Loading...
1/*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18#include <linux/module.h>
19#include <linux/kernel.h>
20#include <linux/types.h>
21#include <linux/string.h>
22#include <linux/ptrace.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/slab.h>
26#include <linux/interrupt.h>
27#include <linux/delay.h>
28#include <linux/netdevice.h>
29#include <linux/etherdevice.h>
30#include <linux/skbuff.h>
31#include <linux/spinlock.h>
32#include <linux/mii.h>
33#include <linux/ethtool.h>
34#include <linux/bitops.h>
35#include <linux/fs.h>
36#include <linux/platform_device.h>
37#include <linux/phy.h>
38#include <linux/property.h>
39#include <linux/of.h>
40#include <linux/of_mdio.h>
41#include <linux/of_net.h>
42#include <linux/pgtable.h>
43
44#include <linux/vmalloc.h>
45#include <asm/irq.h>
46#include <linux/uaccess.h>
47
48#include "fs_enet.h"
49
50/*************************************************/
51
52MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
53MODULE_DESCRIPTION("Freescale Ethernet Driver");
54MODULE_LICENSE("GPL");
55
56static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
57module_param(fs_enet_debug, int, 0);
58MODULE_PARM_DESC(fs_enet_debug,
59 "Freescale bitmapped debugging message enable value");
60
61#define RX_RING_SIZE 32
62#define TX_RING_SIZE 64
63
64#ifdef CONFIG_NET_POLL_CONTROLLER
65static void fs_enet_netpoll(struct net_device *dev);
66#endif
67
68static void fs_set_multicast_list(struct net_device *dev)
69{
70 struct fs_enet_private *fep = netdev_priv(dev);
71
72 (*fep->ops->set_multicast_list)(dev);
73}
74
75static void skb_align(struct sk_buff *skb, int align)
76{
77 int off = ((unsigned long)skb->data) & (align - 1);
78
79 if (off)
80 skb_reserve(skb, align - off);
81}
82
83/* NAPI function */
84static int fs_enet_napi(struct napi_struct *napi, int budget)
85{
86 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
87 struct net_device *dev = fep->ndev;
88 const struct fs_platform_info *fpi = fep->fpi;
89 cbd_t __iomem *bdp;
90 struct sk_buff *skb, *skbn;
91 int received = 0;
92 u16 pkt_len, sc;
93 int curidx;
94 int dirtyidx, do_wake, do_restart;
95 int tx_left = TX_RING_SIZE;
96
97 spin_lock(&fep->tx_lock);
98 bdp = fep->dirty_tx;
99
100 /* clear status bits for napi*/
101 (*fep->ops->napi_clear_event)(dev);
102
103 do_wake = do_restart = 0;
104 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
105 dirtyidx = bdp - fep->tx_bd_base;
106
107 if (fep->tx_free == fep->tx_ring)
108 break;
109
110 skb = fep->tx_skbuff[dirtyidx];
111
112 /*
113 * Check for errors.
114 */
115 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
116 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
117
118 if (sc & BD_ENET_TX_HB) /* No heartbeat */
119 dev->stats.tx_heartbeat_errors++;
120 if (sc & BD_ENET_TX_LC) /* Late collision */
121 dev->stats.tx_window_errors++;
122 if (sc & BD_ENET_TX_RL) /* Retrans limit */
123 dev->stats.tx_aborted_errors++;
124 if (sc & BD_ENET_TX_UN) /* Underrun */
125 dev->stats.tx_fifo_errors++;
126 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
127 dev->stats.tx_carrier_errors++;
128
129 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
130 dev->stats.tx_errors++;
131 do_restart = 1;
132 }
133 } else
134 dev->stats.tx_packets++;
135
136 if (sc & BD_ENET_TX_READY) {
137 dev_warn(fep->dev,
138 "HEY! Enet xmit interrupt and TX_READY.\n");
139 }
140
141 /*
142 * Deferred means some collisions occurred during transmit,
143 * but we eventually sent the packet OK.
144 */
145 if (sc & BD_ENET_TX_DEF)
146 dev->stats.collisions++;
147
148 /* unmap */
149 if (fep->mapped_as_page[dirtyidx])
150 dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
151 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
152 else
153 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
154 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
155
156 /*
157 * Free the sk buffer associated with this last transmit.
158 */
159 if (skb) {
160 dev_kfree_skb(skb);
161 fep->tx_skbuff[dirtyidx] = NULL;
162 }
163
164 /*
165 * Update pointer to next buffer descriptor to be transmitted.
166 */
167 if ((sc & BD_ENET_TX_WRAP) == 0)
168 bdp++;
169 else
170 bdp = fep->tx_bd_base;
171
172 /*
173 * Since we have freed up a buffer, the ring is no longer
174 * full.
175 */
176 if (++fep->tx_free == MAX_SKB_FRAGS)
177 do_wake = 1;
178 tx_left--;
179 }
180
181 fep->dirty_tx = bdp;
182
183 if (do_restart)
184 (*fep->ops->tx_restart)(dev);
185
186 spin_unlock(&fep->tx_lock);
187
188 if (do_wake)
189 netif_wake_queue(dev);
190
191 /*
192 * First, grab all of the stats for the incoming packet.
193 * These get messed up if we get called due to a busy condition.
194 */
195 bdp = fep->cur_rx;
196
197 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
198 received < budget) {
199 curidx = bdp - fep->rx_bd_base;
200
201 /*
202 * Since we have allocated space to hold a complete frame,
203 * the last indicator should be set.
204 */
205 if ((sc & BD_ENET_RX_LAST) == 0)
206 dev_warn(fep->dev, "rcv is not +last\n");
207
208 /*
209 * Check for errors.
210 */
211 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
212 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
213 dev->stats.rx_errors++;
214 /* Frame too long or too short. */
215 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
216 dev->stats.rx_length_errors++;
217 /* Frame alignment */
218 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
219 dev->stats.rx_frame_errors++;
220 /* CRC Error */
221 if (sc & BD_ENET_RX_CR)
222 dev->stats.rx_crc_errors++;
223 /* FIFO overrun */
224 if (sc & BD_ENET_RX_OV)
225 dev->stats.rx_crc_errors++;
226
227 skbn = fep->rx_skbuff[curidx];
228 } else {
229 skb = fep->rx_skbuff[curidx];
230
231 /*
232 * Process the incoming frame.
233 */
234 dev->stats.rx_packets++;
235 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
236 dev->stats.rx_bytes += pkt_len + 4;
237
238 if (pkt_len <= fpi->rx_copybreak) {
239 /* +2 to make IP header L1 cache aligned */
240 skbn = netdev_alloc_skb(dev, pkt_len + 2);
241 if (skbn != NULL) {
242 skb_reserve(skbn, 2); /* align IP header */
243 skb_copy_from_linear_data(skb,
244 skbn->data, pkt_len);
245 swap(skb, skbn);
246 dma_sync_single_for_cpu(fep->dev,
247 CBDR_BUFADDR(bdp),
248 L1_CACHE_ALIGN(pkt_len),
249 DMA_FROM_DEVICE);
250 }
251 } else {
252 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
253
254 if (skbn) {
255 dma_addr_t dma;
256
257 skb_align(skbn, ENET_RX_ALIGN);
258
259 dma_unmap_single(fep->dev,
260 CBDR_BUFADDR(bdp),
261 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
262 DMA_FROM_DEVICE);
263
264 dma = dma_map_single(fep->dev,
265 skbn->data,
266 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
267 DMA_FROM_DEVICE);
268 CBDW_BUFADDR(bdp, dma);
269 }
270 }
271
272 if (skbn != NULL) {
273 skb_put(skb, pkt_len); /* Make room */
274 skb->protocol = eth_type_trans(skb, dev);
275 received++;
276 netif_receive_skb(skb);
277 } else {
278 dev->stats.rx_dropped++;
279 skbn = skb;
280 }
281 }
282
283 fep->rx_skbuff[curidx] = skbn;
284 CBDW_DATLEN(bdp, 0);
285 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
286
287 /*
288 * Update BD pointer to next entry.
289 */
290 if ((sc & BD_ENET_RX_WRAP) == 0)
291 bdp++;
292 else
293 bdp = fep->rx_bd_base;
294
295 (*fep->ops->rx_bd_done)(dev);
296 }
297
298 fep->cur_rx = bdp;
299
300 if (received < budget && tx_left) {
301 /* done */
302 napi_complete_done(napi, received);
303 (*fep->ops->napi_enable)(dev);
304
305 return received;
306 }
307
308 return budget;
309}
310
311/*
312 * The interrupt handler.
313 * This is called from the MPC core interrupt.
314 */
315static irqreturn_t
316fs_enet_interrupt(int irq, void *dev_id)
317{
318 struct net_device *dev = dev_id;
319 struct fs_enet_private *fep;
320 u32 int_events;
321 u32 int_clr_events;
322 int nr, napi_ok;
323 int handled;
324
325 fep = netdev_priv(dev);
326
327 nr = 0;
328 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
329 nr++;
330
331 int_clr_events = int_events;
332 int_clr_events &= ~fep->ev_napi;
333
334 (*fep->ops->clear_int_events)(dev, int_clr_events);
335
336 if (int_events & fep->ev_err)
337 (*fep->ops->ev_error)(dev, int_events);
338
339 if (int_events & fep->ev) {
340 napi_ok = napi_schedule_prep(&fep->napi);
341
342 (*fep->ops->napi_disable)(dev);
343 (*fep->ops->clear_int_events)(dev, fep->ev_napi);
344
345 /* NOTE: it is possible for FCCs in NAPI mode */
346 /* to submit a spurious interrupt while in poll */
347 if (napi_ok)
348 __napi_schedule(&fep->napi);
349 }
350
351 }
352
353 handled = nr > 0;
354 return IRQ_RETVAL(handled);
355}
356
357void fs_init_bds(struct net_device *dev)
358{
359 struct fs_enet_private *fep = netdev_priv(dev);
360 cbd_t __iomem *bdp;
361 struct sk_buff *skb;
362 int i;
363
364 fs_cleanup_bds(dev);
365
366 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
367 fep->tx_free = fep->tx_ring;
368 fep->cur_rx = fep->rx_bd_base;
369
370 /*
371 * Initialize the receive buffer descriptors.
372 */
373 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
374 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
375 if (skb == NULL)
376 break;
377
378 skb_align(skb, ENET_RX_ALIGN);
379 fep->rx_skbuff[i] = skb;
380 CBDW_BUFADDR(bdp,
381 dma_map_single(fep->dev, skb->data,
382 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
383 DMA_FROM_DEVICE));
384 CBDW_DATLEN(bdp, 0); /* zero */
385 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
386 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
387 }
388 /*
389 * if we failed, fillup remainder
390 */
391 for (; i < fep->rx_ring; i++, bdp++) {
392 fep->rx_skbuff[i] = NULL;
393 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
394 }
395
396 /*
397 * ...and the same for transmit.
398 */
399 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
400 fep->tx_skbuff[i] = NULL;
401 CBDW_BUFADDR(bdp, 0);
402 CBDW_DATLEN(bdp, 0);
403 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
404 }
405}
406
407void fs_cleanup_bds(struct net_device *dev)
408{
409 struct fs_enet_private *fep = netdev_priv(dev);
410 struct sk_buff *skb;
411 cbd_t __iomem *bdp;
412 int i;
413
414 /*
415 * Reset SKB transmit buffers.
416 */
417 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
418 if ((skb = fep->tx_skbuff[i]) == NULL)
419 continue;
420
421 /* unmap */
422 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
423 skb->len, DMA_TO_DEVICE);
424
425 fep->tx_skbuff[i] = NULL;
426 dev_kfree_skb(skb);
427 }
428
429 /*
430 * Reset SKB receive buffers
431 */
432 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
433 if ((skb = fep->rx_skbuff[i]) == NULL)
434 continue;
435
436 /* unmap */
437 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
438 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
439 DMA_FROM_DEVICE);
440
441 fep->rx_skbuff[i] = NULL;
442
443 dev_kfree_skb(skb);
444 }
445}
446
447/**********************************************************************************/
448
449#ifdef CONFIG_FS_ENET_MPC5121_FEC
450/*
451 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
452 */
453static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
454 struct sk_buff *skb)
455{
456 struct sk_buff *new_skb;
457
458 if (skb_linearize(skb))
459 return NULL;
460
461 /* Alloc new skb */
462 new_skb = netdev_alloc_skb(dev, skb->len + 4);
463 if (!new_skb)
464 return NULL;
465
466 /* Make sure new skb is properly aligned */
467 skb_align(new_skb, 4);
468
469 /* Copy data to new skb ... */
470 skb_copy_from_linear_data(skb, new_skb->data, skb->len);
471 skb_put(new_skb, skb->len);
472
473 /* ... and free an old one */
474 dev_kfree_skb_any(skb);
475
476 return new_skb;
477}
478#endif
479
480static netdev_tx_t
481fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
482{
483 struct fs_enet_private *fep = netdev_priv(dev);
484 cbd_t __iomem *bdp;
485 int curidx;
486 u16 sc;
487 int nr_frags;
488 skb_frag_t *frag;
489 int len;
490#ifdef CONFIG_FS_ENET_MPC5121_FEC
491 int is_aligned = 1;
492 int i;
493
494 if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
495 is_aligned = 0;
496 } else {
497 nr_frags = skb_shinfo(skb)->nr_frags;
498 frag = skb_shinfo(skb)->frags;
499 for (i = 0; i < nr_frags; i++, frag++) {
500 if (!IS_ALIGNED(skb_frag_off(frag), 4)) {
501 is_aligned = 0;
502 break;
503 }
504 }
505 }
506
507 if (!is_aligned) {
508 skb = tx_skb_align_workaround(dev, skb);
509 if (!skb) {
510 /*
511 * We have lost packet due to memory allocation error
512 * in tx_skb_align_workaround(). Hopefully original
513 * skb is still valid, so try transmit it later.
514 */
515 return NETDEV_TX_BUSY;
516 }
517 }
518#endif
519
520 spin_lock(&fep->tx_lock);
521
522 /*
523 * Fill in a Tx ring entry
524 */
525 bdp = fep->cur_tx;
526
527 nr_frags = skb_shinfo(skb)->nr_frags;
528 if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
529 netif_stop_queue(dev);
530 spin_unlock(&fep->tx_lock);
531
532 /*
533 * Ooops. All transmit buffers are full. Bail out.
534 * This should not happen, since the tx queue should be stopped.
535 */
536 dev_warn(fep->dev, "tx queue full!.\n");
537 return NETDEV_TX_BUSY;
538 }
539
540 curidx = bdp - fep->tx_bd_base;
541
542 len = skb->len;
543 dev->stats.tx_bytes += len;
544 if (nr_frags)
545 len -= skb->data_len;
546 fep->tx_free -= nr_frags + 1;
547 /*
548 * Push the data cache so the CPM does not get stale memory data.
549 */
550 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
551 skb->data, len, DMA_TO_DEVICE));
552 CBDW_DATLEN(bdp, len);
553
554 fep->mapped_as_page[curidx] = 0;
555 frag = skb_shinfo(skb)->frags;
556 while (nr_frags) {
557 CBDC_SC(bdp,
558 BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
559 BD_ENET_TX_TC);
560 CBDS_SC(bdp, BD_ENET_TX_READY);
561
562 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) {
563 bdp++;
564 curidx++;
565 } else {
566 bdp = fep->tx_bd_base;
567 curidx = 0;
568 }
569
570 len = skb_frag_size(frag);
571 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
572 DMA_TO_DEVICE));
573 CBDW_DATLEN(bdp, len);
574
575 fep->tx_skbuff[curidx] = NULL;
576 fep->mapped_as_page[curidx] = 1;
577
578 frag++;
579 nr_frags--;
580 }
581
582 /* Trigger transmission start */
583 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
584 BD_ENET_TX_LAST | BD_ENET_TX_TC;
585
586 /* note that while FEC does not have this bit
587 * it marks it as available for software use
588 * yay for hw reuse :) */
589 if (skb->len <= 60)
590 sc |= BD_ENET_TX_PAD;
591 CBDC_SC(bdp, BD_ENET_TX_STATS);
592 CBDS_SC(bdp, sc);
593
594 /* Save skb pointer. */
595 fep->tx_skbuff[curidx] = skb;
596
597 /* If this was the last BD in the ring, start at the beginning again. */
598 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
599 bdp++;
600 else
601 bdp = fep->tx_bd_base;
602 fep->cur_tx = bdp;
603
604 if (fep->tx_free < MAX_SKB_FRAGS)
605 netif_stop_queue(dev);
606
607 skb_tx_timestamp(skb);
608
609 (*fep->ops->tx_kickstart)(dev);
610
611 spin_unlock(&fep->tx_lock);
612
613 return NETDEV_TX_OK;
614}
615
616static void fs_timeout_work(struct work_struct *work)
617{
618 struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
619 timeout_work);
620 struct net_device *dev = fep->ndev;
621 unsigned long flags;
622 int wake = 0;
623
624 dev->stats.tx_errors++;
625
626 spin_lock_irqsave(&fep->lock, flags);
627
628 if (dev->flags & IFF_UP) {
629 phy_stop(dev->phydev);
630 (*fep->ops->stop)(dev);
631 (*fep->ops->restart)(dev);
632 }
633
634 phy_start(dev->phydev);
635 wake = fep->tx_free >= MAX_SKB_FRAGS &&
636 !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
637 spin_unlock_irqrestore(&fep->lock, flags);
638
639 if (wake)
640 netif_wake_queue(dev);
641}
642
643static void fs_timeout(struct net_device *dev, unsigned int txqueue)
644{
645 struct fs_enet_private *fep = netdev_priv(dev);
646
647 schedule_work(&fep->timeout_work);
648}
649
650/*-----------------------------------------------------------------------------
651 * generic link-change handler - should be sufficient for most cases
652 *-----------------------------------------------------------------------------*/
653static void generic_adjust_link(struct net_device *dev)
654{
655 struct fs_enet_private *fep = netdev_priv(dev);
656 struct phy_device *phydev = dev->phydev;
657 int new_state = 0;
658
659 if (phydev->link) {
660 /* adjust to duplex mode */
661 if (phydev->duplex != fep->oldduplex) {
662 new_state = 1;
663 fep->oldduplex = phydev->duplex;
664 }
665
666 if (phydev->speed != fep->oldspeed) {
667 new_state = 1;
668 fep->oldspeed = phydev->speed;
669 }
670
671 if (!fep->oldlink) {
672 new_state = 1;
673 fep->oldlink = 1;
674 }
675
676 if (new_state)
677 fep->ops->restart(dev);
678 } else if (fep->oldlink) {
679 new_state = 1;
680 fep->oldlink = 0;
681 fep->oldspeed = 0;
682 fep->oldduplex = -1;
683 }
684
685 if (new_state && netif_msg_link(fep))
686 phy_print_status(phydev);
687}
688
689
690static void fs_adjust_link(struct net_device *dev)
691{
692 struct fs_enet_private *fep = netdev_priv(dev);
693 unsigned long flags;
694
695 spin_lock_irqsave(&fep->lock, flags);
696
697 if(fep->ops->adjust_link)
698 fep->ops->adjust_link(dev);
699 else
700 generic_adjust_link(dev);
701
702 spin_unlock_irqrestore(&fep->lock, flags);
703}
704
705static int fs_init_phy(struct net_device *dev)
706{
707 struct fs_enet_private *fep = netdev_priv(dev);
708 struct phy_device *phydev;
709 phy_interface_t iface;
710
711 fep->oldlink = 0;
712 fep->oldspeed = 0;
713 fep->oldduplex = -1;
714
715 iface = fep->fpi->use_rmii ?
716 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
717
718 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
719 iface);
720 if (!phydev) {
721 dev_err(&dev->dev, "Could not attach to PHY\n");
722 return -ENODEV;
723 }
724
725 return 0;
726}
727
728static int fs_enet_open(struct net_device *dev)
729{
730 struct fs_enet_private *fep = netdev_priv(dev);
731 int r;
732 int err;
733
734 /* to initialize the fep->cur_rx,... */
735 /* not doing this, will cause a crash in fs_enet_napi */
736 fs_init_bds(fep->ndev);
737
738 napi_enable(&fep->napi);
739
740 /* Install our interrupt handler. */
741 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
742 "fs_enet-mac", dev);
743 if (r != 0) {
744 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
745 napi_disable(&fep->napi);
746 return -EINVAL;
747 }
748
749 err = fs_init_phy(dev);
750 if (err) {
751 free_irq(fep->interrupt, dev);
752 napi_disable(&fep->napi);
753 return err;
754 }
755 phy_start(dev->phydev);
756
757 netif_start_queue(dev);
758
759 return 0;
760}
761
762static int fs_enet_close(struct net_device *dev)
763{
764 struct fs_enet_private *fep = netdev_priv(dev);
765 unsigned long flags;
766
767 netif_stop_queue(dev);
768 netif_carrier_off(dev);
769 napi_disable(&fep->napi);
770 cancel_work_sync(&fep->timeout_work);
771 phy_stop(dev->phydev);
772
773 spin_lock_irqsave(&fep->lock, flags);
774 spin_lock(&fep->tx_lock);
775 (*fep->ops->stop)(dev);
776 spin_unlock(&fep->tx_lock);
777 spin_unlock_irqrestore(&fep->lock, flags);
778
779 /* release any irqs */
780 phy_disconnect(dev->phydev);
781 free_irq(fep->interrupt, dev);
782
783 return 0;
784}
785
786/*************************************************************************/
787
788static void fs_get_drvinfo(struct net_device *dev,
789 struct ethtool_drvinfo *info)
790{
791 strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
792}
793
794static int fs_get_regs_len(struct net_device *dev)
795{
796 struct fs_enet_private *fep = netdev_priv(dev);
797
798 return (*fep->ops->get_regs_len)(dev);
799}
800
801static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
802 void *p)
803{
804 struct fs_enet_private *fep = netdev_priv(dev);
805 unsigned long flags;
806 int r, len;
807
808 len = regs->len;
809
810 spin_lock_irqsave(&fep->lock, flags);
811 r = (*fep->ops->get_regs)(dev, p, &len);
812 spin_unlock_irqrestore(&fep->lock, flags);
813
814 if (r == 0)
815 regs->version = 0;
816}
817
818static u32 fs_get_msglevel(struct net_device *dev)
819{
820 struct fs_enet_private *fep = netdev_priv(dev);
821 return fep->msg_enable;
822}
823
824static void fs_set_msglevel(struct net_device *dev, u32 value)
825{
826 struct fs_enet_private *fep = netdev_priv(dev);
827 fep->msg_enable = value;
828}
829
830static int fs_get_tunable(struct net_device *dev,
831 const struct ethtool_tunable *tuna, void *data)
832{
833 struct fs_enet_private *fep = netdev_priv(dev);
834 struct fs_platform_info *fpi = fep->fpi;
835 int ret = 0;
836
837 switch (tuna->id) {
838 case ETHTOOL_RX_COPYBREAK:
839 *(u32 *)data = fpi->rx_copybreak;
840 break;
841 default:
842 ret = -EINVAL;
843 break;
844 }
845
846 return ret;
847}
848
849static int fs_set_tunable(struct net_device *dev,
850 const struct ethtool_tunable *tuna, const void *data)
851{
852 struct fs_enet_private *fep = netdev_priv(dev);
853 struct fs_platform_info *fpi = fep->fpi;
854 int ret = 0;
855
856 switch (tuna->id) {
857 case ETHTOOL_RX_COPYBREAK:
858 fpi->rx_copybreak = *(u32 *)data;
859 break;
860 default:
861 ret = -EINVAL;
862 break;
863 }
864
865 return ret;
866}
867
868static const struct ethtool_ops fs_ethtool_ops = {
869 .get_drvinfo = fs_get_drvinfo,
870 .get_regs_len = fs_get_regs_len,
871 .nway_reset = phy_ethtool_nway_reset,
872 .get_link = ethtool_op_get_link,
873 .get_msglevel = fs_get_msglevel,
874 .set_msglevel = fs_set_msglevel,
875 .get_regs = fs_get_regs,
876 .get_ts_info = ethtool_op_get_ts_info,
877 .get_link_ksettings = phy_ethtool_get_link_ksettings,
878 .set_link_ksettings = phy_ethtool_set_link_ksettings,
879 .get_tunable = fs_get_tunable,
880 .set_tunable = fs_set_tunable,
881};
882
883/**************************************************************************************/
884
885#ifdef CONFIG_FS_ENET_HAS_FEC
886#define IS_FEC(ops) ((ops) == &fs_fec_ops)
887#else
888#define IS_FEC(ops) 0
889#endif
890
891static const struct net_device_ops fs_enet_netdev_ops = {
892 .ndo_open = fs_enet_open,
893 .ndo_stop = fs_enet_close,
894 .ndo_start_xmit = fs_enet_start_xmit,
895 .ndo_tx_timeout = fs_timeout,
896 .ndo_set_rx_mode = fs_set_multicast_list,
897 .ndo_eth_ioctl = phy_do_ioctl_running,
898 .ndo_validate_addr = eth_validate_addr,
899 .ndo_set_mac_address = eth_mac_addr,
900#ifdef CONFIG_NET_POLL_CONTROLLER
901 .ndo_poll_controller = fs_enet_netpoll,
902#endif
903};
904
905static int fs_enet_probe(struct platform_device *ofdev)
906{
907 const struct fs_ops *ops;
908 struct net_device *ndev;
909 struct fs_enet_private *fep;
910 struct fs_platform_info *fpi;
911 const u32 *data;
912 struct clk *clk;
913 int err;
914 const char *phy_connection_type;
915 int privsize, len, ret = -ENODEV;
916
917 ops = device_get_match_data(&ofdev->dev);
918 if (!ops)
919 return -EINVAL;
920
921 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
922 if (!fpi)
923 return -ENOMEM;
924
925 if (!IS_FEC(ops)) {
926 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
927 if (!data || len != 4)
928 goto out_free_fpi;
929
930 fpi->cp_command = *data;
931 }
932
933 fpi->rx_ring = RX_RING_SIZE;
934 fpi->tx_ring = TX_RING_SIZE;
935 fpi->rx_copybreak = 240;
936 fpi->napi_weight = 17;
937 fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
938 if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
939 err = of_phy_register_fixed_link(ofdev->dev.of_node);
940 if (err)
941 goto out_free_fpi;
942
943 /* In the case of a fixed PHY, the DT node associated
944 * to the PHY is the Ethernet MAC DT node.
945 */
946 fpi->phy_node = of_node_get(ofdev->dev.of_node);
947 }
948
949 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
950 phy_connection_type = of_get_property(ofdev->dev.of_node,
951 "phy-connection-type", NULL);
952 if (phy_connection_type && !strcmp("rmii", phy_connection_type))
953 fpi->use_rmii = 1;
954 }
955
956 /* make clock lookup non-fatal (the driver is shared among platforms),
957 * but require enable to succeed when a clock was specified/found,
958 * keep a reference to the clock upon successful acquisition
959 */
960 clk = devm_clk_get(&ofdev->dev, "per");
961 if (!IS_ERR(clk)) {
962 ret = clk_prepare_enable(clk);
963 if (ret)
964 goto out_deregister_fixed_link;
965
966 fpi->clk_per = clk;
967 }
968
969 privsize = sizeof(*fep) +
970 sizeof(struct sk_buff **) *
971 (fpi->rx_ring + fpi->tx_ring) +
972 sizeof(char) * fpi->tx_ring;
973
974 ndev = alloc_etherdev(privsize);
975 if (!ndev) {
976 ret = -ENOMEM;
977 goto out_put;
978 }
979
980 SET_NETDEV_DEV(ndev, &ofdev->dev);
981 platform_set_drvdata(ofdev, ndev);
982
983 fep = netdev_priv(ndev);
984 fep->dev = &ofdev->dev;
985 fep->ndev = ndev;
986 fep->fpi = fpi;
987 fep->ops = ops;
988
989 ret = fep->ops->setup_data(ndev);
990 if (ret)
991 goto out_free_dev;
992
993 fep->rx_skbuff = (struct sk_buff **)&fep[1];
994 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
995 fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
996 fpi->tx_ring);
997
998 spin_lock_init(&fep->lock);
999 spin_lock_init(&fep->tx_lock);
1000
1001 of_get_ethdev_address(ofdev->dev.of_node, ndev);
1002
1003 ret = fep->ops->allocate_bd(ndev);
1004 if (ret)
1005 goto out_cleanup_data;
1006
1007 fep->rx_bd_base = fep->ring_base;
1008 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1009
1010 fep->tx_ring = fpi->tx_ring;
1011 fep->rx_ring = fpi->rx_ring;
1012
1013 ndev->netdev_ops = &fs_enet_netdev_ops;
1014 ndev->watchdog_timeo = 2 * HZ;
1015 INIT_WORK(&fep->timeout_work, fs_timeout_work);
1016 netif_napi_add_weight(ndev, &fep->napi, fs_enet_napi,
1017 fpi->napi_weight);
1018
1019 ndev->ethtool_ops = &fs_ethtool_ops;
1020
1021 netif_carrier_off(ndev);
1022
1023 ndev->features |= NETIF_F_SG;
1024
1025 ret = register_netdev(ndev);
1026 if (ret)
1027 goto out_free_bd;
1028
1029 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1030
1031 return 0;
1032
1033out_free_bd:
1034 fep->ops->free_bd(ndev);
1035out_cleanup_data:
1036 fep->ops->cleanup_data(ndev);
1037out_free_dev:
1038 free_netdev(ndev);
1039out_put:
1040 clk_disable_unprepare(fpi->clk_per);
1041out_deregister_fixed_link:
1042 of_node_put(fpi->phy_node);
1043 if (of_phy_is_fixed_link(ofdev->dev.of_node))
1044 of_phy_deregister_fixed_link(ofdev->dev.of_node);
1045out_free_fpi:
1046 kfree(fpi);
1047 return ret;
1048}
1049
1050static void fs_enet_remove(struct platform_device *ofdev)
1051{
1052 struct net_device *ndev = platform_get_drvdata(ofdev);
1053 struct fs_enet_private *fep = netdev_priv(ndev);
1054
1055 unregister_netdev(ndev);
1056
1057 fep->ops->free_bd(ndev);
1058 fep->ops->cleanup_data(ndev);
1059 dev_set_drvdata(fep->dev, NULL);
1060 of_node_put(fep->fpi->phy_node);
1061 clk_disable_unprepare(fep->fpi->clk_per);
1062 if (of_phy_is_fixed_link(ofdev->dev.of_node))
1063 of_phy_deregister_fixed_link(ofdev->dev.of_node);
1064 free_netdev(ndev);
1065}
1066
1067static const struct of_device_id fs_enet_match[] = {
1068#ifdef CONFIG_FS_ENET_HAS_SCC
1069 {
1070 .compatible = "fsl,cpm1-scc-enet",
1071 .data = (void *)&fs_scc_ops,
1072 },
1073 {
1074 .compatible = "fsl,cpm2-scc-enet",
1075 .data = (void *)&fs_scc_ops,
1076 },
1077#endif
1078#ifdef CONFIG_FS_ENET_HAS_FCC
1079 {
1080 .compatible = "fsl,cpm2-fcc-enet",
1081 .data = (void *)&fs_fcc_ops,
1082 },
1083#endif
1084#ifdef CONFIG_FS_ENET_HAS_FEC
1085#ifdef CONFIG_FS_ENET_MPC5121_FEC
1086 {
1087 .compatible = "fsl,mpc5121-fec",
1088 .data = (void *)&fs_fec_ops,
1089 },
1090 {
1091 .compatible = "fsl,mpc5125-fec",
1092 .data = (void *)&fs_fec_ops,
1093 },
1094#else
1095 {
1096 .compatible = "fsl,pq1-fec-enet",
1097 .data = (void *)&fs_fec_ops,
1098 },
1099#endif
1100#endif
1101 {}
1102};
1103MODULE_DEVICE_TABLE(of, fs_enet_match);
1104
1105static struct platform_driver fs_enet_driver = {
1106 .driver = {
1107 .name = "fs_enet",
1108 .of_match_table = fs_enet_match,
1109 },
1110 .probe = fs_enet_probe,
1111 .remove_new = fs_enet_remove,
1112};
1113
1114#ifdef CONFIG_NET_POLL_CONTROLLER
1115static void fs_enet_netpoll(struct net_device *dev)
1116{
1117 disable_irq(dev->irq);
1118 fs_enet_interrupt(dev->irq, dev);
1119 enable_irq(dev->irq);
1120}
1121#endif
1122
1123module_platform_driver(fs_enet_driver);
1/*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18#include <linux/module.h>
19#include <linux/kernel.h>
20#include <linux/types.h>
21#include <linux/string.h>
22#include <linux/ptrace.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/slab.h>
26#include <linux/interrupt.h>
27#include <linux/delay.h>
28#include <linux/netdevice.h>
29#include <linux/etherdevice.h>
30#include <linux/skbuff.h>
31#include <linux/spinlock.h>
32#include <linux/mii.h>
33#include <linux/ethtool.h>
34#include <linux/bitops.h>
35#include <linux/fs.h>
36#include <linux/platform_device.h>
37#include <linux/phy.h>
38#include <linux/of.h>
39#include <linux/of_mdio.h>
40#include <linux/of_platform.h>
41#include <linux/of_gpio.h>
42#include <linux/of_net.h>
43#include <linux/pgtable.h>
44
45#include <linux/vmalloc.h>
46#include <asm/irq.h>
47#include <linux/uaccess.h>
48
49#include "fs_enet.h"
50
51/*************************************************/
52
53MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
54MODULE_DESCRIPTION("Freescale Ethernet Driver");
55MODULE_LICENSE("GPL");
56
57static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
58module_param(fs_enet_debug, int, 0);
59MODULE_PARM_DESC(fs_enet_debug,
60 "Freescale bitmapped debugging message enable value");
61
62#define RX_RING_SIZE 32
63#define TX_RING_SIZE 64
64
65#ifdef CONFIG_NET_POLL_CONTROLLER
66static void fs_enet_netpoll(struct net_device *dev);
67#endif
68
69static void fs_set_multicast_list(struct net_device *dev)
70{
71 struct fs_enet_private *fep = netdev_priv(dev);
72
73 (*fep->ops->set_multicast_list)(dev);
74}
75
76static void skb_align(struct sk_buff *skb, int align)
77{
78 int off = ((unsigned long)skb->data) & (align - 1);
79
80 if (off)
81 skb_reserve(skb, align - off);
82}
83
84/* NAPI function */
85static int fs_enet_napi(struct napi_struct *napi, int budget)
86{
87 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
88 struct net_device *dev = fep->ndev;
89 const struct fs_platform_info *fpi = fep->fpi;
90 cbd_t __iomem *bdp;
91 struct sk_buff *skb, *skbn;
92 int received = 0;
93 u16 pkt_len, sc;
94 int curidx;
95 int dirtyidx, do_wake, do_restart;
96 int tx_left = TX_RING_SIZE;
97
98 spin_lock(&fep->tx_lock);
99 bdp = fep->dirty_tx;
100
101 /* clear status bits for napi*/
102 (*fep->ops->napi_clear_event)(dev);
103
104 do_wake = do_restart = 0;
105 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
106 dirtyidx = bdp - fep->tx_bd_base;
107
108 if (fep->tx_free == fep->tx_ring)
109 break;
110
111 skb = fep->tx_skbuff[dirtyidx];
112
113 /*
114 * Check for errors.
115 */
116 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
117 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
118
119 if (sc & BD_ENET_TX_HB) /* No heartbeat */
120 dev->stats.tx_heartbeat_errors++;
121 if (sc & BD_ENET_TX_LC) /* Late collision */
122 dev->stats.tx_window_errors++;
123 if (sc & BD_ENET_TX_RL) /* Retrans limit */
124 dev->stats.tx_aborted_errors++;
125 if (sc & BD_ENET_TX_UN) /* Underrun */
126 dev->stats.tx_fifo_errors++;
127 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
128 dev->stats.tx_carrier_errors++;
129
130 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
131 dev->stats.tx_errors++;
132 do_restart = 1;
133 }
134 } else
135 dev->stats.tx_packets++;
136
137 if (sc & BD_ENET_TX_READY) {
138 dev_warn(fep->dev,
139 "HEY! Enet xmit interrupt and TX_READY.\n");
140 }
141
142 /*
143 * Deferred means some collisions occurred during transmit,
144 * but we eventually sent the packet OK.
145 */
146 if (sc & BD_ENET_TX_DEF)
147 dev->stats.collisions++;
148
149 /* unmap */
150 if (fep->mapped_as_page[dirtyidx])
151 dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
152 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
153 else
154 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
155 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
156
157 /*
158 * Free the sk buffer associated with this last transmit.
159 */
160 if (skb) {
161 dev_kfree_skb(skb);
162 fep->tx_skbuff[dirtyidx] = NULL;
163 }
164
165 /*
166 * Update pointer to next buffer descriptor to be transmitted.
167 */
168 if ((sc & BD_ENET_TX_WRAP) == 0)
169 bdp++;
170 else
171 bdp = fep->tx_bd_base;
172
173 /*
174 * Since we have freed up a buffer, the ring is no longer
175 * full.
176 */
177 if (++fep->tx_free == MAX_SKB_FRAGS)
178 do_wake = 1;
179 tx_left--;
180 }
181
182 fep->dirty_tx = bdp;
183
184 if (do_restart)
185 (*fep->ops->tx_restart)(dev);
186
187 spin_unlock(&fep->tx_lock);
188
189 if (do_wake)
190 netif_wake_queue(dev);
191
192 /*
193 * First, grab all of the stats for the incoming packet.
194 * These get messed up if we get called due to a busy condition.
195 */
196 bdp = fep->cur_rx;
197
198 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
199 received < budget) {
200 curidx = bdp - fep->rx_bd_base;
201
202 /*
203 * Since we have allocated space to hold a complete frame,
204 * the last indicator should be set.
205 */
206 if ((sc & BD_ENET_RX_LAST) == 0)
207 dev_warn(fep->dev, "rcv is not +last\n");
208
209 /*
210 * Check for errors.
211 */
212 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
213 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
214 dev->stats.rx_errors++;
215 /* Frame too long or too short. */
216 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
217 dev->stats.rx_length_errors++;
218 /* Frame alignment */
219 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
220 dev->stats.rx_frame_errors++;
221 /* CRC Error */
222 if (sc & BD_ENET_RX_CR)
223 dev->stats.rx_crc_errors++;
224 /* FIFO overrun */
225 if (sc & BD_ENET_RX_OV)
226 dev->stats.rx_crc_errors++;
227
228 skbn = fep->rx_skbuff[curidx];
229 } else {
230 skb = fep->rx_skbuff[curidx];
231
232 /*
233 * Process the incoming frame.
234 */
235 dev->stats.rx_packets++;
236 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
237 dev->stats.rx_bytes += pkt_len + 4;
238
239 if (pkt_len <= fpi->rx_copybreak) {
240 /* +2 to make IP header L1 cache aligned */
241 skbn = netdev_alloc_skb(dev, pkt_len + 2);
242 if (skbn != NULL) {
243 skb_reserve(skbn, 2); /* align IP header */
244 skb_copy_from_linear_data(skb,
245 skbn->data, pkt_len);
246 swap(skb, skbn);
247 dma_sync_single_for_cpu(fep->dev,
248 CBDR_BUFADDR(bdp),
249 L1_CACHE_ALIGN(pkt_len),
250 DMA_FROM_DEVICE);
251 }
252 } else {
253 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
254
255 if (skbn) {
256 dma_addr_t dma;
257
258 skb_align(skbn, ENET_RX_ALIGN);
259
260 dma_unmap_single(fep->dev,
261 CBDR_BUFADDR(bdp),
262 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
263 DMA_FROM_DEVICE);
264
265 dma = dma_map_single(fep->dev,
266 skbn->data,
267 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
268 DMA_FROM_DEVICE);
269 CBDW_BUFADDR(bdp, dma);
270 }
271 }
272
273 if (skbn != NULL) {
274 skb_put(skb, pkt_len); /* Make room */
275 skb->protocol = eth_type_trans(skb, dev);
276 received++;
277 netif_receive_skb(skb);
278 } else {
279 dev->stats.rx_dropped++;
280 skbn = skb;
281 }
282 }
283
284 fep->rx_skbuff[curidx] = skbn;
285 CBDW_DATLEN(bdp, 0);
286 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
287
288 /*
289 * Update BD pointer to next entry.
290 */
291 if ((sc & BD_ENET_RX_WRAP) == 0)
292 bdp++;
293 else
294 bdp = fep->rx_bd_base;
295
296 (*fep->ops->rx_bd_done)(dev);
297 }
298
299 fep->cur_rx = bdp;
300
301 if (received < budget && tx_left) {
302 /* done */
303 napi_complete_done(napi, received);
304 (*fep->ops->napi_enable)(dev);
305
306 return received;
307 }
308
309 return budget;
310}
311
312/*
313 * The interrupt handler.
314 * This is called from the MPC core interrupt.
315 */
316static irqreturn_t
317fs_enet_interrupt(int irq, void *dev_id)
318{
319 struct net_device *dev = dev_id;
320 struct fs_enet_private *fep;
321 const struct fs_platform_info *fpi;
322 u32 int_events;
323 u32 int_clr_events;
324 int nr, napi_ok;
325 int handled;
326
327 fep = netdev_priv(dev);
328 fpi = fep->fpi;
329
330 nr = 0;
331 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
332 nr++;
333
334 int_clr_events = int_events;
335 int_clr_events &= ~fep->ev_napi;
336
337 (*fep->ops->clear_int_events)(dev, int_clr_events);
338
339 if (int_events & fep->ev_err)
340 (*fep->ops->ev_error)(dev, int_events);
341
342 if (int_events & fep->ev) {
343 napi_ok = napi_schedule_prep(&fep->napi);
344
345 (*fep->ops->napi_disable)(dev);
346 (*fep->ops->clear_int_events)(dev, fep->ev_napi);
347
348 /* NOTE: it is possible for FCCs in NAPI mode */
349 /* to submit a spurious interrupt while in poll */
350 if (napi_ok)
351 __napi_schedule(&fep->napi);
352 }
353
354 }
355
356 handled = nr > 0;
357 return IRQ_RETVAL(handled);
358}
359
360void fs_init_bds(struct net_device *dev)
361{
362 struct fs_enet_private *fep = netdev_priv(dev);
363 cbd_t __iomem *bdp;
364 struct sk_buff *skb;
365 int i;
366
367 fs_cleanup_bds(dev);
368
369 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
370 fep->tx_free = fep->tx_ring;
371 fep->cur_rx = fep->rx_bd_base;
372
373 /*
374 * Initialize the receive buffer descriptors.
375 */
376 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
377 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
378 if (skb == NULL)
379 break;
380
381 skb_align(skb, ENET_RX_ALIGN);
382 fep->rx_skbuff[i] = skb;
383 CBDW_BUFADDR(bdp,
384 dma_map_single(fep->dev, skb->data,
385 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
386 DMA_FROM_DEVICE));
387 CBDW_DATLEN(bdp, 0); /* zero */
388 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
389 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
390 }
391 /*
392 * if we failed, fillup remainder
393 */
394 for (; i < fep->rx_ring; i++, bdp++) {
395 fep->rx_skbuff[i] = NULL;
396 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
397 }
398
399 /*
400 * ...and the same for transmit.
401 */
402 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
403 fep->tx_skbuff[i] = NULL;
404 CBDW_BUFADDR(bdp, 0);
405 CBDW_DATLEN(bdp, 0);
406 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
407 }
408}
409
410void fs_cleanup_bds(struct net_device *dev)
411{
412 struct fs_enet_private *fep = netdev_priv(dev);
413 struct sk_buff *skb;
414 cbd_t __iomem *bdp;
415 int i;
416
417 /*
418 * Reset SKB transmit buffers.
419 */
420 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
421 if ((skb = fep->tx_skbuff[i]) == NULL)
422 continue;
423
424 /* unmap */
425 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
426 skb->len, DMA_TO_DEVICE);
427
428 fep->tx_skbuff[i] = NULL;
429 dev_kfree_skb(skb);
430 }
431
432 /*
433 * Reset SKB receive buffers
434 */
435 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
436 if ((skb = fep->rx_skbuff[i]) == NULL)
437 continue;
438
439 /* unmap */
440 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
441 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
442 DMA_FROM_DEVICE);
443
444 fep->rx_skbuff[i] = NULL;
445
446 dev_kfree_skb(skb);
447 }
448}
449
450/**********************************************************************************/
451
452#ifdef CONFIG_FS_ENET_MPC5121_FEC
453/*
454 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
455 */
456static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
457 struct sk_buff *skb)
458{
459 struct sk_buff *new_skb;
460
461 if (skb_linearize(skb))
462 return NULL;
463
464 /* Alloc new skb */
465 new_skb = netdev_alloc_skb(dev, skb->len + 4);
466 if (!new_skb)
467 return NULL;
468
469 /* Make sure new skb is properly aligned */
470 skb_align(new_skb, 4);
471
472 /* Copy data to new skb ... */
473 skb_copy_from_linear_data(skb, new_skb->data, skb->len);
474 skb_put(new_skb, skb->len);
475
476 /* ... and free an old one */
477 dev_kfree_skb_any(skb);
478
479 return new_skb;
480}
481#endif
482
483static netdev_tx_t
484fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
485{
486 struct fs_enet_private *fep = netdev_priv(dev);
487 cbd_t __iomem *bdp;
488 int curidx;
489 u16 sc;
490 int nr_frags;
491 skb_frag_t *frag;
492 int len;
493#ifdef CONFIG_FS_ENET_MPC5121_FEC
494 int is_aligned = 1;
495 int i;
496
497 if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
498 is_aligned = 0;
499 } else {
500 nr_frags = skb_shinfo(skb)->nr_frags;
501 frag = skb_shinfo(skb)->frags;
502 for (i = 0; i < nr_frags; i++, frag++) {
503 if (!IS_ALIGNED(skb_frag_off(frag), 4)) {
504 is_aligned = 0;
505 break;
506 }
507 }
508 }
509
510 if (!is_aligned) {
511 skb = tx_skb_align_workaround(dev, skb);
512 if (!skb) {
513 /*
514 * We have lost packet due to memory allocation error
515 * in tx_skb_align_workaround(). Hopefully original
516 * skb is still valid, so try transmit it later.
517 */
518 return NETDEV_TX_BUSY;
519 }
520 }
521#endif
522
523 spin_lock(&fep->tx_lock);
524
525 /*
526 * Fill in a Tx ring entry
527 */
528 bdp = fep->cur_tx;
529
530 nr_frags = skb_shinfo(skb)->nr_frags;
531 if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
532 netif_stop_queue(dev);
533 spin_unlock(&fep->tx_lock);
534
535 /*
536 * Ooops. All transmit buffers are full. Bail out.
537 * This should not happen, since the tx queue should be stopped.
538 */
539 dev_warn(fep->dev, "tx queue full!.\n");
540 return NETDEV_TX_BUSY;
541 }
542
543 curidx = bdp - fep->tx_bd_base;
544
545 len = skb->len;
546 dev->stats.tx_bytes += len;
547 if (nr_frags)
548 len -= skb->data_len;
549 fep->tx_free -= nr_frags + 1;
550 /*
551 * Push the data cache so the CPM does not get stale memory data.
552 */
553 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
554 skb->data, len, DMA_TO_DEVICE));
555 CBDW_DATLEN(bdp, len);
556
557 fep->mapped_as_page[curidx] = 0;
558 frag = skb_shinfo(skb)->frags;
559 while (nr_frags) {
560 CBDC_SC(bdp,
561 BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
562 BD_ENET_TX_TC);
563 CBDS_SC(bdp, BD_ENET_TX_READY);
564
565 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) {
566 bdp++;
567 curidx++;
568 } else {
569 bdp = fep->tx_bd_base;
570 curidx = 0;
571 }
572
573 len = skb_frag_size(frag);
574 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
575 DMA_TO_DEVICE));
576 CBDW_DATLEN(bdp, len);
577
578 fep->tx_skbuff[curidx] = NULL;
579 fep->mapped_as_page[curidx] = 1;
580
581 frag++;
582 nr_frags--;
583 }
584
585 /* Trigger transmission start */
586 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
587 BD_ENET_TX_LAST | BD_ENET_TX_TC;
588
589 /* note that while FEC does not have this bit
590 * it marks it as available for software use
591 * yay for hw reuse :) */
592 if (skb->len <= 60)
593 sc |= BD_ENET_TX_PAD;
594 CBDC_SC(bdp, BD_ENET_TX_STATS);
595 CBDS_SC(bdp, sc);
596
597 /* Save skb pointer. */
598 fep->tx_skbuff[curidx] = skb;
599
600 /* If this was the last BD in the ring, start at the beginning again. */
601 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
602 bdp++;
603 else
604 bdp = fep->tx_bd_base;
605 fep->cur_tx = bdp;
606
607 if (fep->tx_free < MAX_SKB_FRAGS)
608 netif_stop_queue(dev);
609
610 skb_tx_timestamp(skb);
611
612 (*fep->ops->tx_kickstart)(dev);
613
614 spin_unlock(&fep->tx_lock);
615
616 return NETDEV_TX_OK;
617}
618
619static void fs_timeout_work(struct work_struct *work)
620{
621 struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
622 timeout_work);
623 struct net_device *dev = fep->ndev;
624 unsigned long flags;
625 int wake = 0;
626
627 dev->stats.tx_errors++;
628
629 spin_lock_irqsave(&fep->lock, flags);
630
631 if (dev->flags & IFF_UP) {
632 phy_stop(dev->phydev);
633 (*fep->ops->stop)(dev);
634 (*fep->ops->restart)(dev);
635 }
636
637 phy_start(dev->phydev);
638 wake = fep->tx_free >= MAX_SKB_FRAGS &&
639 !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
640 spin_unlock_irqrestore(&fep->lock, flags);
641
642 if (wake)
643 netif_wake_queue(dev);
644}
645
646static void fs_timeout(struct net_device *dev, unsigned int txqueue)
647{
648 struct fs_enet_private *fep = netdev_priv(dev);
649
650 schedule_work(&fep->timeout_work);
651}
652
653/*-----------------------------------------------------------------------------
654 * generic link-change handler - should be sufficient for most cases
655 *-----------------------------------------------------------------------------*/
656static void generic_adjust_link(struct net_device *dev)
657{
658 struct fs_enet_private *fep = netdev_priv(dev);
659 struct phy_device *phydev = dev->phydev;
660 int new_state = 0;
661
662 if (phydev->link) {
663 /* adjust to duplex mode */
664 if (phydev->duplex != fep->oldduplex) {
665 new_state = 1;
666 fep->oldduplex = phydev->duplex;
667 }
668
669 if (phydev->speed != fep->oldspeed) {
670 new_state = 1;
671 fep->oldspeed = phydev->speed;
672 }
673
674 if (!fep->oldlink) {
675 new_state = 1;
676 fep->oldlink = 1;
677 }
678
679 if (new_state)
680 fep->ops->restart(dev);
681 } else if (fep->oldlink) {
682 new_state = 1;
683 fep->oldlink = 0;
684 fep->oldspeed = 0;
685 fep->oldduplex = -1;
686 }
687
688 if (new_state && netif_msg_link(fep))
689 phy_print_status(phydev);
690}
691
692
693static void fs_adjust_link(struct net_device *dev)
694{
695 struct fs_enet_private *fep = netdev_priv(dev);
696 unsigned long flags;
697
698 spin_lock_irqsave(&fep->lock, flags);
699
700 if(fep->ops->adjust_link)
701 fep->ops->adjust_link(dev);
702 else
703 generic_adjust_link(dev);
704
705 spin_unlock_irqrestore(&fep->lock, flags);
706}
707
708static int fs_init_phy(struct net_device *dev)
709{
710 struct fs_enet_private *fep = netdev_priv(dev);
711 struct phy_device *phydev;
712 phy_interface_t iface;
713
714 fep->oldlink = 0;
715 fep->oldspeed = 0;
716 fep->oldduplex = -1;
717
718 iface = fep->fpi->use_rmii ?
719 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
720
721 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
722 iface);
723 if (!phydev) {
724 dev_err(&dev->dev, "Could not attach to PHY\n");
725 return -ENODEV;
726 }
727
728 return 0;
729}
730
731static int fs_enet_open(struct net_device *dev)
732{
733 struct fs_enet_private *fep = netdev_priv(dev);
734 int r;
735 int err;
736
737 /* to initialize the fep->cur_rx,... */
738 /* not doing this, will cause a crash in fs_enet_napi */
739 fs_init_bds(fep->ndev);
740
741 napi_enable(&fep->napi);
742
743 /* Install our interrupt handler. */
744 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
745 "fs_enet-mac", dev);
746 if (r != 0) {
747 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
748 napi_disable(&fep->napi);
749 return -EINVAL;
750 }
751
752 err = fs_init_phy(dev);
753 if (err) {
754 free_irq(fep->interrupt, dev);
755 napi_disable(&fep->napi);
756 return err;
757 }
758 phy_start(dev->phydev);
759
760 netif_start_queue(dev);
761
762 return 0;
763}
764
765static int fs_enet_close(struct net_device *dev)
766{
767 struct fs_enet_private *fep = netdev_priv(dev);
768 unsigned long flags;
769
770 netif_stop_queue(dev);
771 netif_carrier_off(dev);
772 napi_disable(&fep->napi);
773 cancel_work_sync(&fep->timeout_work);
774 phy_stop(dev->phydev);
775
776 spin_lock_irqsave(&fep->lock, flags);
777 spin_lock(&fep->tx_lock);
778 (*fep->ops->stop)(dev);
779 spin_unlock(&fep->tx_lock);
780 spin_unlock_irqrestore(&fep->lock, flags);
781
782 /* release any irqs */
783 phy_disconnect(dev->phydev);
784 free_irq(fep->interrupt, dev);
785
786 return 0;
787}
788
789/*************************************************************************/
790
791static void fs_get_drvinfo(struct net_device *dev,
792 struct ethtool_drvinfo *info)
793{
794 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
795}
796
797static int fs_get_regs_len(struct net_device *dev)
798{
799 struct fs_enet_private *fep = netdev_priv(dev);
800
801 return (*fep->ops->get_regs_len)(dev);
802}
803
804static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
805 void *p)
806{
807 struct fs_enet_private *fep = netdev_priv(dev);
808 unsigned long flags;
809 int r, len;
810
811 len = regs->len;
812
813 spin_lock_irqsave(&fep->lock, flags);
814 r = (*fep->ops->get_regs)(dev, p, &len);
815 spin_unlock_irqrestore(&fep->lock, flags);
816
817 if (r == 0)
818 regs->version = 0;
819}
820
821static u32 fs_get_msglevel(struct net_device *dev)
822{
823 struct fs_enet_private *fep = netdev_priv(dev);
824 return fep->msg_enable;
825}
826
827static void fs_set_msglevel(struct net_device *dev, u32 value)
828{
829 struct fs_enet_private *fep = netdev_priv(dev);
830 fep->msg_enable = value;
831}
832
833static int fs_get_tunable(struct net_device *dev,
834 const struct ethtool_tunable *tuna, void *data)
835{
836 struct fs_enet_private *fep = netdev_priv(dev);
837 struct fs_platform_info *fpi = fep->fpi;
838 int ret = 0;
839
840 switch (tuna->id) {
841 case ETHTOOL_RX_COPYBREAK:
842 *(u32 *)data = fpi->rx_copybreak;
843 break;
844 default:
845 ret = -EINVAL;
846 break;
847 }
848
849 return ret;
850}
851
852static int fs_set_tunable(struct net_device *dev,
853 const struct ethtool_tunable *tuna, const void *data)
854{
855 struct fs_enet_private *fep = netdev_priv(dev);
856 struct fs_platform_info *fpi = fep->fpi;
857 int ret = 0;
858
859 switch (tuna->id) {
860 case ETHTOOL_RX_COPYBREAK:
861 fpi->rx_copybreak = *(u32 *)data;
862 break;
863 default:
864 ret = -EINVAL;
865 break;
866 }
867
868 return ret;
869}
870
871static const struct ethtool_ops fs_ethtool_ops = {
872 .get_drvinfo = fs_get_drvinfo,
873 .get_regs_len = fs_get_regs_len,
874 .nway_reset = phy_ethtool_nway_reset,
875 .get_link = ethtool_op_get_link,
876 .get_msglevel = fs_get_msglevel,
877 .set_msglevel = fs_set_msglevel,
878 .get_regs = fs_get_regs,
879 .get_ts_info = ethtool_op_get_ts_info,
880 .get_link_ksettings = phy_ethtool_get_link_ksettings,
881 .set_link_ksettings = phy_ethtool_set_link_ksettings,
882 .get_tunable = fs_get_tunable,
883 .set_tunable = fs_set_tunable,
884};
885
886extern int fs_mii_connect(struct net_device *dev);
887extern void fs_mii_disconnect(struct net_device *dev);
888
889/**************************************************************************************/
890
891#ifdef CONFIG_FS_ENET_HAS_FEC
892#define IS_FEC(match) ((match)->data == &fs_fec_ops)
893#else
894#define IS_FEC(match) 0
895#endif
896
897static const struct net_device_ops fs_enet_netdev_ops = {
898 .ndo_open = fs_enet_open,
899 .ndo_stop = fs_enet_close,
900 .ndo_start_xmit = fs_enet_start_xmit,
901 .ndo_tx_timeout = fs_timeout,
902 .ndo_set_rx_mode = fs_set_multicast_list,
903 .ndo_do_ioctl = phy_do_ioctl_running,
904 .ndo_validate_addr = eth_validate_addr,
905 .ndo_set_mac_address = eth_mac_addr,
906#ifdef CONFIG_NET_POLL_CONTROLLER
907 .ndo_poll_controller = fs_enet_netpoll,
908#endif
909};
910
911static const struct of_device_id fs_enet_match[];
912static int fs_enet_probe(struct platform_device *ofdev)
913{
914 const struct of_device_id *match;
915 struct net_device *ndev;
916 struct fs_enet_private *fep;
917 struct fs_platform_info *fpi;
918 const u32 *data;
919 struct clk *clk;
920 int err;
921 const char *phy_connection_type;
922 int privsize, len, ret = -ENODEV;
923
924 match = of_match_device(fs_enet_match, &ofdev->dev);
925 if (!match)
926 return -EINVAL;
927
928 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
929 if (!fpi)
930 return -ENOMEM;
931
932 if (!IS_FEC(match)) {
933 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
934 if (!data || len != 4)
935 goto out_free_fpi;
936
937 fpi->cp_command = *data;
938 }
939
940 fpi->rx_ring = RX_RING_SIZE;
941 fpi->tx_ring = TX_RING_SIZE;
942 fpi->rx_copybreak = 240;
943 fpi->napi_weight = 17;
944 fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
945 if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
946 err = of_phy_register_fixed_link(ofdev->dev.of_node);
947 if (err)
948 goto out_free_fpi;
949
950 /* In the case of a fixed PHY, the DT node associated
951 * to the PHY is the Ethernet MAC DT node.
952 */
953 fpi->phy_node = of_node_get(ofdev->dev.of_node);
954 }
955
956 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
957 phy_connection_type = of_get_property(ofdev->dev.of_node,
958 "phy-connection-type", NULL);
959 if (phy_connection_type && !strcmp("rmii", phy_connection_type))
960 fpi->use_rmii = 1;
961 }
962
963 /* make clock lookup non-fatal (the driver is shared among platforms),
964 * but require enable to succeed when a clock was specified/found,
965 * keep a reference to the clock upon successful acquisition
966 */
967 clk = devm_clk_get(&ofdev->dev, "per");
968 if (!IS_ERR(clk)) {
969 ret = clk_prepare_enable(clk);
970 if (ret)
971 goto out_deregister_fixed_link;
972
973 fpi->clk_per = clk;
974 }
975
976 privsize = sizeof(*fep) +
977 sizeof(struct sk_buff **) *
978 (fpi->rx_ring + fpi->tx_ring) +
979 sizeof(char) * fpi->tx_ring;
980
981 ndev = alloc_etherdev(privsize);
982 if (!ndev) {
983 ret = -ENOMEM;
984 goto out_put;
985 }
986
987 SET_NETDEV_DEV(ndev, &ofdev->dev);
988 platform_set_drvdata(ofdev, ndev);
989
990 fep = netdev_priv(ndev);
991 fep->dev = &ofdev->dev;
992 fep->ndev = ndev;
993 fep->fpi = fpi;
994 fep->ops = match->data;
995
996 ret = fep->ops->setup_data(ndev);
997 if (ret)
998 goto out_free_dev;
999
1000 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1001 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1002 fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
1003 fpi->tx_ring);
1004
1005 spin_lock_init(&fep->lock);
1006 spin_lock_init(&fep->tx_lock);
1007
1008 of_get_mac_address(ofdev->dev.of_node, ndev->dev_addr);
1009
1010 ret = fep->ops->allocate_bd(ndev);
1011 if (ret)
1012 goto out_cleanup_data;
1013
1014 fep->rx_bd_base = fep->ring_base;
1015 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1016
1017 fep->tx_ring = fpi->tx_ring;
1018 fep->rx_ring = fpi->rx_ring;
1019
1020 ndev->netdev_ops = &fs_enet_netdev_ops;
1021 ndev->watchdog_timeo = 2 * HZ;
1022 INIT_WORK(&fep->timeout_work, fs_timeout_work);
1023 netif_napi_add(ndev, &fep->napi, fs_enet_napi, fpi->napi_weight);
1024
1025 ndev->ethtool_ops = &fs_ethtool_ops;
1026
1027 netif_carrier_off(ndev);
1028
1029 ndev->features |= NETIF_F_SG;
1030
1031 ret = register_netdev(ndev);
1032 if (ret)
1033 goto out_free_bd;
1034
1035 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1036
1037 return 0;
1038
1039out_free_bd:
1040 fep->ops->free_bd(ndev);
1041out_cleanup_data:
1042 fep->ops->cleanup_data(ndev);
1043out_free_dev:
1044 free_netdev(ndev);
1045out_put:
1046 clk_disable_unprepare(fpi->clk_per);
1047out_deregister_fixed_link:
1048 of_node_put(fpi->phy_node);
1049 if (of_phy_is_fixed_link(ofdev->dev.of_node))
1050 of_phy_deregister_fixed_link(ofdev->dev.of_node);
1051out_free_fpi:
1052 kfree(fpi);
1053 return ret;
1054}
1055
1056static int fs_enet_remove(struct platform_device *ofdev)
1057{
1058 struct net_device *ndev = platform_get_drvdata(ofdev);
1059 struct fs_enet_private *fep = netdev_priv(ndev);
1060
1061 unregister_netdev(ndev);
1062
1063 fep->ops->free_bd(ndev);
1064 fep->ops->cleanup_data(ndev);
1065 dev_set_drvdata(fep->dev, NULL);
1066 of_node_put(fep->fpi->phy_node);
1067 clk_disable_unprepare(fep->fpi->clk_per);
1068 if (of_phy_is_fixed_link(ofdev->dev.of_node))
1069 of_phy_deregister_fixed_link(ofdev->dev.of_node);
1070 free_netdev(ndev);
1071 return 0;
1072}
1073
1074static const struct of_device_id fs_enet_match[] = {
1075#ifdef CONFIG_FS_ENET_HAS_SCC
1076 {
1077 .compatible = "fsl,cpm1-scc-enet",
1078 .data = (void *)&fs_scc_ops,
1079 },
1080 {
1081 .compatible = "fsl,cpm2-scc-enet",
1082 .data = (void *)&fs_scc_ops,
1083 },
1084#endif
1085#ifdef CONFIG_FS_ENET_HAS_FCC
1086 {
1087 .compatible = "fsl,cpm2-fcc-enet",
1088 .data = (void *)&fs_fcc_ops,
1089 },
1090#endif
1091#ifdef CONFIG_FS_ENET_HAS_FEC
1092#ifdef CONFIG_FS_ENET_MPC5121_FEC
1093 {
1094 .compatible = "fsl,mpc5121-fec",
1095 .data = (void *)&fs_fec_ops,
1096 },
1097 {
1098 .compatible = "fsl,mpc5125-fec",
1099 .data = (void *)&fs_fec_ops,
1100 },
1101#else
1102 {
1103 .compatible = "fsl,pq1-fec-enet",
1104 .data = (void *)&fs_fec_ops,
1105 },
1106#endif
1107#endif
1108 {}
1109};
1110MODULE_DEVICE_TABLE(of, fs_enet_match);
1111
1112static struct platform_driver fs_enet_driver = {
1113 .driver = {
1114 .name = "fs_enet",
1115 .of_match_table = fs_enet_match,
1116 },
1117 .probe = fs_enet_probe,
1118 .remove = fs_enet_remove,
1119};
1120
1121#ifdef CONFIG_NET_POLL_CONTROLLER
1122static void fs_enet_netpoll(struct net_device *dev)
1123{
1124 disable_irq(dev->irq);
1125 fs_enet_interrupt(dev->irq, dev);
1126 enable_irq(dev->irq);
1127}
1128#endif
1129
1130module_platform_driver(fs_enet_driver);