Loading...
1/*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18#include <linux/module.h>
19#include <linux/kernel.h>
20#include <linux/types.h>
21#include <linux/string.h>
22#include <linux/ptrace.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/slab.h>
26#include <linux/interrupt.h>
27#include <linux/delay.h>
28#include <linux/netdevice.h>
29#include <linux/etherdevice.h>
30#include <linux/skbuff.h>
31#include <linux/spinlock.h>
32#include <linux/mii.h>
33#include <linux/ethtool.h>
34#include <linux/bitops.h>
35#include <linux/fs.h>
36#include <linux/platform_device.h>
37#include <linux/phy.h>
38#include <linux/property.h>
39#include <linux/of.h>
40#include <linux/of_mdio.h>
41#include <linux/of_net.h>
42#include <linux/pgtable.h>
43
44#include <linux/vmalloc.h>
45#include <asm/irq.h>
46#include <linux/uaccess.h>
47
48#include "fs_enet.h"
49
50/*************************************************/
51
52MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
53MODULE_DESCRIPTION("Freescale Ethernet Driver");
54MODULE_LICENSE("GPL");
55
56static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
57module_param(fs_enet_debug, int, 0);
58MODULE_PARM_DESC(fs_enet_debug,
59 "Freescale bitmapped debugging message enable value");
60
61#define RX_RING_SIZE 32
62#define TX_RING_SIZE 64
63
64#ifdef CONFIG_NET_POLL_CONTROLLER
65static void fs_enet_netpoll(struct net_device *dev);
66#endif
67
68static void fs_set_multicast_list(struct net_device *dev)
69{
70 struct fs_enet_private *fep = netdev_priv(dev);
71
72 (*fep->ops->set_multicast_list)(dev);
73}
74
75static void skb_align(struct sk_buff *skb, int align)
76{
77 int off = ((unsigned long)skb->data) & (align - 1);
78
79 if (off)
80 skb_reserve(skb, align - off);
81}
82
83/* NAPI function */
84static int fs_enet_napi(struct napi_struct *napi, int budget)
85{
86 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
87 struct net_device *dev = fep->ndev;
88 const struct fs_platform_info *fpi = fep->fpi;
89 cbd_t __iomem *bdp;
90 struct sk_buff *skb, *skbn;
91 int received = 0;
92 u16 pkt_len, sc;
93 int curidx;
94 int dirtyidx, do_wake, do_restart;
95 int tx_left = TX_RING_SIZE;
96
97 spin_lock(&fep->tx_lock);
98 bdp = fep->dirty_tx;
99
100 /* clear status bits for napi*/
101 (*fep->ops->napi_clear_event)(dev);
102
103 do_wake = do_restart = 0;
104 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
105 dirtyidx = bdp - fep->tx_bd_base;
106
107 if (fep->tx_free == fep->tx_ring)
108 break;
109
110 skb = fep->tx_skbuff[dirtyidx];
111
112 /*
113 * Check for errors.
114 */
115 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
116 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
117
118 if (sc & BD_ENET_TX_HB) /* No heartbeat */
119 dev->stats.tx_heartbeat_errors++;
120 if (sc & BD_ENET_TX_LC) /* Late collision */
121 dev->stats.tx_window_errors++;
122 if (sc & BD_ENET_TX_RL) /* Retrans limit */
123 dev->stats.tx_aborted_errors++;
124 if (sc & BD_ENET_TX_UN) /* Underrun */
125 dev->stats.tx_fifo_errors++;
126 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
127 dev->stats.tx_carrier_errors++;
128
129 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
130 dev->stats.tx_errors++;
131 do_restart = 1;
132 }
133 } else
134 dev->stats.tx_packets++;
135
136 if (sc & BD_ENET_TX_READY) {
137 dev_warn(fep->dev,
138 "HEY! Enet xmit interrupt and TX_READY.\n");
139 }
140
141 /*
142 * Deferred means some collisions occurred during transmit,
143 * but we eventually sent the packet OK.
144 */
145 if (sc & BD_ENET_TX_DEF)
146 dev->stats.collisions++;
147
148 /* unmap */
149 if (fep->mapped_as_page[dirtyidx])
150 dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
151 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
152 else
153 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
154 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
155
156 /*
157 * Free the sk buffer associated with this last transmit.
158 */
159 if (skb) {
160 dev_kfree_skb(skb);
161 fep->tx_skbuff[dirtyidx] = NULL;
162 }
163
164 /*
165 * Update pointer to next buffer descriptor to be transmitted.
166 */
167 if ((sc & BD_ENET_TX_WRAP) == 0)
168 bdp++;
169 else
170 bdp = fep->tx_bd_base;
171
172 /*
173 * Since we have freed up a buffer, the ring is no longer
174 * full.
175 */
176 if (++fep->tx_free == MAX_SKB_FRAGS)
177 do_wake = 1;
178 tx_left--;
179 }
180
181 fep->dirty_tx = bdp;
182
183 if (do_restart)
184 (*fep->ops->tx_restart)(dev);
185
186 spin_unlock(&fep->tx_lock);
187
188 if (do_wake)
189 netif_wake_queue(dev);
190
191 /*
192 * First, grab all of the stats for the incoming packet.
193 * These get messed up if we get called due to a busy condition.
194 */
195 bdp = fep->cur_rx;
196
197 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
198 received < budget) {
199 curidx = bdp - fep->rx_bd_base;
200
201 /*
202 * Since we have allocated space to hold a complete frame,
203 * the last indicator should be set.
204 */
205 if ((sc & BD_ENET_RX_LAST) == 0)
206 dev_warn(fep->dev, "rcv is not +last\n");
207
208 /*
209 * Check for errors.
210 */
211 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
212 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
213 dev->stats.rx_errors++;
214 /* Frame too long or too short. */
215 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
216 dev->stats.rx_length_errors++;
217 /* Frame alignment */
218 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
219 dev->stats.rx_frame_errors++;
220 /* CRC Error */
221 if (sc & BD_ENET_RX_CR)
222 dev->stats.rx_crc_errors++;
223 /* FIFO overrun */
224 if (sc & BD_ENET_RX_OV)
225 dev->stats.rx_crc_errors++;
226
227 skbn = fep->rx_skbuff[curidx];
228 } else {
229 skb = fep->rx_skbuff[curidx];
230
231 /*
232 * Process the incoming frame.
233 */
234 dev->stats.rx_packets++;
235 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
236 dev->stats.rx_bytes += pkt_len + 4;
237
238 if (pkt_len <= fpi->rx_copybreak) {
239 /* +2 to make IP header L1 cache aligned */
240 skbn = netdev_alloc_skb(dev, pkt_len + 2);
241 if (skbn != NULL) {
242 skb_reserve(skbn, 2); /* align IP header */
243 skb_copy_from_linear_data(skb,
244 skbn->data, pkt_len);
245 swap(skb, skbn);
246 dma_sync_single_for_cpu(fep->dev,
247 CBDR_BUFADDR(bdp),
248 L1_CACHE_ALIGN(pkt_len),
249 DMA_FROM_DEVICE);
250 }
251 } else {
252 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
253
254 if (skbn) {
255 dma_addr_t dma;
256
257 skb_align(skbn, ENET_RX_ALIGN);
258
259 dma_unmap_single(fep->dev,
260 CBDR_BUFADDR(bdp),
261 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
262 DMA_FROM_DEVICE);
263
264 dma = dma_map_single(fep->dev,
265 skbn->data,
266 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
267 DMA_FROM_DEVICE);
268 CBDW_BUFADDR(bdp, dma);
269 }
270 }
271
272 if (skbn != NULL) {
273 skb_put(skb, pkt_len); /* Make room */
274 skb->protocol = eth_type_trans(skb, dev);
275 received++;
276 netif_receive_skb(skb);
277 } else {
278 dev->stats.rx_dropped++;
279 skbn = skb;
280 }
281 }
282
283 fep->rx_skbuff[curidx] = skbn;
284 CBDW_DATLEN(bdp, 0);
285 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
286
287 /*
288 * Update BD pointer to next entry.
289 */
290 if ((sc & BD_ENET_RX_WRAP) == 0)
291 bdp++;
292 else
293 bdp = fep->rx_bd_base;
294
295 (*fep->ops->rx_bd_done)(dev);
296 }
297
298 fep->cur_rx = bdp;
299
300 if (received < budget && tx_left) {
301 /* done */
302 napi_complete_done(napi, received);
303 (*fep->ops->napi_enable)(dev);
304
305 return received;
306 }
307
308 return budget;
309}
310
311/*
312 * The interrupt handler.
313 * This is called from the MPC core interrupt.
314 */
315static irqreturn_t
316fs_enet_interrupt(int irq, void *dev_id)
317{
318 struct net_device *dev = dev_id;
319 struct fs_enet_private *fep;
320 u32 int_events;
321 u32 int_clr_events;
322 int nr, napi_ok;
323 int handled;
324
325 fep = netdev_priv(dev);
326
327 nr = 0;
328 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
329 nr++;
330
331 int_clr_events = int_events;
332 int_clr_events &= ~fep->ev_napi;
333
334 (*fep->ops->clear_int_events)(dev, int_clr_events);
335
336 if (int_events & fep->ev_err)
337 (*fep->ops->ev_error)(dev, int_events);
338
339 if (int_events & fep->ev) {
340 napi_ok = napi_schedule_prep(&fep->napi);
341
342 (*fep->ops->napi_disable)(dev);
343 (*fep->ops->clear_int_events)(dev, fep->ev_napi);
344
345 /* NOTE: it is possible for FCCs in NAPI mode */
346 /* to submit a spurious interrupt while in poll */
347 if (napi_ok)
348 __napi_schedule(&fep->napi);
349 }
350
351 }
352
353 handled = nr > 0;
354 return IRQ_RETVAL(handled);
355}
356
357void fs_init_bds(struct net_device *dev)
358{
359 struct fs_enet_private *fep = netdev_priv(dev);
360 cbd_t __iomem *bdp;
361 struct sk_buff *skb;
362 int i;
363
364 fs_cleanup_bds(dev);
365
366 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
367 fep->tx_free = fep->tx_ring;
368 fep->cur_rx = fep->rx_bd_base;
369
370 /*
371 * Initialize the receive buffer descriptors.
372 */
373 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
374 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
375 if (skb == NULL)
376 break;
377
378 skb_align(skb, ENET_RX_ALIGN);
379 fep->rx_skbuff[i] = skb;
380 CBDW_BUFADDR(bdp,
381 dma_map_single(fep->dev, skb->data,
382 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
383 DMA_FROM_DEVICE));
384 CBDW_DATLEN(bdp, 0); /* zero */
385 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
386 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
387 }
388 /*
389 * if we failed, fillup remainder
390 */
391 for (; i < fep->rx_ring; i++, bdp++) {
392 fep->rx_skbuff[i] = NULL;
393 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
394 }
395
396 /*
397 * ...and the same for transmit.
398 */
399 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
400 fep->tx_skbuff[i] = NULL;
401 CBDW_BUFADDR(bdp, 0);
402 CBDW_DATLEN(bdp, 0);
403 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
404 }
405}
406
407void fs_cleanup_bds(struct net_device *dev)
408{
409 struct fs_enet_private *fep = netdev_priv(dev);
410 struct sk_buff *skb;
411 cbd_t __iomem *bdp;
412 int i;
413
414 /*
415 * Reset SKB transmit buffers.
416 */
417 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
418 if ((skb = fep->tx_skbuff[i]) == NULL)
419 continue;
420
421 /* unmap */
422 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
423 skb->len, DMA_TO_DEVICE);
424
425 fep->tx_skbuff[i] = NULL;
426 dev_kfree_skb(skb);
427 }
428
429 /*
430 * Reset SKB receive buffers
431 */
432 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
433 if ((skb = fep->rx_skbuff[i]) == NULL)
434 continue;
435
436 /* unmap */
437 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
438 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
439 DMA_FROM_DEVICE);
440
441 fep->rx_skbuff[i] = NULL;
442
443 dev_kfree_skb(skb);
444 }
445}
446
447/**********************************************************************************/
448
449#ifdef CONFIG_FS_ENET_MPC5121_FEC
450/*
451 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
452 */
453static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
454 struct sk_buff *skb)
455{
456 struct sk_buff *new_skb;
457
458 if (skb_linearize(skb))
459 return NULL;
460
461 /* Alloc new skb */
462 new_skb = netdev_alloc_skb(dev, skb->len + 4);
463 if (!new_skb)
464 return NULL;
465
466 /* Make sure new skb is properly aligned */
467 skb_align(new_skb, 4);
468
469 /* Copy data to new skb ... */
470 skb_copy_from_linear_data(skb, new_skb->data, skb->len);
471 skb_put(new_skb, skb->len);
472
473 /* ... and free an old one */
474 dev_kfree_skb_any(skb);
475
476 return new_skb;
477}
478#endif
479
480static netdev_tx_t
481fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
482{
483 struct fs_enet_private *fep = netdev_priv(dev);
484 cbd_t __iomem *bdp;
485 int curidx;
486 u16 sc;
487 int nr_frags;
488 skb_frag_t *frag;
489 int len;
490#ifdef CONFIG_FS_ENET_MPC5121_FEC
491 int is_aligned = 1;
492 int i;
493
494 if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
495 is_aligned = 0;
496 } else {
497 nr_frags = skb_shinfo(skb)->nr_frags;
498 frag = skb_shinfo(skb)->frags;
499 for (i = 0; i < nr_frags; i++, frag++) {
500 if (!IS_ALIGNED(skb_frag_off(frag), 4)) {
501 is_aligned = 0;
502 break;
503 }
504 }
505 }
506
507 if (!is_aligned) {
508 skb = tx_skb_align_workaround(dev, skb);
509 if (!skb) {
510 /*
511 * We have lost packet due to memory allocation error
512 * in tx_skb_align_workaround(). Hopefully original
513 * skb is still valid, so try transmit it later.
514 */
515 return NETDEV_TX_BUSY;
516 }
517 }
518#endif
519
520 spin_lock(&fep->tx_lock);
521
522 /*
523 * Fill in a Tx ring entry
524 */
525 bdp = fep->cur_tx;
526
527 nr_frags = skb_shinfo(skb)->nr_frags;
528 if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
529 netif_stop_queue(dev);
530 spin_unlock(&fep->tx_lock);
531
532 /*
533 * Ooops. All transmit buffers are full. Bail out.
534 * This should not happen, since the tx queue should be stopped.
535 */
536 dev_warn(fep->dev, "tx queue full!.\n");
537 return NETDEV_TX_BUSY;
538 }
539
540 curidx = bdp - fep->tx_bd_base;
541
542 len = skb->len;
543 dev->stats.tx_bytes += len;
544 if (nr_frags)
545 len -= skb->data_len;
546 fep->tx_free -= nr_frags + 1;
547 /*
548 * Push the data cache so the CPM does not get stale memory data.
549 */
550 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
551 skb->data, len, DMA_TO_DEVICE));
552 CBDW_DATLEN(bdp, len);
553
554 fep->mapped_as_page[curidx] = 0;
555 frag = skb_shinfo(skb)->frags;
556 while (nr_frags) {
557 CBDC_SC(bdp,
558 BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
559 BD_ENET_TX_TC);
560 CBDS_SC(bdp, BD_ENET_TX_READY);
561
562 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) {
563 bdp++;
564 curidx++;
565 } else {
566 bdp = fep->tx_bd_base;
567 curidx = 0;
568 }
569
570 len = skb_frag_size(frag);
571 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
572 DMA_TO_DEVICE));
573 CBDW_DATLEN(bdp, len);
574
575 fep->tx_skbuff[curidx] = NULL;
576 fep->mapped_as_page[curidx] = 1;
577
578 frag++;
579 nr_frags--;
580 }
581
582 /* Trigger transmission start */
583 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
584 BD_ENET_TX_LAST | BD_ENET_TX_TC;
585
586 /* note that while FEC does not have this bit
587 * it marks it as available for software use
588 * yay for hw reuse :) */
589 if (skb->len <= 60)
590 sc |= BD_ENET_TX_PAD;
591 CBDC_SC(bdp, BD_ENET_TX_STATS);
592 CBDS_SC(bdp, sc);
593
594 /* Save skb pointer. */
595 fep->tx_skbuff[curidx] = skb;
596
597 /* If this was the last BD in the ring, start at the beginning again. */
598 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
599 bdp++;
600 else
601 bdp = fep->tx_bd_base;
602 fep->cur_tx = bdp;
603
604 if (fep->tx_free < MAX_SKB_FRAGS)
605 netif_stop_queue(dev);
606
607 skb_tx_timestamp(skb);
608
609 (*fep->ops->tx_kickstart)(dev);
610
611 spin_unlock(&fep->tx_lock);
612
613 return NETDEV_TX_OK;
614}
615
616static void fs_timeout_work(struct work_struct *work)
617{
618 struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
619 timeout_work);
620 struct net_device *dev = fep->ndev;
621 unsigned long flags;
622 int wake = 0;
623
624 dev->stats.tx_errors++;
625
626 spin_lock_irqsave(&fep->lock, flags);
627
628 if (dev->flags & IFF_UP) {
629 phy_stop(dev->phydev);
630 (*fep->ops->stop)(dev);
631 (*fep->ops->restart)(dev);
632 }
633
634 phy_start(dev->phydev);
635 wake = fep->tx_free >= MAX_SKB_FRAGS &&
636 !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
637 spin_unlock_irqrestore(&fep->lock, flags);
638
639 if (wake)
640 netif_wake_queue(dev);
641}
642
643static void fs_timeout(struct net_device *dev, unsigned int txqueue)
644{
645 struct fs_enet_private *fep = netdev_priv(dev);
646
647 schedule_work(&fep->timeout_work);
648}
649
650/*-----------------------------------------------------------------------------
651 * generic link-change handler - should be sufficient for most cases
652 *-----------------------------------------------------------------------------*/
653static void generic_adjust_link(struct net_device *dev)
654{
655 struct fs_enet_private *fep = netdev_priv(dev);
656 struct phy_device *phydev = dev->phydev;
657 int new_state = 0;
658
659 if (phydev->link) {
660 /* adjust to duplex mode */
661 if (phydev->duplex != fep->oldduplex) {
662 new_state = 1;
663 fep->oldduplex = phydev->duplex;
664 }
665
666 if (phydev->speed != fep->oldspeed) {
667 new_state = 1;
668 fep->oldspeed = phydev->speed;
669 }
670
671 if (!fep->oldlink) {
672 new_state = 1;
673 fep->oldlink = 1;
674 }
675
676 if (new_state)
677 fep->ops->restart(dev);
678 } else if (fep->oldlink) {
679 new_state = 1;
680 fep->oldlink = 0;
681 fep->oldspeed = 0;
682 fep->oldduplex = -1;
683 }
684
685 if (new_state && netif_msg_link(fep))
686 phy_print_status(phydev);
687}
688
689
690static void fs_adjust_link(struct net_device *dev)
691{
692 struct fs_enet_private *fep = netdev_priv(dev);
693 unsigned long flags;
694
695 spin_lock_irqsave(&fep->lock, flags);
696
697 if(fep->ops->adjust_link)
698 fep->ops->adjust_link(dev);
699 else
700 generic_adjust_link(dev);
701
702 spin_unlock_irqrestore(&fep->lock, flags);
703}
704
705static int fs_init_phy(struct net_device *dev)
706{
707 struct fs_enet_private *fep = netdev_priv(dev);
708 struct phy_device *phydev;
709 phy_interface_t iface;
710
711 fep->oldlink = 0;
712 fep->oldspeed = 0;
713 fep->oldduplex = -1;
714
715 iface = fep->fpi->use_rmii ?
716 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
717
718 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
719 iface);
720 if (!phydev) {
721 dev_err(&dev->dev, "Could not attach to PHY\n");
722 return -ENODEV;
723 }
724
725 return 0;
726}
727
728static int fs_enet_open(struct net_device *dev)
729{
730 struct fs_enet_private *fep = netdev_priv(dev);
731 int r;
732 int err;
733
734 /* to initialize the fep->cur_rx,... */
735 /* not doing this, will cause a crash in fs_enet_napi */
736 fs_init_bds(fep->ndev);
737
738 napi_enable(&fep->napi);
739
740 /* Install our interrupt handler. */
741 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
742 "fs_enet-mac", dev);
743 if (r != 0) {
744 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
745 napi_disable(&fep->napi);
746 return -EINVAL;
747 }
748
749 err = fs_init_phy(dev);
750 if (err) {
751 free_irq(fep->interrupt, dev);
752 napi_disable(&fep->napi);
753 return err;
754 }
755 phy_start(dev->phydev);
756
757 netif_start_queue(dev);
758
759 return 0;
760}
761
762static int fs_enet_close(struct net_device *dev)
763{
764 struct fs_enet_private *fep = netdev_priv(dev);
765 unsigned long flags;
766
767 netif_stop_queue(dev);
768 netif_carrier_off(dev);
769 napi_disable(&fep->napi);
770 cancel_work_sync(&fep->timeout_work);
771 phy_stop(dev->phydev);
772
773 spin_lock_irqsave(&fep->lock, flags);
774 spin_lock(&fep->tx_lock);
775 (*fep->ops->stop)(dev);
776 spin_unlock(&fep->tx_lock);
777 spin_unlock_irqrestore(&fep->lock, flags);
778
779 /* release any irqs */
780 phy_disconnect(dev->phydev);
781 free_irq(fep->interrupt, dev);
782
783 return 0;
784}
785
786/*************************************************************************/
787
788static void fs_get_drvinfo(struct net_device *dev,
789 struct ethtool_drvinfo *info)
790{
791 strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
792}
793
794static int fs_get_regs_len(struct net_device *dev)
795{
796 struct fs_enet_private *fep = netdev_priv(dev);
797
798 return (*fep->ops->get_regs_len)(dev);
799}
800
801static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
802 void *p)
803{
804 struct fs_enet_private *fep = netdev_priv(dev);
805 unsigned long flags;
806 int r, len;
807
808 len = regs->len;
809
810 spin_lock_irqsave(&fep->lock, flags);
811 r = (*fep->ops->get_regs)(dev, p, &len);
812 spin_unlock_irqrestore(&fep->lock, flags);
813
814 if (r == 0)
815 regs->version = 0;
816}
817
818static u32 fs_get_msglevel(struct net_device *dev)
819{
820 struct fs_enet_private *fep = netdev_priv(dev);
821 return fep->msg_enable;
822}
823
824static void fs_set_msglevel(struct net_device *dev, u32 value)
825{
826 struct fs_enet_private *fep = netdev_priv(dev);
827 fep->msg_enable = value;
828}
829
830static int fs_get_tunable(struct net_device *dev,
831 const struct ethtool_tunable *tuna, void *data)
832{
833 struct fs_enet_private *fep = netdev_priv(dev);
834 struct fs_platform_info *fpi = fep->fpi;
835 int ret = 0;
836
837 switch (tuna->id) {
838 case ETHTOOL_RX_COPYBREAK:
839 *(u32 *)data = fpi->rx_copybreak;
840 break;
841 default:
842 ret = -EINVAL;
843 break;
844 }
845
846 return ret;
847}
848
849static int fs_set_tunable(struct net_device *dev,
850 const struct ethtool_tunable *tuna, const void *data)
851{
852 struct fs_enet_private *fep = netdev_priv(dev);
853 struct fs_platform_info *fpi = fep->fpi;
854 int ret = 0;
855
856 switch (tuna->id) {
857 case ETHTOOL_RX_COPYBREAK:
858 fpi->rx_copybreak = *(u32 *)data;
859 break;
860 default:
861 ret = -EINVAL;
862 break;
863 }
864
865 return ret;
866}
867
868static const struct ethtool_ops fs_ethtool_ops = {
869 .get_drvinfo = fs_get_drvinfo,
870 .get_regs_len = fs_get_regs_len,
871 .nway_reset = phy_ethtool_nway_reset,
872 .get_link = ethtool_op_get_link,
873 .get_msglevel = fs_get_msglevel,
874 .set_msglevel = fs_set_msglevel,
875 .get_regs = fs_get_regs,
876 .get_ts_info = ethtool_op_get_ts_info,
877 .get_link_ksettings = phy_ethtool_get_link_ksettings,
878 .set_link_ksettings = phy_ethtool_set_link_ksettings,
879 .get_tunable = fs_get_tunable,
880 .set_tunable = fs_set_tunable,
881};
882
883/**************************************************************************************/
884
885#ifdef CONFIG_FS_ENET_HAS_FEC
886#define IS_FEC(ops) ((ops) == &fs_fec_ops)
887#else
888#define IS_FEC(ops) 0
889#endif
890
891static const struct net_device_ops fs_enet_netdev_ops = {
892 .ndo_open = fs_enet_open,
893 .ndo_stop = fs_enet_close,
894 .ndo_start_xmit = fs_enet_start_xmit,
895 .ndo_tx_timeout = fs_timeout,
896 .ndo_set_rx_mode = fs_set_multicast_list,
897 .ndo_eth_ioctl = phy_do_ioctl_running,
898 .ndo_validate_addr = eth_validate_addr,
899 .ndo_set_mac_address = eth_mac_addr,
900#ifdef CONFIG_NET_POLL_CONTROLLER
901 .ndo_poll_controller = fs_enet_netpoll,
902#endif
903};
904
905static int fs_enet_probe(struct platform_device *ofdev)
906{
907 const struct fs_ops *ops;
908 struct net_device *ndev;
909 struct fs_enet_private *fep;
910 struct fs_platform_info *fpi;
911 const u32 *data;
912 struct clk *clk;
913 int err;
914 const char *phy_connection_type;
915 int privsize, len, ret = -ENODEV;
916
917 ops = device_get_match_data(&ofdev->dev);
918 if (!ops)
919 return -EINVAL;
920
921 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
922 if (!fpi)
923 return -ENOMEM;
924
925 if (!IS_FEC(ops)) {
926 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
927 if (!data || len != 4)
928 goto out_free_fpi;
929
930 fpi->cp_command = *data;
931 }
932
933 fpi->rx_ring = RX_RING_SIZE;
934 fpi->tx_ring = TX_RING_SIZE;
935 fpi->rx_copybreak = 240;
936 fpi->napi_weight = 17;
937 fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
938 if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
939 err = of_phy_register_fixed_link(ofdev->dev.of_node);
940 if (err)
941 goto out_free_fpi;
942
943 /* In the case of a fixed PHY, the DT node associated
944 * to the PHY is the Ethernet MAC DT node.
945 */
946 fpi->phy_node = of_node_get(ofdev->dev.of_node);
947 }
948
949 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
950 phy_connection_type = of_get_property(ofdev->dev.of_node,
951 "phy-connection-type", NULL);
952 if (phy_connection_type && !strcmp("rmii", phy_connection_type))
953 fpi->use_rmii = 1;
954 }
955
956 /* make clock lookup non-fatal (the driver is shared among platforms),
957 * but require enable to succeed when a clock was specified/found,
958 * keep a reference to the clock upon successful acquisition
959 */
960 clk = devm_clk_get(&ofdev->dev, "per");
961 if (!IS_ERR(clk)) {
962 ret = clk_prepare_enable(clk);
963 if (ret)
964 goto out_deregister_fixed_link;
965
966 fpi->clk_per = clk;
967 }
968
969 privsize = sizeof(*fep) +
970 sizeof(struct sk_buff **) *
971 (fpi->rx_ring + fpi->tx_ring) +
972 sizeof(char) * fpi->tx_ring;
973
974 ndev = alloc_etherdev(privsize);
975 if (!ndev) {
976 ret = -ENOMEM;
977 goto out_put;
978 }
979
980 SET_NETDEV_DEV(ndev, &ofdev->dev);
981 platform_set_drvdata(ofdev, ndev);
982
983 fep = netdev_priv(ndev);
984 fep->dev = &ofdev->dev;
985 fep->ndev = ndev;
986 fep->fpi = fpi;
987 fep->ops = ops;
988
989 ret = fep->ops->setup_data(ndev);
990 if (ret)
991 goto out_free_dev;
992
993 fep->rx_skbuff = (struct sk_buff **)&fep[1];
994 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
995 fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
996 fpi->tx_ring);
997
998 spin_lock_init(&fep->lock);
999 spin_lock_init(&fep->tx_lock);
1000
1001 of_get_ethdev_address(ofdev->dev.of_node, ndev);
1002
1003 ret = fep->ops->allocate_bd(ndev);
1004 if (ret)
1005 goto out_cleanup_data;
1006
1007 fep->rx_bd_base = fep->ring_base;
1008 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1009
1010 fep->tx_ring = fpi->tx_ring;
1011 fep->rx_ring = fpi->rx_ring;
1012
1013 ndev->netdev_ops = &fs_enet_netdev_ops;
1014 ndev->watchdog_timeo = 2 * HZ;
1015 INIT_WORK(&fep->timeout_work, fs_timeout_work);
1016 netif_napi_add_weight(ndev, &fep->napi, fs_enet_napi,
1017 fpi->napi_weight);
1018
1019 ndev->ethtool_ops = &fs_ethtool_ops;
1020
1021 netif_carrier_off(ndev);
1022
1023 ndev->features |= NETIF_F_SG;
1024
1025 ret = register_netdev(ndev);
1026 if (ret)
1027 goto out_free_bd;
1028
1029 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1030
1031 return 0;
1032
1033out_free_bd:
1034 fep->ops->free_bd(ndev);
1035out_cleanup_data:
1036 fep->ops->cleanup_data(ndev);
1037out_free_dev:
1038 free_netdev(ndev);
1039out_put:
1040 clk_disable_unprepare(fpi->clk_per);
1041out_deregister_fixed_link:
1042 of_node_put(fpi->phy_node);
1043 if (of_phy_is_fixed_link(ofdev->dev.of_node))
1044 of_phy_deregister_fixed_link(ofdev->dev.of_node);
1045out_free_fpi:
1046 kfree(fpi);
1047 return ret;
1048}
1049
1050static void fs_enet_remove(struct platform_device *ofdev)
1051{
1052 struct net_device *ndev = platform_get_drvdata(ofdev);
1053 struct fs_enet_private *fep = netdev_priv(ndev);
1054
1055 unregister_netdev(ndev);
1056
1057 fep->ops->free_bd(ndev);
1058 fep->ops->cleanup_data(ndev);
1059 dev_set_drvdata(fep->dev, NULL);
1060 of_node_put(fep->fpi->phy_node);
1061 clk_disable_unprepare(fep->fpi->clk_per);
1062 if (of_phy_is_fixed_link(ofdev->dev.of_node))
1063 of_phy_deregister_fixed_link(ofdev->dev.of_node);
1064 free_netdev(ndev);
1065}
1066
1067static const struct of_device_id fs_enet_match[] = {
1068#ifdef CONFIG_FS_ENET_HAS_SCC
1069 {
1070 .compatible = "fsl,cpm1-scc-enet",
1071 .data = (void *)&fs_scc_ops,
1072 },
1073 {
1074 .compatible = "fsl,cpm2-scc-enet",
1075 .data = (void *)&fs_scc_ops,
1076 },
1077#endif
1078#ifdef CONFIG_FS_ENET_HAS_FCC
1079 {
1080 .compatible = "fsl,cpm2-fcc-enet",
1081 .data = (void *)&fs_fcc_ops,
1082 },
1083#endif
1084#ifdef CONFIG_FS_ENET_HAS_FEC
1085#ifdef CONFIG_FS_ENET_MPC5121_FEC
1086 {
1087 .compatible = "fsl,mpc5121-fec",
1088 .data = (void *)&fs_fec_ops,
1089 },
1090 {
1091 .compatible = "fsl,mpc5125-fec",
1092 .data = (void *)&fs_fec_ops,
1093 },
1094#else
1095 {
1096 .compatible = "fsl,pq1-fec-enet",
1097 .data = (void *)&fs_fec_ops,
1098 },
1099#endif
1100#endif
1101 {}
1102};
1103MODULE_DEVICE_TABLE(of, fs_enet_match);
1104
1105static struct platform_driver fs_enet_driver = {
1106 .driver = {
1107 .name = "fs_enet",
1108 .of_match_table = fs_enet_match,
1109 },
1110 .probe = fs_enet_probe,
1111 .remove_new = fs_enet_remove,
1112};
1113
1114#ifdef CONFIG_NET_POLL_CONTROLLER
1115static void fs_enet_netpoll(struct net_device *dev)
1116{
1117 disable_irq(dev->irq);
1118 fs_enet_interrupt(dev->irq, dev);
1119 enable_irq(dev->irq);
1120}
1121#endif
1122
1123module_platform_driver(fs_enet_driver);
1/*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18#include <linux/module.h>
19#include <linux/kernel.h>
20#include <linux/types.h>
21#include <linux/string.h>
22#include <linux/ptrace.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/slab.h>
26#include <linux/interrupt.h>
27#include <linux/delay.h>
28#include <linux/netdevice.h>
29#include <linux/etherdevice.h>
30#include <linux/skbuff.h>
31#include <linux/spinlock.h>
32#include <linux/mii.h>
33#include <linux/ethtool.h>
34#include <linux/bitops.h>
35#include <linux/fs.h>
36#include <linux/platform_device.h>
37#include <linux/phy.h>
38#include <linux/of.h>
39#include <linux/of_mdio.h>
40#include <linux/of_platform.h>
41#include <linux/of_gpio.h>
42#include <linux/of_net.h>
43
44#include <linux/vmalloc.h>
45#include <asm/pgtable.h>
46#include <asm/irq.h>
47#include <linux/uaccess.h>
48
49#include "fs_enet.h"
50
51/*************************************************/
52
53MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
54MODULE_DESCRIPTION("Freescale Ethernet Driver");
55MODULE_LICENSE("GPL");
56MODULE_VERSION(DRV_MODULE_VERSION);
57
58static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
59module_param(fs_enet_debug, int, 0);
60MODULE_PARM_DESC(fs_enet_debug,
61 "Freescale bitmapped debugging message enable value");
62
63#define RX_RING_SIZE 32
64#define TX_RING_SIZE 64
65
66#ifdef CONFIG_NET_POLL_CONTROLLER
67static void fs_enet_netpoll(struct net_device *dev);
68#endif
69
70static void fs_set_multicast_list(struct net_device *dev)
71{
72 struct fs_enet_private *fep = netdev_priv(dev);
73
74 (*fep->ops->set_multicast_list)(dev);
75}
76
77static void skb_align(struct sk_buff *skb, int align)
78{
79 int off = ((unsigned long)skb->data) & (align - 1);
80
81 if (off)
82 skb_reserve(skb, align - off);
83}
84
85/* NAPI function */
86static int fs_enet_napi(struct napi_struct *napi, int budget)
87{
88 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
89 struct net_device *dev = fep->ndev;
90 const struct fs_platform_info *fpi = fep->fpi;
91 cbd_t __iomem *bdp;
92 struct sk_buff *skb, *skbn;
93 int received = 0;
94 u16 pkt_len, sc;
95 int curidx;
96 int dirtyidx, do_wake, do_restart;
97 int tx_left = TX_RING_SIZE;
98
99 spin_lock(&fep->tx_lock);
100 bdp = fep->dirty_tx;
101
102 /* clear status bits for napi*/
103 (*fep->ops->napi_clear_event)(dev);
104
105 do_wake = do_restart = 0;
106 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
107 dirtyidx = bdp - fep->tx_bd_base;
108
109 if (fep->tx_free == fep->tx_ring)
110 break;
111
112 skb = fep->tx_skbuff[dirtyidx];
113
114 /*
115 * Check for errors.
116 */
117 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
118 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
119
120 if (sc & BD_ENET_TX_HB) /* No heartbeat */
121 dev->stats.tx_heartbeat_errors++;
122 if (sc & BD_ENET_TX_LC) /* Late collision */
123 dev->stats.tx_window_errors++;
124 if (sc & BD_ENET_TX_RL) /* Retrans limit */
125 dev->stats.tx_aborted_errors++;
126 if (sc & BD_ENET_TX_UN) /* Underrun */
127 dev->stats.tx_fifo_errors++;
128 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
129 dev->stats.tx_carrier_errors++;
130
131 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
132 dev->stats.tx_errors++;
133 do_restart = 1;
134 }
135 } else
136 dev->stats.tx_packets++;
137
138 if (sc & BD_ENET_TX_READY) {
139 dev_warn(fep->dev,
140 "HEY! Enet xmit interrupt and TX_READY.\n");
141 }
142
143 /*
144 * Deferred means some collisions occurred during transmit,
145 * but we eventually sent the packet OK.
146 */
147 if (sc & BD_ENET_TX_DEF)
148 dev->stats.collisions++;
149
150 /* unmap */
151 if (fep->mapped_as_page[dirtyidx])
152 dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
153 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
154 else
155 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
156 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
157
158 /*
159 * Free the sk buffer associated with this last transmit.
160 */
161 if (skb) {
162 dev_kfree_skb(skb);
163 fep->tx_skbuff[dirtyidx] = NULL;
164 }
165
166 /*
167 * Update pointer to next buffer descriptor to be transmitted.
168 */
169 if ((sc & BD_ENET_TX_WRAP) == 0)
170 bdp++;
171 else
172 bdp = fep->tx_bd_base;
173
174 /*
175 * Since we have freed up a buffer, the ring is no longer
176 * full.
177 */
178 if (++fep->tx_free == MAX_SKB_FRAGS)
179 do_wake = 1;
180 tx_left--;
181 }
182
183 fep->dirty_tx = bdp;
184
185 if (do_restart)
186 (*fep->ops->tx_restart)(dev);
187
188 spin_unlock(&fep->tx_lock);
189
190 if (do_wake)
191 netif_wake_queue(dev);
192
193 /*
194 * First, grab all of the stats for the incoming packet.
195 * These get messed up if we get called due to a busy condition.
196 */
197 bdp = fep->cur_rx;
198
199 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
200 received < budget) {
201 curidx = bdp - fep->rx_bd_base;
202
203 /*
204 * Since we have allocated space to hold a complete frame,
205 * the last indicator should be set.
206 */
207 if ((sc & BD_ENET_RX_LAST) == 0)
208 dev_warn(fep->dev, "rcv is not +last\n");
209
210 /*
211 * Check for errors.
212 */
213 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
214 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
215 dev->stats.rx_errors++;
216 /* Frame too long or too short. */
217 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
218 dev->stats.rx_length_errors++;
219 /* Frame alignment */
220 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
221 dev->stats.rx_frame_errors++;
222 /* CRC Error */
223 if (sc & BD_ENET_RX_CR)
224 dev->stats.rx_crc_errors++;
225 /* FIFO overrun */
226 if (sc & BD_ENET_RX_OV)
227 dev->stats.rx_crc_errors++;
228
229 skbn = fep->rx_skbuff[curidx];
230 } else {
231 skb = fep->rx_skbuff[curidx];
232
233 /*
234 * Process the incoming frame.
235 */
236 dev->stats.rx_packets++;
237 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
238 dev->stats.rx_bytes += pkt_len + 4;
239
240 if (pkt_len <= fpi->rx_copybreak) {
241 /* +2 to make IP header L1 cache aligned */
242 skbn = netdev_alloc_skb(dev, pkt_len + 2);
243 if (skbn != NULL) {
244 skb_reserve(skbn, 2); /* align IP header */
245 skb_copy_from_linear_data(skb,
246 skbn->data, pkt_len);
247 swap(skb, skbn);
248 dma_sync_single_for_cpu(fep->dev,
249 CBDR_BUFADDR(bdp),
250 L1_CACHE_ALIGN(pkt_len),
251 DMA_FROM_DEVICE);
252 }
253 } else {
254 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
255
256 if (skbn) {
257 dma_addr_t dma;
258
259 skb_align(skbn, ENET_RX_ALIGN);
260
261 dma_unmap_single(fep->dev,
262 CBDR_BUFADDR(bdp),
263 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
264 DMA_FROM_DEVICE);
265
266 dma = dma_map_single(fep->dev,
267 skbn->data,
268 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
269 DMA_FROM_DEVICE);
270 CBDW_BUFADDR(bdp, dma);
271 }
272 }
273
274 if (skbn != NULL) {
275 skb_put(skb, pkt_len); /* Make room */
276 skb->protocol = eth_type_trans(skb, dev);
277 received++;
278 netif_receive_skb(skb);
279 } else {
280 dev->stats.rx_dropped++;
281 skbn = skb;
282 }
283 }
284
285 fep->rx_skbuff[curidx] = skbn;
286 CBDW_DATLEN(bdp, 0);
287 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
288
289 /*
290 * Update BD pointer to next entry.
291 */
292 if ((sc & BD_ENET_RX_WRAP) == 0)
293 bdp++;
294 else
295 bdp = fep->rx_bd_base;
296
297 (*fep->ops->rx_bd_done)(dev);
298 }
299
300 fep->cur_rx = bdp;
301
302 if (received < budget && tx_left) {
303 /* done */
304 napi_complete_done(napi, received);
305 (*fep->ops->napi_enable)(dev);
306
307 return received;
308 }
309
310 return budget;
311}
312
313/*
314 * The interrupt handler.
315 * This is called from the MPC core interrupt.
316 */
317static irqreturn_t
318fs_enet_interrupt(int irq, void *dev_id)
319{
320 struct net_device *dev = dev_id;
321 struct fs_enet_private *fep;
322 const struct fs_platform_info *fpi;
323 u32 int_events;
324 u32 int_clr_events;
325 int nr, napi_ok;
326 int handled;
327
328 fep = netdev_priv(dev);
329 fpi = fep->fpi;
330
331 nr = 0;
332 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
333 nr++;
334
335 int_clr_events = int_events;
336 int_clr_events &= ~fep->ev_napi;
337
338 (*fep->ops->clear_int_events)(dev, int_clr_events);
339
340 if (int_events & fep->ev_err)
341 (*fep->ops->ev_error)(dev, int_events);
342
343 if (int_events & fep->ev) {
344 napi_ok = napi_schedule_prep(&fep->napi);
345
346 (*fep->ops->napi_disable)(dev);
347 (*fep->ops->clear_int_events)(dev, fep->ev_napi);
348
349 /* NOTE: it is possible for FCCs in NAPI mode */
350 /* to submit a spurious interrupt while in poll */
351 if (napi_ok)
352 __napi_schedule(&fep->napi);
353 }
354
355 }
356
357 handled = nr > 0;
358 return IRQ_RETVAL(handled);
359}
360
361void fs_init_bds(struct net_device *dev)
362{
363 struct fs_enet_private *fep = netdev_priv(dev);
364 cbd_t __iomem *bdp;
365 struct sk_buff *skb;
366 int i;
367
368 fs_cleanup_bds(dev);
369
370 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
371 fep->tx_free = fep->tx_ring;
372 fep->cur_rx = fep->rx_bd_base;
373
374 /*
375 * Initialize the receive buffer descriptors.
376 */
377 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
378 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
379 if (skb == NULL)
380 break;
381
382 skb_align(skb, ENET_RX_ALIGN);
383 fep->rx_skbuff[i] = skb;
384 CBDW_BUFADDR(bdp,
385 dma_map_single(fep->dev, skb->data,
386 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
387 DMA_FROM_DEVICE));
388 CBDW_DATLEN(bdp, 0); /* zero */
389 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
390 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
391 }
392 /*
393 * if we failed, fillup remainder
394 */
395 for (; i < fep->rx_ring; i++, bdp++) {
396 fep->rx_skbuff[i] = NULL;
397 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
398 }
399
400 /*
401 * ...and the same for transmit.
402 */
403 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
404 fep->tx_skbuff[i] = NULL;
405 CBDW_BUFADDR(bdp, 0);
406 CBDW_DATLEN(bdp, 0);
407 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
408 }
409}
410
411void fs_cleanup_bds(struct net_device *dev)
412{
413 struct fs_enet_private *fep = netdev_priv(dev);
414 struct sk_buff *skb;
415 cbd_t __iomem *bdp;
416 int i;
417
418 /*
419 * Reset SKB transmit buffers.
420 */
421 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
422 if ((skb = fep->tx_skbuff[i]) == NULL)
423 continue;
424
425 /* unmap */
426 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
427 skb->len, DMA_TO_DEVICE);
428
429 fep->tx_skbuff[i] = NULL;
430 dev_kfree_skb(skb);
431 }
432
433 /*
434 * Reset SKB receive buffers
435 */
436 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
437 if ((skb = fep->rx_skbuff[i]) == NULL)
438 continue;
439
440 /* unmap */
441 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
442 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
443 DMA_FROM_DEVICE);
444
445 fep->rx_skbuff[i] = NULL;
446
447 dev_kfree_skb(skb);
448 }
449}
450
451/**********************************************************************************/
452
453#ifdef CONFIG_FS_ENET_MPC5121_FEC
454/*
455 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
456 */
457static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
458 struct sk_buff *skb)
459{
460 struct sk_buff *new_skb;
461
462 if (skb_linearize(skb))
463 return NULL;
464
465 /* Alloc new skb */
466 new_skb = netdev_alloc_skb(dev, skb->len + 4);
467 if (!new_skb)
468 return NULL;
469
470 /* Make sure new skb is properly aligned */
471 skb_align(new_skb, 4);
472
473 /* Copy data to new skb ... */
474 skb_copy_from_linear_data(skb, new_skb->data, skb->len);
475 skb_put(new_skb, skb->len);
476
477 /* ... and free an old one */
478 dev_kfree_skb_any(skb);
479
480 return new_skb;
481}
482#endif
483
484static netdev_tx_t
485fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
486{
487 struct fs_enet_private *fep = netdev_priv(dev);
488 cbd_t __iomem *bdp;
489 int curidx;
490 u16 sc;
491 int nr_frags;
492 skb_frag_t *frag;
493 int len;
494#ifdef CONFIG_FS_ENET_MPC5121_FEC
495 int is_aligned = 1;
496 int i;
497
498 if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
499 is_aligned = 0;
500 } else {
501 nr_frags = skb_shinfo(skb)->nr_frags;
502 frag = skb_shinfo(skb)->frags;
503 for (i = 0; i < nr_frags; i++, frag++) {
504 if (!IS_ALIGNED(skb_frag_off(frag), 4)) {
505 is_aligned = 0;
506 break;
507 }
508 }
509 }
510
511 if (!is_aligned) {
512 skb = tx_skb_align_workaround(dev, skb);
513 if (!skb) {
514 /*
515 * We have lost packet due to memory allocation error
516 * in tx_skb_align_workaround(). Hopefully original
517 * skb is still valid, so try transmit it later.
518 */
519 return NETDEV_TX_BUSY;
520 }
521 }
522#endif
523
524 spin_lock(&fep->tx_lock);
525
526 /*
527 * Fill in a Tx ring entry
528 */
529 bdp = fep->cur_tx;
530
531 nr_frags = skb_shinfo(skb)->nr_frags;
532 if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
533 netif_stop_queue(dev);
534 spin_unlock(&fep->tx_lock);
535
536 /*
537 * Ooops. All transmit buffers are full. Bail out.
538 * This should not happen, since the tx queue should be stopped.
539 */
540 dev_warn(fep->dev, "tx queue full!.\n");
541 return NETDEV_TX_BUSY;
542 }
543
544 curidx = bdp - fep->tx_bd_base;
545
546 len = skb->len;
547 dev->stats.tx_bytes += len;
548 if (nr_frags)
549 len -= skb->data_len;
550 fep->tx_free -= nr_frags + 1;
551 /*
552 * Push the data cache so the CPM does not get stale memory data.
553 */
554 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
555 skb->data, len, DMA_TO_DEVICE));
556 CBDW_DATLEN(bdp, len);
557
558 fep->mapped_as_page[curidx] = 0;
559 frag = skb_shinfo(skb)->frags;
560 while (nr_frags) {
561 CBDC_SC(bdp,
562 BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
563 BD_ENET_TX_TC);
564 CBDS_SC(bdp, BD_ENET_TX_READY);
565
566 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
567 bdp++, curidx++;
568 else
569 bdp = fep->tx_bd_base, curidx = 0;
570
571 len = skb_frag_size(frag);
572 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
573 DMA_TO_DEVICE));
574 CBDW_DATLEN(bdp, len);
575
576 fep->tx_skbuff[curidx] = NULL;
577 fep->mapped_as_page[curidx] = 1;
578
579 frag++;
580 nr_frags--;
581 }
582
583 /* Trigger transmission start */
584 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
585 BD_ENET_TX_LAST | BD_ENET_TX_TC;
586
587 /* note that while FEC does not have this bit
588 * it marks it as available for software use
589 * yay for hw reuse :) */
590 if (skb->len <= 60)
591 sc |= BD_ENET_TX_PAD;
592 CBDC_SC(bdp, BD_ENET_TX_STATS);
593 CBDS_SC(bdp, sc);
594
595 /* Save skb pointer. */
596 fep->tx_skbuff[curidx] = skb;
597
598 /* If this was the last BD in the ring, start at the beginning again. */
599 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
600 bdp++;
601 else
602 bdp = fep->tx_bd_base;
603 fep->cur_tx = bdp;
604
605 if (fep->tx_free < MAX_SKB_FRAGS)
606 netif_stop_queue(dev);
607
608 skb_tx_timestamp(skb);
609
610 (*fep->ops->tx_kickstart)(dev);
611
612 spin_unlock(&fep->tx_lock);
613
614 return NETDEV_TX_OK;
615}
616
617static void fs_timeout_work(struct work_struct *work)
618{
619 struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
620 timeout_work);
621 struct net_device *dev = fep->ndev;
622 unsigned long flags;
623 int wake = 0;
624
625 dev->stats.tx_errors++;
626
627 spin_lock_irqsave(&fep->lock, flags);
628
629 if (dev->flags & IFF_UP) {
630 phy_stop(dev->phydev);
631 (*fep->ops->stop)(dev);
632 (*fep->ops->restart)(dev);
633 }
634
635 phy_start(dev->phydev);
636 wake = fep->tx_free >= MAX_SKB_FRAGS &&
637 !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
638 spin_unlock_irqrestore(&fep->lock, flags);
639
640 if (wake)
641 netif_wake_queue(dev);
642}
643
644static void fs_timeout(struct net_device *dev)
645{
646 struct fs_enet_private *fep = netdev_priv(dev);
647
648 schedule_work(&fep->timeout_work);
649}
650
651/*-----------------------------------------------------------------------------
652 * generic link-change handler - should be sufficient for most cases
653 *-----------------------------------------------------------------------------*/
654static void generic_adjust_link(struct net_device *dev)
655{
656 struct fs_enet_private *fep = netdev_priv(dev);
657 struct phy_device *phydev = dev->phydev;
658 int new_state = 0;
659
660 if (phydev->link) {
661 /* adjust to duplex mode */
662 if (phydev->duplex != fep->oldduplex) {
663 new_state = 1;
664 fep->oldduplex = phydev->duplex;
665 }
666
667 if (phydev->speed != fep->oldspeed) {
668 new_state = 1;
669 fep->oldspeed = phydev->speed;
670 }
671
672 if (!fep->oldlink) {
673 new_state = 1;
674 fep->oldlink = 1;
675 }
676
677 if (new_state)
678 fep->ops->restart(dev);
679 } else if (fep->oldlink) {
680 new_state = 1;
681 fep->oldlink = 0;
682 fep->oldspeed = 0;
683 fep->oldduplex = -1;
684 }
685
686 if (new_state && netif_msg_link(fep))
687 phy_print_status(phydev);
688}
689
690
691static void fs_adjust_link(struct net_device *dev)
692{
693 struct fs_enet_private *fep = netdev_priv(dev);
694 unsigned long flags;
695
696 spin_lock_irqsave(&fep->lock, flags);
697
698 if(fep->ops->adjust_link)
699 fep->ops->adjust_link(dev);
700 else
701 generic_adjust_link(dev);
702
703 spin_unlock_irqrestore(&fep->lock, flags);
704}
705
706static int fs_init_phy(struct net_device *dev)
707{
708 struct fs_enet_private *fep = netdev_priv(dev);
709 struct phy_device *phydev;
710 phy_interface_t iface;
711
712 fep->oldlink = 0;
713 fep->oldspeed = 0;
714 fep->oldduplex = -1;
715
716 iface = fep->fpi->use_rmii ?
717 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
718
719 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
720 iface);
721 if (!phydev) {
722 dev_err(&dev->dev, "Could not attach to PHY\n");
723 return -ENODEV;
724 }
725
726 return 0;
727}
728
729static int fs_enet_open(struct net_device *dev)
730{
731 struct fs_enet_private *fep = netdev_priv(dev);
732 int r;
733 int err;
734
735 /* to initialize the fep->cur_rx,... */
736 /* not doing this, will cause a crash in fs_enet_napi */
737 fs_init_bds(fep->ndev);
738
739 napi_enable(&fep->napi);
740
741 /* Install our interrupt handler. */
742 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
743 "fs_enet-mac", dev);
744 if (r != 0) {
745 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
746 napi_disable(&fep->napi);
747 return -EINVAL;
748 }
749
750 err = fs_init_phy(dev);
751 if (err) {
752 free_irq(fep->interrupt, dev);
753 napi_disable(&fep->napi);
754 return err;
755 }
756 phy_start(dev->phydev);
757
758 netif_start_queue(dev);
759
760 return 0;
761}
762
763static int fs_enet_close(struct net_device *dev)
764{
765 struct fs_enet_private *fep = netdev_priv(dev);
766 unsigned long flags;
767
768 netif_stop_queue(dev);
769 netif_carrier_off(dev);
770 napi_disable(&fep->napi);
771 cancel_work_sync(&fep->timeout_work);
772 phy_stop(dev->phydev);
773
774 spin_lock_irqsave(&fep->lock, flags);
775 spin_lock(&fep->tx_lock);
776 (*fep->ops->stop)(dev);
777 spin_unlock(&fep->tx_lock);
778 spin_unlock_irqrestore(&fep->lock, flags);
779
780 /* release any irqs */
781 phy_disconnect(dev->phydev);
782 free_irq(fep->interrupt, dev);
783
784 return 0;
785}
786
787/*************************************************************************/
788
789static void fs_get_drvinfo(struct net_device *dev,
790 struct ethtool_drvinfo *info)
791{
792 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
793 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
794}
795
796static int fs_get_regs_len(struct net_device *dev)
797{
798 struct fs_enet_private *fep = netdev_priv(dev);
799
800 return (*fep->ops->get_regs_len)(dev);
801}
802
803static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
804 void *p)
805{
806 struct fs_enet_private *fep = netdev_priv(dev);
807 unsigned long flags;
808 int r, len;
809
810 len = regs->len;
811
812 spin_lock_irqsave(&fep->lock, flags);
813 r = (*fep->ops->get_regs)(dev, p, &len);
814 spin_unlock_irqrestore(&fep->lock, flags);
815
816 if (r == 0)
817 regs->version = 0;
818}
819
820static u32 fs_get_msglevel(struct net_device *dev)
821{
822 struct fs_enet_private *fep = netdev_priv(dev);
823 return fep->msg_enable;
824}
825
826static void fs_set_msglevel(struct net_device *dev, u32 value)
827{
828 struct fs_enet_private *fep = netdev_priv(dev);
829 fep->msg_enable = value;
830}
831
832static int fs_get_tunable(struct net_device *dev,
833 const struct ethtool_tunable *tuna, void *data)
834{
835 struct fs_enet_private *fep = netdev_priv(dev);
836 struct fs_platform_info *fpi = fep->fpi;
837 int ret = 0;
838
839 switch (tuna->id) {
840 case ETHTOOL_RX_COPYBREAK:
841 *(u32 *)data = fpi->rx_copybreak;
842 break;
843 default:
844 ret = -EINVAL;
845 break;
846 }
847
848 return ret;
849}
850
851static int fs_set_tunable(struct net_device *dev,
852 const struct ethtool_tunable *tuna, const void *data)
853{
854 struct fs_enet_private *fep = netdev_priv(dev);
855 struct fs_platform_info *fpi = fep->fpi;
856 int ret = 0;
857
858 switch (tuna->id) {
859 case ETHTOOL_RX_COPYBREAK:
860 fpi->rx_copybreak = *(u32 *)data;
861 break;
862 default:
863 ret = -EINVAL;
864 break;
865 }
866
867 return ret;
868}
869
870static const struct ethtool_ops fs_ethtool_ops = {
871 .get_drvinfo = fs_get_drvinfo,
872 .get_regs_len = fs_get_regs_len,
873 .nway_reset = phy_ethtool_nway_reset,
874 .get_link = ethtool_op_get_link,
875 .get_msglevel = fs_get_msglevel,
876 .set_msglevel = fs_set_msglevel,
877 .get_regs = fs_get_regs,
878 .get_ts_info = ethtool_op_get_ts_info,
879 .get_link_ksettings = phy_ethtool_get_link_ksettings,
880 .set_link_ksettings = phy_ethtool_set_link_ksettings,
881 .get_tunable = fs_get_tunable,
882 .set_tunable = fs_set_tunable,
883};
884
885static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
886{
887 if (!netif_running(dev))
888 return -EINVAL;
889
890 return phy_mii_ioctl(dev->phydev, rq, cmd);
891}
892
893extern int fs_mii_connect(struct net_device *dev);
894extern void fs_mii_disconnect(struct net_device *dev);
895
896/**************************************************************************************/
897
898#ifdef CONFIG_FS_ENET_HAS_FEC
899#define IS_FEC(match) ((match)->data == &fs_fec_ops)
900#else
901#define IS_FEC(match) 0
902#endif
903
904static const struct net_device_ops fs_enet_netdev_ops = {
905 .ndo_open = fs_enet_open,
906 .ndo_stop = fs_enet_close,
907 .ndo_start_xmit = fs_enet_start_xmit,
908 .ndo_tx_timeout = fs_timeout,
909 .ndo_set_rx_mode = fs_set_multicast_list,
910 .ndo_do_ioctl = fs_ioctl,
911 .ndo_validate_addr = eth_validate_addr,
912 .ndo_set_mac_address = eth_mac_addr,
913#ifdef CONFIG_NET_POLL_CONTROLLER
914 .ndo_poll_controller = fs_enet_netpoll,
915#endif
916};
917
918static const struct of_device_id fs_enet_match[];
919static int fs_enet_probe(struct platform_device *ofdev)
920{
921 const struct of_device_id *match;
922 struct net_device *ndev;
923 struct fs_enet_private *fep;
924 struct fs_platform_info *fpi;
925 const u32 *data;
926 struct clk *clk;
927 int err;
928 const u8 *mac_addr;
929 const char *phy_connection_type;
930 int privsize, len, ret = -ENODEV;
931
932 match = of_match_device(fs_enet_match, &ofdev->dev);
933 if (!match)
934 return -EINVAL;
935
936 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
937 if (!fpi)
938 return -ENOMEM;
939
940 if (!IS_FEC(match)) {
941 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
942 if (!data || len != 4)
943 goto out_free_fpi;
944
945 fpi->cp_command = *data;
946 }
947
948 fpi->rx_ring = RX_RING_SIZE;
949 fpi->tx_ring = TX_RING_SIZE;
950 fpi->rx_copybreak = 240;
951 fpi->napi_weight = 17;
952 fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
953 if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
954 err = of_phy_register_fixed_link(ofdev->dev.of_node);
955 if (err)
956 goto out_free_fpi;
957
958 /* In the case of a fixed PHY, the DT node associated
959 * to the PHY is the Ethernet MAC DT node.
960 */
961 fpi->phy_node = of_node_get(ofdev->dev.of_node);
962 }
963
964 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
965 phy_connection_type = of_get_property(ofdev->dev.of_node,
966 "phy-connection-type", NULL);
967 if (phy_connection_type && !strcmp("rmii", phy_connection_type))
968 fpi->use_rmii = 1;
969 }
970
971 /* make clock lookup non-fatal (the driver is shared among platforms),
972 * but require enable to succeed when a clock was specified/found,
973 * keep a reference to the clock upon successful acquisition
974 */
975 clk = devm_clk_get(&ofdev->dev, "per");
976 if (!IS_ERR(clk)) {
977 ret = clk_prepare_enable(clk);
978 if (ret)
979 goto out_deregister_fixed_link;
980
981 fpi->clk_per = clk;
982 }
983
984 privsize = sizeof(*fep) +
985 sizeof(struct sk_buff **) *
986 (fpi->rx_ring + fpi->tx_ring) +
987 sizeof(char) * fpi->tx_ring;
988
989 ndev = alloc_etherdev(privsize);
990 if (!ndev) {
991 ret = -ENOMEM;
992 goto out_put;
993 }
994
995 SET_NETDEV_DEV(ndev, &ofdev->dev);
996 platform_set_drvdata(ofdev, ndev);
997
998 fep = netdev_priv(ndev);
999 fep->dev = &ofdev->dev;
1000 fep->ndev = ndev;
1001 fep->fpi = fpi;
1002 fep->ops = match->data;
1003
1004 ret = fep->ops->setup_data(ndev);
1005 if (ret)
1006 goto out_free_dev;
1007
1008 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1009 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1010 fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
1011 fpi->tx_ring);
1012
1013 spin_lock_init(&fep->lock);
1014 spin_lock_init(&fep->tx_lock);
1015
1016 mac_addr = of_get_mac_address(ofdev->dev.of_node);
1017 if (!IS_ERR(mac_addr))
1018 ether_addr_copy(ndev->dev_addr, mac_addr);
1019
1020 ret = fep->ops->allocate_bd(ndev);
1021 if (ret)
1022 goto out_cleanup_data;
1023
1024 fep->rx_bd_base = fep->ring_base;
1025 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1026
1027 fep->tx_ring = fpi->tx_ring;
1028 fep->rx_ring = fpi->rx_ring;
1029
1030 ndev->netdev_ops = &fs_enet_netdev_ops;
1031 ndev->watchdog_timeo = 2 * HZ;
1032 INIT_WORK(&fep->timeout_work, fs_timeout_work);
1033 netif_napi_add(ndev, &fep->napi, fs_enet_napi, fpi->napi_weight);
1034
1035 ndev->ethtool_ops = &fs_ethtool_ops;
1036
1037 netif_carrier_off(ndev);
1038
1039 ndev->features |= NETIF_F_SG;
1040
1041 ret = register_netdev(ndev);
1042 if (ret)
1043 goto out_free_bd;
1044
1045 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1046
1047 return 0;
1048
1049out_free_bd:
1050 fep->ops->free_bd(ndev);
1051out_cleanup_data:
1052 fep->ops->cleanup_data(ndev);
1053out_free_dev:
1054 free_netdev(ndev);
1055out_put:
1056 if (fpi->clk_per)
1057 clk_disable_unprepare(fpi->clk_per);
1058out_deregister_fixed_link:
1059 of_node_put(fpi->phy_node);
1060 if (of_phy_is_fixed_link(ofdev->dev.of_node))
1061 of_phy_deregister_fixed_link(ofdev->dev.of_node);
1062out_free_fpi:
1063 kfree(fpi);
1064 return ret;
1065}
1066
1067static int fs_enet_remove(struct platform_device *ofdev)
1068{
1069 struct net_device *ndev = platform_get_drvdata(ofdev);
1070 struct fs_enet_private *fep = netdev_priv(ndev);
1071
1072 unregister_netdev(ndev);
1073
1074 fep->ops->free_bd(ndev);
1075 fep->ops->cleanup_data(ndev);
1076 dev_set_drvdata(fep->dev, NULL);
1077 of_node_put(fep->fpi->phy_node);
1078 if (fep->fpi->clk_per)
1079 clk_disable_unprepare(fep->fpi->clk_per);
1080 if (of_phy_is_fixed_link(ofdev->dev.of_node))
1081 of_phy_deregister_fixed_link(ofdev->dev.of_node);
1082 free_netdev(ndev);
1083 return 0;
1084}
1085
1086static const struct of_device_id fs_enet_match[] = {
1087#ifdef CONFIG_FS_ENET_HAS_SCC
1088 {
1089 .compatible = "fsl,cpm1-scc-enet",
1090 .data = (void *)&fs_scc_ops,
1091 },
1092 {
1093 .compatible = "fsl,cpm2-scc-enet",
1094 .data = (void *)&fs_scc_ops,
1095 },
1096#endif
1097#ifdef CONFIG_FS_ENET_HAS_FCC
1098 {
1099 .compatible = "fsl,cpm2-fcc-enet",
1100 .data = (void *)&fs_fcc_ops,
1101 },
1102#endif
1103#ifdef CONFIG_FS_ENET_HAS_FEC
1104#ifdef CONFIG_FS_ENET_MPC5121_FEC
1105 {
1106 .compatible = "fsl,mpc5121-fec",
1107 .data = (void *)&fs_fec_ops,
1108 },
1109 {
1110 .compatible = "fsl,mpc5125-fec",
1111 .data = (void *)&fs_fec_ops,
1112 },
1113#else
1114 {
1115 .compatible = "fsl,pq1-fec-enet",
1116 .data = (void *)&fs_fec_ops,
1117 },
1118#endif
1119#endif
1120 {}
1121};
1122MODULE_DEVICE_TABLE(of, fs_enet_match);
1123
1124static struct platform_driver fs_enet_driver = {
1125 .driver = {
1126 .name = "fs_enet",
1127 .of_match_table = fs_enet_match,
1128 },
1129 .probe = fs_enet_probe,
1130 .remove = fs_enet_remove,
1131};
1132
1133#ifdef CONFIG_NET_POLL_CONTROLLER
1134static void fs_enet_netpoll(struct net_device *dev)
1135{
1136 disable_irq(dev->irq);
1137 fs_enet_interrupt(dev->irq, dev);
1138 enable_irq(dev->irq);
1139}
1140#endif
1141
1142module_platform_driver(fs_enet_driver);