Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *
   4 * Alchemy Au1x00 ethernet driver
   5 *
   6 * Copyright 2001-2003, 2006 MontaVista Software Inc.
   7 * Copyright 2002 TimeSys Corp.
   8 * Added ethtool/mii-tool support,
   9 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
  10 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
  11 * or riemer@riemer-nt.de: fixed the link beat detection with
  12 * ioctls (SIOCGMIIPHY)
  13 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
  14 *  converted to use linux-2.6.x's PHY framework
  15 *
  16 * Author: MontaVista Software, Inc.
  17 *		ppopov@mvista.com or source@mvista.com
  18 */
  19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  20
  21#include <linux/capability.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/module.h>
  24#include <linux/kernel.h>
  25#include <linux/string.h>
  26#include <linux/timer.h>
  27#include <linux/errno.h>
  28#include <linux/in.h>
  29#include <linux/ioport.h>
  30#include <linux/bitops.h>
  31#include <linux/slab.h>
  32#include <linux/interrupt.h>
  33#include <linux/netdevice.h>
  34#include <linux/etherdevice.h>
  35#include <linux/ethtool.h>
  36#include <linux/mii.h>
  37#include <linux/skbuff.h>
  38#include <linux/delay.h>
  39#include <linux/crc32.h>
  40#include <linux/phy.h>
  41#include <linux/platform_device.h>
  42#include <linux/cpu.h>
  43#include <linux/io.h>
  44
  45#include <asm/mipsregs.h>
  46#include <asm/irq.h>
  47#include <asm/processor.h>
  48
  49#include <au1000.h>
  50#include <au1xxx_eth.h>
  51#include <prom.h>
  52
  53#include "au1000_eth.h"
  54
  55#ifdef AU1000_ETH_DEBUG
  56static int au1000_debug = 5;
  57#else
  58static int au1000_debug = 3;
  59#endif
  60
  61#define AU1000_DEF_MSG_ENABLE	(NETIF_MSG_DRV	| \
  62				NETIF_MSG_PROBE	| \
  63				NETIF_MSG_LINK)
  64
  65#define DRV_NAME	"au1000_eth"
 
  66#define DRV_AUTHOR	"Pete Popov <ppopov@embeddedalley.com>"
  67#define DRV_DESC	"Au1xxx on-chip Ethernet driver"
  68
  69MODULE_AUTHOR(DRV_AUTHOR);
  70MODULE_DESCRIPTION(DRV_DESC);
  71MODULE_LICENSE("GPL");
 
  72
  73/* AU1000 MAC registers and bits */
  74#define MAC_CONTROL		0x0
  75#  define MAC_RX_ENABLE		(1 << 2)
  76#  define MAC_TX_ENABLE		(1 << 3)
  77#  define MAC_DEF_CHECK		(1 << 5)
  78#  define MAC_SET_BL(X)		(((X) & 0x3) << 6)
  79#  define MAC_AUTO_PAD		(1 << 8)
  80#  define MAC_DISABLE_RETRY	(1 << 10)
  81#  define MAC_DISABLE_BCAST	(1 << 11)
  82#  define MAC_LATE_COL		(1 << 12)
  83#  define MAC_HASH_MODE		(1 << 13)
  84#  define MAC_HASH_ONLY		(1 << 15)
  85#  define MAC_PASS_ALL		(1 << 16)
  86#  define MAC_INVERSE_FILTER	(1 << 17)
  87#  define MAC_PROMISCUOUS	(1 << 18)
  88#  define MAC_PASS_ALL_MULTI	(1 << 19)
  89#  define MAC_FULL_DUPLEX	(1 << 20)
  90#  define MAC_NORMAL_MODE	0
  91#  define MAC_INT_LOOPBACK	(1 << 21)
  92#  define MAC_EXT_LOOPBACK	(1 << 22)
  93#  define MAC_DISABLE_RX_OWN	(1 << 23)
  94#  define MAC_BIG_ENDIAN	(1 << 30)
  95#  define MAC_RX_ALL		(1 << 31)
  96#define MAC_ADDRESS_HIGH	0x4
  97#define MAC_ADDRESS_LOW		0x8
  98#define MAC_MCAST_HIGH		0xC
  99#define MAC_MCAST_LOW		0x10
 100#define MAC_MII_CNTRL		0x14
 101#  define MAC_MII_BUSY		(1 << 0)
 102#  define MAC_MII_READ		0
 103#  define MAC_MII_WRITE		(1 << 1)
 104#  define MAC_SET_MII_SELECT_REG(X) (((X) & 0x1f) << 6)
 105#  define MAC_SET_MII_SELECT_PHY(X) (((X) & 0x1f) << 11)
 106#define MAC_MII_DATA		0x18
 107#define MAC_FLOW_CNTRL		0x1C
 108#  define MAC_FLOW_CNTRL_BUSY	(1 << 0)
 109#  define MAC_FLOW_CNTRL_ENABLE (1 << 1)
 110#  define MAC_PASS_CONTROL	(1 << 2)
 111#  define MAC_SET_PAUSE(X)	(((X) & 0xffff) << 16)
 112#define MAC_VLAN1_TAG		0x20
 113#define MAC_VLAN2_TAG		0x24
 114
 115/* Ethernet Controller Enable */
 116#  define MAC_EN_CLOCK_ENABLE	(1 << 0)
 117#  define MAC_EN_RESET0		(1 << 1)
 118#  define MAC_EN_TOSS		(0 << 2)
 119#  define MAC_EN_CACHEABLE	(1 << 3)
 120#  define MAC_EN_RESET1		(1 << 4)
 121#  define MAC_EN_RESET2		(1 << 5)
 122#  define MAC_DMA_RESET		(1 << 6)
 123
 124/* Ethernet Controller DMA Channels */
 125/* offsets from MAC_TX_RING_ADDR address */
 126#define MAC_TX_BUFF0_STATUS	0x0
 127#  define TX_FRAME_ABORTED	(1 << 0)
 128#  define TX_JAB_TIMEOUT	(1 << 1)
 129#  define TX_NO_CARRIER		(1 << 2)
 130#  define TX_LOSS_CARRIER	(1 << 3)
 131#  define TX_EXC_DEF		(1 << 4)
 132#  define TX_LATE_COLL_ABORT	(1 << 5)
 133#  define TX_EXC_COLL		(1 << 6)
 134#  define TX_UNDERRUN		(1 << 7)
 135#  define TX_DEFERRED		(1 << 8)
 136#  define TX_LATE_COLL		(1 << 9)
 137#  define TX_COLL_CNT_MASK	(0xF << 10)
 138#  define TX_PKT_RETRY		(1 << 31)
 139#define MAC_TX_BUFF0_ADDR	0x4
 140#  define TX_DMA_ENABLE		(1 << 0)
 141#  define TX_T_DONE		(1 << 1)
 142#  define TX_GET_DMA_BUFFER(X)	(((X) >> 2) & 0x3)
 143#define MAC_TX_BUFF0_LEN	0x8
 144#define MAC_TX_BUFF1_STATUS	0x10
 145#define MAC_TX_BUFF1_ADDR	0x14
 146#define MAC_TX_BUFF1_LEN	0x18
 147#define MAC_TX_BUFF2_STATUS	0x20
 148#define MAC_TX_BUFF2_ADDR	0x24
 149#define MAC_TX_BUFF2_LEN	0x28
 150#define MAC_TX_BUFF3_STATUS	0x30
 151#define MAC_TX_BUFF3_ADDR	0x34
 152#define MAC_TX_BUFF3_LEN	0x38
 153
 154/* offsets from MAC_RX_RING_ADDR */
 155#define MAC_RX_BUFF0_STATUS	0x0
 156#  define RX_FRAME_LEN_MASK	0x3fff
 157#  define RX_WDOG_TIMER		(1 << 14)
 158#  define RX_RUNT		(1 << 15)
 159#  define RX_OVERLEN		(1 << 16)
 160#  define RX_COLL		(1 << 17)
 161#  define RX_ETHER		(1 << 18)
 162#  define RX_MII_ERROR		(1 << 19)
 163#  define RX_DRIBBLING		(1 << 20)
 164#  define RX_CRC_ERROR		(1 << 21)
 165#  define RX_VLAN1		(1 << 22)
 166#  define RX_VLAN2		(1 << 23)
 167#  define RX_LEN_ERROR		(1 << 24)
 168#  define RX_CNTRL_FRAME	(1 << 25)
 169#  define RX_U_CNTRL_FRAME	(1 << 26)
 170#  define RX_MCAST_FRAME	(1 << 27)
 171#  define RX_BCAST_FRAME	(1 << 28)
 172#  define RX_FILTER_FAIL	(1 << 29)
 173#  define RX_PACKET_FILTER	(1 << 30)
 174#  define RX_MISSED_FRAME	(1 << 31)
 175
 176#  define RX_ERROR (RX_WDOG_TIMER | RX_RUNT | RX_OVERLEN |  \
 177		    RX_COLL | RX_MII_ERROR | RX_CRC_ERROR | \
 178		    RX_LEN_ERROR | RX_U_CNTRL_FRAME | RX_MISSED_FRAME)
 179#define MAC_RX_BUFF0_ADDR	0x4
 180#  define RX_DMA_ENABLE		(1 << 0)
 181#  define RX_T_DONE		(1 << 1)
 182#  define RX_GET_DMA_BUFFER(X)	(((X) >> 2) & 0x3)
 183#  define RX_SET_BUFF_ADDR(X)	((X) & 0xffffffc0)
 184#define MAC_RX_BUFF1_STATUS	0x10
 185#define MAC_RX_BUFF1_ADDR	0x14
 186#define MAC_RX_BUFF2_STATUS	0x20
 187#define MAC_RX_BUFF2_ADDR	0x24
 188#define MAC_RX_BUFF3_STATUS	0x30
 189#define MAC_RX_BUFF3_ADDR	0x34
 190
 191/*
 192 * Theory of operation
 193 *
 194 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
 195 * There are four receive and four transmit descriptors.  These
 196 * descriptors are not in memory; rather, they are just a set of
 197 * hardware registers.
 198 *
 199 * Since the Au1000 has a coherent data cache, the receive and
 200 * transmit buffers are allocated from the KSEG0 segment. The
 201 * hardware registers, however, are still mapped at KSEG1 to
 202 * make sure there's no out-of-order writes, and that all writes
 203 * complete immediately.
 204 */
 205
 206/*
 207 * board-specific configurations
 208 *
 209 * PHY detection algorithm
 210 *
 211 * If phy_static_config is undefined, the PHY setup is
 212 * autodetected:
 213 *
 214 * mii_probe() first searches the current MAC's MII bus for a PHY,
 215 * selecting the first (or last, if phy_search_highest_addr is
 216 * defined) PHY address not already claimed by another netdev.
 217 *
 218 * If nothing was found that way when searching for the 2nd ethernet
 219 * controller's PHY and phy1_search_mac0 is defined, then
 220 * the first MII bus is searched as well for an unclaimed PHY; this is
 221 * needed in case of a dual-PHY accessible only through the MAC0's MII
 222 * bus.
 223 *
 224 * Finally, if no PHY is found, then the corresponding ethernet
 225 * controller is not registered to the network subsystem.
 226 */
 227
 228/* autodetection defaults: phy1_search_mac0 */
 229
 230/* static PHY setup
 231 *
 232 * most boards PHY setup should be detectable properly with the
 233 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
 234 * you have a switch attached, or want to use the PHY's interrupt
 235 * notification capabilities) you can provide a static PHY
 236 * configuration here
 237 *
 238 * IRQs may only be set, if a PHY address was configured
 239 * If a PHY address is given, also a bus id is required to be set
 240 *
 241 * ps: make sure the used irqs are configured properly in the board
 242 * specific irq-map
 243 */
 
 244static void au1000_enable_mac(struct net_device *dev, int force_reset)
 245{
 246	unsigned long flags;
 247	struct au1000_private *aup = netdev_priv(dev);
 248
 249	spin_lock_irqsave(&aup->lock, flags);
 250
 251	if (force_reset || (!aup->mac_enabled)) {
 252		writel(MAC_EN_CLOCK_ENABLE, aup->enable);
 253		wmb(); /* drain writebuffer */
 254		mdelay(2);
 255		writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
 256				| MAC_EN_CLOCK_ENABLE), aup->enable);
 257		wmb(); /* drain writebuffer */
 258		mdelay(2);
 259
 260		aup->mac_enabled = 1;
 261	}
 262
 263	spin_unlock_irqrestore(&aup->lock, flags);
 264}
 265
 266/*
 267 * MII operations
 268 */
 269static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
 270{
 271	struct au1000_private *aup = netdev_priv(dev);
 272	u32 *const mii_control_reg = &aup->mac->mii_control;
 273	u32 *const mii_data_reg = &aup->mac->mii_data;
 274	u32 timedout = 20;
 275	u32 mii_control;
 276
 277	while (readl(mii_control_reg) & MAC_MII_BUSY) {
 278		mdelay(1);
 279		if (--timedout == 0) {
 280			netdev_err(dev, "read_MII busy timeout!!\n");
 281			return -1;
 282		}
 283	}
 284
 285	mii_control = MAC_SET_MII_SELECT_REG(reg) |
 286		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
 287
 288	writel(mii_control, mii_control_reg);
 289
 290	timedout = 20;
 291	while (readl(mii_control_reg) & MAC_MII_BUSY) {
 292		mdelay(1);
 293		if (--timedout == 0) {
 294			netdev_err(dev, "mdio_read busy timeout!!\n");
 295			return -1;
 296		}
 297	}
 298	return readl(mii_data_reg);
 299}
 300
 301static void au1000_mdio_write(struct net_device *dev, int phy_addr,
 302			      int reg, u16 value)
 303{
 304	struct au1000_private *aup = netdev_priv(dev);
 305	u32 *const mii_control_reg = &aup->mac->mii_control;
 306	u32 *const mii_data_reg = &aup->mac->mii_data;
 307	u32 timedout = 20;
 308	u32 mii_control;
 309
 310	while (readl(mii_control_reg) & MAC_MII_BUSY) {
 311		mdelay(1);
 312		if (--timedout == 0) {
 313			netdev_err(dev, "mdio_write busy timeout!!\n");
 314			return;
 315		}
 316	}
 317
 318	mii_control = MAC_SET_MII_SELECT_REG(reg) |
 319		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
 320
 321	writel(value, mii_data_reg);
 322	writel(mii_control, mii_control_reg);
 323}
 324
 325static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
 326{
 327	struct net_device *const dev = bus->priv;
 328
 329	/* make sure the MAC associated with this
 330	 * mii_bus is enabled
 331	 */
 332	au1000_enable_mac(dev, 0);
 333
 334	return au1000_mdio_read(dev, phy_addr, regnum);
 335}
 336
 337static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
 338				u16 value)
 339{
 340	struct net_device *const dev = bus->priv;
 341
 342	/* make sure the MAC associated with this
 343	 * mii_bus is enabled
 344	 */
 345	au1000_enable_mac(dev, 0);
 346
 347	au1000_mdio_write(dev, phy_addr, regnum, value);
 348	return 0;
 349}
 350
 351static int au1000_mdiobus_reset(struct mii_bus *bus)
 352{
 353	struct net_device *const dev = bus->priv;
 354
 355	/* make sure the MAC associated with this
 356	 * mii_bus is enabled
 357	 */
 358	au1000_enable_mac(dev, 0);
 359
 360	return 0;
 361}
 362
 363static void au1000_hard_stop(struct net_device *dev)
 364{
 365	struct au1000_private *aup = netdev_priv(dev);
 366	u32 reg;
 367
 368	netif_dbg(aup, drv, dev, "hard stop\n");
 369
 370	reg = readl(&aup->mac->control);
 371	reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
 372	writel(reg, &aup->mac->control);
 373	wmb(); /* drain writebuffer */
 374	mdelay(10);
 375}
 376
 377static void au1000_enable_rx_tx(struct net_device *dev)
 378{
 379	struct au1000_private *aup = netdev_priv(dev);
 380	u32 reg;
 381
 382	netif_dbg(aup, hw, dev, "enable_rx_tx\n");
 383
 384	reg = readl(&aup->mac->control);
 385	reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
 386	writel(reg, &aup->mac->control);
 387	wmb(); /* drain writebuffer */
 388	mdelay(10);
 389}
 390
 391static void
 392au1000_adjust_link(struct net_device *dev)
 393{
 394	struct au1000_private *aup = netdev_priv(dev);
 395	struct phy_device *phydev = dev->phydev;
 396	unsigned long flags;
 397	u32 reg;
 398
 399	int status_change = 0;
 400
 401	BUG_ON(!phydev);
 402
 403	spin_lock_irqsave(&aup->lock, flags);
 404
 405	if (phydev->link && (aup->old_speed != phydev->speed)) {
 406		/* speed changed */
 407
 408		switch (phydev->speed) {
 409		case SPEED_10:
 410		case SPEED_100:
 411			break;
 412		default:
 413			netdev_warn(dev, "Speed (%d) is not 10/100 ???\n",
 414							phydev->speed);
 415			break;
 416		}
 417
 418		aup->old_speed = phydev->speed;
 419
 420		status_change = 1;
 421	}
 422
 423	if (phydev->link && (aup->old_duplex != phydev->duplex)) {
 424		/* duplex mode changed */
 425
 426		/* switching duplex mode requires to disable rx and tx! */
 427		au1000_hard_stop(dev);
 428
 429		reg = readl(&aup->mac->control);
 430		if (DUPLEX_FULL == phydev->duplex) {
 431			reg |= MAC_FULL_DUPLEX;
 432			reg &= ~MAC_DISABLE_RX_OWN;
 433		} else {
 434			reg &= ~MAC_FULL_DUPLEX;
 435			reg |= MAC_DISABLE_RX_OWN;
 436		}
 437		writel(reg, &aup->mac->control);
 438		wmb(); /* drain writebuffer */
 439		mdelay(1);
 440
 441		au1000_enable_rx_tx(dev);
 442		aup->old_duplex = phydev->duplex;
 443
 444		status_change = 1;
 445	}
 446
 447	if (phydev->link != aup->old_link) {
 448		/* link state changed */
 449
 450		if (!phydev->link) {
 451			/* link went down */
 452			aup->old_speed = 0;
 453			aup->old_duplex = -1;
 454		}
 455
 456		aup->old_link = phydev->link;
 457		status_change = 1;
 458	}
 459
 460	spin_unlock_irqrestore(&aup->lock, flags);
 461
 462	if (status_change) {
 463		if (phydev->link)
 464			netdev_info(dev, "link up (%d/%s)\n",
 465			       phydev->speed,
 466			       DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
 467		else
 468			netdev_info(dev, "link down\n");
 469	}
 470}
 471
 472static int au1000_mii_probe(struct net_device *dev)
 473{
 474	struct au1000_private *const aup = netdev_priv(dev);
 475	struct phy_device *phydev = NULL;
 476	int phy_addr;
 477
 478	if (aup->phy_static_config) {
 479		BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
 480
 481		if (aup->phy_addr)
 482			phydev = mdiobus_get_phy(aup->mii_bus, aup->phy_addr);
 483		else
 484			netdev_info(dev, "using PHY-less setup\n");
 485		return 0;
 486	}
 487
 488	/* find the first (lowest address) PHY
 489	 * on the current MAC's MII bus
 490	 */
 491	for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
 492		if (mdiobus_get_phy(aup->mii_bus, phy_addr)) {
 493			phydev = mdiobus_get_phy(aup->mii_bus, phy_addr);
 494			if (!aup->phy_search_highest_addr)
 495				/* break out with first one found */
 496				break;
 497		}
 498
 499	if (aup->phy1_search_mac0) {
 500		/* try harder to find a PHY */
 501		if (!phydev && (aup->mac_id == 1)) {
 502			/* no PHY found, maybe we have a dual PHY? */
 503			dev_info(&dev->dev, ": no PHY found on MAC1, "
 504				"let's see if it's attached to MAC0...\n");
 505
 506			/* find the first (lowest address) non-attached
 507			 * PHY on the MAC0 MII bus
 508			 */
 509			for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
 510				struct phy_device *const tmp_phydev =
 511					mdiobus_get_phy(aup->mii_bus,
 512							phy_addr);
 513
 514				if (aup->mac_id == 1)
 515					break;
 516
 517				/* no PHY here... */
 518				if (!tmp_phydev)
 519					continue;
 520
 521				/* already claimed by MAC0 */
 522				if (tmp_phydev->attached_dev)
 523					continue;
 524
 525				phydev = tmp_phydev;
 526				break; /* found it */
 527			}
 528		}
 529	}
 530
 531	if (!phydev) {
 532		netdev_err(dev, "no PHY found\n");
 533		return -1;
 534	}
 535
 536	/* now we are supposed to have a proper phydev, to attach to... */
 537	BUG_ON(phydev->attached_dev);
 538
 539	phydev = phy_connect(dev, phydev_name(phydev),
 540			     &au1000_adjust_link, PHY_INTERFACE_MODE_MII);
 541
 542	if (IS_ERR(phydev)) {
 543		netdev_err(dev, "Could not attach to PHY\n");
 544		return PTR_ERR(phydev);
 545	}
 546
 547	phy_set_max_speed(phydev, SPEED_100);
 548
 549	aup->old_link = 0;
 550	aup->old_speed = 0;
 551	aup->old_duplex = -1;
 552
 553	phy_attached_info(phydev);
 554
 555	return 0;
 556}
 557
 
 558/*
 559 * Buffer allocation/deallocation routines. The buffer descriptor returned
 560 * has the virtual and dma address of a buffer suitable for
 561 * both, receive and transmit operations.
 562 */
 563static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup)
 564{
 565	struct db_dest *pDB;
 566	pDB = aup->pDBfree;
 567
 568	if (pDB)
 569		aup->pDBfree = pDB->pnext;
 570
 571	return pDB;
 572}
 573
 574void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB)
 575{
 576	struct db_dest *pDBfree = aup->pDBfree;
 577	if (pDBfree)
 578		pDBfree->pnext = pDB;
 579	aup->pDBfree = pDB;
 580}
 581
 582static void au1000_reset_mac_unlocked(struct net_device *dev)
 583{
 584	struct au1000_private *const aup = netdev_priv(dev);
 585	int i;
 586
 587	au1000_hard_stop(dev);
 588
 589	writel(MAC_EN_CLOCK_ENABLE, aup->enable);
 590	wmb(); /* drain writebuffer */
 591	mdelay(2);
 592	writel(0, aup->enable);
 593	wmb(); /* drain writebuffer */
 594	mdelay(2);
 595
 596	aup->tx_full = 0;
 597	for (i = 0; i < NUM_RX_DMA; i++) {
 598		/* reset control bits */
 599		aup->rx_dma_ring[i]->buff_stat &= ~0xf;
 600	}
 601	for (i = 0; i < NUM_TX_DMA; i++) {
 602		/* reset control bits */
 603		aup->tx_dma_ring[i]->buff_stat &= ~0xf;
 604	}
 605
 606	aup->mac_enabled = 0;
 607
 608}
 609
 610static void au1000_reset_mac(struct net_device *dev)
 611{
 612	struct au1000_private *const aup = netdev_priv(dev);
 613	unsigned long flags;
 614
 615	netif_dbg(aup, hw, dev, "reset mac, aup %x\n",
 616					(unsigned)aup);
 617
 618	spin_lock_irqsave(&aup->lock, flags);
 619
 620	au1000_reset_mac_unlocked(dev);
 621
 622	spin_unlock_irqrestore(&aup->lock, flags);
 623}
 624
 625/*
 626 * Setup the receive and transmit "rings".  These pointers are the addresses
 627 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
 628 * these are not descriptors sitting in memory.
 629 */
 630static void
 631au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base)
 632{
 633	int i;
 634
 635	for (i = 0; i < NUM_RX_DMA; i++) {
 636		aup->rx_dma_ring[i] = (struct rx_dma *)
 637			(tx_base + 0x100 + sizeof(struct rx_dma) * i);
 638	}
 639	for (i = 0; i < NUM_TX_DMA; i++) {
 640		aup->tx_dma_ring[i] = (struct tx_dma *)
 641			(tx_base + sizeof(struct tx_dma) * i);
 642	}
 643}
 644
 645/*
 646 * ethtool operations
 647 */
 
 648static void
 649au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
 650{
 651	struct au1000_private *aup = netdev_priv(dev);
 652
 653	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
 
 654	snprintf(info->bus_info, sizeof(info->bus_info), "%s %d", DRV_NAME,
 655		 aup->mac_id);
 656}
 657
 658static void au1000_set_msglevel(struct net_device *dev, u32 value)
 659{
 660	struct au1000_private *aup = netdev_priv(dev);
 661	aup->msg_enable = value;
 662}
 663
 664static u32 au1000_get_msglevel(struct net_device *dev)
 665{
 666	struct au1000_private *aup = netdev_priv(dev);
 667	return aup->msg_enable;
 668}
 669
 670static const struct ethtool_ops au1000_ethtool_ops = {
 671	.get_drvinfo = au1000_get_drvinfo,
 672	.get_link = ethtool_op_get_link,
 673	.get_msglevel = au1000_get_msglevel,
 674	.set_msglevel = au1000_set_msglevel,
 675	.get_link_ksettings = phy_ethtool_get_link_ksettings,
 676	.set_link_ksettings = phy_ethtool_set_link_ksettings,
 677};
 678
 
 679/*
 680 * Initialize the interface.
 681 *
 682 * When the device powers up, the clocks are disabled and the
 683 * mac is in reset state.  When the interface is closed, we
 684 * do the same -- reset the device and disable the clocks to
 685 * conserve power. Thus, whenever au1000_init() is called,
 686 * the device should already be in reset state.
 687 */
 688static int au1000_init(struct net_device *dev)
 689{
 690	struct au1000_private *aup = netdev_priv(dev);
 691	unsigned long flags;
 692	int i;
 693	u32 control;
 694
 695	netif_dbg(aup, hw, dev, "au1000_init\n");
 696
 697	/* bring the device out of reset */
 698	au1000_enable_mac(dev, 1);
 699
 700	spin_lock_irqsave(&aup->lock, flags);
 701
 702	writel(0, &aup->mac->control);
 703	aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
 704	aup->tx_tail = aup->tx_head;
 705	aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
 706
 707	writel(dev->dev_addr[5]<<8 | dev->dev_addr[4],
 708					&aup->mac->mac_addr_high);
 709	writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
 710		dev->dev_addr[1]<<8 | dev->dev_addr[0],
 711					&aup->mac->mac_addr_low);
 712
 713
 714	for (i = 0; i < NUM_RX_DMA; i++)
 715		aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
 716
 717	wmb(); /* drain writebuffer */
 718
 719	control = MAC_RX_ENABLE | MAC_TX_ENABLE;
 720#ifndef CONFIG_CPU_LITTLE_ENDIAN
 721	control |= MAC_BIG_ENDIAN;
 722#endif
 723	if (dev->phydev) {
 724		if (dev->phydev->link && (DUPLEX_FULL == dev->phydev->duplex))
 725			control |= MAC_FULL_DUPLEX;
 726		else
 727			control |= MAC_DISABLE_RX_OWN;
 728	} else { /* PHY-less op, assume full-duplex */
 729		control |= MAC_FULL_DUPLEX;
 730	}
 731
 732	writel(control, &aup->mac->control);
 733	writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */
 734	wmb(); /* drain writebuffer */
 735
 736	spin_unlock_irqrestore(&aup->lock, flags);
 737	return 0;
 738}
 739
 740static inline void au1000_update_rx_stats(struct net_device *dev, u32 status)
 741{
 742	struct net_device_stats *ps = &dev->stats;
 743
 744	ps->rx_packets++;
 745	if (status & RX_MCAST_FRAME)
 746		ps->multicast++;
 747
 748	if (status & RX_ERROR) {
 749		ps->rx_errors++;
 750		if (status & RX_MISSED_FRAME)
 751			ps->rx_missed_errors++;
 752		if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR))
 753			ps->rx_length_errors++;
 754		if (status & RX_CRC_ERROR)
 755			ps->rx_crc_errors++;
 756		if (status & RX_COLL)
 757			ps->collisions++;
 758	} else
 759		ps->rx_bytes += status & RX_FRAME_LEN_MASK;
 760
 761}
 762
 763/*
 764 * Au1000 receive routine.
 765 */
 766static int au1000_rx(struct net_device *dev)
 767{
 768	struct au1000_private *aup = netdev_priv(dev);
 769	struct sk_buff *skb;
 770	struct rx_dma *prxd;
 771	u32 buff_stat, status;
 772	struct db_dest *pDB;
 773	u32	frmlen;
 774
 775	netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head);
 776
 777	prxd = aup->rx_dma_ring[aup->rx_head];
 778	buff_stat = prxd->buff_stat;
 779	while (buff_stat & RX_T_DONE)  {
 780		status = prxd->status;
 781		pDB = aup->rx_db_inuse[aup->rx_head];
 782		au1000_update_rx_stats(dev, status);
 783		if (!(status & RX_ERROR))  {
 784
 785			/* good frame */
 786			frmlen = (status & RX_FRAME_LEN_MASK);
 787			frmlen -= 4; /* Remove FCS */
 788			skb = netdev_alloc_skb(dev, frmlen + 2);
 789			if (!skb) {
 790				dev->stats.rx_dropped++;
 791				continue;
 792			}
 793			skb_reserve(skb, 2);	/* 16 byte IP header align */
 794			skb_copy_to_linear_data(skb,
 795				(unsigned char *)pDB->vaddr, frmlen);
 796			skb_put(skb, frmlen);
 797			skb->protocol = eth_type_trans(skb, dev);
 798			netif_rx(skb);	/* pass the packet to upper layers */
 799		} else {
 800			if (au1000_debug > 4) {
 801				pr_err("rx_error(s):");
 802				if (status & RX_MISSED_FRAME)
 803					pr_cont(" miss");
 804				if (status & RX_WDOG_TIMER)
 805					pr_cont(" wdog");
 806				if (status & RX_RUNT)
 807					pr_cont(" runt");
 808				if (status & RX_OVERLEN)
 809					pr_cont(" overlen");
 810				if (status & RX_COLL)
 811					pr_cont(" coll");
 812				if (status & RX_MII_ERROR)
 813					pr_cont(" mii error");
 814				if (status & RX_CRC_ERROR)
 815					pr_cont(" crc error");
 816				if (status & RX_LEN_ERROR)
 817					pr_cont(" len error");
 818				if (status & RX_U_CNTRL_FRAME)
 819					pr_cont(" u control frame");
 820				pr_cont("\n");
 821			}
 822		}
 823		prxd->buff_stat = lower_32_bits(pDB->dma_addr) | RX_DMA_ENABLE;
 824		aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
 825		wmb(); /* drain writebuffer */
 826
 827		/* next descriptor */
 828		prxd = aup->rx_dma_ring[aup->rx_head];
 829		buff_stat = prxd->buff_stat;
 830	}
 831	return 0;
 832}
 833
 834static void au1000_update_tx_stats(struct net_device *dev, u32 status)
 835{
 836	struct net_device_stats *ps = &dev->stats;
 837
 838	if (status & TX_FRAME_ABORTED) {
 839		if (!dev->phydev || (DUPLEX_FULL == dev->phydev->duplex)) {
 840			if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
 841				/* any other tx errors are only valid
 842				 * in half duplex mode
 843				 */
 844				ps->tx_errors++;
 845				ps->tx_aborted_errors++;
 846			}
 847		} else {
 848			ps->tx_errors++;
 849			ps->tx_aborted_errors++;
 850			if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
 851				ps->tx_carrier_errors++;
 852		}
 853	}
 854}
 855
 856/*
 857 * Called from the interrupt service routine to acknowledge
 858 * the TX DONE bits.  This is a must if the irq is setup as
 859 * edge triggered.
 860 */
 861static void au1000_tx_ack(struct net_device *dev)
 862{
 863	struct au1000_private *aup = netdev_priv(dev);
 864	struct tx_dma *ptxd;
 865
 866	ptxd = aup->tx_dma_ring[aup->tx_tail];
 867
 868	while (ptxd->buff_stat & TX_T_DONE) {
 869		au1000_update_tx_stats(dev, ptxd->status);
 870		ptxd->buff_stat &= ~TX_T_DONE;
 871		ptxd->len = 0;
 872		wmb(); /* drain writebuffer */
 873
 874		aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
 875		ptxd = aup->tx_dma_ring[aup->tx_tail];
 876
 877		if (aup->tx_full) {
 878			aup->tx_full = 0;
 879			netif_wake_queue(dev);
 880		}
 881	}
 882}
 883
 884/*
 885 * Au1000 interrupt service routine.
 886 */
 887static irqreturn_t au1000_interrupt(int irq, void *dev_id)
 888{
 889	struct net_device *dev = dev_id;
 890
 891	/* Handle RX interrupts first to minimize chance of overrun */
 892
 893	au1000_rx(dev);
 894	au1000_tx_ack(dev);
 895	return IRQ_RETVAL(1);
 896}
 897
 898static int au1000_open(struct net_device *dev)
 899{
 900	int retval;
 901	struct au1000_private *aup = netdev_priv(dev);
 902
 903	netif_dbg(aup, drv, dev, "open: dev=%p\n", dev);
 904
 905	retval = request_irq(dev->irq, au1000_interrupt, 0,
 906					dev->name, dev);
 907	if (retval) {
 908		netdev_err(dev, "unable to get IRQ %d\n", dev->irq);
 909		return retval;
 910	}
 911
 912	retval = au1000_init(dev);
 913	if (retval) {
 914		netdev_err(dev, "error in au1000_init\n");
 915		free_irq(dev->irq, dev);
 916		return retval;
 917	}
 918
 919	if (dev->phydev)
 920		phy_start(dev->phydev);
 921
 922	netif_start_queue(dev);
 923
 924	netif_dbg(aup, drv, dev, "open: Initialization done.\n");
 925
 926	return 0;
 927}
 928
 929static int au1000_close(struct net_device *dev)
 930{
 931	unsigned long flags;
 932	struct au1000_private *const aup = netdev_priv(dev);
 933
 934	netif_dbg(aup, drv, dev, "close: dev=%p\n", dev);
 935
 936	if (dev->phydev)
 937		phy_stop(dev->phydev);
 938
 939	spin_lock_irqsave(&aup->lock, flags);
 940
 941	au1000_reset_mac_unlocked(dev);
 942
 943	/* stop the device */
 944	netif_stop_queue(dev);
 945
 946	/* disable the interrupt */
 947	free_irq(dev->irq, dev);
 948	spin_unlock_irqrestore(&aup->lock, flags);
 949
 950	return 0;
 951}
 952
 953/*
 954 * Au1000 transmit routine.
 955 */
 956static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev)
 957{
 958	struct au1000_private *aup = netdev_priv(dev);
 959	struct net_device_stats *ps = &dev->stats;
 960	struct tx_dma *ptxd;
 961	u32 buff_stat;
 962	struct db_dest *pDB;
 963	int i;
 964
 965	netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n",
 966				(unsigned)aup, skb->len,
 967				skb->data, aup->tx_head);
 968
 969	ptxd = aup->tx_dma_ring[aup->tx_head];
 970	buff_stat = ptxd->buff_stat;
 971	if (buff_stat & TX_DMA_ENABLE) {
 972		/* We've wrapped around and the transmitter is still busy */
 973		netif_stop_queue(dev);
 974		aup->tx_full = 1;
 975		return NETDEV_TX_BUSY;
 976	} else if (buff_stat & TX_T_DONE) {
 977		au1000_update_tx_stats(dev, ptxd->status);
 978		ptxd->len = 0;
 979	}
 980
 981	if (aup->tx_full) {
 982		aup->tx_full = 0;
 983		netif_wake_queue(dev);
 984	}
 985
 986	pDB = aup->tx_db_inuse[aup->tx_head];
 987	skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
 988	if (skb->len < ETH_ZLEN) {
 989		for (i = skb->len; i < ETH_ZLEN; i++)
 990			((char *)pDB->vaddr)[i] = 0;
 991
 992		ptxd->len = ETH_ZLEN;
 993	} else
 994		ptxd->len = skb->len;
 995
 996	ps->tx_packets++;
 997	ps->tx_bytes += ptxd->len;
 998
 999	ptxd->buff_stat = lower_32_bits(pDB->dma_addr) | TX_DMA_ENABLE;
1000	wmb(); /* drain writebuffer */
1001	dev_kfree_skb(skb);
1002	aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
1003	return NETDEV_TX_OK;
1004}
1005
1006/*
1007 * The Tx ring has been full longer than the watchdog timeout
1008 * value. The transmitter must be hung?
1009 */
1010static void au1000_tx_timeout(struct net_device *dev, unsigned int txqueue)
1011{
1012	netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev);
1013	au1000_reset_mac(dev);
1014	au1000_init(dev);
1015	netif_trans_update(dev); /* prevent tx timeout */
1016	netif_wake_queue(dev);
1017}
1018
1019static void au1000_multicast_list(struct net_device *dev)
1020{
1021	struct au1000_private *aup = netdev_priv(dev);
1022	u32 reg;
1023
1024	netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags);
1025	reg = readl(&aup->mac->control);
1026	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
1027		reg |= MAC_PROMISCUOUS;
1028	} else if ((dev->flags & IFF_ALLMULTI)  ||
1029			   netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) {
1030		reg |= MAC_PASS_ALL_MULTI;
1031		reg &= ~MAC_PROMISCUOUS;
1032		netdev_info(dev, "Pass all multicast\n");
1033	} else {
1034		struct netdev_hw_addr *ha;
1035		u32 mc_filter[2];	/* Multicast hash filter */
1036
1037		mc_filter[1] = mc_filter[0] = 0;
1038		netdev_for_each_mc_addr(ha, dev)
1039			set_bit(ether_crc(ETH_ALEN, ha->addr)>>26,
1040					(long *)mc_filter);
1041		writel(mc_filter[1], &aup->mac->multi_hash_high);
1042		writel(mc_filter[0], &aup->mac->multi_hash_low);
1043		reg &= ~MAC_PROMISCUOUS;
1044		reg |= MAC_HASH_MODE;
1045	}
1046	writel(reg, &aup->mac->control);
1047}
1048
 
 
 
 
 
 
 
 
 
 
 
1049static const struct net_device_ops au1000_netdev_ops = {
1050	.ndo_open		= au1000_open,
1051	.ndo_stop		= au1000_close,
1052	.ndo_start_xmit		= au1000_tx,
1053	.ndo_set_rx_mode	= au1000_multicast_list,
1054	.ndo_eth_ioctl		= phy_do_ioctl_running,
1055	.ndo_tx_timeout		= au1000_tx_timeout,
1056	.ndo_set_mac_address	= eth_mac_addr,
1057	.ndo_validate_addr	= eth_validate_addr,
1058};
1059
1060static int au1000_probe(struct platform_device *pdev)
1061{
1062	struct au1000_private *aup = NULL;
1063	struct au1000_eth_platform_data *pd;
1064	struct net_device *dev = NULL;
1065	struct db_dest *pDB, *pDBfree;
1066	int irq, i, err = 0;
1067	struct resource *base, *macen, *macdma;
1068
1069	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1070	if (!base) {
1071		dev_err(&pdev->dev, "failed to retrieve base register\n");
1072		err = -ENODEV;
1073		goto out;
1074	}
1075
1076	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1077	if (!macen) {
1078		dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n");
1079		err = -ENODEV;
1080		goto out;
1081	}
1082
1083	irq = platform_get_irq(pdev, 0);
1084	if (irq < 0) {
1085		err = -ENODEV;
1086		goto out;
1087	}
1088
1089	macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1090	if (!macdma) {
1091		dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n");
1092		err = -ENODEV;
1093		goto out;
1094	}
1095
1096	if (!request_mem_region(base->start, resource_size(base),
1097							pdev->name)) {
1098		dev_err(&pdev->dev, "failed to request memory region for base registers\n");
1099		err = -ENXIO;
1100		goto out;
1101	}
1102
1103	if (!request_mem_region(macen->start, resource_size(macen),
1104							pdev->name)) {
1105		dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n");
1106		err = -ENXIO;
1107		goto err_request;
1108	}
1109
1110	if (!request_mem_region(macdma->start, resource_size(macdma),
1111							pdev->name)) {
1112		dev_err(&pdev->dev, "failed to request MACDMA memory region\n");
1113		err = -ENXIO;
1114		goto err_macdma;
1115	}
1116
1117	dev = alloc_etherdev(sizeof(struct au1000_private));
1118	if (!dev) {
1119		err = -ENOMEM;
1120		goto err_alloc;
1121	}
1122
1123	SET_NETDEV_DEV(dev, &pdev->dev);
1124	platform_set_drvdata(pdev, dev);
1125	aup = netdev_priv(dev);
1126
1127	spin_lock_init(&aup->lock);
1128	aup->msg_enable = (au1000_debug < 4 ?
1129				AU1000_DEF_MSG_ENABLE : au1000_debug);
1130
1131	/* Allocate the data buffers
1132	 * Snooping works fine with eth on all au1xxx
1133	 */
1134	aup->vaddr = dma_alloc_coherent(&pdev->dev, MAX_BUF_SIZE *
1135					(NUM_TX_BUFFS + NUM_RX_BUFFS),
1136					&aup->dma_addr, 0);
 
1137	if (!aup->vaddr) {
1138		dev_err(&pdev->dev, "failed to allocate data buffers\n");
1139		err = -ENOMEM;
1140		goto err_vaddr;
1141	}
1142
1143	/* aup->mac is the base address of the MAC's registers */
1144	aup->mac = (struct mac_reg *)
1145			ioremap(base->start, resource_size(base));
1146	if (!aup->mac) {
1147		dev_err(&pdev->dev, "failed to ioremap MAC registers\n");
1148		err = -ENXIO;
1149		goto err_remap1;
1150	}
1151
1152	/* Setup some variables for quick register address access */
1153	aup->enable = (u32 *)ioremap(macen->start,
1154						resource_size(macen));
1155	if (!aup->enable) {
1156		dev_err(&pdev->dev, "failed to ioremap MAC enable register\n");
1157		err = -ENXIO;
1158		goto err_remap2;
1159	}
1160	aup->mac_id = pdev->id;
1161
1162	aup->macdma = ioremap(macdma->start, resource_size(macdma));
1163	if (!aup->macdma) {
1164		dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n");
1165		err = -ENXIO;
1166		goto err_remap3;
1167	}
1168
1169	au1000_setup_hw_rings(aup, aup->macdma);
1170
1171	writel(0, aup->enable);
1172	aup->mac_enabled = 0;
1173
1174	pd = dev_get_platdata(&pdev->dev);
1175	if (!pd) {
1176		dev_info(&pdev->dev, "no platform_data passed,"
1177					" PHY search on MAC0\n");
1178		aup->phy1_search_mac0 = 1;
1179	} else {
1180		if (is_valid_ether_addr(pd->mac)) {
1181			eth_hw_addr_set(dev, pd->mac);
1182		} else {
1183			/* Set a random MAC since no valid provided by platform_data. */
1184			eth_hw_addr_random(dev);
1185		}
1186
1187		aup->phy_static_config = pd->phy_static_config;
1188		aup->phy_search_highest_addr = pd->phy_search_highest_addr;
1189		aup->phy1_search_mac0 = pd->phy1_search_mac0;
1190		aup->phy_addr = pd->phy_addr;
1191		aup->phy_busid = pd->phy_busid;
1192		aup->phy_irq = pd->phy_irq;
1193	}
1194
1195	if (aup->phy_busid > 0) {
1196		dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n");
1197		err = -ENODEV;
1198		goto err_mdiobus_alloc;
1199	}
1200
1201	aup->mii_bus = mdiobus_alloc();
1202	if (!aup->mii_bus) {
1203		dev_err(&pdev->dev, "failed to allocate mdiobus structure\n");
1204		err = -ENOMEM;
1205		goto err_mdiobus_alloc;
1206	}
1207
1208	aup->mii_bus->priv = dev;
1209	aup->mii_bus->read = au1000_mdiobus_read;
1210	aup->mii_bus->write = au1000_mdiobus_write;
1211	aup->mii_bus->reset = au1000_mdiobus_reset;
1212	aup->mii_bus->name = "au1000_eth_mii";
1213	snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1214		pdev->name, aup->mac_id);
1215
1216	/* if known, set corresponding PHY IRQs */
1217	if (aup->phy_static_config)
1218		if (aup->phy_irq && aup->phy_busid == aup->mac_id)
1219			aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq;
1220
1221	err = mdiobus_register(aup->mii_bus);
1222	if (err) {
1223		dev_err(&pdev->dev, "failed to register MDIO bus\n");
1224		goto err_mdiobus_reg;
1225	}
1226
1227	err = au1000_mii_probe(dev);
1228	if (err != 0)
1229		goto err_out;
1230
1231	pDBfree = NULL;
1232	/* setup the data buffer descriptors and attach a buffer to each one */
1233	pDB = aup->db;
1234	for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
1235		pDB->pnext = pDBfree;
1236		pDBfree = pDB;
1237		pDB->vaddr = aup->vaddr + MAX_BUF_SIZE * i;
1238		pDB->dma_addr = aup->dma_addr + MAX_BUF_SIZE * i;
1239		pDB++;
1240	}
1241	aup->pDBfree = pDBfree;
1242
1243	err = -ENODEV;
1244	for (i = 0; i < NUM_RX_DMA; i++) {
1245		pDB = au1000_GetFreeDB(aup);
1246		if (!pDB)
1247			goto err_out;
1248
1249		aup->rx_dma_ring[i]->buff_stat = lower_32_bits(pDB->dma_addr);
1250		aup->rx_db_inuse[i] = pDB;
1251	}
1252
 
1253	for (i = 0; i < NUM_TX_DMA; i++) {
1254		pDB = au1000_GetFreeDB(aup);
1255		if (!pDB)
1256			goto err_out;
1257
1258		aup->tx_dma_ring[i]->buff_stat = lower_32_bits(pDB->dma_addr);
1259		aup->tx_dma_ring[i]->len = 0;
1260		aup->tx_db_inuse[i] = pDB;
1261	}
1262
1263	dev->base_addr = base->start;
1264	dev->irq = irq;
1265	dev->netdev_ops = &au1000_netdev_ops;
1266	dev->ethtool_ops = &au1000_ethtool_ops;
1267	dev->watchdog_timeo = ETH_TX_TIMEOUT;
1268
1269	/*
1270	 * The boot code uses the ethernet controller, so reset it to start
1271	 * fresh.  au1000_init() expects that the device is in reset state.
1272	 */
1273	au1000_reset_mac(dev);
1274
1275	err = register_netdev(dev);
1276	if (err) {
1277		netdev_err(dev, "Cannot register net device, aborting.\n");
1278		goto err_out;
1279	}
1280
1281	netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1282			(unsigned long)base->start, irq);
1283
 
 
1284	return 0;
1285
1286err_out:
1287	if (aup->mii_bus)
1288		mdiobus_unregister(aup->mii_bus);
1289
1290	/* here we should have a valid dev plus aup-> register addresses
1291	 * so we can reset the mac properly.
1292	 */
1293	au1000_reset_mac(dev);
1294
1295	for (i = 0; i < NUM_RX_DMA; i++) {
1296		if (aup->rx_db_inuse[i])
1297			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1298	}
1299	for (i = 0; i < NUM_TX_DMA; i++) {
1300		if (aup->tx_db_inuse[i])
1301			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1302	}
1303err_mdiobus_reg:
1304	mdiobus_free(aup->mii_bus);
1305err_mdiobus_alloc:
1306	iounmap(aup->macdma);
1307err_remap3:
1308	iounmap(aup->enable);
1309err_remap2:
1310	iounmap(aup->mac);
1311err_remap1:
1312	dma_free_coherent(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1313			  aup->vaddr, aup->dma_addr);
 
1314err_vaddr:
1315	free_netdev(dev);
1316err_alloc:
1317	release_mem_region(macdma->start, resource_size(macdma));
1318err_macdma:
1319	release_mem_region(macen->start, resource_size(macen));
1320err_request:
1321	release_mem_region(base->start, resource_size(base));
1322out:
1323	return err;
1324}
1325
1326static void au1000_remove(struct platform_device *pdev)
1327{
1328	struct net_device *dev = platform_get_drvdata(pdev);
1329	struct au1000_private *aup = netdev_priv(dev);
1330	int i;
1331	struct resource *base, *macen;
1332
1333	unregister_netdev(dev);
1334	mdiobus_unregister(aup->mii_bus);
1335	mdiobus_free(aup->mii_bus);
1336
1337	for (i = 0; i < NUM_RX_DMA; i++)
1338		if (aup->rx_db_inuse[i])
1339			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1340
1341	for (i = 0; i < NUM_TX_DMA; i++)
1342		if (aup->tx_db_inuse[i])
1343			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1344
1345	dma_free_coherent(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1346			  aup->vaddr, aup->dma_addr);
 
1347
1348	iounmap(aup->macdma);
1349	iounmap(aup->mac);
1350	iounmap(aup->enable);
1351
1352	base = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1353	release_mem_region(base->start, resource_size(base));
1354
1355	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1356	release_mem_region(base->start, resource_size(base));
1357
1358	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1359	release_mem_region(macen->start, resource_size(macen));
1360
1361	free_netdev(dev);
 
 
1362}
1363
1364static struct platform_driver au1000_eth_driver = {
1365	.probe  = au1000_probe,
1366	.remove_new = au1000_remove,
1367	.driver = {
1368		.name   = "au1000-eth",
1369	},
1370};
1371
1372module_platform_driver(au1000_eth_driver);
1373
1374MODULE_ALIAS("platform:au1000-eth");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *
   4 * Alchemy Au1x00 ethernet driver
   5 *
   6 * Copyright 2001-2003, 2006 MontaVista Software Inc.
   7 * Copyright 2002 TimeSys Corp.
   8 * Added ethtool/mii-tool support,
   9 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
  10 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
  11 * or riemer@riemer-nt.de: fixed the link beat detection with
  12 * ioctls (SIOCGMIIPHY)
  13 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
  14 *  converted to use linux-2.6.x's PHY framework
  15 *
  16 * Author: MontaVista Software, Inc.
  17 *		ppopov@mvista.com or source@mvista.com
  18 */
  19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  20
  21#include <linux/capability.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/module.h>
  24#include <linux/kernel.h>
  25#include <linux/string.h>
  26#include <linux/timer.h>
  27#include <linux/errno.h>
  28#include <linux/in.h>
  29#include <linux/ioport.h>
  30#include <linux/bitops.h>
  31#include <linux/slab.h>
  32#include <linux/interrupt.h>
  33#include <linux/netdevice.h>
  34#include <linux/etherdevice.h>
  35#include <linux/ethtool.h>
  36#include <linux/mii.h>
  37#include <linux/skbuff.h>
  38#include <linux/delay.h>
  39#include <linux/crc32.h>
  40#include <linux/phy.h>
  41#include <linux/platform_device.h>
  42#include <linux/cpu.h>
  43#include <linux/io.h>
  44
  45#include <asm/mipsregs.h>
  46#include <asm/irq.h>
  47#include <asm/processor.h>
  48
  49#include <au1000.h>
  50#include <au1xxx_eth.h>
  51#include <prom.h>
  52
  53#include "au1000_eth.h"
  54
  55#ifdef AU1000_ETH_DEBUG
  56static int au1000_debug = 5;
  57#else
  58static int au1000_debug = 3;
  59#endif
  60
  61#define AU1000_DEF_MSG_ENABLE	(NETIF_MSG_DRV	| \
  62				NETIF_MSG_PROBE	| \
  63				NETIF_MSG_LINK)
  64
  65#define DRV_NAME	"au1000_eth"
  66#define DRV_VERSION	"1.7"
  67#define DRV_AUTHOR	"Pete Popov <ppopov@embeddedalley.com>"
  68#define DRV_DESC	"Au1xxx on-chip Ethernet driver"
  69
  70MODULE_AUTHOR(DRV_AUTHOR);
  71MODULE_DESCRIPTION(DRV_DESC);
  72MODULE_LICENSE("GPL");
  73MODULE_VERSION(DRV_VERSION);
  74
  75/* AU1000 MAC registers and bits */
  76#define MAC_CONTROL		0x0
  77#  define MAC_RX_ENABLE		(1 << 2)
  78#  define MAC_TX_ENABLE		(1 << 3)
  79#  define MAC_DEF_CHECK		(1 << 5)
  80#  define MAC_SET_BL(X)		(((X) & 0x3) << 6)
  81#  define MAC_AUTO_PAD		(1 << 8)
  82#  define MAC_DISABLE_RETRY	(1 << 10)
  83#  define MAC_DISABLE_BCAST	(1 << 11)
  84#  define MAC_LATE_COL		(1 << 12)
  85#  define MAC_HASH_MODE		(1 << 13)
  86#  define MAC_HASH_ONLY		(1 << 15)
  87#  define MAC_PASS_ALL		(1 << 16)
  88#  define MAC_INVERSE_FILTER	(1 << 17)
  89#  define MAC_PROMISCUOUS	(1 << 18)
  90#  define MAC_PASS_ALL_MULTI	(1 << 19)
  91#  define MAC_FULL_DUPLEX	(1 << 20)
  92#  define MAC_NORMAL_MODE	0
  93#  define MAC_INT_LOOPBACK	(1 << 21)
  94#  define MAC_EXT_LOOPBACK	(1 << 22)
  95#  define MAC_DISABLE_RX_OWN	(1 << 23)
  96#  define MAC_BIG_ENDIAN	(1 << 30)
  97#  define MAC_RX_ALL		(1 << 31)
  98#define MAC_ADDRESS_HIGH	0x4
  99#define MAC_ADDRESS_LOW		0x8
 100#define MAC_MCAST_HIGH		0xC
 101#define MAC_MCAST_LOW		0x10
 102#define MAC_MII_CNTRL		0x14
 103#  define MAC_MII_BUSY		(1 << 0)
 104#  define MAC_MII_READ		0
 105#  define MAC_MII_WRITE		(1 << 1)
 106#  define MAC_SET_MII_SELECT_REG(X) (((X) & 0x1f) << 6)
 107#  define MAC_SET_MII_SELECT_PHY(X) (((X) & 0x1f) << 11)
 108#define MAC_MII_DATA		0x18
 109#define MAC_FLOW_CNTRL		0x1C
 110#  define MAC_FLOW_CNTRL_BUSY	(1 << 0)
 111#  define MAC_FLOW_CNTRL_ENABLE (1 << 1)
 112#  define MAC_PASS_CONTROL	(1 << 2)
 113#  define MAC_SET_PAUSE(X)	(((X) & 0xffff) << 16)
 114#define MAC_VLAN1_TAG		0x20
 115#define MAC_VLAN2_TAG		0x24
 116
 117/* Ethernet Controller Enable */
 118#  define MAC_EN_CLOCK_ENABLE	(1 << 0)
 119#  define MAC_EN_RESET0		(1 << 1)
 120#  define MAC_EN_TOSS		(0 << 2)
 121#  define MAC_EN_CACHEABLE	(1 << 3)
 122#  define MAC_EN_RESET1		(1 << 4)
 123#  define MAC_EN_RESET2		(1 << 5)
 124#  define MAC_DMA_RESET		(1 << 6)
 125
 126/* Ethernet Controller DMA Channels */
 127/* offsets from MAC_TX_RING_ADDR address */
 128#define MAC_TX_BUFF0_STATUS	0x0
 129#  define TX_FRAME_ABORTED	(1 << 0)
 130#  define TX_JAB_TIMEOUT	(1 << 1)
 131#  define TX_NO_CARRIER		(1 << 2)
 132#  define TX_LOSS_CARRIER	(1 << 3)
 133#  define TX_EXC_DEF		(1 << 4)
 134#  define TX_LATE_COLL_ABORT	(1 << 5)
 135#  define TX_EXC_COLL		(1 << 6)
 136#  define TX_UNDERRUN		(1 << 7)
 137#  define TX_DEFERRED		(1 << 8)
 138#  define TX_LATE_COLL		(1 << 9)
 139#  define TX_COLL_CNT_MASK	(0xF << 10)
 140#  define TX_PKT_RETRY		(1 << 31)
 141#define MAC_TX_BUFF0_ADDR	0x4
 142#  define TX_DMA_ENABLE		(1 << 0)
 143#  define TX_T_DONE		(1 << 1)
 144#  define TX_GET_DMA_BUFFER(X)	(((X) >> 2) & 0x3)
 145#define MAC_TX_BUFF0_LEN	0x8
 146#define MAC_TX_BUFF1_STATUS	0x10
 147#define MAC_TX_BUFF1_ADDR	0x14
 148#define MAC_TX_BUFF1_LEN	0x18
 149#define MAC_TX_BUFF2_STATUS	0x20
 150#define MAC_TX_BUFF2_ADDR	0x24
 151#define MAC_TX_BUFF2_LEN	0x28
 152#define MAC_TX_BUFF3_STATUS	0x30
 153#define MAC_TX_BUFF3_ADDR	0x34
 154#define MAC_TX_BUFF3_LEN	0x38
 155
 156/* offsets from MAC_RX_RING_ADDR */
 157#define MAC_RX_BUFF0_STATUS	0x0
 158#  define RX_FRAME_LEN_MASK	0x3fff
 159#  define RX_WDOG_TIMER		(1 << 14)
 160#  define RX_RUNT		(1 << 15)
 161#  define RX_OVERLEN		(1 << 16)
 162#  define RX_COLL		(1 << 17)
 163#  define RX_ETHER		(1 << 18)
 164#  define RX_MII_ERROR		(1 << 19)
 165#  define RX_DRIBBLING		(1 << 20)
 166#  define RX_CRC_ERROR		(1 << 21)
 167#  define RX_VLAN1		(1 << 22)
 168#  define RX_VLAN2		(1 << 23)
 169#  define RX_LEN_ERROR		(1 << 24)
 170#  define RX_CNTRL_FRAME	(1 << 25)
 171#  define RX_U_CNTRL_FRAME	(1 << 26)
 172#  define RX_MCAST_FRAME	(1 << 27)
 173#  define RX_BCAST_FRAME	(1 << 28)
 174#  define RX_FILTER_FAIL	(1 << 29)
 175#  define RX_PACKET_FILTER	(1 << 30)
 176#  define RX_MISSED_FRAME	(1 << 31)
 177
 178#  define RX_ERROR (RX_WDOG_TIMER | RX_RUNT | RX_OVERLEN |  \
 179		    RX_COLL | RX_MII_ERROR | RX_CRC_ERROR | \
 180		    RX_LEN_ERROR | RX_U_CNTRL_FRAME | RX_MISSED_FRAME)
 181#define MAC_RX_BUFF0_ADDR	0x4
 182#  define RX_DMA_ENABLE		(1 << 0)
 183#  define RX_T_DONE		(1 << 1)
 184#  define RX_GET_DMA_BUFFER(X)	(((X) >> 2) & 0x3)
 185#  define RX_SET_BUFF_ADDR(X)	((X) & 0xffffffc0)
 186#define MAC_RX_BUFF1_STATUS	0x10
 187#define MAC_RX_BUFF1_ADDR	0x14
 188#define MAC_RX_BUFF2_STATUS	0x20
 189#define MAC_RX_BUFF2_ADDR	0x24
 190#define MAC_RX_BUFF3_STATUS	0x30
 191#define MAC_RX_BUFF3_ADDR	0x34
 192
 193/*
 194 * Theory of operation
 195 *
 196 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
 197 * There are four receive and four transmit descriptors.  These
 198 * descriptors are not in memory; rather, they are just a set of
 199 * hardware registers.
 200 *
 201 * Since the Au1000 has a coherent data cache, the receive and
 202 * transmit buffers are allocated from the KSEG0 segment. The
 203 * hardware registers, however, are still mapped at KSEG1 to
 204 * make sure there's no out-of-order writes, and that all writes
 205 * complete immediately.
 206 */
 207
 208/*
 209 * board-specific configurations
 210 *
 211 * PHY detection algorithm
 212 *
 213 * If phy_static_config is undefined, the PHY setup is
 214 * autodetected:
 215 *
 216 * mii_probe() first searches the current MAC's MII bus for a PHY,
 217 * selecting the first (or last, if phy_search_highest_addr is
 218 * defined) PHY address not already claimed by another netdev.
 219 *
 220 * If nothing was found that way when searching for the 2nd ethernet
 221 * controller's PHY and phy1_search_mac0 is defined, then
 222 * the first MII bus is searched as well for an unclaimed PHY; this is
 223 * needed in case of a dual-PHY accessible only through the MAC0's MII
 224 * bus.
 225 *
 226 * Finally, if no PHY is found, then the corresponding ethernet
 227 * controller is not registered to the network subsystem.
 228 */
 229
 230/* autodetection defaults: phy1_search_mac0 */
 231
 232/* static PHY setup
 233 *
 234 * most boards PHY setup should be detectable properly with the
 235 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
 236 * you have a switch attached, or want to use the PHY's interrupt
 237 * notification capabilities) you can provide a static PHY
 238 * configuration here
 239 *
 240 * IRQs may only be set, if a PHY address was configured
 241 * If a PHY address is given, also a bus id is required to be set
 242 *
 243 * ps: make sure the used irqs are configured properly in the board
 244 * specific irq-map
 245 */
 246
 247static void au1000_enable_mac(struct net_device *dev, int force_reset)
 248{
 249	unsigned long flags;
 250	struct au1000_private *aup = netdev_priv(dev);
 251
 252	spin_lock_irqsave(&aup->lock, flags);
 253
 254	if (force_reset || (!aup->mac_enabled)) {
 255		writel(MAC_EN_CLOCK_ENABLE, aup->enable);
 256		wmb(); /* drain writebuffer */
 257		mdelay(2);
 258		writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
 259				| MAC_EN_CLOCK_ENABLE), aup->enable);
 260		wmb(); /* drain writebuffer */
 261		mdelay(2);
 262
 263		aup->mac_enabled = 1;
 264	}
 265
 266	spin_unlock_irqrestore(&aup->lock, flags);
 267}
 268
 269/*
 270 * MII operations
 271 */
 272static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
 273{
 274	struct au1000_private *aup = netdev_priv(dev);
 275	u32 *const mii_control_reg = &aup->mac->mii_control;
 276	u32 *const mii_data_reg = &aup->mac->mii_data;
 277	u32 timedout = 20;
 278	u32 mii_control;
 279
 280	while (readl(mii_control_reg) & MAC_MII_BUSY) {
 281		mdelay(1);
 282		if (--timedout == 0) {
 283			netdev_err(dev, "read_MII busy timeout!!\n");
 284			return -1;
 285		}
 286	}
 287
 288	mii_control = MAC_SET_MII_SELECT_REG(reg) |
 289		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
 290
 291	writel(mii_control, mii_control_reg);
 292
 293	timedout = 20;
 294	while (readl(mii_control_reg) & MAC_MII_BUSY) {
 295		mdelay(1);
 296		if (--timedout == 0) {
 297			netdev_err(dev, "mdio_read busy timeout!!\n");
 298			return -1;
 299		}
 300	}
 301	return readl(mii_data_reg);
 302}
 303
 304static void au1000_mdio_write(struct net_device *dev, int phy_addr,
 305			      int reg, u16 value)
 306{
 307	struct au1000_private *aup = netdev_priv(dev);
 308	u32 *const mii_control_reg = &aup->mac->mii_control;
 309	u32 *const mii_data_reg = &aup->mac->mii_data;
 310	u32 timedout = 20;
 311	u32 mii_control;
 312
 313	while (readl(mii_control_reg) & MAC_MII_BUSY) {
 314		mdelay(1);
 315		if (--timedout == 0) {
 316			netdev_err(dev, "mdio_write busy timeout!!\n");
 317			return;
 318		}
 319	}
 320
 321	mii_control = MAC_SET_MII_SELECT_REG(reg) |
 322		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
 323
 324	writel(value, mii_data_reg);
 325	writel(mii_control, mii_control_reg);
 326}
 327
 328static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
 329{
 330	struct net_device *const dev = bus->priv;
 331
 332	/* make sure the MAC associated with this
 333	 * mii_bus is enabled
 334	 */
 335	au1000_enable_mac(dev, 0);
 336
 337	return au1000_mdio_read(dev, phy_addr, regnum);
 338}
 339
 340static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
 341				u16 value)
 342{
 343	struct net_device *const dev = bus->priv;
 344
 345	/* make sure the MAC associated with this
 346	 * mii_bus is enabled
 347	 */
 348	au1000_enable_mac(dev, 0);
 349
 350	au1000_mdio_write(dev, phy_addr, regnum, value);
 351	return 0;
 352}
 353
 354static int au1000_mdiobus_reset(struct mii_bus *bus)
 355{
 356	struct net_device *const dev = bus->priv;
 357
 358	/* make sure the MAC associated with this
 359	 * mii_bus is enabled
 360	 */
 361	au1000_enable_mac(dev, 0);
 362
 363	return 0;
 364}
 365
 366static void au1000_hard_stop(struct net_device *dev)
 367{
 368	struct au1000_private *aup = netdev_priv(dev);
 369	u32 reg;
 370
 371	netif_dbg(aup, drv, dev, "hard stop\n");
 372
 373	reg = readl(&aup->mac->control);
 374	reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
 375	writel(reg, &aup->mac->control);
 376	wmb(); /* drain writebuffer */
 377	mdelay(10);
 378}
 379
 380static void au1000_enable_rx_tx(struct net_device *dev)
 381{
 382	struct au1000_private *aup = netdev_priv(dev);
 383	u32 reg;
 384
 385	netif_dbg(aup, hw, dev, "enable_rx_tx\n");
 386
 387	reg = readl(&aup->mac->control);
 388	reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
 389	writel(reg, &aup->mac->control);
 390	wmb(); /* drain writebuffer */
 391	mdelay(10);
 392}
 393
 394static void
 395au1000_adjust_link(struct net_device *dev)
 396{
 397	struct au1000_private *aup = netdev_priv(dev);
 398	struct phy_device *phydev = dev->phydev;
 399	unsigned long flags;
 400	u32 reg;
 401
 402	int status_change = 0;
 403
 404	BUG_ON(!phydev);
 405
 406	spin_lock_irqsave(&aup->lock, flags);
 407
 408	if (phydev->link && (aup->old_speed != phydev->speed)) {
 409		/* speed changed */
 410
 411		switch (phydev->speed) {
 412		case SPEED_10:
 413		case SPEED_100:
 414			break;
 415		default:
 416			netdev_warn(dev, "Speed (%d) is not 10/100 ???\n",
 417							phydev->speed);
 418			break;
 419		}
 420
 421		aup->old_speed = phydev->speed;
 422
 423		status_change = 1;
 424	}
 425
 426	if (phydev->link && (aup->old_duplex != phydev->duplex)) {
 427		/* duplex mode changed */
 428
 429		/* switching duplex mode requires to disable rx and tx! */
 430		au1000_hard_stop(dev);
 431
 432		reg = readl(&aup->mac->control);
 433		if (DUPLEX_FULL == phydev->duplex) {
 434			reg |= MAC_FULL_DUPLEX;
 435			reg &= ~MAC_DISABLE_RX_OWN;
 436		} else {
 437			reg &= ~MAC_FULL_DUPLEX;
 438			reg |= MAC_DISABLE_RX_OWN;
 439		}
 440		writel(reg, &aup->mac->control);
 441		wmb(); /* drain writebuffer */
 442		mdelay(1);
 443
 444		au1000_enable_rx_tx(dev);
 445		aup->old_duplex = phydev->duplex;
 446
 447		status_change = 1;
 448	}
 449
 450	if (phydev->link != aup->old_link) {
 451		/* link state changed */
 452
 453		if (!phydev->link) {
 454			/* link went down */
 455			aup->old_speed = 0;
 456			aup->old_duplex = -1;
 457		}
 458
 459		aup->old_link = phydev->link;
 460		status_change = 1;
 461	}
 462
 463	spin_unlock_irqrestore(&aup->lock, flags);
 464
 465	if (status_change) {
 466		if (phydev->link)
 467			netdev_info(dev, "link up (%d/%s)\n",
 468			       phydev->speed,
 469			       DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
 470		else
 471			netdev_info(dev, "link down\n");
 472	}
 473}
 474
 475static int au1000_mii_probe(struct net_device *dev)
 476{
 477	struct au1000_private *const aup = netdev_priv(dev);
 478	struct phy_device *phydev = NULL;
 479	int phy_addr;
 480
 481	if (aup->phy_static_config) {
 482		BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
 483
 484		if (aup->phy_addr)
 485			phydev = mdiobus_get_phy(aup->mii_bus, aup->phy_addr);
 486		else
 487			netdev_info(dev, "using PHY-less setup\n");
 488		return 0;
 489	}
 490
 491	/* find the first (lowest address) PHY
 492	 * on the current MAC's MII bus
 493	 */
 494	for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
 495		if (mdiobus_get_phy(aup->mii_bus, phy_addr)) {
 496			phydev = mdiobus_get_phy(aup->mii_bus, phy_addr);
 497			if (!aup->phy_search_highest_addr)
 498				/* break out with first one found */
 499				break;
 500		}
 501
 502	if (aup->phy1_search_mac0) {
 503		/* try harder to find a PHY */
 504		if (!phydev && (aup->mac_id == 1)) {
 505			/* no PHY found, maybe we have a dual PHY? */
 506			dev_info(&dev->dev, ": no PHY found on MAC1, "
 507				"let's see if it's attached to MAC0...\n");
 508
 509			/* find the first (lowest address) non-attached
 510			 * PHY on the MAC0 MII bus
 511			 */
 512			for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
 513				struct phy_device *const tmp_phydev =
 514					mdiobus_get_phy(aup->mii_bus,
 515							phy_addr);
 516
 517				if (aup->mac_id == 1)
 518					break;
 519
 520				/* no PHY here... */
 521				if (!tmp_phydev)
 522					continue;
 523
 524				/* already claimed by MAC0 */
 525				if (tmp_phydev->attached_dev)
 526					continue;
 527
 528				phydev = tmp_phydev;
 529				break; /* found it */
 530			}
 531		}
 532	}
 533
 534	if (!phydev) {
 535		netdev_err(dev, "no PHY found\n");
 536		return -1;
 537	}
 538
 539	/* now we are supposed to have a proper phydev, to attach to... */
 540	BUG_ON(phydev->attached_dev);
 541
 542	phydev = phy_connect(dev, phydev_name(phydev),
 543			     &au1000_adjust_link, PHY_INTERFACE_MODE_MII);
 544
 545	if (IS_ERR(phydev)) {
 546		netdev_err(dev, "Could not attach to PHY\n");
 547		return PTR_ERR(phydev);
 548	}
 549
 550	phy_set_max_speed(phydev, SPEED_100);
 551
 552	aup->old_link = 0;
 553	aup->old_speed = 0;
 554	aup->old_duplex = -1;
 555
 556	phy_attached_info(phydev);
 557
 558	return 0;
 559}
 560
 561
 562/*
 563 * Buffer allocation/deallocation routines. The buffer descriptor returned
 564 * has the virtual and dma address of a buffer suitable for
 565 * both, receive and transmit operations.
 566 */
 567static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup)
 568{
 569	struct db_dest *pDB;
 570	pDB = aup->pDBfree;
 571
 572	if (pDB)
 573		aup->pDBfree = pDB->pnext;
 574
 575	return pDB;
 576}
 577
 578void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB)
 579{
 580	struct db_dest *pDBfree = aup->pDBfree;
 581	if (pDBfree)
 582		pDBfree->pnext = pDB;
 583	aup->pDBfree = pDB;
 584}
 585
 586static void au1000_reset_mac_unlocked(struct net_device *dev)
 587{
 588	struct au1000_private *const aup = netdev_priv(dev);
 589	int i;
 590
 591	au1000_hard_stop(dev);
 592
 593	writel(MAC_EN_CLOCK_ENABLE, aup->enable);
 594	wmb(); /* drain writebuffer */
 595	mdelay(2);
 596	writel(0, aup->enable);
 597	wmb(); /* drain writebuffer */
 598	mdelay(2);
 599
 600	aup->tx_full = 0;
 601	for (i = 0; i < NUM_RX_DMA; i++) {
 602		/* reset control bits */
 603		aup->rx_dma_ring[i]->buff_stat &= ~0xf;
 604	}
 605	for (i = 0; i < NUM_TX_DMA; i++) {
 606		/* reset control bits */
 607		aup->tx_dma_ring[i]->buff_stat &= ~0xf;
 608	}
 609
 610	aup->mac_enabled = 0;
 611
 612}
 613
 614static void au1000_reset_mac(struct net_device *dev)
 615{
 616	struct au1000_private *const aup = netdev_priv(dev);
 617	unsigned long flags;
 618
 619	netif_dbg(aup, hw, dev, "reset mac, aup %x\n",
 620					(unsigned)aup);
 621
 622	spin_lock_irqsave(&aup->lock, flags);
 623
 624	au1000_reset_mac_unlocked(dev);
 625
 626	spin_unlock_irqrestore(&aup->lock, flags);
 627}
 628
 629/*
 630 * Setup the receive and transmit "rings".  These pointers are the addresses
 631 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
 632 * these are not descriptors sitting in memory.
 633 */
 634static void
 635au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base)
 636{
 637	int i;
 638
 639	for (i = 0; i < NUM_RX_DMA; i++) {
 640		aup->rx_dma_ring[i] = (struct rx_dma *)
 641			(tx_base + 0x100 + sizeof(struct rx_dma) * i);
 642	}
 643	for (i = 0; i < NUM_TX_DMA; i++) {
 644		aup->tx_dma_ring[i] = (struct tx_dma *)
 645			(tx_base + sizeof(struct tx_dma) * i);
 646	}
 647}
 648
 649/*
 650 * ethtool operations
 651 */
 652
 653static void
 654au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
 655{
 656	struct au1000_private *aup = netdev_priv(dev);
 657
 658	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
 659	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
 660	snprintf(info->bus_info, sizeof(info->bus_info), "%s %d", DRV_NAME,
 661		 aup->mac_id);
 662}
 663
 664static void au1000_set_msglevel(struct net_device *dev, u32 value)
 665{
 666	struct au1000_private *aup = netdev_priv(dev);
 667	aup->msg_enable = value;
 668}
 669
 670static u32 au1000_get_msglevel(struct net_device *dev)
 671{
 672	struct au1000_private *aup = netdev_priv(dev);
 673	return aup->msg_enable;
 674}
 675
 676static const struct ethtool_ops au1000_ethtool_ops = {
 677	.get_drvinfo = au1000_get_drvinfo,
 678	.get_link = ethtool_op_get_link,
 679	.get_msglevel = au1000_get_msglevel,
 680	.set_msglevel = au1000_set_msglevel,
 681	.get_link_ksettings = phy_ethtool_get_link_ksettings,
 682	.set_link_ksettings = phy_ethtool_set_link_ksettings,
 683};
 684
 685
 686/*
 687 * Initialize the interface.
 688 *
 689 * When the device powers up, the clocks are disabled and the
 690 * mac is in reset state.  When the interface is closed, we
 691 * do the same -- reset the device and disable the clocks to
 692 * conserve power. Thus, whenever au1000_init() is called,
 693 * the device should already be in reset state.
 694 */
 695static int au1000_init(struct net_device *dev)
 696{
 697	struct au1000_private *aup = netdev_priv(dev);
 698	unsigned long flags;
 699	int i;
 700	u32 control;
 701
 702	netif_dbg(aup, hw, dev, "au1000_init\n");
 703
 704	/* bring the device out of reset */
 705	au1000_enable_mac(dev, 1);
 706
 707	spin_lock_irqsave(&aup->lock, flags);
 708
 709	writel(0, &aup->mac->control);
 710	aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
 711	aup->tx_tail = aup->tx_head;
 712	aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
 713
 714	writel(dev->dev_addr[5]<<8 | dev->dev_addr[4],
 715					&aup->mac->mac_addr_high);
 716	writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
 717		dev->dev_addr[1]<<8 | dev->dev_addr[0],
 718					&aup->mac->mac_addr_low);
 719
 720
 721	for (i = 0; i < NUM_RX_DMA; i++)
 722		aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
 723
 724	wmb(); /* drain writebuffer */
 725
 726	control = MAC_RX_ENABLE | MAC_TX_ENABLE;
 727#ifndef CONFIG_CPU_LITTLE_ENDIAN
 728	control |= MAC_BIG_ENDIAN;
 729#endif
 730	if (dev->phydev) {
 731		if (dev->phydev->link && (DUPLEX_FULL == dev->phydev->duplex))
 732			control |= MAC_FULL_DUPLEX;
 733		else
 734			control |= MAC_DISABLE_RX_OWN;
 735	} else { /* PHY-less op, assume full-duplex */
 736		control |= MAC_FULL_DUPLEX;
 737	}
 738
 739	writel(control, &aup->mac->control);
 740	writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */
 741	wmb(); /* drain writebuffer */
 742
 743	spin_unlock_irqrestore(&aup->lock, flags);
 744	return 0;
 745}
 746
 747static inline void au1000_update_rx_stats(struct net_device *dev, u32 status)
 748{
 749	struct net_device_stats *ps = &dev->stats;
 750
 751	ps->rx_packets++;
 752	if (status & RX_MCAST_FRAME)
 753		ps->multicast++;
 754
 755	if (status & RX_ERROR) {
 756		ps->rx_errors++;
 757		if (status & RX_MISSED_FRAME)
 758			ps->rx_missed_errors++;
 759		if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR))
 760			ps->rx_length_errors++;
 761		if (status & RX_CRC_ERROR)
 762			ps->rx_crc_errors++;
 763		if (status & RX_COLL)
 764			ps->collisions++;
 765	} else
 766		ps->rx_bytes += status & RX_FRAME_LEN_MASK;
 767
 768}
 769
 770/*
 771 * Au1000 receive routine.
 772 */
 773static int au1000_rx(struct net_device *dev)
 774{
 775	struct au1000_private *aup = netdev_priv(dev);
 776	struct sk_buff *skb;
 777	struct rx_dma *prxd;
 778	u32 buff_stat, status;
 779	struct db_dest *pDB;
 780	u32	frmlen;
 781
 782	netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head);
 783
 784	prxd = aup->rx_dma_ring[aup->rx_head];
 785	buff_stat = prxd->buff_stat;
 786	while (buff_stat & RX_T_DONE)  {
 787		status = prxd->status;
 788		pDB = aup->rx_db_inuse[aup->rx_head];
 789		au1000_update_rx_stats(dev, status);
 790		if (!(status & RX_ERROR))  {
 791
 792			/* good frame */
 793			frmlen = (status & RX_FRAME_LEN_MASK);
 794			frmlen -= 4; /* Remove FCS */
 795			skb = netdev_alloc_skb(dev, frmlen + 2);
 796			if (skb == NULL) {
 797				dev->stats.rx_dropped++;
 798				continue;
 799			}
 800			skb_reserve(skb, 2);	/* 16 byte IP header align */
 801			skb_copy_to_linear_data(skb,
 802				(unsigned char *)pDB->vaddr, frmlen);
 803			skb_put(skb, frmlen);
 804			skb->protocol = eth_type_trans(skb, dev);
 805			netif_rx(skb);	/* pass the packet to upper layers */
 806		} else {
 807			if (au1000_debug > 4) {
 808				pr_err("rx_error(s):");
 809				if (status & RX_MISSED_FRAME)
 810					pr_cont(" miss");
 811				if (status & RX_WDOG_TIMER)
 812					pr_cont(" wdog");
 813				if (status & RX_RUNT)
 814					pr_cont(" runt");
 815				if (status & RX_OVERLEN)
 816					pr_cont(" overlen");
 817				if (status & RX_COLL)
 818					pr_cont(" coll");
 819				if (status & RX_MII_ERROR)
 820					pr_cont(" mii error");
 821				if (status & RX_CRC_ERROR)
 822					pr_cont(" crc error");
 823				if (status & RX_LEN_ERROR)
 824					pr_cont(" len error");
 825				if (status & RX_U_CNTRL_FRAME)
 826					pr_cont(" u control frame");
 827				pr_cont("\n");
 828			}
 829		}
 830		prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
 831		aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
 832		wmb(); /* drain writebuffer */
 833
 834		/* next descriptor */
 835		prxd = aup->rx_dma_ring[aup->rx_head];
 836		buff_stat = prxd->buff_stat;
 837	}
 838	return 0;
 839}
 840
 841static void au1000_update_tx_stats(struct net_device *dev, u32 status)
 842{
 843	struct net_device_stats *ps = &dev->stats;
 844
 845	if (status & TX_FRAME_ABORTED) {
 846		if (!dev->phydev || (DUPLEX_FULL == dev->phydev->duplex)) {
 847			if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
 848				/* any other tx errors are only valid
 849				 * in half duplex mode
 850				 */
 851				ps->tx_errors++;
 852				ps->tx_aborted_errors++;
 853			}
 854		} else {
 855			ps->tx_errors++;
 856			ps->tx_aborted_errors++;
 857			if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
 858				ps->tx_carrier_errors++;
 859		}
 860	}
 861}
 862
 863/*
 864 * Called from the interrupt service routine to acknowledge
 865 * the TX DONE bits.  This is a must if the irq is setup as
 866 * edge triggered.
 867 */
 868static void au1000_tx_ack(struct net_device *dev)
 869{
 870	struct au1000_private *aup = netdev_priv(dev);
 871	struct tx_dma *ptxd;
 872
 873	ptxd = aup->tx_dma_ring[aup->tx_tail];
 874
 875	while (ptxd->buff_stat & TX_T_DONE) {
 876		au1000_update_tx_stats(dev, ptxd->status);
 877		ptxd->buff_stat &= ~TX_T_DONE;
 878		ptxd->len = 0;
 879		wmb(); /* drain writebuffer */
 880
 881		aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
 882		ptxd = aup->tx_dma_ring[aup->tx_tail];
 883
 884		if (aup->tx_full) {
 885			aup->tx_full = 0;
 886			netif_wake_queue(dev);
 887		}
 888	}
 889}
 890
 891/*
 892 * Au1000 interrupt service routine.
 893 */
 894static irqreturn_t au1000_interrupt(int irq, void *dev_id)
 895{
 896	struct net_device *dev = dev_id;
 897
 898	/* Handle RX interrupts first to minimize chance of overrun */
 899
 900	au1000_rx(dev);
 901	au1000_tx_ack(dev);
 902	return IRQ_RETVAL(1);
 903}
 904
 905static int au1000_open(struct net_device *dev)
 906{
 907	int retval;
 908	struct au1000_private *aup = netdev_priv(dev);
 909
 910	netif_dbg(aup, drv, dev, "open: dev=%p\n", dev);
 911
 912	retval = request_irq(dev->irq, au1000_interrupt, 0,
 913					dev->name, dev);
 914	if (retval) {
 915		netdev_err(dev, "unable to get IRQ %d\n", dev->irq);
 916		return retval;
 917	}
 918
 919	retval = au1000_init(dev);
 920	if (retval) {
 921		netdev_err(dev, "error in au1000_init\n");
 922		free_irq(dev->irq, dev);
 923		return retval;
 924	}
 925
 926	if (dev->phydev)
 927		phy_start(dev->phydev);
 928
 929	netif_start_queue(dev);
 930
 931	netif_dbg(aup, drv, dev, "open: Initialization done.\n");
 932
 933	return 0;
 934}
 935
 936static int au1000_close(struct net_device *dev)
 937{
 938	unsigned long flags;
 939	struct au1000_private *const aup = netdev_priv(dev);
 940
 941	netif_dbg(aup, drv, dev, "close: dev=%p\n", dev);
 942
 943	if (dev->phydev)
 944		phy_stop(dev->phydev);
 945
 946	spin_lock_irqsave(&aup->lock, flags);
 947
 948	au1000_reset_mac_unlocked(dev);
 949
 950	/* stop the device */
 951	netif_stop_queue(dev);
 952
 953	/* disable the interrupt */
 954	free_irq(dev->irq, dev);
 955	spin_unlock_irqrestore(&aup->lock, flags);
 956
 957	return 0;
 958}
 959
 960/*
 961 * Au1000 transmit routine.
 962 */
 963static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev)
 964{
 965	struct au1000_private *aup = netdev_priv(dev);
 966	struct net_device_stats *ps = &dev->stats;
 967	struct tx_dma *ptxd;
 968	u32 buff_stat;
 969	struct db_dest *pDB;
 970	int i;
 971
 972	netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n",
 973				(unsigned)aup, skb->len,
 974				skb->data, aup->tx_head);
 975
 976	ptxd = aup->tx_dma_ring[aup->tx_head];
 977	buff_stat = ptxd->buff_stat;
 978	if (buff_stat & TX_DMA_ENABLE) {
 979		/* We've wrapped around and the transmitter is still busy */
 980		netif_stop_queue(dev);
 981		aup->tx_full = 1;
 982		return NETDEV_TX_BUSY;
 983	} else if (buff_stat & TX_T_DONE) {
 984		au1000_update_tx_stats(dev, ptxd->status);
 985		ptxd->len = 0;
 986	}
 987
 988	if (aup->tx_full) {
 989		aup->tx_full = 0;
 990		netif_wake_queue(dev);
 991	}
 992
 993	pDB = aup->tx_db_inuse[aup->tx_head];
 994	skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
 995	if (skb->len < ETH_ZLEN) {
 996		for (i = skb->len; i < ETH_ZLEN; i++)
 997			((char *)pDB->vaddr)[i] = 0;
 998
 999		ptxd->len = ETH_ZLEN;
1000	} else
1001		ptxd->len = skb->len;
1002
1003	ps->tx_packets++;
1004	ps->tx_bytes += ptxd->len;
1005
1006	ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
1007	wmb(); /* drain writebuffer */
1008	dev_kfree_skb(skb);
1009	aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
1010	return NETDEV_TX_OK;
1011}
1012
1013/*
1014 * The Tx ring has been full longer than the watchdog timeout
1015 * value. The transmitter must be hung?
1016 */
1017static void au1000_tx_timeout(struct net_device *dev)
1018{
1019	netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev);
1020	au1000_reset_mac(dev);
1021	au1000_init(dev);
1022	netif_trans_update(dev); /* prevent tx timeout */
1023	netif_wake_queue(dev);
1024}
1025
1026static void au1000_multicast_list(struct net_device *dev)
1027{
1028	struct au1000_private *aup = netdev_priv(dev);
1029	u32 reg;
1030
1031	netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags);
1032	reg = readl(&aup->mac->control);
1033	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
1034		reg |= MAC_PROMISCUOUS;
1035	} else if ((dev->flags & IFF_ALLMULTI)  ||
1036			   netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) {
1037		reg |= MAC_PASS_ALL_MULTI;
1038		reg &= ~MAC_PROMISCUOUS;
1039		netdev_info(dev, "Pass all multicast\n");
1040	} else {
1041		struct netdev_hw_addr *ha;
1042		u32 mc_filter[2];	/* Multicast hash filter */
1043
1044		mc_filter[1] = mc_filter[0] = 0;
1045		netdev_for_each_mc_addr(ha, dev)
1046			set_bit(ether_crc(ETH_ALEN, ha->addr)>>26,
1047					(long *)mc_filter);
1048		writel(mc_filter[1], &aup->mac->multi_hash_high);
1049		writel(mc_filter[0], &aup->mac->multi_hash_low);
1050		reg &= ~MAC_PROMISCUOUS;
1051		reg |= MAC_HASH_MODE;
1052	}
1053	writel(reg, &aup->mac->control);
1054}
1055
1056static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1057{
1058	if (!netif_running(dev))
1059		return -EINVAL;
1060
1061	if (!dev->phydev)
1062		return -EINVAL; /* PHY not controllable */
1063
1064	return phy_mii_ioctl(dev->phydev, rq, cmd);
1065}
1066
1067static const struct net_device_ops au1000_netdev_ops = {
1068	.ndo_open		= au1000_open,
1069	.ndo_stop		= au1000_close,
1070	.ndo_start_xmit		= au1000_tx,
1071	.ndo_set_rx_mode	= au1000_multicast_list,
1072	.ndo_do_ioctl		= au1000_ioctl,
1073	.ndo_tx_timeout		= au1000_tx_timeout,
1074	.ndo_set_mac_address	= eth_mac_addr,
1075	.ndo_validate_addr	= eth_validate_addr,
1076};
1077
1078static int au1000_probe(struct platform_device *pdev)
1079{
1080	struct au1000_private *aup = NULL;
1081	struct au1000_eth_platform_data *pd;
1082	struct net_device *dev = NULL;
1083	struct db_dest *pDB, *pDBfree;
1084	int irq, i, err = 0;
1085	struct resource *base, *macen, *macdma;
1086
1087	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1088	if (!base) {
1089		dev_err(&pdev->dev, "failed to retrieve base register\n");
1090		err = -ENODEV;
1091		goto out;
1092	}
1093
1094	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1095	if (!macen) {
1096		dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n");
1097		err = -ENODEV;
1098		goto out;
1099	}
1100
1101	irq = platform_get_irq(pdev, 0);
1102	if (irq < 0) {
1103		err = -ENODEV;
1104		goto out;
1105	}
1106
1107	macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1108	if (!macdma) {
1109		dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n");
1110		err = -ENODEV;
1111		goto out;
1112	}
1113
1114	if (!request_mem_region(base->start, resource_size(base),
1115							pdev->name)) {
1116		dev_err(&pdev->dev, "failed to request memory region for base registers\n");
1117		err = -ENXIO;
1118		goto out;
1119	}
1120
1121	if (!request_mem_region(macen->start, resource_size(macen),
1122							pdev->name)) {
1123		dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n");
1124		err = -ENXIO;
1125		goto err_request;
1126	}
1127
1128	if (!request_mem_region(macdma->start, resource_size(macdma),
1129							pdev->name)) {
1130		dev_err(&pdev->dev, "failed to request MACDMA memory region\n");
1131		err = -ENXIO;
1132		goto err_macdma;
1133	}
1134
1135	dev = alloc_etherdev(sizeof(struct au1000_private));
1136	if (!dev) {
1137		err = -ENOMEM;
1138		goto err_alloc;
1139	}
1140
1141	SET_NETDEV_DEV(dev, &pdev->dev);
1142	platform_set_drvdata(pdev, dev);
1143	aup = netdev_priv(dev);
1144
1145	spin_lock_init(&aup->lock);
1146	aup->msg_enable = (au1000_debug < 4 ?
1147				AU1000_DEF_MSG_ENABLE : au1000_debug);
1148
1149	/* Allocate the data buffers
1150	 * Snooping works fine with eth on all au1xxx
1151	 */
1152	aup->vaddr = (u32)dma_alloc_attrs(&pdev->dev, MAX_BUF_SIZE *
1153					  (NUM_TX_BUFFS + NUM_RX_BUFFS),
1154					  &aup->dma_addr, 0,
1155					  DMA_ATTR_NON_CONSISTENT);
1156	if (!aup->vaddr) {
1157		dev_err(&pdev->dev, "failed to allocate data buffers\n");
1158		err = -ENOMEM;
1159		goto err_vaddr;
1160	}
1161
1162	/* aup->mac is the base address of the MAC's registers */
1163	aup->mac = (struct mac_reg *)
1164			ioremap_nocache(base->start, resource_size(base));
1165	if (!aup->mac) {
1166		dev_err(&pdev->dev, "failed to ioremap MAC registers\n");
1167		err = -ENXIO;
1168		goto err_remap1;
1169	}
1170
1171	/* Setup some variables for quick register address access */
1172	aup->enable = (u32 *)ioremap_nocache(macen->start,
1173						resource_size(macen));
1174	if (!aup->enable) {
1175		dev_err(&pdev->dev, "failed to ioremap MAC enable register\n");
1176		err = -ENXIO;
1177		goto err_remap2;
1178	}
1179	aup->mac_id = pdev->id;
1180
1181	aup->macdma = ioremap_nocache(macdma->start, resource_size(macdma));
1182	if (!aup->macdma) {
1183		dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n");
1184		err = -ENXIO;
1185		goto err_remap3;
1186	}
1187
1188	au1000_setup_hw_rings(aup, aup->macdma);
1189
1190	writel(0, aup->enable);
1191	aup->mac_enabled = 0;
1192
1193	pd = dev_get_platdata(&pdev->dev);
1194	if (!pd) {
1195		dev_info(&pdev->dev, "no platform_data passed,"
1196					" PHY search on MAC0\n");
1197		aup->phy1_search_mac0 = 1;
1198	} else {
1199		if (is_valid_ether_addr(pd->mac)) {
1200			memcpy(dev->dev_addr, pd->mac, ETH_ALEN);
1201		} else {
1202			/* Set a random MAC since no valid provided by platform_data. */
1203			eth_hw_addr_random(dev);
1204		}
1205
1206		aup->phy_static_config = pd->phy_static_config;
1207		aup->phy_search_highest_addr = pd->phy_search_highest_addr;
1208		aup->phy1_search_mac0 = pd->phy1_search_mac0;
1209		aup->phy_addr = pd->phy_addr;
1210		aup->phy_busid = pd->phy_busid;
1211		aup->phy_irq = pd->phy_irq;
1212	}
1213
1214	if (aup->phy_busid > 0) {
1215		dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n");
1216		err = -ENODEV;
1217		goto err_mdiobus_alloc;
1218	}
1219
1220	aup->mii_bus = mdiobus_alloc();
1221	if (aup->mii_bus == NULL) {
1222		dev_err(&pdev->dev, "failed to allocate mdiobus structure\n");
1223		err = -ENOMEM;
1224		goto err_mdiobus_alloc;
1225	}
1226
1227	aup->mii_bus->priv = dev;
1228	aup->mii_bus->read = au1000_mdiobus_read;
1229	aup->mii_bus->write = au1000_mdiobus_write;
1230	aup->mii_bus->reset = au1000_mdiobus_reset;
1231	aup->mii_bus->name = "au1000_eth_mii";
1232	snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1233		pdev->name, aup->mac_id);
1234
1235	/* if known, set corresponding PHY IRQs */
1236	if (aup->phy_static_config)
1237		if (aup->phy_irq && aup->phy_busid == aup->mac_id)
1238			aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq;
1239
1240	err = mdiobus_register(aup->mii_bus);
1241	if (err) {
1242		dev_err(&pdev->dev, "failed to register MDIO bus\n");
1243		goto err_mdiobus_reg;
1244	}
1245
1246	err = au1000_mii_probe(dev);
1247	if (err != 0)
1248		goto err_out;
1249
1250	pDBfree = NULL;
1251	/* setup the data buffer descriptors and attach a buffer to each one */
1252	pDB = aup->db;
1253	for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
1254		pDB->pnext = pDBfree;
1255		pDBfree = pDB;
1256		pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
1257		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
1258		pDB++;
1259	}
1260	aup->pDBfree = pDBfree;
1261
1262	err = -ENODEV;
1263	for (i = 0; i < NUM_RX_DMA; i++) {
1264		pDB = au1000_GetFreeDB(aup);
1265		if (!pDB)
1266			goto err_out;
1267
1268		aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1269		aup->rx_db_inuse[i] = pDB;
1270	}
1271
1272	err = -ENODEV;
1273	for (i = 0; i < NUM_TX_DMA; i++) {
1274		pDB = au1000_GetFreeDB(aup);
1275		if (!pDB)
1276			goto err_out;
1277
1278		aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1279		aup->tx_dma_ring[i]->len = 0;
1280		aup->tx_db_inuse[i] = pDB;
1281	}
1282
1283	dev->base_addr = base->start;
1284	dev->irq = irq;
1285	dev->netdev_ops = &au1000_netdev_ops;
1286	dev->ethtool_ops = &au1000_ethtool_ops;
1287	dev->watchdog_timeo = ETH_TX_TIMEOUT;
1288
1289	/*
1290	 * The boot code uses the ethernet controller, so reset it to start
1291	 * fresh.  au1000_init() expects that the device is in reset state.
1292	 */
1293	au1000_reset_mac(dev);
1294
1295	err = register_netdev(dev);
1296	if (err) {
1297		netdev_err(dev, "Cannot register net device, aborting.\n");
1298		goto err_out;
1299	}
1300
1301	netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1302			(unsigned long)base->start, irq);
1303
1304	pr_info_once("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);
1305
1306	return 0;
1307
1308err_out:
1309	if (aup->mii_bus != NULL)
1310		mdiobus_unregister(aup->mii_bus);
1311
1312	/* here we should have a valid dev plus aup-> register addresses
1313	 * so we can reset the mac properly.
1314	 */
1315	au1000_reset_mac(dev);
1316
1317	for (i = 0; i < NUM_RX_DMA; i++) {
1318		if (aup->rx_db_inuse[i])
1319			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1320	}
1321	for (i = 0; i < NUM_TX_DMA; i++) {
1322		if (aup->tx_db_inuse[i])
1323			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1324	}
1325err_mdiobus_reg:
1326	mdiobus_free(aup->mii_bus);
1327err_mdiobus_alloc:
1328	iounmap(aup->macdma);
1329err_remap3:
1330	iounmap(aup->enable);
1331err_remap2:
1332	iounmap(aup->mac);
1333err_remap1:
1334	dma_free_attrs(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1335			(void *)aup->vaddr, aup->dma_addr,
1336			DMA_ATTR_NON_CONSISTENT);
1337err_vaddr:
1338	free_netdev(dev);
1339err_alloc:
1340	release_mem_region(macdma->start, resource_size(macdma));
1341err_macdma:
1342	release_mem_region(macen->start, resource_size(macen));
1343err_request:
1344	release_mem_region(base->start, resource_size(base));
1345out:
1346	return err;
1347}
1348
1349static int au1000_remove(struct platform_device *pdev)
1350{
1351	struct net_device *dev = platform_get_drvdata(pdev);
1352	struct au1000_private *aup = netdev_priv(dev);
1353	int i;
1354	struct resource *base, *macen;
1355
1356	unregister_netdev(dev);
1357	mdiobus_unregister(aup->mii_bus);
1358	mdiobus_free(aup->mii_bus);
1359
1360	for (i = 0; i < NUM_RX_DMA; i++)
1361		if (aup->rx_db_inuse[i])
1362			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1363
1364	for (i = 0; i < NUM_TX_DMA; i++)
1365		if (aup->tx_db_inuse[i])
1366			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1367
1368	dma_free_attrs(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1369			(void *)aup->vaddr, aup->dma_addr,
1370			DMA_ATTR_NON_CONSISTENT);
1371
1372	iounmap(aup->macdma);
1373	iounmap(aup->mac);
1374	iounmap(aup->enable);
1375
1376	base = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1377	release_mem_region(base->start, resource_size(base));
1378
1379	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1380	release_mem_region(base->start, resource_size(base));
1381
1382	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1383	release_mem_region(macen->start, resource_size(macen));
1384
1385	free_netdev(dev);
1386
1387	return 0;
1388}
1389
1390static struct platform_driver au1000_eth_driver = {
1391	.probe  = au1000_probe,
1392	.remove = au1000_remove,
1393	.driver = {
1394		.name   = "au1000-eth",
1395	},
1396};
1397
1398module_platform_driver(au1000_eth_driver);
1399
1400MODULE_ALIAS("platform:au1000-eth");