Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
   3 *
   4 * Copyright (c) 2003 Intracom S.A.
   5 *  by Pantelis Antoniou <panto@intracom.gr>
   6 *
   7 * 2005 (c) MontaVista Software, Inc.
   8 * Vitaly Bordug <vbordug@ru.mvista.com>
   9 *
  10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
  11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
  12 *
  13 * This file is licensed under the terms of the GNU General Public License
  14 * version 2. This program is licensed "as is" without any warranty of any
  15 * kind, whether express or implied.
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/kernel.h>
  20#include <linux/types.h>
  21#include <linux/string.h>
  22#include <linux/ptrace.h>
  23#include <linux/errno.h>
  24#include <linux/ioport.h>
  25#include <linux/slab.h>
  26#include <linux/interrupt.h>
  27#include <linux/delay.h>
  28#include <linux/netdevice.h>
  29#include <linux/etherdevice.h>
  30#include <linux/skbuff.h>
  31#include <linux/spinlock.h>
  32#include <linux/mii.h>
  33#include <linux/ethtool.h>
  34#include <linux/bitops.h>
  35#include <linux/fs.h>
  36#include <linux/platform_device.h>
  37#include <linux/phy.h>
  38#include <linux/property.h>
  39#include <linux/of.h>
  40#include <linux/of_mdio.h>
 
 
  41#include <linux/of_net.h>
  42#include <linux/pgtable.h>
  43
  44#include <linux/vmalloc.h>
  45#include <asm/irq.h>
  46#include <linux/uaccess.h>
  47
  48#include "fs_enet.h"
  49
  50/*************************************************/
  51
  52MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
  53MODULE_DESCRIPTION("Freescale Ethernet Driver");
  54MODULE_LICENSE("GPL");
  55
  56static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
  57module_param(fs_enet_debug, int, 0);
  58MODULE_PARM_DESC(fs_enet_debug,
  59		 "Freescale bitmapped debugging message enable value");
  60
  61#define RX_RING_SIZE	32
  62#define TX_RING_SIZE	64
  63
  64#ifdef CONFIG_NET_POLL_CONTROLLER
  65static void fs_enet_netpoll(struct net_device *dev);
  66#endif
  67
  68static void fs_set_multicast_list(struct net_device *dev)
  69{
  70	struct fs_enet_private *fep = netdev_priv(dev);
  71
  72	(*fep->ops->set_multicast_list)(dev);
  73}
  74
  75static void skb_align(struct sk_buff *skb, int align)
  76{
  77	int off = ((unsigned long)skb->data) & (align - 1);
  78
  79	if (off)
  80		skb_reserve(skb, align - off);
  81}
  82
  83/* NAPI function */
  84static int fs_enet_napi(struct napi_struct *napi, int budget)
  85{
  86	struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
  87	struct net_device *dev = fep->ndev;
  88	const struct fs_platform_info *fpi = fep->fpi;
  89	cbd_t __iomem *bdp;
  90	struct sk_buff *skb, *skbn;
  91	int received = 0;
  92	u16 pkt_len, sc;
  93	int curidx;
  94	int dirtyidx, do_wake, do_restart;
  95	int tx_left = TX_RING_SIZE;
  96
  97	spin_lock(&fep->tx_lock);
  98	bdp = fep->dirty_tx;
  99
 100	/* clear status bits for napi*/
 101	(*fep->ops->napi_clear_event)(dev);
 102
 103	do_wake = do_restart = 0;
 104	while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
 105		dirtyidx = bdp - fep->tx_bd_base;
 106
 107		if (fep->tx_free == fep->tx_ring)
 108			break;
 109
 110		skb = fep->tx_skbuff[dirtyidx];
 111
 112		/*
 113		 * Check for errors.
 114		 */
 115		if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
 116			  BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
 117
 118			if (sc & BD_ENET_TX_HB)	/* No heartbeat */
 119				dev->stats.tx_heartbeat_errors++;
 120			if (sc & BD_ENET_TX_LC)	/* Late collision */
 121				dev->stats.tx_window_errors++;
 122			if (sc & BD_ENET_TX_RL)	/* Retrans limit */
 123				dev->stats.tx_aborted_errors++;
 124			if (sc & BD_ENET_TX_UN)	/* Underrun */
 125				dev->stats.tx_fifo_errors++;
 126			if (sc & BD_ENET_TX_CSL)	/* Carrier lost */
 127				dev->stats.tx_carrier_errors++;
 128
 129			if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
 130				dev->stats.tx_errors++;
 131				do_restart = 1;
 132			}
 133		} else
 134			dev->stats.tx_packets++;
 135
 136		if (sc & BD_ENET_TX_READY) {
 137			dev_warn(fep->dev,
 138				 "HEY! Enet xmit interrupt and TX_READY.\n");
 139		}
 140
 141		/*
 142		 * Deferred means some collisions occurred during transmit,
 143		 * but we eventually sent the packet OK.
 144		 */
 145		if (sc & BD_ENET_TX_DEF)
 146			dev->stats.collisions++;
 147
 148		/* unmap */
 149		if (fep->mapped_as_page[dirtyidx])
 150			dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
 151				       CBDR_DATLEN(bdp), DMA_TO_DEVICE);
 152		else
 153			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 154					 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
 155
 156		/*
 157		 * Free the sk buffer associated with this last transmit.
 158		 */
 159		if (skb) {
 160			dev_kfree_skb(skb);
 161			fep->tx_skbuff[dirtyidx] = NULL;
 162		}
 163
 164		/*
 165		 * Update pointer to next buffer descriptor to be transmitted.
 166		 */
 167		if ((sc & BD_ENET_TX_WRAP) == 0)
 168			bdp++;
 169		else
 170			bdp = fep->tx_bd_base;
 171
 172		/*
 173		 * Since we have freed up a buffer, the ring is no longer
 174		 * full.
 175		 */
 176		if (++fep->tx_free == MAX_SKB_FRAGS)
 177			do_wake = 1;
 178		tx_left--;
 179	}
 180
 181	fep->dirty_tx = bdp;
 182
 183	if (do_restart)
 184		(*fep->ops->tx_restart)(dev);
 185
 186	spin_unlock(&fep->tx_lock);
 187
 188	if (do_wake)
 189		netif_wake_queue(dev);
 190
 191	/*
 192	 * First, grab all of the stats for the incoming packet.
 193	 * These get messed up if we get called due to a busy condition.
 194	 */
 195	bdp = fep->cur_rx;
 196
 197	while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
 198	       received < budget) {
 199		curidx = bdp - fep->rx_bd_base;
 200
 201		/*
 202		 * Since we have allocated space to hold a complete frame,
 203		 * the last indicator should be set.
 204		 */
 205		if ((sc & BD_ENET_RX_LAST) == 0)
 206			dev_warn(fep->dev, "rcv is not +last\n");
 207
 208		/*
 209		 * Check for errors.
 210		 */
 211		if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
 212			  BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
 213			dev->stats.rx_errors++;
 214			/* Frame too long or too short. */
 215			if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
 216				dev->stats.rx_length_errors++;
 217			/* Frame alignment */
 218			if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
 219				dev->stats.rx_frame_errors++;
 220			/* CRC Error */
 221			if (sc & BD_ENET_RX_CR)
 222				dev->stats.rx_crc_errors++;
 223			/* FIFO overrun */
 224			if (sc & BD_ENET_RX_OV)
 225				dev->stats.rx_crc_errors++;
 226
 227			skbn = fep->rx_skbuff[curidx];
 228		} else {
 229			skb = fep->rx_skbuff[curidx];
 230
 231			/*
 232			 * Process the incoming frame.
 233			 */
 234			dev->stats.rx_packets++;
 235			pkt_len = CBDR_DATLEN(bdp) - 4;	/* remove CRC */
 236			dev->stats.rx_bytes += pkt_len + 4;
 237
 238			if (pkt_len <= fpi->rx_copybreak) {
 239				/* +2 to make IP header L1 cache aligned */
 240				skbn = netdev_alloc_skb(dev, pkt_len + 2);
 241				if (skbn != NULL) {
 242					skb_reserve(skbn, 2);	/* align IP header */
 243					skb_copy_from_linear_data(skb,
 244						      skbn->data, pkt_len);
 245					swap(skb, skbn);
 246					dma_sync_single_for_cpu(fep->dev,
 247						CBDR_BUFADDR(bdp),
 248						L1_CACHE_ALIGN(pkt_len),
 249						DMA_FROM_DEVICE);
 250				}
 251			} else {
 252				skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
 253
 254				if (skbn) {
 255					dma_addr_t dma;
 256
 257					skb_align(skbn, ENET_RX_ALIGN);
 258
 259					dma_unmap_single(fep->dev,
 260						CBDR_BUFADDR(bdp),
 261						L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 262						DMA_FROM_DEVICE);
 263
 264					dma = dma_map_single(fep->dev,
 265						skbn->data,
 266						L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 267						DMA_FROM_DEVICE);
 268					CBDW_BUFADDR(bdp, dma);
 269				}
 270			}
 271
 272			if (skbn != NULL) {
 273				skb_put(skb, pkt_len);	/* Make room */
 274				skb->protocol = eth_type_trans(skb, dev);
 275				received++;
 276				netif_receive_skb(skb);
 277			} else {
 278				dev->stats.rx_dropped++;
 279				skbn = skb;
 280			}
 281		}
 282
 283		fep->rx_skbuff[curidx] = skbn;
 284		CBDW_DATLEN(bdp, 0);
 285		CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
 286
 287		/*
 288		 * Update BD pointer to next entry.
 289		 */
 290		if ((sc & BD_ENET_RX_WRAP) == 0)
 291			bdp++;
 292		else
 293			bdp = fep->rx_bd_base;
 294
 295		(*fep->ops->rx_bd_done)(dev);
 296	}
 297
 298	fep->cur_rx = bdp;
 299
 300	if (received < budget && tx_left) {
 301		/* done */
 302		napi_complete_done(napi, received);
 303		(*fep->ops->napi_enable)(dev);
 304
 305		return received;
 306	}
 307
 308	return budget;
 309}
 310
 311/*
 312 * The interrupt handler.
 313 * This is called from the MPC core interrupt.
 314 */
 315static irqreturn_t
 316fs_enet_interrupt(int irq, void *dev_id)
 317{
 318	struct net_device *dev = dev_id;
 319	struct fs_enet_private *fep;
 
 320	u32 int_events;
 321	u32 int_clr_events;
 322	int nr, napi_ok;
 323	int handled;
 324
 325	fep = netdev_priv(dev);
 
 326
 327	nr = 0;
 328	while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
 329		nr++;
 330
 331		int_clr_events = int_events;
 332		int_clr_events &= ~fep->ev_napi;
 333
 334		(*fep->ops->clear_int_events)(dev, int_clr_events);
 335
 336		if (int_events & fep->ev_err)
 337			(*fep->ops->ev_error)(dev, int_events);
 338
 339		if (int_events & fep->ev) {
 340			napi_ok = napi_schedule_prep(&fep->napi);
 341
 342			(*fep->ops->napi_disable)(dev);
 343			(*fep->ops->clear_int_events)(dev, fep->ev_napi);
 344
 345			/* NOTE: it is possible for FCCs in NAPI mode    */
 346			/* to submit a spurious interrupt while in poll  */
 347			if (napi_ok)
 348				__napi_schedule(&fep->napi);
 349		}
 350
 351	}
 352
 353	handled = nr > 0;
 354	return IRQ_RETVAL(handled);
 355}
 356
 357void fs_init_bds(struct net_device *dev)
 358{
 359	struct fs_enet_private *fep = netdev_priv(dev);
 360	cbd_t __iomem *bdp;
 361	struct sk_buff *skb;
 362	int i;
 363
 364	fs_cleanup_bds(dev);
 365
 366	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
 367	fep->tx_free = fep->tx_ring;
 368	fep->cur_rx = fep->rx_bd_base;
 369
 370	/*
 371	 * Initialize the receive buffer descriptors.
 372	 */
 373	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
 374		skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
 375		if (skb == NULL)
 376			break;
 377
 378		skb_align(skb, ENET_RX_ALIGN);
 379		fep->rx_skbuff[i] = skb;
 380		CBDW_BUFADDR(bdp,
 381			dma_map_single(fep->dev, skb->data,
 382				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 383				DMA_FROM_DEVICE));
 384		CBDW_DATLEN(bdp, 0);	/* zero */
 385		CBDW_SC(bdp, BD_ENET_RX_EMPTY |
 386			((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
 387	}
 388	/*
 389	 * if we failed, fillup remainder
 390	 */
 391	for (; i < fep->rx_ring; i++, bdp++) {
 392		fep->rx_skbuff[i] = NULL;
 393		CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
 394	}
 395
 396	/*
 397	 * ...and the same for transmit.
 398	 */
 399	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
 400		fep->tx_skbuff[i] = NULL;
 401		CBDW_BUFADDR(bdp, 0);
 402		CBDW_DATLEN(bdp, 0);
 403		CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
 404	}
 405}
 406
 407void fs_cleanup_bds(struct net_device *dev)
 408{
 409	struct fs_enet_private *fep = netdev_priv(dev);
 410	struct sk_buff *skb;
 411	cbd_t __iomem *bdp;
 412	int i;
 413
 414	/*
 415	 * Reset SKB transmit buffers.
 416	 */
 417	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
 418		if ((skb = fep->tx_skbuff[i]) == NULL)
 419			continue;
 420
 421		/* unmap */
 422		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 423				skb->len, DMA_TO_DEVICE);
 424
 425		fep->tx_skbuff[i] = NULL;
 426		dev_kfree_skb(skb);
 427	}
 428
 429	/*
 430	 * Reset SKB receive buffers
 431	 */
 432	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
 433		if ((skb = fep->rx_skbuff[i]) == NULL)
 434			continue;
 435
 436		/* unmap */
 437		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 438			L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 439			DMA_FROM_DEVICE);
 440
 441		fep->rx_skbuff[i] = NULL;
 442
 443		dev_kfree_skb(skb);
 444	}
 445}
 446
 447/**********************************************************************************/
 448
 449#ifdef CONFIG_FS_ENET_MPC5121_FEC
 450/*
 451 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
 452 */
 453static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
 454					       struct sk_buff *skb)
 455{
 456	struct sk_buff *new_skb;
 457
 458	if (skb_linearize(skb))
 459		return NULL;
 460
 461	/* Alloc new skb */
 462	new_skb = netdev_alloc_skb(dev, skb->len + 4);
 463	if (!new_skb)
 464		return NULL;
 465
 466	/* Make sure new skb is properly aligned */
 467	skb_align(new_skb, 4);
 468
 469	/* Copy data to new skb ... */
 470	skb_copy_from_linear_data(skb, new_skb->data, skb->len);
 471	skb_put(new_skb, skb->len);
 472
 473	/* ... and free an old one */
 474	dev_kfree_skb_any(skb);
 475
 476	return new_skb;
 477}
 478#endif
 479
 480static netdev_tx_t
 481fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
 482{
 483	struct fs_enet_private *fep = netdev_priv(dev);
 484	cbd_t __iomem *bdp;
 485	int curidx;
 486	u16 sc;
 487	int nr_frags;
 488	skb_frag_t *frag;
 489	int len;
 490#ifdef CONFIG_FS_ENET_MPC5121_FEC
 491	int is_aligned = 1;
 492	int i;
 493
 494	if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
 495		is_aligned = 0;
 496	} else {
 497		nr_frags = skb_shinfo(skb)->nr_frags;
 498		frag = skb_shinfo(skb)->frags;
 499		for (i = 0; i < nr_frags; i++, frag++) {
 500			if (!IS_ALIGNED(skb_frag_off(frag), 4)) {
 501				is_aligned = 0;
 502				break;
 503			}
 504		}
 505	}
 506
 507	if (!is_aligned) {
 508		skb = tx_skb_align_workaround(dev, skb);
 509		if (!skb) {
 510			/*
 511			 * We have lost packet due to memory allocation error
 512			 * in tx_skb_align_workaround(). Hopefully original
 513			 * skb is still valid, so try transmit it later.
 514			 */
 515			return NETDEV_TX_BUSY;
 516		}
 517	}
 518#endif
 519
 520	spin_lock(&fep->tx_lock);
 521
 522	/*
 523	 * Fill in a Tx ring entry
 524	 */
 525	bdp = fep->cur_tx;
 526
 527	nr_frags = skb_shinfo(skb)->nr_frags;
 528	if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
 529		netif_stop_queue(dev);
 530		spin_unlock(&fep->tx_lock);
 531
 532		/*
 533		 * Ooops.  All transmit buffers are full.  Bail out.
 534		 * This should not happen, since the tx queue should be stopped.
 535		 */
 536		dev_warn(fep->dev, "tx queue full!.\n");
 537		return NETDEV_TX_BUSY;
 538	}
 539
 540	curidx = bdp - fep->tx_bd_base;
 541
 542	len = skb->len;
 543	dev->stats.tx_bytes += len;
 544	if (nr_frags)
 545		len -= skb->data_len;
 546	fep->tx_free -= nr_frags + 1;
 547	/*
 548	 * Push the data cache so the CPM does not get stale memory data.
 549	 */
 550	CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
 551				skb->data, len, DMA_TO_DEVICE));
 552	CBDW_DATLEN(bdp, len);
 553
 554	fep->mapped_as_page[curidx] = 0;
 555	frag = skb_shinfo(skb)->frags;
 556	while (nr_frags) {
 557		CBDC_SC(bdp,
 558			BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
 559			BD_ENET_TX_TC);
 560		CBDS_SC(bdp, BD_ENET_TX_READY);
 561
 562		if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) {
 563			bdp++;
 564			curidx++;
 565		} else {
 566			bdp = fep->tx_bd_base;
 567			curidx = 0;
 568		}
 569
 570		len = skb_frag_size(frag);
 571		CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
 572						   DMA_TO_DEVICE));
 573		CBDW_DATLEN(bdp, len);
 574
 575		fep->tx_skbuff[curidx] = NULL;
 576		fep->mapped_as_page[curidx] = 1;
 577
 578		frag++;
 579		nr_frags--;
 580	}
 581
 582	/* Trigger transmission start */
 583	sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
 584	     BD_ENET_TX_LAST | BD_ENET_TX_TC;
 585
 586	/* note that while FEC does not have this bit
 587	 * it marks it as available for software use
 588	 * yay for hw reuse :) */
 589	if (skb->len <= 60)
 590		sc |= BD_ENET_TX_PAD;
 591	CBDC_SC(bdp, BD_ENET_TX_STATS);
 592	CBDS_SC(bdp, sc);
 593
 594	/* Save skb pointer. */
 595	fep->tx_skbuff[curidx] = skb;
 596
 597	/* If this was the last BD in the ring, start at the beginning again. */
 598	if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
 599		bdp++;
 600	else
 601		bdp = fep->tx_bd_base;
 602	fep->cur_tx = bdp;
 603
 604	if (fep->tx_free < MAX_SKB_FRAGS)
 605		netif_stop_queue(dev);
 606
 607	skb_tx_timestamp(skb);
 608
 609	(*fep->ops->tx_kickstart)(dev);
 610
 611	spin_unlock(&fep->tx_lock);
 612
 613	return NETDEV_TX_OK;
 614}
 615
 616static void fs_timeout_work(struct work_struct *work)
 617{
 618	struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
 619						   timeout_work);
 620	struct net_device *dev = fep->ndev;
 621	unsigned long flags;
 622	int wake = 0;
 623
 624	dev->stats.tx_errors++;
 625
 626	spin_lock_irqsave(&fep->lock, flags);
 627
 628	if (dev->flags & IFF_UP) {
 629		phy_stop(dev->phydev);
 630		(*fep->ops->stop)(dev);
 631		(*fep->ops->restart)(dev);
 632	}
 633
 634	phy_start(dev->phydev);
 635	wake = fep->tx_free >= MAX_SKB_FRAGS &&
 636	       !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
 637	spin_unlock_irqrestore(&fep->lock, flags);
 638
 639	if (wake)
 640		netif_wake_queue(dev);
 641}
 642
 643static void fs_timeout(struct net_device *dev, unsigned int txqueue)
 644{
 645	struct fs_enet_private *fep = netdev_priv(dev);
 646
 647	schedule_work(&fep->timeout_work);
 648}
 649
 650/*-----------------------------------------------------------------------------
 651 *  generic link-change handler - should be sufficient for most cases
 652 *-----------------------------------------------------------------------------*/
 653static void generic_adjust_link(struct  net_device *dev)
 654{
 655	struct fs_enet_private *fep = netdev_priv(dev);
 656	struct phy_device *phydev = dev->phydev;
 657	int new_state = 0;
 658
 659	if (phydev->link) {
 660		/* adjust to duplex mode */
 661		if (phydev->duplex != fep->oldduplex) {
 662			new_state = 1;
 663			fep->oldduplex = phydev->duplex;
 664		}
 665
 666		if (phydev->speed != fep->oldspeed) {
 667			new_state = 1;
 668			fep->oldspeed = phydev->speed;
 669		}
 670
 671		if (!fep->oldlink) {
 672			new_state = 1;
 673			fep->oldlink = 1;
 674		}
 675
 676		if (new_state)
 677			fep->ops->restart(dev);
 678	} else if (fep->oldlink) {
 679		new_state = 1;
 680		fep->oldlink = 0;
 681		fep->oldspeed = 0;
 682		fep->oldduplex = -1;
 683	}
 684
 685	if (new_state && netif_msg_link(fep))
 686		phy_print_status(phydev);
 687}
 688
 689
 690static void fs_adjust_link(struct net_device *dev)
 691{
 692	struct fs_enet_private *fep = netdev_priv(dev);
 693	unsigned long flags;
 694
 695	spin_lock_irqsave(&fep->lock, flags);
 696
 697	if(fep->ops->adjust_link)
 698		fep->ops->adjust_link(dev);
 699	else
 700		generic_adjust_link(dev);
 701
 702	spin_unlock_irqrestore(&fep->lock, flags);
 703}
 704
 705static int fs_init_phy(struct net_device *dev)
 706{
 707	struct fs_enet_private *fep = netdev_priv(dev);
 708	struct phy_device *phydev;
 709	phy_interface_t iface;
 710
 711	fep->oldlink = 0;
 712	fep->oldspeed = 0;
 713	fep->oldduplex = -1;
 714
 715	iface = fep->fpi->use_rmii ?
 716		PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
 717
 718	phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
 719				iface);
 720	if (!phydev) {
 721		dev_err(&dev->dev, "Could not attach to PHY\n");
 722		return -ENODEV;
 723	}
 724
 725	return 0;
 726}
 727
 728static int fs_enet_open(struct net_device *dev)
 729{
 730	struct fs_enet_private *fep = netdev_priv(dev);
 731	int r;
 732	int err;
 733
 734	/* to initialize the fep->cur_rx,... */
 735	/* not doing this, will cause a crash in fs_enet_napi */
 736	fs_init_bds(fep->ndev);
 737
 738	napi_enable(&fep->napi);
 739
 740	/* Install our interrupt handler. */
 741	r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
 742			"fs_enet-mac", dev);
 743	if (r != 0) {
 744		dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
 745		napi_disable(&fep->napi);
 746		return -EINVAL;
 747	}
 748
 749	err = fs_init_phy(dev);
 750	if (err) {
 751		free_irq(fep->interrupt, dev);
 752		napi_disable(&fep->napi);
 753		return err;
 754	}
 755	phy_start(dev->phydev);
 756
 757	netif_start_queue(dev);
 758
 759	return 0;
 760}
 761
 762static int fs_enet_close(struct net_device *dev)
 763{
 764	struct fs_enet_private *fep = netdev_priv(dev);
 765	unsigned long flags;
 766
 767	netif_stop_queue(dev);
 768	netif_carrier_off(dev);
 769	napi_disable(&fep->napi);
 770	cancel_work_sync(&fep->timeout_work);
 771	phy_stop(dev->phydev);
 772
 773	spin_lock_irqsave(&fep->lock, flags);
 774	spin_lock(&fep->tx_lock);
 775	(*fep->ops->stop)(dev);
 776	spin_unlock(&fep->tx_lock);
 777	spin_unlock_irqrestore(&fep->lock, flags);
 778
 779	/* release any irqs */
 780	phy_disconnect(dev->phydev);
 781	free_irq(fep->interrupt, dev);
 782
 783	return 0;
 784}
 785
 786/*************************************************************************/
 787
 788static void fs_get_drvinfo(struct net_device *dev,
 789			    struct ethtool_drvinfo *info)
 790{
 791	strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
 792}
 793
 794static int fs_get_regs_len(struct net_device *dev)
 795{
 796	struct fs_enet_private *fep = netdev_priv(dev);
 797
 798	return (*fep->ops->get_regs_len)(dev);
 799}
 800
 801static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
 802			 void *p)
 803{
 804	struct fs_enet_private *fep = netdev_priv(dev);
 805	unsigned long flags;
 806	int r, len;
 807
 808	len = regs->len;
 809
 810	spin_lock_irqsave(&fep->lock, flags);
 811	r = (*fep->ops->get_regs)(dev, p, &len);
 812	spin_unlock_irqrestore(&fep->lock, flags);
 813
 814	if (r == 0)
 815		regs->version = 0;
 816}
 817
 818static u32 fs_get_msglevel(struct net_device *dev)
 819{
 820	struct fs_enet_private *fep = netdev_priv(dev);
 821	return fep->msg_enable;
 822}
 823
 824static void fs_set_msglevel(struct net_device *dev, u32 value)
 825{
 826	struct fs_enet_private *fep = netdev_priv(dev);
 827	fep->msg_enable = value;
 828}
 829
 830static int fs_get_tunable(struct net_device *dev,
 831			  const struct ethtool_tunable *tuna, void *data)
 832{
 833	struct fs_enet_private *fep = netdev_priv(dev);
 834	struct fs_platform_info *fpi = fep->fpi;
 835	int ret = 0;
 836
 837	switch (tuna->id) {
 838	case ETHTOOL_RX_COPYBREAK:
 839		*(u32 *)data = fpi->rx_copybreak;
 840		break;
 841	default:
 842		ret = -EINVAL;
 843		break;
 844	}
 845
 846	return ret;
 847}
 848
 849static int fs_set_tunable(struct net_device *dev,
 850			  const struct ethtool_tunable *tuna, const void *data)
 851{
 852	struct fs_enet_private *fep = netdev_priv(dev);
 853	struct fs_platform_info *fpi = fep->fpi;
 854	int ret = 0;
 855
 856	switch (tuna->id) {
 857	case ETHTOOL_RX_COPYBREAK:
 858		fpi->rx_copybreak = *(u32 *)data;
 859		break;
 860	default:
 861		ret = -EINVAL;
 862		break;
 863	}
 864
 865	return ret;
 866}
 867
 868static const struct ethtool_ops fs_ethtool_ops = {
 869	.get_drvinfo = fs_get_drvinfo,
 870	.get_regs_len = fs_get_regs_len,
 871	.nway_reset = phy_ethtool_nway_reset,
 872	.get_link = ethtool_op_get_link,
 873	.get_msglevel = fs_get_msglevel,
 874	.set_msglevel = fs_set_msglevel,
 875	.get_regs = fs_get_regs,
 876	.get_ts_info = ethtool_op_get_ts_info,
 877	.get_link_ksettings = phy_ethtool_get_link_ksettings,
 878	.set_link_ksettings = phy_ethtool_set_link_ksettings,
 879	.get_tunable = fs_get_tunable,
 880	.set_tunable = fs_set_tunable,
 881};
 882
 
 
 
 883/**************************************************************************************/
 884
 885#ifdef CONFIG_FS_ENET_HAS_FEC
 886#define IS_FEC(ops) ((ops) == &fs_fec_ops)
 887#else
 888#define IS_FEC(ops) 0
 889#endif
 890
 891static const struct net_device_ops fs_enet_netdev_ops = {
 892	.ndo_open		= fs_enet_open,
 893	.ndo_stop		= fs_enet_close,
 894	.ndo_start_xmit		= fs_enet_start_xmit,
 895	.ndo_tx_timeout		= fs_timeout,
 896	.ndo_set_rx_mode	= fs_set_multicast_list,
 897	.ndo_eth_ioctl		= phy_do_ioctl_running,
 898	.ndo_validate_addr	= eth_validate_addr,
 899	.ndo_set_mac_address	= eth_mac_addr,
 900#ifdef CONFIG_NET_POLL_CONTROLLER
 901	.ndo_poll_controller	= fs_enet_netpoll,
 902#endif
 903};
 904
 
 905static int fs_enet_probe(struct platform_device *ofdev)
 906{
 907	const struct fs_ops *ops;
 908	struct net_device *ndev;
 909	struct fs_enet_private *fep;
 910	struct fs_platform_info *fpi;
 911	const u32 *data;
 912	struct clk *clk;
 913	int err;
 914	const char *phy_connection_type;
 915	int privsize, len, ret = -ENODEV;
 916
 917	ops = device_get_match_data(&ofdev->dev);
 918	if (!ops)
 919		return -EINVAL;
 920
 921	fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
 922	if (!fpi)
 923		return -ENOMEM;
 924
 925	if (!IS_FEC(ops)) {
 926		data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
 927		if (!data || len != 4)
 928			goto out_free_fpi;
 929
 930		fpi->cp_command = *data;
 931	}
 932
 933	fpi->rx_ring = RX_RING_SIZE;
 934	fpi->tx_ring = TX_RING_SIZE;
 935	fpi->rx_copybreak = 240;
 936	fpi->napi_weight = 17;
 937	fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
 938	if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
 939		err = of_phy_register_fixed_link(ofdev->dev.of_node);
 940		if (err)
 941			goto out_free_fpi;
 942
 943		/* In the case of a fixed PHY, the DT node associated
 944		 * to the PHY is the Ethernet MAC DT node.
 945		 */
 946		fpi->phy_node = of_node_get(ofdev->dev.of_node);
 947	}
 948
 949	if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
 950		phy_connection_type = of_get_property(ofdev->dev.of_node,
 951						"phy-connection-type", NULL);
 952		if (phy_connection_type && !strcmp("rmii", phy_connection_type))
 953			fpi->use_rmii = 1;
 954	}
 955
 956	/* make clock lookup non-fatal (the driver is shared among platforms),
 957	 * but require enable to succeed when a clock was specified/found,
 958	 * keep a reference to the clock upon successful acquisition
 959	 */
 960	clk = devm_clk_get(&ofdev->dev, "per");
 961	if (!IS_ERR(clk)) {
 962		ret = clk_prepare_enable(clk);
 963		if (ret)
 964			goto out_deregister_fixed_link;
 965
 966		fpi->clk_per = clk;
 967	}
 968
 969	privsize = sizeof(*fep) +
 970	           sizeof(struct sk_buff **) *
 971		     (fpi->rx_ring + fpi->tx_ring) +
 972		   sizeof(char) * fpi->tx_ring;
 973
 974	ndev = alloc_etherdev(privsize);
 975	if (!ndev) {
 976		ret = -ENOMEM;
 977		goto out_put;
 978	}
 979
 980	SET_NETDEV_DEV(ndev, &ofdev->dev);
 981	platform_set_drvdata(ofdev, ndev);
 982
 983	fep = netdev_priv(ndev);
 984	fep->dev = &ofdev->dev;
 985	fep->ndev = ndev;
 986	fep->fpi = fpi;
 987	fep->ops = ops;
 988
 989	ret = fep->ops->setup_data(ndev);
 990	if (ret)
 991		goto out_free_dev;
 992
 993	fep->rx_skbuff = (struct sk_buff **)&fep[1];
 994	fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
 995	fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
 996				       fpi->tx_ring);
 997
 998	spin_lock_init(&fep->lock);
 999	spin_lock_init(&fep->tx_lock);
1000
1001	of_get_ethdev_address(ofdev->dev.of_node, ndev);
1002
1003	ret = fep->ops->allocate_bd(ndev);
1004	if (ret)
1005		goto out_cleanup_data;
1006
1007	fep->rx_bd_base = fep->ring_base;
1008	fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1009
1010	fep->tx_ring = fpi->tx_ring;
1011	fep->rx_ring = fpi->rx_ring;
1012
1013	ndev->netdev_ops = &fs_enet_netdev_ops;
1014	ndev->watchdog_timeo = 2 * HZ;
1015	INIT_WORK(&fep->timeout_work, fs_timeout_work);
1016	netif_napi_add_weight(ndev, &fep->napi, fs_enet_napi,
1017			      fpi->napi_weight);
1018
1019	ndev->ethtool_ops = &fs_ethtool_ops;
1020
1021	netif_carrier_off(ndev);
1022
1023	ndev->features |= NETIF_F_SG;
1024
1025	ret = register_netdev(ndev);
1026	if (ret)
1027		goto out_free_bd;
1028
1029	pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1030
1031	return 0;
1032
1033out_free_bd:
1034	fep->ops->free_bd(ndev);
1035out_cleanup_data:
1036	fep->ops->cleanup_data(ndev);
1037out_free_dev:
1038	free_netdev(ndev);
1039out_put:
1040	clk_disable_unprepare(fpi->clk_per);
1041out_deregister_fixed_link:
1042	of_node_put(fpi->phy_node);
1043	if (of_phy_is_fixed_link(ofdev->dev.of_node))
1044		of_phy_deregister_fixed_link(ofdev->dev.of_node);
1045out_free_fpi:
1046	kfree(fpi);
1047	return ret;
1048}
1049
1050static void fs_enet_remove(struct platform_device *ofdev)
1051{
1052	struct net_device *ndev = platform_get_drvdata(ofdev);
1053	struct fs_enet_private *fep = netdev_priv(ndev);
1054
1055	unregister_netdev(ndev);
1056
1057	fep->ops->free_bd(ndev);
1058	fep->ops->cleanup_data(ndev);
1059	dev_set_drvdata(fep->dev, NULL);
1060	of_node_put(fep->fpi->phy_node);
1061	clk_disable_unprepare(fep->fpi->clk_per);
1062	if (of_phy_is_fixed_link(ofdev->dev.of_node))
1063		of_phy_deregister_fixed_link(ofdev->dev.of_node);
1064	free_netdev(ndev);
 
1065}
1066
1067static const struct of_device_id fs_enet_match[] = {
1068#ifdef CONFIG_FS_ENET_HAS_SCC
1069	{
1070		.compatible = "fsl,cpm1-scc-enet",
1071		.data = (void *)&fs_scc_ops,
1072	},
1073	{
1074		.compatible = "fsl,cpm2-scc-enet",
1075		.data = (void *)&fs_scc_ops,
1076	},
1077#endif
1078#ifdef CONFIG_FS_ENET_HAS_FCC
1079	{
1080		.compatible = "fsl,cpm2-fcc-enet",
1081		.data = (void *)&fs_fcc_ops,
1082	},
1083#endif
1084#ifdef CONFIG_FS_ENET_HAS_FEC
1085#ifdef CONFIG_FS_ENET_MPC5121_FEC
1086	{
1087		.compatible = "fsl,mpc5121-fec",
1088		.data = (void *)&fs_fec_ops,
1089	},
1090	{
1091		.compatible = "fsl,mpc5125-fec",
1092		.data = (void *)&fs_fec_ops,
1093	},
1094#else
1095	{
1096		.compatible = "fsl,pq1-fec-enet",
1097		.data = (void *)&fs_fec_ops,
1098	},
1099#endif
1100#endif
1101	{}
1102};
1103MODULE_DEVICE_TABLE(of, fs_enet_match);
1104
1105static struct platform_driver fs_enet_driver = {
1106	.driver = {
1107		.name = "fs_enet",
1108		.of_match_table = fs_enet_match,
1109	},
1110	.probe = fs_enet_probe,
1111	.remove_new = fs_enet_remove,
1112};
1113
1114#ifdef CONFIG_NET_POLL_CONTROLLER
1115static void fs_enet_netpoll(struct net_device *dev)
1116{
1117       disable_irq(dev->irq);
1118       fs_enet_interrupt(dev->irq, dev);
1119       enable_irq(dev->irq);
1120}
1121#endif
1122
1123module_platform_driver(fs_enet_driver);
v5.14.15
   1/*
   2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
   3 *
   4 * Copyright (c) 2003 Intracom S.A.
   5 *  by Pantelis Antoniou <panto@intracom.gr>
   6 *
   7 * 2005 (c) MontaVista Software, Inc.
   8 * Vitaly Bordug <vbordug@ru.mvista.com>
   9 *
  10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
  11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
  12 *
  13 * This file is licensed under the terms of the GNU General Public License
  14 * version 2. This program is licensed "as is" without any warranty of any
  15 * kind, whether express or implied.
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/kernel.h>
  20#include <linux/types.h>
  21#include <linux/string.h>
  22#include <linux/ptrace.h>
  23#include <linux/errno.h>
  24#include <linux/ioport.h>
  25#include <linux/slab.h>
  26#include <linux/interrupt.h>
  27#include <linux/delay.h>
  28#include <linux/netdevice.h>
  29#include <linux/etherdevice.h>
  30#include <linux/skbuff.h>
  31#include <linux/spinlock.h>
  32#include <linux/mii.h>
  33#include <linux/ethtool.h>
  34#include <linux/bitops.h>
  35#include <linux/fs.h>
  36#include <linux/platform_device.h>
  37#include <linux/phy.h>
 
  38#include <linux/of.h>
  39#include <linux/of_mdio.h>
  40#include <linux/of_platform.h>
  41#include <linux/of_gpio.h>
  42#include <linux/of_net.h>
  43#include <linux/pgtable.h>
  44
  45#include <linux/vmalloc.h>
  46#include <asm/irq.h>
  47#include <linux/uaccess.h>
  48
  49#include "fs_enet.h"
  50
  51/*************************************************/
  52
  53MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
  54MODULE_DESCRIPTION("Freescale Ethernet Driver");
  55MODULE_LICENSE("GPL");
  56
  57static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
  58module_param(fs_enet_debug, int, 0);
  59MODULE_PARM_DESC(fs_enet_debug,
  60		 "Freescale bitmapped debugging message enable value");
  61
  62#define RX_RING_SIZE	32
  63#define TX_RING_SIZE	64
  64
  65#ifdef CONFIG_NET_POLL_CONTROLLER
  66static void fs_enet_netpoll(struct net_device *dev);
  67#endif
  68
  69static void fs_set_multicast_list(struct net_device *dev)
  70{
  71	struct fs_enet_private *fep = netdev_priv(dev);
  72
  73	(*fep->ops->set_multicast_list)(dev);
  74}
  75
  76static void skb_align(struct sk_buff *skb, int align)
  77{
  78	int off = ((unsigned long)skb->data) & (align - 1);
  79
  80	if (off)
  81		skb_reserve(skb, align - off);
  82}
  83
  84/* NAPI function */
  85static int fs_enet_napi(struct napi_struct *napi, int budget)
  86{
  87	struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
  88	struct net_device *dev = fep->ndev;
  89	const struct fs_platform_info *fpi = fep->fpi;
  90	cbd_t __iomem *bdp;
  91	struct sk_buff *skb, *skbn;
  92	int received = 0;
  93	u16 pkt_len, sc;
  94	int curidx;
  95	int dirtyidx, do_wake, do_restart;
  96	int tx_left = TX_RING_SIZE;
  97
  98	spin_lock(&fep->tx_lock);
  99	bdp = fep->dirty_tx;
 100
 101	/* clear status bits for napi*/
 102	(*fep->ops->napi_clear_event)(dev);
 103
 104	do_wake = do_restart = 0;
 105	while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
 106		dirtyidx = bdp - fep->tx_bd_base;
 107
 108		if (fep->tx_free == fep->tx_ring)
 109			break;
 110
 111		skb = fep->tx_skbuff[dirtyidx];
 112
 113		/*
 114		 * Check for errors.
 115		 */
 116		if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
 117			  BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
 118
 119			if (sc & BD_ENET_TX_HB)	/* No heartbeat */
 120				dev->stats.tx_heartbeat_errors++;
 121			if (sc & BD_ENET_TX_LC)	/* Late collision */
 122				dev->stats.tx_window_errors++;
 123			if (sc & BD_ENET_TX_RL)	/* Retrans limit */
 124				dev->stats.tx_aborted_errors++;
 125			if (sc & BD_ENET_TX_UN)	/* Underrun */
 126				dev->stats.tx_fifo_errors++;
 127			if (sc & BD_ENET_TX_CSL)	/* Carrier lost */
 128				dev->stats.tx_carrier_errors++;
 129
 130			if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
 131				dev->stats.tx_errors++;
 132				do_restart = 1;
 133			}
 134		} else
 135			dev->stats.tx_packets++;
 136
 137		if (sc & BD_ENET_TX_READY) {
 138			dev_warn(fep->dev,
 139				 "HEY! Enet xmit interrupt and TX_READY.\n");
 140		}
 141
 142		/*
 143		 * Deferred means some collisions occurred during transmit,
 144		 * but we eventually sent the packet OK.
 145		 */
 146		if (sc & BD_ENET_TX_DEF)
 147			dev->stats.collisions++;
 148
 149		/* unmap */
 150		if (fep->mapped_as_page[dirtyidx])
 151			dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
 152				       CBDR_DATLEN(bdp), DMA_TO_DEVICE);
 153		else
 154			dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 155					 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
 156
 157		/*
 158		 * Free the sk buffer associated with this last transmit.
 159		 */
 160		if (skb) {
 161			dev_kfree_skb(skb);
 162			fep->tx_skbuff[dirtyidx] = NULL;
 163		}
 164
 165		/*
 166		 * Update pointer to next buffer descriptor to be transmitted.
 167		 */
 168		if ((sc & BD_ENET_TX_WRAP) == 0)
 169			bdp++;
 170		else
 171			bdp = fep->tx_bd_base;
 172
 173		/*
 174		 * Since we have freed up a buffer, the ring is no longer
 175		 * full.
 176		 */
 177		if (++fep->tx_free == MAX_SKB_FRAGS)
 178			do_wake = 1;
 179		tx_left--;
 180	}
 181
 182	fep->dirty_tx = bdp;
 183
 184	if (do_restart)
 185		(*fep->ops->tx_restart)(dev);
 186
 187	spin_unlock(&fep->tx_lock);
 188
 189	if (do_wake)
 190		netif_wake_queue(dev);
 191
 192	/*
 193	 * First, grab all of the stats for the incoming packet.
 194	 * These get messed up if we get called due to a busy condition.
 195	 */
 196	bdp = fep->cur_rx;
 197
 198	while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
 199	       received < budget) {
 200		curidx = bdp - fep->rx_bd_base;
 201
 202		/*
 203		 * Since we have allocated space to hold a complete frame,
 204		 * the last indicator should be set.
 205		 */
 206		if ((sc & BD_ENET_RX_LAST) == 0)
 207			dev_warn(fep->dev, "rcv is not +last\n");
 208
 209		/*
 210		 * Check for errors.
 211		 */
 212		if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
 213			  BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
 214			dev->stats.rx_errors++;
 215			/* Frame too long or too short. */
 216			if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
 217				dev->stats.rx_length_errors++;
 218			/* Frame alignment */
 219			if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
 220				dev->stats.rx_frame_errors++;
 221			/* CRC Error */
 222			if (sc & BD_ENET_RX_CR)
 223				dev->stats.rx_crc_errors++;
 224			/* FIFO overrun */
 225			if (sc & BD_ENET_RX_OV)
 226				dev->stats.rx_crc_errors++;
 227
 228			skbn = fep->rx_skbuff[curidx];
 229		} else {
 230			skb = fep->rx_skbuff[curidx];
 231
 232			/*
 233			 * Process the incoming frame.
 234			 */
 235			dev->stats.rx_packets++;
 236			pkt_len = CBDR_DATLEN(bdp) - 4;	/* remove CRC */
 237			dev->stats.rx_bytes += pkt_len + 4;
 238
 239			if (pkt_len <= fpi->rx_copybreak) {
 240				/* +2 to make IP header L1 cache aligned */
 241				skbn = netdev_alloc_skb(dev, pkt_len + 2);
 242				if (skbn != NULL) {
 243					skb_reserve(skbn, 2);	/* align IP header */
 244					skb_copy_from_linear_data(skb,
 245						      skbn->data, pkt_len);
 246					swap(skb, skbn);
 247					dma_sync_single_for_cpu(fep->dev,
 248						CBDR_BUFADDR(bdp),
 249						L1_CACHE_ALIGN(pkt_len),
 250						DMA_FROM_DEVICE);
 251				}
 252			} else {
 253				skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
 254
 255				if (skbn) {
 256					dma_addr_t dma;
 257
 258					skb_align(skbn, ENET_RX_ALIGN);
 259
 260					dma_unmap_single(fep->dev,
 261						CBDR_BUFADDR(bdp),
 262						L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 263						DMA_FROM_DEVICE);
 264
 265					dma = dma_map_single(fep->dev,
 266						skbn->data,
 267						L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 268						DMA_FROM_DEVICE);
 269					CBDW_BUFADDR(bdp, dma);
 270				}
 271			}
 272
 273			if (skbn != NULL) {
 274				skb_put(skb, pkt_len);	/* Make room */
 275				skb->protocol = eth_type_trans(skb, dev);
 276				received++;
 277				netif_receive_skb(skb);
 278			} else {
 279				dev->stats.rx_dropped++;
 280				skbn = skb;
 281			}
 282		}
 283
 284		fep->rx_skbuff[curidx] = skbn;
 285		CBDW_DATLEN(bdp, 0);
 286		CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
 287
 288		/*
 289		 * Update BD pointer to next entry.
 290		 */
 291		if ((sc & BD_ENET_RX_WRAP) == 0)
 292			bdp++;
 293		else
 294			bdp = fep->rx_bd_base;
 295
 296		(*fep->ops->rx_bd_done)(dev);
 297	}
 298
 299	fep->cur_rx = bdp;
 300
 301	if (received < budget && tx_left) {
 302		/* done */
 303		napi_complete_done(napi, received);
 304		(*fep->ops->napi_enable)(dev);
 305
 306		return received;
 307	}
 308
 309	return budget;
 310}
 311
 312/*
 313 * The interrupt handler.
 314 * This is called from the MPC core interrupt.
 315 */
 316static irqreturn_t
 317fs_enet_interrupt(int irq, void *dev_id)
 318{
 319	struct net_device *dev = dev_id;
 320	struct fs_enet_private *fep;
 321	const struct fs_platform_info *fpi;
 322	u32 int_events;
 323	u32 int_clr_events;
 324	int nr, napi_ok;
 325	int handled;
 326
 327	fep = netdev_priv(dev);
 328	fpi = fep->fpi;
 329
 330	nr = 0;
 331	while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
 332		nr++;
 333
 334		int_clr_events = int_events;
 335		int_clr_events &= ~fep->ev_napi;
 336
 337		(*fep->ops->clear_int_events)(dev, int_clr_events);
 338
 339		if (int_events & fep->ev_err)
 340			(*fep->ops->ev_error)(dev, int_events);
 341
 342		if (int_events & fep->ev) {
 343			napi_ok = napi_schedule_prep(&fep->napi);
 344
 345			(*fep->ops->napi_disable)(dev);
 346			(*fep->ops->clear_int_events)(dev, fep->ev_napi);
 347
 348			/* NOTE: it is possible for FCCs in NAPI mode    */
 349			/* to submit a spurious interrupt while in poll  */
 350			if (napi_ok)
 351				__napi_schedule(&fep->napi);
 352		}
 353
 354	}
 355
 356	handled = nr > 0;
 357	return IRQ_RETVAL(handled);
 358}
 359
 360void fs_init_bds(struct net_device *dev)
 361{
 362	struct fs_enet_private *fep = netdev_priv(dev);
 363	cbd_t __iomem *bdp;
 364	struct sk_buff *skb;
 365	int i;
 366
 367	fs_cleanup_bds(dev);
 368
 369	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
 370	fep->tx_free = fep->tx_ring;
 371	fep->cur_rx = fep->rx_bd_base;
 372
 373	/*
 374	 * Initialize the receive buffer descriptors.
 375	 */
 376	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
 377		skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
 378		if (skb == NULL)
 379			break;
 380
 381		skb_align(skb, ENET_RX_ALIGN);
 382		fep->rx_skbuff[i] = skb;
 383		CBDW_BUFADDR(bdp,
 384			dma_map_single(fep->dev, skb->data,
 385				L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 386				DMA_FROM_DEVICE));
 387		CBDW_DATLEN(bdp, 0);	/* zero */
 388		CBDW_SC(bdp, BD_ENET_RX_EMPTY |
 389			((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
 390	}
 391	/*
 392	 * if we failed, fillup remainder
 393	 */
 394	for (; i < fep->rx_ring; i++, bdp++) {
 395		fep->rx_skbuff[i] = NULL;
 396		CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
 397	}
 398
 399	/*
 400	 * ...and the same for transmit.
 401	 */
 402	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
 403		fep->tx_skbuff[i] = NULL;
 404		CBDW_BUFADDR(bdp, 0);
 405		CBDW_DATLEN(bdp, 0);
 406		CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
 407	}
 408}
 409
 410void fs_cleanup_bds(struct net_device *dev)
 411{
 412	struct fs_enet_private *fep = netdev_priv(dev);
 413	struct sk_buff *skb;
 414	cbd_t __iomem *bdp;
 415	int i;
 416
 417	/*
 418	 * Reset SKB transmit buffers.
 419	 */
 420	for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
 421		if ((skb = fep->tx_skbuff[i]) == NULL)
 422			continue;
 423
 424		/* unmap */
 425		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 426				skb->len, DMA_TO_DEVICE);
 427
 428		fep->tx_skbuff[i] = NULL;
 429		dev_kfree_skb(skb);
 430	}
 431
 432	/*
 433	 * Reset SKB receive buffers
 434	 */
 435	for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
 436		if ((skb = fep->rx_skbuff[i]) == NULL)
 437			continue;
 438
 439		/* unmap */
 440		dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
 441			L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
 442			DMA_FROM_DEVICE);
 443
 444		fep->rx_skbuff[i] = NULL;
 445
 446		dev_kfree_skb(skb);
 447	}
 448}
 449
 450/**********************************************************************************/
 451
 452#ifdef CONFIG_FS_ENET_MPC5121_FEC
 453/*
 454 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
 455 */
 456static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
 457					       struct sk_buff *skb)
 458{
 459	struct sk_buff *new_skb;
 460
 461	if (skb_linearize(skb))
 462		return NULL;
 463
 464	/* Alloc new skb */
 465	new_skb = netdev_alloc_skb(dev, skb->len + 4);
 466	if (!new_skb)
 467		return NULL;
 468
 469	/* Make sure new skb is properly aligned */
 470	skb_align(new_skb, 4);
 471
 472	/* Copy data to new skb ... */
 473	skb_copy_from_linear_data(skb, new_skb->data, skb->len);
 474	skb_put(new_skb, skb->len);
 475
 476	/* ... and free an old one */
 477	dev_kfree_skb_any(skb);
 478
 479	return new_skb;
 480}
 481#endif
 482
 483static netdev_tx_t
 484fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
 485{
 486	struct fs_enet_private *fep = netdev_priv(dev);
 487	cbd_t __iomem *bdp;
 488	int curidx;
 489	u16 sc;
 490	int nr_frags;
 491	skb_frag_t *frag;
 492	int len;
 493#ifdef CONFIG_FS_ENET_MPC5121_FEC
 494	int is_aligned = 1;
 495	int i;
 496
 497	if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
 498		is_aligned = 0;
 499	} else {
 500		nr_frags = skb_shinfo(skb)->nr_frags;
 501		frag = skb_shinfo(skb)->frags;
 502		for (i = 0; i < nr_frags; i++, frag++) {
 503			if (!IS_ALIGNED(skb_frag_off(frag), 4)) {
 504				is_aligned = 0;
 505				break;
 506			}
 507		}
 508	}
 509
 510	if (!is_aligned) {
 511		skb = tx_skb_align_workaround(dev, skb);
 512		if (!skb) {
 513			/*
 514			 * We have lost packet due to memory allocation error
 515			 * in tx_skb_align_workaround(). Hopefully original
 516			 * skb is still valid, so try transmit it later.
 517			 */
 518			return NETDEV_TX_BUSY;
 519		}
 520	}
 521#endif
 522
 523	spin_lock(&fep->tx_lock);
 524
 525	/*
 526	 * Fill in a Tx ring entry
 527	 */
 528	bdp = fep->cur_tx;
 529
 530	nr_frags = skb_shinfo(skb)->nr_frags;
 531	if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
 532		netif_stop_queue(dev);
 533		spin_unlock(&fep->tx_lock);
 534
 535		/*
 536		 * Ooops.  All transmit buffers are full.  Bail out.
 537		 * This should not happen, since the tx queue should be stopped.
 538		 */
 539		dev_warn(fep->dev, "tx queue full!.\n");
 540		return NETDEV_TX_BUSY;
 541	}
 542
 543	curidx = bdp - fep->tx_bd_base;
 544
 545	len = skb->len;
 546	dev->stats.tx_bytes += len;
 547	if (nr_frags)
 548		len -= skb->data_len;
 549	fep->tx_free -= nr_frags + 1;
 550	/*
 551	 * Push the data cache so the CPM does not get stale memory data.
 552	 */
 553	CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
 554				skb->data, len, DMA_TO_DEVICE));
 555	CBDW_DATLEN(bdp, len);
 556
 557	fep->mapped_as_page[curidx] = 0;
 558	frag = skb_shinfo(skb)->frags;
 559	while (nr_frags) {
 560		CBDC_SC(bdp,
 561			BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
 562			BD_ENET_TX_TC);
 563		CBDS_SC(bdp, BD_ENET_TX_READY);
 564
 565		if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) {
 566			bdp++;
 567			curidx++;
 568		} else {
 569			bdp = fep->tx_bd_base;
 570			curidx = 0;
 571		}
 572
 573		len = skb_frag_size(frag);
 574		CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
 575						   DMA_TO_DEVICE));
 576		CBDW_DATLEN(bdp, len);
 577
 578		fep->tx_skbuff[curidx] = NULL;
 579		fep->mapped_as_page[curidx] = 1;
 580
 581		frag++;
 582		nr_frags--;
 583	}
 584
 585	/* Trigger transmission start */
 586	sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
 587	     BD_ENET_TX_LAST | BD_ENET_TX_TC;
 588
 589	/* note that while FEC does not have this bit
 590	 * it marks it as available for software use
 591	 * yay for hw reuse :) */
 592	if (skb->len <= 60)
 593		sc |= BD_ENET_TX_PAD;
 594	CBDC_SC(bdp, BD_ENET_TX_STATS);
 595	CBDS_SC(bdp, sc);
 596
 597	/* Save skb pointer. */
 598	fep->tx_skbuff[curidx] = skb;
 599
 600	/* If this was the last BD in the ring, start at the beginning again. */
 601	if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
 602		bdp++;
 603	else
 604		bdp = fep->tx_bd_base;
 605	fep->cur_tx = bdp;
 606
 607	if (fep->tx_free < MAX_SKB_FRAGS)
 608		netif_stop_queue(dev);
 609
 610	skb_tx_timestamp(skb);
 611
 612	(*fep->ops->tx_kickstart)(dev);
 613
 614	spin_unlock(&fep->tx_lock);
 615
 616	return NETDEV_TX_OK;
 617}
 618
 619static void fs_timeout_work(struct work_struct *work)
 620{
 621	struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
 622						   timeout_work);
 623	struct net_device *dev = fep->ndev;
 624	unsigned long flags;
 625	int wake = 0;
 626
 627	dev->stats.tx_errors++;
 628
 629	spin_lock_irqsave(&fep->lock, flags);
 630
 631	if (dev->flags & IFF_UP) {
 632		phy_stop(dev->phydev);
 633		(*fep->ops->stop)(dev);
 634		(*fep->ops->restart)(dev);
 635	}
 636
 637	phy_start(dev->phydev);
 638	wake = fep->tx_free >= MAX_SKB_FRAGS &&
 639	       !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
 640	spin_unlock_irqrestore(&fep->lock, flags);
 641
 642	if (wake)
 643		netif_wake_queue(dev);
 644}
 645
 646static void fs_timeout(struct net_device *dev, unsigned int txqueue)
 647{
 648	struct fs_enet_private *fep = netdev_priv(dev);
 649
 650	schedule_work(&fep->timeout_work);
 651}
 652
 653/*-----------------------------------------------------------------------------
 654 *  generic link-change handler - should be sufficient for most cases
 655 *-----------------------------------------------------------------------------*/
 656static void generic_adjust_link(struct  net_device *dev)
 657{
 658	struct fs_enet_private *fep = netdev_priv(dev);
 659	struct phy_device *phydev = dev->phydev;
 660	int new_state = 0;
 661
 662	if (phydev->link) {
 663		/* adjust to duplex mode */
 664		if (phydev->duplex != fep->oldduplex) {
 665			new_state = 1;
 666			fep->oldduplex = phydev->duplex;
 667		}
 668
 669		if (phydev->speed != fep->oldspeed) {
 670			new_state = 1;
 671			fep->oldspeed = phydev->speed;
 672		}
 673
 674		if (!fep->oldlink) {
 675			new_state = 1;
 676			fep->oldlink = 1;
 677		}
 678
 679		if (new_state)
 680			fep->ops->restart(dev);
 681	} else if (fep->oldlink) {
 682		new_state = 1;
 683		fep->oldlink = 0;
 684		fep->oldspeed = 0;
 685		fep->oldduplex = -1;
 686	}
 687
 688	if (new_state && netif_msg_link(fep))
 689		phy_print_status(phydev);
 690}
 691
 692
 693static void fs_adjust_link(struct net_device *dev)
 694{
 695	struct fs_enet_private *fep = netdev_priv(dev);
 696	unsigned long flags;
 697
 698	spin_lock_irqsave(&fep->lock, flags);
 699
 700	if(fep->ops->adjust_link)
 701		fep->ops->adjust_link(dev);
 702	else
 703		generic_adjust_link(dev);
 704
 705	spin_unlock_irqrestore(&fep->lock, flags);
 706}
 707
 708static int fs_init_phy(struct net_device *dev)
 709{
 710	struct fs_enet_private *fep = netdev_priv(dev);
 711	struct phy_device *phydev;
 712	phy_interface_t iface;
 713
 714	fep->oldlink = 0;
 715	fep->oldspeed = 0;
 716	fep->oldduplex = -1;
 717
 718	iface = fep->fpi->use_rmii ?
 719		PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
 720
 721	phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
 722				iface);
 723	if (!phydev) {
 724		dev_err(&dev->dev, "Could not attach to PHY\n");
 725		return -ENODEV;
 726	}
 727
 728	return 0;
 729}
 730
 731static int fs_enet_open(struct net_device *dev)
 732{
 733	struct fs_enet_private *fep = netdev_priv(dev);
 734	int r;
 735	int err;
 736
 737	/* to initialize the fep->cur_rx,... */
 738	/* not doing this, will cause a crash in fs_enet_napi */
 739	fs_init_bds(fep->ndev);
 740
 741	napi_enable(&fep->napi);
 742
 743	/* Install our interrupt handler. */
 744	r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
 745			"fs_enet-mac", dev);
 746	if (r != 0) {
 747		dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
 748		napi_disable(&fep->napi);
 749		return -EINVAL;
 750	}
 751
 752	err = fs_init_phy(dev);
 753	if (err) {
 754		free_irq(fep->interrupt, dev);
 755		napi_disable(&fep->napi);
 756		return err;
 757	}
 758	phy_start(dev->phydev);
 759
 760	netif_start_queue(dev);
 761
 762	return 0;
 763}
 764
 765static int fs_enet_close(struct net_device *dev)
 766{
 767	struct fs_enet_private *fep = netdev_priv(dev);
 768	unsigned long flags;
 769
 770	netif_stop_queue(dev);
 771	netif_carrier_off(dev);
 772	napi_disable(&fep->napi);
 773	cancel_work_sync(&fep->timeout_work);
 774	phy_stop(dev->phydev);
 775
 776	spin_lock_irqsave(&fep->lock, flags);
 777	spin_lock(&fep->tx_lock);
 778	(*fep->ops->stop)(dev);
 779	spin_unlock(&fep->tx_lock);
 780	spin_unlock_irqrestore(&fep->lock, flags);
 781
 782	/* release any irqs */
 783	phy_disconnect(dev->phydev);
 784	free_irq(fep->interrupt, dev);
 785
 786	return 0;
 787}
 788
 789/*************************************************************************/
 790
 791static void fs_get_drvinfo(struct net_device *dev,
 792			    struct ethtool_drvinfo *info)
 793{
 794	strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
 795}
 796
 797static int fs_get_regs_len(struct net_device *dev)
 798{
 799	struct fs_enet_private *fep = netdev_priv(dev);
 800
 801	return (*fep->ops->get_regs_len)(dev);
 802}
 803
 804static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
 805			 void *p)
 806{
 807	struct fs_enet_private *fep = netdev_priv(dev);
 808	unsigned long flags;
 809	int r, len;
 810
 811	len = regs->len;
 812
 813	spin_lock_irqsave(&fep->lock, flags);
 814	r = (*fep->ops->get_regs)(dev, p, &len);
 815	spin_unlock_irqrestore(&fep->lock, flags);
 816
 817	if (r == 0)
 818		regs->version = 0;
 819}
 820
 821static u32 fs_get_msglevel(struct net_device *dev)
 822{
 823	struct fs_enet_private *fep = netdev_priv(dev);
 824	return fep->msg_enable;
 825}
 826
 827static void fs_set_msglevel(struct net_device *dev, u32 value)
 828{
 829	struct fs_enet_private *fep = netdev_priv(dev);
 830	fep->msg_enable = value;
 831}
 832
 833static int fs_get_tunable(struct net_device *dev,
 834			  const struct ethtool_tunable *tuna, void *data)
 835{
 836	struct fs_enet_private *fep = netdev_priv(dev);
 837	struct fs_platform_info *fpi = fep->fpi;
 838	int ret = 0;
 839
 840	switch (tuna->id) {
 841	case ETHTOOL_RX_COPYBREAK:
 842		*(u32 *)data = fpi->rx_copybreak;
 843		break;
 844	default:
 845		ret = -EINVAL;
 846		break;
 847	}
 848
 849	return ret;
 850}
 851
 852static int fs_set_tunable(struct net_device *dev,
 853			  const struct ethtool_tunable *tuna, const void *data)
 854{
 855	struct fs_enet_private *fep = netdev_priv(dev);
 856	struct fs_platform_info *fpi = fep->fpi;
 857	int ret = 0;
 858
 859	switch (tuna->id) {
 860	case ETHTOOL_RX_COPYBREAK:
 861		fpi->rx_copybreak = *(u32 *)data;
 862		break;
 863	default:
 864		ret = -EINVAL;
 865		break;
 866	}
 867
 868	return ret;
 869}
 870
 871static const struct ethtool_ops fs_ethtool_ops = {
 872	.get_drvinfo = fs_get_drvinfo,
 873	.get_regs_len = fs_get_regs_len,
 874	.nway_reset = phy_ethtool_nway_reset,
 875	.get_link = ethtool_op_get_link,
 876	.get_msglevel = fs_get_msglevel,
 877	.set_msglevel = fs_set_msglevel,
 878	.get_regs = fs_get_regs,
 879	.get_ts_info = ethtool_op_get_ts_info,
 880	.get_link_ksettings = phy_ethtool_get_link_ksettings,
 881	.set_link_ksettings = phy_ethtool_set_link_ksettings,
 882	.get_tunable = fs_get_tunable,
 883	.set_tunable = fs_set_tunable,
 884};
 885
 886extern int fs_mii_connect(struct net_device *dev);
 887extern void fs_mii_disconnect(struct net_device *dev);
 888
 889/**************************************************************************************/
 890
 891#ifdef CONFIG_FS_ENET_HAS_FEC
 892#define IS_FEC(match) ((match)->data == &fs_fec_ops)
 893#else
 894#define IS_FEC(match) 0
 895#endif
 896
 897static const struct net_device_ops fs_enet_netdev_ops = {
 898	.ndo_open		= fs_enet_open,
 899	.ndo_stop		= fs_enet_close,
 900	.ndo_start_xmit		= fs_enet_start_xmit,
 901	.ndo_tx_timeout		= fs_timeout,
 902	.ndo_set_rx_mode	= fs_set_multicast_list,
 903	.ndo_do_ioctl		= phy_do_ioctl_running,
 904	.ndo_validate_addr	= eth_validate_addr,
 905	.ndo_set_mac_address	= eth_mac_addr,
 906#ifdef CONFIG_NET_POLL_CONTROLLER
 907	.ndo_poll_controller	= fs_enet_netpoll,
 908#endif
 909};
 910
 911static const struct of_device_id fs_enet_match[];
 912static int fs_enet_probe(struct platform_device *ofdev)
 913{
 914	const struct of_device_id *match;
 915	struct net_device *ndev;
 916	struct fs_enet_private *fep;
 917	struct fs_platform_info *fpi;
 918	const u32 *data;
 919	struct clk *clk;
 920	int err;
 921	const char *phy_connection_type;
 922	int privsize, len, ret = -ENODEV;
 923
 924	match = of_match_device(fs_enet_match, &ofdev->dev);
 925	if (!match)
 926		return -EINVAL;
 927
 928	fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
 929	if (!fpi)
 930		return -ENOMEM;
 931
 932	if (!IS_FEC(match)) {
 933		data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
 934		if (!data || len != 4)
 935			goto out_free_fpi;
 936
 937		fpi->cp_command = *data;
 938	}
 939
 940	fpi->rx_ring = RX_RING_SIZE;
 941	fpi->tx_ring = TX_RING_SIZE;
 942	fpi->rx_copybreak = 240;
 943	fpi->napi_weight = 17;
 944	fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
 945	if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
 946		err = of_phy_register_fixed_link(ofdev->dev.of_node);
 947		if (err)
 948			goto out_free_fpi;
 949
 950		/* In the case of a fixed PHY, the DT node associated
 951		 * to the PHY is the Ethernet MAC DT node.
 952		 */
 953		fpi->phy_node = of_node_get(ofdev->dev.of_node);
 954	}
 955
 956	if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
 957		phy_connection_type = of_get_property(ofdev->dev.of_node,
 958						"phy-connection-type", NULL);
 959		if (phy_connection_type && !strcmp("rmii", phy_connection_type))
 960			fpi->use_rmii = 1;
 961	}
 962
 963	/* make clock lookup non-fatal (the driver is shared among platforms),
 964	 * but require enable to succeed when a clock was specified/found,
 965	 * keep a reference to the clock upon successful acquisition
 966	 */
 967	clk = devm_clk_get(&ofdev->dev, "per");
 968	if (!IS_ERR(clk)) {
 969		ret = clk_prepare_enable(clk);
 970		if (ret)
 971			goto out_deregister_fixed_link;
 972
 973		fpi->clk_per = clk;
 974	}
 975
 976	privsize = sizeof(*fep) +
 977	           sizeof(struct sk_buff **) *
 978		     (fpi->rx_ring + fpi->tx_ring) +
 979		   sizeof(char) * fpi->tx_ring;
 980
 981	ndev = alloc_etherdev(privsize);
 982	if (!ndev) {
 983		ret = -ENOMEM;
 984		goto out_put;
 985	}
 986
 987	SET_NETDEV_DEV(ndev, &ofdev->dev);
 988	platform_set_drvdata(ofdev, ndev);
 989
 990	fep = netdev_priv(ndev);
 991	fep->dev = &ofdev->dev;
 992	fep->ndev = ndev;
 993	fep->fpi = fpi;
 994	fep->ops = match->data;
 995
 996	ret = fep->ops->setup_data(ndev);
 997	if (ret)
 998		goto out_free_dev;
 999
1000	fep->rx_skbuff = (struct sk_buff **)&fep[1];
1001	fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1002	fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
1003				       fpi->tx_ring);
1004
1005	spin_lock_init(&fep->lock);
1006	spin_lock_init(&fep->tx_lock);
1007
1008	of_get_mac_address(ofdev->dev.of_node, ndev->dev_addr);
1009
1010	ret = fep->ops->allocate_bd(ndev);
1011	if (ret)
1012		goto out_cleanup_data;
1013
1014	fep->rx_bd_base = fep->ring_base;
1015	fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1016
1017	fep->tx_ring = fpi->tx_ring;
1018	fep->rx_ring = fpi->rx_ring;
1019
1020	ndev->netdev_ops = &fs_enet_netdev_ops;
1021	ndev->watchdog_timeo = 2 * HZ;
1022	INIT_WORK(&fep->timeout_work, fs_timeout_work);
1023	netif_napi_add(ndev, &fep->napi, fs_enet_napi, fpi->napi_weight);
 
1024
1025	ndev->ethtool_ops = &fs_ethtool_ops;
1026
1027	netif_carrier_off(ndev);
1028
1029	ndev->features |= NETIF_F_SG;
1030
1031	ret = register_netdev(ndev);
1032	if (ret)
1033		goto out_free_bd;
1034
1035	pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1036
1037	return 0;
1038
1039out_free_bd:
1040	fep->ops->free_bd(ndev);
1041out_cleanup_data:
1042	fep->ops->cleanup_data(ndev);
1043out_free_dev:
1044	free_netdev(ndev);
1045out_put:
1046	clk_disable_unprepare(fpi->clk_per);
1047out_deregister_fixed_link:
1048	of_node_put(fpi->phy_node);
1049	if (of_phy_is_fixed_link(ofdev->dev.of_node))
1050		of_phy_deregister_fixed_link(ofdev->dev.of_node);
1051out_free_fpi:
1052	kfree(fpi);
1053	return ret;
1054}
1055
1056static int fs_enet_remove(struct platform_device *ofdev)
1057{
1058	struct net_device *ndev = platform_get_drvdata(ofdev);
1059	struct fs_enet_private *fep = netdev_priv(ndev);
1060
1061	unregister_netdev(ndev);
1062
1063	fep->ops->free_bd(ndev);
1064	fep->ops->cleanup_data(ndev);
1065	dev_set_drvdata(fep->dev, NULL);
1066	of_node_put(fep->fpi->phy_node);
1067	clk_disable_unprepare(fep->fpi->clk_per);
1068	if (of_phy_is_fixed_link(ofdev->dev.of_node))
1069		of_phy_deregister_fixed_link(ofdev->dev.of_node);
1070	free_netdev(ndev);
1071	return 0;
1072}
1073
1074static const struct of_device_id fs_enet_match[] = {
1075#ifdef CONFIG_FS_ENET_HAS_SCC
1076	{
1077		.compatible = "fsl,cpm1-scc-enet",
1078		.data = (void *)&fs_scc_ops,
1079	},
1080	{
1081		.compatible = "fsl,cpm2-scc-enet",
1082		.data = (void *)&fs_scc_ops,
1083	},
1084#endif
1085#ifdef CONFIG_FS_ENET_HAS_FCC
1086	{
1087		.compatible = "fsl,cpm2-fcc-enet",
1088		.data = (void *)&fs_fcc_ops,
1089	},
1090#endif
1091#ifdef CONFIG_FS_ENET_HAS_FEC
1092#ifdef CONFIG_FS_ENET_MPC5121_FEC
1093	{
1094		.compatible = "fsl,mpc5121-fec",
1095		.data = (void *)&fs_fec_ops,
1096	},
1097	{
1098		.compatible = "fsl,mpc5125-fec",
1099		.data = (void *)&fs_fec_ops,
1100	},
1101#else
1102	{
1103		.compatible = "fsl,pq1-fec-enet",
1104		.data = (void *)&fs_fec_ops,
1105	},
1106#endif
1107#endif
1108	{}
1109};
1110MODULE_DEVICE_TABLE(of, fs_enet_match);
1111
1112static struct platform_driver fs_enet_driver = {
1113	.driver = {
1114		.name = "fs_enet",
1115		.of_match_table = fs_enet_match,
1116	},
1117	.probe = fs_enet_probe,
1118	.remove = fs_enet_remove,
1119};
1120
1121#ifdef CONFIG_NET_POLL_CONTROLLER
1122static void fs_enet_netpoll(struct net_device *dev)
1123{
1124       disable_irq(dev->irq);
1125       fs_enet_interrupt(dev->irq, dev);
1126       enable_irq(dev->irq);
1127}
1128#endif
1129
1130module_platform_driver(fs_enet_driver);