Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
   3 *
   4 * Copyright (c) 2003 Intracom S.A.
   5 *  by Pantelis Antoniou <panto@intracom.gr>
   6 *
   7 * 2005 (c) MontaVista Software, Inc.
   8 * Vitaly Bordug <vbordug@ru.mvista.com>
   9 *
  10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
  11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
  12 *
  13 * This file is licensed under the terms of the GNU General Public License
  14 * version 2. This program is licensed "as is" without any warranty of any
  15 * kind, whether express or implied.
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/kernel.h>
  20#include <linux/types.h>
  21#include <linux/string.h>
  22#include <linux/ptrace.h>
  23#include <linux/errno.h>
  24#include <linux/ioport.h>
  25#include <linux/slab.h>
  26#include <linux/interrupt.h>
  27#include <linux/delay.h>
  28#include <linux/netdevice.h>
  29#include <linux/etherdevice.h>
  30#include <linux/skbuff.h>
  31#include <linux/spinlock.h>
  32#include <linux/mii.h>
  33#include <linux/ethtool.h>
  34#include <linux/bitops.h>
  35#include <linux/fs.h>
  36#include <linux/platform_device.h>
  37#include <linux/phy.h>
  38#include <linux/property.h>
  39#include <linux/of.h>
  40#include <linux/of_mdio.h>
 
 
  41#include <linux/of_net.h>
  42#include <linux/pgtable.h>
  43
  44#include <linux/vmalloc.h>
 
  45#include <asm/irq.h>
  46#include <linux/uaccess.h>
  47
  48#include "fs_enet.h"
  49
  50/*************************************************/
  51
  52MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
  53MODULE_DESCRIPTION("Freescale Ethernet Driver");
  54MODULE_LICENSE("GPL");
 
  55
  56static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
  57module_param(fs_enet_debug, int, 0);
  58MODULE_PARM_DESC(fs_enet_debug,
  59		 "Freescale bitmapped debugging message enable value");
  60
  61#define RX_RING_SIZE	32
  62#define TX_RING_SIZE	64
  63
  64#ifdef CONFIG_NET_POLL_CONTROLLER
  65static void fs_enet_netpoll(struct net_device *dev);
  66#endif
  67
  68static void fs_set_multicast_list(struct net_device *dev)
  69{
  70	struct fs_enet_private *fep = netdev_priv(dev);
  71
  72	(*fep->ops->set_multicast_list)(dev);
  73}
  74
  75static void skb_align(struct sk_buff *skb, int align)
  76{
  77	int off = ((unsigned long)skb->data) & (align - 1);
  78
  79	if (off)
  80		skb_reserve(skb, align - off);
  81}
  82
  83/* NAPI function */
  84static int fs_enet_napi(struct napi_struct *napi, int budget)
  85{
  86	struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
  87	struct net_device *dev = fep->ndev;
  88	const struct fs_platform_info *fpi = fep->fpi;
  89	cbd_t __iomem *bdp;
  90	struct sk_buff *skb, *skbn;
  91	int received = 0;
  92	u16 pkt_len, sc;
  93	int curidx;
  94	int dirtyidx, do_wake, do_restart;
  95	int tx_left = TX_RING_SIZE;
  96
  97	spin_lock(&fep->tx_lock);
  98	bdp = fep->dirty_tx;
  99
 100	/* clear status bits for napi*/
 101	(*fep->ops->napi_clear_event)(dev);
 102
 103	do_wake = do_restart = 0;
 104	while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
 105		dirtyidx = bdp - fep->tx_bd_base;
 106
 107		if (fep->tx_free == fep->tx_ring)
 108			break;
 109
 110		skb = fep->tx_skbuff[dirtyidx];
 111
 112		/*
 113		 * Check for errors.
 114		 */
 115		if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
 116			  BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
 117
 118			if (sc & BD_ENET_TX_HB)	/* No heartbeat */
 119				dev->stats.tx_heartbeat_errors++;
 120			if (sc & BD_ENET_TX_LC)	/* Late collision */
 121				dev->stats.tx_window_errors++;
 122			if (sc & BD_ENET_TX_RL)	/* Retrans limit */
 123				dev->stats.tx_aborted_errors++;
 124			if (sc & BD_ENET_TX_UN)	/* Underrun */
 125				dev->stats.tx_fifo_errors++;
 126			if (sc & BD_ENET_TX_CSL)	/* Carrier lost */
 127				dev->stats.tx_carrier_errors++;
 128
 129			if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
 130				dev->stats.tx_errors++;
 131				do_restart = 1;
 132			}
 133		} else
 134			dev->stats.tx_packets++;
 135
 136		if (sc & BD_ENET_TX_READY) {
 137			dev_warn(fep->dev,
 138				 "HEY! Enet xmit interrupt and TX_READY.\n");
 139		}
 140
 141		/*
 142		 * Deferred means some collisions occurred during transmit,
 143		 * but we eventually sent the packet OK.
 144		 */
 145		if (sc & BD_ENET_TX_DEF)
 146			dev->stats.collisions++;
 147
 148		/* unmap */
 149		if (fep->mapped_as_page[dirtyidx])
 150			dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
 151				       CBDR_DATLEN(bdp), DMA_TO_DEVICE);
 152		else
 153			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 154					 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
 155
 156		/*
 157		 * Free the sk buffer associated with this last transmit.
 158		 */
 159		if (skb) {
 160			dev_kfree_skb(skb);
 161			fep->tx_skbuff[dirtyidx] = NULL;
 162		}
 163
 164		/*
 165		 * Update pointer to next buffer descriptor to be transmitted.
 166		 */
 167		if ((sc & BD_ENET_TX_WRAP) == 0)
 168			bdp++;
 169		else
 170			bdp = fep->tx_bd_base;
 171
 172		/*
 173		 * Since we have freed up a buffer, the ring is no longer
 174		 * full.
 175		 */
 176		if (++fep->tx_free == MAX_SKB_FRAGS)
 177			do_wake = 1;
 178		tx_left--;
 179	}
 180
 181	fep->dirty_tx = bdp;
 182
 183	if (do_restart)
 184		(*fep->ops->tx_restart)(dev);
 185
 186	spin_unlock(&fep->tx_lock);
 187
 188	if (do_wake)
 189		netif_wake_queue(dev);
 190
 191	/*
 192	 * First, grab all of the stats for the incoming packet.
 193	 * These get messed up if we get called due to a busy condition.
 194	 */
 195	bdp = fep->cur_rx;
 196
 197	while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
 198	       received < budget) {
 199		curidx = bdp - fep->rx_bd_base;
 200
 201		/*
 202		 * Since we have allocated space to hold a complete frame,
 203		 * the last indicator should be set.
 204		 */
 205		if ((sc & BD_ENET_RX_LAST) == 0)
 206			dev_warn(fep->dev, "rcv is not +last\n");
 207
 208		/*
 209		 * Check for errors.
 210		 */
 211		if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
 212			  BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
 213			dev->stats.rx_errors++;
 214			/* Frame too long or too short. */
 215			if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
 216				dev->stats.rx_length_errors++;
 217			/* Frame alignment */
 218			if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
 219				dev->stats.rx_frame_errors++;
 220			/* CRC Error */
 221			if (sc & BD_ENET_RX_CR)
 222				dev->stats.rx_crc_errors++;
 223			/* FIFO overrun */
 224			if (sc & BD_ENET_RX_OV)
 225				dev->stats.rx_crc_errors++;
 226
 227			skbn = fep->rx_skbuff[curidx];
 228		} else {
 229			skb = fep->rx_skbuff[curidx];
 230
 231			/*
 232			 * Process the incoming frame.
 233			 */
 234			dev->stats.rx_packets++;
 235			pkt_len = CBDR_DATLEN(bdp) - 4;	/* remove CRC */
 236			dev->stats.rx_bytes += pkt_len + 4;
 237
 238			if (pkt_len <= fpi->rx_copybreak) {
 239				/* +2 to make IP header L1 cache aligned */
 240				skbn = netdev_alloc_skb(dev, pkt_len + 2);
 241				if (skbn != NULL) {
 242					skb_reserve(skbn, 2);	/* align IP header */
 243					skb_copy_from_linear_data(skb,
 244						      skbn->data, pkt_len);
 245					swap(skb, skbn);
 246					dma_sync_single_for_cpu(fep->dev,
 247						CBDR_BUFADDR(bdp),
 248						L1_CACHE_ALIGN(pkt_len),
 249						DMA_FROM_DEVICE);
 250				}
 251			} else {
 252				skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
 253
 254				if (skbn) {
 255					dma_addr_t dma;
 256
 257					skb_align(skbn, ENET_RX_ALIGN);
 258
 259					dma_unmap_single(fep->dev,
 260						CBDR_BUFADDR(bdp),
 261						L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 262						DMA_FROM_DEVICE);
 263
 264					dma = dma_map_single(fep->dev,
 265						skbn->data,
 266						L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 267						DMA_FROM_DEVICE);
 268					CBDW_BUFADDR(bdp, dma);
 269				}
 270			}
 271
 272			if (skbn != NULL) {
 273				skb_put(skb, pkt_len);	/* Make room */
 274				skb->protocol = eth_type_trans(skb, dev);
 275				received++;
 276				netif_receive_skb(skb);
 277			} else {
 278				dev->stats.rx_dropped++;
 279				skbn = skb;
 280			}
 281		}
 282
 283		fep->rx_skbuff[curidx] = skbn;
 284		CBDW_DATLEN(bdp, 0);
 285		CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
 286
 287		/*
 288		 * Update BD pointer to next entry.
 289		 */
 290		if ((sc & BD_ENET_RX_WRAP) == 0)
 291			bdp++;
 292		else
 293			bdp = fep->rx_bd_base;
 294
 295		(*fep->ops->rx_bd_done)(dev);
 296	}
 297
 298	fep->cur_rx = bdp;
 299
 300	if (received < budget && tx_left) {
 301		/* done */
 302		napi_complete_done(napi, received);
 303		(*fep->ops->napi_enable)(dev);
 304
 305		return received;
 306	}
 307
 308	return budget;
 309}
 310
 311/*
 312 * The interrupt handler.
 313 * This is called from the MPC core interrupt.
 314 */
 315static irqreturn_t
 316fs_enet_interrupt(int irq, void *dev_id)
 317{
 318	struct net_device *dev = dev_id;
 319	struct fs_enet_private *fep;
 
 320	u32 int_events;
 321	u32 int_clr_events;
 322	int nr, napi_ok;
 323	int handled;
 324
 325	fep = netdev_priv(dev);
 
 326
 327	nr = 0;
 328	while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
 329		nr++;
 330
 331		int_clr_events = int_events;
 332		int_clr_events &= ~fep->ev_napi;
 333
 334		(*fep->ops->clear_int_events)(dev, int_clr_events);
 335
 336		if (int_events & fep->ev_err)
 337			(*fep->ops->ev_error)(dev, int_events);
 338
 339		if (int_events & fep->ev) {
 340			napi_ok = napi_schedule_prep(&fep->napi);
 341
 342			(*fep->ops->napi_disable)(dev);
 343			(*fep->ops->clear_int_events)(dev, fep->ev_napi);
 344
 345			/* NOTE: it is possible for FCCs in NAPI mode    */
 346			/* to submit a spurious interrupt while in poll  */
 347			if (napi_ok)
 348				__napi_schedule(&fep->napi);
 349		}
 350
 351	}
 352
 353	handled = nr > 0;
 354	return IRQ_RETVAL(handled);
 355}
 356
 357void fs_init_bds(struct net_device *dev)
 358{
 359	struct fs_enet_private *fep = netdev_priv(dev);
 360	cbd_t __iomem *bdp;
 361	struct sk_buff *skb;
 362	int i;
 363
 364	fs_cleanup_bds(dev);
 365
 366	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
 367	fep->tx_free = fep->tx_ring;
 368	fep->cur_rx = fep->rx_bd_base;
 369
 370	/*
 371	 * Initialize the receive buffer descriptors.
 372	 */
 373	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
 374		skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
 375		if (skb == NULL)
 376			break;
 377
 378		skb_align(skb, ENET_RX_ALIGN);
 379		fep->rx_skbuff[i] = skb;
 380		CBDW_BUFADDR(bdp,
 381			dma_map_single(fep->dev, skb->data,
 382				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 383				DMA_FROM_DEVICE));
 384		CBDW_DATLEN(bdp, 0);	/* zero */
 385		CBDW_SC(bdp, BD_ENET_RX_EMPTY |
 386			((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
 387	}
 388	/*
 389	 * if we failed, fillup remainder
 390	 */
 391	for (; i < fep->rx_ring; i++, bdp++) {
 392		fep->rx_skbuff[i] = NULL;
 393		CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
 394	}
 395
 396	/*
 397	 * ...and the same for transmit.
 398	 */
 399	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
 400		fep->tx_skbuff[i] = NULL;
 401		CBDW_BUFADDR(bdp, 0);
 402		CBDW_DATLEN(bdp, 0);
 403		CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
 404	}
 405}
 406
 407void fs_cleanup_bds(struct net_device *dev)
 408{
 409	struct fs_enet_private *fep = netdev_priv(dev);
 410	struct sk_buff *skb;
 411	cbd_t __iomem *bdp;
 412	int i;
 413
 414	/*
 415	 * Reset SKB transmit buffers.
 416	 */
 417	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
 418		if ((skb = fep->tx_skbuff[i]) == NULL)
 419			continue;
 420
 421		/* unmap */
 422		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 423				skb->len, DMA_TO_DEVICE);
 424
 425		fep->tx_skbuff[i] = NULL;
 426		dev_kfree_skb(skb);
 427	}
 428
 429	/*
 430	 * Reset SKB receive buffers
 431	 */
 432	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
 433		if ((skb = fep->rx_skbuff[i]) == NULL)
 434			continue;
 435
 436		/* unmap */
 437		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 438			L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 439			DMA_FROM_DEVICE);
 440
 441		fep->rx_skbuff[i] = NULL;
 442
 443		dev_kfree_skb(skb);
 444	}
 445}
 446
 447/**********************************************************************************/
 448
 449#ifdef CONFIG_FS_ENET_MPC5121_FEC
 450/*
 451 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
 452 */
 453static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
 454					       struct sk_buff *skb)
 455{
 456	struct sk_buff *new_skb;
 457
 458	if (skb_linearize(skb))
 459		return NULL;
 460
 461	/* Alloc new skb */
 462	new_skb = netdev_alloc_skb(dev, skb->len + 4);
 463	if (!new_skb)
 464		return NULL;
 465
 466	/* Make sure new skb is properly aligned */
 467	skb_align(new_skb, 4);
 468
 469	/* Copy data to new skb ... */
 470	skb_copy_from_linear_data(skb, new_skb->data, skb->len);
 471	skb_put(new_skb, skb->len);
 472
 473	/* ... and free an old one */
 474	dev_kfree_skb_any(skb);
 475
 476	return new_skb;
 477}
 478#endif
 479
 480static netdev_tx_t
 481fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
 482{
 483	struct fs_enet_private *fep = netdev_priv(dev);
 484	cbd_t __iomem *bdp;
 485	int curidx;
 486	u16 sc;
 487	int nr_frags;
 488	skb_frag_t *frag;
 489	int len;
 490#ifdef CONFIG_FS_ENET_MPC5121_FEC
 491	int is_aligned = 1;
 492	int i;
 493
 494	if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
 495		is_aligned = 0;
 496	} else {
 497		nr_frags = skb_shinfo(skb)->nr_frags;
 498		frag = skb_shinfo(skb)->frags;
 499		for (i = 0; i < nr_frags; i++, frag++) {
 500			if (!IS_ALIGNED(skb_frag_off(frag), 4)) {
 501				is_aligned = 0;
 502				break;
 503			}
 504		}
 505	}
 506
 507	if (!is_aligned) {
 508		skb = tx_skb_align_workaround(dev, skb);
 509		if (!skb) {
 510			/*
 511			 * We have lost packet due to memory allocation error
 512			 * in tx_skb_align_workaround(). Hopefully original
 513			 * skb is still valid, so try transmit it later.
 514			 */
 515			return NETDEV_TX_BUSY;
 516		}
 517	}
 518#endif
 519
 520	spin_lock(&fep->tx_lock);
 521
 522	/*
 523	 * Fill in a Tx ring entry
 524	 */
 525	bdp = fep->cur_tx;
 526
 527	nr_frags = skb_shinfo(skb)->nr_frags;
 528	if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
 529		netif_stop_queue(dev);
 530		spin_unlock(&fep->tx_lock);
 531
 532		/*
 533		 * Ooops.  All transmit buffers are full.  Bail out.
 534		 * This should not happen, since the tx queue should be stopped.
 535		 */
 536		dev_warn(fep->dev, "tx queue full!.\n");
 537		return NETDEV_TX_BUSY;
 538	}
 539
 540	curidx = bdp - fep->tx_bd_base;
 541
 542	len = skb->len;
 543	dev->stats.tx_bytes += len;
 544	if (nr_frags)
 545		len -= skb->data_len;
 546	fep->tx_free -= nr_frags + 1;
 547	/*
 548	 * Push the data cache so the CPM does not get stale memory data.
 549	 */
 550	CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
 551				skb->data, len, DMA_TO_DEVICE));
 552	CBDW_DATLEN(bdp, len);
 553
 554	fep->mapped_as_page[curidx] = 0;
 555	frag = skb_shinfo(skb)->frags;
 556	while (nr_frags) {
 557		CBDC_SC(bdp,
 558			BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
 559			BD_ENET_TX_TC);
 560		CBDS_SC(bdp, BD_ENET_TX_READY);
 561
 562		if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) {
 563			bdp++;
 564			curidx++;
 565		} else {
 566			bdp = fep->tx_bd_base;
 567			curidx = 0;
 568		}
 569
 570		len = skb_frag_size(frag);
 571		CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
 572						   DMA_TO_DEVICE));
 573		CBDW_DATLEN(bdp, len);
 574
 575		fep->tx_skbuff[curidx] = NULL;
 576		fep->mapped_as_page[curidx] = 1;
 577
 578		frag++;
 579		nr_frags--;
 580	}
 581
 582	/* Trigger transmission start */
 583	sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
 584	     BD_ENET_TX_LAST | BD_ENET_TX_TC;
 585
 586	/* note that while FEC does not have this bit
 587	 * it marks it as available for software use
 588	 * yay for hw reuse :) */
 589	if (skb->len <= 60)
 590		sc |= BD_ENET_TX_PAD;
 591	CBDC_SC(bdp, BD_ENET_TX_STATS);
 592	CBDS_SC(bdp, sc);
 593
 594	/* Save skb pointer. */
 595	fep->tx_skbuff[curidx] = skb;
 596
 597	/* If this was the last BD in the ring, start at the beginning again. */
 598	if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
 599		bdp++;
 600	else
 601		bdp = fep->tx_bd_base;
 602	fep->cur_tx = bdp;
 603
 604	if (fep->tx_free < MAX_SKB_FRAGS)
 605		netif_stop_queue(dev);
 606
 607	skb_tx_timestamp(skb);
 608
 609	(*fep->ops->tx_kickstart)(dev);
 610
 611	spin_unlock(&fep->tx_lock);
 612
 613	return NETDEV_TX_OK;
 614}
 615
 616static void fs_timeout_work(struct work_struct *work)
 617{
 618	struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
 619						   timeout_work);
 620	struct net_device *dev = fep->ndev;
 621	unsigned long flags;
 622	int wake = 0;
 623
 624	dev->stats.tx_errors++;
 625
 626	spin_lock_irqsave(&fep->lock, flags);
 627
 628	if (dev->flags & IFF_UP) {
 629		phy_stop(dev->phydev);
 630		(*fep->ops->stop)(dev);
 631		(*fep->ops->restart)(dev);
 632	}
 633
 634	phy_start(dev->phydev);
 635	wake = fep->tx_free >= MAX_SKB_FRAGS &&
 636	       !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
 637	spin_unlock_irqrestore(&fep->lock, flags);
 638
 639	if (wake)
 640		netif_wake_queue(dev);
 641}
 642
 643static void fs_timeout(struct net_device *dev, unsigned int txqueue)
 644{
 645	struct fs_enet_private *fep = netdev_priv(dev);
 646
 647	schedule_work(&fep->timeout_work);
 648}
 649
 650/*-----------------------------------------------------------------------------
 651 *  generic link-change handler - should be sufficient for most cases
 652 *-----------------------------------------------------------------------------*/
 653static void generic_adjust_link(struct  net_device *dev)
 654{
 655	struct fs_enet_private *fep = netdev_priv(dev);
 656	struct phy_device *phydev = dev->phydev;
 657	int new_state = 0;
 658
 659	if (phydev->link) {
 660		/* adjust to duplex mode */
 661		if (phydev->duplex != fep->oldduplex) {
 662			new_state = 1;
 663			fep->oldduplex = phydev->duplex;
 664		}
 665
 666		if (phydev->speed != fep->oldspeed) {
 667			new_state = 1;
 668			fep->oldspeed = phydev->speed;
 669		}
 670
 671		if (!fep->oldlink) {
 672			new_state = 1;
 673			fep->oldlink = 1;
 674		}
 675
 676		if (new_state)
 677			fep->ops->restart(dev);
 678	} else if (fep->oldlink) {
 679		new_state = 1;
 680		fep->oldlink = 0;
 681		fep->oldspeed = 0;
 682		fep->oldduplex = -1;
 683	}
 684
 685	if (new_state && netif_msg_link(fep))
 686		phy_print_status(phydev);
 687}
 688
 689
 690static void fs_adjust_link(struct net_device *dev)
 691{
 692	struct fs_enet_private *fep = netdev_priv(dev);
 693	unsigned long flags;
 694
 695	spin_lock_irqsave(&fep->lock, flags);
 696
 697	if(fep->ops->adjust_link)
 698		fep->ops->adjust_link(dev);
 699	else
 700		generic_adjust_link(dev);
 701
 702	spin_unlock_irqrestore(&fep->lock, flags);
 703}
 704
 705static int fs_init_phy(struct net_device *dev)
 706{
 707	struct fs_enet_private *fep = netdev_priv(dev);
 708	struct phy_device *phydev;
 709	phy_interface_t iface;
 710
 711	fep->oldlink = 0;
 712	fep->oldspeed = 0;
 713	fep->oldduplex = -1;
 714
 715	iface = fep->fpi->use_rmii ?
 716		PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
 717
 718	phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
 719				iface);
 720	if (!phydev) {
 721		dev_err(&dev->dev, "Could not attach to PHY\n");
 722		return -ENODEV;
 723	}
 724
 725	return 0;
 726}
 727
 728static int fs_enet_open(struct net_device *dev)
 729{
 730	struct fs_enet_private *fep = netdev_priv(dev);
 731	int r;
 732	int err;
 733
 734	/* to initialize the fep->cur_rx,... */
 735	/* not doing this, will cause a crash in fs_enet_napi */
 736	fs_init_bds(fep->ndev);
 737
 738	napi_enable(&fep->napi);
 739
 740	/* Install our interrupt handler. */
 741	r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
 742			"fs_enet-mac", dev);
 743	if (r != 0) {
 744		dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
 745		napi_disable(&fep->napi);
 746		return -EINVAL;
 747	}
 748
 749	err = fs_init_phy(dev);
 750	if (err) {
 751		free_irq(fep->interrupt, dev);
 752		napi_disable(&fep->napi);
 753		return err;
 754	}
 755	phy_start(dev->phydev);
 756
 757	netif_start_queue(dev);
 758
 759	return 0;
 760}
 761
 762static int fs_enet_close(struct net_device *dev)
 763{
 764	struct fs_enet_private *fep = netdev_priv(dev);
 765	unsigned long flags;
 766
 767	netif_stop_queue(dev);
 768	netif_carrier_off(dev);
 769	napi_disable(&fep->napi);
 770	cancel_work_sync(&fep->timeout_work);
 771	phy_stop(dev->phydev);
 772
 773	spin_lock_irqsave(&fep->lock, flags);
 774	spin_lock(&fep->tx_lock);
 775	(*fep->ops->stop)(dev);
 776	spin_unlock(&fep->tx_lock);
 777	spin_unlock_irqrestore(&fep->lock, flags);
 778
 779	/* release any irqs */
 780	phy_disconnect(dev->phydev);
 781	free_irq(fep->interrupt, dev);
 782
 783	return 0;
 784}
 785
 786/*************************************************************************/
 787
 788static void fs_get_drvinfo(struct net_device *dev,
 789			    struct ethtool_drvinfo *info)
 790{
 791	strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
 
 792}
 793
 794static int fs_get_regs_len(struct net_device *dev)
 795{
 796	struct fs_enet_private *fep = netdev_priv(dev);
 797
 798	return (*fep->ops->get_regs_len)(dev);
 799}
 800
 801static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
 802			 void *p)
 803{
 804	struct fs_enet_private *fep = netdev_priv(dev);
 805	unsigned long flags;
 806	int r, len;
 807
 808	len = regs->len;
 809
 810	spin_lock_irqsave(&fep->lock, flags);
 811	r = (*fep->ops->get_regs)(dev, p, &len);
 812	spin_unlock_irqrestore(&fep->lock, flags);
 813
 814	if (r == 0)
 815		regs->version = 0;
 816}
 817
 818static u32 fs_get_msglevel(struct net_device *dev)
 819{
 820	struct fs_enet_private *fep = netdev_priv(dev);
 821	return fep->msg_enable;
 822}
 823
 824static void fs_set_msglevel(struct net_device *dev, u32 value)
 825{
 826	struct fs_enet_private *fep = netdev_priv(dev);
 827	fep->msg_enable = value;
 828}
 829
 830static int fs_get_tunable(struct net_device *dev,
 831			  const struct ethtool_tunable *tuna, void *data)
 832{
 833	struct fs_enet_private *fep = netdev_priv(dev);
 834	struct fs_platform_info *fpi = fep->fpi;
 835	int ret = 0;
 836
 837	switch (tuna->id) {
 838	case ETHTOOL_RX_COPYBREAK:
 839		*(u32 *)data = fpi->rx_copybreak;
 840		break;
 841	default:
 842		ret = -EINVAL;
 843		break;
 844	}
 845
 846	return ret;
 847}
 848
 849static int fs_set_tunable(struct net_device *dev,
 850			  const struct ethtool_tunable *tuna, const void *data)
 851{
 852	struct fs_enet_private *fep = netdev_priv(dev);
 853	struct fs_platform_info *fpi = fep->fpi;
 854	int ret = 0;
 855
 856	switch (tuna->id) {
 857	case ETHTOOL_RX_COPYBREAK:
 858		fpi->rx_copybreak = *(u32 *)data;
 859		break;
 860	default:
 861		ret = -EINVAL;
 862		break;
 863	}
 864
 865	return ret;
 866}
 867
 868static const struct ethtool_ops fs_ethtool_ops = {
 869	.get_drvinfo = fs_get_drvinfo,
 870	.get_regs_len = fs_get_regs_len,
 871	.nway_reset = phy_ethtool_nway_reset,
 872	.get_link = ethtool_op_get_link,
 873	.get_msglevel = fs_get_msglevel,
 874	.set_msglevel = fs_set_msglevel,
 875	.get_regs = fs_get_regs,
 876	.get_ts_info = ethtool_op_get_ts_info,
 877	.get_link_ksettings = phy_ethtool_get_link_ksettings,
 878	.set_link_ksettings = phy_ethtool_set_link_ksettings,
 879	.get_tunable = fs_get_tunable,
 880	.set_tunable = fs_set_tunable,
 881};
 882
 
 
 
 
 
 
 
 
 
 
 
 883/**************************************************************************************/
 884
 885#ifdef CONFIG_FS_ENET_HAS_FEC
 886#define IS_FEC(ops) ((ops) == &fs_fec_ops)
 887#else
 888#define IS_FEC(ops) 0
 889#endif
 890
 891static const struct net_device_ops fs_enet_netdev_ops = {
 892	.ndo_open		= fs_enet_open,
 893	.ndo_stop		= fs_enet_close,
 894	.ndo_start_xmit		= fs_enet_start_xmit,
 895	.ndo_tx_timeout		= fs_timeout,
 896	.ndo_set_rx_mode	= fs_set_multicast_list,
 897	.ndo_eth_ioctl		= phy_do_ioctl_running,
 898	.ndo_validate_addr	= eth_validate_addr,
 899	.ndo_set_mac_address	= eth_mac_addr,
 900#ifdef CONFIG_NET_POLL_CONTROLLER
 901	.ndo_poll_controller	= fs_enet_netpoll,
 902#endif
 903};
 904
 
 905static int fs_enet_probe(struct platform_device *ofdev)
 906{
 907	const struct fs_ops *ops;
 908	struct net_device *ndev;
 909	struct fs_enet_private *fep;
 910	struct fs_platform_info *fpi;
 911	const u32 *data;
 912	struct clk *clk;
 913	int err;
 
 914	const char *phy_connection_type;
 915	int privsize, len, ret = -ENODEV;
 916
 917	ops = device_get_match_data(&ofdev->dev);
 918	if (!ops)
 919		return -EINVAL;
 920
 921	fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
 922	if (!fpi)
 923		return -ENOMEM;
 924
 925	if (!IS_FEC(ops)) {
 926		data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
 927		if (!data || len != 4)
 928			goto out_free_fpi;
 929
 930		fpi->cp_command = *data;
 931	}
 932
 933	fpi->rx_ring = RX_RING_SIZE;
 934	fpi->tx_ring = TX_RING_SIZE;
 935	fpi->rx_copybreak = 240;
 936	fpi->napi_weight = 17;
 937	fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
 938	if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
 939		err = of_phy_register_fixed_link(ofdev->dev.of_node);
 940		if (err)
 941			goto out_free_fpi;
 942
 943		/* In the case of a fixed PHY, the DT node associated
 944		 * to the PHY is the Ethernet MAC DT node.
 945		 */
 946		fpi->phy_node = of_node_get(ofdev->dev.of_node);
 947	}
 948
 949	if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
 950		phy_connection_type = of_get_property(ofdev->dev.of_node,
 951						"phy-connection-type", NULL);
 952		if (phy_connection_type && !strcmp("rmii", phy_connection_type))
 953			fpi->use_rmii = 1;
 954	}
 955
 956	/* make clock lookup non-fatal (the driver is shared among platforms),
 957	 * but require enable to succeed when a clock was specified/found,
 958	 * keep a reference to the clock upon successful acquisition
 959	 */
 960	clk = devm_clk_get(&ofdev->dev, "per");
 961	if (!IS_ERR(clk)) {
 962		ret = clk_prepare_enable(clk);
 963		if (ret)
 964			goto out_deregister_fixed_link;
 965
 966		fpi->clk_per = clk;
 967	}
 968
 969	privsize = sizeof(*fep) +
 970	           sizeof(struct sk_buff **) *
 971		     (fpi->rx_ring + fpi->tx_ring) +
 972		   sizeof(char) * fpi->tx_ring;
 973
 974	ndev = alloc_etherdev(privsize);
 975	if (!ndev) {
 976		ret = -ENOMEM;
 977		goto out_put;
 978	}
 979
 980	SET_NETDEV_DEV(ndev, &ofdev->dev);
 981	platform_set_drvdata(ofdev, ndev);
 982
 983	fep = netdev_priv(ndev);
 984	fep->dev = &ofdev->dev;
 985	fep->ndev = ndev;
 986	fep->fpi = fpi;
 987	fep->ops = ops;
 988
 989	ret = fep->ops->setup_data(ndev);
 990	if (ret)
 991		goto out_free_dev;
 992
 993	fep->rx_skbuff = (struct sk_buff **)&fep[1];
 994	fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
 995	fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
 996				       fpi->tx_ring);
 997
 998	spin_lock_init(&fep->lock);
 999	spin_lock_init(&fep->tx_lock);
1000
1001	of_get_ethdev_address(ofdev->dev.of_node, ndev);
 
 
1002
1003	ret = fep->ops->allocate_bd(ndev);
1004	if (ret)
1005		goto out_cleanup_data;
1006
1007	fep->rx_bd_base = fep->ring_base;
1008	fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1009
1010	fep->tx_ring = fpi->tx_ring;
1011	fep->rx_ring = fpi->rx_ring;
1012
1013	ndev->netdev_ops = &fs_enet_netdev_ops;
1014	ndev->watchdog_timeo = 2 * HZ;
1015	INIT_WORK(&fep->timeout_work, fs_timeout_work);
1016	netif_napi_add_weight(ndev, &fep->napi, fs_enet_napi,
1017			      fpi->napi_weight);
1018
1019	ndev->ethtool_ops = &fs_ethtool_ops;
1020
1021	netif_carrier_off(ndev);
1022
1023	ndev->features |= NETIF_F_SG;
1024
1025	ret = register_netdev(ndev);
1026	if (ret)
1027		goto out_free_bd;
1028
1029	pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1030
1031	return 0;
1032
1033out_free_bd:
1034	fep->ops->free_bd(ndev);
1035out_cleanup_data:
1036	fep->ops->cleanup_data(ndev);
1037out_free_dev:
1038	free_netdev(ndev);
1039out_put:
1040	clk_disable_unprepare(fpi->clk_per);
 
1041out_deregister_fixed_link:
1042	of_node_put(fpi->phy_node);
1043	if (of_phy_is_fixed_link(ofdev->dev.of_node))
1044		of_phy_deregister_fixed_link(ofdev->dev.of_node);
1045out_free_fpi:
1046	kfree(fpi);
1047	return ret;
1048}
1049
1050static void fs_enet_remove(struct platform_device *ofdev)
1051{
1052	struct net_device *ndev = platform_get_drvdata(ofdev);
1053	struct fs_enet_private *fep = netdev_priv(ndev);
1054
1055	unregister_netdev(ndev);
1056
1057	fep->ops->free_bd(ndev);
1058	fep->ops->cleanup_data(ndev);
1059	dev_set_drvdata(fep->dev, NULL);
1060	of_node_put(fep->fpi->phy_node);
1061	clk_disable_unprepare(fep->fpi->clk_per);
 
1062	if (of_phy_is_fixed_link(ofdev->dev.of_node))
1063		of_phy_deregister_fixed_link(ofdev->dev.of_node);
1064	free_netdev(ndev);
 
1065}
1066
1067static const struct of_device_id fs_enet_match[] = {
1068#ifdef CONFIG_FS_ENET_HAS_SCC
1069	{
1070		.compatible = "fsl,cpm1-scc-enet",
1071		.data = (void *)&fs_scc_ops,
1072	},
1073	{
1074		.compatible = "fsl,cpm2-scc-enet",
1075		.data = (void *)&fs_scc_ops,
1076	},
1077#endif
1078#ifdef CONFIG_FS_ENET_HAS_FCC
1079	{
1080		.compatible = "fsl,cpm2-fcc-enet",
1081		.data = (void *)&fs_fcc_ops,
1082	},
1083#endif
1084#ifdef CONFIG_FS_ENET_HAS_FEC
1085#ifdef CONFIG_FS_ENET_MPC5121_FEC
1086	{
1087		.compatible = "fsl,mpc5121-fec",
1088		.data = (void *)&fs_fec_ops,
1089	},
1090	{
1091		.compatible = "fsl,mpc5125-fec",
1092		.data = (void *)&fs_fec_ops,
1093	},
1094#else
1095	{
1096		.compatible = "fsl,pq1-fec-enet",
1097		.data = (void *)&fs_fec_ops,
1098	},
1099#endif
1100#endif
1101	{}
1102};
1103MODULE_DEVICE_TABLE(of, fs_enet_match);
1104
1105static struct platform_driver fs_enet_driver = {
1106	.driver = {
1107		.name = "fs_enet",
1108		.of_match_table = fs_enet_match,
1109	},
1110	.probe = fs_enet_probe,
1111	.remove_new = fs_enet_remove,
1112};
1113
1114#ifdef CONFIG_NET_POLL_CONTROLLER
1115static void fs_enet_netpoll(struct net_device *dev)
1116{
1117       disable_irq(dev->irq);
1118       fs_enet_interrupt(dev->irq, dev);
1119       enable_irq(dev->irq);
1120}
1121#endif
1122
1123module_platform_driver(fs_enet_driver);
v5.4
   1/*
   2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
   3 *
   4 * Copyright (c) 2003 Intracom S.A.
   5 *  by Pantelis Antoniou <panto@intracom.gr>
   6 *
   7 * 2005 (c) MontaVista Software, Inc.
   8 * Vitaly Bordug <vbordug@ru.mvista.com>
   9 *
  10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
  11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
  12 *
  13 * This file is licensed under the terms of the GNU General Public License
  14 * version 2. This program is licensed "as is" without any warranty of any
  15 * kind, whether express or implied.
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/kernel.h>
  20#include <linux/types.h>
  21#include <linux/string.h>
  22#include <linux/ptrace.h>
  23#include <linux/errno.h>
  24#include <linux/ioport.h>
  25#include <linux/slab.h>
  26#include <linux/interrupt.h>
  27#include <linux/delay.h>
  28#include <linux/netdevice.h>
  29#include <linux/etherdevice.h>
  30#include <linux/skbuff.h>
  31#include <linux/spinlock.h>
  32#include <linux/mii.h>
  33#include <linux/ethtool.h>
  34#include <linux/bitops.h>
  35#include <linux/fs.h>
  36#include <linux/platform_device.h>
  37#include <linux/phy.h>
 
  38#include <linux/of.h>
  39#include <linux/of_mdio.h>
  40#include <linux/of_platform.h>
  41#include <linux/of_gpio.h>
  42#include <linux/of_net.h>
 
  43
  44#include <linux/vmalloc.h>
  45#include <asm/pgtable.h>
  46#include <asm/irq.h>
  47#include <linux/uaccess.h>
  48
  49#include "fs_enet.h"
  50
  51/*************************************************/
  52
  53MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
  54MODULE_DESCRIPTION("Freescale Ethernet Driver");
  55MODULE_LICENSE("GPL");
  56MODULE_VERSION(DRV_MODULE_VERSION);
  57
  58static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
  59module_param(fs_enet_debug, int, 0);
  60MODULE_PARM_DESC(fs_enet_debug,
  61		 "Freescale bitmapped debugging message enable value");
  62
  63#define RX_RING_SIZE	32
  64#define TX_RING_SIZE	64
  65
  66#ifdef CONFIG_NET_POLL_CONTROLLER
  67static void fs_enet_netpoll(struct net_device *dev);
  68#endif
  69
  70static void fs_set_multicast_list(struct net_device *dev)
  71{
  72	struct fs_enet_private *fep = netdev_priv(dev);
  73
  74	(*fep->ops->set_multicast_list)(dev);
  75}
  76
  77static void skb_align(struct sk_buff *skb, int align)
  78{
  79	int off = ((unsigned long)skb->data) & (align - 1);
  80
  81	if (off)
  82		skb_reserve(skb, align - off);
  83}
  84
  85/* NAPI function */
  86static int fs_enet_napi(struct napi_struct *napi, int budget)
  87{
  88	struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
  89	struct net_device *dev = fep->ndev;
  90	const struct fs_platform_info *fpi = fep->fpi;
  91	cbd_t __iomem *bdp;
  92	struct sk_buff *skb, *skbn;
  93	int received = 0;
  94	u16 pkt_len, sc;
  95	int curidx;
  96	int dirtyidx, do_wake, do_restart;
  97	int tx_left = TX_RING_SIZE;
  98
  99	spin_lock(&fep->tx_lock);
 100	bdp = fep->dirty_tx;
 101
 102	/* clear status bits for napi*/
 103	(*fep->ops->napi_clear_event)(dev);
 104
 105	do_wake = do_restart = 0;
 106	while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
 107		dirtyidx = bdp - fep->tx_bd_base;
 108
 109		if (fep->tx_free == fep->tx_ring)
 110			break;
 111
 112		skb = fep->tx_skbuff[dirtyidx];
 113
 114		/*
 115		 * Check for errors.
 116		 */
 117		if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
 118			  BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
 119
 120			if (sc & BD_ENET_TX_HB)	/* No heartbeat */
 121				dev->stats.tx_heartbeat_errors++;
 122			if (sc & BD_ENET_TX_LC)	/* Late collision */
 123				dev->stats.tx_window_errors++;
 124			if (sc & BD_ENET_TX_RL)	/* Retrans limit */
 125				dev->stats.tx_aborted_errors++;
 126			if (sc & BD_ENET_TX_UN)	/* Underrun */
 127				dev->stats.tx_fifo_errors++;
 128			if (sc & BD_ENET_TX_CSL)	/* Carrier lost */
 129				dev->stats.tx_carrier_errors++;
 130
 131			if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
 132				dev->stats.tx_errors++;
 133				do_restart = 1;
 134			}
 135		} else
 136			dev->stats.tx_packets++;
 137
 138		if (sc & BD_ENET_TX_READY) {
 139			dev_warn(fep->dev,
 140				 "HEY! Enet xmit interrupt and TX_READY.\n");
 141		}
 142
 143		/*
 144		 * Deferred means some collisions occurred during transmit,
 145		 * but we eventually sent the packet OK.
 146		 */
 147		if (sc & BD_ENET_TX_DEF)
 148			dev->stats.collisions++;
 149
 150		/* unmap */
 151		if (fep->mapped_as_page[dirtyidx])
 152			dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
 153				       CBDR_DATLEN(bdp), DMA_TO_DEVICE);
 154		else
 155			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 156					 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
 157
 158		/*
 159		 * Free the sk buffer associated with this last transmit.
 160		 */
 161		if (skb) {
 162			dev_kfree_skb(skb);
 163			fep->tx_skbuff[dirtyidx] = NULL;
 164		}
 165
 166		/*
 167		 * Update pointer to next buffer descriptor to be transmitted.
 168		 */
 169		if ((sc & BD_ENET_TX_WRAP) == 0)
 170			bdp++;
 171		else
 172			bdp = fep->tx_bd_base;
 173
 174		/*
 175		 * Since we have freed up a buffer, the ring is no longer
 176		 * full.
 177		 */
 178		if (++fep->tx_free == MAX_SKB_FRAGS)
 179			do_wake = 1;
 180		tx_left--;
 181	}
 182
 183	fep->dirty_tx = bdp;
 184
 185	if (do_restart)
 186		(*fep->ops->tx_restart)(dev);
 187
 188	spin_unlock(&fep->tx_lock);
 189
 190	if (do_wake)
 191		netif_wake_queue(dev);
 192
 193	/*
 194	 * First, grab all of the stats for the incoming packet.
 195	 * These get messed up if we get called due to a busy condition.
 196	 */
 197	bdp = fep->cur_rx;
 198
 199	while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
 200	       received < budget) {
 201		curidx = bdp - fep->rx_bd_base;
 202
 203		/*
 204		 * Since we have allocated space to hold a complete frame,
 205		 * the last indicator should be set.
 206		 */
 207		if ((sc & BD_ENET_RX_LAST) == 0)
 208			dev_warn(fep->dev, "rcv is not +last\n");
 209
 210		/*
 211		 * Check for errors.
 212		 */
 213		if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
 214			  BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
 215			dev->stats.rx_errors++;
 216			/* Frame too long or too short. */
 217			if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
 218				dev->stats.rx_length_errors++;
 219			/* Frame alignment */
 220			if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
 221				dev->stats.rx_frame_errors++;
 222			/* CRC Error */
 223			if (sc & BD_ENET_RX_CR)
 224				dev->stats.rx_crc_errors++;
 225			/* FIFO overrun */
 226			if (sc & BD_ENET_RX_OV)
 227				dev->stats.rx_crc_errors++;
 228
 229			skbn = fep->rx_skbuff[curidx];
 230		} else {
 231			skb = fep->rx_skbuff[curidx];
 232
 233			/*
 234			 * Process the incoming frame.
 235			 */
 236			dev->stats.rx_packets++;
 237			pkt_len = CBDR_DATLEN(bdp) - 4;	/* remove CRC */
 238			dev->stats.rx_bytes += pkt_len + 4;
 239
 240			if (pkt_len <= fpi->rx_copybreak) {
 241				/* +2 to make IP header L1 cache aligned */
 242				skbn = netdev_alloc_skb(dev, pkt_len + 2);
 243				if (skbn != NULL) {
 244					skb_reserve(skbn, 2);	/* align IP header */
 245					skb_copy_from_linear_data(skb,
 246						      skbn->data, pkt_len);
 247					swap(skb, skbn);
 248					dma_sync_single_for_cpu(fep->dev,
 249						CBDR_BUFADDR(bdp),
 250						L1_CACHE_ALIGN(pkt_len),
 251						DMA_FROM_DEVICE);
 252				}
 253			} else {
 254				skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
 255
 256				if (skbn) {
 257					dma_addr_t dma;
 258
 259					skb_align(skbn, ENET_RX_ALIGN);
 260
 261					dma_unmap_single(fep->dev,
 262						CBDR_BUFADDR(bdp),
 263						L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 264						DMA_FROM_DEVICE);
 265
 266					dma = dma_map_single(fep->dev,
 267						skbn->data,
 268						L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 269						DMA_FROM_DEVICE);
 270					CBDW_BUFADDR(bdp, dma);
 271				}
 272			}
 273
 274			if (skbn != NULL) {
 275				skb_put(skb, pkt_len);	/* Make room */
 276				skb->protocol = eth_type_trans(skb, dev);
 277				received++;
 278				netif_receive_skb(skb);
 279			} else {
 280				dev->stats.rx_dropped++;
 281				skbn = skb;
 282			}
 283		}
 284
 285		fep->rx_skbuff[curidx] = skbn;
 286		CBDW_DATLEN(bdp, 0);
 287		CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
 288
 289		/*
 290		 * Update BD pointer to next entry.
 291		 */
 292		if ((sc & BD_ENET_RX_WRAP) == 0)
 293			bdp++;
 294		else
 295			bdp = fep->rx_bd_base;
 296
 297		(*fep->ops->rx_bd_done)(dev);
 298	}
 299
 300	fep->cur_rx = bdp;
 301
 302	if (received < budget && tx_left) {
 303		/* done */
 304		napi_complete_done(napi, received);
 305		(*fep->ops->napi_enable)(dev);
 306
 307		return received;
 308	}
 309
 310	return budget;
 311}
 312
 313/*
 314 * The interrupt handler.
 315 * This is called from the MPC core interrupt.
 316 */
 317static irqreturn_t
 318fs_enet_interrupt(int irq, void *dev_id)
 319{
 320	struct net_device *dev = dev_id;
 321	struct fs_enet_private *fep;
 322	const struct fs_platform_info *fpi;
 323	u32 int_events;
 324	u32 int_clr_events;
 325	int nr, napi_ok;
 326	int handled;
 327
 328	fep = netdev_priv(dev);
 329	fpi = fep->fpi;
 330
 331	nr = 0;
 332	while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
 333		nr++;
 334
 335		int_clr_events = int_events;
 336		int_clr_events &= ~fep->ev_napi;
 337
 338		(*fep->ops->clear_int_events)(dev, int_clr_events);
 339
 340		if (int_events & fep->ev_err)
 341			(*fep->ops->ev_error)(dev, int_events);
 342
 343		if (int_events & fep->ev) {
 344			napi_ok = napi_schedule_prep(&fep->napi);
 345
 346			(*fep->ops->napi_disable)(dev);
 347			(*fep->ops->clear_int_events)(dev, fep->ev_napi);
 348
 349			/* NOTE: it is possible for FCCs in NAPI mode    */
 350			/* to submit a spurious interrupt while in poll  */
 351			if (napi_ok)
 352				__napi_schedule(&fep->napi);
 353		}
 354
 355	}
 356
 357	handled = nr > 0;
 358	return IRQ_RETVAL(handled);
 359}
 360
 361void fs_init_bds(struct net_device *dev)
 362{
 363	struct fs_enet_private *fep = netdev_priv(dev);
 364	cbd_t __iomem *bdp;
 365	struct sk_buff *skb;
 366	int i;
 367
 368	fs_cleanup_bds(dev);
 369
 370	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
 371	fep->tx_free = fep->tx_ring;
 372	fep->cur_rx = fep->rx_bd_base;
 373
 374	/*
 375	 * Initialize the receive buffer descriptors.
 376	 */
 377	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
 378		skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
 379		if (skb == NULL)
 380			break;
 381
 382		skb_align(skb, ENET_RX_ALIGN);
 383		fep->rx_skbuff[i] = skb;
 384		CBDW_BUFADDR(bdp,
 385			dma_map_single(fep->dev, skb->data,
 386				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 387				DMA_FROM_DEVICE));
 388		CBDW_DATLEN(bdp, 0);	/* zero */
 389		CBDW_SC(bdp, BD_ENET_RX_EMPTY |
 390			((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
 391	}
 392	/*
 393	 * if we failed, fillup remainder
 394	 */
 395	for (; i < fep->rx_ring; i++, bdp++) {
 396		fep->rx_skbuff[i] = NULL;
 397		CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
 398	}
 399
 400	/*
 401	 * ...and the same for transmit.
 402	 */
 403	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
 404		fep->tx_skbuff[i] = NULL;
 405		CBDW_BUFADDR(bdp, 0);
 406		CBDW_DATLEN(bdp, 0);
 407		CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
 408	}
 409}
 410
 411void fs_cleanup_bds(struct net_device *dev)
 412{
 413	struct fs_enet_private *fep = netdev_priv(dev);
 414	struct sk_buff *skb;
 415	cbd_t __iomem *bdp;
 416	int i;
 417
 418	/*
 419	 * Reset SKB transmit buffers.
 420	 */
 421	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
 422		if ((skb = fep->tx_skbuff[i]) == NULL)
 423			continue;
 424
 425		/* unmap */
 426		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 427				skb->len, DMA_TO_DEVICE);
 428
 429		fep->tx_skbuff[i] = NULL;
 430		dev_kfree_skb(skb);
 431	}
 432
 433	/*
 434	 * Reset SKB receive buffers
 435	 */
 436	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
 437		if ((skb = fep->rx_skbuff[i]) == NULL)
 438			continue;
 439
 440		/* unmap */
 441		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 442			L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 443			DMA_FROM_DEVICE);
 444
 445		fep->rx_skbuff[i] = NULL;
 446
 447		dev_kfree_skb(skb);
 448	}
 449}
 450
 451/**********************************************************************************/
 452
 453#ifdef CONFIG_FS_ENET_MPC5121_FEC
 454/*
 455 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
 456 */
 457static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
 458					       struct sk_buff *skb)
 459{
 460	struct sk_buff *new_skb;
 461
 462	if (skb_linearize(skb))
 463		return NULL;
 464
 465	/* Alloc new skb */
 466	new_skb = netdev_alloc_skb(dev, skb->len + 4);
 467	if (!new_skb)
 468		return NULL;
 469
 470	/* Make sure new skb is properly aligned */
 471	skb_align(new_skb, 4);
 472
 473	/* Copy data to new skb ... */
 474	skb_copy_from_linear_data(skb, new_skb->data, skb->len);
 475	skb_put(new_skb, skb->len);
 476
 477	/* ... and free an old one */
 478	dev_kfree_skb_any(skb);
 479
 480	return new_skb;
 481}
 482#endif
 483
 484static netdev_tx_t
 485fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
 486{
 487	struct fs_enet_private *fep = netdev_priv(dev);
 488	cbd_t __iomem *bdp;
 489	int curidx;
 490	u16 sc;
 491	int nr_frags;
 492	skb_frag_t *frag;
 493	int len;
 494#ifdef CONFIG_FS_ENET_MPC5121_FEC
 495	int is_aligned = 1;
 496	int i;
 497
 498	if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
 499		is_aligned = 0;
 500	} else {
 501		nr_frags = skb_shinfo(skb)->nr_frags;
 502		frag = skb_shinfo(skb)->frags;
 503		for (i = 0; i < nr_frags; i++, frag++) {
 504			if (!IS_ALIGNED(skb_frag_off(frag), 4)) {
 505				is_aligned = 0;
 506				break;
 507			}
 508		}
 509	}
 510
 511	if (!is_aligned) {
 512		skb = tx_skb_align_workaround(dev, skb);
 513		if (!skb) {
 514			/*
 515			 * We have lost packet due to memory allocation error
 516			 * in tx_skb_align_workaround(). Hopefully original
 517			 * skb is still valid, so try transmit it later.
 518			 */
 519			return NETDEV_TX_BUSY;
 520		}
 521	}
 522#endif
 523
 524	spin_lock(&fep->tx_lock);
 525
 526	/*
 527	 * Fill in a Tx ring entry
 528	 */
 529	bdp = fep->cur_tx;
 530
 531	nr_frags = skb_shinfo(skb)->nr_frags;
 532	if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
 533		netif_stop_queue(dev);
 534		spin_unlock(&fep->tx_lock);
 535
 536		/*
 537		 * Ooops.  All transmit buffers are full.  Bail out.
 538		 * This should not happen, since the tx queue should be stopped.
 539		 */
 540		dev_warn(fep->dev, "tx queue full!.\n");
 541		return NETDEV_TX_BUSY;
 542	}
 543
 544	curidx = bdp - fep->tx_bd_base;
 545
 546	len = skb->len;
 547	dev->stats.tx_bytes += len;
 548	if (nr_frags)
 549		len -= skb->data_len;
 550	fep->tx_free -= nr_frags + 1;
 551	/*
 552	 * Push the data cache so the CPM does not get stale memory data.
 553	 */
 554	CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
 555				skb->data, len, DMA_TO_DEVICE));
 556	CBDW_DATLEN(bdp, len);
 557
 558	fep->mapped_as_page[curidx] = 0;
 559	frag = skb_shinfo(skb)->frags;
 560	while (nr_frags) {
 561		CBDC_SC(bdp,
 562			BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
 563			BD_ENET_TX_TC);
 564		CBDS_SC(bdp, BD_ENET_TX_READY);
 565
 566		if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
 567			bdp++, curidx++;
 568		else
 569			bdp = fep->tx_bd_base, curidx = 0;
 
 
 
 570
 571		len = skb_frag_size(frag);
 572		CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
 573						   DMA_TO_DEVICE));
 574		CBDW_DATLEN(bdp, len);
 575
 576		fep->tx_skbuff[curidx] = NULL;
 577		fep->mapped_as_page[curidx] = 1;
 578
 579		frag++;
 580		nr_frags--;
 581	}
 582
 583	/* Trigger transmission start */
 584	sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
 585	     BD_ENET_TX_LAST | BD_ENET_TX_TC;
 586
 587	/* note that while FEC does not have this bit
 588	 * it marks it as available for software use
 589	 * yay for hw reuse :) */
 590	if (skb->len <= 60)
 591		sc |= BD_ENET_TX_PAD;
 592	CBDC_SC(bdp, BD_ENET_TX_STATS);
 593	CBDS_SC(bdp, sc);
 594
 595	/* Save skb pointer. */
 596	fep->tx_skbuff[curidx] = skb;
 597
 598	/* If this was the last BD in the ring, start at the beginning again. */
 599	if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
 600		bdp++;
 601	else
 602		bdp = fep->tx_bd_base;
 603	fep->cur_tx = bdp;
 604
 605	if (fep->tx_free < MAX_SKB_FRAGS)
 606		netif_stop_queue(dev);
 607
 608	skb_tx_timestamp(skb);
 609
 610	(*fep->ops->tx_kickstart)(dev);
 611
 612	spin_unlock(&fep->tx_lock);
 613
 614	return NETDEV_TX_OK;
 615}
 616
 617static void fs_timeout_work(struct work_struct *work)
 618{
 619	struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
 620						   timeout_work);
 621	struct net_device *dev = fep->ndev;
 622	unsigned long flags;
 623	int wake = 0;
 624
 625	dev->stats.tx_errors++;
 626
 627	spin_lock_irqsave(&fep->lock, flags);
 628
 629	if (dev->flags & IFF_UP) {
 630		phy_stop(dev->phydev);
 631		(*fep->ops->stop)(dev);
 632		(*fep->ops->restart)(dev);
 633	}
 634
 635	phy_start(dev->phydev);
 636	wake = fep->tx_free >= MAX_SKB_FRAGS &&
 637	       !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
 638	spin_unlock_irqrestore(&fep->lock, flags);
 639
 640	if (wake)
 641		netif_wake_queue(dev);
 642}
 643
 644static void fs_timeout(struct net_device *dev)
 645{
 646	struct fs_enet_private *fep = netdev_priv(dev);
 647
 648	schedule_work(&fep->timeout_work);
 649}
 650
 651/*-----------------------------------------------------------------------------
 652 *  generic link-change handler - should be sufficient for most cases
 653 *-----------------------------------------------------------------------------*/
 654static void generic_adjust_link(struct  net_device *dev)
 655{
 656	struct fs_enet_private *fep = netdev_priv(dev);
 657	struct phy_device *phydev = dev->phydev;
 658	int new_state = 0;
 659
 660	if (phydev->link) {
 661		/* adjust to duplex mode */
 662		if (phydev->duplex != fep->oldduplex) {
 663			new_state = 1;
 664			fep->oldduplex = phydev->duplex;
 665		}
 666
 667		if (phydev->speed != fep->oldspeed) {
 668			new_state = 1;
 669			fep->oldspeed = phydev->speed;
 670		}
 671
 672		if (!fep->oldlink) {
 673			new_state = 1;
 674			fep->oldlink = 1;
 675		}
 676
 677		if (new_state)
 678			fep->ops->restart(dev);
 679	} else if (fep->oldlink) {
 680		new_state = 1;
 681		fep->oldlink = 0;
 682		fep->oldspeed = 0;
 683		fep->oldduplex = -1;
 684	}
 685
 686	if (new_state && netif_msg_link(fep))
 687		phy_print_status(phydev);
 688}
 689
 690
 691static void fs_adjust_link(struct net_device *dev)
 692{
 693	struct fs_enet_private *fep = netdev_priv(dev);
 694	unsigned long flags;
 695
 696	spin_lock_irqsave(&fep->lock, flags);
 697
 698	if(fep->ops->adjust_link)
 699		fep->ops->adjust_link(dev);
 700	else
 701		generic_adjust_link(dev);
 702
 703	spin_unlock_irqrestore(&fep->lock, flags);
 704}
 705
 706static int fs_init_phy(struct net_device *dev)
 707{
 708	struct fs_enet_private *fep = netdev_priv(dev);
 709	struct phy_device *phydev;
 710	phy_interface_t iface;
 711
 712	fep->oldlink = 0;
 713	fep->oldspeed = 0;
 714	fep->oldduplex = -1;
 715
 716	iface = fep->fpi->use_rmii ?
 717		PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
 718
 719	phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
 720				iface);
 721	if (!phydev) {
 722		dev_err(&dev->dev, "Could not attach to PHY\n");
 723		return -ENODEV;
 724	}
 725
 726	return 0;
 727}
 728
 729static int fs_enet_open(struct net_device *dev)
 730{
 731	struct fs_enet_private *fep = netdev_priv(dev);
 732	int r;
 733	int err;
 734
 735	/* to initialize the fep->cur_rx,... */
 736	/* not doing this, will cause a crash in fs_enet_napi */
 737	fs_init_bds(fep->ndev);
 738
 739	napi_enable(&fep->napi);
 740
 741	/* Install our interrupt handler. */
 742	r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
 743			"fs_enet-mac", dev);
 744	if (r != 0) {
 745		dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
 746		napi_disable(&fep->napi);
 747		return -EINVAL;
 748	}
 749
 750	err = fs_init_phy(dev);
 751	if (err) {
 752		free_irq(fep->interrupt, dev);
 753		napi_disable(&fep->napi);
 754		return err;
 755	}
 756	phy_start(dev->phydev);
 757
 758	netif_start_queue(dev);
 759
 760	return 0;
 761}
 762
 763static int fs_enet_close(struct net_device *dev)
 764{
 765	struct fs_enet_private *fep = netdev_priv(dev);
 766	unsigned long flags;
 767
 768	netif_stop_queue(dev);
 769	netif_carrier_off(dev);
 770	napi_disable(&fep->napi);
 771	cancel_work_sync(&fep->timeout_work);
 772	phy_stop(dev->phydev);
 773
 774	spin_lock_irqsave(&fep->lock, flags);
 775	spin_lock(&fep->tx_lock);
 776	(*fep->ops->stop)(dev);
 777	spin_unlock(&fep->tx_lock);
 778	spin_unlock_irqrestore(&fep->lock, flags);
 779
 780	/* release any irqs */
 781	phy_disconnect(dev->phydev);
 782	free_irq(fep->interrupt, dev);
 783
 784	return 0;
 785}
 786
 787/*************************************************************************/
 788
 789static void fs_get_drvinfo(struct net_device *dev,
 790			    struct ethtool_drvinfo *info)
 791{
 792	strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
 793	strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
 794}
 795
 796static int fs_get_regs_len(struct net_device *dev)
 797{
 798	struct fs_enet_private *fep = netdev_priv(dev);
 799
 800	return (*fep->ops->get_regs_len)(dev);
 801}
 802
 803static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
 804			 void *p)
 805{
 806	struct fs_enet_private *fep = netdev_priv(dev);
 807	unsigned long flags;
 808	int r, len;
 809
 810	len = regs->len;
 811
 812	spin_lock_irqsave(&fep->lock, flags);
 813	r = (*fep->ops->get_regs)(dev, p, &len);
 814	spin_unlock_irqrestore(&fep->lock, flags);
 815
 816	if (r == 0)
 817		regs->version = 0;
 818}
 819
 820static u32 fs_get_msglevel(struct net_device *dev)
 821{
 822	struct fs_enet_private *fep = netdev_priv(dev);
 823	return fep->msg_enable;
 824}
 825
 826static void fs_set_msglevel(struct net_device *dev, u32 value)
 827{
 828	struct fs_enet_private *fep = netdev_priv(dev);
 829	fep->msg_enable = value;
 830}
 831
 832static int fs_get_tunable(struct net_device *dev,
 833			  const struct ethtool_tunable *tuna, void *data)
 834{
 835	struct fs_enet_private *fep = netdev_priv(dev);
 836	struct fs_platform_info *fpi = fep->fpi;
 837	int ret = 0;
 838
 839	switch (tuna->id) {
 840	case ETHTOOL_RX_COPYBREAK:
 841		*(u32 *)data = fpi->rx_copybreak;
 842		break;
 843	default:
 844		ret = -EINVAL;
 845		break;
 846	}
 847
 848	return ret;
 849}
 850
 851static int fs_set_tunable(struct net_device *dev,
 852			  const struct ethtool_tunable *tuna, const void *data)
 853{
 854	struct fs_enet_private *fep = netdev_priv(dev);
 855	struct fs_platform_info *fpi = fep->fpi;
 856	int ret = 0;
 857
 858	switch (tuna->id) {
 859	case ETHTOOL_RX_COPYBREAK:
 860		fpi->rx_copybreak = *(u32 *)data;
 861		break;
 862	default:
 863		ret = -EINVAL;
 864		break;
 865	}
 866
 867	return ret;
 868}
 869
 870static const struct ethtool_ops fs_ethtool_ops = {
 871	.get_drvinfo = fs_get_drvinfo,
 872	.get_regs_len = fs_get_regs_len,
 873	.nway_reset = phy_ethtool_nway_reset,
 874	.get_link = ethtool_op_get_link,
 875	.get_msglevel = fs_get_msglevel,
 876	.set_msglevel = fs_set_msglevel,
 877	.get_regs = fs_get_regs,
 878	.get_ts_info = ethtool_op_get_ts_info,
 879	.get_link_ksettings = phy_ethtool_get_link_ksettings,
 880	.set_link_ksettings = phy_ethtool_set_link_ksettings,
 881	.get_tunable = fs_get_tunable,
 882	.set_tunable = fs_set_tunable,
 883};
 884
 885static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 886{
 887	if (!netif_running(dev))
 888		return -EINVAL;
 889
 890	return phy_mii_ioctl(dev->phydev, rq, cmd);
 891}
 892
 893extern int fs_mii_connect(struct net_device *dev);
 894extern void fs_mii_disconnect(struct net_device *dev);
 895
 896/**************************************************************************************/
 897
 898#ifdef CONFIG_FS_ENET_HAS_FEC
 899#define IS_FEC(match) ((match)->data == &fs_fec_ops)
 900#else
 901#define IS_FEC(match) 0
 902#endif
 903
 904static const struct net_device_ops fs_enet_netdev_ops = {
 905	.ndo_open		= fs_enet_open,
 906	.ndo_stop		= fs_enet_close,
 907	.ndo_start_xmit		= fs_enet_start_xmit,
 908	.ndo_tx_timeout		= fs_timeout,
 909	.ndo_set_rx_mode	= fs_set_multicast_list,
 910	.ndo_do_ioctl		= fs_ioctl,
 911	.ndo_validate_addr	= eth_validate_addr,
 912	.ndo_set_mac_address	= eth_mac_addr,
 913#ifdef CONFIG_NET_POLL_CONTROLLER
 914	.ndo_poll_controller	= fs_enet_netpoll,
 915#endif
 916};
 917
 918static const struct of_device_id fs_enet_match[];
 919static int fs_enet_probe(struct platform_device *ofdev)
 920{
 921	const struct of_device_id *match;
 922	struct net_device *ndev;
 923	struct fs_enet_private *fep;
 924	struct fs_platform_info *fpi;
 925	const u32 *data;
 926	struct clk *clk;
 927	int err;
 928	const u8 *mac_addr;
 929	const char *phy_connection_type;
 930	int privsize, len, ret = -ENODEV;
 931
 932	match = of_match_device(fs_enet_match, &ofdev->dev);
 933	if (!match)
 934		return -EINVAL;
 935
 936	fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
 937	if (!fpi)
 938		return -ENOMEM;
 939
 940	if (!IS_FEC(match)) {
 941		data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
 942		if (!data || len != 4)
 943			goto out_free_fpi;
 944
 945		fpi->cp_command = *data;
 946	}
 947
 948	fpi->rx_ring = RX_RING_SIZE;
 949	fpi->tx_ring = TX_RING_SIZE;
 950	fpi->rx_copybreak = 240;
 951	fpi->napi_weight = 17;
 952	fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
 953	if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
 954		err = of_phy_register_fixed_link(ofdev->dev.of_node);
 955		if (err)
 956			goto out_free_fpi;
 957
 958		/* In the case of a fixed PHY, the DT node associated
 959		 * to the PHY is the Ethernet MAC DT node.
 960		 */
 961		fpi->phy_node = of_node_get(ofdev->dev.of_node);
 962	}
 963
 964	if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
 965		phy_connection_type = of_get_property(ofdev->dev.of_node,
 966						"phy-connection-type", NULL);
 967		if (phy_connection_type && !strcmp("rmii", phy_connection_type))
 968			fpi->use_rmii = 1;
 969	}
 970
 971	/* make clock lookup non-fatal (the driver is shared among platforms),
 972	 * but require enable to succeed when a clock was specified/found,
 973	 * keep a reference to the clock upon successful acquisition
 974	 */
 975	clk = devm_clk_get(&ofdev->dev, "per");
 976	if (!IS_ERR(clk)) {
 977		ret = clk_prepare_enable(clk);
 978		if (ret)
 979			goto out_deregister_fixed_link;
 980
 981		fpi->clk_per = clk;
 982	}
 983
 984	privsize = sizeof(*fep) +
 985	           sizeof(struct sk_buff **) *
 986		     (fpi->rx_ring + fpi->tx_ring) +
 987		   sizeof(char) * fpi->tx_ring;
 988
 989	ndev = alloc_etherdev(privsize);
 990	if (!ndev) {
 991		ret = -ENOMEM;
 992		goto out_put;
 993	}
 994
 995	SET_NETDEV_DEV(ndev, &ofdev->dev);
 996	platform_set_drvdata(ofdev, ndev);
 997
 998	fep = netdev_priv(ndev);
 999	fep->dev = &ofdev->dev;
1000	fep->ndev = ndev;
1001	fep->fpi = fpi;
1002	fep->ops = match->data;
1003
1004	ret = fep->ops->setup_data(ndev);
1005	if (ret)
1006		goto out_free_dev;
1007
1008	fep->rx_skbuff = (struct sk_buff **)&fep[1];
1009	fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1010	fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
1011				       fpi->tx_ring);
1012
1013	spin_lock_init(&fep->lock);
1014	spin_lock_init(&fep->tx_lock);
1015
1016	mac_addr = of_get_mac_address(ofdev->dev.of_node);
1017	if (!IS_ERR(mac_addr))
1018		ether_addr_copy(ndev->dev_addr, mac_addr);
1019
1020	ret = fep->ops->allocate_bd(ndev);
1021	if (ret)
1022		goto out_cleanup_data;
1023
1024	fep->rx_bd_base = fep->ring_base;
1025	fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1026
1027	fep->tx_ring = fpi->tx_ring;
1028	fep->rx_ring = fpi->rx_ring;
1029
1030	ndev->netdev_ops = &fs_enet_netdev_ops;
1031	ndev->watchdog_timeo = 2 * HZ;
1032	INIT_WORK(&fep->timeout_work, fs_timeout_work);
1033	netif_napi_add(ndev, &fep->napi, fs_enet_napi, fpi->napi_weight);
 
1034
1035	ndev->ethtool_ops = &fs_ethtool_ops;
1036
1037	netif_carrier_off(ndev);
1038
1039	ndev->features |= NETIF_F_SG;
1040
1041	ret = register_netdev(ndev);
1042	if (ret)
1043		goto out_free_bd;
1044
1045	pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1046
1047	return 0;
1048
1049out_free_bd:
1050	fep->ops->free_bd(ndev);
1051out_cleanup_data:
1052	fep->ops->cleanup_data(ndev);
1053out_free_dev:
1054	free_netdev(ndev);
1055out_put:
1056	if (fpi->clk_per)
1057		clk_disable_unprepare(fpi->clk_per);
1058out_deregister_fixed_link:
1059	of_node_put(fpi->phy_node);
1060	if (of_phy_is_fixed_link(ofdev->dev.of_node))
1061		of_phy_deregister_fixed_link(ofdev->dev.of_node);
1062out_free_fpi:
1063	kfree(fpi);
1064	return ret;
1065}
1066
1067static int fs_enet_remove(struct platform_device *ofdev)
1068{
1069	struct net_device *ndev = platform_get_drvdata(ofdev);
1070	struct fs_enet_private *fep = netdev_priv(ndev);
1071
1072	unregister_netdev(ndev);
1073
1074	fep->ops->free_bd(ndev);
1075	fep->ops->cleanup_data(ndev);
1076	dev_set_drvdata(fep->dev, NULL);
1077	of_node_put(fep->fpi->phy_node);
1078	if (fep->fpi->clk_per)
1079		clk_disable_unprepare(fep->fpi->clk_per);
1080	if (of_phy_is_fixed_link(ofdev->dev.of_node))
1081		of_phy_deregister_fixed_link(ofdev->dev.of_node);
1082	free_netdev(ndev);
1083	return 0;
1084}
1085
1086static const struct of_device_id fs_enet_match[] = {
1087#ifdef CONFIG_FS_ENET_HAS_SCC
1088	{
1089		.compatible = "fsl,cpm1-scc-enet",
1090		.data = (void *)&fs_scc_ops,
1091	},
1092	{
1093		.compatible = "fsl,cpm2-scc-enet",
1094		.data = (void *)&fs_scc_ops,
1095	},
1096#endif
1097#ifdef CONFIG_FS_ENET_HAS_FCC
1098	{
1099		.compatible = "fsl,cpm2-fcc-enet",
1100		.data = (void *)&fs_fcc_ops,
1101	},
1102#endif
1103#ifdef CONFIG_FS_ENET_HAS_FEC
1104#ifdef CONFIG_FS_ENET_MPC5121_FEC
1105	{
1106		.compatible = "fsl,mpc5121-fec",
1107		.data = (void *)&fs_fec_ops,
1108	},
1109	{
1110		.compatible = "fsl,mpc5125-fec",
1111		.data = (void *)&fs_fec_ops,
1112	},
1113#else
1114	{
1115		.compatible = "fsl,pq1-fec-enet",
1116		.data = (void *)&fs_fec_ops,
1117	},
1118#endif
1119#endif
1120	{}
1121};
1122MODULE_DEVICE_TABLE(of, fs_enet_match);
1123
1124static struct platform_driver fs_enet_driver = {
1125	.driver = {
1126		.name = "fs_enet",
1127		.of_match_table = fs_enet_match,
1128	},
1129	.probe = fs_enet_probe,
1130	.remove = fs_enet_remove,
1131};
1132
1133#ifdef CONFIG_NET_POLL_CONTROLLER
1134static void fs_enet_netpoll(struct net_device *dev)
1135{
1136       disable_irq(dev->irq);
1137       fs_enet_interrupt(dev->irq, dev);
1138       enable_irq(dev->irq);
1139}
1140#endif
1141
1142module_platform_driver(fs_enet_driver);