Linux Audio

Check our new training course

Loading...
   1/*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
   2/*
   3    Copyright (c) 2001, 2002 by D-Link Corporation
   4    Written by Edward Peng.<edward_peng@dlink.com.tw>
   5    Created 03-May-2001, base on Linux' sundance.c.
   6
   7    This program is free software; you can redistribute it and/or modify
   8    it under the terms of the GNU General Public License as published by
   9    the Free Software Foundation; either version 2 of the License, or
  10    (at your option) any later version.
  11*/
  12
  13#define DRV_NAME	"DL2000/TC902x-based linux driver"
  14#define DRV_VERSION	"v1.19"
  15#define DRV_RELDATE	"2007/08/12"
  16#include "dl2k.h"
  17#include <linux/dma-mapping.h>
  18
  19#define dw32(reg, val)	iowrite32(val, ioaddr + (reg))
  20#define dw16(reg, val)	iowrite16(val, ioaddr + (reg))
  21#define dw8(reg, val)	iowrite8(val, ioaddr + (reg))
  22#define dr32(reg)	ioread32(ioaddr + (reg))
  23#define dr16(reg)	ioread16(ioaddr + (reg))
  24#define dr8(reg)	ioread8(ioaddr + (reg))
  25
  26static char version[] __devinitdata =
  27      KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
  28#define MAX_UNITS 8
  29static int mtu[MAX_UNITS];
  30static int vlan[MAX_UNITS];
  31static int jumbo[MAX_UNITS];
  32static char *media[MAX_UNITS];
  33static int tx_flow=-1;
  34static int rx_flow=-1;
  35static int copy_thresh;
  36static int rx_coalesce=10;	/* Rx frame count each interrupt */
  37static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
  38static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
  39
  40
  41MODULE_AUTHOR ("Edward Peng");
  42MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
  43MODULE_LICENSE("GPL");
  44module_param_array(mtu, int, NULL, 0);
  45module_param_array(media, charp, NULL, 0);
  46module_param_array(vlan, int, NULL, 0);
  47module_param_array(jumbo, int, NULL, 0);
  48module_param(tx_flow, int, 0);
  49module_param(rx_flow, int, 0);
  50module_param(copy_thresh, int, 0);
  51module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
  52module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
  53module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
  54
  55
  56/* Enable the default interrupts */
  57#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
  58       UpdateStats | LinkEvent)
  59
  60static void dl2k_enable_int(struct netdev_private *np)
  61{
  62	void __iomem *ioaddr = np->ioaddr;
  63
  64	dw16(IntEnable, DEFAULT_INTR);
  65}
  66
  67static const int max_intrloop = 50;
  68static const int multicast_filter_limit = 0x40;
  69
  70static int rio_open (struct net_device *dev);
  71static void rio_timer (unsigned long data);
  72static void rio_tx_timeout (struct net_device *dev);
  73static void alloc_list (struct net_device *dev);
  74static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
  75static irqreturn_t rio_interrupt (int irq, void *dev_instance);
  76static void rio_free_tx (struct net_device *dev, int irq);
  77static void tx_error (struct net_device *dev, int tx_status);
  78static int receive_packet (struct net_device *dev);
  79static void rio_error (struct net_device *dev, int int_status);
  80static int change_mtu (struct net_device *dev, int new_mtu);
  81static void set_multicast (struct net_device *dev);
  82static struct net_device_stats *get_stats (struct net_device *dev);
  83static int clear_stats (struct net_device *dev);
  84static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
  85static int rio_close (struct net_device *dev);
  86static int find_miiphy (struct net_device *dev);
  87static int parse_eeprom (struct net_device *dev);
  88static int read_eeprom (struct netdev_private *, int eep_addr);
  89static int mii_wait_link (struct net_device *dev, int wait);
  90static int mii_set_media (struct net_device *dev);
  91static int mii_get_media (struct net_device *dev);
  92static int mii_set_media_pcs (struct net_device *dev);
  93static int mii_get_media_pcs (struct net_device *dev);
  94static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
  95static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
  96		      u16 data);
  97
  98static const struct ethtool_ops ethtool_ops;
  99
 100static const struct net_device_ops netdev_ops = {
 101	.ndo_open		= rio_open,
 102	.ndo_start_xmit	= start_xmit,
 103	.ndo_stop		= rio_close,
 104	.ndo_get_stats		= get_stats,
 105	.ndo_validate_addr	= eth_validate_addr,
 106	.ndo_set_mac_address 	= eth_mac_addr,
 107	.ndo_set_rx_mode	= set_multicast,
 108	.ndo_do_ioctl		= rio_ioctl,
 109	.ndo_tx_timeout		= rio_tx_timeout,
 110	.ndo_change_mtu		= change_mtu,
 111};
 112
 113static int __devinit
 114rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
 115{
 116	struct net_device *dev;
 117	struct netdev_private *np;
 118	static int card_idx;
 119	int chip_idx = ent->driver_data;
 120	int err, irq;
 121	void __iomem *ioaddr;
 122	static int version_printed;
 123	void *ring_space;
 124	dma_addr_t ring_dma;
 125
 126	if (!version_printed++)
 127		printk ("%s", version);
 128
 129	err = pci_enable_device (pdev);
 130	if (err)
 131		return err;
 132
 133	irq = pdev->irq;
 134	err = pci_request_regions (pdev, "dl2k");
 135	if (err)
 136		goto err_out_disable;
 137
 138	pci_set_master (pdev);
 139
 140	err = -ENOMEM;
 141
 142	dev = alloc_etherdev (sizeof (*np));
 143	if (!dev)
 144		goto err_out_res;
 145	SET_NETDEV_DEV(dev, &pdev->dev);
 146
 147	np = netdev_priv(dev);
 148
 149	/* IO registers range. */
 150	ioaddr = pci_iomap(pdev, 0, 0);
 151	if (!ioaddr)
 152		goto err_out_dev;
 153	np->eeprom_addr = ioaddr;
 154
 155#ifdef MEM_MAPPING
 156	/* MM registers range. */
 157	ioaddr = pci_iomap(pdev, 1, 0);
 158	if (!ioaddr)
 159		goto err_out_iounmap;
 160#endif
 161	np->ioaddr = ioaddr;
 162	np->chip_id = chip_idx;
 163	np->pdev = pdev;
 164	spin_lock_init (&np->tx_lock);
 165	spin_lock_init (&np->rx_lock);
 166
 167	/* Parse manual configuration */
 168	np->an_enable = 1;
 169	np->tx_coalesce = 1;
 170	if (card_idx < MAX_UNITS) {
 171		if (media[card_idx] != NULL) {
 172			np->an_enable = 0;
 173			if (strcmp (media[card_idx], "auto") == 0 ||
 174			    strcmp (media[card_idx], "autosense") == 0 ||
 175			    strcmp (media[card_idx], "0") == 0 ) {
 176				np->an_enable = 2;
 177			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
 178			    strcmp (media[card_idx], "4") == 0) {
 179				np->speed = 100;
 180				np->full_duplex = 1;
 181			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
 182				   strcmp (media[card_idx], "3") == 0) {
 183				np->speed = 100;
 184				np->full_duplex = 0;
 185			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
 186				   strcmp (media[card_idx], "2") == 0) {
 187				np->speed = 10;
 188				np->full_duplex = 1;
 189			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
 190				   strcmp (media[card_idx], "1") == 0) {
 191				np->speed = 10;
 192				np->full_duplex = 0;
 193			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
 194				 strcmp (media[card_idx], "6") == 0) {
 195				np->speed=1000;
 196				np->full_duplex=1;
 197			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
 198				 strcmp (media[card_idx], "5") == 0) {
 199				np->speed = 1000;
 200				np->full_duplex = 0;
 201			} else {
 202				np->an_enable = 1;
 203			}
 204		}
 205		if (jumbo[card_idx] != 0) {
 206			np->jumbo = 1;
 207			dev->mtu = MAX_JUMBO;
 208		} else {
 209			np->jumbo = 0;
 210			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
 211				dev->mtu = mtu[card_idx];
 212		}
 213		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
 214		    vlan[card_idx] : 0;
 215		if (rx_coalesce > 0 && rx_timeout > 0) {
 216			np->rx_coalesce = rx_coalesce;
 217			np->rx_timeout = rx_timeout;
 218			np->coalesce = 1;
 219		}
 220		np->tx_flow = (tx_flow == 0) ? 0 : 1;
 221		np->rx_flow = (rx_flow == 0) ? 0 : 1;
 222
 223		if (tx_coalesce < 1)
 224			tx_coalesce = 1;
 225		else if (tx_coalesce > TX_RING_SIZE-1)
 226			tx_coalesce = TX_RING_SIZE - 1;
 227	}
 228	dev->netdev_ops = &netdev_ops;
 229	dev->watchdog_timeo = TX_TIMEOUT;
 230	SET_ETHTOOL_OPS(dev, &ethtool_ops);
 231#if 0
 232	dev->features = NETIF_F_IP_CSUM;
 233#endif
 234	pci_set_drvdata (pdev, dev);
 235
 236	ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
 237	if (!ring_space)
 238		goto err_out_iounmap;
 239	np->tx_ring = ring_space;
 240	np->tx_ring_dma = ring_dma;
 241
 242	ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
 243	if (!ring_space)
 244		goto err_out_unmap_tx;
 245	np->rx_ring = ring_space;
 246	np->rx_ring_dma = ring_dma;
 247
 248	/* Parse eeprom data */
 249	parse_eeprom (dev);
 250
 251	/* Find PHY address */
 252	err = find_miiphy (dev);
 253	if (err)
 254		goto err_out_unmap_rx;
 255
 256	/* Fiber device? */
 257	np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
 258	np->link_status = 0;
 259	/* Set media and reset PHY */
 260	if (np->phy_media) {
 261		/* default Auto-Negotiation for fiber deivices */
 262	 	if (np->an_enable == 2) {
 263			np->an_enable = 1;
 264		}
 265		mii_set_media_pcs (dev);
 266	} else {
 267		/* Auto-Negotiation is mandatory for 1000BASE-T,
 268		   IEEE 802.3ab Annex 28D page 14 */
 269		if (np->speed == 1000)
 270			np->an_enable = 1;
 271		mii_set_media (dev);
 272	}
 273
 274	err = register_netdev (dev);
 275	if (err)
 276		goto err_out_unmap_rx;
 277
 278	card_idx++;
 279
 280	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
 281		dev->name, np->name, dev->dev_addr, irq);
 282	if (tx_coalesce > 1)
 283		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
 284				tx_coalesce);
 285	if (np->coalesce)
 286		printk(KERN_INFO
 287		       "rx_coalesce:\t%d packets\n"
 288		       "rx_timeout: \t%d ns\n",
 289				np->rx_coalesce, np->rx_timeout*640);
 290	if (np->vlan)
 291		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
 292	return 0;
 293
 294err_out_unmap_rx:
 295	pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
 296err_out_unmap_tx:
 297	pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
 298err_out_iounmap:
 299#ifdef MEM_MAPPING
 300	pci_iounmap(pdev, np->ioaddr);
 301#endif
 302	pci_iounmap(pdev, np->eeprom_addr);
 303err_out_dev:
 304	free_netdev (dev);
 305err_out_res:
 306	pci_release_regions (pdev);
 307err_out_disable:
 308	pci_disable_device (pdev);
 309	return err;
 310}
 311
 312static int
 313find_miiphy (struct net_device *dev)
 314{
 315	struct netdev_private *np = netdev_priv(dev);
 316	int i, phy_found = 0;
 317	np = netdev_priv(dev);
 318	np->phy_addr = 1;
 319
 320	for (i = 31; i >= 0; i--) {
 321		int mii_status = mii_read (dev, i, 1);
 322		if (mii_status != 0xffff && mii_status != 0x0000) {
 323			np->phy_addr = i;
 324			phy_found++;
 325		}
 326	}
 327	if (!phy_found) {
 328		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
 329		return -ENODEV;
 330	}
 331	return 0;
 332}
 333
 334static int
 335parse_eeprom (struct net_device *dev)
 336{
 337	struct netdev_private *np = netdev_priv(dev);
 338	void __iomem *ioaddr = np->ioaddr;
 339	int i, j;
 340	u8 sromdata[256];
 341	u8 *psib;
 342	u32 crc;
 343	PSROM_t psrom = (PSROM_t) sromdata;
 344
 345	int cid, next;
 346
 347	for (i = 0; i < 128; i++)
 348		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
 349
 350	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
 351		/* Check CRC */
 352		crc = ~ether_crc_le (256 - 4, sromdata);
 353		if (psrom->crc != cpu_to_le32(crc)) {
 354			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
 355					dev->name);
 356			return -1;
 357		}
 358	}
 359
 360	/* Set MAC address */
 361	for (i = 0; i < 6; i++)
 362		dev->dev_addr[i] = psrom->mac_addr[i];
 363
 364	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
 365		return 0;
 366	}
 367
 368	/* Parse Software Information Block */
 369	i = 0x30;
 370	psib = (u8 *) sromdata;
 371	do {
 372		cid = psib[i++];
 373		next = psib[i++];
 374		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
 375			printk (KERN_ERR "Cell data error\n");
 376			return -1;
 377		}
 378		switch (cid) {
 379		case 0:	/* Format version */
 380			break;
 381		case 1:	/* End of cell */
 382			return 0;
 383		case 2:	/* Duplex Polarity */
 384			np->duplex_polarity = psib[i];
 385			dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
 386			break;
 387		case 3:	/* Wake Polarity */
 388			np->wake_polarity = psib[i];
 389			break;
 390		case 9:	/* Adapter description */
 391			j = (next - i > 255) ? 255 : next - i;
 392			memcpy (np->name, &(psib[i]), j);
 393			break;
 394		case 4:
 395		case 5:
 396		case 6:
 397		case 7:
 398		case 8:	/* Reversed */
 399			break;
 400		default:	/* Unknown cell */
 401			return -1;
 402		}
 403		i = next;
 404	} while (1);
 405
 406	return 0;
 407}
 408
 409static int
 410rio_open (struct net_device *dev)
 411{
 412	struct netdev_private *np = netdev_priv(dev);
 413	void __iomem *ioaddr = np->ioaddr;
 414	const int irq = np->pdev->irq;
 415	int i;
 416	u16 macctrl;
 417
 418	i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
 419	if (i)
 420		return i;
 421
 422	/* Reset all logic functions */
 423	dw16(ASICCtrl + 2,
 424	     GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
 425	mdelay(10);
 426
 427	/* DebugCtrl bit 4, 5, 9 must set */
 428	dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
 429
 430	/* Jumbo frame */
 431	if (np->jumbo != 0)
 432		dw16(MaxFrameSize, MAX_JUMBO+14);
 433
 434	alloc_list (dev);
 435
 436	/* Get station address */
 437	for (i = 0; i < 6; i++)
 438		dw8(StationAddr0 + i, dev->dev_addr[i]);
 439
 440	set_multicast (dev);
 441	if (np->coalesce) {
 442		dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
 443	}
 444	/* Set RIO to poll every N*320nsec. */
 445	dw8(RxDMAPollPeriod, 0x20);
 446	dw8(TxDMAPollPeriod, 0xff);
 447	dw8(RxDMABurstThresh, 0x30);
 448	dw8(RxDMAUrgentThresh, 0x30);
 449	dw32(RmonStatMask, 0x0007ffff);
 450	/* clear statistics */
 451	clear_stats (dev);
 452
 453	/* VLAN supported */
 454	if (np->vlan) {
 455		/* priority field in RxDMAIntCtrl  */
 456		dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
 457		/* VLANId */
 458		dw16(VLANId, np->vlan);
 459		/* Length/Type should be 0x8100 */
 460		dw32(VLANTag, 0x8100 << 16 | np->vlan);
 461		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
 462		   VLAN information tagged by TFC' VID, CFI fields. */
 463		dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
 464	}
 465
 466	init_timer (&np->timer);
 467	np->timer.expires = jiffies + 1*HZ;
 468	np->timer.data = (unsigned long) dev;
 469	np->timer.function = rio_timer;
 470	add_timer (&np->timer);
 471
 472	/* Start Tx/Rx */
 473	dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
 474
 475	macctrl = 0;
 476	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
 477	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
 478	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
 479	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
 480	dw16(MACCtrl, macctrl);
 481
 482	netif_start_queue (dev);
 483
 484	dl2k_enable_int(np);
 485	return 0;
 486}
 487
 488static void
 489rio_timer (unsigned long data)
 490{
 491	struct net_device *dev = (struct net_device *)data;
 492	struct netdev_private *np = netdev_priv(dev);
 493	unsigned int entry;
 494	int next_tick = 1*HZ;
 495	unsigned long flags;
 496
 497	spin_lock_irqsave(&np->rx_lock, flags);
 498	/* Recover rx ring exhausted error */
 499	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
 500		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
 501		/* Re-allocate skbuffs to fill the descriptor ring */
 502		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
 503			struct sk_buff *skb;
 504			entry = np->old_rx % RX_RING_SIZE;
 505			/* Dropped packets don't need to re-allocate */
 506			if (np->rx_skbuff[entry] == NULL) {
 507				skb = netdev_alloc_skb_ip_align(dev,
 508								np->rx_buf_sz);
 509				if (skb == NULL) {
 510					np->rx_ring[entry].fraginfo = 0;
 511					printk (KERN_INFO
 512						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
 513						dev->name, entry);
 514					break;
 515				}
 516				np->rx_skbuff[entry] = skb;
 517				np->rx_ring[entry].fraginfo =
 518				    cpu_to_le64 (pci_map_single
 519					 (np->pdev, skb->data, np->rx_buf_sz,
 520					  PCI_DMA_FROMDEVICE));
 521			}
 522			np->rx_ring[entry].fraginfo |=
 523			    cpu_to_le64((u64)np->rx_buf_sz << 48);
 524			np->rx_ring[entry].status = 0;
 525		} /* end for */
 526	} /* end if */
 527	spin_unlock_irqrestore (&np->rx_lock, flags);
 528	np->timer.expires = jiffies + next_tick;
 529	add_timer(&np->timer);
 530}
 531
 532static void
 533rio_tx_timeout (struct net_device *dev)
 534{
 535	struct netdev_private *np = netdev_priv(dev);
 536	void __iomem *ioaddr = np->ioaddr;
 537
 538	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
 539		dev->name, dr32(TxStatus));
 540	rio_free_tx(dev, 0);
 541	dev->if_port = 0;
 542	dev->trans_start = jiffies; /* prevent tx timeout */
 543}
 544
 545 /* allocate and initialize Tx and Rx descriptors */
 546static void
 547alloc_list (struct net_device *dev)
 548{
 549	struct netdev_private *np = netdev_priv(dev);
 550	void __iomem *ioaddr = np->ioaddr;
 551	int i;
 552
 553	np->cur_rx = np->cur_tx = 0;
 554	np->old_rx = np->old_tx = 0;
 555	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
 556
 557	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
 558	for (i = 0; i < TX_RING_SIZE; i++) {
 559		np->tx_skbuff[i] = NULL;
 560		np->tx_ring[i].status = cpu_to_le64 (TFDDone);
 561		np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
 562					      ((i+1)%TX_RING_SIZE) *
 563					      sizeof (struct netdev_desc));
 564	}
 565
 566	/* Initialize Rx descriptors */
 567	for (i = 0; i < RX_RING_SIZE; i++) {
 568		np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
 569						((i + 1) % RX_RING_SIZE) *
 570						sizeof (struct netdev_desc));
 571		np->rx_ring[i].status = 0;
 572		np->rx_ring[i].fraginfo = 0;
 573		np->rx_skbuff[i] = NULL;
 574	}
 575
 576	/* Allocate the rx buffers */
 577	for (i = 0; i < RX_RING_SIZE; i++) {
 578		/* Allocated fixed size of skbuff */
 579		struct sk_buff *skb;
 580
 581		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
 582		np->rx_skbuff[i] = skb;
 583		if (skb == NULL) {
 584			printk (KERN_ERR
 585				"%s: alloc_list: allocate Rx buffer error! ",
 586				dev->name);
 587			break;
 588		}
 589		/* Rubicon now supports 40 bits of addressing space. */
 590		np->rx_ring[i].fraginfo =
 591		    cpu_to_le64 ( pci_map_single (
 592			 	  np->pdev, skb->data, np->rx_buf_sz,
 593				  PCI_DMA_FROMDEVICE));
 594		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
 595	}
 596
 597	/* Set RFDListPtr */
 598	dw32(RFDListPtr0, np->rx_ring_dma);
 599	dw32(RFDListPtr1, 0);
 600}
 601
 602static netdev_tx_t
 603start_xmit (struct sk_buff *skb, struct net_device *dev)
 604{
 605	struct netdev_private *np = netdev_priv(dev);
 606	void __iomem *ioaddr = np->ioaddr;
 607	struct netdev_desc *txdesc;
 608	unsigned entry;
 609	u64 tfc_vlan_tag = 0;
 610
 611	if (np->link_status == 0) {	/* Link Down */
 612		dev_kfree_skb(skb);
 613		return NETDEV_TX_OK;
 614	}
 615	entry = np->cur_tx % TX_RING_SIZE;
 616	np->tx_skbuff[entry] = skb;
 617	txdesc = &np->tx_ring[entry];
 618
 619#if 0
 620	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 621		txdesc->status |=
 622		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
 623				 IPChecksumEnable);
 624	}
 625#endif
 626	if (np->vlan) {
 627		tfc_vlan_tag = VLANTagInsert |
 628		    ((u64)np->vlan << 32) |
 629		    ((u64)skb->priority << 45);
 630	}
 631	txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
 632							skb->len,
 633							PCI_DMA_TODEVICE));
 634	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
 635
 636	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
 637	 * Work around: Always use 1 descriptor in 10Mbps mode */
 638	if (entry % np->tx_coalesce == 0 || np->speed == 10)
 639		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 640					      WordAlignDisable |
 641					      TxDMAIndicate |
 642					      (1 << FragCountShift));
 643	else
 644		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 645					      WordAlignDisable |
 646					      (1 << FragCountShift));
 647
 648	/* TxDMAPollNow */
 649	dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
 650	/* Schedule ISR */
 651	dw32(CountDown, 10000);
 652	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
 653	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 654			< TX_QUEUE_LEN - 1 && np->speed != 10) {
 655		/* do nothing */
 656	} else if (!netif_queue_stopped(dev)) {
 657		netif_stop_queue (dev);
 658	}
 659
 660	/* The first TFDListPtr */
 661	if (!dr32(TFDListPtr0)) {
 662		dw32(TFDListPtr0, np->tx_ring_dma +
 663		     entry * sizeof (struct netdev_desc));
 664		dw32(TFDListPtr1, 0);
 665	}
 666
 667	return NETDEV_TX_OK;
 668}
 669
 670static irqreturn_t
 671rio_interrupt (int irq, void *dev_instance)
 672{
 673	struct net_device *dev = dev_instance;
 674	struct netdev_private *np = netdev_priv(dev);
 675	void __iomem *ioaddr = np->ioaddr;
 676	unsigned int_status;
 677	int cnt = max_intrloop;
 678	int handled = 0;
 679
 680	while (1) {
 681		int_status = dr16(IntStatus);
 682		dw16(IntStatus, int_status);
 683		int_status &= DEFAULT_INTR;
 684		if (int_status == 0 || --cnt < 0)
 685			break;
 686		handled = 1;
 687		/* Processing received packets */
 688		if (int_status & RxDMAComplete)
 689			receive_packet (dev);
 690		/* TxDMAComplete interrupt */
 691		if ((int_status & (TxDMAComplete|IntRequested))) {
 692			int tx_status;
 693			tx_status = dr32(TxStatus);
 694			if (tx_status & 0x01)
 695				tx_error (dev, tx_status);
 696			/* Free used tx skbuffs */
 697			rio_free_tx (dev, 1);
 698		}
 699
 700		/* Handle uncommon events */
 701		if (int_status &
 702		    (HostError | LinkEvent | UpdateStats))
 703			rio_error (dev, int_status);
 704	}
 705	if (np->cur_tx != np->old_tx)
 706		dw32(CountDown, 100);
 707	return IRQ_RETVAL(handled);
 708}
 709
 710static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
 711{
 712	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
 713}
 714
 715static void
 716rio_free_tx (struct net_device *dev, int irq)
 717{
 718	struct netdev_private *np = netdev_priv(dev);
 719	int entry = np->old_tx % TX_RING_SIZE;
 720	int tx_use = 0;
 721	unsigned long flag = 0;
 722
 723	if (irq)
 724		spin_lock(&np->tx_lock);
 725	else
 726		spin_lock_irqsave(&np->tx_lock, flag);
 727
 728	/* Free used tx skbuffs */
 729	while (entry != np->cur_tx) {
 730		struct sk_buff *skb;
 731
 732		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
 733			break;
 734		skb = np->tx_skbuff[entry];
 735		pci_unmap_single (np->pdev,
 736				  desc_to_dma(&np->tx_ring[entry]),
 737				  skb->len, PCI_DMA_TODEVICE);
 738		if (irq)
 739			dev_kfree_skb_irq (skb);
 740		else
 741			dev_kfree_skb (skb);
 742
 743		np->tx_skbuff[entry] = NULL;
 744		entry = (entry + 1) % TX_RING_SIZE;
 745		tx_use++;
 746	}
 747	if (irq)
 748		spin_unlock(&np->tx_lock);
 749	else
 750		spin_unlock_irqrestore(&np->tx_lock, flag);
 751	np->old_tx = entry;
 752
 753	/* If the ring is no longer full, clear tx_full and
 754	   call netif_wake_queue() */
 755
 756	if (netif_queue_stopped(dev) &&
 757	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 758	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
 759		netif_wake_queue (dev);
 760	}
 761}
 762
 763static void
 764tx_error (struct net_device *dev, int tx_status)
 765{
 766	struct netdev_private *np = netdev_priv(dev);
 767	void __iomem *ioaddr = np->ioaddr;
 768	int frame_id;
 769	int i;
 770
 771	frame_id = (tx_status & 0xffff0000);
 772	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
 773		dev->name, tx_status, frame_id);
 774	np->stats.tx_errors++;
 775	/* Ttransmit Underrun */
 776	if (tx_status & 0x10) {
 777		np->stats.tx_fifo_errors++;
 778		dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
 779		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
 780		dw16(ASICCtrl + 2,
 781		     TxReset | DMAReset | FIFOReset | NetworkReset);
 782		/* Wait for ResetBusy bit clear */
 783		for (i = 50; i > 0; i--) {
 784			if (!(dr16(ASICCtrl + 2) & ResetBusy))
 785				break;
 786			mdelay (1);
 787		}
 788		rio_free_tx (dev, 1);
 789		/* Reset TFDListPtr */
 790		dw32(TFDListPtr0, np->tx_ring_dma +
 791		     np->old_tx * sizeof (struct netdev_desc));
 792		dw32(TFDListPtr1, 0);
 793
 794		/* Let TxStartThresh stay default value */
 795	}
 796	/* Late Collision */
 797	if (tx_status & 0x04) {
 798		np->stats.tx_fifo_errors++;
 799		/* TxReset and clear FIFO */
 800		dw16(ASICCtrl + 2, TxReset | FIFOReset);
 801		/* Wait reset done */
 802		for (i = 50; i > 0; i--) {
 803			if (!(dr16(ASICCtrl + 2) & ResetBusy))
 804				break;
 805			mdelay (1);
 806		}
 807		/* Let TxStartThresh stay default value */
 808	}
 809	/* Maximum Collisions */
 810#ifdef ETHER_STATS
 811	if (tx_status & 0x08)
 812		np->stats.collisions16++;
 813#else
 814	if (tx_status & 0x08)
 815		np->stats.collisions++;
 816#endif
 817	/* Restart the Tx */
 818	dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
 819}
 820
 821static int
 822receive_packet (struct net_device *dev)
 823{
 824	struct netdev_private *np = netdev_priv(dev);
 825	int entry = np->cur_rx % RX_RING_SIZE;
 826	int cnt = 30;
 827
 828	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
 829	while (1) {
 830		struct netdev_desc *desc = &np->rx_ring[entry];
 831		int pkt_len;
 832		u64 frame_status;
 833
 834		if (!(desc->status & cpu_to_le64(RFDDone)) ||
 835		    !(desc->status & cpu_to_le64(FrameStart)) ||
 836		    !(desc->status & cpu_to_le64(FrameEnd)))
 837			break;
 838
 839		/* Chip omits the CRC. */
 840		frame_status = le64_to_cpu(desc->status);
 841		pkt_len = frame_status & 0xffff;
 842		if (--cnt < 0)
 843			break;
 844		/* Update rx error statistics, drop packet. */
 845		if (frame_status & RFS_Errors) {
 846			np->stats.rx_errors++;
 847			if (frame_status & (RxRuntFrame | RxLengthError))
 848				np->stats.rx_length_errors++;
 849			if (frame_status & RxFCSError)
 850				np->stats.rx_crc_errors++;
 851			if (frame_status & RxAlignmentError && np->speed != 1000)
 852				np->stats.rx_frame_errors++;
 853			if (frame_status & RxFIFOOverrun)
 854	 			np->stats.rx_fifo_errors++;
 855		} else {
 856			struct sk_buff *skb;
 857
 858			/* Small skbuffs for short packets */
 859			if (pkt_len > copy_thresh) {
 860				pci_unmap_single (np->pdev,
 861						  desc_to_dma(desc),
 862						  np->rx_buf_sz,
 863						  PCI_DMA_FROMDEVICE);
 864				skb_put (skb = np->rx_skbuff[entry], pkt_len);
 865				np->rx_skbuff[entry] = NULL;
 866			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
 867				pci_dma_sync_single_for_cpu(np->pdev,
 868							    desc_to_dma(desc),
 869							    np->rx_buf_sz,
 870							    PCI_DMA_FROMDEVICE);
 871				skb_copy_to_linear_data (skb,
 872						  np->rx_skbuff[entry]->data,
 873						  pkt_len);
 874				skb_put (skb, pkt_len);
 875				pci_dma_sync_single_for_device(np->pdev,
 876							       desc_to_dma(desc),
 877							       np->rx_buf_sz,
 878							       PCI_DMA_FROMDEVICE);
 879			}
 880			skb->protocol = eth_type_trans (skb, dev);
 881#if 0
 882			/* Checksum done by hw, but csum value unavailable. */
 883			if (np->pdev->pci_rev_id >= 0x0c &&
 884				!(frame_status & (TCPError | UDPError | IPError))) {
 885				skb->ip_summed = CHECKSUM_UNNECESSARY;
 886			}
 887#endif
 888			netif_rx (skb);
 889		}
 890		entry = (entry + 1) % RX_RING_SIZE;
 891	}
 892	spin_lock(&np->rx_lock);
 893	np->cur_rx = entry;
 894	/* Re-allocate skbuffs to fill the descriptor ring */
 895	entry = np->old_rx;
 896	while (entry != np->cur_rx) {
 897		struct sk_buff *skb;
 898		/* Dropped packets don't need to re-allocate */
 899		if (np->rx_skbuff[entry] == NULL) {
 900			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
 901			if (skb == NULL) {
 902				np->rx_ring[entry].fraginfo = 0;
 903				printk (KERN_INFO
 904					"%s: receive_packet: "
 905					"Unable to re-allocate Rx skbuff.#%d\n",
 906					dev->name, entry);
 907				break;
 908			}
 909			np->rx_skbuff[entry] = skb;
 910			np->rx_ring[entry].fraginfo =
 911			    cpu_to_le64 (pci_map_single
 912					 (np->pdev, skb->data, np->rx_buf_sz,
 913					  PCI_DMA_FROMDEVICE));
 914		}
 915		np->rx_ring[entry].fraginfo |=
 916		    cpu_to_le64((u64)np->rx_buf_sz << 48);
 917		np->rx_ring[entry].status = 0;
 918		entry = (entry + 1) % RX_RING_SIZE;
 919	}
 920	np->old_rx = entry;
 921	spin_unlock(&np->rx_lock);
 922	return 0;
 923}
 924
 925static void
 926rio_error (struct net_device *dev, int int_status)
 927{
 928	struct netdev_private *np = netdev_priv(dev);
 929	void __iomem *ioaddr = np->ioaddr;
 930	u16 macctrl;
 931
 932	/* Link change event */
 933	if (int_status & LinkEvent) {
 934		if (mii_wait_link (dev, 10) == 0) {
 935			printk (KERN_INFO "%s: Link up\n", dev->name);
 936			if (np->phy_media)
 937				mii_get_media_pcs (dev);
 938			else
 939				mii_get_media (dev);
 940			if (np->speed == 1000)
 941				np->tx_coalesce = tx_coalesce;
 942			else
 943				np->tx_coalesce = 1;
 944			macctrl = 0;
 945			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
 946			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
 947			macctrl |= (np->tx_flow) ?
 948				TxFlowControlEnable : 0;
 949			macctrl |= (np->rx_flow) ?
 950				RxFlowControlEnable : 0;
 951			dw16(MACCtrl, macctrl);
 952			np->link_status = 1;
 953			netif_carrier_on(dev);
 954		} else {
 955			printk (KERN_INFO "%s: Link off\n", dev->name);
 956			np->link_status = 0;
 957			netif_carrier_off(dev);
 958		}
 959	}
 960
 961	/* UpdateStats statistics registers */
 962	if (int_status & UpdateStats) {
 963		get_stats (dev);
 964	}
 965
 966	/* PCI Error, a catastronphic error related to the bus interface
 967	   occurs, set GlobalReset and HostReset to reset. */
 968	if (int_status & HostError) {
 969		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
 970			dev->name, int_status);
 971		dw16(ASICCtrl + 2, GlobalReset | HostReset);
 972		mdelay (500);
 973	}
 974}
 975
 976static struct net_device_stats *
 977get_stats (struct net_device *dev)
 978{
 979	struct netdev_private *np = netdev_priv(dev);
 980	void __iomem *ioaddr = np->ioaddr;
 981#ifdef MEM_MAPPING
 982	int i;
 983#endif
 984	unsigned int stat_reg;
 985
 986	/* All statistics registers need to be acknowledged,
 987	   else statistic overflow could cause problems */
 988
 989	np->stats.rx_packets += dr32(FramesRcvOk);
 990	np->stats.tx_packets += dr32(FramesXmtOk);
 991	np->stats.rx_bytes += dr32(OctetRcvOk);
 992	np->stats.tx_bytes += dr32(OctetXmtOk);
 993
 994	np->stats.multicast = dr32(McstFramesRcvdOk);
 995	np->stats.collisions += dr32(SingleColFrames)
 996			     +  dr32(MultiColFrames);
 997
 998	/* detailed tx errors */
 999	stat_reg = dr16(FramesAbortXSColls);
1000	np->stats.tx_aborted_errors += stat_reg;
1001	np->stats.tx_errors += stat_reg;
1002
1003	stat_reg = dr16(CarrierSenseErrors);
1004	np->stats.tx_carrier_errors += stat_reg;
1005	np->stats.tx_errors += stat_reg;
1006
1007	/* Clear all other statistic register. */
1008	dr32(McstOctetXmtOk);
1009	dr16(BcstFramesXmtdOk);
1010	dr32(McstFramesXmtdOk);
1011	dr16(BcstFramesRcvdOk);
1012	dr16(MacControlFramesRcvd);
1013	dr16(FrameTooLongErrors);
1014	dr16(InRangeLengthErrors);
1015	dr16(FramesCheckSeqErrors);
1016	dr16(FramesLostRxErrors);
1017	dr32(McstOctetXmtOk);
1018	dr32(BcstOctetXmtOk);
1019	dr32(McstFramesXmtdOk);
1020	dr32(FramesWDeferredXmt);
1021	dr32(LateCollisions);
1022	dr16(BcstFramesXmtdOk);
1023	dr16(MacControlFramesXmtd);
1024	dr16(FramesWEXDeferal);
1025
1026#ifdef MEM_MAPPING
1027	for (i = 0x100; i <= 0x150; i += 4)
1028		dr32(i);
1029#endif
1030	dr16(TxJumboFrames);
1031	dr16(RxJumboFrames);
1032	dr16(TCPCheckSumErrors);
1033	dr16(UDPCheckSumErrors);
1034	dr16(IPCheckSumErrors);
1035	return &np->stats;
1036}
1037
1038static int
1039clear_stats (struct net_device *dev)
1040{
1041	struct netdev_private *np = netdev_priv(dev);
1042	void __iomem *ioaddr = np->ioaddr;
1043#ifdef MEM_MAPPING
1044	int i;
1045#endif
1046
1047	/* All statistics registers need to be acknowledged,
1048	   else statistic overflow could cause problems */
1049	dr32(FramesRcvOk);
1050	dr32(FramesXmtOk);
1051	dr32(OctetRcvOk);
1052	dr32(OctetXmtOk);
1053
1054	dr32(McstFramesRcvdOk);
1055	dr32(SingleColFrames);
1056	dr32(MultiColFrames);
1057	dr32(LateCollisions);
1058	/* detailed rx errors */
1059	dr16(FrameTooLongErrors);
1060	dr16(InRangeLengthErrors);
1061	dr16(FramesCheckSeqErrors);
1062	dr16(FramesLostRxErrors);
1063
1064	/* detailed tx errors */
1065	dr16(FramesAbortXSColls);
1066	dr16(CarrierSenseErrors);
1067
1068	/* Clear all other statistic register. */
1069	dr32(McstOctetXmtOk);
1070	dr16(BcstFramesXmtdOk);
1071	dr32(McstFramesXmtdOk);
1072	dr16(BcstFramesRcvdOk);
1073	dr16(MacControlFramesRcvd);
1074	dr32(McstOctetXmtOk);
1075	dr32(BcstOctetXmtOk);
1076	dr32(McstFramesXmtdOk);
1077	dr32(FramesWDeferredXmt);
1078	dr16(BcstFramesXmtdOk);
1079	dr16(MacControlFramesXmtd);
1080	dr16(FramesWEXDeferal);
1081#ifdef MEM_MAPPING
1082	for (i = 0x100; i <= 0x150; i += 4)
1083		dr32(i);
1084#endif
1085	dr16(TxJumboFrames);
1086	dr16(RxJumboFrames);
1087	dr16(TCPCheckSumErrors);
1088	dr16(UDPCheckSumErrors);
1089	dr16(IPCheckSumErrors);
1090	return 0;
1091}
1092
1093
1094static int
1095change_mtu (struct net_device *dev, int new_mtu)
1096{
1097	struct netdev_private *np = netdev_priv(dev);
1098	int max = (np->jumbo) ? MAX_JUMBO : 1536;
1099
1100	if ((new_mtu < 68) || (new_mtu > max)) {
1101		return -EINVAL;
1102	}
1103
1104	dev->mtu = new_mtu;
1105
1106	return 0;
1107}
1108
1109static void
1110set_multicast (struct net_device *dev)
1111{
1112	struct netdev_private *np = netdev_priv(dev);
1113	void __iomem *ioaddr = np->ioaddr;
1114	u32 hash_table[2];
1115	u16 rx_mode = 0;
1116
1117	hash_table[0] = hash_table[1] = 0;
1118	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1119	hash_table[1] |= 0x02000000;
1120	if (dev->flags & IFF_PROMISC) {
1121		/* Receive all frames promiscuously. */
1122		rx_mode = ReceiveAllFrames;
1123	} else if ((dev->flags & IFF_ALLMULTI) ||
1124			(netdev_mc_count(dev) > multicast_filter_limit)) {
1125		/* Receive broadcast and multicast frames */
1126		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1127	} else if (!netdev_mc_empty(dev)) {
1128		struct netdev_hw_addr *ha;
1129		/* Receive broadcast frames and multicast frames filtering
1130		   by Hashtable */
1131		rx_mode =
1132		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1133		netdev_for_each_mc_addr(ha, dev) {
1134			int bit, index = 0;
1135			int crc = ether_crc_le(ETH_ALEN, ha->addr);
1136			/* The inverted high significant 6 bits of CRC are
1137			   used as an index to hashtable */
1138			for (bit = 0; bit < 6; bit++)
1139				if (crc & (1 << (31 - bit)))
1140					index |= (1 << bit);
1141			hash_table[index / 32] |= (1 << (index % 32));
1142		}
1143	} else {
1144		rx_mode = ReceiveBroadcast | ReceiveUnicast;
1145	}
1146	if (np->vlan) {
1147		/* ReceiveVLANMatch field in ReceiveMode */
1148		rx_mode |= ReceiveVLANMatch;
1149	}
1150
1151	dw32(HashTable0, hash_table[0]);
1152	dw32(HashTable1, hash_table[1]);
1153	dw16(ReceiveMode, rx_mode);
1154}
1155
1156static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1157{
1158	struct netdev_private *np = netdev_priv(dev);
1159	strcpy(info->driver, "dl2k");
1160	strcpy(info->version, DRV_VERSION);
1161	strcpy(info->bus_info, pci_name(np->pdev));
1162}
1163
1164static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1165{
1166	struct netdev_private *np = netdev_priv(dev);
1167	if (np->phy_media) {
1168		/* fiber device */
1169		cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1170		cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1171		cmd->port = PORT_FIBRE;
1172		cmd->transceiver = XCVR_INTERNAL;
1173	} else {
1174		/* copper device */
1175		cmd->supported = SUPPORTED_10baseT_Half |
1176			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1177			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1178			SUPPORTED_Autoneg | SUPPORTED_MII;
1179		cmd->advertising = ADVERTISED_10baseT_Half |
1180			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1181			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
1182			ADVERTISED_Autoneg | ADVERTISED_MII;
1183		cmd->port = PORT_MII;
1184		cmd->transceiver = XCVR_INTERNAL;
1185	}
1186	if ( np->link_status ) {
1187		ethtool_cmd_speed_set(cmd, np->speed);
1188		cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1189	} else {
1190		ethtool_cmd_speed_set(cmd, -1);
1191		cmd->duplex = -1;
1192	}
1193	if ( np->an_enable)
1194		cmd->autoneg = AUTONEG_ENABLE;
1195	else
1196		cmd->autoneg = AUTONEG_DISABLE;
1197
1198	cmd->phy_address = np->phy_addr;
1199	return 0;
1200}
1201
1202static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1203{
1204	struct netdev_private *np = netdev_priv(dev);
1205	netif_carrier_off(dev);
1206	if (cmd->autoneg == AUTONEG_ENABLE) {
1207		if (np->an_enable)
1208			return 0;
1209		else {
1210			np->an_enable = 1;
1211			mii_set_media(dev);
1212			return 0;
1213		}
1214	} else {
1215		np->an_enable = 0;
1216		if (np->speed == 1000) {
1217			ethtool_cmd_speed_set(cmd, SPEED_100);
1218			cmd->duplex = DUPLEX_FULL;
1219			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1220		}
1221		switch (ethtool_cmd_speed(cmd)) {
1222		case SPEED_10:
1223			np->speed = 10;
1224			np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1225			break;
1226		case SPEED_100:
1227			np->speed = 100;
1228			np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1229			break;
1230		case SPEED_1000: /* not supported */
1231		default:
1232			return -EINVAL;
1233		}
1234		mii_set_media(dev);
1235	}
1236	return 0;
1237}
1238
1239static u32 rio_get_link(struct net_device *dev)
1240{
1241	struct netdev_private *np = netdev_priv(dev);
1242	return np->link_status;
1243}
1244
1245static const struct ethtool_ops ethtool_ops = {
1246	.get_drvinfo = rio_get_drvinfo,
1247	.get_settings = rio_get_settings,
1248	.set_settings = rio_set_settings,
1249	.get_link = rio_get_link,
1250};
1251
1252static int
1253rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1254{
1255	int phy_addr;
1256	struct netdev_private *np = netdev_priv(dev);
1257	struct mii_ioctl_data *miidata = if_mii(rq);
1258
1259	phy_addr = np->phy_addr;
1260	switch (cmd) {
1261	case SIOCGMIIPHY:
1262		miidata->phy_id = phy_addr;
1263		break;
1264	case SIOCGMIIREG:
1265		miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1266		break;
1267	case SIOCSMIIREG:
1268		if (!capable(CAP_NET_ADMIN))
1269			return -EPERM;
1270		mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1271		break;
1272	default:
1273		return -EOPNOTSUPP;
1274	}
1275	return 0;
1276}
1277
1278#define EEP_READ 0x0200
1279#define EEP_BUSY 0x8000
1280/* Read the EEPROM word */
1281/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1282static int read_eeprom(struct netdev_private *np, int eep_addr)
1283{
1284	void __iomem *ioaddr = np->eeprom_addr;
1285	int i = 1000;
1286
1287	dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1288	while (i-- > 0) {
1289		if (!(dr16(EepromCtrl) & EEP_BUSY))
1290			return dr16(EepromData);
1291	}
1292	return 0;
1293}
1294
1295enum phy_ctrl_bits {
1296	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1297	MII_DUPLEX = 0x08,
1298};
1299
1300#define mii_delay() dr8(PhyCtrl)
1301static void
1302mii_sendbit (struct net_device *dev, u32 data)
1303{
1304	struct netdev_private *np = netdev_priv(dev);
1305	void __iomem *ioaddr = np->ioaddr;
1306
1307	data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1308	dw8(PhyCtrl, data);
1309	mii_delay ();
1310	dw8(PhyCtrl, data | MII_CLK);
1311	mii_delay ();
1312}
1313
1314static int
1315mii_getbit (struct net_device *dev)
1316{
1317	struct netdev_private *np = netdev_priv(dev);
1318	void __iomem *ioaddr = np->ioaddr;
1319	u8 data;
1320
1321	data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1322	dw8(PhyCtrl, data);
1323	mii_delay ();
1324	dw8(PhyCtrl, data | MII_CLK);
1325	mii_delay ();
1326	return (dr8(PhyCtrl) >> 1) & 1;
1327}
1328
1329static void
1330mii_send_bits (struct net_device *dev, u32 data, int len)
1331{
1332	int i;
1333
1334	for (i = len - 1; i >= 0; i--) {
1335		mii_sendbit (dev, data & (1 << i));
1336	}
1337}
1338
1339static int
1340mii_read (struct net_device *dev, int phy_addr, int reg_num)
1341{
1342	u32 cmd;
1343	int i;
1344	u32 retval = 0;
1345
1346	/* Preamble */
1347	mii_send_bits (dev, 0xffffffff, 32);
1348	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1349	/* ST,OP = 0110'b for read operation */
1350	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1351	mii_send_bits (dev, cmd, 14);
1352	/* Turnaround */
1353	if (mii_getbit (dev))
1354		goto err_out;
1355	/* Read data */
1356	for (i = 0; i < 16; i++) {
1357		retval |= mii_getbit (dev);
1358		retval <<= 1;
1359	}
1360	/* End cycle */
1361	mii_getbit (dev);
1362	return (retval >> 1) & 0xffff;
1363
1364      err_out:
1365	return 0;
1366}
1367static int
1368mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1369{
1370	u32 cmd;
1371
1372	/* Preamble */
1373	mii_send_bits (dev, 0xffffffff, 32);
1374	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1375	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1376	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1377	mii_send_bits (dev, cmd, 32);
1378	/* End cycle */
1379	mii_getbit (dev);
1380	return 0;
1381}
1382static int
1383mii_wait_link (struct net_device *dev, int wait)
1384{
1385	__u16 bmsr;
1386	int phy_addr;
1387	struct netdev_private *np;
1388
1389	np = netdev_priv(dev);
1390	phy_addr = np->phy_addr;
1391
1392	do {
1393		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1394		if (bmsr & BMSR_LSTATUS)
1395			return 0;
1396		mdelay (1);
1397	} while (--wait > 0);
1398	return -1;
1399}
1400static int
1401mii_get_media (struct net_device *dev)
1402{
1403	__u16 negotiate;
1404	__u16 bmsr;
1405	__u16 mscr;
1406	__u16 mssr;
1407	int phy_addr;
1408	struct netdev_private *np;
1409
1410	np = netdev_priv(dev);
1411	phy_addr = np->phy_addr;
1412
1413	bmsr = mii_read (dev, phy_addr, MII_BMSR);
1414	if (np->an_enable) {
1415		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1416			/* Auto-Negotiation not completed */
1417			return -1;
1418		}
1419		negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1420			mii_read (dev, phy_addr, MII_LPA);
1421		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1422		mssr = mii_read (dev, phy_addr, MII_STAT1000);
1423		if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1424			np->speed = 1000;
1425			np->full_duplex = 1;
1426			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1427		} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1428			np->speed = 1000;
1429			np->full_duplex = 0;
1430			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1431		} else if (negotiate & ADVERTISE_100FULL) {
1432			np->speed = 100;
1433			np->full_duplex = 1;
1434			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1435		} else if (negotiate & ADVERTISE_100HALF) {
1436			np->speed = 100;
1437			np->full_duplex = 0;
1438			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1439		} else if (negotiate & ADVERTISE_10FULL) {
1440			np->speed = 10;
1441			np->full_duplex = 1;
1442			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1443		} else if (negotiate & ADVERTISE_10HALF) {
1444			np->speed = 10;
1445			np->full_duplex = 0;
1446			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1447		}
1448		if (negotiate & ADVERTISE_PAUSE_CAP) {
1449			np->tx_flow &= 1;
1450			np->rx_flow &= 1;
1451		} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1452			np->tx_flow = 0;
1453			np->rx_flow &= 1;
1454		}
1455		/* else tx_flow, rx_flow = user select  */
1456	} else {
1457		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1458		switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1459		case BMCR_SPEED1000:
1460			printk (KERN_INFO "Operating at 1000 Mbps, ");
1461			break;
1462		case BMCR_SPEED100:
1463			printk (KERN_INFO "Operating at 100 Mbps, ");
1464			break;
1465		case 0:
1466			printk (KERN_INFO "Operating at 10 Mbps, ");
1467		}
1468		if (bmcr & BMCR_FULLDPLX) {
1469			printk (KERN_CONT "Full duplex\n");
1470		} else {
1471			printk (KERN_CONT "Half duplex\n");
1472		}
1473	}
1474	if (np->tx_flow)
1475		printk(KERN_INFO "Enable Tx Flow Control\n");
1476	else
1477		printk(KERN_INFO "Disable Tx Flow Control\n");
1478	if (np->rx_flow)
1479		printk(KERN_INFO "Enable Rx Flow Control\n");
1480	else
1481		printk(KERN_INFO "Disable Rx Flow Control\n");
1482
1483	return 0;
1484}
1485
1486static int
1487mii_set_media (struct net_device *dev)
1488{
1489	__u16 pscr;
1490	__u16 bmcr;
1491	__u16 bmsr;
1492	__u16 anar;
1493	int phy_addr;
1494	struct netdev_private *np;
1495	np = netdev_priv(dev);
1496	phy_addr = np->phy_addr;
1497
1498	/* Does user set speed? */
1499	if (np->an_enable) {
1500		/* Advertise capabilities */
1501		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1502		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1503			~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1504			  ADVERTISE_100HALF | ADVERTISE_10HALF |
1505			  ADVERTISE_100BASE4);
1506		if (bmsr & BMSR_100FULL)
1507			anar |= ADVERTISE_100FULL;
1508		if (bmsr & BMSR_100HALF)
1509			anar |= ADVERTISE_100HALF;
1510		if (bmsr & BMSR_100BASE4)
1511			anar |= ADVERTISE_100BASE4;
1512		if (bmsr & BMSR_10FULL)
1513			anar |= ADVERTISE_10FULL;
1514		if (bmsr & BMSR_10HALF)
1515			anar |= ADVERTISE_10HALF;
1516		anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1517		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1518
1519		/* Enable Auto crossover */
1520		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1521		pscr |= 3 << 5;	/* 11'b */
1522		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1523
1524		/* Soft reset PHY */
1525		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1526		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1527		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1528		mdelay(1);
1529	} else {
1530		/* Force speed setting */
1531		/* 1) Disable Auto crossover */
1532		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1533		pscr &= ~(3 << 5);
1534		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1535
1536		/* 2) PHY Reset */
1537		bmcr = mii_read (dev, phy_addr, MII_BMCR);
1538		bmcr |= BMCR_RESET;
1539		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1540
1541		/* 3) Power Down */
1542		bmcr = 0x1940;	/* must be 0x1940 */
1543		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1544		mdelay (100);	/* wait a certain time */
1545
1546		/* 4) Advertise nothing */
1547		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1548
1549		/* 5) Set media and Power Up */
1550		bmcr = BMCR_PDOWN;
1551		if (np->speed == 100) {
1552			bmcr |= BMCR_SPEED100;
1553			printk (KERN_INFO "Manual 100 Mbps, ");
1554		} else if (np->speed == 10) {
1555			printk (KERN_INFO "Manual 10 Mbps, ");
1556		}
1557		if (np->full_duplex) {
1558			bmcr |= BMCR_FULLDPLX;
1559			printk (KERN_CONT "Full duplex\n");
1560		} else {
1561			printk (KERN_CONT "Half duplex\n");
1562		}
1563#if 0
1564		/* Set 1000BaseT Master/Slave setting */
1565		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1566		mscr |= MII_MSCR_CFG_ENABLE;
1567		mscr &= ~MII_MSCR_CFG_VALUE = 0;
1568#endif
1569		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1570		mdelay(10);
1571	}
1572	return 0;
1573}
1574
1575static int
1576mii_get_media_pcs (struct net_device *dev)
1577{
1578	__u16 negotiate;
1579	__u16 bmsr;
1580	int phy_addr;
1581	struct netdev_private *np;
1582
1583	np = netdev_priv(dev);
1584	phy_addr = np->phy_addr;
1585
1586	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1587	if (np->an_enable) {
1588		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1589			/* Auto-Negotiation not completed */
1590			return -1;
1591		}
1592		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1593			mii_read (dev, phy_addr, PCS_ANLPAR);
1594		np->speed = 1000;
1595		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1596			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1597			np->full_duplex = 1;
1598		} else {
1599			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1600			np->full_duplex = 0;
1601		}
1602		if (negotiate & PCS_ANAR_PAUSE) {
1603			np->tx_flow &= 1;
1604			np->rx_flow &= 1;
1605		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1606			np->tx_flow = 0;
1607			np->rx_flow &= 1;
1608		}
1609		/* else tx_flow, rx_flow = user select  */
1610	} else {
1611		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1612		printk (KERN_INFO "Operating at 1000 Mbps, ");
1613		if (bmcr & BMCR_FULLDPLX) {
1614			printk (KERN_CONT "Full duplex\n");
1615		} else {
1616			printk (KERN_CONT "Half duplex\n");
1617		}
1618	}
1619	if (np->tx_flow)
1620		printk(KERN_INFO "Enable Tx Flow Control\n");
1621	else
1622		printk(KERN_INFO "Disable Tx Flow Control\n");
1623	if (np->rx_flow)
1624		printk(KERN_INFO "Enable Rx Flow Control\n");
1625	else
1626		printk(KERN_INFO "Disable Rx Flow Control\n");
1627
1628	return 0;
1629}
1630
1631static int
1632mii_set_media_pcs (struct net_device *dev)
1633{
1634	__u16 bmcr;
1635	__u16 esr;
1636	__u16 anar;
1637	int phy_addr;
1638	struct netdev_private *np;
1639	np = netdev_priv(dev);
1640	phy_addr = np->phy_addr;
1641
1642	/* Auto-Negotiation? */
1643	if (np->an_enable) {
1644		/* Advertise capabilities */
1645		esr = mii_read (dev, phy_addr, PCS_ESR);
1646		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1647			~PCS_ANAR_HALF_DUPLEX &
1648			~PCS_ANAR_FULL_DUPLEX;
1649		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1650			anar |= PCS_ANAR_HALF_DUPLEX;
1651		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1652			anar |= PCS_ANAR_FULL_DUPLEX;
1653		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1654		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1655
1656		/* Soft reset PHY */
1657		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1658		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1659		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1660		mdelay(1);
1661	} else {
1662		/* Force speed setting */
1663		/* PHY Reset */
1664		bmcr = BMCR_RESET;
1665		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1666		mdelay(10);
1667		if (np->full_duplex) {
1668			bmcr = BMCR_FULLDPLX;
1669			printk (KERN_INFO "Manual full duplex\n");
1670		} else {
1671			bmcr = 0;
1672			printk (KERN_INFO "Manual half duplex\n");
1673		}
1674		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1675		mdelay(10);
1676
1677		/*  Advertise nothing */
1678		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1679	}
1680	return 0;
1681}
1682
1683
1684static int
1685rio_close (struct net_device *dev)
1686{
1687	struct netdev_private *np = netdev_priv(dev);
1688	void __iomem *ioaddr = np->ioaddr;
1689
1690	struct pci_dev *pdev = np->pdev;
1691	struct sk_buff *skb;
1692	int i;
1693
1694	netif_stop_queue (dev);
1695
1696	/* Disable interrupts */
1697	dw16(IntEnable, 0);
1698
1699	/* Stop Tx and Rx logics */
1700	dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
1701
1702	free_irq(pdev->irq, dev);
1703	del_timer_sync (&np->timer);
1704
1705	/* Free all the skbuffs in the queue. */
1706	for (i = 0; i < RX_RING_SIZE; i++) {
1707		skb = np->rx_skbuff[i];
1708		if (skb) {
1709			pci_unmap_single(pdev, desc_to_dma(&np->rx_ring[i]),
1710					 skb->len, PCI_DMA_FROMDEVICE);
1711			dev_kfree_skb (skb);
1712			np->rx_skbuff[i] = NULL;
1713		}
1714		np->rx_ring[i].status = 0;
1715		np->rx_ring[i].fraginfo = 0;
1716	}
1717	for (i = 0; i < TX_RING_SIZE; i++) {
1718		skb = np->tx_skbuff[i];
1719		if (skb) {
1720			pci_unmap_single(pdev, desc_to_dma(&np->tx_ring[i]),
1721					 skb->len, PCI_DMA_TODEVICE);
1722			dev_kfree_skb (skb);
1723			np->tx_skbuff[i] = NULL;
1724		}
1725	}
1726
1727	return 0;
1728}
1729
1730static void __devexit
1731rio_remove1 (struct pci_dev *pdev)
1732{
1733	struct net_device *dev = pci_get_drvdata (pdev);
1734
1735	if (dev) {
1736		struct netdev_private *np = netdev_priv(dev);
1737
1738		unregister_netdev (dev);
1739		pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1740				     np->rx_ring_dma);
1741		pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1742				     np->tx_ring_dma);
1743#ifdef MEM_MAPPING
1744		pci_iounmap(pdev, np->ioaddr);
1745#endif
1746		pci_iounmap(pdev, np->eeprom_addr);
1747		free_netdev (dev);
1748		pci_release_regions (pdev);
1749		pci_disable_device (pdev);
1750	}
1751	pci_set_drvdata (pdev, NULL);
1752}
1753
1754static struct pci_driver rio_driver = {
1755	.name		= "dl2k",
1756	.id_table	= rio_pci_tbl,
1757	.probe		= rio_probe1,
1758	.remove		= __devexit_p(rio_remove1),
1759};
1760
1761static int __init
1762rio_init (void)
1763{
1764	return pci_register_driver(&rio_driver);
1765}
1766
1767static void __exit
1768rio_exit (void)
1769{
1770	pci_unregister_driver (&rio_driver);
1771}
1772
1773module_init (rio_init);
1774module_exit (rio_exit);
1775
1776/*
1777
1778Compile command:
1779
1780gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1781
1782Read Documentation/networking/dl2k.txt for details.
1783
1784*/
1785