev(priv);
3364	return err;
3365}
3366
3367static void gfar_remove(struct platform_device *ofdev)
3368{
3369	struct gfar_private *priv = platform_get_drvdata(ofdev);
3370	struct device_node *np = ofdev->dev.of_node;
3371
3372	of_node_put(priv->phy_node);
3373	of_node_put(priv->tbi_node);
3374
3375	unregister_netdev(priv->ndev);
3376
3377	if (of_phy_is_fixed_link(np))
3378		of_phy_deregister_fixed_link(np);
3379
3380	unmap_group_regs(priv);
3381	gfar_free_rx_queues(priv);
3382	gfar_free_tx_queues(priv);
3383	free_gfar_dev(priv);
 
 
3384}
3385
3386#ifdef CONFIG_PM
3387
3388static void __gfar_filer_disable(struct gfar_private *priv)
3389{
3390	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3391	u32 temp;
3392
3393	temp = gfar_read(&regs->rctrl);
3394	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3395	gfar_write(&regs->rctrl, temp);
3396}
3397
3398static void __gfar_filer_enable(struct gfar_private *priv)
3399{
3400	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3401	u32 temp;
3402
3403	temp = gfar_read(&regs->rctrl);
3404	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3405	gfar_write(&regs->rctrl, temp);
3406}
3407
3408/* Filer rules implementing wol capabilities */
3409static void gfar_filer_config_wol(struct gfar_private *priv)
3410{
3411	unsigned int i;
3412	u32 rqfcr;
3413
3414	__gfar_filer_disable(priv);
3415
3416	/* clear the filer table, reject any packet by default */
3417	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3418	for (i = 0; i <= MAX_FILER_IDX; i++)
3419		gfar_write_filer(priv, i, rqfcr, 0);
3420
3421	i = 0;
3422	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3423		/* unicast packet, accept it */
3424		struct net_device *ndev = priv->ndev;
3425		/* get the default rx queue index */
3426		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3427		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3428				    (ndev->dev_addr[1] << 8) |
3429				     ndev->dev_addr[2];
3430
3431		rqfcr = (qindex << 10) | RQFCR_AND |
3432			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3433
3434		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3435
3436		dest_mac_addr = (ndev->dev_addr[3] << 16) |
3437				(ndev->dev_addr[4] << 8) |
3438				 ndev->dev_addr[5];
3439		rqfcr = (qindex << 10) | RQFCR_GPI |
3440			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3441		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3442	}
3443
3444	__gfar_filer_enable(priv);
3445}
3446
3447static void gfar_filer_restore_table(struct gfar_private *priv)
3448{
3449	u32 rqfcr, rqfpr;
3450	unsigned int i;
3451
3452	__gfar_filer_disable(priv);
3453
3454	for (i = 0; i <= MAX_FILER_IDX; i++) {
3455		rqfcr = priv->ftp_rqfcr[i];
3456		rqfpr = priv->ftp_rqfpr[i];
3457		gfar_write_filer(priv, i, rqfcr, rqfpr);
3458	}
3459
3460	__gfar_filer_enable(priv);
3461}
3462
3463/* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3464static void gfar_start_wol_filer(struct gfar_private *priv)
3465{
3466	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3467	u32 tempval;
3468	int i = 0;
3469
3470	/* Enable Rx hw queues */
3471	gfar_write(&regs->rqueue, priv->rqueue);
3472
3473	/* Initialize DMACTRL to have WWR and WOP */
3474	tempval = gfar_read(&regs->dmactrl);
3475	tempval |= DMACTRL_INIT_SETTINGS;
3476	gfar_write(&regs->dmactrl, tempval);
3477
3478	/* Make sure we aren't stopped */
3479	tempval = gfar_read(&regs->dmactrl);
3480	tempval &= ~DMACTRL_GRS;
3481	gfar_write(&regs->dmactrl, tempval);
3482
3483	for (i = 0; i < priv->num_grps; i++) {
3484		regs = priv->gfargrp[i].regs;
3485		/* Clear RHLT, so that the DMA starts polling now */
3486		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
3487		/* enable the Filer General Purpose Interrupt */
3488		gfar_write(&regs->imask, IMASK_FGPI);
3489	}
3490
3491	/* Enable Rx DMA */
3492	tempval = gfar_read(&regs->maccfg1);
3493	tempval |= MACCFG1_RX_EN;
3494	gfar_write(&regs->maccfg1, tempval);
3495}
3496
3497static int gfar_suspend(struct device *dev)
3498{
3499	struct gfar_private *priv = dev_get_drvdata(dev);
3500	struct net_device *ndev = priv->ndev;
3501	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3502	u32 tempval;
3503	u16 wol = priv->wol_opts;
3504
3505	if (!netif_running(ndev))
3506		return 0;
3507
3508	disable_napi(priv);
3509	netif_tx_lock(ndev);
3510	netif_device_detach(ndev);
3511	netif_tx_unlock(ndev);
3512
3513	gfar_halt(priv);
3514
3515	if (wol & GFAR_WOL_MAGIC) {
3516		/* Enable interrupt on Magic Packet */
3517		gfar_write(&regs->imask, IMASK_MAG);
3518
3519		/* Enable Magic Packet mode */
3520		tempval = gfar_read(&regs->maccfg2);
3521		tempval |= MACCFG2_MPEN;
3522		gfar_write(&regs->maccfg2, tempval);
3523
3524		/* re-enable the Rx block */
3525		tempval = gfar_read(&regs->maccfg1);
3526		tempval |= MACCFG1_RX_EN;
3527		gfar_write(&regs->maccfg1, tempval);
3528
3529	} else if (wol & GFAR_WOL_FILER_UCAST) {
3530		gfar_filer_config_wol(priv);
3531		gfar_start_wol_filer(priv);
3532
3533	} else {
3534		phy_stop(ndev->phydev);
3535	}
3536
3537	return 0;
3538}
3539
3540static int gfar_resume(struct device *dev)
3541{
3542	struct gfar_private *priv = dev_get_drvdata(dev);
3543	struct net_device *ndev = priv->ndev;
3544	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3545	u32 tempval;
3546	u16 wol = priv->wol_opts;
3547
3548	if (!netif_running(ndev))
3549		return 0;
3550
3551	if (wol & GFAR_WOL_MAGIC) {
3552		/* Disable Magic Packet mode */
3553		tempval = gfar_read(&regs->maccfg2);
3554		tempval &= ~MACCFG2_MPEN;
3555		gfar_write(&regs->maccfg2, tempval);
3556
3557	} else if (wol & GFAR_WOL_FILER_UCAST) {
3558		/* need to stop rx only, tx is already down */
3559		gfar_halt(priv);
3560		gfar_filer_restore_table(priv);
3561
3562	} else {
3563		phy_start(ndev->phydev);
3564	}
3565
3566	gfar_start(priv);
3567
3568	netif_device_attach(ndev);
3569	enable_napi(priv);
3570
3571	return 0;
3572}
3573
3574static int gfar_restore(struct device *dev)
3575{
3576	struct gfar_private *priv = dev_get_drvdata(dev);
3577	struct net_device *ndev = priv->ndev;
3578
3579	if (!netif_running(ndev)) {
3580		netif_device_attach(ndev);
3581
3582		return 0;
3583	}
3584
3585	gfar_init_bds(ndev);
3586
3587	gfar_mac_reset(priv);
3588
3589	gfar_init_tx_rx_base(priv);
3590
3591	gfar_start(priv);
3592
3593	priv->oldlink = 0;
3594	priv->oldspeed = 0;
3595	priv->oldduplex = -1;
3596
3597	if (ndev->phydev)
3598		phy_start(ndev->phydev);
3599
3600	netif_device_attach(ndev);
3601	enable_napi(priv);
3602
3603	return 0;
3604}
3605
3606static const struct dev_pm_ops gfar_pm_ops = {
3607	.suspend = gfar_suspend,
3608	.resume = gfar_resume,
3609	.freeze = gfar_suspend,
3610	.thaw = gfar_resume,
3611	.restore = gfar_restore,
3612};
3613
3614#define GFAR_PM_OPS (&gfar_pm_ops)
3615
3616#else
3617
3618#define GFAR_PM_OPS NULL
3619
3620#endif
3621
3622static const struct of_device_id gfar_match[] =
3623{
3624	{
3625		.type = "network",
3626		.compatible = "gianfar",
3627	},
3628	{
3629		.compatible = "fsl,etsec2",
3630	},
3631	{},
3632};
3633MODULE_DEVICE_TABLE(of, gfar_match);
3634
3635/* Structure for a device driver */
3636static struct platform_driver gfar_driver = {
3637	.driver = {
3638		.name = "fsl-gianfar",
3639		.pm = GFAR_PM_OPS,
3640		.of_match_table = gfar_match,
3641	},
3642	.probe = gfar_probe,
3643	.remove_new = gfar_remove,
3644};
3645
3646module_platform_driver(gfar_driver);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* drivers/net/ethernet/freescale/gianfar.c
   3 *
   4 * Gianfar Ethernet Driver
   5 * This driver is designed for the non-CPM ethernet controllers
   6 * on the 85xx and 83xx family of integrated processors
   7 * Based on 8260_io/fcc_enet.c
   8 *
   9 * Author: Andy Fleming
  10 * Maintainer: Kumar Gala
  11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  12 *
  13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
  14 * Copyright 2007 MontaVista Software, Inc.
  15 *
  16 *  Gianfar:  AKA Lambda Draconis, "Dragon"
  17 *  RA 11 31 24.2
  18 *  Dec +69 19 52
  19 *  V 3.84
  20 *  B-V +1.62
  21 *
  22 *  Theory of operation
  23 *
  24 *  The driver is initialized through of_device. Configuration information
  25 *  is therefore conveyed through an OF-style device tree.
  26 *
  27 *  The Gianfar Ethernet Controller uses a ring of buffer
  28 *  descriptors.  The beginning is indicated by a register
  29 *  pointing to the physical address of the start of the ring.
  30 *  The end is determined by a "wrap" bit being set in the
  31 *  last descriptor of the ring.
  32 *
  33 *  When a packet is received, the RXF bit in the
  34 *  IEVENT register is set, triggering an interrupt when the
  35 *  corresponding bit in the IMASK register is also set (if
  36 *  interrupt coalescing is active, then the interrupt may not
  37 *  happen immediately, but will wait until either a set number
  38 *  of frames or amount of time have passed).  In NAPI, the
  39 *  interrupt handler will signal there is work to be done, and
  40 *  exit. This method will start at the last known empty
  41 *  descriptor, and process every subsequent descriptor until there
  42 *  are none left with data (NAPI will stop after a set number of
  43 *  packets to give time to other tasks, but will eventually
  44 *  process all the packets).  The data arrives inside a
  45 *  pre-allocated skb, and so after the skb is passed up to the
  46 *  stack, a new skb must be allocated, and the address field in
  47 *  the buffer descriptor must be updated to indicate this new
  48 *  skb.
  49 *
  50 *  When the kernel requests that a packet be transmitted, the
  51 *  driver starts where it left off last time, and points the
  52 *  descriptor at the buffer which was passed in.  The driver
  53 *  then informs the DMA engine that there are packets ready to
  54 *  be transmitted.  Once the controller is finished transmitting
  55 *  the packet, an interrupt may be triggered (under the same
  56 *  conditions as for reception, but depending on the TXF bit).
  57 *  The driver then cleans up the buffer.
  58 */
  59
  60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  61#define DEBUG
  62
  63#include <linux/kernel.h>
 
  64#include <linux/string.h>
  65#include <linux/errno.h>
  66#include <linux/unistd.h>
  67#include <linux/slab.h>
  68#include <linux/interrupt.h>
  69#include <linux/delay.h>
  70#include <linux/netdevice.h>
  71#include <linux/etherdevice.h>
  72#include <linux/skbuff.h>
  73#include <linux/if_vlan.h>
  74#include <linux/spinlock.h>
  75#include <linux/mm.h>
  76#include <linux/of_address.h>
  77#include <linux/of_irq.h>
  78#include <linux/of_mdio.h>
  79#include <linux/of_platform.h>
  80#include <linux/ip.h>
  81#include <linux/tcp.h>
  82#include <linux/udp.h>
  83#include <linux/in.h>
  84#include <linux/net_tstamp.h>
  85
  86#include <asm/io.h>
  87#ifdef CONFIG_PPC
  88#include <asm/reg.h>
  89#include <asm/mpc85xx.h>
  90#endif
  91#include <asm/irq.h>
  92#include <linux/uaccess.h>
  93#include <linux/module.h>
  94#include <linux/dma-mapping.h>
  95#include <linux/crc32.h>
  96#include <linux/mii.h>
  97#include <linux/phy.h>
  98#include <linux/phy_fixed.h>
  99#include <linux/of.h>
 100#include <linux/of_net.h>
 101
 102#include "gianfar.h"
 103
 104#define TX_TIMEOUT      (5*HZ)
 105
 106const char gfar_driver_version[] = "2.0";
 107
 108MODULE_AUTHOR("Freescale Semiconductor, Inc");
 109MODULE_DESCRIPTION("Gianfar Ethernet Driver");
 110MODULE_LICENSE("GPL");
 111
 112static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 113			    dma_addr_t buf)
 114{
 115	u32 lstatus;
 116
 117	bdp->bufPtr = cpu_to_be32(buf);
 118
 119	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
 120	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
 121		lstatus |= BD_LFLAG(RXBD_WRAP);
 122
 123	gfar_wmb();
 124
 125	bdp->lstatus = cpu_to_be32(lstatus);
 126}
 127
 128static void gfar_init_tx_rx_base(struct gfar_private *priv)
 129{
 130	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 131	u32 __iomem *baddr;
 132	int i;
 133
 134	baddr = &regs->tbase0;
 135	for (i = 0; i < priv->num_tx_queues; i++) {
 136		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
 137		baddr += 2;
 138	}
 139
 140	baddr = &regs->rbase0;
 141	for (i = 0; i < priv->num_rx_queues; i++) {
 142		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
 143		baddr += 2;
 144	}
 145}
 146
 147static void gfar_init_rqprm(struct gfar_private *priv)
 148{
 149	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 150	u32 __iomem *baddr;
 151	int i;
 152
 153	baddr = &regs->rqprm0;
 154	for (i = 0; i < priv->num_rx_queues; i++) {
 155		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
 156			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
 157		baddr++;
 158	}
 159}
 160
 161static void gfar_rx_offload_en(struct gfar_private *priv)
 162{
 163	/* set this when rx hw offload (TOE) functions are being used */
 164	priv->uses_rxfcb = 0;
 165
 166	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
 167		priv->uses_rxfcb = 1;
 168
 169	if (priv->hwts_rx_en || priv->rx_filer_enable)
 170		priv->uses_rxfcb = 1;
 171}
 172
 173static void gfar_mac_rx_config(struct gfar_private *priv)
 174{
 175	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 176	u32 rctrl = 0;
 177
 178	if (priv->rx_filer_enable) {
 179		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
 180		/* Program the RIR0 reg with the required distribution */
 181		if (priv->poll_mode == GFAR_SQ_POLLING)
 182			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
 183		else /* GFAR_MQ_POLLING */
 184			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
 185	}
 186
 187	/* Restore PROMISC mode */
 188	if (priv->ndev->flags & IFF_PROMISC)
 189		rctrl |= RCTRL_PROM;
 190
 191	if (priv->ndev->features & NETIF_F_RXCSUM)
 192		rctrl |= RCTRL_CHECKSUMMING;
 193
 194	if (priv->extended_hash)
 195		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
 196
 197	if (priv->padding) {
 198		rctrl &= ~RCTRL_PAL_MASK;
 199		rctrl |= RCTRL_PADDING(priv->padding);
 200	}
 201
 202	/* Enable HW time stamping if requested from user space */
 203	if (priv->hwts_rx_en)
 204		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
 205
 206	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
 207		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
 208
 209	/* Clear the LFC bit */
 210	gfar_write(&regs->rctrl, rctrl);
 211	/* Init flow control threshold values */
 212	gfar_init_rqprm(priv);
 213	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
 214	rctrl |= RCTRL_LFC;
 215
 216	/* Init rctrl based on our settings */
 217	gfar_write(&regs->rctrl, rctrl);
 218}
 219
 220static void gfar_mac_tx_config(struct gfar_private *priv)
 221{
 222	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 223	u32 tctrl = 0;
 224
 225	if (priv->ndev->features & NETIF_F_IP_CSUM)
 226		tctrl |= TCTRL_INIT_CSUM;
 227
 228	if (priv->prio_sched_en)
 229		tctrl |= TCTRL_TXSCHED_PRIO;
 230	else {
 231		tctrl |= TCTRL_TXSCHED_WRRS;
 232		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
 233		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
 234	}
 235
 236	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
 237		tctrl |= TCTRL_VLINS;
 238
 239	gfar_write(&regs->tctrl, tctrl);
 240}
 241
 242static void gfar_configure_coalescing(struct gfar_private *priv,
 243			       unsigned long tx_mask, unsigned long rx_mask)
 244{
 245	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 246	u32 __iomem *baddr;
 247
 248	if (priv->mode == MQ_MG_MODE) {
 249		int i = 0;
 250
 251		baddr = &regs->txic0;
 252		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
 253			gfar_write(baddr + i, 0);
 254			if (likely(priv->tx_queue[i]->txcoalescing))
 255				gfar_write(baddr + i, priv->tx_queue[i]->txic);
 256		}
 257
 258		baddr = &regs->rxic0;
 259		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
 260			gfar_write(baddr + i, 0);
 261			if (likely(priv->rx_queue[i]->rxcoalescing))
 262				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
 263		}
 264	} else {
 265		/* Backward compatible case -- even if we enable
 266		 * multiple queues, there's only single reg to program
 267		 */
 268		gfar_write(&regs->txic, 0);
 269		if (likely(priv->tx_queue[0]->txcoalescing))
 270			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
 271
 272		gfar_write(&regs->rxic, 0);
 273		if (unlikely(priv->rx_queue[0]->rxcoalescing))
 274			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
 275	}
 276}
 277
 278static void gfar_configure_coalescing_all(struct gfar_private *priv)
 279{
 280	gfar_configure_coalescing(priv, 0xFF, 0xFF);
 281}
 282
 283static struct net_device_stats *gfar_get_stats(struct net_device *dev)
 284{
 285	struct gfar_private *priv = netdev_priv(dev);
 286	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
 287	unsigned long tx_packets = 0, tx_bytes = 0;
 288	int i;
 289
 290	for (i = 0; i < priv->num_rx_queues; i++) {
 291		rx_packets += priv->rx_queue[i]->stats.rx_packets;
 292		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
 293		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
 294	}
 295
 296	dev->stats.rx_packets = rx_packets;
 297	dev->stats.rx_bytes   = rx_bytes;
 298	dev->stats.rx_dropped = rx_dropped;
 299
 300	for (i = 0; i < priv->num_tx_queues; i++) {
 301		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
 302		tx_packets += priv->tx_queue[i]->stats.tx_packets;
 303	}
 304
 305	dev->stats.tx_bytes   = tx_bytes;
 306	dev->stats.tx_packets = tx_packets;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 307
 308	return &dev->stats;
 
 309}
 310
 311/* Set the appropriate hash bit for the given addr */
 312/* The algorithm works like so:
 313 * 1) Take the Destination Address (ie the multicast address), and
 314 * do a CRC on it (little endian), and reverse the bits of the
 315 * result.
 316 * 2) Use the 8 most significant bits as a hash into a 256-entry
 317 * table.  The table is controlled through 8 32-bit registers:
 318 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
 319 * gaddr7.  This means that the 3 most significant bits in the
 320 * hash index which gaddr register to use, and the 5 other bits
 321 * indicate which bit (assuming an IBM numbering scheme, which
 322 * for PowerPC (tm) is usually the case) in the register holds
 323 * the entry.
 324 */
 325static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
 326{
 327	u32 tempval;
 328	struct gfar_private *priv = netdev_priv(dev);
 329	u32 result = ether_crc(ETH_ALEN, addr);
 330	int width = priv->hash_width;
 331	u8 whichbit = (result >> (32 - width)) & 0x1f;
 332	u8 whichreg = result >> (32 - width + 5);
 333	u32 value = (1 << (31-whichbit));
 334
 335	tempval = gfar_read(priv->hash_regs[whichreg]);
 336	tempval |= value;
 337	gfar_write(priv->hash_regs[whichreg], tempval);
 338}
 339
 340/* There are multiple MAC Address register pairs on some controllers
 341 * This function sets the numth pair to a given address
 342 */
 343static void gfar_set_mac_for_addr(struct net_device *dev, int num,
 344				  const u8 *addr)
 345{
 346	struct gfar_private *priv = netdev_priv(dev);
 347	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 348	u32 tempval;
 349	u32 __iomem *macptr = &regs->macstnaddr1;
 350
 351	macptr += num*2;
 352
 353	/* For a station address of 0x12345678ABCD in transmission
 354	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
 355	 * MACnADDR2 is set to 0x34120000.
 356	 */
 357	tempval = (addr[5] << 24) | (addr[4] << 16) |
 358		  (addr[3] << 8)  |  addr[2];
 359
 360	gfar_write(macptr, tempval);
 361
 362	tempval = (addr[1] << 24) | (addr[0] << 16);
 363
 364	gfar_write(macptr+1, tempval);
 365}
 366
 367static int gfar_set_mac_addr(struct net_device *dev, void *p)
 368{
 369	eth_mac_addr(dev, p);
 
 
 
 
 370
 371	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
 372
 373	return 0;
 374}
 375
 376static void gfar_ints_disable(struct gfar_private *priv)
 377{
 378	int i;
 379	for (i = 0; i < priv->num_grps; i++) {
 380		struct gfar __iomem *regs = priv->gfargrp[i].regs;
 381		/* Clear IEVENT */
 382		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
 383
 384		/* Initialize IMASK */
 385		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
 386	}
 387}
 388
 389static void gfar_ints_enable(struct gfar_private *priv)
 390{
 391	int i;
 392	for (i = 0; i < priv->num_grps; i++) {
 393		struct gfar __iomem *regs = priv->gfargrp[i].regs;
 394		/* Unmask the interrupts we look for */
 395		gfar_write(&regs->imask, IMASK_DEFAULT);
 
 396	}
 397}
 398
 399static int gfar_alloc_tx_queues(struct gfar_private *priv)
 400{
 401	int i;
 402
 403	for (i = 0; i < priv->num_tx_queues; i++) {
 404		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
 405					    GFP_KERNEL);
 406		if (!priv->tx_queue[i])
 407			return -ENOMEM;
 408
 409		priv->tx_queue[i]->tx_skbuff = NULL;
 410		priv->tx_queue[i]->qindex = i;
 411		priv->tx_queue[i]->dev = priv->ndev;
 412		spin_lock_init(&(priv->tx_queue[i]->txlock));
 413	}
 414	return 0;
 415}
 416
 417static int gfar_alloc_rx_queues(struct gfar_private *priv)
 418{
 419	int i;
 420
 421	for (i = 0; i < priv->num_rx_queues; i++) {
 422		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
 423					    GFP_KERNEL);
 424		if (!priv->rx_queue[i])
 425			return -ENOMEM;
 426
 427		priv->rx_queue[i]->qindex = i;
 428		priv->rx_queue[i]->ndev = priv->ndev;
 429	}
 430	return 0;
 431}
 432
 433static void gfar_free_tx_queues(struct gfar_private *priv)
 434{
 435	int i;
 436
 437	for (i = 0; i < priv->num_tx_queues; i++)
 438		kfree(priv->tx_queue[i]);
 439}
 440
 441static void gfar_free_rx_queues(struct gfar_private *priv)
 442{
 443	int i;
 444
 445	for (i = 0; i < priv->num_rx_queues; i++)
 446		kfree(priv->rx_queue[i]);
 447}
 448
 449static void unmap_group_regs(struct gfar_private *priv)
 450{
 451	int i;
 452
 453	for (i = 0; i < MAXGROUPS; i++)
 454		if (priv->gfargrp[i].regs)
 455			iounmap(priv->gfargrp[i].regs);
 456}
 457
 458static void free_gfar_dev(struct gfar_private *priv)
 459{
 460	int i, j;
 461
 462	for (i = 0; i < priv->num_grps; i++)
 463		for (j = 0; j < GFAR_NUM_IRQS; j++) {
 464			kfree(priv->gfargrp[i].irqinfo[j]);
 465			priv->gfargrp[i].irqinfo[j] = NULL;
 466		}
 467
 468	free_netdev(priv->ndev);
 469}
 470
 471static void disable_napi(struct gfar_private *priv)
 472{
 473	int i;
 474
 475	for (i = 0; i < priv->num_grps; i++) {
 476		napi_disable(&priv->gfargrp[i].napi_rx);
 477		napi_disable(&priv->gfargrp[i].napi_tx);
 478	}
 479}
 480
 481static void enable_napi(struct gfar_private *priv)
 482{
 483	int i;
 484
 485	for (i = 0; i < priv->num_grps; i++) {
 486		napi_enable(&priv->gfargrp[i].napi_rx);
 487		napi_enable(&priv->gfargrp[i].napi_tx);
 488	}
 489}
 490
 491static int gfar_parse_group(struct device_node *np,
 492			    struct gfar_private *priv, const char *model)
 493{
 494	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
 495	int i;
 496
 497	for (i = 0; i < GFAR_NUM_IRQS; i++) {
 498		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
 499					  GFP_KERNEL);
 500		if (!grp->irqinfo[i])
 501			return -ENOMEM;
 502	}
 503
 504	grp->regs = of_iomap(np, 0);
 505	if (!grp->regs)
 506		return -ENOMEM;
 507
 508	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
 509
 510	/* If we aren't the FEC we have multiple interrupts */
 511	if (model && strcasecmp(model, "FEC")) {
 512		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
 513		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
 514		if (!gfar_irq(grp, TX)->irq ||
 515		    !gfar_irq(grp, RX)->irq ||
 516		    !gfar_irq(grp, ER)->irq)
 517			return -EINVAL;
 518	}
 519
 520	grp->priv = priv;
 521	spin_lock_init(&grp->grplock);
 522	if (priv->mode == MQ_MG_MODE) {
 523		u32 rxq_mask, txq_mask;
 524		int ret;
 525
 526		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 527		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 528
 529		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
 530		if (!ret) {
 531			grp->rx_bit_map = rxq_mask ?
 532			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
 533		}
 534
 535		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
 536		if (!ret) {
 537			grp->tx_bit_map = txq_mask ?
 538			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
 539		}
 540
 541		if (priv->poll_mode == GFAR_SQ_POLLING) {
 542			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
 543			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 544			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 545		}
 546	} else {
 547		grp->rx_bit_map = 0xFF;
 548		grp->tx_bit_map = 0xFF;
 549	}
 550
 551	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
 552	 * right to left, so we need to revert the 8 bits to get the q index
 553	 */
 554	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
 555	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
 556
 557	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
 558	 * also assign queues to groups
 559	 */
 560	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
 561		if (!grp->rx_queue)
 562			grp->rx_queue = priv->rx_queue[i];
 563		grp->num_rx_queues++;
 564		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
 565		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
 566		priv->rx_queue[i]->grp = grp;
 567	}
 568
 569	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
 570		if (!grp->tx_queue)
 571			grp->tx_queue = priv->tx_queue[i];
 572		grp->num_tx_queues++;
 573		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
 574		priv->tqueue |= (TQUEUE_EN0 >> i);
 575		priv->tx_queue[i]->grp = grp;
 576	}
 577
 578	priv->num_grps++;
 579
 580	return 0;
 581}
 582
 583static int gfar_of_group_count(struct device_node *np)
 584{
 585	struct device_node *child;
 586	int num = 0;
 587
 588	for_each_available_child_of_node(np, child)
 589		if (of_node_name_eq(child, "queue-group"))
 590			num++;
 591
 592	return num;
 593}
 594
 595/* Reads the controller's registers to determine what interface
 596 * connects it to the PHY.
 597 */
 598static phy_interface_t gfar_get_interface(struct net_device *dev)
 599{
 600	struct gfar_private *priv = netdev_priv(dev);
 601	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 602	u32 ecntrl;
 603
 604	ecntrl = gfar_read(&regs->ecntrl);
 605
 606	if (ecntrl & ECNTRL_SGMII_MODE)
 607		return PHY_INTERFACE_MODE_SGMII;
 608
 609	if (ecntrl & ECNTRL_TBI_MODE) {
 610		if (ecntrl & ECNTRL_REDUCED_MODE)
 611			return PHY_INTERFACE_MODE_RTBI;
 612		else
 613			return PHY_INTERFACE_MODE_TBI;
 614	}
 615
 616	if (ecntrl & ECNTRL_REDUCED_MODE) {
 617		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
 618			return PHY_INTERFACE_MODE_RMII;
 619		}
 620		else {
 621			phy_interface_t interface = priv->interface;
 622
 623			/* This isn't autodetected right now, so it must
 624			 * be set by the device tree or platform code.
 625			 */
 626			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
 627				return PHY_INTERFACE_MODE_RGMII_ID;
 628
 629			return PHY_INTERFACE_MODE_RGMII;
 630		}
 631	}
 632
 633	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
 634		return PHY_INTERFACE_MODE_GMII;
 635
 636	return PHY_INTERFACE_MODE_MII;
 637}
 638
 639static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
 640{
 641	const char *model;
 642	const void *mac_addr;
 643	int err = 0, i;
 
 644	struct net_device *dev = NULL;
 645	struct gfar_private *priv = NULL;
 646	struct device_node *np = ofdev->dev.of_node;
 647	struct device_node *child = NULL;
 648	u32 stash_len = 0;
 649	u32 stash_idx = 0;
 650	unsigned int num_tx_qs, num_rx_qs;
 651	unsigned short mode, poll_mode;
 652
 653	if (!np)
 654		return -ENODEV;
 655
 656	if (of_device_is_compatible(np, "fsl,etsec2")) {
 657		mode = MQ_MG_MODE;
 658		poll_mode = GFAR_SQ_POLLING;
 659	} else {
 660		mode = SQ_SG_MODE;
 661		poll_mode = GFAR_SQ_POLLING;
 662	}
 663
 664	if (mode == SQ_SG_MODE) {
 665		num_tx_qs = 1;
 666		num_rx_qs = 1;
 667	} else { /* MQ_MG_MODE */
 668		/* get the actual number of supported groups */
 669		unsigned int num_grps = gfar_of_group_count(np);
 670
 671		if (num_grps == 0 || num_grps > MAXGROUPS) {
 672			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
 673				num_grps);
 674			pr_err("Cannot do alloc_etherdev, aborting\n");
 675			return -EINVAL;
 676		}
 677
 678		if (poll_mode == GFAR_SQ_POLLING) {
 679			num_tx_qs = num_grps; /* one txq per int group */
 680			num_rx_qs = num_grps; /* one rxq per int group */
 681		} else { /* GFAR_MQ_POLLING */
 682			u32 tx_queues, rx_queues;
 683			int ret;
 684
 685			/* parse the num of HW tx and rx queues */
 686			ret = of_property_read_u32(np, "fsl,num_tx_queues",
 687						   &tx_queues);
 688			num_tx_qs = ret ? 1 : tx_queues;
 689
 690			ret = of_property_read_u32(np, "fsl,num_rx_queues",
 691						   &rx_queues);
 692			num_rx_qs = ret ? 1 : rx_queues;
 693		}
 694	}
 695
 696	if (num_tx_qs > MAX_TX_QS) {
 697		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
 698		       num_tx_qs, MAX_TX_QS);
 699		pr_err("Cannot do alloc_etherdev, aborting\n");
 700		return -EINVAL;
 701	}
 702
 703	if (num_rx_qs > MAX_RX_QS) {
 704		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
 705		       num_rx_qs, MAX_RX_QS);
 706		pr_err("Cannot do alloc_etherdev, aborting\n");
 707		return -EINVAL;
 708	}
 709
 710	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
 711	dev = *pdev;
 712	if (NULL == dev)
 713		return -ENOMEM;
 714
 715	priv = netdev_priv(dev);
 716	priv->ndev = dev;
 717
 718	priv->mode = mode;
 719	priv->poll_mode = poll_mode;
 720
 721	priv->num_tx_queues = num_tx_qs;
 722	netif_set_real_num_rx_queues(dev, num_rx_qs);
 723	priv->num_rx_queues = num_rx_qs;
 724
 725	err = gfar_alloc_tx_queues(priv);
 726	if (err)
 727		goto tx_alloc_failed;
 728
 729	err = gfar_alloc_rx_queues(priv);
 730	if (err)
 731		goto rx_alloc_failed;
 732
 733	err = of_property_read_string(np, "model", &model);
 734	if (err) {
 735		pr_err("Device model property missing, aborting\n");
 736		goto rx_alloc_failed;
 737	}
 738
 739	/* Init Rx queue filer rule set linked list */
 740	INIT_LIST_HEAD(&priv->rx_list.list);
 741	priv->rx_list.count = 0;
 742	mutex_init(&priv->rx_queue_access);
 743
 744	for (i = 0; i < MAXGROUPS; i++)
 745		priv->gfargrp[i].regs = NULL;
 746
 747	/* Parse and initialize group specific information */
 748	if (priv->mode == MQ_MG_MODE) {
 749		for_each_available_child_of_node(np, child) {
 750			if (!of_node_name_eq(child, "queue-group"))
 751				continue;
 752
 753			err = gfar_parse_group(child, priv, model);
 754			if (err)
 
 755				goto err_grp_init;
 
 756		}
 757	} else { /* SQ_SG_MODE */
 758		err = gfar_parse_group(np, priv, model);
 759		if (err)
 760			goto err_grp_init;
 761	}
 762
 763	if (of_property_read_bool(np, "bd-stash")) {
 764		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
 765		priv->bd_stash_en = 1;
 766	}
 767
 768	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
 769
 770	if (err == 0)
 771		priv->rx_stash_size = stash_len;
 772
 773	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
 774
 775	if (err == 0)
 776		priv->rx_stash_index = stash_idx;
 777
 778	if (stash_len || stash_idx)
 779		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
 780
 781	mac_addr = of_get_mac_address(np);
 782
 783	if (!IS_ERR(mac_addr))
 784		ether_addr_copy(dev->dev_addr, mac_addr);
 
 785
 786	if (model && !strcasecmp(model, "TSEC"))
 787		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 788				     FSL_GIANFAR_DEV_HAS_COALESCE |
 789				     FSL_GIANFAR_DEV_HAS_RMON |
 790				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
 791
 792	if (model && !strcasecmp(model, "eTSEC"))
 793		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 794				     FSL_GIANFAR_DEV_HAS_COALESCE |
 795				     FSL_GIANFAR_DEV_HAS_RMON |
 796				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
 797				     FSL_GIANFAR_DEV_HAS_CSUM |
 798				     FSL_GIANFAR_DEV_HAS_VLAN |
 799				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
 800				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
 801				     FSL_GIANFAR_DEV_HAS_TIMER |
 802				     FSL_GIANFAR_DEV_HAS_RX_FILER;
 803
 804	/* Use PHY connection type from the DT node if one is specified there.
 805	 * rgmii-id really needs to be specified. Other types can be
 806	 * detected by hardware
 807	 */
 808	err = of_get_phy_mode(np);
 809	if (err >= 0)
 810		priv->interface = err;
 811	else
 812		priv->interface = gfar_get_interface(dev);
 813
 814	if (of_find_property(np, "fsl,magic-packet", NULL))
 815		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
 816
 817	if (of_get_property(np, "fsl,wake-on-filer", NULL))
 818		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
 819
 820	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
 821
 822	/* In the case of a fixed PHY, the DT node associated
 823	 * to the PHY is the Ethernet MAC DT node.
 824	 */
 825	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
 826		err = of_phy_register_fixed_link(np);
 827		if (err)
 828			goto err_grp_init;
 829
 830		priv->phy_node = of_node_get(np);
 831	}
 832
 833	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
 834	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
 835
 836	return 0;
 837
 838err_grp_init:
 839	unmap_group_regs(priv);
 840rx_alloc_failed:
 841	gfar_free_rx_queues(priv);
 842tx_alloc_failed:
 843	gfar_free_tx_queues(priv);
 844	free_gfar_dev(priv);
 845	return err;
 846}
 847
 848static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
 849				   u32 class)
 850{
 851	u32 rqfpr = FPR_FILER_MASK;
 852	u32 rqfcr = 0x0;
 853
 854	rqfar--;
 855	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
 856	priv->ftp_rqfpr[rqfar] = rqfpr;
 857	priv->ftp_rqfcr[rqfar] = rqfcr;
 858	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 859
 860	rqfar--;
 861	rqfcr = RQFCR_CMP_NOMATCH;
 862	priv->ftp_rqfpr[rqfar] = rqfpr;
 863	priv->ftp_rqfcr[rqfar] = rqfcr;
 864	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 865
 866	rqfar--;
 867	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
 868	rqfpr = class;
 869	priv->ftp_rqfcr[rqfar] = rqfcr;
 870	priv->ftp_rqfpr[rqfar] = rqfpr;
 871	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 872
 873	rqfar--;
 874	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
 875	rqfpr = class;
 876	priv->ftp_rqfcr[rqfar] = rqfcr;
 877	priv->ftp_rqfpr[rqfar] = rqfpr;
 878	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 879
 880	return rqfar;
 881}
 882
 883static void gfar_init_filer_table(struct gfar_private *priv)
 884{
 885	int i = 0x0;
 886	u32 rqfar = MAX_FILER_IDX;
 887	u32 rqfcr = 0x0;
 888	u32 rqfpr = FPR_FILER_MASK;
 889
 890	/* Default rule */
 891	rqfcr = RQFCR_CMP_MATCH;
 892	priv->ftp_rqfcr[rqfar] = rqfcr;
 893	priv->ftp_rqfpr[rqfar] = rqfpr;
 894	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 895
 896	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
 897	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
 898	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
 899	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
 900	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
 901	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
 902
 903	/* cur_filer_idx indicated the first non-masked rule */
 904	priv->cur_filer_idx = rqfar;
 905
 906	/* Rest are masked rules */
 907	rqfcr = RQFCR_CMP_NOMATCH;
 908	for (i = 0; i < rqfar; i++) {
 909		priv->ftp_rqfcr[i] = rqfcr;
 910		priv->ftp_rqfpr[i] = rqfpr;
 911		gfar_write_filer(priv, i, rqfcr, rqfpr);
 912	}
 913}
 914
 915#ifdef CONFIG_PPC
 916static void __gfar_detect_errata_83xx(struct gfar_private *priv)
 917{
 918	unsigned int pvr = mfspr(SPRN_PVR);
 919	unsigned int svr = mfspr(SPRN_SVR);
 920	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
 921	unsigned int rev = svr & 0xffff;
 922
 923	/* MPC8313 Rev 2.0 and higher; All MPC837x */
 924	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
 925	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 926		priv->errata |= GFAR_ERRATA_74;
 927
 928	/* MPC8313 and MPC837x all rev */
 929	if ((pvr == 0x80850010 && mod == 0x80b0) ||
 930	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 931		priv->errata |= GFAR_ERRATA_76;
 932
 933	/* MPC8313 Rev < 2.0 */
 934	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
 935		priv->errata |= GFAR_ERRATA_12;
 936}
 937
 938static void __gfar_detect_errata_85xx(struct gfar_private *priv)
 939{
 940	unsigned int svr = mfspr(SPRN_SVR);
 941
 942	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
 943		priv->errata |= GFAR_ERRATA_12;
 944	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
 945	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
 946	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
 947	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
 948		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
 949}
 950#endif
 951
 952static void gfar_detect_errata(struct gfar_private *priv)
 953{
 954	struct device *dev = &priv->ofdev->dev;
 955
 956	/* no plans to fix */
 957	priv->errata |= GFAR_ERRATA_A002;
 958
 959#ifdef CONFIG_PPC
 960	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
 961		__gfar_detect_errata_85xx(priv);
 962	else /* non-mpc85xx parts, i.e. e300 core based */
 963		__gfar_detect_errata_83xx(priv);
 964#endif
 965
 966	if (priv->errata)
 967		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
 968			 priv->errata);
 969}
 970
 971static void gfar_init_addr_hash_table(struct gfar_private *priv)
 972{
 973	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 974
 975	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
 976		priv->extended_hash = 1;
 977		priv->hash_width = 9;
 978
 979		priv->hash_regs[0] = &regs->igaddr0;
 980		priv->hash_regs[1] = &regs->igaddr1;
 981		priv->hash_regs[2] = &regs->igaddr2;
 982		priv->hash_regs[3] = &regs->igaddr3;
 983		priv->hash_regs[4] = &regs->igaddr4;
 984		priv->hash_regs[5] = &regs->igaddr5;
 985		priv->hash_regs[6] = &regs->igaddr6;
 986		priv->hash_regs[7] = &regs->igaddr7;
 987		priv->hash_regs[8] = &regs->gaddr0;
 988		priv->hash_regs[9] = &regs->gaddr1;
 989		priv->hash_regs[10] = &regs->gaddr2;
 990		priv->hash_regs[11] = &regs->gaddr3;
 991		priv->hash_regs[12] = &regs->gaddr4;
 992		priv->hash_regs[13] = &regs->gaddr5;
 993		priv->hash_regs[14] = &regs->gaddr6;
 994		priv->hash_regs[15] = &regs->gaddr7;
 995
 996	} else {
 997		priv->extended_hash = 0;
 998		priv->hash_width = 8;
 999
1000		priv->hash_regs[0] = &regs->gaddr0;
1001		priv->hash_regs[1] = &regs->gaddr1;
1002		priv->hash_regs[2] = &regs->gaddr2;
1003		priv->hash_regs[3] = &regs->gaddr3;
1004		priv->hash_regs[4] = &regs->gaddr4;
1005		priv->hash_regs[5] = &regs->gaddr5;
1006		priv->hash_regs[6] = &regs->gaddr6;
1007		priv->hash_regs[7] = &regs->gaddr7;
1008	}
1009}
1010
1011static int __gfar_is_rx_idle(struct gfar_private *priv)
1012{
1013	u32 res;
1014
1015	/* Normaly TSEC should not hang on GRS commands, so we should
1016	 * actually wait for IEVENT_GRSC flag.
1017	 */
1018	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1019		return 0;
1020
1021	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1022	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1023	 * and the Rx can be safely reset.
1024	 */
1025	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1026	res &= 0x7f807f80;
1027	if ((res & 0xffff) == (res >> 16))
1028		return 1;
1029
1030	return 0;
1031}
1032
1033/* Halt the receive and transmit queues */
1034static void gfar_halt_nodisable(struct gfar_private *priv)
1035{
1036	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1037	u32 tempval;
1038	unsigned int timeout;
1039	int stopped;
1040
1041	gfar_ints_disable(priv);
1042
1043	if (gfar_is_dma_stopped(priv))
1044		return;
1045
1046	/* Stop the DMA, and wait for it to stop */
1047	tempval = gfar_read(&regs->dmactrl);
1048	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1049	gfar_write(&regs->dmactrl, tempval);
1050
1051retry:
1052	timeout = 1000;
1053	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1054		cpu_relax();
1055		timeout--;
1056	}
1057
1058	if (!timeout)
1059		stopped = gfar_is_dma_stopped(priv);
1060
1061	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1062	    !__gfar_is_rx_idle(priv))
1063		goto retry;
1064}
1065
1066/* Halt the receive and transmit queues */
1067static void gfar_halt(struct gfar_private *priv)
1068{
1069	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1070	u32 tempval;
1071
1072	/* Dissable the Rx/Tx hw queues */
1073	gfar_write(&regs->rqueue, 0);
1074	gfar_write(&regs->tqueue, 0);
1075
1076	mdelay(10);
1077
1078	gfar_halt_nodisable(priv);
1079
1080	/* Disable Rx/Tx DMA */
1081	tempval = gfar_read(&regs->maccfg1);
1082	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1083	gfar_write(&regs->maccfg1, tempval);
1084}
1085
1086static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1087{
1088	struct txbd8 *txbdp;
1089	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1090	int i, j;
1091
1092	txbdp = tx_queue->tx_bd_base;
1093
1094	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1095		if (!tx_queue->tx_skbuff[i])
1096			continue;
1097
1098		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1099				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1100		txbdp->lstatus = 0;
1101		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1102		     j++) {
1103			txbdp++;
1104			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1105				       be16_to_cpu(txbdp->length),
1106				       DMA_TO_DEVICE);
1107		}
1108		txbdp++;
1109		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1110		tx_queue->tx_skbuff[i] = NULL;
1111	}
1112	kfree(tx_queue->tx_skbuff);
1113	tx_queue->tx_skbuff = NULL;
1114}
1115
1116static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1117{
1118	int i;
1119
1120	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1121
1122	dev_kfree_skb(rx_queue->skb);
1123
1124	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1125		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1126
1127		rxbdp->lstatus = 0;
1128		rxbdp->bufPtr = 0;
1129		rxbdp++;
1130
1131		if (!rxb->page)
1132			continue;
1133
1134		dma_unmap_page(rx_queue->dev, rxb->dma,
1135			       PAGE_SIZE, DMA_FROM_DEVICE);
1136		__free_page(rxb->page);
1137
1138		rxb->page = NULL;
1139	}
1140
1141	kfree(rx_queue->rx_buff);
1142	rx_queue->rx_buff = NULL;
1143}
1144
1145/* If there are any tx skbs or rx skbs still around, free them.
1146 * Then free tx_skbuff and rx_skbuff
1147 */
1148static void free_skb_resources(struct gfar_private *priv)
1149{
1150	struct gfar_priv_tx_q *tx_queue = NULL;
1151	struct gfar_priv_rx_q *rx_queue = NULL;
1152	int i;
1153
1154	/* Go through all the buffer descriptors and free their data buffers */
1155	for (i = 0; i < priv->num_tx_queues; i++) {
1156		struct netdev_queue *txq;
1157
1158		tx_queue = priv->tx_queue[i];
1159		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1160		if (tx_queue->tx_skbuff)
1161			free_skb_tx_queue(tx_queue);
1162		netdev_tx_reset_queue(txq);
1163	}
1164
1165	for (i = 0; i < priv->num_rx_queues; i++) {
1166		rx_queue = priv->rx_queue[i];
1167		if (rx_queue->rx_buff)
1168			free_skb_rx_queue(rx_queue);
1169	}
1170
1171	dma_free_coherent(priv->dev,
1172			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1173			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1174			  priv->tx_queue[0]->tx_bd_base,
1175			  priv->tx_queue[0]->tx_bd_dma_base);
1176}
1177
1178void stop_gfar(struct net_device *dev)
1179{
1180	struct gfar_private *priv = netdev_priv(dev);
1181
1182	netif_tx_stop_all_queues(dev);
1183
1184	smp_mb__before_atomic();
1185	set_bit(GFAR_DOWN, &priv->state);
1186	smp_mb__after_atomic();
1187
1188	disable_napi(priv);
1189
1190	/* disable ints and gracefully shut down Rx/Tx DMA */
1191	gfar_halt(priv);
1192
1193	phy_stop(dev->phydev);
1194
1195	free_skb_resources(priv);
1196}
1197
1198static void gfar_start(struct gfar_private *priv)
1199{
1200	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1201	u32 tempval;
1202	int i = 0;
1203
1204	/* Enable Rx/Tx hw queues */
1205	gfar_write(&regs->rqueue, priv->rqueue);
1206	gfar_write(&regs->tqueue, priv->tqueue);
1207
1208	/* Initialize DMACTRL to have WWR and WOP */
1209	tempval = gfar_read(&regs->dmactrl);
1210	tempval |= DMACTRL_INIT_SETTINGS;
1211	gfar_write(&regs->dmactrl, tempval);
1212
1213	/* Make sure we aren't stopped */
1214	tempval = gfar_read(&regs->dmactrl);
1215	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1216	gfar_write(&regs->dmactrl, tempval);
1217
1218	for (i = 0; i < priv->num_grps; i++) {
1219		regs = priv->gfargrp[i].regs;
1220		/* Clear THLT/RHLT, so that the DMA starts polling now */
1221		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1222		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1223	}
1224
1225	/* Enable Rx/Tx DMA */
1226	tempval = gfar_read(&regs->maccfg1);
1227	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1228	gfar_write(&regs->maccfg1, tempval);
1229
1230	gfar_ints_enable(priv);
1231
1232	netif_trans_update(priv->ndev); /* prevent tx timeout */
1233}
1234
1235static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1236{
1237	struct page *page;
1238	dma_addr_t addr;
1239
1240	page = dev_alloc_page();
1241	if (unlikely(!page))
1242		return false;
1243
1244	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1245	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1246		__free_page(page);
1247
1248		return false;
1249	}
1250
1251	rxb->dma = addr;
1252	rxb->page = page;
1253	rxb->page_offset = 0;
1254
1255	return true;
1256}
1257
1258static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1259{
1260	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1261	struct gfar_extra_stats *estats = &priv->extra_stats;
1262
1263	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1264	atomic64_inc(&estats->rx_alloc_err);
1265}
1266
1267static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1268				int alloc_cnt)
1269{
1270	struct rxbd8 *bdp;
1271	struct gfar_rx_buff *rxb;
1272	int i;
1273
1274	i = rx_queue->next_to_use;
1275	bdp = &rx_queue->rx_bd_base[i];
1276	rxb = &rx_queue->rx_buff[i];
1277
1278	while (alloc_cnt--) {
1279		/* try reuse page */
1280		if (unlikely(!rxb->page)) {
1281			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1282				gfar_rx_alloc_err(rx_queue);
1283				break;
1284			}
1285		}
1286
1287		/* Setup the new RxBD */
1288		gfar_init_rxbdp(rx_queue, bdp,
1289				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1290
1291		/* Update to the next pointer */
1292		bdp++;
1293		rxb++;
1294
1295		if (unlikely(++i == rx_queue->rx_ring_size)) {
1296			i = 0;
1297			bdp = rx_queue->rx_bd_base;
1298			rxb = rx_queue->rx_buff;
1299		}
1300	}
1301
1302	rx_queue->next_to_use = i;
1303	rx_queue->next_to_alloc = i;
1304}
1305
1306static void gfar_init_bds(struct net_device *ndev)
1307{
1308	struct gfar_private *priv = netdev_priv(ndev);
1309	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1310	struct gfar_priv_tx_q *tx_queue = NULL;
1311	struct gfar_priv_rx_q *rx_queue = NULL;
1312	struct txbd8 *txbdp;
1313	u32 __iomem *rfbptr;
1314	int i, j;
1315
1316	for (i = 0; i < priv->num_tx_queues; i++) {
1317		tx_queue = priv->tx_queue[i];
1318		/* Initialize some variables in our dev structure */
1319		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1320		tx_queue->dirty_tx = tx_queue->tx_bd_base;
1321		tx_queue->cur_tx = tx_queue->tx_bd_base;
1322		tx_queue->skb_curtx = 0;
1323		tx_queue->skb_dirtytx = 0;
1324
1325		/* Initialize Transmit Descriptor Ring */
1326		txbdp = tx_queue->tx_bd_base;
1327		for (j = 0; j < tx_queue->tx_ring_size; j++) {
1328			txbdp->lstatus = 0;
1329			txbdp->bufPtr = 0;
1330			txbdp++;
1331		}
1332
1333		/* Set the last descriptor in the ring to indicate wrap */
1334		txbdp--;
1335		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1336					    TXBD_WRAP);
1337	}
1338
1339	rfbptr = &regs->rfbptr0;
1340	for (i = 0; i < priv->num_rx_queues; i++) {
1341		rx_queue = priv->rx_queue[i];
1342
1343		rx_queue->next_to_clean = 0;
1344		rx_queue->next_to_use = 0;
1345		rx_queue->next_to_alloc = 0;
1346
1347		/* make sure next_to_clean != next_to_use after this
1348		 * by leaving at least 1 unused descriptor
1349		 */
1350		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1351
1352		rx_queue->rfbptr = rfbptr;
1353		rfbptr += 2;
1354	}
1355}
1356
1357static int gfar_alloc_skb_resources(struct net_device *ndev)
1358{
1359	void *vaddr;
1360	dma_addr_t addr;
1361	int i, j;
1362	struct gfar_private *priv = netdev_priv(ndev);
1363	struct device *dev = priv->dev;
1364	struct gfar_priv_tx_q *tx_queue = NULL;
1365	struct gfar_priv_rx_q *rx_queue = NULL;
1366
1367	priv->total_tx_ring_size = 0;
1368	for (i = 0; i < priv->num_tx_queues; i++)
1369		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1370
1371	priv->total_rx_ring_size = 0;
1372	for (i = 0; i < priv->num_rx_queues; i++)
1373		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1374
1375	/* Allocate memory for the buffer descriptors */
1376	vaddr = dma_alloc_coherent(dev,
1377				   (priv->total_tx_ring_size *
1378				    sizeof(struct txbd8)) +
1379				   (priv->total_rx_ring_size *
1380				    sizeof(struct rxbd8)),
1381				   &addr, GFP_KERNEL);
1382	if (!vaddr)
1383		return -ENOMEM;
1384
1385	for (i = 0; i < priv->num_tx_queues; i++) {
1386		tx_queue = priv->tx_queue[i];
1387		tx_queue->tx_bd_base = vaddr;
1388		tx_queue->tx_bd_dma_base = addr;
1389		tx_queue->dev = ndev;
1390		/* enet DMA only understands physical addresses */
1391		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1392		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1393	}
1394
1395	/* Start the rx descriptor ring where the tx ring leaves off */
1396	for (i = 0; i < priv->num_rx_queues; i++) {
1397		rx_queue = priv->rx_queue[i];
1398		rx_queue->rx_bd_base = vaddr;
1399		rx_queue->rx_bd_dma_base = addr;
1400		rx_queue->ndev = ndev;
1401		rx_queue->dev = dev;
1402		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1403		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1404	}
1405
1406	/* Setup the skbuff rings */
1407	for (i = 0; i < priv->num_tx_queues; i++) {
1408		tx_queue = priv->tx_queue[i];
1409		tx_queue->tx_skbuff =
1410			kmalloc_array(tx_queue->tx_ring_size,
1411				      sizeof(*tx_queue->tx_skbuff),
1412				      GFP_KERNEL);
1413		if (!tx_queue->tx_skbuff)
1414			goto cleanup;
1415
1416		for (j = 0; j < tx_queue->tx_ring_size; j++)
1417			tx_queue->tx_skbuff[j] = NULL;
1418	}
1419
1420	for (i = 0; i < priv->num_rx_queues; i++) {
1421		rx_queue = priv->rx_queue[i];
1422		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1423					    sizeof(*rx_queue->rx_buff),
1424					    GFP_KERNEL);
1425		if (!rx_queue->rx_buff)
1426			goto cleanup;
1427	}
1428
1429	gfar_init_bds(ndev);
1430
1431	return 0;
1432
1433cleanup:
1434	free_skb_resources(priv);
1435	return -ENOMEM;
1436}
1437
1438/* Bring the controller up and running */
1439int startup_gfar(struct net_device *ndev)
1440{
1441	struct gfar_private *priv = netdev_priv(ndev);
1442	int err;
1443
1444	gfar_mac_reset(priv);
1445
1446	err = gfar_alloc_skb_resources(ndev);
1447	if (err)
1448		return err;
1449
1450	gfar_init_tx_rx_base(priv);
1451
1452	smp_mb__before_atomic();
1453	clear_bit(GFAR_DOWN, &priv->state);
1454	smp_mb__after_atomic();
1455
1456	/* Start Rx/Tx DMA and enable the interrupts */
1457	gfar_start(priv);
1458
1459	/* force link state update after mac reset */
1460	priv->oldlink = 0;
1461	priv->oldspeed = 0;
1462	priv->oldduplex = -1;
1463
1464	phy_start(ndev->phydev);
1465
1466	enable_napi(priv);
1467
1468	netif_tx_wake_all_queues(ndev);
1469
1470	return 0;
1471}
1472
1473static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1474{
1475	struct net_device *ndev = priv->ndev;
1476	struct phy_device *phydev = ndev->phydev;
1477	u32 val = 0;
1478
1479	if (!phydev->duplex)
1480		return val;
1481
1482	if (!priv->pause_aneg_en) {
1483		if (priv->tx_pause_en)
1484			val |= MACCFG1_TX_FLOW;
1485		if (priv->rx_pause_en)
1486			val |= MACCFG1_RX_FLOW;
1487	} else {
1488		u16 lcl_adv, rmt_adv;
1489		u8 flowctrl;
1490		/* get link partner capabilities */
1491		rmt_adv = 0;
1492		if (phydev->pause)
1493			rmt_adv = LPA_PAUSE_CAP;
1494		if (phydev->asym_pause)
1495			rmt_adv |= LPA_PAUSE_ASYM;
1496
1497		lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1498		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1499		if (flowctrl & FLOW_CTRL_TX)
1500			val |= MACCFG1_TX_FLOW;
1501		if (flowctrl & FLOW_CTRL_RX)
1502			val |= MACCFG1_RX_FLOW;
1503	}
1504
1505	return val;
1506}
1507
1508static noinline void gfar_update_link_state(struct gfar_private *priv)
1509{
1510	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1511	struct net_device *ndev = priv->ndev;
1512	struct phy_device *phydev = ndev->phydev;
1513	struct gfar_priv_rx_q *rx_queue = NULL;
1514	int i;
1515
1516	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1517		return;
1518
1519	if (phydev->link) {
1520		u32 tempval1 = gfar_read(&regs->maccfg1);
1521		u32 tempval = gfar_read(&regs->maccfg2);
1522		u32 ecntrl = gfar_read(&regs->ecntrl);
1523		u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1524
1525		if (phydev->duplex != priv->oldduplex) {
1526			if (!(phydev->duplex))
1527				tempval &= ~(MACCFG2_FULL_DUPLEX);
1528			else
1529				tempval |= MACCFG2_FULL_DUPLEX;
1530
1531			priv->oldduplex = phydev->duplex;
1532		}
1533
1534		if (phydev->speed != priv->oldspeed) {
1535			switch (phydev->speed) {
1536			case 1000:
1537				tempval =
1538				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1539
1540				ecntrl &= ~(ECNTRL_R100);
1541				break;
1542			case 100:
1543			case 10:
1544				tempval =
1545				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1546
1547				/* Reduced mode distinguishes
1548				 * between 10 and 100
1549				 */
1550				if (phydev->speed == SPEED_100)
1551					ecntrl |= ECNTRL_R100;
1552				else
1553					ecntrl &= ~(ECNTRL_R100);
1554				break;
1555			default:
1556				netif_warn(priv, link, priv->ndev,
1557					   "Ack!  Speed (%d) is not 10/100/1000!\n",
1558					   phydev->speed);
1559				break;
1560			}
1561
1562			priv->oldspeed = phydev->speed;
1563		}
1564
1565		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1566		tempval1 |= gfar_get_flowctrl_cfg(priv);
1567
1568		/* Turn last free buffer recording on */
1569		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1570			for (i = 0; i < priv->num_rx_queues; i++) {
1571				u32 bdp_dma;
1572
1573				rx_queue = priv->rx_queue[i];
1574				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1575				gfar_write(rx_queue->rfbptr, bdp_dma);
1576			}
1577
1578			priv->tx_actual_en = 1;
1579		}
1580
1581		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1582			priv->tx_actual_en = 0;
1583
1584		gfar_write(&regs->maccfg1, tempval1);
1585		gfar_write(&regs->maccfg2, tempval);
1586		gfar_write(&regs->ecntrl, ecntrl);
1587
1588		if (!priv->oldlink)
1589			priv->oldlink = 1;
1590
1591	} else if (priv->oldlink) {
1592		priv->oldlink = 0;
1593		priv->oldspeed = 0;
1594		priv->oldduplex = -1;
1595	}
1596
1597	if (netif_msg_link(priv))
1598		phy_print_status(phydev);
1599}
1600
1601/* Called every time the controller might need to be made
1602 * aware of new link state.  The PHY code conveys this
1603 * information through variables in the phydev structure, and this
1604 * function converts those variables into the appropriate
1605 * register values, and can bring down the device if needed.
1606 */
1607static void adjust_link(struct net_device *dev)
1608{
1609	struct gfar_private *priv = netdev_priv(dev);
1610	struct phy_device *phydev = dev->phydev;
1611
1612	if (unlikely(phydev->link != priv->oldlink ||
1613		     (phydev->link && (phydev->duplex != priv->oldduplex ||
1614				       phydev->speed != priv->oldspeed))))
1615		gfar_update_link_state(priv);
1616}
1617
1618/* Initialize TBI PHY interface for communicating with the
1619 * SERDES lynx PHY on the chip.  We communicate with this PHY
1620 * through the MDIO bus on each controller, treating it as a
1621 * "normal" PHY at the address found in the TBIPA register.  We assume
1622 * that the TBIPA register is valid.  Either the MDIO bus code will set
1623 * it to a value that doesn't conflict with other PHYs on the bus, or the
1624 * value doesn't matter, as there are no other PHYs on the bus.
1625 */
1626static void gfar_configure_serdes(struct net_device *dev)
1627{
1628	struct gfar_private *priv = netdev_priv(dev);
1629	struct phy_device *tbiphy;
1630
1631	if (!priv->tbi_node) {
1632		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1633				    "device tree specify a tbi-handle\n");
1634		return;
1635	}
1636
1637	tbiphy = of_phy_find_device(priv->tbi_node);
1638	if (!tbiphy) {
1639		dev_err(&dev->dev, "error: Could not get TBI device\n");
1640		return;
1641	}
1642
1643	/* If the link is already up, we must already be ok, and don't need to
1644	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1645	 * everything for us?  Resetting it takes the link down and requires
1646	 * several seconds for it to come back.
1647	 */
1648	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1649		put_device(&tbiphy->mdio.dev);
1650		return;
1651	}
1652
1653	/* Single clk mode, mii mode off(for serdes communication) */
1654	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1655
1656	phy_write(tbiphy, MII_ADVERTISE,
1657		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1658		  ADVERTISE_1000XPSE_ASYM);
1659
1660	phy_write(tbiphy, MII_BMCR,
1661		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1662		  BMCR_SPEED1000);
1663
1664	put_device(&tbiphy->mdio.dev);
1665}
1666
1667/* Initializes driver's PHY state, and attaches to the PHY.
1668 * Returns 0 on success.
1669 */
1670static int init_phy(struct net_device *dev)
1671{
1672	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1673	struct gfar_private *priv = netdev_priv(dev);
1674	phy_interface_t interface = priv->interface;
1675	struct phy_device *phydev;
1676	struct ethtool_eee edata;
1677
1678	linkmode_set_bit_array(phy_10_100_features_array,
1679			       ARRAY_SIZE(phy_10_100_features_array),
1680			       mask);
1681	linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1682	linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1683	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1684		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1685
1686	priv->oldlink = 0;
1687	priv->oldspeed = 0;
1688	priv->oldduplex = -1;
1689
1690	phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1691				interface);
1692	if (!phydev) {
1693		dev_err(&dev->dev, "could not attach to PHY\n");
1694		return -ENODEV;
1695	}
1696
1697	if (interface == PHY_INTERFACE_MODE_SGMII)
1698		gfar_configure_serdes(dev);
1699
1700	/* Remove any features not supported by the controller */
1701	linkmode_and(phydev->supported, phydev->supported, mask);
1702	linkmode_copy(phydev->advertising, phydev->supported);
1703
1704	/* Add support for flow control */
1705	phy_support_asym_pause(phydev);
1706
1707	/* disable EEE autoneg, EEE not supported by eTSEC */
1708	memset(&edata, 0, sizeof(struct ethtool_eee));
1709	phy_ethtool_set_eee(phydev, &edata);
1710
1711	return 0;
1712}
1713
1714static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1715{
1716	struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1717
1718	memset(fcb, 0, GMAC_FCB_LEN);
1719
1720	return fcb;
1721}
1722
1723static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1724				    int fcb_length)
1725{
1726	/* If we're here, it's a IP packet with a TCP or UDP
1727	 * payload.  We set it to checksum, using a pseudo-header
1728	 * we provide
1729	 */
1730	u8 flags = TXFCB_DEFAULT;
1731
1732	/* Tell the controller what the protocol is
1733	 * And provide the already calculated phcs
1734	 */
1735	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1736		flags |= TXFCB_UDP;
1737		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1738	} else
1739		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1740
1741	/* l3os is the distance between the start of the
1742	 * frame (skb->data) and the start of the IP hdr.
1743	 * l4os is the distance between the start of the
1744	 * l3 hdr and the l4 hdr
1745	 */
1746	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1747	fcb->l4os = skb_network_header_len(skb);
1748
1749	fcb->flags = flags;
1750}
1751
1752static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1753{
1754	fcb->flags |= TXFCB_VLN;
1755	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1756}
1757
1758static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1759				      struct txbd8 *base, int ring_size)
1760{
1761	struct txbd8 *new_bd = bdp + stride;
1762
1763	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1764}
1765
1766static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1767				      int ring_size)
1768{
1769	return skip_txbd(bdp, 1, base, ring_size);
1770}
1771
1772/* eTSEC12: csum generation not supported for some fcb offsets */
1773static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1774				       unsigned long fcb_addr)
1775{
1776	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1777	       (fcb_addr % 0x20) > 0x18);
1778}
1779
1780/* eTSEC76: csum generation for frames larger than 2500 may
1781 * cause excess delays before start of transmission
1782 */
1783static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1784				       unsigned int len)
1785{
1786	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1787	       (len > 2500));
1788}
1789
1790/* This is called by the kernel when a frame is ready for transmission.
1791 * It is pointed to by the dev->hard_start_xmit function pointer
1792 */
1793static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1794{
1795	struct gfar_private *priv = netdev_priv(dev);
1796	struct gfar_priv_tx_q *tx_queue = NULL;
1797	struct netdev_queue *txq;
1798	struct gfar __iomem *regs = NULL;
1799	struct txfcb *fcb = NULL;
1800	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1801	u32 lstatus;
1802	skb_frag_t *frag;
1803	int i, rq = 0;
1804	int do_tstamp, do_csum, do_vlan;
1805	u32 bufaddr;
1806	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1807
1808	rq = skb->queue_mapping;
1809	tx_queue = priv->tx_queue[rq];
1810	txq = netdev_get_tx_queue(dev, rq);
1811	base = tx_queue->tx_bd_base;
1812	regs = tx_queue->grp->regs;
1813
1814	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1815	do_vlan = skb_vlan_tag_present(skb);
1816	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1817		    priv->hwts_tx_en;
1818
1819	if (do_csum || do_vlan)
1820		fcb_len = GMAC_FCB_LEN;
1821
1822	/* check if time stamp should be generated */
1823	if (unlikely(do_tstamp))
1824		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1825
1826	/* make space for additional header when fcb is needed */
1827	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
1828		struct sk_buff *skb_new;
1829
1830		skb_new = skb_realloc_headroom(skb, fcb_len);
1831		if (!skb_new) {
1832			dev->stats.tx_errors++;
1833			dev_kfree_skb_any(skb);
1834			return NETDEV_TX_OK;
1835		}
1836
1837		if (skb->sk)
1838			skb_set_owner_w(skb_new, skb->sk);
1839		dev_consume_skb_any(skb);
1840		skb = skb_new;
1841	}
1842
1843	/* total number of fragments in the SKB */
1844	nr_frags = skb_shinfo(skb)->nr_frags;
1845
1846	/* calculate the required number of TxBDs for this skb */
1847	if (unlikely(do_tstamp))
1848		nr_txbds = nr_frags + 2;
1849	else
1850		nr_txbds = nr_frags + 1;
1851
1852	/* check if there is space to queue this packet */
1853	if (nr_txbds > tx_queue->num_txbdfree) {
1854		/* no space, stop the queue */
1855		netif_tx_stop_queue(txq);
1856		dev->stats.tx_fifo_errors++;
1857		return NETDEV_TX_BUSY;
1858	}
1859
1860	/* Update transmit stats */
1861	bytes_sent = skb->len;
1862	tx_queue->stats.tx_bytes += bytes_sent;
1863	/* keep Tx bytes on wire for BQL accounting */
1864	GFAR_CB(skb)->bytes_sent = bytes_sent;
1865	tx_queue->stats.tx_packets++;
1866
1867	txbdp = txbdp_start = tx_queue->cur_tx;
1868	lstatus = be32_to_cpu(txbdp->lstatus);
1869
1870	/* Add TxPAL between FCB and frame if required */
1871	if (unlikely(do_tstamp)) {
1872		skb_push(skb, GMAC_TXPAL_LEN);
1873		memset(skb->data, 0, GMAC_TXPAL_LEN);
1874	}
1875
1876	/* Add TxFCB if required */
1877	if (fcb_len) {
1878		fcb = gfar_add_fcb(skb);
1879		lstatus |= BD_LFLAG(TXBD_TOE);
1880	}
1881
1882	/* Set up checksumming */
1883	if (do_csum) {
1884		gfar_tx_checksum(skb, fcb, fcb_len);
1885
1886		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1887		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
1888			__skb_pull(skb, GMAC_FCB_LEN);
1889			skb_checksum_help(skb);
1890			if (do_vlan || do_tstamp) {
1891				/* put back a new fcb for vlan/tstamp TOE */
1892				fcb = gfar_add_fcb(skb);
1893			} else {
1894				/* Tx TOE not used */
1895				lstatus &= ~(BD_LFLAG(TXBD_TOE));
1896				fcb = NULL;
1897			}
1898		}
1899	}
1900
1901	if (do_vlan)
1902		gfar_tx_vlan(skb, fcb);
1903
1904	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1905				 DMA_TO_DEVICE);
1906	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1907		goto dma_map_err;
1908
1909	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1910
1911	/* Time stamp insertion requires one additional TxBD */
1912	if (unlikely(do_tstamp))
1913		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1914						 tx_queue->tx_ring_size);
1915
1916	if (likely(!nr_frags)) {
1917		if (likely(!do_tstamp))
1918			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1919	} else {
1920		u32 lstatus_start = lstatus;
1921
1922		/* Place the fragment addresses and lengths into the TxBDs */
1923		frag = &skb_shinfo(skb)->frags[0];
1924		for (i = 0; i < nr_frags; i++, frag++) {
1925			unsigned int size;
1926
1927			/* Point at the next BD, wrapping as needed */
1928			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1929
1930			size = skb_frag_size(frag);
1931
1932			lstatus = be32_to_cpu(txbdp->lstatus) | size |
1933				  BD_LFLAG(TXBD_READY);
1934
1935			/* Handle the last BD specially */
1936			if (i == nr_frags - 1)
1937				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1938
1939			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1940						   size, DMA_TO_DEVICE);
1941			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1942				goto dma_map_err;
1943
1944			/* set the TxBD length and buffer pointer */
1945			txbdp->bufPtr = cpu_to_be32(bufaddr);
1946			txbdp->lstatus = cpu_to_be32(lstatus);
1947		}
1948
1949		lstatus = lstatus_start;
1950	}
1951
1952	/* If time stamping is requested one additional TxBD must be set up. The
1953	 * first TxBD points to the FCB and must have a data length of
1954	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1955	 * the full frame length.
1956	 */
1957	if (unlikely(do_tstamp)) {
1958		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1959
1960		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1961		bufaddr += fcb_len;
1962
1963		lstatus_ts |= BD_LFLAG(TXBD_READY) |
1964			      (skb_headlen(skb) - fcb_len);
1965		if (!nr_frags)
1966			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1967
1968		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1969		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1970		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1971
1972		/* Setup tx hardware time stamping */
1973		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1974		fcb->ptp = 1;
1975	} else {
1976		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1977	}
1978
 
1979	netdev_tx_sent_queue(txq, bytes_sent);
1980
1981	gfar_wmb();
1982
1983	txbdp_start->lstatus = cpu_to_be32(lstatus);
1984
1985	gfar_wmb(); /* force lstatus write before tx_skbuff */
1986
1987	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1988
1989	/* Update the current skb pointer to the next entry we will use
1990	 * (wrapping if necessary)
1991	 */
1992	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1993			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1994
1995	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1996
1997	/* We can work in parallel with gfar_clean_tx_ring(), except
1998	 * when modifying num_txbdfree. Note that we didn't grab the lock
1999	 * when we were reading the num_txbdfree and checking for available
2000	 * space, that's because outside of this function it can only grow.
2001	 */
2002	spin_lock_bh(&tx_queue->txlock);
2003	/* reduce TxBD free count */
2004	tx_queue->num_txbdfree -= (nr_txbds);
2005	spin_unlock_bh(&tx_queue->txlock);
2006
2007	/* If the next BD still needs to be cleaned up, then the bds
2008	 * are full.  We need to tell the kernel to stop sending us stuff.
2009	 */
2010	if (!tx_queue->num_txbdfree) {
2011		netif_tx_stop_queue(txq);
2012
2013		dev->stats.tx_fifo_errors++;
2014	}
2015
2016	/* Tell the DMA to go go go */
2017	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2018
2019	return NETDEV_TX_OK;
2020
2021dma_map_err:
2022	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2023	if (do_tstamp)
2024		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2025	for (i = 0; i < nr_frags; i++) {
2026		lstatus = be32_to_cpu(txbdp->lstatus);
2027		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2028			break;
2029
2030		lstatus &= ~BD_LFLAG(TXBD_READY);
2031		txbdp->lstatus = cpu_to_be32(lstatus);
2032		bufaddr = be32_to_cpu(txbdp->bufPtr);
2033		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2034			       DMA_TO_DEVICE);
2035		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2036	}
2037	gfar_wmb();
2038	dev_kfree_skb_any(skb);
2039	return NETDEV_TX_OK;
2040}
2041
2042/* Changes the mac address if the controller is not running. */
2043static int gfar_set_mac_address(struct net_device *dev)
2044{
2045	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2046
2047	return 0;
2048}
2049
2050static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2051{
2052	struct gfar_private *priv = netdev_priv(dev);
2053
2054	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2055		cpu_relax();
2056
2057	if (dev->flags & IFF_UP)
2058		stop_gfar(dev);
2059
2060	dev->mtu = new_mtu;
2061
2062	if (dev->flags & IFF_UP)
2063		startup_gfar(dev);
2064
2065	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2066
2067	return 0;
2068}
2069
2070static void reset_gfar(struct net_device *ndev)
2071{
2072	struct gfar_private *priv = netdev_priv(ndev);
2073
2074	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2075		cpu_relax();
2076
2077	stop_gfar(ndev);
2078	startup_gfar(ndev);
2079
2080	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2081}
2082
2083/* gfar_reset_task gets scheduled when a packet has not been
2084 * transmitted after a set amount of time.
2085 * For now, assume that clearing out all the structures, and
2086 * starting over will fix the problem.
2087 */
2088static void gfar_reset_task(struct work_struct *work)
2089{
2090	struct gfar_private *priv = container_of(work, struct gfar_private,
2091						 reset_task);
2092	reset_gfar(priv->ndev);
2093}
2094
2095static void gfar_timeout(struct net_device *dev)
2096{
2097	struct gfar_private *priv = netdev_priv(dev);
2098
2099	dev->stats.tx_errors++;
2100	schedule_work(&priv->reset_task);
2101}
2102
2103static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2104{
2105	struct hwtstamp_config config;
2106	struct gfar_private *priv = netdev_priv(netdev);
2107
2108	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2109		return -EFAULT;
2110
2111	/* reserved for future extensions */
2112	if (config.flags)
2113		return -EINVAL;
2114
2115	switch (config.tx_type) {
2116	case HWTSTAMP_TX_OFF:
2117		priv->hwts_tx_en = 0;
2118		break;
2119	case HWTSTAMP_TX_ON:
2120		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2121			return -ERANGE;
2122		priv->hwts_tx_en = 1;
2123		break;
2124	default:
2125		return -ERANGE;
2126	}
2127
2128	switch (config.rx_filter) {
2129	case HWTSTAMP_FILTER_NONE:
2130		if (priv->hwts_rx_en) {
2131			priv->hwts_rx_en = 0;
2132			reset_gfar(netdev);
2133		}
2134		break;
2135	default:
2136		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2137			return -ERANGE;
2138		if (!priv->hwts_rx_en) {
2139			priv->hwts_rx_en = 1;
2140			reset_gfar(netdev);
2141		}
2142		config.rx_filter = HWTSTAMP_FILTER_ALL;
2143		break;
2144	}
2145
2146	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2147		-EFAULT : 0;
2148}
2149
2150static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2151{
2152	struct hwtstamp_config config;
2153	struct gfar_private *priv = netdev_priv(netdev);
2154
2155	config.flags = 0;
2156	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2157	config.rx_filter = (priv->hwts_rx_en ?
2158			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2159
2160	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2161		-EFAULT : 0;
2162}
2163
2164static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2165{
2166	struct phy_device *phydev = dev->phydev;
2167
2168	if (!netif_running(dev))
2169		return -EINVAL;
2170
2171	if (cmd == SIOCSHWTSTAMP)
2172		return gfar_hwtstamp_set(dev, rq);
2173	if (cmd == SIOCGHWTSTAMP)
2174		return gfar_hwtstamp_get(dev, rq);
2175
2176	if (!phydev)
2177		return -ENODEV;
2178
2179	return phy_mii_ioctl(phydev, rq, cmd);
2180}
2181
2182/* Interrupt Handler for Transmit complete */
2183static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2184{
2185	struct net_device *dev = tx_queue->dev;
2186	struct netdev_queue *txq;
2187	struct gfar_private *priv = netdev_priv(dev);
2188	struct txbd8 *bdp, *next = NULL;
2189	struct txbd8 *lbdp = NULL;
2190	struct txbd8 *base = tx_queue->tx_bd_base;
2191	struct sk_buff *skb;
2192	int skb_dirtytx;
2193	int tx_ring_size = tx_queue->tx_ring_size;
2194	int frags = 0, nr_txbds = 0;
2195	int i;
2196	int howmany = 0;
2197	int tqi = tx_queue->qindex;
2198	unsigned int bytes_sent = 0;
2199	u32 lstatus;
2200	size_t buflen;
2201
2202	txq = netdev_get_tx_queue(dev, tqi);
2203	bdp = tx_queue->dirty_tx;
2204	skb_dirtytx = tx_queue->skb_dirtytx;
2205
2206	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
 
 
 
 
2207
2208		frags = skb_shinfo(skb)->nr_frags;
2209
2210		/* When time stamping, one additional TxBD must be freed.
2211		 * Also, we need to dma_unmap_single() the TxPAL.
2212		 */
2213		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2214			nr_txbds = frags + 2;
2215		else
2216			nr_txbds = frags + 1;
2217
2218		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2219
2220		lstatus = be32_to_cpu(lbdp->lstatus);
2221
2222		/* Only clean completed frames */
2223		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2224		    (lstatus & BD_LENGTH_MASK))
2225			break;
2226
2227		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2228			next = next_txbd(bdp, base, tx_ring_size);
2229			buflen = be16_to_cpu(next->length) +
2230				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2231		} else
2232			buflen = be16_to_cpu(bdp->length);
2233
2234		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2235				 buflen, DMA_TO_DEVICE);
2236
2237		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2238			struct skb_shared_hwtstamps shhwtstamps;
2239			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2240					  ~0x7UL);
2241
2242			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2243			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2244			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2245			skb_tstamp_tx(skb, &shhwtstamps);
2246			gfar_clear_txbd_status(bdp);
2247			bdp = next;
2248		}
2249
2250		gfar_clear_txbd_status(bdp);
2251		bdp = next_txbd(bdp, base, tx_ring_size);
2252
2253		for (i = 0; i < frags; i++) {
2254			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2255				       be16_to_cpu(bdp->length),
2256				       DMA_TO_DEVICE);
2257			gfar_clear_txbd_status(bdp);
2258			bdp = next_txbd(bdp, base, tx_ring_size);
2259		}
2260
2261		bytes_sent += GFAR_CB(skb)->bytes_sent;
2262
2263		dev_kfree_skb_any(skb);
2264
2265		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2266
2267		skb_dirtytx = (skb_dirtytx + 1) &
2268			      TX_RING_MOD_MASK(tx_ring_size);
2269
2270		howmany++;
2271		spin_lock(&tx_queue->txlock);
2272		tx_queue->num_txbdfree += nr_txbds;
2273		spin_unlock(&tx_queue->txlock);
2274	}
2275
2276	/* If we freed a buffer, we can restart transmission, if necessary */
2277	if (tx_queue->num_txbdfree &&
2278	    netif_tx_queue_stopped(txq) &&
2279	    !(test_bit(GFAR_DOWN, &priv->state)))
2280		netif_wake_subqueue(priv->ndev, tqi);
2281
2282	/* Update dirty indicators */
2283	tx_queue->skb_dirtytx = skb_dirtytx;
2284	tx_queue->dirty_tx = bdp;
2285
2286	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2287}
2288
2289static void count_errors(u32 lstatus, struct net_device *ndev)
2290{
2291	struct gfar_private *priv = netdev_priv(ndev);
2292	struct net_device_stats *stats = &ndev->stats;
2293	struct gfar_extra_stats *estats = &priv->extra_stats;
2294
2295	/* If the packet was truncated, none of the other errors matter */
2296	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2297		stats->rx_length_errors++;
2298
2299		atomic64_inc(&estats->rx_trunc);
2300
2301		return;
2302	}
2303	/* Count the errors, if there were any */
2304	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2305		stats->rx_length_errors++;
2306
2307		if (lstatus & BD_LFLAG(RXBD_LARGE))
2308			atomic64_inc(&estats->rx_large);
2309		else
2310			atomic64_inc(&estats->rx_short);
2311	}
2312	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2313		stats->rx_frame_errors++;
2314		atomic64_inc(&estats->rx_nonoctet);
2315	}
2316	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2317		atomic64_inc(&estats->rx_crcerr);
2318		stats->rx_crc_errors++;
2319	}
2320	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2321		atomic64_inc(&estats->rx_overrun);
2322		stats->rx_over_errors++;
2323	}
2324}
2325
2326static irqreturn_t gfar_receive(int irq, void *grp_id)
2327{
2328	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2329	unsigned long flags;
2330	u32 imask, ievent;
2331
2332	ievent = gfar_read(&grp->regs->ievent);
2333
2334	if (unlikely(ievent & IEVENT_FGPI)) {
2335		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2336		return IRQ_HANDLED;
2337	}
2338
2339	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2340		spin_lock_irqsave(&grp->grplock, flags);
2341		imask = gfar_read(&grp->regs->imask);
2342		imask &= IMASK_RX_DISABLED;
2343		gfar_write(&grp->regs->imask, imask);
2344		spin_unlock_irqrestore(&grp->grplock, flags);
2345		__napi_schedule(&grp->napi_rx);
2346	} else {
2347		/* Clear IEVENT, so interrupts aren't called again
2348		 * because of the packets that have already arrived.
2349		 */
2350		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2351	}
2352
2353	return IRQ_HANDLED;
2354}
2355
2356/* Interrupt Handler for Transmit complete */
2357static irqreturn_t gfar_transmit(int irq, void *grp_id)
2358{
2359	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2360	unsigned long flags;
2361	u32 imask;
2362
2363	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2364		spin_lock_irqsave(&grp->grplock, flags);
2365		imask = gfar_read(&grp->regs->imask);
2366		imask &= IMASK_TX_DISABLED;
2367		gfar_write(&grp->regs->imask, imask);
2368		spin_unlock_irqrestore(&grp->grplock, flags);
2369		__napi_schedule(&grp->napi_tx);
2370	} else {
2371		/* Clear IEVENT, so interrupts aren't called again
2372		 * because of the packets that have already arrived.
2373		 */
2374		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2375	}
2376
2377	return IRQ_HANDLED;
2378}
2379
2380static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2381			     struct sk_buff *skb, bool first)
2382{
2383	int size = lstatus & BD_LENGTH_MASK;
2384	struct page *page = rxb->page;
2385
2386	if (likely(first)) {
2387		skb_put(skb, size);
2388	} else {
2389		/* the last fragments' length contains the full frame length */
2390		if (lstatus & BD_LFLAG(RXBD_LAST))
2391			size -= skb->len;
2392
 
 
 
 
2393		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2394				rxb->page_offset + RXBUF_ALIGNMENT,
2395				size, GFAR_RXB_TRUESIZE);
2396	}
2397
2398	/* try reuse page */
2399	if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2400		return false;
2401
2402	/* change offset to the other half */
2403	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2404
2405	page_ref_inc(page);
2406
2407	return true;
2408}
2409
2410static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2411			       struct gfar_rx_buff *old_rxb)
2412{
2413	struct gfar_rx_buff *new_rxb;
2414	u16 nta = rxq->next_to_alloc;
2415
2416	new_rxb = &rxq->rx_buff[nta];
2417
2418	/* find next buf that can reuse a page */
2419	nta++;
2420	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2421
2422	/* copy page reference */
2423	*new_rxb = *old_rxb;
2424
2425	/* sync for use by the device */
2426	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2427					 old_rxb->page_offset,
2428					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2429}
2430
2431static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2432					    u32 lstatus, struct sk_buff *skb)
2433{
2434	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2435	struct page *page = rxb->page;
2436	bool first = false;
2437
2438	if (likely(!skb)) {
2439		void *buff_addr = page_address(page) + rxb->page_offset;
2440
2441		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2442		if (unlikely(!skb)) {
2443			gfar_rx_alloc_err(rx_queue);
2444			return NULL;
2445		}
2446		skb_reserve(skb, RXBUF_ALIGNMENT);
2447		first = true;
2448	}
2449
2450	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2451				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2452
2453	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2454		/* reuse the free half of the page */
2455		gfar_reuse_rx_page(rx_queue, rxb);
2456	} else {
2457		/* page cannot be reused, unmap it */
2458		dma_unmap_page(rx_queue->dev, rxb->dma,
2459			       PAGE_SIZE, DMA_FROM_DEVICE);
2460	}
2461
2462	/* clear rxb content */
2463	rxb->page = NULL;
2464
2465	return skb;
2466}
2467
2468static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2469{
2470	/* If valid headers were found, and valid sums
2471	 * were verified, then we tell the kernel that no
2472	 * checksumming is necessary.  Otherwise, it is [FIXME]
2473	 */
2474	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2475	    (RXFCB_CIP | RXFCB_CTU))
2476		skb->ip_summed = CHECKSUM_UNNECESSARY;
2477	else
2478		skb_checksum_none_assert(skb);
2479}
2480
2481/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2482static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2483{
2484	struct gfar_private *priv = netdev_priv(ndev);
2485	struct rxfcb *fcb = NULL;
2486
2487	/* fcb is at the beginning if exists */
2488	fcb = (struct rxfcb *)skb->data;
2489
2490	/* Remove the FCB from the skb
2491	 * Remove the padded bytes, if there are any
2492	 */
2493	if (priv->uses_rxfcb)
2494		skb_pull(skb, GMAC_FCB_LEN);
2495
2496	/* Get receive timestamp from the skb */
2497	if (priv->hwts_rx_en) {
2498		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2499		u64 *ns = (u64 *) skb->data;
2500
2501		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2502		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2503	}
2504
2505	if (priv->padding)
2506		skb_pull(skb, priv->padding);
2507
2508	/* Trim off the FCS */
2509	pskb_trim(skb, skb->len - ETH_FCS_LEN);
2510
2511	if (ndev->features & NETIF_F_RXCSUM)
2512		gfar_rx_checksum(skb, fcb);
2513
2514	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2515	 * Even if vlan rx accel is disabled, on some chips
2516	 * RXFCB_VLN is pseudo randomly set.
2517	 */
2518	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2519	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
2520		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2521				       be16_to_cpu(fcb->vlctl));
2522}
2523
2524/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2525 * until the budget/quota has been reached. Returns the number
2526 * of frames handled
2527 */
2528static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2529			      int rx_work_limit)
2530{
2531	struct net_device *ndev = rx_queue->ndev;
2532	struct gfar_private *priv = netdev_priv(ndev);
2533	struct rxbd8 *bdp;
2534	int i, howmany = 0;
2535	struct sk_buff *skb = rx_queue->skb;
2536	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2537	unsigned int total_bytes = 0, total_pkts = 0;
2538
2539	/* Get the first full descriptor */
2540	i = rx_queue->next_to_clean;
2541
2542	while (rx_work_limit--) {
2543		u32 lstatus;
2544
2545		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2546			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2547			cleaned_cnt = 0;
2548		}
2549
2550		bdp = &rx_queue->rx_bd_base[i];
2551		lstatus = be32_to_cpu(bdp->lstatus);
2552		if (lstatus & BD_LFLAG(RXBD_EMPTY))
2553			break;
2554
 
 
 
 
 
 
 
 
 
 
 
2555		/* order rx buffer descriptor reads */
2556		rmb();
2557
2558		/* fetch next to clean buffer from the ring */
2559		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2560		if (unlikely(!skb))
2561			break;
2562
2563		cleaned_cnt++;
2564		howmany++;
2565
2566		if (unlikely(++i == rx_queue->rx_ring_size))
2567			i = 0;
2568
2569		rx_queue->next_to_clean = i;
2570
2571		/* fetch next buffer if not the last in frame */
2572		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2573			continue;
2574
2575		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2576			count_errors(lstatus, ndev);
2577
2578			/* discard faulty buffer */
2579			dev_kfree_skb(skb);
2580			skb = NULL;
2581			rx_queue->stats.rx_dropped++;
2582			continue;
2583		}
2584
2585		gfar_process_frame(ndev, skb);
2586
2587		/* Increment the number of packets */
2588		total_pkts++;
2589		total_bytes += skb->len;
2590
2591		skb_record_rx_queue(skb, rx_queue->qindex);
2592
2593		skb->protocol = eth_type_trans(skb, ndev);
2594
2595		/* Send the packet up the stack */
2596		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2597
2598		skb = NULL;
2599	}
2600
2601	/* Store incomplete frames for completion */
2602	rx_queue->skb = skb;
2603
2604	rx_queue->stats.rx_packets += total_pkts;
2605	rx_queue->stats.rx_bytes += total_bytes;
2606
2607	if (cleaned_cnt)
2608		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2609
2610	/* Update Last Free RxBD pointer for LFC */
2611	if (unlikely(priv->tx_actual_en)) {
2612		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2613
2614		gfar_write(rx_queue->rfbptr, bdp_dma);
2615	}
2616
2617	return howmany;
2618}
2619
2620static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2621{
2622	struct gfar_priv_grp *gfargrp =
2623		container_of(napi, struct gfar_priv_grp, napi_rx);
2624	struct gfar __iomem *regs = gfargrp->regs;
2625	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2626	int work_done = 0;
2627
2628	/* Clear IEVENT, so interrupts aren't called again
2629	 * because of the packets that have already arrived
2630	 */
2631	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2632
2633	work_done = gfar_clean_rx_ring(rx_queue, budget);
2634
2635	if (work_done < budget) {
2636		u32 imask;
2637		napi_complete_done(napi, work_done);
2638		/* Clear the halt bit in RSTAT */
2639		gfar_write(&regs->rstat, gfargrp->rstat);
2640
2641		spin_lock_irq(&gfargrp->grplock);
2642		imask = gfar_read(&regs->imask);
2643		imask |= IMASK_RX_DEFAULT;
2644		gfar_write(&regs->imask, imask);
2645		spin_unlock_irq(&gfargrp->grplock);
2646	}
2647
2648	return work_done;
2649}
2650
2651static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2652{
2653	struct gfar_priv_grp *gfargrp =
2654		container_of(napi, struct gfar_priv_grp, napi_tx);
2655	struct gfar __iomem *regs = gfargrp->regs;
2656	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2657	u32 imask;
2658
2659	/* Clear IEVENT, so interrupts aren't called again
2660	 * because of the packets that have already arrived
2661	 */
2662	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2663
2664	/* run Tx cleanup to completion */
2665	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2666		gfar_clean_tx_ring(tx_queue);
2667
2668	napi_complete(napi);
2669
2670	spin_lock_irq(&gfargrp->grplock);
2671	imask = gfar_read(&regs->imask);
2672	imask |= IMASK_TX_DEFAULT;
2673	gfar_write(&regs->imask, imask);
2674	spin_unlock_irq(&gfargrp->grplock);
2675
2676	return 0;
2677}
2678
2679static int gfar_poll_rx(struct napi_struct *napi, int budget)
2680{
2681	struct gfar_priv_grp *gfargrp =
2682		container_of(napi, struct gfar_priv_grp, napi_rx);
2683	struct gfar_private *priv = gfargrp->priv;
2684	struct gfar __iomem *regs = gfargrp->regs;
2685	struct gfar_priv_rx_q *rx_queue = NULL;
2686	int work_done = 0, work_done_per_q = 0;
2687	int i, budget_per_q = 0;
2688	unsigned long rstat_rxf;
2689	int num_act_queues;
2690
2691	/* Clear IEVENT, so interrupts aren't called again
2692	 * because of the packets that have already arrived
2693	 */
2694	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2695
2696	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2697
2698	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2699	if (num_act_queues)
2700		budget_per_q = budget/num_act_queues;
2701
2702	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2703		/* skip queue if not active */
2704		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2705			continue;
2706
2707		rx_queue = priv->rx_queue[i];
2708		work_done_per_q =
2709			gfar_clean_rx_ring(rx_queue, budget_per_q);
2710		work_done += work_done_per_q;
2711
2712		/* finished processing this queue */
2713		if (work_done_per_q < budget_per_q) {
2714			/* clear active queue hw indication */
2715			gfar_write(&regs->rstat,
2716				   RSTAT_CLEAR_RXF0 >> i);
2717			num_act_queues--;
2718
2719			if (!num_act_queues)
2720				break;
2721		}
2722	}
2723
2724	if (!num_act_queues) {
2725		u32 imask;
2726		napi_complete_done(napi, work_done);
2727
2728		/* Clear the halt bit in RSTAT */
2729		gfar_write(&regs->rstat, gfargrp->rstat);
2730
2731		spin_lock_irq(&gfargrp->grplock);
2732		imask = gfar_read(&regs->imask);
2733		imask |= IMASK_RX_DEFAULT;
2734		gfar_write(&regs->imask, imask);
2735		spin_unlock_irq(&gfargrp->grplock);
2736	}
2737
2738	return work_done;
2739}
2740
2741static int gfar_poll_tx(struct napi_struct *napi, int budget)
2742{
2743	struct gfar_priv_grp *gfargrp =
2744		container_of(napi, struct gfar_priv_grp, napi_tx);
2745	struct gfar_private *priv = gfargrp->priv;
2746	struct gfar __iomem *regs = gfargrp->regs;
2747	struct gfar_priv_tx_q *tx_queue = NULL;
2748	int has_tx_work = 0;
2749	int i;
2750
2751	/* Clear IEVENT, so interrupts aren't called again
2752	 * because of the packets that have already arrived
2753	 */
2754	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2755
2756	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2757		tx_queue = priv->tx_queue[i];
2758		/* run Tx cleanup to completion */
2759		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2760			gfar_clean_tx_ring(tx_queue);
2761			has_tx_work = 1;
2762		}
2763	}
2764
2765	if (!has_tx_work) {
2766		u32 imask;
2767		napi_complete(napi);
2768
2769		spin_lock_irq(&gfargrp->grplock);
2770		imask = gfar_read(&regs->imask);
2771		imask |= IMASK_TX_DEFAULT;
2772		gfar_write(&regs->imask, imask);
2773		spin_unlock_irq(&gfargrp->grplock);
2774	}
2775
2776	return 0;
2777}
2778
2779/* GFAR error interrupt handler */
2780static irqreturn_t gfar_error(int irq, void *grp_id)
2781{
2782	struct gfar_priv_grp *gfargrp = grp_id;
2783	struct gfar __iomem *regs = gfargrp->regs;
2784	struct gfar_private *priv= gfargrp->priv;
2785	struct net_device *dev = priv->ndev;
2786
2787	/* Save ievent for future reference */
2788	u32 events = gfar_read(&regs->ievent);
2789
2790	/* Clear IEVENT */
2791	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2792
2793	/* Magic Packet is not an error. */
2794	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2795	    (events & IEVENT_MAG))
2796		events &= ~IEVENT_MAG;
2797
2798	/* Hmm... */
2799	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2800		netdev_dbg(dev,
2801			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2802			   events, gfar_read(&regs->imask));
2803
2804	/* Update the error counters */
2805	if (events & IEVENT_TXE) {
2806		dev->stats.tx_errors++;
2807
2808		if (events & IEVENT_LC)
2809			dev->stats.tx_window_errors++;
2810		if (events & IEVENT_CRL)
2811			dev->stats.tx_aborted_errors++;
2812		if (events & IEVENT_XFUN) {
2813			netif_dbg(priv, tx_err, dev,
2814				  "TX FIFO underrun, packet dropped\n");
2815			dev->stats.tx_dropped++;
2816			atomic64_inc(&priv->extra_stats.tx_underrun);
2817
2818			schedule_work(&priv->reset_task);
2819		}
2820		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2821	}
 
 
 
 
 
 
 
 
 
 
 
 
2822	if (events & IEVENT_BSY) {
2823		dev->stats.rx_over_errors++;
2824		atomic64_inc(&priv->extra_stats.rx_bsy);
2825
2826		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2827			  gfar_read(&regs->rstat));
2828	}
2829	if (events & IEVENT_BABR) {
2830		dev->stats.rx_errors++;
2831		atomic64_inc(&priv->extra_stats.rx_babr);
2832
2833		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2834	}
2835	if (events & IEVENT_EBERR) {
2836		atomic64_inc(&priv->extra_stats.eberr);
2837		netif_dbg(priv, rx_err, dev, "bus error\n");
2838	}
2839	if (events & IEVENT_RXC)
2840		netif_dbg(priv, rx_status, dev, "control frame\n");
2841
2842	if (events & IEVENT_BABT) {
2843		atomic64_inc(&priv->extra_stats.tx_babt);
2844		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2845	}
2846	return IRQ_HANDLED;
2847}
2848
2849/* The interrupt handler for devices with one interrupt */
2850static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2851{
2852	struct gfar_priv_grp *gfargrp = grp_id;
2853
2854	/* Save ievent for future reference */
2855	u32 events = gfar_read(&gfargrp->regs->ievent);
2856
2857	/* Check for reception */
2858	if (events & IEVENT_RX_MASK)
2859		gfar_receive(irq, grp_id);
2860
2861	/* Check for transmit completion */
2862	if (events & IEVENT_TX_MASK)
2863		gfar_transmit(irq, grp_id);
2864
2865	/* Check for errors */
2866	if (events & IEVENT_ERR_MASK)
2867		gfar_error(irq, grp_id);
2868
2869	return IRQ_HANDLED;
2870}
2871
2872#ifdef CONFIG_NET_POLL_CONTROLLER
2873/* Polling 'interrupt' - used by things like netconsole to send skbs
2874 * without having to re-enable interrupts. It's not called while
2875 * the interrupt routine is executing.
2876 */
2877static void gfar_netpoll(struct net_device *dev)
2878{
2879	struct gfar_private *priv = netdev_priv(dev);
2880	int i;
2881
2882	/* If the device has multiple interrupts, run tx/rx */
2883	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2884		for (i = 0; i < priv->num_grps; i++) {
2885			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2886
2887			disable_irq(gfar_irq(grp, TX)->irq);
2888			disable_irq(gfar_irq(grp, RX)->irq);
2889			disable_irq(gfar_irq(grp, ER)->irq);
2890			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2891			enable_irq(gfar_irq(grp, ER)->irq);
2892			enable_irq(gfar_irq(grp, RX)->irq);
2893			enable_irq(gfar_irq(grp, TX)->irq);
2894		}
2895	} else {
2896		for (i = 0; i < priv->num_grps; i++) {
2897			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2898
2899			disable_irq(gfar_irq(grp, TX)->irq);
2900			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2901			enable_irq(gfar_irq(grp, TX)->irq);
2902		}
2903	}
2904}
2905#endif
2906
2907static void free_grp_irqs(struct gfar_priv_grp *grp)
2908{
2909	free_irq(gfar_irq(grp, TX)->irq, grp);
2910	free_irq(gfar_irq(grp, RX)->irq, grp);
2911	free_irq(gfar_irq(grp, ER)->irq, grp);
2912}
2913
2914static int register_grp_irqs(struct gfar_priv_grp *grp)
2915{
2916	struct gfar_private *priv = grp->priv;
2917	struct net_device *dev = priv->ndev;
2918	int err;
2919
2920	/* If the device has multiple interrupts, register for
2921	 * them.  Otherwise, only register for the one
2922	 */
2923	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2924		/* Install our interrupt handlers for Error,
2925		 * Transmit, and Receive
2926		 */
2927		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2928				  gfar_irq(grp, ER)->name, grp);
2929		if (err < 0) {
2930			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2931				  gfar_irq(grp, ER)->irq);
2932
2933			goto err_irq_fail;
2934		}
2935		enable_irq_wake(gfar_irq(grp, ER)->irq);
2936
2937		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2938				  gfar_irq(grp, TX)->name, grp);
2939		if (err < 0) {
2940			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2941				  gfar_irq(grp, TX)->irq);
2942			goto tx_irq_fail;
2943		}
2944		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2945				  gfar_irq(grp, RX)->name, grp);
2946		if (err < 0) {
2947			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2948				  gfar_irq(grp, RX)->irq);
2949			goto rx_irq_fail;
2950		}
2951		enable_irq_wake(gfar_irq(grp, RX)->irq);
2952
2953	} else {
2954		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2955				  gfar_irq(grp, TX)->name, grp);
2956		if (err < 0) {
2957			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2958				  gfar_irq(grp, TX)->irq);
2959			goto err_irq_fail;
2960		}
2961		enable_irq_wake(gfar_irq(grp, TX)->irq);
2962	}
2963
2964	return 0;
2965
2966rx_irq_fail:
2967	free_irq(gfar_irq(grp, TX)->irq, grp);
2968tx_irq_fail:
2969	free_irq(gfar_irq(grp, ER)->irq, grp);
2970err_irq_fail:
2971	return err;
2972
2973}
2974
2975static void gfar_free_irq(struct gfar_private *priv)
2976{
2977	int i;
2978
2979	/* Free the IRQs */
2980	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2981		for (i = 0; i < priv->num_grps; i++)
2982			free_grp_irqs(&priv->gfargrp[i]);
2983	} else {
2984		for (i = 0; i < priv->num_grps; i++)
2985			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2986				 &priv->gfargrp[i]);
2987	}
2988}
2989
2990static int gfar_request_irq(struct gfar_private *priv)
2991{
2992	int err, i, j;
2993
2994	for (i = 0; i < priv->num_grps; i++) {
2995		err = register_grp_irqs(&priv->gfargrp[i]);
2996		if (err) {
2997			for (j = 0; j < i; j++)
2998				free_grp_irqs(&priv->gfargrp[j]);
2999			return err;
3000		}
3001	}
3002
3003	return 0;
3004}
3005
3006/* Called when something needs to use the ethernet device
3007 * Returns 0 for success.
3008 */
3009static int gfar_enet_open(struct net_device *dev)
3010{
3011	struct gfar_private *priv = netdev_priv(dev);
3012	int err;
3013
3014	err = init_phy(dev);
3015	if (err)
3016		return err;
3017
3018	err = gfar_request_irq(priv);
3019	if (err)
3020		return err;
3021
3022	err = startup_gfar(dev);
3023	if (err)
3024		return err;
3025
3026	return err;
3027}
3028
3029/* Stops the kernel queue, and halts the controller */
3030static int gfar_close(struct net_device *dev)
3031{
3032	struct gfar_private *priv = netdev_priv(dev);
3033
3034	cancel_work_sync(&priv->reset_task);
3035	stop_gfar(dev);
3036
3037	/* Disconnect from the PHY */
3038	phy_disconnect(dev->phydev);
3039
3040	gfar_free_irq(priv);
3041
3042	return 0;
3043}
3044
3045/* Clears each of the exact match registers to zero, so they
3046 * don't interfere with normal reception
3047 */
3048static void gfar_clear_exact_match(struct net_device *dev)
3049{
3050	int idx;
3051	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3052
3053	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3054		gfar_set_mac_for_addr(dev, idx, zero_arr);
3055}
3056
3057/* Update the hash table based on the current list of multicast
3058 * addresses we subscribe to.  Also, change the promiscuity of
3059 * the device based on the flags (this function is called
3060 * whenever dev->flags is changed
3061 */
3062static void gfar_set_multi(struct net_device *dev)
3063{
3064	struct netdev_hw_addr *ha;
3065	struct gfar_private *priv = netdev_priv(dev);
3066	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3067	u32 tempval;
3068
3069	if (dev->flags & IFF_PROMISC) {
3070		/* Set RCTRL to PROM */
3071		tempval = gfar_read(&regs->rctrl);
3072		tempval |= RCTRL_PROM;
3073		gfar_write(&regs->rctrl, tempval);
3074	} else {
3075		/* Set RCTRL to not PROM */
3076		tempval = gfar_read(&regs->rctrl);
3077		tempval &= ~(RCTRL_PROM);
3078		gfar_write(&regs->rctrl, tempval);
3079	}
3080
3081	if (dev->flags & IFF_ALLMULTI) {
3082		/* Set the hash to rx all multicast frames */
3083		gfar_write(&regs->igaddr0, 0xffffffff);
3084		gfar_write(&regs->igaddr1, 0xffffffff);
3085		gfar_write(&regs->igaddr2, 0xffffffff);
3086		gfar_write(&regs->igaddr3, 0xffffffff);
3087		gfar_write(&regs->igaddr4, 0xffffffff);
3088		gfar_write(&regs->igaddr5, 0xffffffff);
3089		gfar_write(&regs->igaddr6, 0xffffffff);
3090		gfar_write(&regs->igaddr7, 0xffffffff);
3091		gfar_write(&regs->gaddr0, 0xffffffff);
3092		gfar_write(&regs->gaddr1, 0xffffffff);
3093		gfar_write(&regs->gaddr2, 0xffffffff);
3094		gfar_write(&regs->gaddr3, 0xffffffff);
3095		gfar_write(&regs->gaddr4, 0xffffffff);
3096		gfar_write(&regs->gaddr5, 0xffffffff);
3097		gfar_write(&regs->gaddr6, 0xffffffff);
3098		gfar_write(&regs->gaddr7, 0xffffffff);
3099	} else {
3100		int em_num;
3101		int idx;
3102
3103		/* zero out the hash */
3104		gfar_write(&regs->igaddr0, 0x0);
3105		gfar_write(&regs->igaddr1, 0x0);
3106		gfar_write(&regs->igaddr2, 0x0);
3107		gfar_write(&regs->igaddr3, 0x0);
3108		gfar_write(&regs->igaddr4, 0x0);
3109		gfar_write(&regs->igaddr5, 0x0);
3110		gfar_write(&regs->igaddr6, 0x0);
3111		gfar_write(&regs->igaddr7, 0x0);
3112		gfar_write(&regs->gaddr0, 0x0);
3113		gfar_write(&regs->gaddr1, 0x0);
3114		gfar_write(&regs->gaddr2, 0x0);
3115		gfar_write(&regs->gaddr3, 0x0);
3116		gfar_write(&regs->gaddr4, 0x0);
3117		gfar_write(&regs->gaddr5, 0x0);
3118		gfar_write(&regs->gaddr6, 0x0);
3119		gfar_write(&regs->gaddr7, 0x0);
3120
3121		/* If we have extended hash tables, we need to
3122		 * clear the exact match registers to prepare for
3123		 * setting them
3124		 */
3125		if (priv->extended_hash) {
3126			em_num = GFAR_EM_NUM + 1;
3127			gfar_clear_exact_match(dev);
3128			idx = 1;
3129		} else {
3130			idx = 0;
3131			em_num = 0;
3132		}
3133
3134		if (netdev_mc_empty(dev))
3135			return;
3136
3137		/* Parse the list, and set the appropriate bits */
3138		netdev_for_each_mc_addr(ha, dev) {
3139			if (idx < em_num) {
3140				gfar_set_mac_for_addr(dev, idx, ha->addr);
3141				idx++;
3142			} else
3143				gfar_set_hash_for_addr(dev, ha->addr);
3144		}
3145	}
3146}
3147
3148void gfar_mac_reset(struct gfar_private *priv)
3149{
3150	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3151	u32 tempval;
3152
3153	/* Reset MAC layer */
3154	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
3155
3156	/* We need to delay at least 3 TX clocks */
3157	udelay(3);
3158
3159	/* the soft reset bit is not self-resetting, so we need to
3160	 * clear it before resuming normal operation
3161	 */
3162	gfar_write(&regs->maccfg1, 0);
3163
3164	udelay(3);
3165
3166	gfar_rx_offload_en(priv);
3167
3168	/* Initialize the max receive frame/buffer lengths */
3169	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3170	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
3171
3172	/* Initialize the Minimum Frame Length Register */
3173	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
3174
3175	/* Initialize MACCFG2. */
3176	tempval = MACCFG2_INIT_SETTINGS;
3177
3178	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3179	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
3180	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
3181	 */
3182	if (gfar_has_errata(priv, GFAR_ERRATA_74))
3183		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3184
3185	gfar_write(&regs->maccfg2, tempval);
3186
3187	/* Clear mac addr hash registers */
3188	gfar_write(&regs->igaddr0, 0);
3189	gfar_write(&regs->igaddr1, 0);
3190	gfar_write(&regs->igaddr2, 0);
3191	gfar_write(&regs->igaddr3, 0);
3192	gfar_write(&regs->igaddr4, 0);
3193	gfar_write(&regs->igaddr5, 0);
3194	gfar_write(&regs->igaddr6, 0);
3195	gfar_write(&regs->igaddr7, 0);
3196
3197	gfar_write(&regs->gaddr0, 0);
3198	gfar_write(&regs->gaddr1, 0);
3199	gfar_write(&regs->gaddr2, 0);
3200	gfar_write(&regs->gaddr3, 0);
3201	gfar_write(&regs->gaddr4, 0);
3202	gfar_write(&regs->gaddr5, 0);
3203	gfar_write(&regs->gaddr6, 0);
3204	gfar_write(&regs->gaddr7, 0);
3205
3206	if (priv->extended_hash)
3207		gfar_clear_exact_match(priv->ndev);
3208
3209	gfar_mac_rx_config(priv);
3210
3211	gfar_mac_tx_config(priv);
3212
3213	gfar_set_mac_address(priv->ndev);
3214
3215	gfar_set_multi(priv->ndev);
3216
3217	/* clear ievent and imask before configuring coalescing */
3218	gfar_ints_disable(priv);
3219
3220	/* Configure the coalescing support */
3221	gfar_configure_coalescing_all(priv);
3222}
3223
3224static void gfar_hw_init(struct gfar_private *priv)
3225{
3226	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3227	u32 attrs;
3228
3229	/* Stop the DMA engine now, in case it was running before
3230	 * (The firmware could have used it, and left it running).
3231	 */
3232	gfar_halt(priv);
3233
3234	gfar_mac_reset(priv);
3235
3236	/* Zero out the rmon mib registers if it has them */
3237	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3238		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
3239
3240		/* Mask off the CAM interrupts */
3241		gfar_write(&regs->rmon.cam1, 0xffffffff);
3242		gfar_write(&regs->rmon.cam2, 0xffffffff);
 
 
 
3243	}
3244
3245	/* Initialize ECNTRL */
3246	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
3247
3248	/* Set the extraction length and index */
3249	attrs = ATTRELI_EL(priv->rx_stash_size) |
3250		ATTRELI_EI(priv->rx_stash_index);
3251
3252	gfar_write(&regs->attreli, attrs);
3253
3254	/* Start with defaults, and add stashing
3255	 * depending on driver parameters
3256	 */
3257	attrs = ATTR_INIT_SETTINGS;
3258
3259	if (priv->bd_stash_en)
3260		attrs |= ATTR_BDSTASH;
3261
3262	if (priv->rx_stash_size != 0)
3263		attrs |= ATTR_BUFSTASH;
3264
3265	gfar_write(&regs->attr, attrs);
3266
3267	/* FIFO configs */
3268	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3269	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3270	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3271
3272	/* Program the interrupt steering regs, only for MG devices */
3273	if (priv->num_grps > 1)
3274		gfar_write_isrg(priv);
3275}
3276
3277static const struct net_device_ops gfar_netdev_ops = {
3278	.ndo_open = gfar_enet_open,
3279	.ndo_start_xmit = gfar_start_xmit,
3280	.ndo_stop = gfar_close,
3281	.ndo_change_mtu = gfar_change_mtu,
3282	.ndo_set_features = gfar_set_features,
3283	.ndo_set_rx_mode = gfar_set_multi,
3284	.ndo_tx_timeout = gfar_timeout,
3285	.ndo_do_ioctl = gfar_ioctl,
3286	.ndo_get_stats = gfar_get_stats,
3287	.ndo_change_carrier = fixed_phy_change_carrier,
3288	.ndo_set_mac_address = gfar_set_mac_addr,
3289	.ndo_validate_addr = eth_validate_addr,
3290#ifdef CONFIG_NET_POLL_CONTROLLER
3291	.ndo_poll_controller = gfar_netpoll,
3292#endif
3293};
3294
3295/* Set up the ethernet device structure, private data,
3296 * and anything else we need before we start
3297 */
3298static int gfar_probe(struct platform_device *ofdev)
3299{
3300	struct device_node *np = ofdev->dev.of_node;
3301	struct net_device *dev = NULL;
3302	struct gfar_private *priv = NULL;
3303	int err = 0, i;
3304
3305	err = gfar_of_init(ofdev, &dev);
3306
3307	if (err)
3308		return err;
3309
3310	priv = netdev_priv(dev);
3311	priv->ndev = dev;
3312	priv->ofdev = ofdev;
3313	priv->dev = &ofdev->dev;
3314	SET_NETDEV_DEV(dev, &ofdev->dev);
3315
3316	INIT_WORK(&priv->reset_task, gfar_reset_task);
3317
3318	platform_set_drvdata(ofdev, priv);
3319
3320	gfar_detect_errata(priv);
3321
3322	/* Set the dev->base_addr to the gfar reg region */
3323	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3324
3325	/* Fill in the dev structure */
3326	dev->watchdog_timeo = TX_TIMEOUT;
3327	/* MTU range: 50 - 9586 */
3328	dev->mtu = 1500;
3329	dev->min_mtu = 50;
3330	dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3331	dev->netdev_ops = &gfar_netdev_ops;
3332	dev->ethtool_ops = &gfar_ethtool_ops;
3333
3334	/* Register for napi ...We are registering NAPI for each grp */
3335	for (i = 0; i < priv->num_grps; i++) {
3336		if (priv->poll_mode == GFAR_SQ_POLLING) {
3337			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3338				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
3339			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3340				       gfar_poll_tx_sq, 2);
3341		} else {
3342			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3343				       gfar_poll_rx, GFAR_DEV_WEIGHT);
3344			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3345				       gfar_poll_tx, 2);
3346		}
3347	}
3348
3349	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3350		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3351				   NETIF_F_RXCSUM;
3352		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3353				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3354	}
3355
3356	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3357		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3358				    NETIF_F_HW_VLAN_CTAG_RX;
3359		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3360	}
3361
3362	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3363
3364	gfar_init_addr_hash_table(priv);
3365
3366	/* Insert receive time stamps into padding alignment bytes, and
3367	 * plus 2 bytes padding to ensure the cpu alignment.
3368	 */
3369	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3370		priv->padding = 8 + DEFAULT_PADDING;
3371
3372	if (dev->features & NETIF_F_IP_CSUM ||
3373	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3374		dev->needed_headroom = GMAC_FCB_LEN;
3375
3376	/* Initializing some of the rx/tx queue level parameters */
3377	for (i = 0; i < priv->num_tx_queues; i++) {
3378		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3379		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3380		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3381		priv->tx_queue[i]->txic = DEFAULT_TXIC;
3382	}
3383
3384	for (i = 0; i < priv->num_rx_queues; i++) {
3385		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3386		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3387		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3388	}
3389
3390	/* Always enable rx filer if available */
3391	priv->rx_filer_enable =
3392	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3393	/* Enable most messages by default */
3394	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3395	/* use pritority h/w tx queue scheduling for single queue devices */
3396	if (priv->num_tx_queues == 1)
3397		priv->prio_sched_en = 1;
3398
3399	set_bit(GFAR_DOWN, &priv->state);
3400
3401	gfar_hw_init(priv);
3402
 
 
 
 
 
 
 
 
3403	/* Carrier starts down, phylib will bring it up */
3404	netif_carrier_off(dev);
3405
3406	err = register_netdev(dev);
3407
3408	if (err) {
3409		pr_err("%s: Cannot register net device, aborting\n", dev->name);
3410		goto register_fail;
3411	}
3412
3413	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3414		priv->wol_supported |= GFAR_WOL_MAGIC;
3415
3416	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3417	    priv->rx_filer_enable)
3418		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3419
3420	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3421
3422	/* fill out IRQ number and name fields */
3423	for (i = 0; i < priv->num_grps; i++) {
3424		struct gfar_priv_grp *grp = &priv->gfargrp[i];
3425		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3426			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3427				dev->name, "_g", '0' + i, "_tx");
3428			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3429				dev->name, "_g", '0' + i, "_rx");
3430			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3431				dev->name, "_g", '0' + i, "_er");
3432		} else
3433			strcpy(gfar_irq(grp, TX)->name, dev->name);
3434	}
3435
3436	/* Initialize the filer table */
3437	gfar_init_filer_table(priv);
3438
3439	/* Print out the device info */
3440	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3441
3442	/* Even more device info helps when determining which kernel
3443	 * provided which set of benchmarks.
3444	 */
3445	netdev_info(dev, "Running with NAPI enabled\n");
3446	for (i = 0; i < priv->num_rx_queues; i++)
3447		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3448			    i, priv->rx_queue[i]->rx_ring_size);
3449	for (i = 0; i < priv->num_tx_queues; i++)
3450		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3451			    i, priv->tx_queue[i]->tx_ring_size);
3452
3453	return 0;
3454
3455register_fail:
3456	if (of_phy_is_fixed_link(np))
3457		of_phy_deregister_fixed_link(np);
3458	unmap_group_regs(priv);
3459	gfar_free_rx_queues(priv);
3460	gfar_free_tx_queues(priv);
3461	of_node_put(priv->phy_node);
3462	of_node_put(priv->tbi_node);
3463	free_gfar_dev(priv);
3464	return err;
3465}
3466
3467static int gfar_remove(struct platform_device *ofdev)
3468{
3469	struct gfar_private *priv = platform_get_drvdata(ofdev);
3470	struct device_node *np = ofdev->dev.of_node;
3471
3472	of_node_put(priv->phy_node);
3473	of_node_put(priv->tbi_node);
3474
3475	unregister_netdev(priv->ndev);
3476
3477	if (of_phy_is_fixed_link(np))
3478		of_phy_deregister_fixed_link(np);
3479
3480	unmap_group_regs(priv);
3481	gfar_free_rx_queues(priv);
3482	gfar_free_tx_queues(priv);
3483	free_gfar_dev(priv);
3484
3485	return 0;
3486}
3487
3488#ifdef CONFIG_PM
3489
3490static void __gfar_filer_disable(struct gfar_private *priv)
3491{
3492	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3493	u32 temp;
3494
3495	temp = gfar_read(&regs->rctrl);
3496	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3497	gfar_write(&regs->rctrl, temp);
3498}
3499
3500static void __gfar_filer_enable(struct gfar_private *priv)
3501{
3502	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3503	u32 temp;
3504
3505	temp = gfar_read(&regs->rctrl);
3506	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3507	gfar_write(&regs->rctrl, temp);
3508}
3509
3510/* Filer rules implementing wol capabilities */
3511static void gfar_filer_config_wol(struct gfar_private *priv)
3512{
3513	unsigned int i;
3514	u32 rqfcr;
3515
3516	__gfar_filer_disable(priv);
3517
3518	/* clear the filer table, reject any packet by default */
3519	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3520	for (i = 0; i <= MAX_FILER_IDX; i++)
3521		gfar_write_filer(priv, i, rqfcr, 0);
3522
3523	i = 0;
3524	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3525		/* unicast packet, accept it */
3526		struct net_device *ndev = priv->ndev;
3527		/* get the default rx queue index */
3528		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3529		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3530				    (ndev->dev_addr[1] << 8) |
3531				     ndev->dev_addr[2];
3532
3533		rqfcr = (qindex << 10) | RQFCR_AND |
3534			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3535
3536		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3537
3538		dest_mac_addr = (ndev->dev_addr[3] << 16) |
3539				(ndev->dev_addr[4] << 8) |
3540				 ndev->dev_addr[5];
3541		rqfcr = (qindex << 10) | RQFCR_GPI |
3542			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3543		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3544	}
3545
3546	__gfar_filer_enable(priv);
3547}
3548
3549static void gfar_filer_restore_table(struct gfar_private *priv)
3550{
3551	u32 rqfcr, rqfpr;
3552	unsigned int i;
3553
3554	__gfar_filer_disable(priv);
3555
3556	for (i = 0; i <= MAX_FILER_IDX; i++) {
3557		rqfcr = priv->ftp_rqfcr[i];
3558		rqfpr = priv->ftp_rqfpr[i];
3559		gfar_write_filer(priv, i, rqfcr, rqfpr);
3560	}
3561
3562	__gfar_filer_enable(priv);
3563}
3564
3565/* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3566static void gfar_start_wol_filer(struct gfar_private *priv)
3567{
3568	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3569	u32 tempval;
3570	int i = 0;
3571
3572	/* Enable Rx hw queues */
3573	gfar_write(&regs->rqueue, priv->rqueue);
3574
3575	/* Initialize DMACTRL to have WWR and WOP */
3576	tempval = gfar_read(&regs->dmactrl);
3577	tempval |= DMACTRL_INIT_SETTINGS;
3578	gfar_write(&regs->dmactrl, tempval);
3579
3580	/* Make sure we aren't stopped */
3581	tempval = gfar_read(&regs->dmactrl);
3582	tempval &= ~DMACTRL_GRS;
3583	gfar_write(&regs->dmactrl, tempval);
3584
3585	for (i = 0; i < priv->num_grps; i++) {
3586		regs = priv->gfargrp[i].regs;
3587		/* Clear RHLT, so that the DMA starts polling now */
3588		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
3589		/* enable the Filer General Purpose Interrupt */
3590		gfar_write(&regs->imask, IMASK_FGPI);
3591	}
3592
3593	/* Enable Rx DMA */
3594	tempval = gfar_read(&regs->maccfg1);
3595	tempval |= MACCFG1_RX_EN;
3596	gfar_write(&regs->maccfg1, tempval);
3597}
3598
3599static int gfar_suspend(struct device *dev)
3600{
3601	struct gfar_private *priv = dev_get_drvdata(dev);
3602	struct net_device *ndev = priv->ndev;
3603	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3604	u32 tempval;
3605	u16 wol = priv->wol_opts;
3606
3607	if (!netif_running(ndev))
3608		return 0;
3609
3610	disable_napi(priv);
3611	netif_tx_lock(ndev);
3612	netif_device_detach(ndev);
3613	netif_tx_unlock(ndev);
3614
3615	gfar_halt(priv);
3616
3617	if (wol & GFAR_WOL_MAGIC) {
3618		/* Enable interrupt on Magic Packet */
3619		gfar_write(&regs->imask, IMASK_MAG);
3620
3621		/* Enable Magic Packet mode */
3622		tempval = gfar_read(&regs->maccfg2);
3623		tempval |= MACCFG2_MPEN;
3624		gfar_write(&regs->maccfg2, tempval);
3625
3626		/* re-enable the Rx block */
3627		tempval = gfar_read(&regs->maccfg1);
3628		tempval |= MACCFG1_RX_EN;
3629		gfar_write(&regs->maccfg1, tempval);
3630
3631	} else if (wol & GFAR_WOL_FILER_UCAST) {
3632		gfar_filer_config_wol(priv);
3633		gfar_start_wol_filer(priv);
3634
3635	} else {
3636		phy_stop(ndev->phydev);
3637	}
3638
3639	return 0;
3640}
3641
3642static int gfar_resume(struct device *dev)
3643{
3644	struct gfar_private *priv = dev_get_drvdata(dev);
3645	struct net_device *ndev = priv->ndev;
3646	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3647	u32 tempval;
3648	u16 wol = priv->wol_opts;
3649
3650	if (!netif_running(ndev))
3651		return 0;
3652
3653	if (wol & GFAR_WOL_MAGIC) {
3654		/* Disable Magic Packet mode */
3655		tempval = gfar_read(&regs->maccfg2);
3656		tempval &= ~MACCFG2_MPEN;
3657		gfar_write(&regs->maccfg2, tempval);
3658
3659	} else if (wol & GFAR_WOL_FILER_UCAST) {
3660		/* need to stop rx only, tx is already down */
3661		gfar_halt(priv);
3662		gfar_filer_restore_table(priv);
3663
3664	} else {
3665		phy_start(ndev->phydev);
3666	}
3667
3668	gfar_start(priv);
3669
3670	netif_device_attach(ndev);
3671	enable_napi(priv);
3672
3673	return 0;
3674}
3675
3676static int gfar_restore(struct device *dev)
3677{
3678	struct gfar_private *priv = dev_get_drvdata(dev);
3679	struct net_device *ndev = priv->ndev;
3680
3681	if (!netif_running(ndev)) {
3682		netif_device_attach(ndev);
3683
3684		return 0;
3685	}
3686
3687	gfar_init_bds(ndev);
3688
3689	gfar_mac_reset(priv);
3690
3691	gfar_init_tx_rx_base(priv);
3692
3693	gfar_start(priv);
3694
3695	priv->oldlink = 0;
3696	priv->oldspeed = 0;
3697	priv->oldduplex = -1;
3698
3699	if (ndev->phydev)
3700		phy_start(ndev->phydev);
3701
3702	netif_device_attach(ndev);
3703	enable_napi(priv);
3704
3705	return 0;
3706}
3707
3708static const struct dev_pm_ops gfar_pm_ops = {
3709	.suspend = gfar_suspend,
3710	.resume = gfar_resume,
3711	.freeze = gfar_suspend,
3712	.thaw = gfar_resume,
3713	.restore = gfar_restore,
3714};
3715
3716#define GFAR_PM_OPS (&gfar_pm_ops)
3717
3718#else
3719
3720#define GFAR_PM_OPS NULL
3721
3722#endif
3723
3724static const struct of_device_id gfar_match[] =
3725{
3726	{
3727		.type = "network",
3728		.compatible = "gianfar",
3729	},
3730	{
3731		.compatible = "fsl,etsec2",
3732	},
3733	{},
3734};
3735MODULE_DEVICE_TABLE(of, gfar_match);
3736
3737/* Structure for a device driver */
3738static struct platform_driver gfar_driver = {
3739	.driver = {
3740		.name = "fsl-gianfar",
3741		.pm = GFAR_PM_OPS,
3742		.of_match_table = gfar_match,
3743	},
3744	.probe = gfar_probe,
3745	.remove = gfar_remove,
3746};
3747
3748module_platform_driver(gfar_driver);