Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
   3/*
   4    Copyright (c) 2001, 2002 by D-Link Corporation
   5    Written by Edward Peng.<edward_peng@dlink.com.tw>
   6    Created 03-May-2001, base on Linux' sundance.c.
   7
   8*/
   9
 
 
 
  10#include "dl2k.h"
  11#include <linux/dma-mapping.h>
  12
  13#define dw32(reg, val)	iowrite32(val, ioaddr + (reg))
  14#define dw16(reg, val)	iowrite16(val, ioaddr + (reg))
  15#define dw8(reg, val)	iowrite8(val, ioaddr + (reg))
  16#define dr32(reg)	ioread32(ioaddr + (reg))
  17#define dr16(reg)	ioread16(ioaddr + (reg))
  18#define dr8(reg)	ioread8(ioaddr + (reg))
  19
 
 
  20#define MAX_UNITS 8
  21static int mtu[MAX_UNITS];
  22static int vlan[MAX_UNITS];
  23static int jumbo[MAX_UNITS];
  24static char *media[MAX_UNITS];
  25static int tx_flow=-1;
  26static int rx_flow=-1;
  27static int copy_thresh;
  28static int rx_coalesce=10;	/* Rx frame count each interrupt */
  29static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
  30static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
  31
  32
  33MODULE_AUTHOR ("Edward Peng");
  34MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
  35MODULE_LICENSE("GPL");
  36module_param_array(mtu, int, NULL, 0);
  37module_param_array(media, charp, NULL, 0);
  38module_param_array(vlan, int, NULL, 0);
  39module_param_array(jumbo, int, NULL, 0);
  40module_param(tx_flow, int, 0);
  41module_param(rx_flow, int, 0);
  42module_param(copy_thresh, int, 0);
  43module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
  44module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
  45module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
  46
  47
  48/* Enable the default interrupts */
  49#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
  50       UpdateStats | LinkEvent)
  51
  52static void dl2k_enable_int(struct netdev_private *np)
  53{
  54	void __iomem *ioaddr = np->ioaddr;
  55
  56	dw16(IntEnable, DEFAULT_INTR);
  57}
  58
  59static const int max_intrloop = 50;
  60static const int multicast_filter_limit = 0x40;
  61
  62static int rio_open (struct net_device *dev);
  63static void rio_timer (struct timer_list *t);
  64static void rio_tx_timeout (struct net_device *dev, unsigned int txqueue);
  65static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
  66static irqreturn_t rio_interrupt (int irq, void *dev_instance);
  67static void rio_free_tx (struct net_device *dev, int irq);
  68static void tx_error (struct net_device *dev, int tx_status);
  69static int receive_packet (struct net_device *dev);
  70static void rio_error (struct net_device *dev, int int_status);
  71static void set_multicast (struct net_device *dev);
  72static struct net_device_stats *get_stats (struct net_device *dev);
  73static int clear_stats (struct net_device *dev);
  74static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
  75static int rio_close (struct net_device *dev);
  76static int find_miiphy (struct net_device *dev);
  77static int parse_eeprom (struct net_device *dev);
  78static int read_eeprom (struct netdev_private *, int eep_addr);
  79static int mii_wait_link (struct net_device *dev, int wait);
  80static int mii_set_media (struct net_device *dev);
  81static int mii_get_media (struct net_device *dev);
  82static int mii_set_media_pcs (struct net_device *dev);
  83static int mii_get_media_pcs (struct net_device *dev);
  84static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
  85static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
  86		      u16 data);
  87
  88static const struct ethtool_ops ethtool_ops;
  89
  90static const struct net_device_ops netdev_ops = {
  91	.ndo_open		= rio_open,
  92	.ndo_start_xmit	= start_xmit,
  93	.ndo_stop		= rio_close,
  94	.ndo_get_stats		= get_stats,
  95	.ndo_validate_addr	= eth_validate_addr,
  96	.ndo_set_mac_address 	= eth_mac_addr,
  97	.ndo_set_rx_mode	= set_multicast,
  98	.ndo_eth_ioctl		= rio_ioctl,
  99	.ndo_tx_timeout		= rio_tx_timeout,
 100};
 101
 102static int
 103rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
 104{
 105	struct net_device *dev;
 106	struct netdev_private *np;
 107	static int card_idx;
 108	int chip_idx = ent->driver_data;
 109	int err, irq;
 110	void __iomem *ioaddr;
 
 111	void *ring_space;
 112	dma_addr_t ring_dma;
 113
 
 
 
 114	err = pci_enable_device (pdev);
 115	if (err)
 116		return err;
 117
 118	irq = pdev->irq;
 119	err = pci_request_regions (pdev, "dl2k");
 120	if (err)
 121		goto err_out_disable;
 122
 123	pci_set_master (pdev);
 124
 125	err = -ENOMEM;
 126
 127	dev = alloc_etherdev (sizeof (*np));
 128	if (!dev)
 129		goto err_out_res;
 130	SET_NETDEV_DEV(dev, &pdev->dev);
 131
 132	np = netdev_priv(dev);
 133
 134	/* IO registers range. */
 135	ioaddr = pci_iomap(pdev, 0, 0);
 136	if (!ioaddr)
 137		goto err_out_dev;
 138	np->eeprom_addr = ioaddr;
 139
 140#ifdef MEM_MAPPING
 141	/* MM registers range. */
 142	ioaddr = pci_iomap(pdev, 1, 0);
 143	if (!ioaddr)
 144		goto err_out_iounmap;
 145#endif
 146	np->ioaddr = ioaddr;
 147	np->chip_id = chip_idx;
 148	np->pdev = pdev;
 149	spin_lock_init (&np->tx_lock);
 150	spin_lock_init (&np->rx_lock);
 151
 152	/* Parse manual configuration */
 153	np->an_enable = 1;
 154	np->tx_coalesce = 1;
 155	if (card_idx < MAX_UNITS) {
 156		if (media[card_idx] != NULL) {
 157			np->an_enable = 0;
 158			if (strcmp (media[card_idx], "auto") == 0 ||
 159			    strcmp (media[card_idx], "autosense") == 0 ||
 160			    strcmp (media[card_idx], "0") == 0 ) {
 161				np->an_enable = 2;
 162			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
 163			    strcmp (media[card_idx], "4") == 0) {
 164				np->speed = 100;
 165				np->full_duplex = 1;
 166			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
 167				   strcmp (media[card_idx], "3") == 0) {
 168				np->speed = 100;
 169				np->full_duplex = 0;
 170			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
 171				   strcmp (media[card_idx], "2") == 0) {
 172				np->speed = 10;
 173				np->full_duplex = 1;
 174			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
 175				   strcmp (media[card_idx], "1") == 0) {
 176				np->speed = 10;
 177				np->full_duplex = 0;
 178			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
 179				 strcmp (media[card_idx], "6") == 0) {
 180				np->speed=1000;
 181				np->full_duplex=1;
 182			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
 183				 strcmp (media[card_idx], "5") == 0) {
 184				np->speed = 1000;
 185				np->full_duplex = 0;
 186			} else {
 187				np->an_enable = 1;
 188			}
 189		}
 190		if (jumbo[card_idx] != 0) {
 191			np->jumbo = 1;
 192			dev->mtu = MAX_JUMBO;
 193		} else {
 194			np->jumbo = 0;
 195			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
 196				dev->mtu = mtu[card_idx];
 197		}
 198		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
 199		    vlan[card_idx] : 0;
 200		if (rx_coalesce > 0 && rx_timeout > 0) {
 201			np->rx_coalesce = rx_coalesce;
 202			np->rx_timeout = rx_timeout;
 203			np->coalesce = 1;
 204		}
 205		np->tx_flow = (tx_flow == 0) ? 0 : 1;
 206		np->rx_flow = (rx_flow == 0) ? 0 : 1;
 207
 208		if (tx_coalesce < 1)
 209			tx_coalesce = 1;
 210		else if (tx_coalesce > TX_RING_SIZE-1)
 211			tx_coalesce = TX_RING_SIZE - 1;
 212	}
 213	dev->netdev_ops = &netdev_ops;
 214	dev->watchdog_timeo = TX_TIMEOUT;
 215	dev->ethtool_ops = &ethtool_ops;
 216#if 0
 217	dev->features = NETIF_F_IP_CSUM;
 218#endif
 219	/* MTU range: 68 - 1536 or 8000 */
 220	dev->min_mtu = ETH_MIN_MTU;
 221	dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
 222
 223	pci_set_drvdata (pdev, dev);
 224
 225	ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
 226					GFP_KERNEL);
 227	if (!ring_space)
 228		goto err_out_iounmap;
 229	np->tx_ring = ring_space;
 230	np->tx_ring_dma = ring_dma;
 231
 232	ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
 233					GFP_KERNEL);
 234	if (!ring_space)
 235		goto err_out_unmap_tx;
 236	np->rx_ring = ring_space;
 237	np->rx_ring_dma = ring_dma;
 238
 239	/* Parse eeprom data */
 240	parse_eeprom (dev);
 241
 242	/* Find PHY address */
 243	err = find_miiphy (dev);
 244	if (err)
 245		goto err_out_unmap_rx;
 246
 247	/* Fiber device? */
 248	np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
 249	np->link_status = 0;
 250	/* Set media and reset PHY */
 251	if (np->phy_media) {
 252		/* default Auto-Negotiation for fiber deivices */
 253	 	if (np->an_enable == 2) {
 254			np->an_enable = 1;
 255		}
 256	} else {
 257		/* Auto-Negotiation is mandatory for 1000BASE-T,
 258		   IEEE 802.3ab Annex 28D page 14 */
 259		if (np->speed == 1000)
 260			np->an_enable = 1;
 261	}
 262
 263	err = register_netdev (dev);
 264	if (err)
 265		goto err_out_unmap_rx;
 266
 267	card_idx++;
 268
 269	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
 270		dev->name, np->name, dev->dev_addr, irq);
 271	if (tx_coalesce > 1)
 272		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
 273				tx_coalesce);
 274	if (np->coalesce)
 275		printk(KERN_INFO
 276		       "rx_coalesce:\t%d packets\n"
 277		       "rx_timeout: \t%d ns\n",
 278				np->rx_coalesce, np->rx_timeout*640);
 279	if (np->vlan)
 280		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
 281	return 0;
 282
 283err_out_unmap_rx:
 284	dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
 285			  np->rx_ring_dma);
 286err_out_unmap_tx:
 287	dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
 288			  np->tx_ring_dma);
 289err_out_iounmap:
 290#ifdef MEM_MAPPING
 291	pci_iounmap(pdev, np->ioaddr);
 292#endif
 293	pci_iounmap(pdev, np->eeprom_addr);
 294err_out_dev:
 295	free_netdev (dev);
 296err_out_res:
 297	pci_release_regions (pdev);
 298err_out_disable:
 299	pci_disable_device (pdev);
 300	return err;
 301}
 302
 303static int
 304find_miiphy (struct net_device *dev)
 305{
 306	struct netdev_private *np = netdev_priv(dev);
 307	int i, phy_found = 0;
 308
 309	np->phy_addr = 1;
 310
 311	for (i = 31; i >= 0; i--) {
 312		int mii_status = mii_read (dev, i, 1);
 313		if (mii_status != 0xffff && mii_status != 0x0000) {
 314			np->phy_addr = i;
 315			phy_found++;
 316		}
 317	}
 318	if (!phy_found) {
 319		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
 320		return -ENODEV;
 321	}
 322	return 0;
 323}
 324
 325static int
 326parse_eeprom (struct net_device *dev)
 327{
 328	struct netdev_private *np = netdev_priv(dev);
 329	void __iomem *ioaddr = np->ioaddr;
 330	int i, j;
 331	u8 sromdata[256];
 332	u8 *psib;
 333	u32 crc;
 334	PSROM_t psrom = (PSROM_t) sromdata;
 335
 336	int cid, next;
 337
 338	for (i = 0; i < 128; i++)
 339		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
 340
 341	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
 342		/* Check CRC */
 343		crc = ~ether_crc_le (256 - 4, sromdata);
 344		if (psrom->crc != cpu_to_le32(crc)) {
 345			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
 346					dev->name);
 347			return -1;
 348		}
 349	}
 350
 351	/* Set MAC address */
 352	eth_hw_addr_set(dev, psrom->mac_addr);
 
 353
 354	if (np->chip_id == CHIP_IP1000A) {
 355		np->led_mode = psrom->led_mode;
 356		return 0;
 357	}
 358
 359	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
 360		return 0;
 361	}
 362
 363	/* Parse Software Information Block */
 364	i = 0x30;
 365	psib = (u8 *) sromdata;
 366	do {
 367		cid = psib[i++];
 368		next = psib[i++];
 369		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
 370			printk (KERN_ERR "Cell data error\n");
 371			return -1;
 372		}
 373		switch (cid) {
 374		case 0:	/* Format version */
 375			break;
 376		case 1:	/* End of cell */
 377			return 0;
 378		case 2:	/* Duplex Polarity */
 379			np->duplex_polarity = psib[i];
 380			dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
 381			break;
 382		case 3:	/* Wake Polarity */
 383			np->wake_polarity = psib[i];
 384			break;
 385		case 9:	/* Adapter description */
 386			j = (next - i > 255) ? 255 : next - i;
 387			memcpy (np->name, &(psib[i]), j);
 388			break;
 389		case 4:
 390		case 5:
 391		case 6:
 392		case 7:
 393		case 8:	/* Reversed */
 394			break;
 395		default:	/* Unknown cell */
 396			return -1;
 397		}
 398		i = next;
 399	} while (1);
 400
 401	return 0;
 402}
 403
 404static void rio_set_led_mode(struct net_device *dev)
 405{
 406	struct netdev_private *np = netdev_priv(dev);
 407	void __iomem *ioaddr = np->ioaddr;
 408	u32 mode;
 409
 410	if (np->chip_id != CHIP_IP1000A)
 411		return;
 412
 413	mode = dr32(ASICCtrl);
 414	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
 415
 416	if (np->led_mode & 0x01)
 417		mode |= IPG_AC_LED_MODE;
 418	if (np->led_mode & 0x02)
 419		mode |= IPG_AC_LED_MODE_BIT_1;
 420	if (np->led_mode & 0x08)
 421		mode |= IPG_AC_LED_SPEED;
 422
 423	dw32(ASICCtrl, mode);
 424}
 425
 426static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
 427{
 428	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
 429}
 430
 431static void free_list(struct net_device *dev)
 432{
 433	struct netdev_private *np = netdev_priv(dev);
 434	struct sk_buff *skb;
 435	int i;
 436
 437	/* Free all the skbuffs in the queue. */
 438	for (i = 0; i < RX_RING_SIZE; i++) {
 439		skb = np->rx_skbuff[i];
 440		if (skb) {
 441			dma_unmap_single(&np->pdev->dev,
 442					 desc_to_dma(&np->rx_ring[i]),
 443					 skb->len, DMA_FROM_DEVICE);
 444			dev_kfree_skb(skb);
 445			np->rx_skbuff[i] = NULL;
 446		}
 447		np->rx_ring[i].status = 0;
 448		np->rx_ring[i].fraginfo = 0;
 449	}
 450	for (i = 0; i < TX_RING_SIZE; i++) {
 451		skb = np->tx_skbuff[i];
 452		if (skb) {
 453			dma_unmap_single(&np->pdev->dev,
 454					 desc_to_dma(&np->tx_ring[i]),
 455					 skb->len, DMA_TO_DEVICE);
 456			dev_kfree_skb(skb);
 457			np->tx_skbuff[i] = NULL;
 458		}
 459	}
 460}
 461
 462static void rio_reset_ring(struct netdev_private *np)
 463{
 464	int i;
 465
 466	np->cur_rx = 0;
 467	np->cur_tx = 0;
 468	np->old_rx = 0;
 469	np->old_tx = 0;
 470
 471	for (i = 0; i < TX_RING_SIZE; i++)
 472		np->tx_ring[i].status = cpu_to_le64(TFDDone);
 473
 474	for (i = 0; i < RX_RING_SIZE; i++)
 475		np->rx_ring[i].status = 0;
 476}
 477
 478 /* allocate and initialize Tx and Rx descriptors */
 479static int alloc_list(struct net_device *dev)
 480{
 481	struct netdev_private *np = netdev_priv(dev);
 482	int i;
 483
 484	rio_reset_ring(np);
 485	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
 486
 487	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
 488	for (i = 0; i < TX_RING_SIZE; i++) {
 489		np->tx_skbuff[i] = NULL;
 490		np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
 491					      ((i + 1) % TX_RING_SIZE) *
 492					      sizeof(struct netdev_desc));
 493	}
 494
 495	/* Initialize Rx descriptors & allocate buffers */
 496	for (i = 0; i < RX_RING_SIZE; i++) {
 497		/* Allocated fixed size of skbuff */
 498		struct sk_buff *skb;
 499
 500		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
 501		np->rx_skbuff[i] = skb;
 502		if (!skb) {
 503			free_list(dev);
 504			return -ENOMEM;
 505		}
 506
 507		np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
 508						((i + 1) % RX_RING_SIZE) *
 509						sizeof(struct netdev_desc));
 510		/* Rubicon now supports 40 bits of addressing space. */
 511		np->rx_ring[i].fraginfo =
 512		    cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
 513					       np->rx_buf_sz, DMA_FROM_DEVICE));
 
 514		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
 515	}
 516
 517	return 0;
 518}
 519
 520static void rio_hw_init(struct net_device *dev)
 521{
 522	struct netdev_private *np = netdev_priv(dev);
 523	void __iomem *ioaddr = np->ioaddr;
 524	int i;
 525	u16 macctrl;
 526
 527	/* Reset all logic functions */
 528	dw16(ASICCtrl + 2,
 529	     GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
 530	mdelay(10);
 531
 532	rio_set_led_mode(dev);
 533
 534	/* DebugCtrl bit 4, 5, 9 must set */
 535	dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
 536
 537	if (np->chip_id == CHIP_IP1000A &&
 538	    (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
 539		/* PHY magic taken from ipg driver, undocumented registers */
 540		mii_write(dev, np->phy_addr, 31, 0x0001);
 541		mii_write(dev, np->phy_addr, 27, 0x01e0);
 542		mii_write(dev, np->phy_addr, 31, 0x0002);
 543		mii_write(dev, np->phy_addr, 27, 0xeb8e);
 544		mii_write(dev, np->phy_addr, 31, 0x0000);
 545		mii_write(dev, np->phy_addr, 30, 0x005e);
 546		/* advertise 1000BASE-T half & full duplex, prefer MASTER */
 547		mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
 548	}
 549
 550	if (np->phy_media)
 551		mii_set_media_pcs(dev);
 552	else
 553		mii_set_media(dev);
 554
 555	/* Jumbo frame */
 556	if (np->jumbo != 0)
 557		dw16(MaxFrameSize, MAX_JUMBO+14);
 558
 559	/* Set RFDListPtr */
 560	dw32(RFDListPtr0, np->rx_ring_dma);
 561	dw32(RFDListPtr1, 0);
 562
 563	/* Set station address */
 564	/* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
 565	 * too. However, it doesn't work on IP1000A so we use 16-bit access.
 566	 */
 567	for (i = 0; i < 3; i++)
 568		dw16(StationAddr0 + 2 * i, get_unaligned_le16(&dev->dev_addr[2 * i]));
 
 569
 570	set_multicast (dev);
 571	if (np->coalesce) {
 572		dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
 573	}
 574	/* Set RIO to poll every N*320nsec. */
 575	dw8(RxDMAPollPeriod, 0x20);
 576	dw8(TxDMAPollPeriod, 0xff);
 577	dw8(RxDMABurstThresh, 0x30);
 578	dw8(RxDMAUrgentThresh, 0x30);
 579	dw32(RmonStatMask, 0x0007ffff);
 580	/* clear statistics */
 581	clear_stats (dev);
 582
 583	/* VLAN supported */
 584	if (np->vlan) {
 585		/* priority field in RxDMAIntCtrl  */
 586		dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
 587		/* VLANId */
 588		dw16(VLANId, np->vlan);
 589		/* Length/Type should be 0x8100 */
 590		dw32(VLANTag, 0x8100 << 16 | np->vlan);
 591		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
 592		   VLAN information tagged by TFC' VID, CFI fields. */
 593		dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
 594	}
 595
 596	/* Start Tx/Rx */
 597	dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
 598
 599	macctrl = 0;
 600	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
 601	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
 602	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
 603	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
 604	dw16(MACCtrl, macctrl);
 605}
 606
 607static void rio_hw_stop(struct net_device *dev)
 608{
 609	struct netdev_private *np = netdev_priv(dev);
 610	void __iomem *ioaddr = np->ioaddr;
 611
 612	/* Disable interrupts */
 613	dw16(IntEnable, 0);
 614
 615	/* Stop Tx and Rx logics */
 616	dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
 617}
 618
 619static int rio_open(struct net_device *dev)
 620{
 621	struct netdev_private *np = netdev_priv(dev);
 622	const int irq = np->pdev->irq;
 623	int i;
 624
 625	i = alloc_list(dev);
 626	if (i)
 627		return i;
 628
 629	rio_hw_init(dev);
 630
 631	i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
 632	if (i) {
 633		rio_hw_stop(dev);
 634		free_list(dev);
 635		return i;
 636	}
 637
 638	timer_setup(&np->timer, rio_timer, 0);
 639	np->timer.expires = jiffies + 1 * HZ;
 640	add_timer(&np->timer);
 641
 642	netif_start_queue (dev);
 643
 644	dl2k_enable_int(np);
 645	return 0;
 646}
 647
 648static void
 649rio_timer (struct timer_list *t)
 650{
 651	struct netdev_private *np = from_timer(np, t, timer);
 652	struct net_device *dev = pci_get_drvdata(np->pdev);
 653	unsigned int entry;
 654	int next_tick = 1*HZ;
 655	unsigned long flags;
 656
 657	spin_lock_irqsave(&np->rx_lock, flags);
 658	/* Recover rx ring exhausted error */
 659	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
 660		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
 661		/* Re-allocate skbuffs to fill the descriptor ring */
 662		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
 663			struct sk_buff *skb;
 664			entry = np->old_rx % RX_RING_SIZE;
 665			/* Dropped packets don't need to re-allocate */
 666			if (np->rx_skbuff[entry] == NULL) {
 667				skb = netdev_alloc_skb_ip_align(dev,
 668								np->rx_buf_sz);
 669				if (skb == NULL) {
 670					np->rx_ring[entry].fraginfo = 0;
 671					printk (KERN_INFO
 672						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
 673						dev->name, entry);
 674					break;
 675				}
 676				np->rx_skbuff[entry] = skb;
 677				np->rx_ring[entry].fraginfo =
 678				    cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
 679								np->rx_buf_sz, DMA_FROM_DEVICE));
 
 680			}
 681			np->rx_ring[entry].fraginfo |=
 682			    cpu_to_le64((u64)np->rx_buf_sz << 48);
 683			np->rx_ring[entry].status = 0;
 684		} /* end for */
 685	} /* end if */
 686	spin_unlock_irqrestore (&np->rx_lock, flags);
 687	np->timer.expires = jiffies + next_tick;
 688	add_timer(&np->timer);
 689}
 690
 691static void
 692rio_tx_timeout (struct net_device *dev, unsigned int txqueue)
 693{
 694	struct netdev_private *np = netdev_priv(dev);
 695	void __iomem *ioaddr = np->ioaddr;
 696
 697	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
 698		dev->name, dr32(TxStatus));
 699	rio_free_tx(dev, 0);
 700	dev->if_port = 0;
 701	netif_trans_update(dev); /* prevent tx timeout */
 702}
 703
 704static netdev_tx_t
 705start_xmit (struct sk_buff *skb, struct net_device *dev)
 706{
 707	struct netdev_private *np = netdev_priv(dev);
 708	void __iomem *ioaddr = np->ioaddr;
 709	struct netdev_desc *txdesc;
 710	unsigned entry;
 711	u64 tfc_vlan_tag = 0;
 712
 713	if (np->link_status == 0) {	/* Link Down */
 714		dev_kfree_skb(skb);
 715		return NETDEV_TX_OK;
 716	}
 717	entry = np->cur_tx % TX_RING_SIZE;
 718	np->tx_skbuff[entry] = skb;
 719	txdesc = &np->tx_ring[entry];
 720
 721#if 0
 722	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 723		txdesc->status |=
 724		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
 725				 IPChecksumEnable);
 726	}
 727#endif
 728	if (np->vlan) {
 729		tfc_vlan_tag = VLANTagInsert |
 730		    ((u64)np->vlan << 32) |
 731		    ((u64)skb->priority << 45);
 732	}
 733	txdesc->fraginfo = cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
 734						       skb->len, DMA_TO_DEVICE));
 
 735	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
 736
 737	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
 738	 * Work around: Always use 1 descriptor in 10Mbps mode */
 739	if (entry % np->tx_coalesce == 0 || np->speed == 10)
 740		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 741					      WordAlignDisable |
 742					      TxDMAIndicate |
 743					      (1 << FragCountShift));
 744	else
 745		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 746					      WordAlignDisable |
 747					      (1 << FragCountShift));
 748
 749	/* TxDMAPollNow */
 750	dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
 751	/* Schedule ISR */
 752	dw32(CountDown, 10000);
 753	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
 754	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 755			< TX_QUEUE_LEN - 1 && np->speed != 10) {
 756		/* do nothing */
 757	} else if (!netif_queue_stopped(dev)) {
 758		netif_stop_queue (dev);
 759	}
 760
 761	/* The first TFDListPtr */
 762	if (!dr32(TFDListPtr0)) {
 763		dw32(TFDListPtr0, np->tx_ring_dma +
 764		     entry * sizeof (struct netdev_desc));
 765		dw32(TFDListPtr1, 0);
 766	}
 767
 768	return NETDEV_TX_OK;
 769}
 770
 771static irqreturn_t
 772rio_interrupt (int irq, void *dev_instance)
 773{
 774	struct net_device *dev = dev_instance;
 775	struct netdev_private *np = netdev_priv(dev);
 776	void __iomem *ioaddr = np->ioaddr;
 777	unsigned int_status;
 778	int cnt = max_intrloop;
 779	int handled = 0;
 780
 781	while (1) {
 782		int_status = dr16(IntStatus);
 783		dw16(IntStatus, int_status);
 784		int_status &= DEFAULT_INTR;
 785		if (int_status == 0 || --cnt < 0)
 786			break;
 787		handled = 1;
 788		/* Processing received packets */
 789		if (int_status & RxDMAComplete)
 790			receive_packet (dev);
 791		/* TxDMAComplete interrupt */
 792		if ((int_status & (TxDMAComplete|IntRequested))) {
 793			int tx_status;
 794			tx_status = dr32(TxStatus);
 795			if (tx_status & 0x01)
 796				tx_error (dev, tx_status);
 797			/* Free used tx skbuffs */
 798			rio_free_tx (dev, 1);
 799		}
 800
 801		/* Handle uncommon events */
 802		if (int_status &
 803		    (HostError | LinkEvent | UpdateStats))
 804			rio_error (dev, int_status);
 805	}
 806	if (np->cur_tx != np->old_tx)
 807		dw32(CountDown, 100);
 808	return IRQ_RETVAL(handled);
 809}
 810
 811static void
 812rio_free_tx (struct net_device *dev, int irq)
 813{
 814	struct netdev_private *np = netdev_priv(dev);
 815	int entry = np->old_tx % TX_RING_SIZE;
 
 816	unsigned long flag = 0;
 817
 818	if (irq)
 819		spin_lock(&np->tx_lock);
 820	else
 821		spin_lock_irqsave(&np->tx_lock, flag);
 822
 823	/* Free used tx skbuffs */
 824	while (entry != np->cur_tx) {
 825		struct sk_buff *skb;
 826
 827		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
 828			break;
 829		skb = np->tx_skbuff[entry];
 830		dma_unmap_single(&np->pdev->dev,
 831				 desc_to_dma(&np->tx_ring[entry]), skb->len,
 832				 DMA_TO_DEVICE);
 833		if (irq)
 834			dev_consume_skb_irq(skb);
 835		else
 836			dev_kfree_skb(skb);
 837
 838		np->tx_skbuff[entry] = NULL;
 839		entry = (entry + 1) % TX_RING_SIZE;
 
 840	}
 841	if (irq)
 842		spin_unlock(&np->tx_lock);
 843	else
 844		spin_unlock_irqrestore(&np->tx_lock, flag);
 845	np->old_tx = entry;
 846
 847	/* If the ring is no longer full, clear tx_full and
 848	   call netif_wake_queue() */
 849
 850	if (netif_queue_stopped(dev) &&
 851	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 852	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
 853		netif_wake_queue (dev);
 854	}
 855}
 856
 857static void
 858tx_error (struct net_device *dev, int tx_status)
 859{
 860	struct netdev_private *np = netdev_priv(dev);
 861	void __iomem *ioaddr = np->ioaddr;
 862	int frame_id;
 863	int i;
 864
 865	frame_id = (tx_status & 0xffff0000);
 866	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
 867		dev->name, tx_status, frame_id);
 868	dev->stats.tx_errors++;
 869	/* Ttransmit Underrun */
 870	if (tx_status & 0x10) {
 871		dev->stats.tx_fifo_errors++;
 872		dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
 873		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
 874		dw16(ASICCtrl + 2,
 875		     TxReset | DMAReset | FIFOReset | NetworkReset);
 876		/* Wait for ResetBusy bit clear */
 877		for (i = 50; i > 0; i--) {
 878			if (!(dr16(ASICCtrl + 2) & ResetBusy))
 879				break;
 880			mdelay (1);
 881		}
 882		rio_set_led_mode(dev);
 883		rio_free_tx (dev, 1);
 884		/* Reset TFDListPtr */
 885		dw32(TFDListPtr0, np->tx_ring_dma +
 886		     np->old_tx * sizeof (struct netdev_desc));
 887		dw32(TFDListPtr1, 0);
 888
 889		/* Let TxStartThresh stay default value */
 890	}
 891	/* Late Collision */
 892	if (tx_status & 0x04) {
 893		dev->stats.tx_fifo_errors++;
 894		/* TxReset and clear FIFO */
 895		dw16(ASICCtrl + 2, TxReset | FIFOReset);
 896		/* Wait reset done */
 897		for (i = 50; i > 0; i--) {
 898			if (!(dr16(ASICCtrl + 2) & ResetBusy))
 899				break;
 900			mdelay (1);
 901		}
 902		rio_set_led_mode(dev);
 903		/* Let TxStartThresh stay default value */
 904	}
 905	/* Maximum Collisions */
 906	if (tx_status & 0x08)
 907		dev->stats.collisions++;
 908	/* Restart the Tx */
 909	dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
 910}
 911
 912static int
 913receive_packet (struct net_device *dev)
 914{
 915	struct netdev_private *np = netdev_priv(dev);
 916	int entry = np->cur_rx % RX_RING_SIZE;
 917	int cnt = 30;
 918
 919	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
 920	while (1) {
 921		struct netdev_desc *desc = &np->rx_ring[entry];
 922		int pkt_len;
 923		u64 frame_status;
 924
 925		if (!(desc->status & cpu_to_le64(RFDDone)) ||
 926		    !(desc->status & cpu_to_le64(FrameStart)) ||
 927		    !(desc->status & cpu_to_le64(FrameEnd)))
 928			break;
 929
 930		/* Chip omits the CRC. */
 931		frame_status = le64_to_cpu(desc->status);
 932		pkt_len = frame_status & 0xffff;
 933		if (--cnt < 0)
 934			break;
 935		/* Update rx error statistics, drop packet. */
 936		if (frame_status & RFS_Errors) {
 937			dev->stats.rx_errors++;
 938			if (frame_status & (RxRuntFrame | RxLengthError))
 939				dev->stats.rx_length_errors++;
 940			if (frame_status & RxFCSError)
 941				dev->stats.rx_crc_errors++;
 942			if (frame_status & RxAlignmentError && np->speed != 1000)
 943				dev->stats.rx_frame_errors++;
 944			if (frame_status & RxFIFOOverrun)
 945				dev->stats.rx_fifo_errors++;
 946		} else {
 947			struct sk_buff *skb;
 948
 949			/* Small skbuffs for short packets */
 950			if (pkt_len > copy_thresh) {
 951				dma_unmap_single(&np->pdev->dev,
 952						 desc_to_dma(desc),
 953						 np->rx_buf_sz,
 954						 DMA_FROM_DEVICE);
 955				skb_put (skb = np->rx_skbuff[entry], pkt_len);
 956				np->rx_skbuff[entry] = NULL;
 957			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
 958				dma_sync_single_for_cpu(&np->pdev->dev,
 959							desc_to_dma(desc),
 960							np->rx_buf_sz,
 961							DMA_FROM_DEVICE);
 962				skb_copy_to_linear_data (skb,
 963						  np->rx_skbuff[entry]->data,
 964						  pkt_len);
 965				skb_put (skb, pkt_len);
 966				dma_sync_single_for_device(&np->pdev->dev,
 967							   desc_to_dma(desc),
 968							   np->rx_buf_sz,
 969							   DMA_FROM_DEVICE);
 970			}
 971			skb->protocol = eth_type_trans (skb, dev);
 972#if 0
 973			/* Checksum done by hw, but csum value unavailable. */
 974			if (np->pdev->pci_rev_id >= 0x0c &&
 975				!(frame_status & (TCPError | UDPError | IPError))) {
 976				skb->ip_summed = CHECKSUM_UNNECESSARY;
 977			}
 978#endif
 979			netif_rx (skb);
 980		}
 981		entry = (entry + 1) % RX_RING_SIZE;
 982	}
 983	spin_lock(&np->rx_lock);
 984	np->cur_rx = entry;
 985	/* Re-allocate skbuffs to fill the descriptor ring */
 986	entry = np->old_rx;
 987	while (entry != np->cur_rx) {
 988		struct sk_buff *skb;
 989		/* Dropped packets don't need to re-allocate */
 990		if (np->rx_skbuff[entry] == NULL) {
 991			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
 992			if (skb == NULL) {
 993				np->rx_ring[entry].fraginfo = 0;
 994				printk (KERN_INFO
 995					"%s: receive_packet: "
 996					"Unable to re-allocate Rx skbuff.#%d\n",
 997					dev->name, entry);
 998				break;
 999			}
1000			np->rx_skbuff[entry] = skb;
1001			np->rx_ring[entry].fraginfo =
1002			    cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
1003						       np->rx_buf_sz, DMA_FROM_DEVICE));
 
1004		}
1005		np->rx_ring[entry].fraginfo |=
1006		    cpu_to_le64((u64)np->rx_buf_sz << 48);
1007		np->rx_ring[entry].status = 0;
1008		entry = (entry + 1) % RX_RING_SIZE;
1009	}
1010	np->old_rx = entry;
1011	spin_unlock(&np->rx_lock);
1012	return 0;
1013}
1014
1015static void
1016rio_error (struct net_device *dev, int int_status)
1017{
1018	struct netdev_private *np = netdev_priv(dev);
1019	void __iomem *ioaddr = np->ioaddr;
1020	u16 macctrl;
1021
1022	/* Link change event */
1023	if (int_status & LinkEvent) {
1024		if (mii_wait_link (dev, 10) == 0) {
1025			printk (KERN_INFO "%s: Link up\n", dev->name);
1026			if (np->phy_media)
1027				mii_get_media_pcs (dev);
1028			else
1029				mii_get_media (dev);
1030			if (np->speed == 1000)
1031				np->tx_coalesce = tx_coalesce;
1032			else
1033				np->tx_coalesce = 1;
1034			macctrl = 0;
1035			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
1036			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
1037			macctrl |= (np->tx_flow) ?
1038				TxFlowControlEnable : 0;
1039			macctrl |= (np->rx_flow) ?
1040				RxFlowControlEnable : 0;
1041			dw16(MACCtrl, macctrl);
1042			np->link_status = 1;
1043			netif_carrier_on(dev);
1044		} else {
1045			printk (KERN_INFO "%s: Link off\n", dev->name);
1046			np->link_status = 0;
1047			netif_carrier_off(dev);
1048		}
1049	}
1050
1051	/* UpdateStats statistics registers */
1052	if (int_status & UpdateStats) {
1053		get_stats (dev);
1054	}
1055
1056	/* PCI Error, a catastronphic error related to the bus interface
1057	   occurs, set GlobalReset and HostReset to reset. */
1058	if (int_status & HostError) {
1059		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1060			dev->name, int_status);
1061		dw16(ASICCtrl + 2, GlobalReset | HostReset);
1062		mdelay (500);
1063		rio_set_led_mode(dev);
1064	}
1065}
1066
1067static struct net_device_stats *
1068get_stats (struct net_device *dev)
1069{
1070	struct netdev_private *np = netdev_priv(dev);
1071	void __iomem *ioaddr = np->ioaddr;
1072#ifdef MEM_MAPPING
1073	int i;
1074#endif
1075	unsigned int stat_reg;
1076
1077	/* All statistics registers need to be acknowledged,
1078	   else statistic overflow could cause problems */
1079
1080	dev->stats.rx_packets += dr32(FramesRcvOk);
1081	dev->stats.tx_packets += dr32(FramesXmtOk);
1082	dev->stats.rx_bytes += dr32(OctetRcvOk);
1083	dev->stats.tx_bytes += dr32(OctetXmtOk);
1084
1085	dev->stats.multicast = dr32(McstFramesRcvdOk);
1086	dev->stats.collisions += dr32(SingleColFrames)
1087			     +  dr32(MultiColFrames);
1088
1089	/* detailed tx errors */
1090	stat_reg = dr16(FramesAbortXSColls);
1091	dev->stats.tx_aborted_errors += stat_reg;
1092	dev->stats.tx_errors += stat_reg;
1093
1094	stat_reg = dr16(CarrierSenseErrors);
1095	dev->stats.tx_carrier_errors += stat_reg;
1096	dev->stats.tx_errors += stat_reg;
1097
1098	/* Clear all other statistic register. */
1099	dr32(McstOctetXmtOk);
1100	dr16(BcstFramesXmtdOk);
1101	dr32(McstFramesXmtdOk);
1102	dr16(BcstFramesRcvdOk);
1103	dr16(MacControlFramesRcvd);
1104	dr16(FrameTooLongErrors);
1105	dr16(InRangeLengthErrors);
1106	dr16(FramesCheckSeqErrors);
1107	dr16(FramesLostRxErrors);
1108	dr32(McstOctetXmtOk);
1109	dr32(BcstOctetXmtOk);
1110	dr32(McstFramesXmtdOk);
1111	dr32(FramesWDeferredXmt);
1112	dr32(LateCollisions);
1113	dr16(BcstFramesXmtdOk);
1114	dr16(MacControlFramesXmtd);
1115	dr16(FramesWEXDeferal);
1116
1117#ifdef MEM_MAPPING
1118	for (i = 0x100; i <= 0x150; i += 4)
1119		dr32(i);
1120#endif
1121	dr16(TxJumboFrames);
1122	dr16(RxJumboFrames);
1123	dr16(TCPCheckSumErrors);
1124	dr16(UDPCheckSumErrors);
1125	dr16(IPCheckSumErrors);
1126	return &dev->stats;
1127}
1128
1129static int
1130clear_stats (struct net_device *dev)
1131{
1132	struct netdev_private *np = netdev_priv(dev);
1133	void __iomem *ioaddr = np->ioaddr;
1134#ifdef MEM_MAPPING
1135	int i;
1136#endif
1137
1138	/* All statistics registers need to be acknowledged,
1139	   else statistic overflow could cause problems */
1140	dr32(FramesRcvOk);
1141	dr32(FramesXmtOk);
1142	dr32(OctetRcvOk);
1143	dr32(OctetXmtOk);
1144
1145	dr32(McstFramesRcvdOk);
1146	dr32(SingleColFrames);
1147	dr32(MultiColFrames);
1148	dr32(LateCollisions);
1149	/* detailed rx errors */
1150	dr16(FrameTooLongErrors);
1151	dr16(InRangeLengthErrors);
1152	dr16(FramesCheckSeqErrors);
1153	dr16(FramesLostRxErrors);
1154
1155	/* detailed tx errors */
1156	dr16(FramesAbortXSColls);
1157	dr16(CarrierSenseErrors);
1158
1159	/* Clear all other statistic register. */
1160	dr32(McstOctetXmtOk);
1161	dr16(BcstFramesXmtdOk);
1162	dr32(McstFramesXmtdOk);
1163	dr16(BcstFramesRcvdOk);
1164	dr16(MacControlFramesRcvd);
1165	dr32(McstOctetXmtOk);
1166	dr32(BcstOctetXmtOk);
1167	dr32(McstFramesXmtdOk);
1168	dr32(FramesWDeferredXmt);
1169	dr16(BcstFramesXmtdOk);
1170	dr16(MacControlFramesXmtd);
1171	dr16(FramesWEXDeferal);
1172#ifdef MEM_MAPPING
1173	for (i = 0x100; i <= 0x150; i += 4)
1174		dr32(i);
1175#endif
1176	dr16(TxJumboFrames);
1177	dr16(RxJumboFrames);
1178	dr16(TCPCheckSumErrors);
1179	dr16(UDPCheckSumErrors);
1180	dr16(IPCheckSumErrors);
1181	return 0;
1182}
1183
1184static void
1185set_multicast (struct net_device *dev)
1186{
1187	struct netdev_private *np = netdev_priv(dev);
1188	void __iomem *ioaddr = np->ioaddr;
1189	u32 hash_table[2];
1190	u16 rx_mode = 0;
1191
1192	hash_table[0] = hash_table[1] = 0;
1193	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1194	hash_table[1] |= 0x02000000;
1195	if (dev->flags & IFF_PROMISC) {
1196		/* Receive all frames promiscuously. */
1197		rx_mode = ReceiveAllFrames;
1198	} else if ((dev->flags & IFF_ALLMULTI) ||
1199			(netdev_mc_count(dev) > multicast_filter_limit)) {
1200		/* Receive broadcast and multicast frames */
1201		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1202	} else if (!netdev_mc_empty(dev)) {
1203		struct netdev_hw_addr *ha;
1204		/* Receive broadcast frames and multicast frames filtering
1205		   by Hashtable */
1206		rx_mode =
1207		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1208		netdev_for_each_mc_addr(ha, dev) {
1209			int bit, index = 0;
1210			int crc = ether_crc_le(ETH_ALEN, ha->addr);
1211			/* The inverted high significant 6 bits of CRC are
1212			   used as an index to hashtable */
1213			for (bit = 0; bit < 6; bit++)
1214				if (crc & (1 << (31 - bit)))
1215					index |= (1 << bit);
1216			hash_table[index / 32] |= (1 << (index % 32));
1217		}
1218	} else {
1219		rx_mode = ReceiveBroadcast | ReceiveUnicast;
1220	}
1221	if (np->vlan) {
1222		/* ReceiveVLANMatch field in ReceiveMode */
1223		rx_mode |= ReceiveVLANMatch;
1224	}
1225
1226	dw32(HashTable0, hash_table[0]);
1227	dw32(HashTable1, hash_table[1]);
1228	dw16(ReceiveMode, rx_mode);
1229}
1230
1231static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1232{
1233	struct netdev_private *np = netdev_priv(dev);
1234
1235	strscpy(info->driver, "dl2k", sizeof(info->driver));
1236	strscpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
 
1237}
1238
1239static int rio_get_link_ksettings(struct net_device *dev,
1240				  struct ethtool_link_ksettings *cmd)
1241{
1242	struct netdev_private *np = netdev_priv(dev);
1243	u32 supported, advertising;
1244
1245	if (np->phy_media) {
1246		/* fiber device */
1247		supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1248		advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1249		cmd->base.port = PORT_FIBRE;
1250	} else {
1251		/* copper device */
1252		supported = SUPPORTED_10baseT_Half |
1253			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1254			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1255			SUPPORTED_Autoneg | SUPPORTED_MII;
1256		advertising = ADVERTISED_10baseT_Half |
1257			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1258			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
1259			ADVERTISED_Autoneg | ADVERTISED_MII;
1260		cmd->base.port = PORT_MII;
1261	}
1262	if (np->link_status) {
1263		cmd->base.speed = np->speed;
1264		cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1265	} else {
1266		cmd->base.speed = SPEED_UNKNOWN;
1267		cmd->base.duplex = DUPLEX_UNKNOWN;
1268	}
1269	if (np->an_enable)
1270		cmd->base.autoneg = AUTONEG_ENABLE;
1271	else
1272		cmd->base.autoneg = AUTONEG_DISABLE;
1273
1274	cmd->base.phy_address = np->phy_addr;
1275
1276	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1277						supported);
1278	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1279						advertising);
1280
1281	return 0;
1282}
1283
1284static int rio_set_link_ksettings(struct net_device *dev,
1285				  const struct ethtool_link_ksettings *cmd)
1286{
1287	struct netdev_private *np = netdev_priv(dev);
1288	u32 speed = cmd->base.speed;
1289	u8 duplex = cmd->base.duplex;
1290
1291	netif_carrier_off(dev);
1292	if (cmd->base.autoneg == AUTONEG_ENABLE) {
1293		if (np->an_enable) {
1294			return 0;
1295		} else {
1296			np->an_enable = 1;
1297			mii_set_media(dev);
1298			return 0;
1299		}
1300	} else {
1301		np->an_enable = 0;
1302		if (np->speed == 1000) {
1303			speed = SPEED_100;
1304			duplex = DUPLEX_FULL;
1305			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1306		}
1307		switch (speed) {
1308		case SPEED_10:
1309			np->speed = 10;
1310			np->full_duplex = (duplex == DUPLEX_FULL);
1311			break;
1312		case SPEED_100:
1313			np->speed = 100;
1314			np->full_duplex = (duplex == DUPLEX_FULL);
1315			break;
1316		case SPEED_1000: /* not supported */
1317		default:
1318			return -EINVAL;
1319		}
1320		mii_set_media(dev);
1321	}
1322	return 0;
1323}
1324
1325static u32 rio_get_link(struct net_device *dev)
1326{
1327	struct netdev_private *np = netdev_priv(dev);
1328	return np->link_status;
1329}
1330
1331static const struct ethtool_ops ethtool_ops = {
1332	.get_drvinfo = rio_get_drvinfo,
1333	.get_link = rio_get_link,
1334	.get_link_ksettings = rio_get_link_ksettings,
1335	.set_link_ksettings = rio_set_link_ksettings,
1336};
1337
1338static int
1339rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1340{
1341	int phy_addr;
1342	struct netdev_private *np = netdev_priv(dev);
1343	struct mii_ioctl_data *miidata = if_mii(rq);
1344
1345	phy_addr = np->phy_addr;
1346	switch (cmd) {
1347	case SIOCGMIIPHY:
1348		miidata->phy_id = phy_addr;
1349		break;
1350	case SIOCGMIIREG:
1351		miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1352		break;
1353	case SIOCSMIIREG:
1354		if (!capable(CAP_NET_ADMIN))
1355			return -EPERM;
1356		mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1357		break;
1358	default:
1359		return -EOPNOTSUPP;
1360	}
1361	return 0;
1362}
1363
1364#define EEP_READ 0x0200
1365#define EEP_BUSY 0x8000
1366/* Read the EEPROM word */
1367/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1368static int read_eeprom(struct netdev_private *np, int eep_addr)
1369{
1370	void __iomem *ioaddr = np->eeprom_addr;
1371	int i = 1000;
1372
1373	dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1374	while (i-- > 0) {
1375		if (!(dr16(EepromCtrl) & EEP_BUSY))
1376			return dr16(EepromData);
1377	}
1378	return 0;
1379}
1380
1381enum phy_ctrl_bits {
1382	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1383	MII_DUPLEX = 0x08,
1384};
1385
1386#define mii_delay() dr8(PhyCtrl)
1387static void
1388mii_sendbit (struct net_device *dev, u32 data)
1389{
1390	struct netdev_private *np = netdev_priv(dev);
1391	void __iomem *ioaddr = np->ioaddr;
1392
1393	data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1394	dw8(PhyCtrl, data);
1395	mii_delay ();
1396	dw8(PhyCtrl, data | MII_CLK);
1397	mii_delay ();
1398}
1399
1400static int
1401mii_getbit (struct net_device *dev)
1402{
1403	struct netdev_private *np = netdev_priv(dev);
1404	void __iomem *ioaddr = np->ioaddr;
1405	u8 data;
1406
1407	data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1408	dw8(PhyCtrl, data);
1409	mii_delay ();
1410	dw8(PhyCtrl, data | MII_CLK);
1411	mii_delay ();
1412	return (dr8(PhyCtrl) >> 1) & 1;
1413}
1414
1415static void
1416mii_send_bits (struct net_device *dev, u32 data, int len)
1417{
1418	int i;
1419
1420	for (i = len - 1; i >= 0; i--) {
1421		mii_sendbit (dev, data & (1 << i));
1422	}
1423}
1424
1425static int
1426mii_read (struct net_device *dev, int phy_addr, int reg_num)
1427{
1428	u32 cmd;
1429	int i;
1430	u32 retval = 0;
1431
1432	/* Preamble */
1433	mii_send_bits (dev, 0xffffffff, 32);
1434	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1435	/* ST,OP = 0110'b for read operation */
1436	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1437	mii_send_bits (dev, cmd, 14);
1438	/* Turnaround */
1439	if (mii_getbit (dev))
1440		goto err_out;
1441	/* Read data */
1442	for (i = 0; i < 16; i++) {
1443		retval |= mii_getbit (dev);
1444		retval <<= 1;
1445	}
1446	/* End cycle */
1447	mii_getbit (dev);
1448	return (retval >> 1) & 0xffff;
1449
1450      err_out:
1451	return 0;
1452}
1453static int
1454mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1455{
1456	u32 cmd;
1457
1458	/* Preamble */
1459	mii_send_bits (dev, 0xffffffff, 32);
1460	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1461	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1462	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1463	mii_send_bits (dev, cmd, 32);
1464	/* End cycle */
1465	mii_getbit (dev);
1466	return 0;
1467}
1468static int
1469mii_wait_link (struct net_device *dev, int wait)
1470{
1471	__u16 bmsr;
1472	int phy_addr;
1473	struct netdev_private *np;
1474
1475	np = netdev_priv(dev);
1476	phy_addr = np->phy_addr;
1477
1478	do {
1479		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1480		if (bmsr & BMSR_LSTATUS)
1481			return 0;
1482		mdelay (1);
1483	} while (--wait > 0);
1484	return -1;
1485}
1486static int
1487mii_get_media (struct net_device *dev)
1488{
1489	__u16 negotiate;
1490	__u16 bmsr;
1491	__u16 mscr;
1492	__u16 mssr;
1493	int phy_addr;
1494	struct netdev_private *np;
1495
1496	np = netdev_priv(dev);
1497	phy_addr = np->phy_addr;
1498
1499	bmsr = mii_read (dev, phy_addr, MII_BMSR);
1500	if (np->an_enable) {
1501		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1502			/* Auto-Negotiation not completed */
1503			return -1;
1504		}
1505		negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1506			mii_read (dev, phy_addr, MII_LPA);
1507		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1508		mssr = mii_read (dev, phy_addr, MII_STAT1000);
1509		if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1510			np->speed = 1000;
1511			np->full_duplex = 1;
1512			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1513		} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1514			np->speed = 1000;
1515			np->full_duplex = 0;
1516			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1517		} else if (negotiate & ADVERTISE_100FULL) {
1518			np->speed = 100;
1519			np->full_duplex = 1;
1520			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1521		} else if (negotiate & ADVERTISE_100HALF) {
1522			np->speed = 100;
1523			np->full_duplex = 0;
1524			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1525		} else if (negotiate & ADVERTISE_10FULL) {
1526			np->speed = 10;
1527			np->full_duplex = 1;
1528			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1529		} else if (negotiate & ADVERTISE_10HALF) {
1530			np->speed = 10;
1531			np->full_duplex = 0;
1532			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1533		}
1534		if (negotiate & ADVERTISE_PAUSE_CAP) {
1535			np->tx_flow &= 1;
1536			np->rx_flow &= 1;
1537		} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1538			np->tx_flow = 0;
1539			np->rx_flow &= 1;
1540		}
1541		/* else tx_flow, rx_flow = user select  */
1542	} else {
1543		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1544		switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1545		case BMCR_SPEED1000:
1546			printk (KERN_INFO "Operating at 1000 Mbps, ");
1547			break;
1548		case BMCR_SPEED100:
1549			printk (KERN_INFO "Operating at 100 Mbps, ");
1550			break;
1551		case 0:
1552			printk (KERN_INFO "Operating at 10 Mbps, ");
1553		}
1554		if (bmcr & BMCR_FULLDPLX) {
1555			printk (KERN_CONT "Full duplex\n");
1556		} else {
1557			printk (KERN_CONT "Half duplex\n");
1558		}
1559	}
1560	if (np->tx_flow)
1561		printk(KERN_INFO "Enable Tx Flow Control\n");
1562	else
1563		printk(KERN_INFO "Disable Tx Flow Control\n");
1564	if (np->rx_flow)
1565		printk(KERN_INFO "Enable Rx Flow Control\n");
1566	else
1567		printk(KERN_INFO "Disable Rx Flow Control\n");
1568
1569	return 0;
1570}
1571
1572static int
1573mii_set_media (struct net_device *dev)
1574{
1575	__u16 pscr;
1576	__u16 bmcr;
1577	__u16 bmsr;
1578	__u16 anar;
1579	int phy_addr;
1580	struct netdev_private *np;
1581	np = netdev_priv(dev);
1582	phy_addr = np->phy_addr;
1583
1584	/* Does user set speed? */
1585	if (np->an_enable) {
1586		/* Advertise capabilities */
1587		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1588		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1589			~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1590			  ADVERTISE_100HALF | ADVERTISE_10HALF |
1591			  ADVERTISE_100BASE4);
1592		if (bmsr & BMSR_100FULL)
1593			anar |= ADVERTISE_100FULL;
1594		if (bmsr & BMSR_100HALF)
1595			anar |= ADVERTISE_100HALF;
1596		if (bmsr & BMSR_100BASE4)
1597			anar |= ADVERTISE_100BASE4;
1598		if (bmsr & BMSR_10FULL)
1599			anar |= ADVERTISE_10FULL;
1600		if (bmsr & BMSR_10HALF)
1601			anar |= ADVERTISE_10HALF;
1602		anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1603		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1604
1605		/* Enable Auto crossover */
1606		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1607		pscr |= 3 << 5;	/* 11'b */
1608		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1609
1610		/* Soft reset PHY */
1611		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1612		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1613		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1614		mdelay(1);
1615	} else {
1616		/* Force speed setting */
1617		/* 1) Disable Auto crossover */
1618		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1619		pscr &= ~(3 << 5);
1620		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1621
1622		/* 2) PHY Reset */
1623		bmcr = mii_read (dev, phy_addr, MII_BMCR);
1624		bmcr |= BMCR_RESET;
1625		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1626
1627		/* 3) Power Down */
1628		bmcr = 0x1940;	/* must be 0x1940 */
1629		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1630		mdelay (100);	/* wait a certain time */
1631
1632		/* 4) Advertise nothing */
1633		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1634
1635		/* 5) Set media and Power Up */
1636		bmcr = BMCR_PDOWN;
1637		if (np->speed == 100) {
1638			bmcr |= BMCR_SPEED100;
1639			printk (KERN_INFO "Manual 100 Mbps, ");
1640		} else if (np->speed == 10) {
1641			printk (KERN_INFO "Manual 10 Mbps, ");
1642		}
1643		if (np->full_duplex) {
1644			bmcr |= BMCR_FULLDPLX;
1645			printk (KERN_CONT "Full duplex\n");
1646		} else {
1647			printk (KERN_CONT "Half duplex\n");
1648		}
1649#if 0
1650		/* Set 1000BaseT Master/Slave setting */
1651		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1652		mscr |= MII_MSCR_CFG_ENABLE;
1653		mscr &= ~MII_MSCR_CFG_VALUE = 0;
1654#endif
1655		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1656		mdelay(10);
1657	}
1658	return 0;
1659}
1660
1661static int
1662mii_get_media_pcs (struct net_device *dev)
1663{
1664	__u16 negotiate;
1665	__u16 bmsr;
1666	int phy_addr;
1667	struct netdev_private *np;
1668
1669	np = netdev_priv(dev);
1670	phy_addr = np->phy_addr;
1671
1672	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1673	if (np->an_enable) {
1674		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1675			/* Auto-Negotiation not completed */
1676			return -1;
1677		}
1678		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1679			mii_read (dev, phy_addr, PCS_ANLPAR);
1680		np->speed = 1000;
1681		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1682			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1683			np->full_duplex = 1;
1684		} else {
1685			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1686			np->full_duplex = 0;
1687		}
1688		if (negotiate & PCS_ANAR_PAUSE) {
1689			np->tx_flow &= 1;
1690			np->rx_flow &= 1;
1691		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1692			np->tx_flow = 0;
1693			np->rx_flow &= 1;
1694		}
1695		/* else tx_flow, rx_flow = user select  */
1696	} else {
1697		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1698		printk (KERN_INFO "Operating at 1000 Mbps, ");
1699		if (bmcr & BMCR_FULLDPLX) {
1700			printk (KERN_CONT "Full duplex\n");
1701		} else {
1702			printk (KERN_CONT "Half duplex\n");
1703		}
1704	}
1705	if (np->tx_flow)
1706		printk(KERN_INFO "Enable Tx Flow Control\n");
1707	else
1708		printk(KERN_INFO "Disable Tx Flow Control\n");
1709	if (np->rx_flow)
1710		printk(KERN_INFO "Enable Rx Flow Control\n");
1711	else
1712		printk(KERN_INFO "Disable Rx Flow Control\n");
1713
1714	return 0;
1715}
1716
1717static int
1718mii_set_media_pcs (struct net_device *dev)
1719{
1720	__u16 bmcr;
1721	__u16 esr;
1722	__u16 anar;
1723	int phy_addr;
1724	struct netdev_private *np;
1725	np = netdev_priv(dev);
1726	phy_addr = np->phy_addr;
1727
1728	/* Auto-Negotiation? */
1729	if (np->an_enable) {
1730		/* Advertise capabilities */
1731		esr = mii_read (dev, phy_addr, PCS_ESR);
1732		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1733			~PCS_ANAR_HALF_DUPLEX &
1734			~PCS_ANAR_FULL_DUPLEX;
1735		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1736			anar |= PCS_ANAR_HALF_DUPLEX;
1737		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1738			anar |= PCS_ANAR_FULL_DUPLEX;
1739		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1740		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1741
1742		/* Soft reset PHY */
1743		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1744		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1745		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1746		mdelay(1);
1747	} else {
1748		/* Force speed setting */
1749		/* PHY Reset */
1750		bmcr = BMCR_RESET;
1751		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1752		mdelay(10);
1753		if (np->full_duplex) {
1754			bmcr = BMCR_FULLDPLX;
1755			printk (KERN_INFO "Manual full duplex\n");
1756		} else {
1757			bmcr = 0;
1758			printk (KERN_INFO "Manual half duplex\n");
1759		}
1760		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1761		mdelay(10);
1762
1763		/*  Advertise nothing */
1764		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1765	}
1766	return 0;
1767}
1768
1769
1770static int
1771rio_close (struct net_device *dev)
1772{
1773	struct netdev_private *np = netdev_priv(dev);
1774	struct pci_dev *pdev = np->pdev;
1775
1776	netif_stop_queue (dev);
1777
1778	rio_hw_stop(dev);
1779
1780	free_irq(pdev->irq, dev);
1781	del_timer_sync (&np->timer);
1782
1783	free_list(dev);
1784
1785	return 0;
1786}
1787
1788static void
1789rio_remove1 (struct pci_dev *pdev)
1790{
1791	struct net_device *dev = pci_get_drvdata (pdev);
1792
1793	if (dev) {
1794		struct netdev_private *np = netdev_priv(dev);
1795
1796		unregister_netdev (dev);
1797		dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
1798				  np->rx_ring_dma);
1799		dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
1800				  np->tx_ring_dma);
1801#ifdef MEM_MAPPING
1802		pci_iounmap(pdev, np->ioaddr);
1803#endif
1804		pci_iounmap(pdev, np->eeprom_addr);
1805		free_netdev (dev);
1806		pci_release_regions (pdev);
1807		pci_disable_device (pdev);
1808	}
1809}
1810
1811#ifdef CONFIG_PM_SLEEP
1812static int rio_suspend(struct device *device)
1813{
1814	struct net_device *dev = dev_get_drvdata(device);
1815	struct netdev_private *np = netdev_priv(dev);
1816
1817	if (!netif_running(dev))
1818		return 0;
1819
1820	netif_device_detach(dev);
1821	del_timer_sync(&np->timer);
1822	rio_hw_stop(dev);
1823
1824	return 0;
1825}
1826
1827static int rio_resume(struct device *device)
1828{
1829	struct net_device *dev = dev_get_drvdata(device);
1830	struct netdev_private *np = netdev_priv(dev);
1831
1832	if (!netif_running(dev))
1833		return 0;
1834
1835	rio_reset_ring(np);
1836	rio_hw_init(dev);
1837	np->timer.expires = jiffies + 1 * HZ;
1838	add_timer(&np->timer);
1839	netif_device_attach(dev);
1840	dl2k_enable_int(np);
1841
1842	return 0;
1843}
1844
1845static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
1846#define RIO_PM_OPS    (&rio_pm_ops)
1847
1848#else
1849
1850#define RIO_PM_OPS	NULL
1851
1852#endif /* CONFIG_PM_SLEEP */
1853
1854static struct pci_driver rio_driver = {
1855	.name		= "dl2k",
1856	.id_table	= rio_pci_tbl,
1857	.probe		= rio_probe1,
1858	.remove		= rio_remove1,
1859	.driver.pm	= RIO_PM_OPS,
1860};
1861
1862module_pci_driver(rio_driver);
 
 
 
 
 
 
 
 
 
1863
1864/* Read Documentation/networking/device_drivers/ethernet/dlink/dl2k.rst. */
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
   3/*
   4    Copyright (c) 2001, 2002 by D-Link Corporation
   5    Written by Edward Peng.<edward_peng@dlink.com.tw>
   6    Created 03-May-2001, base on Linux' sundance.c.
   7
   8*/
   9
  10#define DRV_NAME	"DL2000/TC902x-based linux driver"
  11#define DRV_VERSION	"v1.19"
  12#define DRV_RELDATE	"2007/08/12"
  13#include "dl2k.h"
  14#include <linux/dma-mapping.h>
  15
  16#define dw32(reg, val)	iowrite32(val, ioaddr + (reg))
  17#define dw16(reg, val)	iowrite16(val, ioaddr + (reg))
  18#define dw8(reg, val)	iowrite8(val, ioaddr + (reg))
  19#define dr32(reg)	ioread32(ioaddr + (reg))
  20#define dr16(reg)	ioread16(ioaddr + (reg))
  21#define dr8(reg)	ioread8(ioaddr + (reg))
  22
  23static char version[] =
  24      KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
  25#define MAX_UNITS 8
  26static int mtu[MAX_UNITS];
  27static int vlan[MAX_UNITS];
  28static int jumbo[MAX_UNITS];
  29static char *media[MAX_UNITS];
  30static int tx_flow=-1;
  31static int rx_flow=-1;
  32static int copy_thresh;
  33static int rx_coalesce=10;	/* Rx frame count each interrupt */
  34static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
  35static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
  36
  37
  38MODULE_AUTHOR ("Edward Peng");
  39MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
  40MODULE_LICENSE("GPL");
  41module_param_array(mtu, int, NULL, 0);
  42module_param_array(media, charp, NULL, 0);
  43module_param_array(vlan, int, NULL, 0);
  44module_param_array(jumbo, int, NULL, 0);
  45module_param(tx_flow, int, 0);
  46module_param(rx_flow, int, 0);
  47module_param(copy_thresh, int, 0);
  48module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
  49module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
  50module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
  51
  52
  53/* Enable the default interrupts */
  54#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
  55       UpdateStats | LinkEvent)
  56
  57static void dl2k_enable_int(struct netdev_private *np)
  58{
  59	void __iomem *ioaddr = np->ioaddr;
  60
  61	dw16(IntEnable, DEFAULT_INTR);
  62}
  63
  64static const int max_intrloop = 50;
  65static const int multicast_filter_limit = 0x40;
  66
  67static int rio_open (struct net_device *dev);
  68static void rio_timer (struct timer_list *t);
  69static void rio_tx_timeout (struct net_device *dev);
  70static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
  71static irqreturn_t rio_interrupt (int irq, void *dev_instance);
  72static void rio_free_tx (struct net_device *dev, int irq);
  73static void tx_error (struct net_device *dev, int tx_status);
  74static int receive_packet (struct net_device *dev);
  75static void rio_error (struct net_device *dev, int int_status);
  76static void set_multicast (struct net_device *dev);
  77static struct net_device_stats *get_stats (struct net_device *dev);
  78static int clear_stats (struct net_device *dev);
  79static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
  80static int rio_close (struct net_device *dev);
  81static int find_miiphy (struct net_device *dev);
  82static int parse_eeprom (struct net_device *dev);
  83static int read_eeprom (struct netdev_private *, int eep_addr);
  84static int mii_wait_link (struct net_device *dev, int wait);
  85static int mii_set_media (struct net_device *dev);
  86static int mii_get_media (struct net_device *dev);
  87static int mii_set_media_pcs (struct net_device *dev);
  88static int mii_get_media_pcs (struct net_device *dev);
  89static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
  90static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
  91		      u16 data);
  92
  93static const struct ethtool_ops ethtool_ops;
  94
  95static const struct net_device_ops netdev_ops = {
  96	.ndo_open		= rio_open,
  97	.ndo_start_xmit	= start_xmit,
  98	.ndo_stop		= rio_close,
  99	.ndo_get_stats		= get_stats,
 100	.ndo_validate_addr	= eth_validate_addr,
 101	.ndo_set_mac_address 	= eth_mac_addr,
 102	.ndo_set_rx_mode	= set_multicast,
 103	.ndo_do_ioctl		= rio_ioctl,
 104	.ndo_tx_timeout		= rio_tx_timeout,
 105};
 106
 107static int
 108rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
 109{
 110	struct net_device *dev;
 111	struct netdev_private *np;
 112	static int card_idx;
 113	int chip_idx = ent->driver_data;
 114	int err, irq;
 115	void __iomem *ioaddr;
 116	static int version_printed;
 117	void *ring_space;
 118	dma_addr_t ring_dma;
 119
 120	if (!version_printed++)
 121		printk ("%s", version);
 122
 123	err = pci_enable_device (pdev);
 124	if (err)
 125		return err;
 126
 127	irq = pdev->irq;
 128	err = pci_request_regions (pdev, "dl2k");
 129	if (err)
 130		goto err_out_disable;
 131
 132	pci_set_master (pdev);
 133
 134	err = -ENOMEM;
 135
 136	dev = alloc_etherdev (sizeof (*np));
 137	if (!dev)
 138		goto err_out_res;
 139	SET_NETDEV_DEV(dev, &pdev->dev);
 140
 141	np = netdev_priv(dev);
 142
 143	/* IO registers range. */
 144	ioaddr = pci_iomap(pdev, 0, 0);
 145	if (!ioaddr)
 146		goto err_out_dev;
 147	np->eeprom_addr = ioaddr;
 148
 149#ifdef MEM_MAPPING
 150	/* MM registers range. */
 151	ioaddr = pci_iomap(pdev, 1, 0);
 152	if (!ioaddr)
 153		goto err_out_iounmap;
 154#endif
 155	np->ioaddr = ioaddr;
 156	np->chip_id = chip_idx;
 157	np->pdev = pdev;
 158	spin_lock_init (&np->tx_lock);
 159	spin_lock_init (&np->rx_lock);
 160
 161	/* Parse manual configuration */
 162	np->an_enable = 1;
 163	np->tx_coalesce = 1;
 164	if (card_idx < MAX_UNITS) {
 165		if (media[card_idx] != NULL) {
 166			np->an_enable = 0;
 167			if (strcmp (media[card_idx], "auto") == 0 ||
 168			    strcmp (media[card_idx], "autosense") == 0 ||
 169			    strcmp (media[card_idx], "0") == 0 ) {
 170				np->an_enable = 2;
 171			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
 172			    strcmp (media[card_idx], "4") == 0) {
 173				np->speed = 100;
 174				np->full_duplex = 1;
 175			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
 176				   strcmp (media[card_idx], "3") == 0) {
 177				np->speed = 100;
 178				np->full_duplex = 0;
 179			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
 180				   strcmp (media[card_idx], "2") == 0) {
 181				np->speed = 10;
 182				np->full_duplex = 1;
 183			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
 184				   strcmp (media[card_idx], "1") == 0) {
 185				np->speed = 10;
 186				np->full_duplex = 0;
 187			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
 188				 strcmp (media[card_idx], "6") == 0) {
 189				np->speed=1000;
 190				np->full_duplex=1;
 191			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
 192				 strcmp (media[card_idx], "5") == 0) {
 193				np->speed = 1000;
 194				np->full_duplex = 0;
 195			} else {
 196				np->an_enable = 1;
 197			}
 198		}
 199		if (jumbo[card_idx] != 0) {
 200			np->jumbo = 1;
 201			dev->mtu = MAX_JUMBO;
 202		} else {
 203			np->jumbo = 0;
 204			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
 205				dev->mtu = mtu[card_idx];
 206		}
 207		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
 208		    vlan[card_idx] : 0;
 209		if (rx_coalesce > 0 && rx_timeout > 0) {
 210			np->rx_coalesce = rx_coalesce;
 211			np->rx_timeout = rx_timeout;
 212			np->coalesce = 1;
 213		}
 214		np->tx_flow = (tx_flow == 0) ? 0 : 1;
 215		np->rx_flow = (rx_flow == 0) ? 0 : 1;
 216
 217		if (tx_coalesce < 1)
 218			tx_coalesce = 1;
 219		else if (tx_coalesce > TX_RING_SIZE-1)
 220			tx_coalesce = TX_RING_SIZE - 1;
 221	}
 222	dev->netdev_ops = &netdev_ops;
 223	dev->watchdog_timeo = TX_TIMEOUT;
 224	dev->ethtool_ops = &ethtool_ops;
 225#if 0
 226	dev->features = NETIF_F_IP_CSUM;
 227#endif
 228	/* MTU range: 68 - 1536 or 8000 */
 229	dev->min_mtu = ETH_MIN_MTU;
 230	dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
 231
 232	pci_set_drvdata (pdev, dev);
 233
 234	ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
 
 235	if (!ring_space)
 236		goto err_out_iounmap;
 237	np->tx_ring = ring_space;
 238	np->tx_ring_dma = ring_dma;
 239
 240	ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
 
 241	if (!ring_space)
 242		goto err_out_unmap_tx;
 243	np->rx_ring = ring_space;
 244	np->rx_ring_dma = ring_dma;
 245
 246	/* Parse eeprom data */
 247	parse_eeprom (dev);
 248
 249	/* Find PHY address */
 250	err = find_miiphy (dev);
 251	if (err)
 252		goto err_out_unmap_rx;
 253
 254	/* Fiber device? */
 255	np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
 256	np->link_status = 0;
 257	/* Set media and reset PHY */
 258	if (np->phy_media) {
 259		/* default Auto-Negotiation for fiber deivices */
 260	 	if (np->an_enable == 2) {
 261			np->an_enable = 1;
 262		}
 263	} else {
 264		/* Auto-Negotiation is mandatory for 1000BASE-T,
 265		   IEEE 802.3ab Annex 28D page 14 */
 266		if (np->speed == 1000)
 267			np->an_enable = 1;
 268	}
 269
 270	err = register_netdev (dev);
 271	if (err)
 272		goto err_out_unmap_rx;
 273
 274	card_idx++;
 275
 276	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
 277		dev->name, np->name, dev->dev_addr, irq);
 278	if (tx_coalesce > 1)
 279		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
 280				tx_coalesce);
 281	if (np->coalesce)
 282		printk(KERN_INFO
 283		       "rx_coalesce:\t%d packets\n"
 284		       "rx_timeout: \t%d ns\n",
 285				np->rx_coalesce, np->rx_timeout*640);
 286	if (np->vlan)
 287		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
 288	return 0;
 289
 290err_out_unmap_rx:
 291	pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
 
 292err_out_unmap_tx:
 293	pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
 
 294err_out_iounmap:
 295#ifdef MEM_MAPPING
 296	pci_iounmap(pdev, np->ioaddr);
 297#endif
 298	pci_iounmap(pdev, np->eeprom_addr);
 299err_out_dev:
 300	free_netdev (dev);
 301err_out_res:
 302	pci_release_regions (pdev);
 303err_out_disable:
 304	pci_disable_device (pdev);
 305	return err;
 306}
 307
 308static int
 309find_miiphy (struct net_device *dev)
 310{
 311	struct netdev_private *np = netdev_priv(dev);
 312	int i, phy_found = 0;
 313
 314	np->phy_addr = 1;
 315
 316	for (i = 31; i >= 0; i--) {
 317		int mii_status = mii_read (dev, i, 1);
 318		if (mii_status != 0xffff && mii_status != 0x0000) {
 319			np->phy_addr = i;
 320			phy_found++;
 321		}
 322	}
 323	if (!phy_found) {
 324		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
 325		return -ENODEV;
 326	}
 327	return 0;
 328}
 329
 330static int
 331parse_eeprom (struct net_device *dev)
 332{
 333	struct netdev_private *np = netdev_priv(dev);
 334	void __iomem *ioaddr = np->ioaddr;
 335	int i, j;
 336	u8 sromdata[256];
 337	u8 *psib;
 338	u32 crc;
 339	PSROM_t psrom = (PSROM_t) sromdata;
 340
 341	int cid, next;
 342
 343	for (i = 0; i < 128; i++)
 344		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
 345
 346	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
 347		/* Check CRC */
 348		crc = ~ether_crc_le (256 - 4, sromdata);
 349		if (psrom->crc != cpu_to_le32(crc)) {
 350			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
 351					dev->name);
 352			return -1;
 353		}
 354	}
 355
 356	/* Set MAC address */
 357	for (i = 0; i < 6; i++)
 358		dev->dev_addr[i] = psrom->mac_addr[i];
 359
 360	if (np->chip_id == CHIP_IP1000A) {
 361		np->led_mode = psrom->led_mode;
 362		return 0;
 363	}
 364
 365	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
 366		return 0;
 367	}
 368
 369	/* Parse Software Information Block */
 370	i = 0x30;
 371	psib = (u8 *) sromdata;
 372	do {
 373		cid = psib[i++];
 374		next = psib[i++];
 375		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
 376			printk (KERN_ERR "Cell data error\n");
 377			return -1;
 378		}
 379		switch (cid) {
 380		case 0:	/* Format version */
 381			break;
 382		case 1:	/* End of cell */
 383			return 0;
 384		case 2:	/* Duplex Polarity */
 385			np->duplex_polarity = psib[i];
 386			dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
 387			break;
 388		case 3:	/* Wake Polarity */
 389			np->wake_polarity = psib[i];
 390			break;
 391		case 9:	/* Adapter description */
 392			j = (next - i > 255) ? 255 : next - i;
 393			memcpy (np->name, &(psib[i]), j);
 394			break;
 395		case 4:
 396		case 5:
 397		case 6:
 398		case 7:
 399		case 8:	/* Reversed */
 400			break;
 401		default:	/* Unknown cell */
 402			return -1;
 403		}
 404		i = next;
 405	} while (1);
 406
 407	return 0;
 408}
 409
 410static void rio_set_led_mode(struct net_device *dev)
 411{
 412	struct netdev_private *np = netdev_priv(dev);
 413	void __iomem *ioaddr = np->ioaddr;
 414	u32 mode;
 415
 416	if (np->chip_id != CHIP_IP1000A)
 417		return;
 418
 419	mode = dr32(ASICCtrl);
 420	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
 421
 422	if (np->led_mode & 0x01)
 423		mode |= IPG_AC_LED_MODE;
 424	if (np->led_mode & 0x02)
 425		mode |= IPG_AC_LED_MODE_BIT_1;
 426	if (np->led_mode & 0x08)
 427		mode |= IPG_AC_LED_SPEED;
 428
 429	dw32(ASICCtrl, mode);
 430}
 431
 432static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
 433{
 434	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
 435}
 436
 437static void free_list(struct net_device *dev)
 438{
 439	struct netdev_private *np = netdev_priv(dev);
 440	struct sk_buff *skb;
 441	int i;
 442
 443	/* Free all the skbuffs in the queue. */
 444	for (i = 0; i < RX_RING_SIZE; i++) {
 445		skb = np->rx_skbuff[i];
 446		if (skb) {
 447			pci_unmap_single(np->pdev, desc_to_dma(&np->rx_ring[i]),
 448					 skb->len, PCI_DMA_FROMDEVICE);
 
 449			dev_kfree_skb(skb);
 450			np->rx_skbuff[i] = NULL;
 451		}
 452		np->rx_ring[i].status = 0;
 453		np->rx_ring[i].fraginfo = 0;
 454	}
 455	for (i = 0; i < TX_RING_SIZE; i++) {
 456		skb = np->tx_skbuff[i];
 457		if (skb) {
 458			pci_unmap_single(np->pdev, desc_to_dma(&np->tx_ring[i]),
 459					 skb->len, PCI_DMA_TODEVICE);
 
 460			dev_kfree_skb(skb);
 461			np->tx_skbuff[i] = NULL;
 462		}
 463	}
 464}
 465
 466static void rio_reset_ring(struct netdev_private *np)
 467{
 468	int i;
 469
 470	np->cur_rx = 0;
 471	np->cur_tx = 0;
 472	np->old_rx = 0;
 473	np->old_tx = 0;
 474
 475	for (i = 0; i < TX_RING_SIZE; i++)
 476		np->tx_ring[i].status = cpu_to_le64(TFDDone);
 477
 478	for (i = 0; i < RX_RING_SIZE; i++)
 479		np->rx_ring[i].status = 0;
 480}
 481
 482 /* allocate and initialize Tx and Rx descriptors */
 483static int alloc_list(struct net_device *dev)
 484{
 485	struct netdev_private *np = netdev_priv(dev);
 486	int i;
 487
 488	rio_reset_ring(np);
 489	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
 490
 491	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
 492	for (i = 0; i < TX_RING_SIZE; i++) {
 493		np->tx_skbuff[i] = NULL;
 494		np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
 495					      ((i + 1) % TX_RING_SIZE) *
 496					      sizeof(struct netdev_desc));
 497	}
 498
 499	/* Initialize Rx descriptors & allocate buffers */
 500	for (i = 0; i < RX_RING_SIZE; i++) {
 501		/* Allocated fixed size of skbuff */
 502		struct sk_buff *skb;
 503
 504		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
 505		np->rx_skbuff[i] = skb;
 506		if (!skb) {
 507			free_list(dev);
 508			return -ENOMEM;
 509		}
 510
 511		np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
 512						((i + 1) % RX_RING_SIZE) *
 513						sizeof(struct netdev_desc));
 514		/* Rubicon now supports 40 bits of addressing space. */
 515		np->rx_ring[i].fraginfo =
 516		    cpu_to_le64(pci_map_single(
 517				  np->pdev, skb->data, np->rx_buf_sz,
 518				  PCI_DMA_FROMDEVICE));
 519		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
 520	}
 521
 522	return 0;
 523}
 524
 525static void rio_hw_init(struct net_device *dev)
 526{
 527	struct netdev_private *np = netdev_priv(dev);
 528	void __iomem *ioaddr = np->ioaddr;
 529	int i;
 530	u16 macctrl;
 531
 532	/* Reset all logic functions */
 533	dw16(ASICCtrl + 2,
 534	     GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
 535	mdelay(10);
 536
 537	rio_set_led_mode(dev);
 538
 539	/* DebugCtrl bit 4, 5, 9 must set */
 540	dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
 541
 542	if (np->chip_id == CHIP_IP1000A &&
 543	    (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
 544		/* PHY magic taken from ipg driver, undocumented registers */
 545		mii_write(dev, np->phy_addr, 31, 0x0001);
 546		mii_write(dev, np->phy_addr, 27, 0x01e0);
 547		mii_write(dev, np->phy_addr, 31, 0x0002);
 548		mii_write(dev, np->phy_addr, 27, 0xeb8e);
 549		mii_write(dev, np->phy_addr, 31, 0x0000);
 550		mii_write(dev, np->phy_addr, 30, 0x005e);
 551		/* advertise 1000BASE-T half & full duplex, prefer MASTER */
 552		mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
 553	}
 554
 555	if (np->phy_media)
 556		mii_set_media_pcs(dev);
 557	else
 558		mii_set_media(dev);
 559
 560	/* Jumbo frame */
 561	if (np->jumbo != 0)
 562		dw16(MaxFrameSize, MAX_JUMBO+14);
 563
 564	/* Set RFDListPtr */
 565	dw32(RFDListPtr0, np->rx_ring_dma);
 566	dw32(RFDListPtr1, 0);
 567
 568	/* Set station address */
 569	/* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
 570	 * too. However, it doesn't work on IP1000A so we use 16-bit access.
 571	 */
 572	for (i = 0; i < 3; i++)
 573		dw16(StationAddr0 + 2 * i,
 574		     cpu_to_le16(((u16 *)dev->dev_addr)[i]));
 575
 576	set_multicast (dev);
 577	if (np->coalesce) {
 578		dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
 579	}
 580	/* Set RIO to poll every N*320nsec. */
 581	dw8(RxDMAPollPeriod, 0x20);
 582	dw8(TxDMAPollPeriod, 0xff);
 583	dw8(RxDMABurstThresh, 0x30);
 584	dw8(RxDMAUrgentThresh, 0x30);
 585	dw32(RmonStatMask, 0x0007ffff);
 586	/* clear statistics */
 587	clear_stats (dev);
 588
 589	/* VLAN supported */
 590	if (np->vlan) {
 591		/* priority field in RxDMAIntCtrl  */
 592		dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
 593		/* VLANId */
 594		dw16(VLANId, np->vlan);
 595		/* Length/Type should be 0x8100 */
 596		dw32(VLANTag, 0x8100 << 16 | np->vlan);
 597		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
 598		   VLAN information tagged by TFC' VID, CFI fields. */
 599		dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
 600	}
 601
 602	/* Start Tx/Rx */
 603	dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
 604
 605	macctrl = 0;
 606	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
 607	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
 608	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
 609	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
 610	dw16(MACCtrl, macctrl);
 611}
 612
 613static void rio_hw_stop(struct net_device *dev)
 614{
 615	struct netdev_private *np = netdev_priv(dev);
 616	void __iomem *ioaddr = np->ioaddr;
 617
 618	/* Disable interrupts */
 619	dw16(IntEnable, 0);
 620
 621	/* Stop Tx and Rx logics */
 622	dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
 623}
 624
 625static int rio_open(struct net_device *dev)
 626{
 627	struct netdev_private *np = netdev_priv(dev);
 628	const int irq = np->pdev->irq;
 629	int i;
 630
 631	i = alloc_list(dev);
 632	if (i)
 633		return i;
 634
 635	rio_hw_init(dev);
 636
 637	i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
 638	if (i) {
 639		rio_hw_stop(dev);
 640		free_list(dev);
 641		return i;
 642	}
 643
 644	timer_setup(&np->timer, rio_timer, 0);
 645	np->timer.expires = jiffies + 1 * HZ;
 646	add_timer(&np->timer);
 647
 648	netif_start_queue (dev);
 649
 650	dl2k_enable_int(np);
 651	return 0;
 652}
 653
 654static void
 655rio_timer (struct timer_list *t)
 656{
 657	struct netdev_private *np = from_timer(np, t, timer);
 658	struct net_device *dev = pci_get_drvdata(np->pdev);
 659	unsigned int entry;
 660	int next_tick = 1*HZ;
 661	unsigned long flags;
 662
 663	spin_lock_irqsave(&np->rx_lock, flags);
 664	/* Recover rx ring exhausted error */
 665	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
 666		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
 667		/* Re-allocate skbuffs to fill the descriptor ring */
 668		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
 669			struct sk_buff *skb;
 670			entry = np->old_rx % RX_RING_SIZE;
 671			/* Dropped packets don't need to re-allocate */
 672			if (np->rx_skbuff[entry] == NULL) {
 673				skb = netdev_alloc_skb_ip_align(dev,
 674								np->rx_buf_sz);
 675				if (skb == NULL) {
 676					np->rx_ring[entry].fraginfo = 0;
 677					printk (KERN_INFO
 678						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
 679						dev->name, entry);
 680					break;
 681				}
 682				np->rx_skbuff[entry] = skb;
 683				np->rx_ring[entry].fraginfo =
 684				    cpu_to_le64 (pci_map_single
 685					 (np->pdev, skb->data, np->rx_buf_sz,
 686					  PCI_DMA_FROMDEVICE));
 687			}
 688			np->rx_ring[entry].fraginfo |=
 689			    cpu_to_le64((u64)np->rx_buf_sz << 48);
 690			np->rx_ring[entry].status = 0;
 691		} /* end for */
 692	} /* end if */
 693	spin_unlock_irqrestore (&np->rx_lock, flags);
 694	np->timer.expires = jiffies + next_tick;
 695	add_timer(&np->timer);
 696}
 697
 698static void
 699rio_tx_timeout (struct net_device *dev)
 700{
 701	struct netdev_private *np = netdev_priv(dev);
 702	void __iomem *ioaddr = np->ioaddr;
 703
 704	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
 705		dev->name, dr32(TxStatus));
 706	rio_free_tx(dev, 0);
 707	dev->if_port = 0;
 708	netif_trans_update(dev); /* prevent tx timeout */
 709}
 710
 711static netdev_tx_t
 712start_xmit (struct sk_buff *skb, struct net_device *dev)
 713{
 714	struct netdev_private *np = netdev_priv(dev);
 715	void __iomem *ioaddr = np->ioaddr;
 716	struct netdev_desc *txdesc;
 717	unsigned entry;
 718	u64 tfc_vlan_tag = 0;
 719
 720	if (np->link_status == 0) {	/* Link Down */
 721		dev_kfree_skb(skb);
 722		return NETDEV_TX_OK;
 723	}
 724	entry = np->cur_tx % TX_RING_SIZE;
 725	np->tx_skbuff[entry] = skb;
 726	txdesc = &np->tx_ring[entry];
 727
 728#if 0
 729	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 730		txdesc->status |=
 731		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
 732				 IPChecksumEnable);
 733	}
 734#endif
 735	if (np->vlan) {
 736		tfc_vlan_tag = VLANTagInsert |
 737		    ((u64)np->vlan << 32) |
 738		    ((u64)skb->priority << 45);
 739	}
 740	txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
 741							skb->len,
 742							PCI_DMA_TODEVICE));
 743	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
 744
 745	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
 746	 * Work around: Always use 1 descriptor in 10Mbps mode */
 747	if (entry % np->tx_coalesce == 0 || np->speed == 10)
 748		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 749					      WordAlignDisable |
 750					      TxDMAIndicate |
 751					      (1 << FragCountShift));
 752	else
 753		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 754					      WordAlignDisable |
 755					      (1 << FragCountShift));
 756
 757	/* TxDMAPollNow */
 758	dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
 759	/* Schedule ISR */
 760	dw32(CountDown, 10000);
 761	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
 762	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 763			< TX_QUEUE_LEN - 1 && np->speed != 10) {
 764		/* do nothing */
 765	} else if (!netif_queue_stopped(dev)) {
 766		netif_stop_queue (dev);
 767	}
 768
 769	/* The first TFDListPtr */
 770	if (!dr32(TFDListPtr0)) {
 771		dw32(TFDListPtr0, np->tx_ring_dma +
 772		     entry * sizeof (struct netdev_desc));
 773		dw32(TFDListPtr1, 0);
 774	}
 775
 776	return NETDEV_TX_OK;
 777}
 778
 779static irqreturn_t
 780rio_interrupt (int irq, void *dev_instance)
 781{
 782	struct net_device *dev = dev_instance;
 783	struct netdev_private *np = netdev_priv(dev);
 784	void __iomem *ioaddr = np->ioaddr;
 785	unsigned int_status;
 786	int cnt = max_intrloop;
 787	int handled = 0;
 788
 789	while (1) {
 790		int_status = dr16(IntStatus);
 791		dw16(IntStatus, int_status);
 792		int_status &= DEFAULT_INTR;
 793		if (int_status == 0 || --cnt < 0)
 794			break;
 795		handled = 1;
 796		/* Processing received packets */
 797		if (int_status & RxDMAComplete)
 798			receive_packet (dev);
 799		/* TxDMAComplete interrupt */
 800		if ((int_status & (TxDMAComplete|IntRequested))) {
 801			int tx_status;
 802			tx_status = dr32(TxStatus);
 803			if (tx_status & 0x01)
 804				tx_error (dev, tx_status);
 805			/* Free used tx skbuffs */
 806			rio_free_tx (dev, 1);
 807		}
 808
 809		/* Handle uncommon events */
 810		if (int_status &
 811		    (HostError | LinkEvent | UpdateStats))
 812			rio_error (dev, int_status);
 813	}
 814	if (np->cur_tx != np->old_tx)
 815		dw32(CountDown, 100);
 816	return IRQ_RETVAL(handled);
 817}
 818
 819static void
 820rio_free_tx (struct net_device *dev, int irq)
 821{
 822	struct netdev_private *np = netdev_priv(dev);
 823	int entry = np->old_tx % TX_RING_SIZE;
 824	int tx_use = 0;
 825	unsigned long flag = 0;
 826
 827	if (irq)
 828		spin_lock(&np->tx_lock);
 829	else
 830		spin_lock_irqsave(&np->tx_lock, flag);
 831
 832	/* Free used tx skbuffs */
 833	while (entry != np->cur_tx) {
 834		struct sk_buff *skb;
 835
 836		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
 837			break;
 838		skb = np->tx_skbuff[entry];
 839		pci_unmap_single (np->pdev,
 840				  desc_to_dma(&np->tx_ring[entry]),
 841				  skb->len, PCI_DMA_TODEVICE);
 842		if (irq)
 843			dev_consume_skb_irq(skb);
 844		else
 845			dev_kfree_skb(skb);
 846
 847		np->tx_skbuff[entry] = NULL;
 848		entry = (entry + 1) % TX_RING_SIZE;
 849		tx_use++;
 850	}
 851	if (irq)
 852		spin_unlock(&np->tx_lock);
 853	else
 854		spin_unlock_irqrestore(&np->tx_lock, flag);
 855	np->old_tx = entry;
 856
 857	/* If the ring is no longer full, clear tx_full and
 858	   call netif_wake_queue() */
 859
 860	if (netif_queue_stopped(dev) &&
 861	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 862	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
 863		netif_wake_queue (dev);
 864	}
 865}
 866
 867static void
 868tx_error (struct net_device *dev, int tx_status)
 869{
 870	struct netdev_private *np = netdev_priv(dev);
 871	void __iomem *ioaddr = np->ioaddr;
 872	int frame_id;
 873	int i;
 874
 875	frame_id = (tx_status & 0xffff0000);
 876	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
 877		dev->name, tx_status, frame_id);
 878	dev->stats.tx_errors++;
 879	/* Ttransmit Underrun */
 880	if (tx_status & 0x10) {
 881		dev->stats.tx_fifo_errors++;
 882		dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
 883		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
 884		dw16(ASICCtrl + 2,
 885		     TxReset | DMAReset | FIFOReset | NetworkReset);
 886		/* Wait for ResetBusy bit clear */
 887		for (i = 50; i > 0; i--) {
 888			if (!(dr16(ASICCtrl + 2) & ResetBusy))
 889				break;
 890			mdelay (1);
 891		}
 892		rio_set_led_mode(dev);
 893		rio_free_tx (dev, 1);
 894		/* Reset TFDListPtr */
 895		dw32(TFDListPtr0, np->tx_ring_dma +
 896		     np->old_tx * sizeof (struct netdev_desc));
 897		dw32(TFDListPtr1, 0);
 898
 899		/* Let TxStartThresh stay default value */
 900	}
 901	/* Late Collision */
 902	if (tx_status & 0x04) {
 903		dev->stats.tx_fifo_errors++;
 904		/* TxReset and clear FIFO */
 905		dw16(ASICCtrl + 2, TxReset | FIFOReset);
 906		/* Wait reset done */
 907		for (i = 50; i > 0; i--) {
 908			if (!(dr16(ASICCtrl + 2) & ResetBusy))
 909				break;
 910			mdelay (1);
 911		}
 912		rio_set_led_mode(dev);
 913		/* Let TxStartThresh stay default value */
 914	}
 915	/* Maximum Collisions */
 916	if (tx_status & 0x08)
 917		dev->stats.collisions++;
 918	/* Restart the Tx */
 919	dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
 920}
 921
 922static int
 923receive_packet (struct net_device *dev)
 924{
 925	struct netdev_private *np = netdev_priv(dev);
 926	int entry = np->cur_rx % RX_RING_SIZE;
 927	int cnt = 30;
 928
 929	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
 930	while (1) {
 931		struct netdev_desc *desc = &np->rx_ring[entry];
 932		int pkt_len;
 933		u64 frame_status;
 934
 935		if (!(desc->status & cpu_to_le64(RFDDone)) ||
 936		    !(desc->status & cpu_to_le64(FrameStart)) ||
 937		    !(desc->status & cpu_to_le64(FrameEnd)))
 938			break;
 939
 940		/* Chip omits the CRC. */
 941		frame_status = le64_to_cpu(desc->status);
 942		pkt_len = frame_status & 0xffff;
 943		if (--cnt < 0)
 944			break;
 945		/* Update rx error statistics, drop packet. */
 946		if (frame_status & RFS_Errors) {
 947			dev->stats.rx_errors++;
 948			if (frame_status & (RxRuntFrame | RxLengthError))
 949				dev->stats.rx_length_errors++;
 950			if (frame_status & RxFCSError)
 951				dev->stats.rx_crc_errors++;
 952			if (frame_status & RxAlignmentError && np->speed != 1000)
 953				dev->stats.rx_frame_errors++;
 954			if (frame_status & RxFIFOOverrun)
 955				dev->stats.rx_fifo_errors++;
 956		} else {
 957			struct sk_buff *skb;
 958
 959			/* Small skbuffs for short packets */
 960			if (pkt_len > copy_thresh) {
 961				pci_unmap_single (np->pdev,
 962						  desc_to_dma(desc),
 963						  np->rx_buf_sz,
 964						  PCI_DMA_FROMDEVICE);
 965				skb_put (skb = np->rx_skbuff[entry], pkt_len);
 966				np->rx_skbuff[entry] = NULL;
 967			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
 968				pci_dma_sync_single_for_cpu(np->pdev,
 969							    desc_to_dma(desc),
 970							    np->rx_buf_sz,
 971							    PCI_DMA_FROMDEVICE);
 972				skb_copy_to_linear_data (skb,
 973						  np->rx_skbuff[entry]->data,
 974						  pkt_len);
 975				skb_put (skb, pkt_len);
 976				pci_dma_sync_single_for_device(np->pdev,
 977							       desc_to_dma(desc),
 978							       np->rx_buf_sz,
 979							       PCI_DMA_FROMDEVICE);
 980			}
 981			skb->protocol = eth_type_trans (skb, dev);
 982#if 0
 983			/* Checksum done by hw, but csum value unavailable. */
 984			if (np->pdev->pci_rev_id >= 0x0c &&
 985				!(frame_status & (TCPError | UDPError | IPError))) {
 986				skb->ip_summed = CHECKSUM_UNNECESSARY;
 987			}
 988#endif
 989			netif_rx (skb);
 990		}
 991		entry = (entry + 1) % RX_RING_SIZE;
 992	}
 993	spin_lock(&np->rx_lock);
 994	np->cur_rx = entry;
 995	/* Re-allocate skbuffs to fill the descriptor ring */
 996	entry = np->old_rx;
 997	while (entry != np->cur_rx) {
 998		struct sk_buff *skb;
 999		/* Dropped packets don't need to re-allocate */
1000		if (np->rx_skbuff[entry] == NULL) {
1001			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
1002			if (skb == NULL) {
1003				np->rx_ring[entry].fraginfo = 0;
1004				printk (KERN_INFO
1005					"%s: receive_packet: "
1006					"Unable to re-allocate Rx skbuff.#%d\n",
1007					dev->name, entry);
1008				break;
1009			}
1010			np->rx_skbuff[entry] = skb;
1011			np->rx_ring[entry].fraginfo =
1012			    cpu_to_le64 (pci_map_single
1013					 (np->pdev, skb->data, np->rx_buf_sz,
1014					  PCI_DMA_FROMDEVICE));
1015		}
1016		np->rx_ring[entry].fraginfo |=
1017		    cpu_to_le64((u64)np->rx_buf_sz << 48);
1018		np->rx_ring[entry].status = 0;
1019		entry = (entry + 1) % RX_RING_SIZE;
1020	}
1021	np->old_rx = entry;
1022	spin_unlock(&np->rx_lock);
1023	return 0;
1024}
1025
1026static void
1027rio_error (struct net_device *dev, int int_status)
1028{
1029	struct netdev_private *np = netdev_priv(dev);
1030	void __iomem *ioaddr = np->ioaddr;
1031	u16 macctrl;
1032
1033	/* Link change event */
1034	if (int_status & LinkEvent) {
1035		if (mii_wait_link (dev, 10) == 0) {
1036			printk (KERN_INFO "%s: Link up\n", dev->name);
1037			if (np->phy_media)
1038				mii_get_media_pcs (dev);
1039			else
1040				mii_get_media (dev);
1041			if (np->speed == 1000)
1042				np->tx_coalesce = tx_coalesce;
1043			else
1044				np->tx_coalesce = 1;
1045			macctrl = 0;
1046			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
1047			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
1048			macctrl |= (np->tx_flow) ?
1049				TxFlowControlEnable : 0;
1050			macctrl |= (np->rx_flow) ?
1051				RxFlowControlEnable : 0;
1052			dw16(MACCtrl, macctrl);
1053			np->link_status = 1;
1054			netif_carrier_on(dev);
1055		} else {
1056			printk (KERN_INFO "%s: Link off\n", dev->name);
1057			np->link_status = 0;
1058			netif_carrier_off(dev);
1059		}
1060	}
1061
1062	/* UpdateStats statistics registers */
1063	if (int_status & UpdateStats) {
1064		get_stats (dev);
1065	}
1066
1067	/* PCI Error, a catastronphic error related to the bus interface
1068	   occurs, set GlobalReset and HostReset to reset. */
1069	if (int_status & HostError) {
1070		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1071			dev->name, int_status);
1072		dw16(ASICCtrl + 2, GlobalReset | HostReset);
1073		mdelay (500);
1074		rio_set_led_mode(dev);
1075	}
1076}
1077
1078static struct net_device_stats *
1079get_stats (struct net_device *dev)
1080{
1081	struct netdev_private *np = netdev_priv(dev);
1082	void __iomem *ioaddr = np->ioaddr;
1083#ifdef MEM_MAPPING
1084	int i;
1085#endif
1086	unsigned int stat_reg;
1087
1088	/* All statistics registers need to be acknowledged,
1089	   else statistic overflow could cause problems */
1090
1091	dev->stats.rx_packets += dr32(FramesRcvOk);
1092	dev->stats.tx_packets += dr32(FramesXmtOk);
1093	dev->stats.rx_bytes += dr32(OctetRcvOk);
1094	dev->stats.tx_bytes += dr32(OctetXmtOk);
1095
1096	dev->stats.multicast = dr32(McstFramesRcvdOk);
1097	dev->stats.collisions += dr32(SingleColFrames)
1098			     +  dr32(MultiColFrames);
1099
1100	/* detailed tx errors */
1101	stat_reg = dr16(FramesAbortXSColls);
1102	dev->stats.tx_aborted_errors += stat_reg;
1103	dev->stats.tx_errors += stat_reg;
1104
1105	stat_reg = dr16(CarrierSenseErrors);
1106	dev->stats.tx_carrier_errors += stat_reg;
1107	dev->stats.tx_errors += stat_reg;
1108
1109	/* Clear all other statistic register. */
1110	dr32(McstOctetXmtOk);
1111	dr16(BcstFramesXmtdOk);
1112	dr32(McstFramesXmtdOk);
1113	dr16(BcstFramesRcvdOk);
1114	dr16(MacControlFramesRcvd);
1115	dr16(FrameTooLongErrors);
1116	dr16(InRangeLengthErrors);
1117	dr16(FramesCheckSeqErrors);
1118	dr16(FramesLostRxErrors);
1119	dr32(McstOctetXmtOk);
1120	dr32(BcstOctetXmtOk);
1121	dr32(McstFramesXmtdOk);
1122	dr32(FramesWDeferredXmt);
1123	dr32(LateCollisions);
1124	dr16(BcstFramesXmtdOk);
1125	dr16(MacControlFramesXmtd);
1126	dr16(FramesWEXDeferal);
1127
1128#ifdef MEM_MAPPING
1129	for (i = 0x100; i <= 0x150; i += 4)
1130		dr32(i);
1131#endif
1132	dr16(TxJumboFrames);
1133	dr16(RxJumboFrames);
1134	dr16(TCPCheckSumErrors);
1135	dr16(UDPCheckSumErrors);
1136	dr16(IPCheckSumErrors);
1137	return &dev->stats;
1138}
1139
1140static int
1141clear_stats (struct net_device *dev)
1142{
1143	struct netdev_private *np = netdev_priv(dev);
1144	void __iomem *ioaddr = np->ioaddr;
1145#ifdef MEM_MAPPING
1146	int i;
1147#endif
1148
1149	/* All statistics registers need to be acknowledged,
1150	   else statistic overflow could cause problems */
1151	dr32(FramesRcvOk);
1152	dr32(FramesXmtOk);
1153	dr32(OctetRcvOk);
1154	dr32(OctetXmtOk);
1155
1156	dr32(McstFramesRcvdOk);
1157	dr32(SingleColFrames);
1158	dr32(MultiColFrames);
1159	dr32(LateCollisions);
1160	/* detailed rx errors */
1161	dr16(FrameTooLongErrors);
1162	dr16(InRangeLengthErrors);
1163	dr16(FramesCheckSeqErrors);
1164	dr16(FramesLostRxErrors);
1165
1166	/* detailed tx errors */
1167	dr16(FramesAbortXSColls);
1168	dr16(CarrierSenseErrors);
1169
1170	/* Clear all other statistic register. */
1171	dr32(McstOctetXmtOk);
1172	dr16(BcstFramesXmtdOk);
1173	dr32(McstFramesXmtdOk);
1174	dr16(BcstFramesRcvdOk);
1175	dr16(MacControlFramesRcvd);
1176	dr32(McstOctetXmtOk);
1177	dr32(BcstOctetXmtOk);
1178	dr32(McstFramesXmtdOk);
1179	dr32(FramesWDeferredXmt);
1180	dr16(BcstFramesXmtdOk);
1181	dr16(MacControlFramesXmtd);
1182	dr16(FramesWEXDeferal);
1183#ifdef MEM_MAPPING
1184	for (i = 0x100; i <= 0x150; i += 4)
1185		dr32(i);
1186#endif
1187	dr16(TxJumboFrames);
1188	dr16(RxJumboFrames);
1189	dr16(TCPCheckSumErrors);
1190	dr16(UDPCheckSumErrors);
1191	dr16(IPCheckSumErrors);
1192	return 0;
1193}
1194
1195static void
1196set_multicast (struct net_device *dev)
1197{
1198	struct netdev_private *np = netdev_priv(dev);
1199	void __iomem *ioaddr = np->ioaddr;
1200	u32 hash_table[2];
1201	u16 rx_mode = 0;
1202
1203	hash_table[0] = hash_table[1] = 0;
1204	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1205	hash_table[1] |= 0x02000000;
1206	if (dev->flags & IFF_PROMISC) {
1207		/* Receive all frames promiscuously. */
1208		rx_mode = ReceiveAllFrames;
1209	} else if ((dev->flags & IFF_ALLMULTI) ||
1210			(netdev_mc_count(dev) > multicast_filter_limit)) {
1211		/* Receive broadcast and multicast frames */
1212		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1213	} else if (!netdev_mc_empty(dev)) {
1214		struct netdev_hw_addr *ha;
1215		/* Receive broadcast frames and multicast frames filtering
1216		   by Hashtable */
1217		rx_mode =
1218		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1219		netdev_for_each_mc_addr(ha, dev) {
1220			int bit, index = 0;
1221			int crc = ether_crc_le(ETH_ALEN, ha->addr);
1222			/* The inverted high significant 6 bits of CRC are
1223			   used as an index to hashtable */
1224			for (bit = 0; bit < 6; bit++)
1225				if (crc & (1 << (31 - bit)))
1226					index |= (1 << bit);
1227			hash_table[index / 32] |= (1 << (index % 32));
1228		}
1229	} else {
1230		rx_mode = ReceiveBroadcast | ReceiveUnicast;
1231	}
1232	if (np->vlan) {
1233		/* ReceiveVLANMatch field in ReceiveMode */
1234		rx_mode |= ReceiveVLANMatch;
1235	}
1236
1237	dw32(HashTable0, hash_table[0]);
1238	dw32(HashTable1, hash_table[1]);
1239	dw16(ReceiveMode, rx_mode);
1240}
1241
1242static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1243{
1244	struct netdev_private *np = netdev_priv(dev);
1245
1246	strlcpy(info->driver, "dl2k", sizeof(info->driver));
1247	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1248	strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1249}
1250
1251static int rio_get_link_ksettings(struct net_device *dev,
1252				  struct ethtool_link_ksettings *cmd)
1253{
1254	struct netdev_private *np = netdev_priv(dev);
1255	u32 supported, advertising;
1256
1257	if (np->phy_media) {
1258		/* fiber device */
1259		supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1260		advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1261		cmd->base.port = PORT_FIBRE;
1262	} else {
1263		/* copper device */
1264		supported = SUPPORTED_10baseT_Half |
1265			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1266			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1267			SUPPORTED_Autoneg | SUPPORTED_MII;
1268		advertising = ADVERTISED_10baseT_Half |
1269			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1270			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
1271			ADVERTISED_Autoneg | ADVERTISED_MII;
1272		cmd->base.port = PORT_MII;
1273	}
1274	if (np->link_status) {
1275		cmd->base.speed = np->speed;
1276		cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1277	} else {
1278		cmd->base.speed = SPEED_UNKNOWN;
1279		cmd->base.duplex = DUPLEX_UNKNOWN;
1280	}
1281	if (np->an_enable)
1282		cmd->base.autoneg = AUTONEG_ENABLE;
1283	else
1284		cmd->base.autoneg = AUTONEG_DISABLE;
1285
1286	cmd->base.phy_address = np->phy_addr;
1287
1288	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1289						supported);
1290	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1291						advertising);
1292
1293	return 0;
1294}
1295
1296static int rio_set_link_ksettings(struct net_device *dev,
1297				  const struct ethtool_link_ksettings *cmd)
1298{
1299	struct netdev_private *np = netdev_priv(dev);
1300	u32 speed = cmd->base.speed;
1301	u8 duplex = cmd->base.duplex;
1302
1303	netif_carrier_off(dev);
1304	if (cmd->base.autoneg == AUTONEG_ENABLE) {
1305		if (np->an_enable) {
1306			return 0;
1307		} else {
1308			np->an_enable = 1;
1309			mii_set_media(dev);
1310			return 0;
1311		}
1312	} else {
1313		np->an_enable = 0;
1314		if (np->speed == 1000) {
1315			speed = SPEED_100;
1316			duplex = DUPLEX_FULL;
1317			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1318		}
1319		switch (speed) {
1320		case SPEED_10:
1321			np->speed = 10;
1322			np->full_duplex = (duplex == DUPLEX_FULL);
1323			break;
1324		case SPEED_100:
1325			np->speed = 100;
1326			np->full_duplex = (duplex == DUPLEX_FULL);
1327			break;
1328		case SPEED_1000: /* not supported */
1329		default:
1330			return -EINVAL;
1331		}
1332		mii_set_media(dev);
1333	}
1334	return 0;
1335}
1336
1337static u32 rio_get_link(struct net_device *dev)
1338{
1339	struct netdev_private *np = netdev_priv(dev);
1340	return np->link_status;
1341}
1342
1343static const struct ethtool_ops ethtool_ops = {
1344	.get_drvinfo = rio_get_drvinfo,
1345	.get_link = rio_get_link,
1346	.get_link_ksettings = rio_get_link_ksettings,
1347	.set_link_ksettings = rio_set_link_ksettings,
1348};
1349
1350static int
1351rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1352{
1353	int phy_addr;
1354	struct netdev_private *np = netdev_priv(dev);
1355	struct mii_ioctl_data *miidata = if_mii(rq);
1356
1357	phy_addr = np->phy_addr;
1358	switch (cmd) {
1359	case SIOCGMIIPHY:
1360		miidata->phy_id = phy_addr;
1361		break;
1362	case SIOCGMIIREG:
1363		miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1364		break;
1365	case SIOCSMIIREG:
1366		if (!capable(CAP_NET_ADMIN))
1367			return -EPERM;
1368		mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1369		break;
1370	default:
1371		return -EOPNOTSUPP;
1372	}
1373	return 0;
1374}
1375
1376#define EEP_READ 0x0200
1377#define EEP_BUSY 0x8000
1378/* Read the EEPROM word */
1379/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1380static int read_eeprom(struct netdev_private *np, int eep_addr)
1381{
1382	void __iomem *ioaddr = np->eeprom_addr;
1383	int i = 1000;
1384
1385	dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1386	while (i-- > 0) {
1387		if (!(dr16(EepromCtrl) & EEP_BUSY))
1388			return dr16(EepromData);
1389	}
1390	return 0;
1391}
1392
1393enum phy_ctrl_bits {
1394	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1395	MII_DUPLEX = 0x08,
1396};
1397
1398#define mii_delay() dr8(PhyCtrl)
1399static void
1400mii_sendbit (struct net_device *dev, u32 data)
1401{
1402	struct netdev_private *np = netdev_priv(dev);
1403	void __iomem *ioaddr = np->ioaddr;
1404
1405	data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1406	dw8(PhyCtrl, data);
1407	mii_delay ();
1408	dw8(PhyCtrl, data | MII_CLK);
1409	mii_delay ();
1410}
1411
1412static int
1413mii_getbit (struct net_device *dev)
1414{
1415	struct netdev_private *np = netdev_priv(dev);
1416	void __iomem *ioaddr = np->ioaddr;
1417	u8 data;
1418
1419	data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1420	dw8(PhyCtrl, data);
1421	mii_delay ();
1422	dw8(PhyCtrl, data | MII_CLK);
1423	mii_delay ();
1424	return (dr8(PhyCtrl) >> 1) & 1;
1425}
1426
1427static void
1428mii_send_bits (struct net_device *dev, u32 data, int len)
1429{
1430	int i;
1431
1432	for (i = len - 1; i >= 0; i--) {
1433		mii_sendbit (dev, data & (1 << i));
1434	}
1435}
1436
1437static int
1438mii_read (struct net_device *dev, int phy_addr, int reg_num)
1439{
1440	u32 cmd;
1441	int i;
1442	u32 retval = 0;
1443
1444	/* Preamble */
1445	mii_send_bits (dev, 0xffffffff, 32);
1446	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1447	/* ST,OP = 0110'b for read operation */
1448	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1449	mii_send_bits (dev, cmd, 14);
1450	/* Turnaround */
1451	if (mii_getbit (dev))
1452		goto err_out;
1453	/* Read data */
1454	for (i = 0; i < 16; i++) {
1455		retval |= mii_getbit (dev);
1456		retval <<= 1;
1457	}
1458	/* End cycle */
1459	mii_getbit (dev);
1460	return (retval >> 1) & 0xffff;
1461
1462      err_out:
1463	return 0;
1464}
1465static int
1466mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1467{
1468	u32 cmd;
1469
1470	/* Preamble */
1471	mii_send_bits (dev, 0xffffffff, 32);
1472	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1473	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1474	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1475	mii_send_bits (dev, cmd, 32);
1476	/* End cycle */
1477	mii_getbit (dev);
1478	return 0;
1479}
1480static int
1481mii_wait_link (struct net_device *dev, int wait)
1482{
1483	__u16 bmsr;
1484	int phy_addr;
1485	struct netdev_private *np;
1486
1487	np = netdev_priv(dev);
1488	phy_addr = np->phy_addr;
1489
1490	do {
1491		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1492		if (bmsr & BMSR_LSTATUS)
1493			return 0;
1494		mdelay (1);
1495	} while (--wait > 0);
1496	return -1;
1497}
1498static int
1499mii_get_media (struct net_device *dev)
1500{
1501	__u16 negotiate;
1502	__u16 bmsr;
1503	__u16 mscr;
1504	__u16 mssr;
1505	int phy_addr;
1506	struct netdev_private *np;
1507
1508	np = netdev_priv(dev);
1509	phy_addr = np->phy_addr;
1510
1511	bmsr = mii_read (dev, phy_addr, MII_BMSR);
1512	if (np->an_enable) {
1513		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1514			/* Auto-Negotiation not completed */
1515			return -1;
1516		}
1517		negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1518			mii_read (dev, phy_addr, MII_LPA);
1519		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1520		mssr = mii_read (dev, phy_addr, MII_STAT1000);
1521		if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1522			np->speed = 1000;
1523			np->full_duplex = 1;
1524			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1525		} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1526			np->speed = 1000;
1527			np->full_duplex = 0;
1528			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1529		} else if (negotiate & ADVERTISE_100FULL) {
1530			np->speed = 100;
1531			np->full_duplex = 1;
1532			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1533		} else if (negotiate & ADVERTISE_100HALF) {
1534			np->speed = 100;
1535			np->full_duplex = 0;
1536			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1537		} else if (negotiate & ADVERTISE_10FULL) {
1538			np->speed = 10;
1539			np->full_duplex = 1;
1540			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1541		} else if (negotiate & ADVERTISE_10HALF) {
1542			np->speed = 10;
1543			np->full_duplex = 0;
1544			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1545		}
1546		if (negotiate & ADVERTISE_PAUSE_CAP) {
1547			np->tx_flow &= 1;
1548			np->rx_flow &= 1;
1549		} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1550			np->tx_flow = 0;
1551			np->rx_flow &= 1;
1552		}
1553		/* else tx_flow, rx_flow = user select  */
1554	} else {
1555		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1556		switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1557		case BMCR_SPEED1000:
1558			printk (KERN_INFO "Operating at 1000 Mbps, ");
1559			break;
1560		case BMCR_SPEED100:
1561			printk (KERN_INFO "Operating at 100 Mbps, ");
1562			break;
1563		case 0:
1564			printk (KERN_INFO "Operating at 10 Mbps, ");
1565		}
1566		if (bmcr & BMCR_FULLDPLX) {
1567			printk (KERN_CONT "Full duplex\n");
1568		} else {
1569			printk (KERN_CONT "Half duplex\n");
1570		}
1571	}
1572	if (np->tx_flow)
1573		printk(KERN_INFO "Enable Tx Flow Control\n");
1574	else
1575		printk(KERN_INFO "Disable Tx Flow Control\n");
1576	if (np->rx_flow)
1577		printk(KERN_INFO "Enable Rx Flow Control\n");
1578	else
1579		printk(KERN_INFO "Disable Rx Flow Control\n");
1580
1581	return 0;
1582}
1583
1584static int
1585mii_set_media (struct net_device *dev)
1586{
1587	__u16 pscr;
1588	__u16 bmcr;
1589	__u16 bmsr;
1590	__u16 anar;
1591	int phy_addr;
1592	struct netdev_private *np;
1593	np = netdev_priv(dev);
1594	phy_addr = np->phy_addr;
1595
1596	/* Does user set speed? */
1597	if (np->an_enable) {
1598		/* Advertise capabilities */
1599		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1600		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1601			~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1602			  ADVERTISE_100HALF | ADVERTISE_10HALF |
1603			  ADVERTISE_100BASE4);
1604		if (bmsr & BMSR_100FULL)
1605			anar |= ADVERTISE_100FULL;
1606		if (bmsr & BMSR_100HALF)
1607			anar |= ADVERTISE_100HALF;
1608		if (bmsr & BMSR_100BASE4)
1609			anar |= ADVERTISE_100BASE4;
1610		if (bmsr & BMSR_10FULL)
1611			anar |= ADVERTISE_10FULL;
1612		if (bmsr & BMSR_10HALF)
1613			anar |= ADVERTISE_10HALF;
1614		anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1615		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1616
1617		/* Enable Auto crossover */
1618		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1619		pscr |= 3 << 5;	/* 11'b */
1620		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1621
1622		/* Soft reset PHY */
1623		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1624		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1625		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1626		mdelay(1);
1627	} else {
1628		/* Force speed setting */
1629		/* 1) Disable Auto crossover */
1630		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1631		pscr &= ~(3 << 5);
1632		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1633
1634		/* 2) PHY Reset */
1635		bmcr = mii_read (dev, phy_addr, MII_BMCR);
1636		bmcr |= BMCR_RESET;
1637		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1638
1639		/* 3) Power Down */
1640		bmcr = 0x1940;	/* must be 0x1940 */
1641		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1642		mdelay (100);	/* wait a certain time */
1643
1644		/* 4) Advertise nothing */
1645		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1646
1647		/* 5) Set media and Power Up */
1648		bmcr = BMCR_PDOWN;
1649		if (np->speed == 100) {
1650			bmcr |= BMCR_SPEED100;
1651			printk (KERN_INFO "Manual 100 Mbps, ");
1652		} else if (np->speed == 10) {
1653			printk (KERN_INFO "Manual 10 Mbps, ");
1654		}
1655		if (np->full_duplex) {
1656			bmcr |= BMCR_FULLDPLX;
1657			printk (KERN_CONT "Full duplex\n");
1658		} else {
1659			printk (KERN_CONT "Half duplex\n");
1660		}
1661#if 0
1662		/* Set 1000BaseT Master/Slave setting */
1663		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1664		mscr |= MII_MSCR_CFG_ENABLE;
1665		mscr &= ~MII_MSCR_CFG_VALUE = 0;
1666#endif
1667		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1668		mdelay(10);
1669	}
1670	return 0;
1671}
1672
1673static int
1674mii_get_media_pcs (struct net_device *dev)
1675{
1676	__u16 negotiate;
1677	__u16 bmsr;
1678	int phy_addr;
1679	struct netdev_private *np;
1680
1681	np = netdev_priv(dev);
1682	phy_addr = np->phy_addr;
1683
1684	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1685	if (np->an_enable) {
1686		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1687			/* Auto-Negotiation not completed */
1688			return -1;
1689		}
1690		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1691			mii_read (dev, phy_addr, PCS_ANLPAR);
1692		np->speed = 1000;
1693		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1694			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1695			np->full_duplex = 1;
1696		} else {
1697			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1698			np->full_duplex = 0;
1699		}
1700		if (negotiate & PCS_ANAR_PAUSE) {
1701			np->tx_flow &= 1;
1702			np->rx_flow &= 1;
1703		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1704			np->tx_flow = 0;
1705			np->rx_flow &= 1;
1706		}
1707		/* else tx_flow, rx_flow = user select  */
1708	} else {
1709		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1710		printk (KERN_INFO "Operating at 1000 Mbps, ");
1711		if (bmcr & BMCR_FULLDPLX) {
1712			printk (KERN_CONT "Full duplex\n");
1713		} else {
1714			printk (KERN_CONT "Half duplex\n");
1715		}
1716	}
1717	if (np->tx_flow)
1718		printk(KERN_INFO "Enable Tx Flow Control\n");
1719	else
1720		printk(KERN_INFO "Disable Tx Flow Control\n");
1721	if (np->rx_flow)
1722		printk(KERN_INFO "Enable Rx Flow Control\n");
1723	else
1724		printk(KERN_INFO "Disable Rx Flow Control\n");
1725
1726	return 0;
1727}
1728
1729static int
1730mii_set_media_pcs (struct net_device *dev)
1731{
1732	__u16 bmcr;
1733	__u16 esr;
1734	__u16 anar;
1735	int phy_addr;
1736	struct netdev_private *np;
1737	np = netdev_priv(dev);
1738	phy_addr = np->phy_addr;
1739
1740	/* Auto-Negotiation? */
1741	if (np->an_enable) {
1742		/* Advertise capabilities */
1743		esr = mii_read (dev, phy_addr, PCS_ESR);
1744		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1745			~PCS_ANAR_HALF_DUPLEX &
1746			~PCS_ANAR_FULL_DUPLEX;
1747		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1748			anar |= PCS_ANAR_HALF_DUPLEX;
1749		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1750			anar |= PCS_ANAR_FULL_DUPLEX;
1751		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1752		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1753
1754		/* Soft reset PHY */
1755		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1756		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1757		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1758		mdelay(1);
1759	} else {
1760		/* Force speed setting */
1761		/* PHY Reset */
1762		bmcr = BMCR_RESET;
1763		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1764		mdelay(10);
1765		if (np->full_duplex) {
1766			bmcr = BMCR_FULLDPLX;
1767			printk (KERN_INFO "Manual full duplex\n");
1768		} else {
1769			bmcr = 0;
1770			printk (KERN_INFO "Manual half duplex\n");
1771		}
1772		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1773		mdelay(10);
1774
1775		/*  Advertise nothing */
1776		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1777	}
1778	return 0;
1779}
1780
1781
1782static int
1783rio_close (struct net_device *dev)
1784{
1785	struct netdev_private *np = netdev_priv(dev);
1786	struct pci_dev *pdev = np->pdev;
1787
1788	netif_stop_queue (dev);
1789
1790	rio_hw_stop(dev);
1791
1792	free_irq(pdev->irq, dev);
1793	del_timer_sync (&np->timer);
1794
1795	free_list(dev);
1796
1797	return 0;
1798}
1799
1800static void
1801rio_remove1 (struct pci_dev *pdev)
1802{
1803	struct net_device *dev = pci_get_drvdata (pdev);
1804
1805	if (dev) {
1806		struct netdev_private *np = netdev_priv(dev);
1807
1808		unregister_netdev (dev);
1809		pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1810				     np->rx_ring_dma);
1811		pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1812				     np->tx_ring_dma);
1813#ifdef MEM_MAPPING
1814		pci_iounmap(pdev, np->ioaddr);
1815#endif
1816		pci_iounmap(pdev, np->eeprom_addr);
1817		free_netdev (dev);
1818		pci_release_regions (pdev);
1819		pci_disable_device (pdev);
1820	}
1821}
1822
1823#ifdef CONFIG_PM_SLEEP
1824static int rio_suspend(struct device *device)
1825{
1826	struct net_device *dev = dev_get_drvdata(device);
1827	struct netdev_private *np = netdev_priv(dev);
1828
1829	if (!netif_running(dev))
1830		return 0;
1831
1832	netif_device_detach(dev);
1833	del_timer_sync(&np->timer);
1834	rio_hw_stop(dev);
1835
1836	return 0;
1837}
1838
1839static int rio_resume(struct device *device)
1840{
1841	struct net_device *dev = dev_get_drvdata(device);
1842	struct netdev_private *np = netdev_priv(dev);
1843
1844	if (!netif_running(dev))
1845		return 0;
1846
1847	rio_reset_ring(np);
1848	rio_hw_init(dev);
1849	np->timer.expires = jiffies + 1 * HZ;
1850	add_timer(&np->timer);
1851	netif_device_attach(dev);
1852	dl2k_enable_int(np);
1853
1854	return 0;
1855}
1856
1857static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
1858#define RIO_PM_OPS    (&rio_pm_ops)
1859
1860#else
1861
1862#define RIO_PM_OPS	NULL
1863
1864#endif /* CONFIG_PM_SLEEP */
1865
1866static struct pci_driver rio_driver = {
1867	.name		= "dl2k",
1868	.id_table	= rio_pci_tbl,
1869	.probe		= rio_probe1,
1870	.remove		= rio_remove1,
1871	.driver.pm	= RIO_PM_OPS,
1872};
1873
1874module_pci_driver(rio_driver);
1875/*
1876
1877Compile command:
1878
1879gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1880
1881Read Documentation/networking/device_drivers/dlink/dl2k.txt for details.
1882
1883*/
1884