Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 *
5 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6 * Copyright (C) 2010 ST-Ericsson SA
7 */
8#include <linux/module.h>
9#include <linux/moduleparam.h>
10#include <linux/init.h>
11#include <linux/ioport.h>
12#include <linux/device.h>
13#include <linux/io.h>
14#include <linux/interrupt.h>
15#include <linux/kernel.h>
16#include <linux/slab.h>
17#include <linux/delay.h>
18#include <linux/err.h>
19#include <linux/highmem.h>
20#include <linux/log2.h>
21#include <linux/mmc/mmc.h>
22#include <linux/mmc/pm.h>
23#include <linux/mmc/host.h>
24#include <linux/mmc/card.h>
25#include <linux/mmc/sd.h>
26#include <linux/mmc/slot-gpio.h>
27#include <linux/amba/bus.h>
28#include <linux/clk.h>
29#include <linux/scatterlist.h>
30#include <linux/of.h>
31#include <linux/regulator/consumer.h>
32#include <linux/dmaengine.h>
33#include <linux/dma-mapping.h>
34#include <linux/amba/mmci.h>
35#include <linux/pm_runtime.h>
36#include <linux/types.h>
37#include <linux/pinctrl/consumer.h>
38#include <linux/reset.h>
39#include <linux/gpio/consumer.h>
40#include <linux/workqueue.h>
41
42#include <asm/div64.h>
43#include <asm/io.h>
44
45#include "mmci.h"
46
47#define DRIVER_NAME "mmci-pl18x"
48
49static void mmci_variant_init(struct mmci_host *host);
50static void ux500_variant_init(struct mmci_host *host);
51static void ux500v2_variant_init(struct mmci_host *host);
52
53static unsigned int fmax = 515633;
54
55static struct variant_data variant_arm = {
56 .fifosize = 16 * 4,
57 .fifohalfsize = 8 * 4,
58 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
59 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
60 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
61 .cmdreg_srsp = MCI_CPSM_RESPONSE,
62 .datalength_bits = 16,
63 .datactrl_blocksz = 11,
64 .pwrreg_powerup = MCI_PWR_UP,
65 .f_max = 100000000,
66 .reversed_irq_handling = true,
67 .mmcimask1 = true,
68 .irq_pio_mask = MCI_IRQ_PIO_MASK,
69 .start_err = MCI_STARTBITERR,
70 .opendrain = MCI_ROD,
71 .init = mmci_variant_init,
72};
73
74static struct variant_data variant_arm_extended_fifo = {
75 .fifosize = 128 * 4,
76 .fifohalfsize = 64 * 4,
77 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
78 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
79 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
80 .cmdreg_srsp = MCI_CPSM_RESPONSE,
81 .datalength_bits = 16,
82 .datactrl_blocksz = 11,
83 .pwrreg_powerup = MCI_PWR_UP,
84 .f_max = 100000000,
85 .mmcimask1 = true,
86 .irq_pio_mask = MCI_IRQ_PIO_MASK,
87 .start_err = MCI_STARTBITERR,
88 .opendrain = MCI_ROD,
89 .init = mmci_variant_init,
90};
91
92static struct variant_data variant_arm_extended_fifo_hwfc = {
93 .fifosize = 128 * 4,
94 .fifohalfsize = 64 * 4,
95 .clkreg_enable = MCI_ARM_HWFCEN,
96 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
97 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
98 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
99 .cmdreg_srsp = MCI_CPSM_RESPONSE,
100 .datalength_bits = 16,
101 .datactrl_blocksz = 11,
102 .pwrreg_powerup = MCI_PWR_UP,
103 .f_max = 100000000,
104 .mmcimask1 = true,
105 .irq_pio_mask = MCI_IRQ_PIO_MASK,
106 .start_err = MCI_STARTBITERR,
107 .opendrain = MCI_ROD,
108 .init = mmci_variant_init,
109};
110
111static struct variant_data variant_u300 = {
112 .fifosize = 16 * 4,
113 .fifohalfsize = 8 * 4,
114 .clkreg_enable = MCI_ST_U300_HWFCEN,
115 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
116 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
117 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
118 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
119 .cmdreg_srsp = MCI_CPSM_RESPONSE,
120 .datalength_bits = 16,
121 .datactrl_blocksz = 11,
122 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
123 .st_sdio = true,
124 .pwrreg_powerup = MCI_PWR_ON,
125 .f_max = 100000000,
126 .signal_direction = true,
127 .pwrreg_clkgate = true,
128 .pwrreg_nopower = true,
129 .mmcimask1 = true,
130 .irq_pio_mask = MCI_IRQ_PIO_MASK,
131 .start_err = MCI_STARTBITERR,
132 .opendrain = MCI_OD,
133 .init = mmci_variant_init,
134};
135
136static struct variant_data variant_nomadik = {
137 .fifosize = 16 * 4,
138 .fifohalfsize = 8 * 4,
139 .clkreg = MCI_CLK_ENABLE,
140 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
141 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
142 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
143 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
144 .cmdreg_srsp = MCI_CPSM_RESPONSE,
145 .datalength_bits = 24,
146 .datactrl_blocksz = 11,
147 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
148 .st_sdio = true,
149 .st_clkdiv = true,
150 .pwrreg_powerup = MCI_PWR_ON,
151 .f_max = 100000000,
152 .signal_direction = true,
153 .pwrreg_clkgate = true,
154 .pwrreg_nopower = true,
155 .mmcimask1 = true,
156 .irq_pio_mask = MCI_IRQ_PIO_MASK,
157 .start_err = MCI_STARTBITERR,
158 .opendrain = MCI_OD,
159 .init = mmci_variant_init,
160};
161
162static struct variant_data variant_ux500 = {
163 .fifosize = 30 * 4,
164 .fifohalfsize = 8 * 4,
165 .clkreg = MCI_CLK_ENABLE,
166 .clkreg_enable = MCI_ST_UX500_HWFCEN,
167 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
168 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
169 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
170 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
171 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
172 .cmdreg_srsp = MCI_CPSM_RESPONSE,
173 .datalength_bits = 24,
174 .datactrl_blocksz = 11,
175 .datactrl_any_blocksz = true,
176 .dma_power_of_2 = true,
177 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
178 .st_sdio = true,
179 .st_clkdiv = true,
180 .pwrreg_powerup = MCI_PWR_ON,
181 .f_max = 100000000,
182 .signal_direction = true,
183 .pwrreg_clkgate = true,
184 .busy_detect = true,
185 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
186 .busy_detect_flag = MCI_ST_CARDBUSY,
187 .busy_detect_mask = MCI_ST_BUSYENDMASK,
188 .pwrreg_nopower = true,
189 .mmcimask1 = true,
190 .irq_pio_mask = MCI_IRQ_PIO_MASK,
191 .start_err = MCI_STARTBITERR,
192 .opendrain = MCI_OD,
193 .init = ux500_variant_init,
194};
195
196static struct variant_data variant_ux500v2 = {
197 .fifosize = 30 * 4,
198 .fifohalfsize = 8 * 4,
199 .clkreg = MCI_CLK_ENABLE,
200 .clkreg_enable = MCI_ST_UX500_HWFCEN,
201 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
202 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
203 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
204 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
205 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
206 .cmdreg_srsp = MCI_CPSM_RESPONSE,
207 .datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE,
208 .datalength_bits = 24,
209 .datactrl_blocksz = 11,
210 .datactrl_any_blocksz = true,
211 .dma_power_of_2 = true,
212 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
213 .st_sdio = true,
214 .st_clkdiv = true,
215 .pwrreg_powerup = MCI_PWR_ON,
216 .f_max = 100000000,
217 .signal_direction = true,
218 .pwrreg_clkgate = true,
219 .busy_detect = true,
220 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
221 .busy_detect_flag = MCI_ST_CARDBUSY,
222 .busy_detect_mask = MCI_ST_BUSYENDMASK,
223 .pwrreg_nopower = true,
224 .mmcimask1 = true,
225 .irq_pio_mask = MCI_IRQ_PIO_MASK,
226 .start_err = MCI_STARTBITERR,
227 .opendrain = MCI_OD,
228 .init = ux500v2_variant_init,
229};
230
231static struct variant_data variant_stm32 = {
232 .fifosize = 32 * 4,
233 .fifohalfsize = 8 * 4,
234 .clkreg = MCI_CLK_ENABLE,
235 .clkreg_enable = MCI_ST_UX500_HWFCEN,
236 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
237 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
238 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
239 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
240 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
241 .cmdreg_srsp = MCI_CPSM_RESPONSE,
242 .irq_pio_mask = MCI_IRQ_PIO_MASK,
243 .datalength_bits = 24,
244 .datactrl_blocksz = 11,
245 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
246 .st_sdio = true,
247 .st_clkdiv = true,
248 .pwrreg_powerup = MCI_PWR_ON,
249 .f_max = 48000000,
250 .pwrreg_clkgate = true,
251 .pwrreg_nopower = true,
252 .dma_flow_controller = true,
253 .init = mmci_variant_init,
254};
255
256static struct variant_data variant_stm32_sdmmc = {
257 .fifosize = 16 * 4,
258 .fifohalfsize = 8 * 4,
259 .f_max = 208000000,
260 .stm32_clkdiv = true,
261 .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE,
262 .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC,
263 .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC,
264 .cmdreg_srsp = MCI_CPSM_STM32_SRSP,
265 .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP,
266 .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS,
267 .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK,
268 .datactrl_first = true,
269 .datacnt_useless = true,
270 .datalength_bits = 25,
271 .datactrl_blocksz = 14,
272 .datactrl_any_blocksz = true,
273 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
274 .stm32_idmabsize_mask = GENMASK(12, 5),
275 .stm32_idmabsize_align = BIT(5),
276 .supports_sdio_irq = true,
277 .busy_timeout = true,
278 .busy_detect = true,
279 .busy_detect_flag = MCI_STM32_BUSYD0,
280 .busy_detect_mask = MCI_STM32_BUSYD0ENDMASK,
281 .init = sdmmc_variant_init,
282};
283
284static struct variant_data variant_stm32_sdmmcv2 = {
285 .fifosize = 16 * 4,
286 .fifohalfsize = 8 * 4,
287 .f_max = 267000000,
288 .stm32_clkdiv = true,
289 .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE,
290 .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC,
291 .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC,
292 .cmdreg_srsp = MCI_CPSM_STM32_SRSP,
293 .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP,
294 .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS,
295 .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK,
296 .datactrl_first = true,
297 .datacnt_useless = true,
298 .datalength_bits = 25,
299 .datactrl_blocksz = 14,
300 .datactrl_any_blocksz = true,
301 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
302 .stm32_idmabsize_mask = GENMASK(16, 5),
303 .stm32_idmabsize_align = BIT(5),
304 .supports_sdio_irq = true,
305 .dma_lli = true,
306 .busy_timeout = true,
307 .busy_detect = true,
308 .busy_detect_flag = MCI_STM32_BUSYD0,
309 .busy_detect_mask = MCI_STM32_BUSYD0ENDMASK,
310 .init = sdmmc_variant_init,
311};
312
313static struct variant_data variant_stm32_sdmmcv3 = {
314 .fifosize = 256 * 4,
315 .fifohalfsize = 128 * 4,
316 .f_max = 267000000,
317 .stm32_clkdiv = true,
318 .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE,
319 .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC,
320 .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC,
321 .cmdreg_srsp = MCI_CPSM_STM32_SRSP,
322 .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP,
323 .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS,
324 .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK,
325 .datactrl_first = true,
326 .datacnt_useless = true,
327 .datalength_bits = 25,
328 .datactrl_blocksz = 14,
329 .datactrl_any_blocksz = true,
330 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
331 .stm32_idmabsize_mask = GENMASK(16, 6),
332 .stm32_idmabsize_align = BIT(6),
333 .supports_sdio_irq = true,
334 .dma_lli = true,
335 .busy_timeout = true,
336 .busy_detect = true,
337 .busy_detect_flag = MCI_STM32_BUSYD0,
338 .busy_detect_mask = MCI_STM32_BUSYD0ENDMASK,
339 .init = sdmmc_variant_init,
340};
341
342static struct variant_data variant_qcom = {
343 .fifosize = 16 * 4,
344 .fifohalfsize = 8 * 4,
345 .clkreg = MCI_CLK_ENABLE,
346 .clkreg_enable = MCI_QCOM_CLK_FLOWENA |
347 MCI_QCOM_CLK_SELECT_IN_FBCLK,
348 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
349 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
350 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
351 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
352 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
353 .cmdreg_srsp = MCI_CPSM_RESPONSE,
354 .data_cmd_enable = MCI_CPSM_QCOM_DATCMD,
355 .datalength_bits = 24,
356 .datactrl_blocksz = 11,
357 .datactrl_any_blocksz = true,
358 .pwrreg_powerup = MCI_PWR_UP,
359 .f_max = 208000000,
360 .explicit_mclk_control = true,
361 .qcom_fifo = true,
362 .qcom_dml = true,
363 .mmcimask1 = true,
364 .irq_pio_mask = MCI_IRQ_PIO_MASK,
365 .start_err = MCI_STARTBITERR,
366 .opendrain = MCI_ROD,
367 .init = qcom_variant_init,
368};
369
370/* Busy detection for the ST Micro variant */
371static int mmci_card_busy(struct mmc_host *mmc)
372{
373 struct mmci_host *host = mmc_priv(mmc);
374 unsigned long flags;
375 int busy = 0;
376
377 spin_lock_irqsave(&host->lock, flags);
378 if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
379 busy = 1;
380 spin_unlock_irqrestore(&host->lock, flags);
381
382 return busy;
383}
384
385static void mmci_reg_delay(struct mmci_host *host)
386{
387 /*
388 * According to the spec, at least three feedback clock cycles
389 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
390 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
391 * Worst delay time during card init is at 100 kHz => 30 us.
392 * Worst delay time when up and running is at 25 MHz => 120 ns.
393 */
394 if (host->cclk < 25000000)
395 udelay(30);
396 else
397 ndelay(120);
398}
399
400/*
401 * This must be called with host->lock held
402 */
403void mmci_write_clkreg(struct mmci_host *host, u32 clk)
404{
405 if (host->clk_reg != clk) {
406 host->clk_reg = clk;
407 writel(clk, host->base + MMCICLOCK);
408 }
409}
410
411/*
412 * This must be called with host->lock held
413 */
414void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
415{
416 if (host->pwr_reg != pwr) {
417 host->pwr_reg = pwr;
418 writel(pwr, host->base + MMCIPOWER);
419 }
420}
421
422/*
423 * This must be called with host->lock held
424 */
425static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
426{
427 /* Keep busy mode in DPSM and SDIO mask if enabled */
428 datactrl |= host->datactrl_reg & (host->variant->busy_dpsm_flag |
429 host->variant->datactrl_mask_sdio);
430
431 if (host->datactrl_reg != datactrl) {
432 host->datactrl_reg = datactrl;
433 writel(datactrl, host->base + MMCIDATACTRL);
434 }
435}
436
437/*
438 * This must be called with host->lock held
439 */
440static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
441{
442 struct variant_data *variant = host->variant;
443 u32 clk = variant->clkreg;
444
445 /* Make sure cclk reflects the current calculated clock */
446 host->cclk = 0;
447
448 if (desired) {
449 if (variant->explicit_mclk_control) {
450 host->cclk = host->mclk;
451 } else if (desired >= host->mclk) {
452 clk = MCI_CLK_BYPASS;
453 if (variant->st_clkdiv)
454 clk |= MCI_ST_UX500_NEG_EDGE;
455 host->cclk = host->mclk;
456 } else if (variant->st_clkdiv) {
457 /*
458 * DB8500 TRM says f = mclk / (clkdiv + 2)
459 * => clkdiv = (mclk / f) - 2
460 * Round the divider up so we don't exceed the max
461 * frequency
462 */
463 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
464 if (clk >= 256)
465 clk = 255;
466 host->cclk = host->mclk / (clk + 2);
467 } else {
468 /*
469 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
470 * => clkdiv = mclk / (2 * f) - 1
471 */
472 clk = host->mclk / (2 * desired) - 1;
473 if (clk >= 256)
474 clk = 255;
475 host->cclk = host->mclk / (2 * (clk + 1));
476 }
477
478 clk |= variant->clkreg_enable;
479 clk |= MCI_CLK_ENABLE;
480 /* This hasn't proven to be worthwhile */
481 /* clk |= MCI_CLK_PWRSAVE; */
482 }
483
484 /* Set actual clock for debug */
485 host->mmc->actual_clock = host->cclk;
486
487 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
488 clk |= MCI_4BIT_BUS;
489 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
490 clk |= variant->clkreg_8bit_bus_enable;
491
492 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
493 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
494 clk |= variant->clkreg_neg_edge_enable;
495
496 mmci_write_clkreg(host, clk);
497}
498
499static void mmci_dma_release(struct mmci_host *host)
500{
501 if (host->ops && host->ops->dma_release)
502 host->ops->dma_release(host);
503
504 host->use_dma = false;
505}
506
507static void mmci_dma_setup(struct mmci_host *host)
508{
509 if (!host->ops || !host->ops->dma_setup)
510 return;
511
512 if (host->ops->dma_setup(host))
513 return;
514
515 /* initialize pre request cookie */
516 host->next_cookie = 1;
517
518 host->use_dma = true;
519}
520
521/*
522 * Validate mmc prerequisites
523 */
524static int mmci_validate_data(struct mmci_host *host,
525 struct mmc_data *data)
526{
527 struct variant_data *variant = host->variant;
528
529 if (!data)
530 return 0;
531 if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
532 dev_err(mmc_dev(host->mmc),
533 "unsupported block size (%d bytes)\n", data->blksz);
534 return -EINVAL;
535 }
536
537 if (host->ops && host->ops->validate_data)
538 return host->ops->validate_data(host, data);
539
540 return 0;
541}
542
543static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
544{
545 int err;
546
547 if (!host->ops || !host->ops->prep_data)
548 return 0;
549
550 err = host->ops->prep_data(host, data, next);
551
552 if (next && !err)
553 data->host_cookie = ++host->next_cookie < 0 ?
554 1 : host->next_cookie;
555
556 return err;
557}
558
559static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
560 int err)
561{
562 if (host->ops && host->ops->unprep_data)
563 host->ops->unprep_data(host, data, err);
564
565 data->host_cookie = 0;
566}
567
568static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
569{
570 WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
571
572 if (host->ops && host->ops->get_next_data)
573 host->ops->get_next_data(host, data);
574}
575
576static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
577{
578 struct mmc_data *data = host->data;
579 int ret;
580
581 if (!host->use_dma)
582 return -EINVAL;
583
584 ret = mmci_prep_data(host, data, false);
585 if (ret)
586 return ret;
587
588 if (!host->ops || !host->ops->dma_start)
589 return -EINVAL;
590
591 /* Okay, go for it. */
592 dev_vdbg(mmc_dev(host->mmc),
593 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
594 data->sg_len, data->blksz, data->blocks, data->flags);
595
596 ret = host->ops->dma_start(host, &datactrl);
597 if (ret)
598 return ret;
599
600 /* Trigger the DMA transfer */
601 mmci_write_datactrlreg(host, datactrl);
602
603 /*
604 * Let the MMCI say when the data is ended and it's time
605 * to fire next DMA request. When that happens, MMCI will
606 * call mmci_data_end()
607 */
608 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
609 host->base + MMCIMASK0);
610 return 0;
611}
612
613static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
614{
615 if (!host->use_dma)
616 return;
617
618 if (host->ops && host->ops->dma_finalize)
619 host->ops->dma_finalize(host, data);
620}
621
622static void mmci_dma_error(struct mmci_host *host)
623{
624 if (!host->use_dma)
625 return;
626
627 if (host->ops && host->ops->dma_error)
628 host->ops->dma_error(host);
629}
630
631static void
632mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
633{
634 writel(0, host->base + MMCICOMMAND);
635
636 BUG_ON(host->data);
637
638 host->mrq = NULL;
639 host->cmd = NULL;
640
641 mmc_request_done(host->mmc, mrq);
642}
643
644static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
645{
646 void __iomem *base = host->base;
647 struct variant_data *variant = host->variant;
648
649 if (host->singleirq) {
650 unsigned int mask0 = readl(base + MMCIMASK0);
651
652 mask0 &= ~variant->irq_pio_mask;
653 mask0 |= mask;
654
655 writel(mask0, base + MMCIMASK0);
656 }
657
658 if (variant->mmcimask1)
659 writel(mask, base + MMCIMASK1);
660
661 host->mask1_reg = mask;
662}
663
664static void mmci_stop_data(struct mmci_host *host)
665{
666 mmci_write_datactrlreg(host, 0);
667 mmci_set_mask1(host, 0);
668 host->data = NULL;
669}
670
671static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
672{
673 unsigned int flags = SG_MITER_ATOMIC;
674
675 if (data->flags & MMC_DATA_READ)
676 flags |= SG_MITER_TO_SG;
677 else
678 flags |= SG_MITER_FROM_SG;
679
680 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
681}
682
683static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
684{
685 return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
686}
687
688static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
689{
690 return MCI_DPSM_ENABLE | (host->data->blksz << 16);
691}
692
693static void ux500_busy_clear_mask_done(struct mmci_host *host)
694{
695 void __iomem *base = host->base;
696
697 writel(host->variant->busy_detect_mask, base + MMCICLEAR);
698 writel(readl(base + MMCIMASK0) &
699 ~host->variant->busy_detect_mask, base + MMCIMASK0);
700 host->busy_state = MMCI_BUSY_DONE;
701 host->busy_status = 0;
702}
703
704/*
705 * ux500_busy_complete() - this will wait until the busy status
706 * goes off, saving any status that occur in the meantime into
707 * host->busy_status until we know the card is not busy any more.
708 * The function returns true when the busy detection is ended
709 * and we should continue processing the command.
710 *
711 * The Ux500 typically fires two IRQs over a busy cycle like this:
712 *
713 * DAT0 busy +-----------------+
714 * | |
715 * DAT0 not busy ----+ +--------
716 *
717 * ^ ^
718 * | |
719 * IRQ1 IRQ2
720 */
721static bool ux500_busy_complete(struct mmci_host *host, struct mmc_command *cmd,
722 u32 status, u32 err_msk)
723{
724 void __iomem *base = host->base;
725 int retries = 10;
726
727 if (status & err_msk) {
728 /* Stop any ongoing busy detection if an error occurs */
729 ux500_busy_clear_mask_done(host);
730 goto out_ret_state;
731 }
732
733 /*
734 * The state transitions are encoded in a state machine crossing
735 * the edges in this switch statement.
736 */
737 switch (host->busy_state) {
738
739 /*
740 * Before unmasking for the busy end IRQ, confirm that the
741 * command was sent successfully. To keep track of having a
742 * command in-progress, waiting for busy signaling to end,
743 * store the status in host->busy_status.
744 *
745 * Note that, the card may need a couple of clock cycles before
746 * it starts signaling busy on DAT0, hence re-read the
747 * MMCISTATUS register here, to allow the busy bit to be set.
748 */
749 case MMCI_BUSY_DONE:
750 /*
751 * Save the first status register read to be sure to catch
752 * all bits that may be lost will retrying. If the command
753 * is still busy this will result in assigning 0 to
754 * host->busy_status, which is what it should be in IDLE.
755 */
756 host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
757 while (retries) {
758 status = readl(base + MMCISTATUS);
759 /* Keep accumulating status bits */
760 host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
761 if (status & host->variant->busy_detect_flag) {
762 writel(readl(base + MMCIMASK0) |
763 host->variant->busy_detect_mask,
764 base + MMCIMASK0);
765 host->busy_state = MMCI_BUSY_WAITING_FOR_START_IRQ;
766 schedule_delayed_work(&host->ux500_busy_timeout_work,
767 msecs_to_jiffies(cmd->busy_timeout));
768 goto out_ret_state;
769 }
770 retries--;
771 }
772 dev_dbg(mmc_dev(host->mmc),
773 "no busy signalling in time CMD%02x\n", cmd->opcode);
774 ux500_busy_clear_mask_done(host);
775 break;
776
777 /*
778 * If there is a command in-progress that has been successfully
779 * sent, then bail out if busy status is set and wait for the
780 * busy end IRQ.
781 *
782 * Note that, the HW triggers an IRQ on both edges while
783 * monitoring DAT0 for busy completion, but there is only one
784 * status bit in MMCISTATUS for the busy state. Therefore
785 * both the start and the end interrupts needs to be cleared,
786 * one after the other. So, clear the busy start IRQ here.
787 */
788 case MMCI_BUSY_WAITING_FOR_START_IRQ:
789 if (status & host->variant->busy_detect_flag) {
790 host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
791 writel(host->variant->busy_detect_mask, base + MMCICLEAR);
792 host->busy_state = MMCI_BUSY_WAITING_FOR_END_IRQ;
793 } else {
794 dev_dbg(mmc_dev(host->mmc),
795 "lost busy status when waiting for busy start IRQ CMD%02x\n",
796 cmd->opcode);
797 cancel_delayed_work(&host->ux500_busy_timeout_work);
798 ux500_busy_clear_mask_done(host);
799 }
800 break;
801
802 case MMCI_BUSY_WAITING_FOR_END_IRQ:
803 if (!(status & host->variant->busy_detect_flag)) {
804 host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
805 writel(host->variant->busy_detect_mask, base + MMCICLEAR);
806 cancel_delayed_work(&host->ux500_busy_timeout_work);
807 ux500_busy_clear_mask_done(host);
808 } else {
809 dev_dbg(mmc_dev(host->mmc),
810 "busy status still asserted when handling busy end IRQ - will keep waiting CMD%02x\n",
811 cmd->opcode);
812 }
813 break;
814
815 default:
816 dev_dbg(mmc_dev(host->mmc), "fell through on state %d, CMD%02x\n",
817 host->busy_state, cmd->opcode);
818 break;
819 }
820
821out_ret_state:
822 return (host->busy_state == MMCI_BUSY_DONE);
823}
824
825/*
826 * All the DMA operation mode stuff goes inside this ifdef.
827 * This assumes that you have a generic DMA device interface,
828 * no custom DMA interfaces are supported.
829 */
830#ifdef CONFIG_DMA_ENGINE
831struct mmci_dmae_next {
832 struct dma_async_tx_descriptor *desc;
833 struct dma_chan *chan;
834};
835
836struct mmci_dmae_priv {
837 struct dma_chan *cur;
838 struct dma_chan *rx_channel;
839 struct dma_chan *tx_channel;
840 struct dma_async_tx_descriptor *desc_current;
841 struct mmci_dmae_next next_data;
842};
843
844int mmci_dmae_setup(struct mmci_host *host)
845{
846 const char *rxname, *txname;
847 struct mmci_dmae_priv *dmae;
848
849 dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
850 if (!dmae)
851 return -ENOMEM;
852
853 host->dma_priv = dmae;
854
855 dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
856 if (IS_ERR(dmae->rx_channel)) {
857 int ret = PTR_ERR(dmae->rx_channel);
858 dmae->rx_channel = NULL;
859 return ret;
860 }
861
862 dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
863 if (IS_ERR(dmae->tx_channel)) {
864 if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
865 dev_warn(mmc_dev(host->mmc),
866 "Deferred probe for TX channel ignored\n");
867 dmae->tx_channel = NULL;
868 }
869
870 /*
871 * If only an RX channel is specified, the driver will
872 * attempt to use it bidirectionally, however if it
873 * is specified but cannot be located, DMA will be disabled.
874 */
875 if (dmae->rx_channel && !dmae->tx_channel)
876 dmae->tx_channel = dmae->rx_channel;
877
878 if (dmae->rx_channel)
879 rxname = dma_chan_name(dmae->rx_channel);
880 else
881 rxname = "none";
882
883 if (dmae->tx_channel)
884 txname = dma_chan_name(dmae->tx_channel);
885 else
886 txname = "none";
887
888 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
889 rxname, txname);
890
891 /*
892 * Limit the maximum segment size in any SG entry according to
893 * the parameters of the DMA engine device.
894 */
895 if (dmae->tx_channel) {
896 struct device *dev = dmae->tx_channel->device->dev;
897 unsigned int max_seg_size = dma_get_max_seg_size(dev);
898
899 if (max_seg_size < host->mmc->max_seg_size)
900 host->mmc->max_seg_size = max_seg_size;
901 }
902 if (dmae->rx_channel) {
903 struct device *dev = dmae->rx_channel->device->dev;
904 unsigned int max_seg_size = dma_get_max_seg_size(dev);
905
906 if (max_seg_size < host->mmc->max_seg_size)
907 host->mmc->max_seg_size = max_seg_size;
908 }
909
910 if (!dmae->tx_channel || !dmae->rx_channel) {
911 mmci_dmae_release(host);
912 return -EINVAL;
913 }
914
915 return 0;
916}
917
918/*
919 * This is used in or so inline it
920 * so it can be discarded.
921 */
922void mmci_dmae_release(struct mmci_host *host)
923{
924 struct mmci_dmae_priv *dmae = host->dma_priv;
925
926 if (dmae->rx_channel)
927 dma_release_channel(dmae->rx_channel);
928 if (dmae->tx_channel)
929 dma_release_channel(dmae->tx_channel);
930 dmae->rx_channel = dmae->tx_channel = NULL;
931}
932
933static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
934{
935 struct mmci_dmae_priv *dmae = host->dma_priv;
936 struct dma_chan *chan;
937
938 if (data->flags & MMC_DATA_READ)
939 chan = dmae->rx_channel;
940 else
941 chan = dmae->tx_channel;
942
943 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
944 mmc_get_dma_dir(data));
945}
946
947void mmci_dmae_error(struct mmci_host *host)
948{
949 struct mmci_dmae_priv *dmae = host->dma_priv;
950
951 if (!dma_inprogress(host))
952 return;
953
954 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
955 dmaengine_terminate_all(dmae->cur);
956 host->dma_in_progress = false;
957 dmae->cur = NULL;
958 dmae->desc_current = NULL;
959 host->data->host_cookie = 0;
960
961 mmci_dma_unmap(host, host->data);
962}
963
964void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
965{
966 struct mmci_dmae_priv *dmae = host->dma_priv;
967 u32 status;
968 int i;
969
970 if (!dma_inprogress(host))
971 return;
972
973 /* Wait up to 1ms for the DMA to complete */
974 for (i = 0; ; i++) {
975 status = readl(host->base + MMCISTATUS);
976 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
977 break;
978 udelay(10);
979 }
980
981 /*
982 * Check to see whether we still have some data left in the FIFO -
983 * this catches DMA controllers which are unable to monitor the
984 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
985 * contiguous buffers. On TX, we'll get a FIFO underrun error.
986 */
987 if (status & MCI_RXDATAAVLBLMASK) {
988 mmci_dma_error(host);
989 if (!data->error)
990 data->error = -EIO;
991 } else if (!data->host_cookie) {
992 mmci_dma_unmap(host, data);
993 }
994
995 /*
996 * Use of DMA with scatter-gather is impossible.
997 * Give up with DMA and switch back to PIO mode.
998 */
999 if (status & MCI_RXDATAAVLBLMASK) {
1000 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
1001 mmci_dma_release(host);
1002 }
1003
1004 host->dma_in_progress = false;
1005 dmae->cur = NULL;
1006 dmae->desc_current = NULL;
1007}
1008
1009/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
1010static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
1011 struct dma_chan **dma_chan,
1012 struct dma_async_tx_descriptor **dma_desc)
1013{
1014 struct mmci_dmae_priv *dmae = host->dma_priv;
1015 struct variant_data *variant = host->variant;
1016 struct dma_slave_config conf = {
1017 .src_addr = host->phybase + MMCIFIFO,
1018 .dst_addr = host->phybase + MMCIFIFO,
1019 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1020 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1021 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
1022 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
1023 .device_fc = variant->dma_flow_controller,
1024 };
1025 struct dma_chan *chan;
1026 struct dma_device *device;
1027 struct dma_async_tx_descriptor *desc;
1028 int nr_sg;
1029 unsigned long flags = DMA_CTRL_ACK;
1030
1031 if (data->flags & MMC_DATA_READ) {
1032 conf.direction = DMA_DEV_TO_MEM;
1033 chan = dmae->rx_channel;
1034 } else {
1035 conf.direction = DMA_MEM_TO_DEV;
1036 chan = dmae->tx_channel;
1037 }
1038
1039 /* If there's no DMA channel, fall back to PIO */
1040 if (!chan)
1041 return -EINVAL;
1042
1043 /* If less than or equal to the fifo size, don't bother with DMA */
1044 if (data->blksz * data->blocks <= variant->fifosize)
1045 return -EINVAL;
1046
1047 /*
1048 * This is necessary to get SDIO working on the Ux500. We do not yet
1049 * know if this is a bug in:
1050 * - The Ux500 DMA controller (DMA40)
1051 * - The MMCI DMA interface on the Ux500
1052 * some power of two blocks (such as 64 bytes) are sent regularly
1053 * during SDIO traffic and those work fine so for these we enable DMA
1054 * transfers.
1055 */
1056 if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
1057 return -EINVAL;
1058
1059 device = chan->device;
1060 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
1061 mmc_get_dma_dir(data));
1062 if (nr_sg == 0)
1063 return -EINVAL;
1064
1065 if (host->variant->qcom_dml)
1066 flags |= DMA_PREP_INTERRUPT;
1067
1068 dmaengine_slave_config(chan, &conf);
1069 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
1070 conf.direction, flags);
1071 if (!desc)
1072 goto unmap_exit;
1073
1074 *dma_chan = chan;
1075 *dma_desc = desc;
1076
1077 return 0;
1078
1079 unmap_exit:
1080 dma_unmap_sg(device->dev, data->sg, data->sg_len,
1081 mmc_get_dma_dir(data));
1082 return -ENOMEM;
1083}
1084
1085int mmci_dmae_prep_data(struct mmci_host *host,
1086 struct mmc_data *data,
1087 bool next)
1088{
1089 struct mmci_dmae_priv *dmae = host->dma_priv;
1090 struct mmci_dmae_next *nd = &dmae->next_data;
1091
1092 if (!host->use_dma)
1093 return -EINVAL;
1094
1095 if (next)
1096 return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
1097 /* Check if next job is already prepared. */
1098 if (dmae->cur && dmae->desc_current)
1099 return 0;
1100
1101 /* No job were prepared thus do it now. */
1102 return _mmci_dmae_prep_data(host, data, &dmae->cur,
1103 &dmae->desc_current);
1104}
1105
1106int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
1107{
1108 struct mmci_dmae_priv *dmae = host->dma_priv;
1109 int ret;
1110
1111 host->dma_in_progress = true;
1112 ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1113 if (ret < 0) {
1114 host->dma_in_progress = false;
1115 return ret;
1116 }
1117 dma_async_issue_pending(dmae->cur);
1118
1119 *datactrl |= MCI_DPSM_DMAENABLE;
1120
1121 return 0;
1122}
1123
1124void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
1125{
1126 struct mmci_dmae_priv *dmae = host->dma_priv;
1127 struct mmci_dmae_next *next = &dmae->next_data;
1128
1129 if (!host->use_dma)
1130 return;
1131
1132 WARN_ON(!data->host_cookie && (next->desc || next->chan));
1133
1134 dmae->desc_current = next->desc;
1135 dmae->cur = next->chan;
1136 next->desc = NULL;
1137 next->chan = NULL;
1138}
1139
1140void mmci_dmae_unprep_data(struct mmci_host *host,
1141 struct mmc_data *data, int err)
1142
1143{
1144 struct mmci_dmae_priv *dmae = host->dma_priv;
1145
1146 if (!host->use_dma)
1147 return;
1148
1149 mmci_dma_unmap(host, data);
1150
1151 if (err) {
1152 struct mmci_dmae_next *next = &dmae->next_data;
1153 struct dma_chan *chan;
1154 if (data->flags & MMC_DATA_READ)
1155 chan = dmae->rx_channel;
1156 else
1157 chan = dmae->tx_channel;
1158 dmaengine_terminate_all(chan);
1159
1160 if (dmae->desc_current == next->desc)
1161 dmae->desc_current = NULL;
1162
1163 if (dmae->cur == next->chan) {
1164 host->dma_in_progress = false;
1165 dmae->cur = NULL;
1166 }
1167
1168 next->desc = NULL;
1169 next->chan = NULL;
1170 }
1171}
1172
1173static struct mmci_host_ops mmci_variant_ops = {
1174 .prep_data = mmci_dmae_prep_data,
1175 .unprep_data = mmci_dmae_unprep_data,
1176 .get_datactrl_cfg = mmci_get_dctrl_cfg,
1177 .get_next_data = mmci_dmae_get_next_data,
1178 .dma_setup = mmci_dmae_setup,
1179 .dma_release = mmci_dmae_release,
1180 .dma_start = mmci_dmae_start,
1181 .dma_finalize = mmci_dmae_finalize,
1182 .dma_error = mmci_dmae_error,
1183};
1184#else
1185static struct mmci_host_ops mmci_variant_ops = {
1186 .get_datactrl_cfg = mmci_get_dctrl_cfg,
1187};
1188#endif
1189
1190static void mmci_variant_init(struct mmci_host *host)
1191{
1192 host->ops = &mmci_variant_ops;
1193}
1194
1195static void ux500_variant_init(struct mmci_host *host)
1196{
1197 host->ops = &mmci_variant_ops;
1198 host->ops->busy_complete = ux500_busy_complete;
1199}
1200
1201static void ux500v2_variant_init(struct mmci_host *host)
1202{
1203 host->ops = &mmci_variant_ops;
1204 host->ops->busy_complete = ux500_busy_complete;
1205 host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1206}
1207
1208static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1209{
1210 struct mmci_host *host = mmc_priv(mmc);
1211 struct mmc_data *data = mrq->data;
1212
1213 if (!data)
1214 return;
1215
1216 WARN_ON(data->host_cookie);
1217
1218 if (mmci_validate_data(host, data))
1219 return;
1220
1221 mmci_prep_data(host, data, true);
1222}
1223
1224static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1225 int err)
1226{
1227 struct mmci_host *host = mmc_priv(mmc);
1228 struct mmc_data *data = mrq->data;
1229
1230 if (!data || !data->host_cookie)
1231 return;
1232
1233 mmci_unprep_data(host, data, err);
1234}
1235
1236static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1237{
1238 struct variant_data *variant = host->variant;
1239 unsigned int datactrl, timeout, irqmask;
1240 unsigned long long clks;
1241 void __iomem *base;
1242
1243 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1244 data->blksz, data->blocks, data->flags);
1245
1246 host->data = data;
1247 host->size = data->blksz * data->blocks;
1248 data->bytes_xfered = 0;
1249
1250 clks = (unsigned long long)data->timeout_ns * host->cclk;
1251 do_div(clks, NSEC_PER_SEC);
1252
1253 timeout = data->timeout_clks + (unsigned int)clks;
1254
1255 base = host->base;
1256 writel(timeout, base + MMCIDATATIMER);
1257 writel(host->size, base + MMCIDATALENGTH);
1258
1259 datactrl = host->ops->get_datactrl_cfg(host);
1260 datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1261
1262 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1263 u32 clk;
1264
1265 datactrl |= variant->datactrl_mask_sdio;
1266
1267 /*
1268 * The ST Micro variant for SDIO small write transfers
1269 * needs to have clock H/W flow control disabled,
1270 * otherwise the transfer will not start. The threshold
1271 * depends on the rate of MCLK.
1272 */
1273 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1274 (host->size < 8 ||
1275 (host->size <= 8 && host->mclk > 50000000)))
1276 clk = host->clk_reg & ~variant->clkreg_enable;
1277 else
1278 clk = host->clk_reg | variant->clkreg_enable;
1279
1280 mmci_write_clkreg(host, clk);
1281 }
1282
1283 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1284 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1285 datactrl |= variant->datactrl_mask_ddrmode;
1286
1287 /*
1288 * Attempt to use DMA operation mode, if this
1289 * should fail, fall back to PIO mode
1290 */
1291 if (!mmci_dma_start(host, datactrl))
1292 return;
1293
1294 /* IRQ mode, map the SG list for CPU reading/writing */
1295 mmci_init_sg(host, data);
1296
1297 if (data->flags & MMC_DATA_READ) {
1298 irqmask = MCI_RXFIFOHALFFULLMASK;
1299
1300 /*
1301 * If we have less than the fifo 'half-full' threshold to
1302 * transfer, trigger a PIO interrupt as soon as any data
1303 * is available.
1304 */
1305 if (host->size < variant->fifohalfsize)
1306 irqmask |= MCI_RXDATAAVLBLMASK;
1307 } else {
1308 /*
1309 * We don't actually need to include "FIFO empty" here
1310 * since its implicit in "FIFO half empty".
1311 */
1312 irqmask = MCI_TXFIFOHALFEMPTYMASK;
1313 }
1314
1315 mmci_write_datactrlreg(host, datactrl);
1316 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1317 mmci_set_mask1(host, irqmask);
1318}
1319
1320static void
1321mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1322{
1323 void __iomem *base = host->base;
1324 bool busy_resp = cmd->flags & MMC_RSP_BUSY;
1325 unsigned long long clks;
1326
1327 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1328 cmd->opcode, cmd->arg, cmd->flags);
1329
1330 if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1331 writel(0, base + MMCICOMMAND);
1332 mmci_reg_delay(host);
1333 }
1334
1335 if (host->variant->cmdreg_stop &&
1336 cmd->opcode == MMC_STOP_TRANSMISSION)
1337 c |= host->variant->cmdreg_stop;
1338
1339 c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1340 if (cmd->flags & MMC_RSP_PRESENT) {
1341 if (cmd->flags & MMC_RSP_136)
1342 c |= host->variant->cmdreg_lrsp_crc;
1343 else if (cmd->flags & MMC_RSP_CRC)
1344 c |= host->variant->cmdreg_srsp_crc;
1345 else
1346 c |= host->variant->cmdreg_srsp;
1347 }
1348
1349 host->busy_status = 0;
1350 host->busy_state = MMCI_BUSY_DONE;
1351
1352 /* Assign a default timeout if the core does not provide one */
1353 if (busy_resp && !cmd->busy_timeout)
1354 cmd->busy_timeout = 10 * MSEC_PER_SEC;
1355
1356 if (busy_resp && host->variant->busy_timeout) {
1357 if (cmd->busy_timeout > host->mmc->max_busy_timeout)
1358 clks = (unsigned long long)host->mmc->max_busy_timeout * host->cclk;
1359 else
1360 clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1361
1362 do_div(clks, MSEC_PER_SEC);
1363 writel_relaxed(clks, host->base + MMCIDATATIMER);
1364 }
1365
1366 if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1367 host->ops->pre_sig_volt_switch(host);
1368
1369 if (/*interrupt*/0)
1370 c |= MCI_CPSM_INTERRUPT;
1371
1372 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1373 c |= host->variant->data_cmd_enable;
1374
1375 host->cmd = cmd;
1376
1377 writel(cmd->arg, base + MMCIARGUMENT);
1378 writel(c, base + MMCICOMMAND);
1379}
1380
1381static void mmci_stop_command(struct mmci_host *host)
1382{
1383 host->stop_abort.error = 0;
1384 mmci_start_command(host, &host->stop_abort, 0);
1385}
1386
1387static void
1388mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1389 unsigned int status)
1390{
1391 unsigned int status_err;
1392
1393 /* Make sure we have data to handle */
1394 if (!data)
1395 return;
1396
1397 /* First check for errors */
1398 status_err = status & (host->variant->start_err |
1399 MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1400 MCI_TXUNDERRUN | MCI_RXOVERRUN);
1401
1402 if (status_err) {
1403 u32 remain, success;
1404
1405 /* Terminate the DMA transfer */
1406 mmci_dma_error(host);
1407
1408 /*
1409 * Calculate how far we are into the transfer. Note that
1410 * the data counter gives the number of bytes transferred
1411 * on the MMC bus, not on the host side. On reads, this
1412 * can be as much as a FIFO-worth of data ahead. This
1413 * matters for FIFO overruns only.
1414 */
1415 if (!host->variant->datacnt_useless) {
1416 remain = readl(host->base + MMCIDATACNT);
1417 success = data->blksz * data->blocks - remain;
1418 } else {
1419 success = 0;
1420 }
1421
1422 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1423 status_err, success);
1424 if (status_err & MCI_DATACRCFAIL) {
1425 /* Last block was not successful */
1426 success -= 1;
1427 data->error = -EILSEQ;
1428 } else if (status_err & MCI_DATATIMEOUT) {
1429 data->error = -ETIMEDOUT;
1430 } else if (status_err & MCI_STARTBITERR) {
1431 data->error = -ECOMM;
1432 } else if (status_err & MCI_TXUNDERRUN) {
1433 data->error = -EIO;
1434 } else if (status_err & MCI_RXOVERRUN) {
1435 if (success > host->variant->fifosize)
1436 success -= host->variant->fifosize;
1437 else
1438 success = 0;
1439 data->error = -EIO;
1440 }
1441 data->bytes_xfered = round_down(success, data->blksz);
1442 }
1443
1444 if (status & MCI_DATABLOCKEND)
1445 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1446
1447 if (status & MCI_DATAEND || data->error) {
1448 mmci_dma_finalize(host, data);
1449
1450 mmci_stop_data(host);
1451
1452 if (!data->error)
1453 /* The error clause is handled above, success! */
1454 data->bytes_xfered = data->blksz * data->blocks;
1455
1456 if (!data->stop) {
1457 if (host->variant->cmdreg_stop && data->error)
1458 mmci_stop_command(host);
1459 else
1460 mmci_request_end(host, data->mrq);
1461 } else if (host->mrq->sbc && !data->error) {
1462 mmci_request_end(host, data->mrq);
1463 } else {
1464 mmci_start_command(host, data->stop, 0);
1465 }
1466 }
1467}
1468
1469static void
1470mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1471 unsigned int status)
1472{
1473 u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1474 void __iomem *base = host->base;
1475 bool sbc, busy_resp;
1476
1477 if (!cmd)
1478 return;
1479
1480 sbc = (cmd == host->mrq->sbc);
1481 busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1482
1483 /*
1484 * We need to be one of these interrupts to be considered worth
1485 * handling. Note that we tag on any latent IRQs postponed
1486 * due to waiting for busy status.
1487 */
1488 if (host->variant->busy_timeout && busy_resp)
1489 err_msk |= MCI_DATATIMEOUT;
1490
1491 if (!((status | host->busy_status) &
1492 (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1493 return;
1494
1495 /* Handle busy detection on DAT0 if the variant supports it. */
1496 if (busy_resp && host->variant->busy_detect)
1497 if (!host->ops->busy_complete(host, cmd, status, err_msk))
1498 return;
1499
1500 host->cmd = NULL;
1501
1502 if (status & MCI_CMDTIMEOUT) {
1503 cmd->error = -ETIMEDOUT;
1504 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1505 cmd->error = -EILSEQ;
1506 } else if (host->variant->busy_timeout && busy_resp &&
1507 status & MCI_DATATIMEOUT) {
1508 cmd->error = -ETIMEDOUT;
1509 /*
1510 * This will wake up mmci_irq_thread() which will issue
1511 * a hardware reset of the MMCI block.
1512 */
1513 host->irq_action = IRQ_WAKE_THREAD;
1514 } else {
1515 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1516 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1517 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1518 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1519 }
1520
1521 if ((!sbc && !cmd->data) || cmd->error) {
1522 if (host->data) {
1523 /* Terminate the DMA transfer */
1524 mmci_dma_error(host);
1525
1526 mmci_stop_data(host);
1527 if (host->variant->cmdreg_stop && cmd->error) {
1528 mmci_stop_command(host);
1529 return;
1530 }
1531 }
1532
1533 if (host->irq_action != IRQ_WAKE_THREAD)
1534 mmci_request_end(host, host->mrq);
1535
1536 } else if (sbc) {
1537 mmci_start_command(host, host->mrq->cmd, 0);
1538 } else if (!host->variant->datactrl_first &&
1539 !(cmd->data->flags & MMC_DATA_READ)) {
1540 mmci_start_data(host, cmd->data);
1541 }
1542}
1543
1544static char *ux500_state_str(struct mmci_host *host)
1545{
1546 switch (host->busy_state) {
1547 case MMCI_BUSY_WAITING_FOR_START_IRQ:
1548 return "waiting for start IRQ";
1549 case MMCI_BUSY_WAITING_FOR_END_IRQ:
1550 return "waiting for end IRQ";
1551 case MMCI_BUSY_DONE:
1552 return "not waiting for IRQs";
1553 default:
1554 return "unknown";
1555 }
1556}
1557
1558/*
1559 * This busy timeout worker is used to "kick" the command IRQ if a
1560 * busy detect IRQ fails to appear in reasonable time. Only used on
1561 * variants with busy detection IRQ delivery.
1562 */
1563static void ux500_busy_timeout_work(struct work_struct *work)
1564{
1565 struct mmci_host *host = container_of(work, struct mmci_host,
1566 ux500_busy_timeout_work.work);
1567 unsigned long flags;
1568 u32 status;
1569
1570 spin_lock_irqsave(&host->lock, flags);
1571
1572 if (host->cmd) {
1573 /* If we are still busy let's tag on a cmd-timeout error. */
1574 status = readl(host->base + MMCISTATUS);
1575 if (status & host->variant->busy_detect_flag) {
1576 status |= MCI_CMDTIMEOUT;
1577 dev_err(mmc_dev(host->mmc),
1578 "timeout in state %s still busy with CMD%02x\n",
1579 ux500_state_str(host), host->cmd->opcode);
1580 } else {
1581 dev_err(mmc_dev(host->mmc),
1582 "timeout in state %s waiting for busy CMD%02x\n",
1583 ux500_state_str(host), host->cmd->opcode);
1584 }
1585
1586 mmci_cmd_irq(host, host->cmd, status);
1587 }
1588
1589 spin_unlock_irqrestore(&host->lock, flags);
1590}
1591
1592static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1593{
1594 return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1595}
1596
1597static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1598{
1599 /*
1600 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1601 * from the fifo range should be used
1602 */
1603 if (status & MCI_RXFIFOHALFFULL)
1604 return host->variant->fifohalfsize;
1605 else if (status & MCI_RXDATAAVLBL)
1606 return 4;
1607
1608 return 0;
1609}
1610
1611static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1612{
1613 void __iomem *base = host->base;
1614 char *ptr = buffer;
1615 u32 status = readl(host->base + MMCISTATUS);
1616 int host_remain = host->size;
1617
1618 do {
1619 int count = host->get_rx_fifocnt(host, status, host_remain);
1620
1621 if (count > remain)
1622 count = remain;
1623
1624 if (count <= 0)
1625 break;
1626
1627 /*
1628 * SDIO especially may want to send something that is
1629 * not divisible by 4 (as opposed to card sectors
1630 * etc). Therefore make sure to always read the last bytes
1631 * while only doing full 32-bit reads towards the FIFO.
1632 */
1633 if (unlikely(count & 0x3)) {
1634 if (count < 4) {
1635 unsigned char buf[4];
1636 ioread32_rep(base + MMCIFIFO, buf, 1);
1637 memcpy(ptr, buf, count);
1638 } else {
1639 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1640 count &= ~0x3;
1641 }
1642 } else {
1643 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1644 }
1645
1646 ptr += count;
1647 remain -= count;
1648 host_remain -= count;
1649
1650 if (remain == 0)
1651 break;
1652
1653 status = readl(base + MMCISTATUS);
1654 } while (status & MCI_RXDATAAVLBL);
1655
1656 return ptr - buffer;
1657}
1658
1659static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1660{
1661 struct variant_data *variant = host->variant;
1662 void __iomem *base = host->base;
1663 char *ptr = buffer;
1664
1665 do {
1666 unsigned int count, maxcnt;
1667
1668 maxcnt = status & MCI_TXFIFOEMPTY ?
1669 variant->fifosize : variant->fifohalfsize;
1670 count = min(remain, maxcnt);
1671
1672 /*
1673 * SDIO especially may want to send something that is
1674 * not divisible by 4 (as opposed to card sectors
1675 * etc), and the FIFO only accept full 32-bit writes.
1676 * So compensate by adding +3 on the count, a single
1677 * byte become a 32bit write, 7 bytes will be two
1678 * 32bit writes etc.
1679 */
1680 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1681
1682 ptr += count;
1683 remain -= count;
1684
1685 if (remain == 0)
1686 break;
1687
1688 status = readl(base + MMCISTATUS);
1689 } while (status & MCI_TXFIFOHALFEMPTY);
1690
1691 return ptr - buffer;
1692}
1693
1694/*
1695 * PIO data transfer IRQ handler.
1696 */
1697static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1698{
1699 struct mmci_host *host = dev_id;
1700 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1701 struct variant_data *variant = host->variant;
1702 void __iomem *base = host->base;
1703 u32 status;
1704
1705 status = readl(base + MMCISTATUS);
1706
1707 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1708
1709 do {
1710 unsigned int remain, len;
1711 char *buffer;
1712
1713 /*
1714 * For write, we only need to test the half-empty flag
1715 * here - if the FIFO is completely empty, then by
1716 * definition it is more than half empty.
1717 *
1718 * For read, check for data available.
1719 */
1720 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1721 break;
1722
1723 if (!sg_miter_next(sg_miter))
1724 break;
1725
1726 buffer = sg_miter->addr;
1727 remain = sg_miter->length;
1728
1729 len = 0;
1730 if (status & MCI_RXACTIVE)
1731 len = mmci_pio_read(host, buffer, remain);
1732 if (status & MCI_TXACTIVE)
1733 len = mmci_pio_write(host, buffer, remain, status);
1734
1735 sg_miter->consumed = len;
1736
1737 host->size -= len;
1738 remain -= len;
1739
1740 if (remain)
1741 break;
1742
1743 status = readl(base + MMCISTATUS);
1744 } while (1);
1745
1746 sg_miter_stop(sg_miter);
1747
1748 /*
1749 * If we have less than the fifo 'half-full' threshold to transfer,
1750 * trigger a PIO interrupt as soon as any data is available.
1751 */
1752 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1753 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1754
1755 /*
1756 * If we run out of data, disable the data IRQs; this
1757 * prevents a race where the FIFO becomes empty before
1758 * the chip itself has disabled the data path, and
1759 * stops us racing with our data end IRQ.
1760 */
1761 if (host->size == 0) {
1762 mmci_set_mask1(host, 0);
1763 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1764 }
1765
1766 return IRQ_HANDLED;
1767}
1768
1769static void mmci_write_sdio_irq_bit(struct mmci_host *host, int enable)
1770{
1771 void __iomem *base = host->base;
1772 u32 mask = readl_relaxed(base + MMCIMASK0);
1773
1774 if (enable)
1775 writel_relaxed(mask | MCI_ST_SDIOITMASK, base + MMCIMASK0);
1776 else
1777 writel_relaxed(mask & ~MCI_ST_SDIOITMASK, base + MMCIMASK0);
1778}
1779
1780static void mmci_signal_sdio_irq(struct mmci_host *host, u32 status)
1781{
1782 if (status & MCI_ST_SDIOIT) {
1783 mmci_write_sdio_irq_bit(host, 0);
1784 sdio_signal_irq(host->mmc);
1785 }
1786}
1787
1788/*
1789 * Handle completion of command and data transfers.
1790 */
1791static irqreturn_t mmci_irq(int irq, void *dev_id)
1792{
1793 struct mmci_host *host = dev_id;
1794 u32 status;
1795
1796 spin_lock(&host->lock);
1797 host->irq_action = IRQ_HANDLED;
1798
1799 do {
1800 status = readl(host->base + MMCISTATUS);
1801 if (!status)
1802 break;
1803
1804 if (host->singleirq) {
1805 if (status & host->mask1_reg)
1806 mmci_pio_irq(irq, dev_id);
1807
1808 status &= ~host->variant->irq_pio_mask;
1809 }
1810
1811 /*
1812 * Busy detection is managed by mmci_cmd_irq(), including to
1813 * clear the corresponding IRQ.
1814 */
1815 status &= readl(host->base + MMCIMASK0);
1816 if (host->variant->busy_detect)
1817 writel(status & ~host->variant->busy_detect_mask,
1818 host->base + MMCICLEAR);
1819 else
1820 writel(status, host->base + MMCICLEAR);
1821
1822 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1823
1824 if (host->variant->reversed_irq_handling) {
1825 mmci_data_irq(host, host->data, status);
1826 mmci_cmd_irq(host, host->cmd, status);
1827 } else {
1828 mmci_cmd_irq(host, host->cmd, status);
1829 mmci_data_irq(host, host->data, status);
1830 }
1831
1832 if (host->variant->supports_sdio_irq)
1833 mmci_signal_sdio_irq(host, status);
1834
1835 /*
1836 * Busy detection has been handled by mmci_cmd_irq() above.
1837 * Clear the status bit to prevent polling in IRQ context.
1838 */
1839 if (host->variant->busy_detect_flag)
1840 status &= ~host->variant->busy_detect_flag;
1841
1842 } while (status);
1843
1844 spin_unlock(&host->lock);
1845
1846 return host->irq_action;
1847}
1848
1849/*
1850 * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1851 *
1852 * A reset is needed for some variants, where a datatimeout for a R1B request
1853 * causes the DPSM to stay busy (non-functional).
1854 */
1855static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1856{
1857 struct mmci_host *host = dev_id;
1858 unsigned long flags;
1859
1860 if (host->rst) {
1861 reset_control_assert(host->rst);
1862 udelay(2);
1863 reset_control_deassert(host->rst);
1864 }
1865
1866 spin_lock_irqsave(&host->lock, flags);
1867 writel(host->clk_reg, host->base + MMCICLOCK);
1868 writel(host->pwr_reg, host->base + MMCIPOWER);
1869 writel(MCI_IRQENABLE | host->variant->start_err,
1870 host->base + MMCIMASK0);
1871
1872 host->irq_action = IRQ_HANDLED;
1873 mmci_request_end(host, host->mrq);
1874 spin_unlock_irqrestore(&host->lock, flags);
1875
1876 return host->irq_action;
1877}
1878
1879static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1880{
1881 struct mmci_host *host = mmc_priv(mmc);
1882 unsigned long flags;
1883
1884 WARN_ON(host->mrq != NULL);
1885
1886 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1887 if (mrq->cmd->error) {
1888 mmc_request_done(mmc, mrq);
1889 return;
1890 }
1891
1892 spin_lock_irqsave(&host->lock, flags);
1893
1894 host->mrq = mrq;
1895
1896 if (mrq->data)
1897 mmci_get_next_data(host, mrq->data);
1898
1899 if (mrq->data &&
1900 (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1901 mmci_start_data(host, mrq->data);
1902
1903 if (mrq->sbc)
1904 mmci_start_command(host, mrq->sbc, 0);
1905 else
1906 mmci_start_command(host, mrq->cmd, 0);
1907
1908 spin_unlock_irqrestore(&host->lock, flags);
1909}
1910
1911static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1912{
1913 struct mmci_host *host = mmc_priv(mmc);
1914 u32 max_busy_timeout = 0;
1915
1916 if (!host->variant->busy_detect)
1917 return;
1918
1919 if (host->variant->busy_timeout && mmc->actual_clock)
1920 max_busy_timeout = U32_MAX / DIV_ROUND_UP(mmc->actual_clock,
1921 MSEC_PER_SEC);
1922
1923 mmc->max_busy_timeout = max_busy_timeout;
1924}
1925
1926static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1927{
1928 struct mmci_host *host = mmc_priv(mmc);
1929 struct variant_data *variant = host->variant;
1930 u32 pwr = 0;
1931 unsigned long flags;
1932 int ret;
1933
1934 switch (ios->power_mode) {
1935 case MMC_POWER_OFF:
1936 if (!IS_ERR(mmc->supply.vmmc))
1937 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1938
1939 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1940 regulator_disable(mmc->supply.vqmmc);
1941 host->vqmmc_enabled = false;
1942 }
1943
1944 break;
1945 case MMC_POWER_UP:
1946 if (!IS_ERR(mmc->supply.vmmc))
1947 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1948
1949 /*
1950 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1951 * and instead uses MCI_PWR_ON so apply whatever value is
1952 * configured in the variant data.
1953 */
1954 pwr |= variant->pwrreg_powerup;
1955
1956 break;
1957 case MMC_POWER_ON:
1958 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1959 ret = regulator_enable(mmc->supply.vqmmc);
1960 if (ret < 0)
1961 dev_err(mmc_dev(mmc),
1962 "failed to enable vqmmc regulator\n");
1963 else
1964 host->vqmmc_enabled = true;
1965 }
1966
1967 pwr |= MCI_PWR_ON;
1968 break;
1969 }
1970
1971 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1972 /*
1973 * The ST Micro variant has some additional bits
1974 * indicating signal direction for the signals in
1975 * the SD/MMC bus and feedback-clock usage.
1976 */
1977 pwr |= host->pwr_reg_add;
1978
1979 if (ios->bus_width == MMC_BUS_WIDTH_4)
1980 pwr &= ~MCI_ST_DATA74DIREN;
1981 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1982 pwr &= (~MCI_ST_DATA74DIREN &
1983 ~MCI_ST_DATA31DIREN &
1984 ~MCI_ST_DATA2DIREN);
1985 }
1986
1987 if (variant->opendrain) {
1988 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1989 pwr |= variant->opendrain;
1990 } else {
1991 /*
1992 * If the variant cannot configure the pads by its own, then we
1993 * expect the pinctrl to be able to do that for us
1994 */
1995 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1996 pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1997 else
1998 pinctrl_select_default_state(mmc_dev(mmc));
1999 }
2000
2001 /*
2002 * If clock = 0 and the variant requires the MMCIPOWER to be used for
2003 * gating the clock, the MCI_PWR_ON bit is cleared.
2004 */
2005 if (!ios->clock && variant->pwrreg_clkgate)
2006 pwr &= ~MCI_PWR_ON;
2007
2008 if (host->variant->explicit_mclk_control &&
2009 ios->clock != host->clock_cache) {
2010 ret = clk_set_rate(host->clk, ios->clock);
2011 if (ret < 0)
2012 dev_err(mmc_dev(host->mmc),
2013 "Error setting clock rate (%d)\n", ret);
2014 else
2015 host->mclk = clk_get_rate(host->clk);
2016 }
2017 host->clock_cache = ios->clock;
2018
2019 spin_lock_irqsave(&host->lock, flags);
2020
2021 if (host->ops && host->ops->set_clkreg)
2022 host->ops->set_clkreg(host, ios->clock);
2023 else
2024 mmci_set_clkreg(host, ios->clock);
2025
2026 mmci_set_max_busy_timeout(mmc);
2027
2028 if (host->ops && host->ops->set_pwrreg)
2029 host->ops->set_pwrreg(host, pwr);
2030 else
2031 mmci_write_pwrreg(host, pwr);
2032
2033 mmci_reg_delay(host);
2034
2035 spin_unlock_irqrestore(&host->lock, flags);
2036}
2037
2038static int mmci_get_cd(struct mmc_host *mmc)
2039{
2040 struct mmci_host *host = mmc_priv(mmc);
2041 struct mmci_platform_data *plat = host->plat;
2042 unsigned int status = mmc_gpio_get_cd(mmc);
2043
2044 if (status == -ENOSYS) {
2045 if (!plat->status)
2046 return 1; /* Assume always present */
2047
2048 status = plat->status(mmc_dev(host->mmc));
2049 }
2050 return status;
2051}
2052
2053static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
2054{
2055 struct mmci_host *host = mmc_priv(mmc);
2056 int ret;
2057
2058 ret = mmc_regulator_set_vqmmc(mmc, ios);
2059
2060 if (!ret && host->ops && host->ops->post_sig_volt_switch)
2061 ret = host->ops->post_sig_volt_switch(host, ios);
2062 else if (ret)
2063 ret = 0;
2064
2065 if (ret < 0)
2066 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
2067
2068 return ret;
2069}
2070
2071static void mmci_enable_sdio_irq(struct mmc_host *mmc, int enable)
2072{
2073 struct mmci_host *host = mmc_priv(mmc);
2074 unsigned long flags;
2075
2076 if (enable)
2077 /* Keep the SDIO mode bit if SDIO irqs are enabled */
2078 pm_runtime_get_sync(mmc_dev(mmc));
2079
2080 spin_lock_irqsave(&host->lock, flags);
2081 mmci_write_sdio_irq_bit(host, enable);
2082 spin_unlock_irqrestore(&host->lock, flags);
2083
2084 if (!enable) {
2085 pm_runtime_mark_last_busy(mmc_dev(mmc));
2086 pm_runtime_put_autosuspend(mmc_dev(mmc));
2087 }
2088}
2089
2090static void mmci_ack_sdio_irq(struct mmc_host *mmc)
2091{
2092 struct mmci_host *host = mmc_priv(mmc);
2093 unsigned long flags;
2094
2095 spin_lock_irqsave(&host->lock, flags);
2096 mmci_write_sdio_irq_bit(host, 1);
2097 spin_unlock_irqrestore(&host->lock, flags);
2098}
2099
2100static struct mmc_host_ops mmci_ops = {
2101 .request = mmci_request,
2102 .pre_req = mmci_pre_request,
2103 .post_req = mmci_post_request,
2104 .set_ios = mmci_set_ios,
2105 .get_ro = mmc_gpio_get_ro,
2106 .get_cd = mmci_get_cd,
2107 .start_signal_voltage_switch = mmci_sig_volt_switch,
2108};
2109
2110static void mmci_probe_level_translator(struct mmc_host *mmc)
2111{
2112 struct device *dev = mmc_dev(mmc);
2113 struct mmci_host *host = mmc_priv(mmc);
2114 struct gpio_desc *cmd_gpio;
2115 struct gpio_desc *ck_gpio;
2116 struct gpio_desc *ckin_gpio;
2117 int clk_hi, clk_lo;
2118
2119 /*
2120 * Assume the level translator is present if st,use-ckin is set.
2121 * This is to cater for DTs which do not implement this test.
2122 */
2123 host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
2124
2125 cmd_gpio = gpiod_get(dev, "st,cmd", GPIOD_OUT_HIGH);
2126 if (IS_ERR(cmd_gpio))
2127 goto exit_cmd;
2128
2129 ck_gpio = gpiod_get(dev, "st,ck", GPIOD_OUT_HIGH);
2130 if (IS_ERR(ck_gpio))
2131 goto exit_ck;
2132
2133 ckin_gpio = gpiod_get(dev, "st,ckin", GPIOD_IN);
2134 if (IS_ERR(ckin_gpio))
2135 goto exit_ckin;
2136
2137 /* All GPIOs are valid, test whether level translator works */
2138
2139 /* Sample CKIN */
2140 clk_hi = !!gpiod_get_value(ckin_gpio);
2141
2142 /* Set CK low */
2143 gpiod_set_value(ck_gpio, 0);
2144
2145 /* Sample CKIN */
2146 clk_lo = !!gpiod_get_value(ckin_gpio);
2147
2148 /* Tristate all */
2149 gpiod_direction_input(cmd_gpio);
2150 gpiod_direction_input(ck_gpio);
2151
2152 /* Level translator is present if CK signal is propagated to CKIN */
2153 if (!clk_hi || clk_lo) {
2154 host->clk_reg_add &= ~MCI_STM32_CLK_SELCKIN;
2155 dev_warn(dev,
2156 "Level translator inoperable, CK signal not detected on CKIN, disabling.\n");
2157 }
2158
2159 gpiod_put(ckin_gpio);
2160
2161exit_ckin:
2162 gpiod_put(ck_gpio);
2163exit_ck:
2164 gpiod_put(cmd_gpio);
2165exit_cmd:
2166 pinctrl_select_default_state(dev);
2167}
2168
2169static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
2170{
2171 struct mmci_host *host = mmc_priv(mmc);
2172 int ret = mmc_of_parse(mmc);
2173
2174 if (ret)
2175 return ret;
2176
2177 if (of_property_read_bool(np, "st,sig-dir-dat0"))
2178 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
2179 if (of_property_read_bool(np, "st,sig-dir-dat2"))
2180 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
2181 if (of_property_read_bool(np, "st,sig-dir-dat31"))
2182 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
2183 if (of_property_read_bool(np, "st,sig-dir-dat74"))
2184 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
2185 if (of_property_read_bool(np, "st,sig-dir-cmd"))
2186 host->pwr_reg_add |= MCI_ST_CMDDIREN;
2187 if (of_property_read_bool(np, "st,sig-pin-fbclk"))
2188 host->pwr_reg_add |= MCI_ST_FBCLKEN;
2189 if (of_property_read_bool(np, "st,sig-dir"))
2190 host->pwr_reg_add |= MCI_STM32_DIRPOL;
2191 if (of_property_read_bool(np, "st,neg-edge"))
2192 host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
2193 if (of_property_read_bool(np, "st,use-ckin"))
2194 mmci_probe_level_translator(mmc);
2195
2196 if (of_property_read_bool(np, "mmc-cap-mmc-highspeed"))
2197 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
2198 if (of_property_read_bool(np, "mmc-cap-sd-highspeed"))
2199 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
2200
2201 return 0;
2202}
2203
2204static int mmci_probe(struct amba_device *dev,
2205 const struct amba_id *id)
2206{
2207 struct mmci_platform_data *plat = dev->dev.platform_data;
2208 struct device_node *np = dev->dev.of_node;
2209 struct variant_data *variant = id->data;
2210 struct mmci_host *host;
2211 struct mmc_host *mmc;
2212 int ret;
2213
2214 /* Must have platform data or Device Tree. */
2215 if (!plat && !np) {
2216 dev_err(&dev->dev, "No plat data or DT found\n");
2217 return -EINVAL;
2218 }
2219
2220 if (!plat) {
2221 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
2222 if (!plat)
2223 return -ENOMEM;
2224 }
2225
2226 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
2227 if (!mmc)
2228 return -ENOMEM;
2229
2230 host = mmc_priv(mmc);
2231 host->mmc = mmc;
2232 host->mmc_ops = &mmci_ops;
2233 mmc->ops = &mmci_ops;
2234
2235 ret = mmci_of_parse(np, mmc);
2236 if (ret)
2237 goto host_free;
2238
2239 /*
2240 * Some variant (STM32) doesn't have opendrain bit, nevertheless
2241 * pins can be set accordingly using pinctrl
2242 */
2243 if (!variant->opendrain) {
2244 host->pinctrl = devm_pinctrl_get(&dev->dev);
2245 if (IS_ERR(host->pinctrl)) {
2246 dev_err(&dev->dev, "failed to get pinctrl");
2247 ret = PTR_ERR(host->pinctrl);
2248 goto host_free;
2249 }
2250
2251 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
2252 MMCI_PINCTRL_STATE_OPENDRAIN);
2253 if (IS_ERR(host->pins_opendrain)) {
2254 dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
2255 ret = PTR_ERR(host->pins_opendrain);
2256 goto host_free;
2257 }
2258 }
2259
2260 host->hw_designer = amba_manf(dev);
2261 host->hw_revision = amba_rev(dev);
2262 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
2263 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
2264
2265 host->clk = devm_clk_get(&dev->dev, NULL);
2266 if (IS_ERR(host->clk)) {
2267 ret = PTR_ERR(host->clk);
2268 goto host_free;
2269 }
2270
2271 ret = clk_prepare_enable(host->clk);
2272 if (ret)
2273 goto host_free;
2274
2275 if (variant->qcom_fifo)
2276 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
2277 else
2278 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
2279
2280 host->plat = plat;
2281 host->variant = variant;
2282 host->mclk = clk_get_rate(host->clk);
2283 /*
2284 * According to the spec, mclk is max 100 MHz,
2285 * so we try to adjust the clock down to this,
2286 * (if possible).
2287 */
2288 if (host->mclk > variant->f_max) {
2289 ret = clk_set_rate(host->clk, variant->f_max);
2290 if (ret < 0)
2291 goto clk_disable;
2292 host->mclk = clk_get_rate(host->clk);
2293 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2294 host->mclk);
2295 }
2296
2297 host->phybase = dev->res.start;
2298 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2299 if (IS_ERR(host->base)) {
2300 ret = PTR_ERR(host->base);
2301 goto clk_disable;
2302 }
2303
2304 if (variant->init)
2305 variant->init(host);
2306
2307 /*
2308 * The ARM and ST versions of the block have slightly different
2309 * clock divider equations which means that the minimum divider
2310 * differs too.
2311 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2312 */
2313 if (variant->st_clkdiv)
2314 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2315 else if (variant->stm32_clkdiv)
2316 mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2317 else if (variant->explicit_mclk_control)
2318 mmc->f_min = clk_round_rate(host->clk, 100000);
2319 else
2320 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2321 /*
2322 * If no maximum operating frequency is supplied, fall back to use
2323 * the module parameter, which has a (low) default value in case it
2324 * is not specified. Either value must not exceed the clock rate into
2325 * the block, of course.
2326 */
2327 if (mmc->f_max)
2328 mmc->f_max = variant->explicit_mclk_control ?
2329 min(variant->f_max, mmc->f_max) :
2330 min(host->mclk, mmc->f_max);
2331 else
2332 mmc->f_max = variant->explicit_mclk_control ?
2333 fmax : min(host->mclk, fmax);
2334
2335
2336 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2337
2338 host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2339 if (IS_ERR(host->rst)) {
2340 ret = PTR_ERR(host->rst);
2341 goto clk_disable;
2342 }
2343 ret = reset_control_deassert(host->rst);
2344 if (ret)
2345 dev_err(mmc_dev(mmc), "failed to de-assert reset\n");
2346
2347 /* Get regulators and the supported OCR mask */
2348 ret = mmc_regulator_get_supply(mmc);
2349 if (ret)
2350 goto clk_disable;
2351
2352 if (!mmc->ocr_avail)
2353 mmc->ocr_avail = plat->ocr_mask;
2354 else if (plat->ocr_mask)
2355 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2356
2357 /* We support these capabilities. */
2358 mmc->caps |= MMC_CAP_CMD23;
2359
2360 /*
2361 * Enable busy detection.
2362 */
2363 if (variant->busy_detect) {
2364 mmci_ops.card_busy = mmci_card_busy;
2365 /*
2366 * Not all variants have a flag to enable busy detection
2367 * in the DPSM, but if they do, set it here.
2368 */
2369 if (variant->busy_dpsm_flag)
2370 mmci_write_datactrlreg(host,
2371 host->variant->busy_dpsm_flag);
2372 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2373 }
2374
2375 if (variant->supports_sdio_irq && host->mmc->caps & MMC_CAP_SDIO_IRQ) {
2376 mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2377
2378 mmci_ops.enable_sdio_irq = mmci_enable_sdio_irq;
2379 mmci_ops.ack_sdio_irq = mmci_ack_sdio_irq;
2380
2381 mmci_write_datactrlreg(host,
2382 host->variant->datactrl_mask_sdio);
2383 }
2384
2385 /* Variants with mandatory busy timeout in HW needs R1B responses. */
2386 if (variant->busy_timeout)
2387 mmc->caps |= MMC_CAP_NEED_RSP_BUSY;
2388
2389 /* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2390 host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2391 host->stop_abort.arg = 0;
2392 host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2393
2394 /* We support these PM capabilities. */
2395 mmc->pm_caps |= MMC_PM_KEEP_POWER;
2396
2397 /*
2398 * We can do SGIO
2399 */
2400 mmc->max_segs = NR_SG;
2401
2402 /*
2403 * Since only a certain number of bits are valid in the data length
2404 * register, we must ensure that we don't exceed 2^num-1 bytes in a
2405 * single request.
2406 */
2407 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2408
2409 /*
2410 * Set the maximum segment size. Since we aren't doing DMA
2411 * (yet) we are only limited by the data length register.
2412 */
2413 mmc->max_seg_size = mmc->max_req_size;
2414
2415 /*
2416 * Block size can be up to 2048 bytes, but must be a power of two.
2417 */
2418 mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2419
2420 /*
2421 * Limit the number of blocks transferred so that we don't overflow
2422 * the maximum request size.
2423 */
2424 mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2425
2426 spin_lock_init(&host->lock);
2427
2428 writel(0, host->base + MMCIMASK0);
2429
2430 if (variant->mmcimask1)
2431 writel(0, host->base + MMCIMASK1);
2432
2433 writel(0xfff, host->base + MMCICLEAR);
2434
2435 /*
2436 * If:
2437 * - not using DT but using a descriptor table, or
2438 * - using a table of descriptors ALONGSIDE DT, or
2439 * look up these descriptors named "cd" and "wp" right here, fail
2440 * silently of these do not exist
2441 */
2442 if (!np) {
2443 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2444 if (ret == -EPROBE_DEFER)
2445 goto clk_disable;
2446
2447 ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2448 if (ret == -EPROBE_DEFER)
2449 goto clk_disable;
2450 }
2451
2452 ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2453 mmci_irq_thread, IRQF_SHARED,
2454 DRIVER_NAME " (cmd)", host);
2455 if (ret)
2456 goto clk_disable;
2457
2458 if (!dev->irq[1])
2459 host->singleirq = true;
2460 else {
2461 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2462 IRQF_SHARED, DRIVER_NAME " (pio)", host);
2463 if (ret)
2464 goto clk_disable;
2465 }
2466
2467 if (host->variant->busy_detect)
2468 INIT_DELAYED_WORK(&host->ux500_busy_timeout_work,
2469 ux500_busy_timeout_work);
2470
2471 writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2472
2473 amba_set_drvdata(dev, mmc);
2474
2475 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2476 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2477 amba_rev(dev), (unsigned long long)dev->res.start,
2478 dev->irq[0], dev->irq[1]);
2479
2480 mmci_dma_setup(host);
2481
2482 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2483 pm_runtime_use_autosuspend(&dev->dev);
2484
2485 ret = mmc_add_host(mmc);
2486 if (ret)
2487 goto clk_disable;
2488
2489 pm_runtime_put(&dev->dev);
2490 return 0;
2491
2492 clk_disable:
2493 clk_disable_unprepare(host->clk);
2494 host_free:
2495 mmc_free_host(mmc);
2496 return ret;
2497}
2498
2499static void mmci_remove(struct amba_device *dev)
2500{
2501 struct mmc_host *mmc = amba_get_drvdata(dev);
2502
2503 if (mmc) {
2504 struct mmci_host *host = mmc_priv(mmc);
2505 struct variant_data *variant = host->variant;
2506
2507 /*
2508 * Undo pm_runtime_put() in probe. We use the _sync
2509 * version here so that we can access the primecell.
2510 */
2511 pm_runtime_get_sync(&dev->dev);
2512
2513 mmc_remove_host(mmc);
2514
2515 writel(0, host->base + MMCIMASK0);
2516
2517 if (variant->mmcimask1)
2518 writel(0, host->base + MMCIMASK1);
2519
2520 writel(0, host->base + MMCICOMMAND);
2521 writel(0, host->base + MMCIDATACTRL);
2522
2523 mmci_dma_release(host);
2524 clk_disable_unprepare(host->clk);
2525 mmc_free_host(mmc);
2526 }
2527}
2528
2529#ifdef CONFIG_PM
2530static void mmci_save(struct mmci_host *host)
2531{
2532 unsigned long flags;
2533
2534 spin_lock_irqsave(&host->lock, flags);
2535
2536 writel(0, host->base + MMCIMASK0);
2537 if (host->variant->pwrreg_nopower) {
2538 writel(0, host->base + MMCIDATACTRL);
2539 writel(0, host->base + MMCIPOWER);
2540 writel(0, host->base + MMCICLOCK);
2541 }
2542 mmci_reg_delay(host);
2543
2544 spin_unlock_irqrestore(&host->lock, flags);
2545}
2546
2547static void mmci_restore(struct mmci_host *host)
2548{
2549 unsigned long flags;
2550
2551 spin_lock_irqsave(&host->lock, flags);
2552
2553 if (host->variant->pwrreg_nopower) {
2554 writel(host->clk_reg, host->base + MMCICLOCK);
2555 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2556 writel(host->pwr_reg, host->base + MMCIPOWER);
2557 }
2558 writel(MCI_IRQENABLE | host->variant->start_err,
2559 host->base + MMCIMASK0);
2560 mmci_reg_delay(host);
2561
2562 spin_unlock_irqrestore(&host->lock, flags);
2563}
2564
2565static int mmci_runtime_suspend(struct device *dev)
2566{
2567 struct amba_device *adev = to_amba_device(dev);
2568 struct mmc_host *mmc = amba_get_drvdata(adev);
2569
2570 if (mmc) {
2571 struct mmci_host *host = mmc_priv(mmc);
2572 pinctrl_pm_select_sleep_state(dev);
2573 mmci_save(host);
2574 clk_disable_unprepare(host->clk);
2575 }
2576
2577 return 0;
2578}
2579
2580static int mmci_runtime_resume(struct device *dev)
2581{
2582 struct amba_device *adev = to_amba_device(dev);
2583 struct mmc_host *mmc = amba_get_drvdata(adev);
2584
2585 if (mmc) {
2586 struct mmci_host *host = mmc_priv(mmc);
2587 clk_prepare_enable(host->clk);
2588 mmci_restore(host);
2589 pinctrl_select_default_state(dev);
2590 }
2591
2592 return 0;
2593}
2594#endif
2595
2596static const struct dev_pm_ops mmci_dev_pm_ops = {
2597 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2598 pm_runtime_force_resume)
2599 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2600};
2601
2602static const struct amba_id mmci_ids[] = {
2603 {
2604 .id = 0x00041180,
2605 .mask = 0xff0fffff,
2606 .data = &variant_arm,
2607 },
2608 {
2609 .id = 0x01041180,
2610 .mask = 0xff0fffff,
2611 .data = &variant_arm_extended_fifo,
2612 },
2613 {
2614 .id = 0x02041180,
2615 .mask = 0xff0fffff,
2616 .data = &variant_arm_extended_fifo_hwfc,
2617 },
2618 {
2619 .id = 0x00041181,
2620 .mask = 0x000fffff,
2621 .data = &variant_arm,
2622 },
2623 /* ST Micro variants */
2624 {
2625 .id = 0x00180180,
2626 .mask = 0x00ffffff,
2627 .data = &variant_u300,
2628 },
2629 {
2630 .id = 0x10180180,
2631 .mask = 0xf0ffffff,
2632 .data = &variant_nomadik,
2633 },
2634 {
2635 .id = 0x00280180,
2636 .mask = 0x00ffffff,
2637 .data = &variant_nomadik,
2638 },
2639 {
2640 .id = 0x00480180,
2641 .mask = 0xf0ffffff,
2642 .data = &variant_ux500,
2643 },
2644 {
2645 .id = 0x10480180,
2646 .mask = 0xf0ffffff,
2647 .data = &variant_ux500v2,
2648 },
2649 {
2650 .id = 0x00880180,
2651 .mask = 0x00ffffff,
2652 .data = &variant_stm32,
2653 },
2654 {
2655 .id = 0x10153180,
2656 .mask = 0xf0ffffff,
2657 .data = &variant_stm32_sdmmc,
2658 },
2659 {
2660 .id = 0x00253180,
2661 .mask = 0xf0ffffff,
2662 .data = &variant_stm32_sdmmcv2,
2663 },
2664 {
2665 .id = 0x20253180,
2666 .mask = 0xf0ffffff,
2667 .data = &variant_stm32_sdmmcv2,
2668 },
2669 {
2670 .id = 0x00353180,
2671 .mask = 0xf0ffffff,
2672 .data = &variant_stm32_sdmmcv3,
2673 },
2674 /* Qualcomm variants */
2675 {
2676 .id = 0x00051180,
2677 .mask = 0x000fffff,
2678 .data = &variant_qcom,
2679 },
2680 { 0, 0 },
2681};
2682
2683MODULE_DEVICE_TABLE(amba, mmci_ids);
2684
2685static struct amba_driver mmci_driver = {
2686 .drv = {
2687 .name = DRIVER_NAME,
2688 .pm = &mmci_dev_pm_ops,
2689 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2690 },
2691 .probe = mmci_probe,
2692 .remove = mmci_remove,
2693 .id_table = mmci_ids,
2694};
2695
2696module_amba_driver(mmci_driver);
2697
2698module_param(fmax, uint, 0444);
2699
2700MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2701MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 *
5 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6 * Copyright (C) 2010 ST-Ericsson SA
7 */
8#include <linux/module.h>
9#include <linux/moduleparam.h>
10#include <linux/init.h>
11#include <linux/ioport.h>
12#include <linux/device.h>
13#include <linux/io.h>
14#include <linux/interrupt.h>
15#include <linux/kernel.h>
16#include <linux/slab.h>
17#include <linux/delay.h>
18#include <linux/err.h>
19#include <linux/highmem.h>
20#include <linux/log2.h>
21#include <linux/mmc/mmc.h>
22#include <linux/mmc/pm.h>
23#include <linux/mmc/host.h>
24#include <linux/mmc/card.h>
25#include <linux/mmc/slot-gpio.h>
26#include <linux/amba/bus.h>
27#include <linux/clk.h>
28#include <linux/scatterlist.h>
29#include <linux/of.h>
30#include <linux/regulator/consumer.h>
31#include <linux/dmaengine.h>
32#include <linux/dma-mapping.h>
33#include <linux/amba/mmci.h>
34#include <linux/pm_runtime.h>
35#include <linux/types.h>
36#include <linux/pinctrl/consumer.h>
37#include <linux/reset.h>
38
39#include <asm/div64.h>
40#include <asm/io.h>
41
42#include "mmci.h"
43
44#define DRIVER_NAME "mmci-pl18x"
45
46static void mmci_variant_init(struct mmci_host *host);
47static void ux500v2_variant_init(struct mmci_host *host);
48
49static unsigned int fmax = 515633;
50
51static struct variant_data variant_arm = {
52 .fifosize = 16 * 4,
53 .fifohalfsize = 8 * 4,
54 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
55 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
56 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
57 .cmdreg_srsp = MCI_CPSM_RESPONSE,
58 .datalength_bits = 16,
59 .datactrl_blocksz = 11,
60 .pwrreg_powerup = MCI_PWR_UP,
61 .f_max = 100000000,
62 .reversed_irq_handling = true,
63 .mmcimask1 = true,
64 .irq_pio_mask = MCI_IRQ_PIO_MASK,
65 .start_err = MCI_STARTBITERR,
66 .opendrain = MCI_ROD,
67 .init = mmci_variant_init,
68};
69
70static struct variant_data variant_arm_extended_fifo = {
71 .fifosize = 128 * 4,
72 .fifohalfsize = 64 * 4,
73 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
74 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
75 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
76 .cmdreg_srsp = MCI_CPSM_RESPONSE,
77 .datalength_bits = 16,
78 .datactrl_blocksz = 11,
79 .pwrreg_powerup = MCI_PWR_UP,
80 .f_max = 100000000,
81 .mmcimask1 = true,
82 .irq_pio_mask = MCI_IRQ_PIO_MASK,
83 .start_err = MCI_STARTBITERR,
84 .opendrain = MCI_ROD,
85 .init = mmci_variant_init,
86};
87
88static struct variant_data variant_arm_extended_fifo_hwfc = {
89 .fifosize = 128 * 4,
90 .fifohalfsize = 64 * 4,
91 .clkreg_enable = MCI_ARM_HWFCEN,
92 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
93 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
94 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
95 .cmdreg_srsp = MCI_CPSM_RESPONSE,
96 .datalength_bits = 16,
97 .datactrl_blocksz = 11,
98 .pwrreg_powerup = MCI_PWR_UP,
99 .f_max = 100000000,
100 .mmcimask1 = true,
101 .irq_pio_mask = MCI_IRQ_PIO_MASK,
102 .start_err = MCI_STARTBITERR,
103 .opendrain = MCI_ROD,
104 .init = mmci_variant_init,
105};
106
107static struct variant_data variant_u300 = {
108 .fifosize = 16 * 4,
109 .fifohalfsize = 8 * 4,
110 .clkreg_enable = MCI_ST_U300_HWFCEN,
111 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
112 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
113 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
114 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
115 .cmdreg_srsp = MCI_CPSM_RESPONSE,
116 .datalength_bits = 16,
117 .datactrl_blocksz = 11,
118 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
119 .st_sdio = true,
120 .pwrreg_powerup = MCI_PWR_ON,
121 .f_max = 100000000,
122 .signal_direction = true,
123 .pwrreg_clkgate = true,
124 .pwrreg_nopower = true,
125 .mmcimask1 = true,
126 .irq_pio_mask = MCI_IRQ_PIO_MASK,
127 .start_err = MCI_STARTBITERR,
128 .opendrain = MCI_OD,
129 .init = mmci_variant_init,
130};
131
132static struct variant_data variant_nomadik = {
133 .fifosize = 16 * 4,
134 .fifohalfsize = 8 * 4,
135 .clkreg = MCI_CLK_ENABLE,
136 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
137 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
138 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
139 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
140 .cmdreg_srsp = MCI_CPSM_RESPONSE,
141 .datalength_bits = 24,
142 .datactrl_blocksz = 11,
143 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
144 .st_sdio = true,
145 .st_clkdiv = true,
146 .pwrreg_powerup = MCI_PWR_ON,
147 .f_max = 100000000,
148 .signal_direction = true,
149 .pwrreg_clkgate = true,
150 .pwrreg_nopower = true,
151 .mmcimask1 = true,
152 .irq_pio_mask = MCI_IRQ_PIO_MASK,
153 .start_err = MCI_STARTBITERR,
154 .opendrain = MCI_OD,
155 .init = mmci_variant_init,
156};
157
158static struct variant_data variant_ux500 = {
159 .fifosize = 30 * 4,
160 .fifohalfsize = 8 * 4,
161 .clkreg = MCI_CLK_ENABLE,
162 .clkreg_enable = MCI_ST_UX500_HWFCEN,
163 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
164 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
165 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
166 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
167 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
168 .cmdreg_srsp = MCI_CPSM_RESPONSE,
169 .datalength_bits = 24,
170 .datactrl_blocksz = 11,
171 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
172 .st_sdio = true,
173 .st_clkdiv = true,
174 .pwrreg_powerup = MCI_PWR_ON,
175 .f_max = 100000000,
176 .signal_direction = true,
177 .pwrreg_clkgate = true,
178 .busy_detect = true,
179 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
180 .busy_detect_flag = MCI_ST_CARDBUSY,
181 .busy_detect_mask = MCI_ST_BUSYENDMASK,
182 .pwrreg_nopower = true,
183 .mmcimask1 = true,
184 .irq_pio_mask = MCI_IRQ_PIO_MASK,
185 .start_err = MCI_STARTBITERR,
186 .opendrain = MCI_OD,
187 .init = mmci_variant_init,
188};
189
190static struct variant_data variant_ux500v2 = {
191 .fifosize = 30 * 4,
192 .fifohalfsize = 8 * 4,
193 .clkreg = MCI_CLK_ENABLE,
194 .clkreg_enable = MCI_ST_UX500_HWFCEN,
195 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
196 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
197 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
198 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
199 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
200 .cmdreg_srsp = MCI_CPSM_RESPONSE,
201 .datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE,
202 .datalength_bits = 24,
203 .datactrl_blocksz = 11,
204 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
205 .st_sdio = true,
206 .st_clkdiv = true,
207 .pwrreg_powerup = MCI_PWR_ON,
208 .f_max = 100000000,
209 .signal_direction = true,
210 .pwrreg_clkgate = true,
211 .busy_detect = true,
212 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE,
213 .busy_detect_flag = MCI_ST_CARDBUSY,
214 .busy_detect_mask = MCI_ST_BUSYENDMASK,
215 .pwrreg_nopower = true,
216 .mmcimask1 = true,
217 .irq_pio_mask = MCI_IRQ_PIO_MASK,
218 .start_err = MCI_STARTBITERR,
219 .opendrain = MCI_OD,
220 .init = ux500v2_variant_init,
221};
222
223static struct variant_data variant_stm32 = {
224 .fifosize = 32 * 4,
225 .fifohalfsize = 8 * 4,
226 .clkreg = MCI_CLK_ENABLE,
227 .clkreg_enable = MCI_ST_UX500_HWFCEN,
228 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
229 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
230 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
231 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
232 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
233 .cmdreg_srsp = MCI_CPSM_RESPONSE,
234 .irq_pio_mask = MCI_IRQ_PIO_MASK,
235 .datalength_bits = 24,
236 .datactrl_blocksz = 11,
237 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN,
238 .st_sdio = true,
239 .st_clkdiv = true,
240 .pwrreg_powerup = MCI_PWR_ON,
241 .f_max = 48000000,
242 .pwrreg_clkgate = true,
243 .pwrreg_nopower = true,
244 .init = mmci_variant_init,
245};
246
247static struct variant_data variant_stm32_sdmmc = {
248 .fifosize = 16 * 4,
249 .fifohalfsize = 8 * 4,
250 .f_max = 208000000,
251 .stm32_clkdiv = true,
252 .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE,
253 .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC,
254 .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC,
255 .cmdreg_srsp = MCI_CPSM_STM32_SRSP,
256 .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP,
257 .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS,
258 .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK,
259 .datactrl_first = true,
260 .datacnt_useless = true,
261 .datalength_bits = 25,
262 .datactrl_blocksz = 14,
263 .stm32_idmabsize_mask = GENMASK(12, 5),
264 .init = sdmmc_variant_init,
265};
266
267static struct variant_data variant_qcom = {
268 .fifosize = 16 * 4,
269 .fifohalfsize = 8 * 4,
270 .clkreg = MCI_CLK_ENABLE,
271 .clkreg_enable = MCI_QCOM_CLK_FLOWENA |
272 MCI_QCOM_CLK_SELECT_IN_FBCLK,
273 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
274 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
275 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE,
276 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
277 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE,
278 .cmdreg_srsp = MCI_CPSM_RESPONSE,
279 .data_cmd_enable = MCI_CPSM_QCOM_DATCMD,
280 .datalength_bits = 24,
281 .datactrl_blocksz = 11,
282 .pwrreg_powerup = MCI_PWR_UP,
283 .f_max = 208000000,
284 .explicit_mclk_control = true,
285 .qcom_fifo = true,
286 .qcom_dml = true,
287 .mmcimask1 = true,
288 .irq_pio_mask = MCI_IRQ_PIO_MASK,
289 .start_err = MCI_STARTBITERR,
290 .opendrain = MCI_ROD,
291 .init = qcom_variant_init,
292};
293
294/* Busy detection for the ST Micro variant */
295static int mmci_card_busy(struct mmc_host *mmc)
296{
297 struct mmci_host *host = mmc_priv(mmc);
298 unsigned long flags;
299 int busy = 0;
300
301 spin_lock_irqsave(&host->lock, flags);
302 if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
303 busy = 1;
304 spin_unlock_irqrestore(&host->lock, flags);
305
306 return busy;
307}
308
309static void mmci_reg_delay(struct mmci_host *host)
310{
311 /*
312 * According to the spec, at least three feedback clock cycles
313 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
314 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
315 * Worst delay time during card init is at 100 kHz => 30 us.
316 * Worst delay time when up and running is at 25 MHz => 120 ns.
317 */
318 if (host->cclk < 25000000)
319 udelay(30);
320 else
321 ndelay(120);
322}
323
324/*
325 * This must be called with host->lock held
326 */
327void mmci_write_clkreg(struct mmci_host *host, u32 clk)
328{
329 if (host->clk_reg != clk) {
330 host->clk_reg = clk;
331 writel(clk, host->base + MMCICLOCK);
332 }
333}
334
335/*
336 * This must be called with host->lock held
337 */
338void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
339{
340 if (host->pwr_reg != pwr) {
341 host->pwr_reg = pwr;
342 writel(pwr, host->base + MMCIPOWER);
343 }
344}
345
346/*
347 * This must be called with host->lock held
348 */
349static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
350{
351 /* Keep busy mode in DPSM if enabled */
352 datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
353
354 if (host->datactrl_reg != datactrl) {
355 host->datactrl_reg = datactrl;
356 writel(datactrl, host->base + MMCIDATACTRL);
357 }
358}
359
360/*
361 * This must be called with host->lock held
362 */
363static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
364{
365 struct variant_data *variant = host->variant;
366 u32 clk = variant->clkreg;
367
368 /* Make sure cclk reflects the current calculated clock */
369 host->cclk = 0;
370
371 if (desired) {
372 if (variant->explicit_mclk_control) {
373 host->cclk = host->mclk;
374 } else if (desired >= host->mclk) {
375 clk = MCI_CLK_BYPASS;
376 if (variant->st_clkdiv)
377 clk |= MCI_ST_UX500_NEG_EDGE;
378 host->cclk = host->mclk;
379 } else if (variant->st_clkdiv) {
380 /*
381 * DB8500 TRM says f = mclk / (clkdiv + 2)
382 * => clkdiv = (mclk / f) - 2
383 * Round the divider up so we don't exceed the max
384 * frequency
385 */
386 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
387 if (clk >= 256)
388 clk = 255;
389 host->cclk = host->mclk / (clk + 2);
390 } else {
391 /*
392 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
393 * => clkdiv = mclk / (2 * f) - 1
394 */
395 clk = host->mclk / (2 * desired) - 1;
396 if (clk >= 256)
397 clk = 255;
398 host->cclk = host->mclk / (2 * (clk + 1));
399 }
400
401 clk |= variant->clkreg_enable;
402 clk |= MCI_CLK_ENABLE;
403 /* This hasn't proven to be worthwhile */
404 /* clk |= MCI_CLK_PWRSAVE; */
405 }
406
407 /* Set actual clock for debug */
408 host->mmc->actual_clock = host->cclk;
409
410 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
411 clk |= MCI_4BIT_BUS;
412 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
413 clk |= variant->clkreg_8bit_bus_enable;
414
415 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
416 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
417 clk |= variant->clkreg_neg_edge_enable;
418
419 mmci_write_clkreg(host, clk);
420}
421
422void mmci_dma_release(struct mmci_host *host)
423{
424 if (host->ops && host->ops->dma_release)
425 host->ops->dma_release(host);
426
427 host->use_dma = false;
428}
429
430void mmci_dma_setup(struct mmci_host *host)
431{
432 if (!host->ops || !host->ops->dma_setup)
433 return;
434
435 if (host->ops->dma_setup(host))
436 return;
437
438 /* initialize pre request cookie */
439 host->next_cookie = 1;
440
441 host->use_dma = true;
442}
443
444/*
445 * Validate mmc prerequisites
446 */
447static int mmci_validate_data(struct mmci_host *host,
448 struct mmc_data *data)
449{
450 if (!data)
451 return 0;
452
453 if (!is_power_of_2(data->blksz)) {
454 dev_err(mmc_dev(host->mmc),
455 "unsupported block size (%d bytes)\n", data->blksz);
456 return -EINVAL;
457 }
458
459 if (host->ops && host->ops->validate_data)
460 return host->ops->validate_data(host, data);
461
462 return 0;
463}
464
465int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
466{
467 int err;
468
469 if (!host->ops || !host->ops->prep_data)
470 return 0;
471
472 err = host->ops->prep_data(host, data, next);
473
474 if (next && !err)
475 data->host_cookie = ++host->next_cookie < 0 ?
476 1 : host->next_cookie;
477
478 return err;
479}
480
481void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
482 int err)
483{
484 if (host->ops && host->ops->unprep_data)
485 host->ops->unprep_data(host, data, err);
486
487 data->host_cookie = 0;
488}
489
490void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
491{
492 WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
493
494 if (host->ops && host->ops->get_next_data)
495 host->ops->get_next_data(host, data);
496}
497
498int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
499{
500 struct mmc_data *data = host->data;
501 int ret;
502
503 if (!host->use_dma)
504 return -EINVAL;
505
506 ret = mmci_prep_data(host, data, false);
507 if (ret)
508 return ret;
509
510 if (!host->ops || !host->ops->dma_start)
511 return -EINVAL;
512
513 /* Okay, go for it. */
514 dev_vdbg(mmc_dev(host->mmc),
515 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
516 data->sg_len, data->blksz, data->blocks, data->flags);
517
518 host->ops->dma_start(host, &datactrl);
519
520 /* Trigger the DMA transfer */
521 mmci_write_datactrlreg(host, datactrl);
522
523 /*
524 * Let the MMCI say when the data is ended and it's time
525 * to fire next DMA request. When that happens, MMCI will
526 * call mmci_data_end()
527 */
528 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
529 host->base + MMCIMASK0);
530 return 0;
531}
532
533void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
534{
535 if (!host->use_dma)
536 return;
537
538 if (host->ops && host->ops->dma_finalize)
539 host->ops->dma_finalize(host, data);
540}
541
542void mmci_dma_error(struct mmci_host *host)
543{
544 if (!host->use_dma)
545 return;
546
547 if (host->ops && host->ops->dma_error)
548 host->ops->dma_error(host);
549}
550
551static void
552mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
553{
554 writel(0, host->base + MMCICOMMAND);
555
556 BUG_ON(host->data);
557
558 host->mrq = NULL;
559 host->cmd = NULL;
560
561 mmc_request_done(host->mmc, mrq);
562}
563
564static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
565{
566 void __iomem *base = host->base;
567 struct variant_data *variant = host->variant;
568
569 if (host->singleirq) {
570 unsigned int mask0 = readl(base + MMCIMASK0);
571
572 mask0 &= ~variant->irq_pio_mask;
573 mask0 |= mask;
574
575 writel(mask0, base + MMCIMASK0);
576 }
577
578 if (variant->mmcimask1)
579 writel(mask, base + MMCIMASK1);
580
581 host->mask1_reg = mask;
582}
583
584static void mmci_stop_data(struct mmci_host *host)
585{
586 mmci_write_datactrlreg(host, 0);
587 mmci_set_mask1(host, 0);
588 host->data = NULL;
589}
590
591static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
592{
593 unsigned int flags = SG_MITER_ATOMIC;
594
595 if (data->flags & MMC_DATA_READ)
596 flags |= SG_MITER_TO_SG;
597 else
598 flags |= SG_MITER_FROM_SG;
599
600 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
601}
602
603static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
604{
605 return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
606}
607
608static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
609{
610 return MCI_DPSM_ENABLE | (host->data->blksz << 16);
611}
612
613/*
614 * All the DMA operation mode stuff goes inside this ifdef.
615 * This assumes that you have a generic DMA device interface,
616 * no custom DMA interfaces are supported.
617 */
618#ifdef CONFIG_DMA_ENGINE
619struct mmci_dmae_next {
620 struct dma_async_tx_descriptor *desc;
621 struct dma_chan *chan;
622};
623
624struct mmci_dmae_priv {
625 struct dma_chan *cur;
626 struct dma_chan *rx_channel;
627 struct dma_chan *tx_channel;
628 struct dma_async_tx_descriptor *desc_current;
629 struct mmci_dmae_next next_data;
630};
631
632int mmci_dmae_setup(struct mmci_host *host)
633{
634 const char *rxname, *txname;
635 struct mmci_dmae_priv *dmae;
636
637 dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
638 if (!dmae)
639 return -ENOMEM;
640
641 host->dma_priv = dmae;
642
643 dmae->rx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
644 "rx");
645 dmae->tx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
646 "tx");
647
648 /*
649 * If only an RX channel is specified, the driver will
650 * attempt to use it bidirectionally, however if it is
651 * is specified but cannot be located, DMA will be disabled.
652 */
653 if (dmae->rx_channel && !dmae->tx_channel)
654 dmae->tx_channel = dmae->rx_channel;
655
656 if (dmae->rx_channel)
657 rxname = dma_chan_name(dmae->rx_channel);
658 else
659 rxname = "none";
660
661 if (dmae->tx_channel)
662 txname = dma_chan_name(dmae->tx_channel);
663 else
664 txname = "none";
665
666 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
667 rxname, txname);
668
669 /*
670 * Limit the maximum segment size in any SG entry according to
671 * the parameters of the DMA engine device.
672 */
673 if (dmae->tx_channel) {
674 struct device *dev = dmae->tx_channel->device->dev;
675 unsigned int max_seg_size = dma_get_max_seg_size(dev);
676
677 if (max_seg_size < host->mmc->max_seg_size)
678 host->mmc->max_seg_size = max_seg_size;
679 }
680 if (dmae->rx_channel) {
681 struct device *dev = dmae->rx_channel->device->dev;
682 unsigned int max_seg_size = dma_get_max_seg_size(dev);
683
684 if (max_seg_size < host->mmc->max_seg_size)
685 host->mmc->max_seg_size = max_seg_size;
686 }
687
688 if (!dmae->tx_channel || !dmae->rx_channel) {
689 mmci_dmae_release(host);
690 return -EINVAL;
691 }
692
693 return 0;
694}
695
696/*
697 * This is used in or so inline it
698 * so it can be discarded.
699 */
700void mmci_dmae_release(struct mmci_host *host)
701{
702 struct mmci_dmae_priv *dmae = host->dma_priv;
703
704 if (dmae->rx_channel)
705 dma_release_channel(dmae->rx_channel);
706 if (dmae->tx_channel)
707 dma_release_channel(dmae->tx_channel);
708 dmae->rx_channel = dmae->tx_channel = NULL;
709}
710
711static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
712{
713 struct mmci_dmae_priv *dmae = host->dma_priv;
714 struct dma_chan *chan;
715
716 if (data->flags & MMC_DATA_READ)
717 chan = dmae->rx_channel;
718 else
719 chan = dmae->tx_channel;
720
721 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
722 mmc_get_dma_dir(data));
723}
724
725void mmci_dmae_error(struct mmci_host *host)
726{
727 struct mmci_dmae_priv *dmae = host->dma_priv;
728
729 if (!dma_inprogress(host))
730 return;
731
732 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
733 dmaengine_terminate_all(dmae->cur);
734 host->dma_in_progress = false;
735 dmae->cur = NULL;
736 dmae->desc_current = NULL;
737 host->data->host_cookie = 0;
738
739 mmci_dma_unmap(host, host->data);
740}
741
742void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
743{
744 struct mmci_dmae_priv *dmae = host->dma_priv;
745 u32 status;
746 int i;
747
748 if (!dma_inprogress(host))
749 return;
750
751 /* Wait up to 1ms for the DMA to complete */
752 for (i = 0; ; i++) {
753 status = readl(host->base + MMCISTATUS);
754 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
755 break;
756 udelay(10);
757 }
758
759 /*
760 * Check to see whether we still have some data left in the FIFO -
761 * this catches DMA controllers which are unable to monitor the
762 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
763 * contiguous buffers. On TX, we'll get a FIFO underrun error.
764 */
765 if (status & MCI_RXDATAAVLBLMASK) {
766 mmci_dma_error(host);
767 if (!data->error)
768 data->error = -EIO;
769 } else if (!data->host_cookie) {
770 mmci_dma_unmap(host, data);
771 }
772
773 /*
774 * Use of DMA with scatter-gather is impossible.
775 * Give up with DMA and switch back to PIO mode.
776 */
777 if (status & MCI_RXDATAAVLBLMASK) {
778 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
779 mmci_dma_release(host);
780 }
781
782 host->dma_in_progress = false;
783 dmae->cur = NULL;
784 dmae->desc_current = NULL;
785}
786
787/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
788static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
789 struct dma_chan **dma_chan,
790 struct dma_async_tx_descriptor **dma_desc)
791{
792 struct mmci_dmae_priv *dmae = host->dma_priv;
793 struct variant_data *variant = host->variant;
794 struct dma_slave_config conf = {
795 .src_addr = host->phybase + MMCIFIFO,
796 .dst_addr = host->phybase + MMCIFIFO,
797 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
798 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
799 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
800 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
801 .device_fc = false,
802 };
803 struct dma_chan *chan;
804 struct dma_device *device;
805 struct dma_async_tx_descriptor *desc;
806 int nr_sg;
807 unsigned long flags = DMA_CTRL_ACK;
808
809 if (data->flags & MMC_DATA_READ) {
810 conf.direction = DMA_DEV_TO_MEM;
811 chan = dmae->rx_channel;
812 } else {
813 conf.direction = DMA_MEM_TO_DEV;
814 chan = dmae->tx_channel;
815 }
816
817 /* If there's no DMA channel, fall back to PIO */
818 if (!chan)
819 return -EINVAL;
820
821 /* If less than or equal to the fifo size, don't bother with DMA */
822 if (data->blksz * data->blocks <= variant->fifosize)
823 return -EINVAL;
824
825 device = chan->device;
826 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
827 mmc_get_dma_dir(data));
828 if (nr_sg == 0)
829 return -EINVAL;
830
831 if (host->variant->qcom_dml)
832 flags |= DMA_PREP_INTERRUPT;
833
834 dmaengine_slave_config(chan, &conf);
835 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
836 conf.direction, flags);
837 if (!desc)
838 goto unmap_exit;
839
840 *dma_chan = chan;
841 *dma_desc = desc;
842
843 return 0;
844
845 unmap_exit:
846 dma_unmap_sg(device->dev, data->sg, data->sg_len,
847 mmc_get_dma_dir(data));
848 return -ENOMEM;
849}
850
851int mmci_dmae_prep_data(struct mmci_host *host,
852 struct mmc_data *data,
853 bool next)
854{
855 struct mmci_dmae_priv *dmae = host->dma_priv;
856 struct mmci_dmae_next *nd = &dmae->next_data;
857
858 if (!host->use_dma)
859 return -EINVAL;
860
861 if (next)
862 return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
863 /* Check if next job is already prepared. */
864 if (dmae->cur && dmae->desc_current)
865 return 0;
866
867 /* No job were prepared thus do it now. */
868 return _mmci_dmae_prep_data(host, data, &dmae->cur,
869 &dmae->desc_current);
870}
871
872int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
873{
874 struct mmci_dmae_priv *dmae = host->dma_priv;
875
876 host->dma_in_progress = true;
877 dmaengine_submit(dmae->desc_current);
878 dma_async_issue_pending(dmae->cur);
879
880 *datactrl |= MCI_DPSM_DMAENABLE;
881
882 return 0;
883}
884
885void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
886{
887 struct mmci_dmae_priv *dmae = host->dma_priv;
888 struct mmci_dmae_next *next = &dmae->next_data;
889
890 if (!host->use_dma)
891 return;
892
893 WARN_ON(!data->host_cookie && (next->desc || next->chan));
894
895 dmae->desc_current = next->desc;
896 dmae->cur = next->chan;
897 next->desc = NULL;
898 next->chan = NULL;
899}
900
901void mmci_dmae_unprep_data(struct mmci_host *host,
902 struct mmc_data *data, int err)
903
904{
905 struct mmci_dmae_priv *dmae = host->dma_priv;
906
907 if (!host->use_dma)
908 return;
909
910 mmci_dma_unmap(host, data);
911
912 if (err) {
913 struct mmci_dmae_next *next = &dmae->next_data;
914 struct dma_chan *chan;
915 if (data->flags & MMC_DATA_READ)
916 chan = dmae->rx_channel;
917 else
918 chan = dmae->tx_channel;
919 dmaengine_terminate_all(chan);
920
921 if (dmae->desc_current == next->desc)
922 dmae->desc_current = NULL;
923
924 if (dmae->cur == next->chan) {
925 host->dma_in_progress = false;
926 dmae->cur = NULL;
927 }
928
929 next->desc = NULL;
930 next->chan = NULL;
931 }
932}
933
934static struct mmci_host_ops mmci_variant_ops = {
935 .prep_data = mmci_dmae_prep_data,
936 .unprep_data = mmci_dmae_unprep_data,
937 .get_datactrl_cfg = mmci_get_dctrl_cfg,
938 .get_next_data = mmci_dmae_get_next_data,
939 .dma_setup = mmci_dmae_setup,
940 .dma_release = mmci_dmae_release,
941 .dma_start = mmci_dmae_start,
942 .dma_finalize = mmci_dmae_finalize,
943 .dma_error = mmci_dmae_error,
944};
945#else
946static struct mmci_host_ops mmci_variant_ops = {
947 .get_datactrl_cfg = mmci_get_dctrl_cfg,
948};
949#endif
950
951void mmci_variant_init(struct mmci_host *host)
952{
953 host->ops = &mmci_variant_ops;
954}
955
956void ux500v2_variant_init(struct mmci_host *host)
957{
958 host->ops = &mmci_variant_ops;
959 host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
960}
961
962static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
963{
964 struct mmci_host *host = mmc_priv(mmc);
965 struct mmc_data *data = mrq->data;
966
967 if (!data)
968 return;
969
970 WARN_ON(data->host_cookie);
971
972 if (mmci_validate_data(host, data))
973 return;
974
975 mmci_prep_data(host, data, true);
976}
977
978static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
979 int err)
980{
981 struct mmci_host *host = mmc_priv(mmc);
982 struct mmc_data *data = mrq->data;
983
984 if (!data || !data->host_cookie)
985 return;
986
987 mmci_unprep_data(host, data, err);
988}
989
990static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
991{
992 struct variant_data *variant = host->variant;
993 unsigned int datactrl, timeout, irqmask;
994 unsigned long long clks;
995 void __iomem *base;
996
997 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
998 data->blksz, data->blocks, data->flags);
999
1000 host->data = data;
1001 host->size = data->blksz * data->blocks;
1002 data->bytes_xfered = 0;
1003
1004 clks = (unsigned long long)data->timeout_ns * host->cclk;
1005 do_div(clks, NSEC_PER_SEC);
1006
1007 timeout = data->timeout_clks + (unsigned int)clks;
1008
1009 base = host->base;
1010 writel(timeout, base + MMCIDATATIMER);
1011 writel(host->size, base + MMCIDATALENGTH);
1012
1013 datactrl = host->ops->get_datactrl_cfg(host);
1014 datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1015
1016 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1017 u32 clk;
1018
1019 datactrl |= variant->datactrl_mask_sdio;
1020
1021 /*
1022 * The ST Micro variant for SDIO small write transfers
1023 * needs to have clock H/W flow control disabled,
1024 * otherwise the transfer will not start. The threshold
1025 * depends on the rate of MCLK.
1026 */
1027 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1028 (host->size < 8 ||
1029 (host->size <= 8 && host->mclk > 50000000)))
1030 clk = host->clk_reg & ~variant->clkreg_enable;
1031 else
1032 clk = host->clk_reg | variant->clkreg_enable;
1033
1034 mmci_write_clkreg(host, clk);
1035 }
1036
1037 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1038 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1039 datactrl |= variant->datactrl_mask_ddrmode;
1040
1041 /*
1042 * Attempt to use DMA operation mode, if this
1043 * should fail, fall back to PIO mode
1044 */
1045 if (!mmci_dma_start(host, datactrl))
1046 return;
1047
1048 /* IRQ mode, map the SG list for CPU reading/writing */
1049 mmci_init_sg(host, data);
1050
1051 if (data->flags & MMC_DATA_READ) {
1052 irqmask = MCI_RXFIFOHALFFULLMASK;
1053
1054 /*
1055 * If we have less than the fifo 'half-full' threshold to
1056 * transfer, trigger a PIO interrupt as soon as any data
1057 * is available.
1058 */
1059 if (host->size < variant->fifohalfsize)
1060 irqmask |= MCI_RXDATAAVLBLMASK;
1061 } else {
1062 /*
1063 * We don't actually need to include "FIFO empty" here
1064 * since its implicit in "FIFO half empty".
1065 */
1066 irqmask = MCI_TXFIFOHALFEMPTYMASK;
1067 }
1068
1069 mmci_write_datactrlreg(host, datactrl);
1070 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1071 mmci_set_mask1(host, irqmask);
1072}
1073
1074static void
1075mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1076{
1077 void __iomem *base = host->base;
1078
1079 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1080 cmd->opcode, cmd->arg, cmd->flags);
1081
1082 if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1083 writel(0, base + MMCICOMMAND);
1084 mmci_reg_delay(host);
1085 }
1086
1087 if (host->variant->cmdreg_stop &&
1088 cmd->opcode == MMC_STOP_TRANSMISSION)
1089 c |= host->variant->cmdreg_stop;
1090
1091 c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1092 if (cmd->flags & MMC_RSP_PRESENT) {
1093 if (cmd->flags & MMC_RSP_136)
1094 c |= host->variant->cmdreg_lrsp_crc;
1095 else if (cmd->flags & MMC_RSP_CRC)
1096 c |= host->variant->cmdreg_srsp_crc;
1097 else
1098 c |= host->variant->cmdreg_srsp;
1099 }
1100 if (/*interrupt*/0)
1101 c |= MCI_CPSM_INTERRUPT;
1102
1103 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1104 c |= host->variant->data_cmd_enable;
1105
1106 host->cmd = cmd;
1107
1108 writel(cmd->arg, base + MMCIARGUMENT);
1109 writel(c, base + MMCICOMMAND);
1110}
1111
1112static void mmci_stop_command(struct mmci_host *host)
1113{
1114 host->stop_abort.error = 0;
1115 mmci_start_command(host, &host->stop_abort, 0);
1116}
1117
1118static void
1119mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1120 unsigned int status)
1121{
1122 unsigned int status_err;
1123
1124 /* Make sure we have data to handle */
1125 if (!data)
1126 return;
1127
1128 /* First check for errors */
1129 status_err = status & (host->variant->start_err |
1130 MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1131 MCI_TXUNDERRUN | MCI_RXOVERRUN);
1132
1133 if (status_err) {
1134 u32 remain, success;
1135
1136 /* Terminate the DMA transfer */
1137 mmci_dma_error(host);
1138
1139 /*
1140 * Calculate how far we are into the transfer. Note that
1141 * the data counter gives the number of bytes transferred
1142 * on the MMC bus, not on the host side. On reads, this
1143 * can be as much as a FIFO-worth of data ahead. This
1144 * matters for FIFO overruns only.
1145 */
1146 if (!host->variant->datacnt_useless) {
1147 remain = readl(host->base + MMCIDATACNT);
1148 success = data->blksz * data->blocks - remain;
1149 } else {
1150 success = 0;
1151 }
1152
1153 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1154 status_err, success);
1155 if (status_err & MCI_DATACRCFAIL) {
1156 /* Last block was not successful */
1157 success -= 1;
1158 data->error = -EILSEQ;
1159 } else if (status_err & MCI_DATATIMEOUT) {
1160 data->error = -ETIMEDOUT;
1161 } else if (status_err & MCI_STARTBITERR) {
1162 data->error = -ECOMM;
1163 } else if (status_err & MCI_TXUNDERRUN) {
1164 data->error = -EIO;
1165 } else if (status_err & MCI_RXOVERRUN) {
1166 if (success > host->variant->fifosize)
1167 success -= host->variant->fifosize;
1168 else
1169 success = 0;
1170 data->error = -EIO;
1171 }
1172 data->bytes_xfered = round_down(success, data->blksz);
1173 }
1174
1175 if (status & MCI_DATABLOCKEND)
1176 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1177
1178 if (status & MCI_DATAEND || data->error) {
1179 mmci_dma_finalize(host, data);
1180
1181 mmci_stop_data(host);
1182
1183 if (!data->error)
1184 /* The error clause is handled above, success! */
1185 data->bytes_xfered = data->blksz * data->blocks;
1186
1187 if (!data->stop) {
1188 if (host->variant->cmdreg_stop && data->error)
1189 mmci_stop_command(host);
1190 else
1191 mmci_request_end(host, data->mrq);
1192 } else if (host->mrq->sbc && !data->error) {
1193 mmci_request_end(host, data->mrq);
1194 } else {
1195 mmci_start_command(host, data->stop, 0);
1196 }
1197 }
1198}
1199
1200static void
1201mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1202 unsigned int status)
1203{
1204 void __iomem *base = host->base;
1205 bool sbc, busy_resp;
1206
1207 if (!cmd)
1208 return;
1209
1210 sbc = (cmd == host->mrq->sbc);
1211 busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1212
1213 /*
1214 * We need to be one of these interrupts to be considered worth
1215 * handling. Note that we tag on any latent IRQs postponed
1216 * due to waiting for busy status.
1217 */
1218 if (!((status|host->busy_status) &
1219 (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1220 return;
1221
1222 /* Handle busy detection on DAT0 if the variant supports it. */
1223 if (busy_resp && host->variant->busy_detect) {
1224
1225 /*
1226 * Before unmasking for the busy end IRQ, confirm that the
1227 * command was sent successfully. To keep track of having a
1228 * command in-progress, waiting for busy signaling to end,
1229 * store the status in host->busy_status.
1230 *
1231 * Note that, the card may need a couple of clock cycles before
1232 * it starts signaling busy on DAT0, hence re-read the
1233 * MMCISTATUS register here, to allow the busy bit to be set.
1234 * Potentially we may even need to poll the register for a
1235 * while, to allow it to be set, but tests indicates that it
1236 * isn't needed.
1237 */
1238 if (!host->busy_status &&
1239 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1240 (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1241
1242 writel(readl(base + MMCIMASK0) |
1243 host->variant->busy_detect_mask,
1244 base + MMCIMASK0);
1245
1246 host->busy_status =
1247 status & (MCI_CMDSENT|MCI_CMDRESPEND);
1248 return;
1249 }
1250
1251 /*
1252 * If there is a command in-progress that has been successfully
1253 * sent, then bail out if busy status is set and wait for the
1254 * busy end IRQ.
1255 *
1256 * Note that, the HW triggers an IRQ on both edges while
1257 * monitoring DAT0 for busy completion, but there is only one
1258 * status bit in MMCISTATUS for the busy state. Therefore
1259 * both the start and the end interrupts needs to be cleared,
1260 * one after the other. So, clear the busy start IRQ here.
1261 */
1262 if (host->busy_status &&
1263 (status & host->variant->busy_detect_flag)) {
1264 writel(host->variant->busy_detect_mask,
1265 host->base + MMCICLEAR);
1266 return;
1267 }
1268
1269 /*
1270 * If there is a command in-progress that has been successfully
1271 * sent and the busy bit isn't set, it means we have received
1272 * the busy end IRQ. Clear and mask the IRQ, then continue to
1273 * process the command.
1274 */
1275 if (host->busy_status) {
1276
1277 writel(host->variant->busy_detect_mask,
1278 host->base + MMCICLEAR);
1279
1280 writel(readl(base + MMCIMASK0) &
1281 ~host->variant->busy_detect_mask,
1282 base + MMCIMASK0);
1283 host->busy_status = 0;
1284 }
1285 }
1286
1287 host->cmd = NULL;
1288
1289 if (status & MCI_CMDTIMEOUT) {
1290 cmd->error = -ETIMEDOUT;
1291 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1292 cmd->error = -EILSEQ;
1293 } else {
1294 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1295 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1296 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1297 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1298 }
1299
1300 if ((!sbc && !cmd->data) || cmd->error) {
1301 if (host->data) {
1302 /* Terminate the DMA transfer */
1303 mmci_dma_error(host);
1304
1305 mmci_stop_data(host);
1306 if (host->variant->cmdreg_stop && cmd->error) {
1307 mmci_stop_command(host);
1308 return;
1309 }
1310 }
1311 mmci_request_end(host, host->mrq);
1312 } else if (sbc) {
1313 mmci_start_command(host, host->mrq->cmd, 0);
1314 } else if (!host->variant->datactrl_first &&
1315 !(cmd->data->flags & MMC_DATA_READ)) {
1316 mmci_start_data(host, cmd->data);
1317 }
1318}
1319
1320static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1321{
1322 return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1323}
1324
1325static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1326{
1327 /*
1328 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1329 * from the fifo range should be used
1330 */
1331 if (status & MCI_RXFIFOHALFFULL)
1332 return host->variant->fifohalfsize;
1333 else if (status & MCI_RXDATAAVLBL)
1334 return 4;
1335
1336 return 0;
1337}
1338
1339static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1340{
1341 void __iomem *base = host->base;
1342 char *ptr = buffer;
1343 u32 status = readl(host->base + MMCISTATUS);
1344 int host_remain = host->size;
1345
1346 do {
1347 int count = host->get_rx_fifocnt(host, status, host_remain);
1348
1349 if (count > remain)
1350 count = remain;
1351
1352 if (count <= 0)
1353 break;
1354
1355 /*
1356 * SDIO especially may want to send something that is
1357 * not divisible by 4 (as opposed to card sectors
1358 * etc). Therefore make sure to always read the last bytes
1359 * while only doing full 32-bit reads towards the FIFO.
1360 */
1361 if (unlikely(count & 0x3)) {
1362 if (count < 4) {
1363 unsigned char buf[4];
1364 ioread32_rep(base + MMCIFIFO, buf, 1);
1365 memcpy(ptr, buf, count);
1366 } else {
1367 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1368 count &= ~0x3;
1369 }
1370 } else {
1371 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1372 }
1373
1374 ptr += count;
1375 remain -= count;
1376 host_remain -= count;
1377
1378 if (remain == 0)
1379 break;
1380
1381 status = readl(base + MMCISTATUS);
1382 } while (status & MCI_RXDATAAVLBL);
1383
1384 return ptr - buffer;
1385}
1386
1387static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1388{
1389 struct variant_data *variant = host->variant;
1390 void __iomem *base = host->base;
1391 char *ptr = buffer;
1392
1393 do {
1394 unsigned int count, maxcnt;
1395
1396 maxcnt = status & MCI_TXFIFOEMPTY ?
1397 variant->fifosize : variant->fifohalfsize;
1398 count = min(remain, maxcnt);
1399
1400 /*
1401 * SDIO especially may want to send something that is
1402 * not divisible by 4 (as opposed to card sectors
1403 * etc), and the FIFO only accept full 32-bit writes.
1404 * So compensate by adding +3 on the count, a single
1405 * byte become a 32bit write, 7 bytes will be two
1406 * 32bit writes etc.
1407 */
1408 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1409
1410 ptr += count;
1411 remain -= count;
1412
1413 if (remain == 0)
1414 break;
1415
1416 status = readl(base + MMCISTATUS);
1417 } while (status & MCI_TXFIFOHALFEMPTY);
1418
1419 return ptr - buffer;
1420}
1421
1422/*
1423 * PIO data transfer IRQ handler.
1424 */
1425static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1426{
1427 struct mmci_host *host = dev_id;
1428 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1429 struct variant_data *variant = host->variant;
1430 void __iomem *base = host->base;
1431 u32 status;
1432
1433 status = readl(base + MMCISTATUS);
1434
1435 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1436
1437 do {
1438 unsigned int remain, len;
1439 char *buffer;
1440
1441 /*
1442 * For write, we only need to test the half-empty flag
1443 * here - if the FIFO is completely empty, then by
1444 * definition it is more than half empty.
1445 *
1446 * For read, check for data available.
1447 */
1448 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1449 break;
1450
1451 if (!sg_miter_next(sg_miter))
1452 break;
1453
1454 buffer = sg_miter->addr;
1455 remain = sg_miter->length;
1456
1457 len = 0;
1458 if (status & MCI_RXACTIVE)
1459 len = mmci_pio_read(host, buffer, remain);
1460 if (status & MCI_TXACTIVE)
1461 len = mmci_pio_write(host, buffer, remain, status);
1462
1463 sg_miter->consumed = len;
1464
1465 host->size -= len;
1466 remain -= len;
1467
1468 if (remain)
1469 break;
1470
1471 status = readl(base + MMCISTATUS);
1472 } while (1);
1473
1474 sg_miter_stop(sg_miter);
1475
1476 /*
1477 * If we have less than the fifo 'half-full' threshold to transfer,
1478 * trigger a PIO interrupt as soon as any data is available.
1479 */
1480 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1481 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1482
1483 /*
1484 * If we run out of data, disable the data IRQs; this
1485 * prevents a race where the FIFO becomes empty before
1486 * the chip itself has disabled the data path, and
1487 * stops us racing with our data end IRQ.
1488 */
1489 if (host->size == 0) {
1490 mmci_set_mask1(host, 0);
1491 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1492 }
1493
1494 return IRQ_HANDLED;
1495}
1496
1497/*
1498 * Handle completion of command and data transfers.
1499 */
1500static irqreturn_t mmci_irq(int irq, void *dev_id)
1501{
1502 struct mmci_host *host = dev_id;
1503 u32 status;
1504 int ret = 0;
1505
1506 spin_lock(&host->lock);
1507
1508 do {
1509 status = readl(host->base + MMCISTATUS);
1510
1511 if (host->singleirq) {
1512 if (status & host->mask1_reg)
1513 mmci_pio_irq(irq, dev_id);
1514
1515 status &= ~host->variant->irq_pio_mask;
1516 }
1517
1518 /*
1519 * Busy detection is managed by mmci_cmd_irq(), including to
1520 * clear the corresponding IRQ.
1521 */
1522 status &= readl(host->base + MMCIMASK0);
1523 if (host->variant->busy_detect)
1524 writel(status & ~host->variant->busy_detect_mask,
1525 host->base + MMCICLEAR);
1526 else
1527 writel(status, host->base + MMCICLEAR);
1528
1529 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1530
1531 if (host->variant->reversed_irq_handling) {
1532 mmci_data_irq(host, host->data, status);
1533 mmci_cmd_irq(host, host->cmd, status);
1534 } else {
1535 mmci_cmd_irq(host, host->cmd, status);
1536 mmci_data_irq(host, host->data, status);
1537 }
1538
1539 /*
1540 * Busy detection has been handled by mmci_cmd_irq() above.
1541 * Clear the status bit to prevent polling in IRQ context.
1542 */
1543 if (host->variant->busy_detect_flag)
1544 status &= ~host->variant->busy_detect_flag;
1545
1546 ret = 1;
1547 } while (status);
1548
1549 spin_unlock(&host->lock);
1550
1551 return IRQ_RETVAL(ret);
1552}
1553
1554static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1555{
1556 struct mmci_host *host = mmc_priv(mmc);
1557 unsigned long flags;
1558
1559 WARN_ON(host->mrq != NULL);
1560
1561 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1562 if (mrq->cmd->error) {
1563 mmc_request_done(mmc, mrq);
1564 return;
1565 }
1566
1567 spin_lock_irqsave(&host->lock, flags);
1568
1569 host->mrq = mrq;
1570
1571 if (mrq->data)
1572 mmci_get_next_data(host, mrq->data);
1573
1574 if (mrq->data &&
1575 (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1576 mmci_start_data(host, mrq->data);
1577
1578 if (mrq->sbc)
1579 mmci_start_command(host, mrq->sbc, 0);
1580 else
1581 mmci_start_command(host, mrq->cmd, 0);
1582
1583 spin_unlock_irqrestore(&host->lock, flags);
1584}
1585
1586static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1587{
1588 struct mmci_host *host = mmc_priv(mmc);
1589 struct variant_data *variant = host->variant;
1590 u32 pwr = 0;
1591 unsigned long flags;
1592 int ret;
1593
1594 if (host->plat->ios_handler &&
1595 host->plat->ios_handler(mmc_dev(mmc), ios))
1596 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1597
1598 switch (ios->power_mode) {
1599 case MMC_POWER_OFF:
1600 if (!IS_ERR(mmc->supply.vmmc))
1601 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1602
1603 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1604 regulator_disable(mmc->supply.vqmmc);
1605 host->vqmmc_enabled = false;
1606 }
1607
1608 break;
1609 case MMC_POWER_UP:
1610 if (!IS_ERR(mmc->supply.vmmc))
1611 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1612
1613 /*
1614 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1615 * and instead uses MCI_PWR_ON so apply whatever value is
1616 * configured in the variant data.
1617 */
1618 pwr |= variant->pwrreg_powerup;
1619
1620 break;
1621 case MMC_POWER_ON:
1622 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1623 ret = regulator_enable(mmc->supply.vqmmc);
1624 if (ret < 0)
1625 dev_err(mmc_dev(mmc),
1626 "failed to enable vqmmc regulator\n");
1627 else
1628 host->vqmmc_enabled = true;
1629 }
1630
1631 pwr |= MCI_PWR_ON;
1632 break;
1633 }
1634
1635 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1636 /*
1637 * The ST Micro variant has some additional bits
1638 * indicating signal direction for the signals in
1639 * the SD/MMC bus and feedback-clock usage.
1640 */
1641 pwr |= host->pwr_reg_add;
1642
1643 if (ios->bus_width == MMC_BUS_WIDTH_4)
1644 pwr &= ~MCI_ST_DATA74DIREN;
1645 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1646 pwr &= (~MCI_ST_DATA74DIREN &
1647 ~MCI_ST_DATA31DIREN &
1648 ~MCI_ST_DATA2DIREN);
1649 }
1650
1651 if (variant->opendrain) {
1652 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1653 pwr |= variant->opendrain;
1654 } else {
1655 /*
1656 * If the variant cannot configure the pads by its own, then we
1657 * expect the pinctrl to be able to do that for us
1658 */
1659 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1660 pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1661 else
1662 pinctrl_select_state(host->pinctrl, host->pins_default);
1663 }
1664
1665 /*
1666 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1667 * gating the clock, the MCI_PWR_ON bit is cleared.
1668 */
1669 if (!ios->clock && variant->pwrreg_clkgate)
1670 pwr &= ~MCI_PWR_ON;
1671
1672 if (host->variant->explicit_mclk_control &&
1673 ios->clock != host->clock_cache) {
1674 ret = clk_set_rate(host->clk, ios->clock);
1675 if (ret < 0)
1676 dev_err(mmc_dev(host->mmc),
1677 "Error setting clock rate (%d)\n", ret);
1678 else
1679 host->mclk = clk_get_rate(host->clk);
1680 }
1681 host->clock_cache = ios->clock;
1682
1683 spin_lock_irqsave(&host->lock, flags);
1684
1685 if (host->ops && host->ops->set_clkreg)
1686 host->ops->set_clkreg(host, ios->clock);
1687 else
1688 mmci_set_clkreg(host, ios->clock);
1689
1690 if (host->ops && host->ops->set_pwrreg)
1691 host->ops->set_pwrreg(host, pwr);
1692 else
1693 mmci_write_pwrreg(host, pwr);
1694
1695 mmci_reg_delay(host);
1696
1697 spin_unlock_irqrestore(&host->lock, flags);
1698}
1699
1700static int mmci_get_cd(struct mmc_host *mmc)
1701{
1702 struct mmci_host *host = mmc_priv(mmc);
1703 struct mmci_platform_data *plat = host->plat;
1704 unsigned int status = mmc_gpio_get_cd(mmc);
1705
1706 if (status == -ENOSYS) {
1707 if (!plat->status)
1708 return 1; /* Assume always present */
1709
1710 status = plat->status(mmc_dev(host->mmc));
1711 }
1712 return status;
1713}
1714
1715static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1716{
1717 int ret = 0;
1718
1719 if (!IS_ERR(mmc->supply.vqmmc)) {
1720
1721 switch (ios->signal_voltage) {
1722 case MMC_SIGNAL_VOLTAGE_330:
1723 ret = regulator_set_voltage(mmc->supply.vqmmc,
1724 2700000, 3600000);
1725 break;
1726 case MMC_SIGNAL_VOLTAGE_180:
1727 ret = regulator_set_voltage(mmc->supply.vqmmc,
1728 1700000, 1950000);
1729 break;
1730 case MMC_SIGNAL_VOLTAGE_120:
1731 ret = regulator_set_voltage(mmc->supply.vqmmc,
1732 1100000, 1300000);
1733 break;
1734 }
1735
1736 if (ret)
1737 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1738 }
1739
1740 return ret;
1741}
1742
1743static struct mmc_host_ops mmci_ops = {
1744 .request = mmci_request,
1745 .pre_req = mmci_pre_request,
1746 .post_req = mmci_post_request,
1747 .set_ios = mmci_set_ios,
1748 .get_ro = mmc_gpio_get_ro,
1749 .get_cd = mmci_get_cd,
1750 .start_signal_voltage_switch = mmci_sig_volt_switch,
1751};
1752
1753static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1754{
1755 struct mmci_host *host = mmc_priv(mmc);
1756 int ret = mmc_of_parse(mmc);
1757
1758 if (ret)
1759 return ret;
1760
1761 if (of_get_property(np, "st,sig-dir-dat0", NULL))
1762 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1763 if (of_get_property(np, "st,sig-dir-dat2", NULL))
1764 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1765 if (of_get_property(np, "st,sig-dir-dat31", NULL))
1766 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1767 if (of_get_property(np, "st,sig-dir-dat74", NULL))
1768 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1769 if (of_get_property(np, "st,sig-dir-cmd", NULL))
1770 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1771 if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1772 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1773 if (of_get_property(np, "st,sig-dir", NULL))
1774 host->pwr_reg_add |= MCI_STM32_DIRPOL;
1775 if (of_get_property(np, "st,neg-edge", NULL))
1776 host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1777 if (of_get_property(np, "st,use-ckin", NULL))
1778 host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1779
1780 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1781 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1782 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1783 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1784
1785 return 0;
1786}
1787
1788static int mmci_probe(struct amba_device *dev,
1789 const struct amba_id *id)
1790{
1791 struct mmci_platform_data *plat = dev->dev.platform_data;
1792 struct device_node *np = dev->dev.of_node;
1793 struct variant_data *variant = id->data;
1794 struct mmci_host *host;
1795 struct mmc_host *mmc;
1796 int ret;
1797
1798 /* Must have platform data or Device Tree. */
1799 if (!plat && !np) {
1800 dev_err(&dev->dev, "No plat data or DT found\n");
1801 return -EINVAL;
1802 }
1803
1804 if (!plat) {
1805 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1806 if (!plat)
1807 return -ENOMEM;
1808 }
1809
1810 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1811 if (!mmc)
1812 return -ENOMEM;
1813
1814 ret = mmci_of_parse(np, mmc);
1815 if (ret)
1816 goto host_free;
1817
1818 host = mmc_priv(mmc);
1819 host->mmc = mmc;
1820
1821 /*
1822 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1823 * pins can be set accordingly using pinctrl
1824 */
1825 if (!variant->opendrain) {
1826 host->pinctrl = devm_pinctrl_get(&dev->dev);
1827 if (IS_ERR(host->pinctrl)) {
1828 dev_err(&dev->dev, "failed to get pinctrl");
1829 ret = PTR_ERR(host->pinctrl);
1830 goto host_free;
1831 }
1832
1833 host->pins_default = pinctrl_lookup_state(host->pinctrl,
1834 PINCTRL_STATE_DEFAULT);
1835 if (IS_ERR(host->pins_default)) {
1836 dev_err(mmc_dev(mmc), "Can't select default pins\n");
1837 ret = PTR_ERR(host->pins_default);
1838 goto host_free;
1839 }
1840
1841 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1842 MMCI_PINCTRL_STATE_OPENDRAIN);
1843 if (IS_ERR(host->pins_opendrain)) {
1844 dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1845 ret = PTR_ERR(host->pins_opendrain);
1846 goto host_free;
1847 }
1848 }
1849
1850 host->hw_designer = amba_manf(dev);
1851 host->hw_revision = amba_rev(dev);
1852 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1853 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1854
1855 host->clk = devm_clk_get(&dev->dev, NULL);
1856 if (IS_ERR(host->clk)) {
1857 ret = PTR_ERR(host->clk);
1858 goto host_free;
1859 }
1860
1861 ret = clk_prepare_enable(host->clk);
1862 if (ret)
1863 goto host_free;
1864
1865 if (variant->qcom_fifo)
1866 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1867 else
1868 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1869
1870 host->plat = plat;
1871 host->variant = variant;
1872 host->mclk = clk_get_rate(host->clk);
1873 /*
1874 * According to the spec, mclk is max 100 MHz,
1875 * so we try to adjust the clock down to this,
1876 * (if possible).
1877 */
1878 if (host->mclk > variant->f_max) {
1879 ret = clk_set_rate(host->clk, variant->f_max);
1880 if (ret < 0)
1881 goto clk_disable;
1882 host->mclk = clk_get_rate(host->clk);
1883 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1884 host->mclk);
1885 }
1886
1887 host->phybase = dev->res.start;
1888 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1889 if (IS_ERR(host->base)) {
1890 ret = PTR_ERR(host->base);
1891 goto clk_disable;
1892 }
1893
1894 if (variant->init)
1895 variant->init(host);
1896
1897 /*
1898 * The ARM and ST versions of the block have slightly different
1899 * clock divider equations which means that the minimum divider
1900 * differs too.
1901 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1902 */
1903 if (variant->st_clkdiv)
1904 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1905 else if (variant->stm32_clkdiv)
1906 mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
1907 else if (variant->explicit_mclk_control)
1908 mmc->f_min = clk_round_rate(host->clk, 100000);
1909 else
1910 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1911 /*
1912 * If no maximum operating frequency is supplied, fall back to use
1913 * the module parameter, which has a (low) default value in case it
1914 * is not specified. Either value must not exceed the clock rate into
1915 * the block, of course.
1916 */
1917 if (mmc->f_max)
1918 mmc->f_max = variant->explicit_mclk_control ?
1919 min(variant->f_max, mmc->f_max) :
1920 min(host->mclk, mmc->f_max);
1921 else
1922 mmc->f_max = variant->explicit_mclk_control ?
1923 fmax : min(host->mclk, fmax);
1924
1925
1926 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1927
1928 host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
1929 if (IS_ERR(host->rst)) {
1930 ret = PTR_ERR(host->rst);
1931 goto clk_disable;
1932 }
1933
1934 /* Get regulators and the supported OCR mask */
1935 ret = mmc_regulator_get_supply(mmc);
1936 if (ret)
1937 goto clk_disable;
1938
1939 if (!mmc->ocr_avail)
1940 mmc->ocr_avail = plat->ocr_mask;
1941 else if (plat->ocr_mask)
1942 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1943
1944 /* We support these capabilities. */
1945 mmc->caps |= MMC_CAP_CMD23;
1946
1947 /*
1948 * Enable busy detection.
1949 */
1950 if (variant->busy_detect) {
1951 mmci_ops.card_busy = mmci_card_busy;
1952 /*
1953 * Not all variants have a flag to enable busy detection
1954 * in the DPSM, but if they do, set it here.
1955 */
1956 if (variant->busy_dpsm_flag)
1957 mmci_write_datactrlreg(host,
1958 host->variant->busy_dpsm_flag);
1959 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1960 mmc->max_busy_timeout = 0;
1961 }
1962
1963 /* Prepare a CMD12 - needed to clear the DPSM on some variants. */
1964 host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
1965 host->stop_abort.arg = 0;
1966 host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
1967
1968 mmc->ops = &mmci_ops;
1969
1970 /* We support these PM capabilities. */
1971 mmc->pm_caps |= MMC_PM_KEEP_POWER;
1972
1973 /*
1974 * We can do SGIO
1975 */
1976 mmc->max_segs = NR_SG;
1977
1978 /*
1979 * Since only a certain number of bits are valid in the data length
1980 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1981 * single request.
1982 */
1983 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1984
1985 /*
1986 * Set the maximum segment size. Since we aren't doing DMA
1987 * (yet) we are only limited by the data length register.
1988 */
1989 mmc->max_seg_size = mmc->max_req_size;
1990
1991 /*
1992 * Block size can be up to 2048 bytes, but must be a power of two.
1993 */
1994 mmc->max_blk_size = 1 << variant->datactrl_blocksz;
1995
1996 /*
1997 * Limit the number of blocks transferred so that we don't overflow
1998 * the maximum request size.
1999 */
2000 mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2001
2002 spin_lock_init(&host->lock);
2003
2004 writel(0, host->base + MMCIMASK0);
2005
2006 if (variant->mmcimask1)
2007 writel(0, host->base + MMCIMASK1);
2008
2009 writel(0xfff, host->base + MMCICLEAR);
2010
2011 /*
2012 * If:
2013 * - not using DT but using a descriptor table, or
2014 * - using a table of descriptors ALONGSIDE DT, or
2015 * look up these descriptors named "cd" and "wp" right here, fail
2016 * silently of these do not exist
2017 */
2018 if (!np) {
2019 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
2020 if (ret == -EPROBE_DEFER)
2021 goto clk_disable;
2022
2023 ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0, NULL);
2024 if (ret == -EPROBE_DEFER)
2025 goto clk_disable;
2026 }
2027
2028 ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
2029 DRIVER_NAME " (cmd)", host);
2030 if (ret)
2031 goto clk_disable;
2032
2033 if (!dev->irq[1])
2034 host->singleirq = true;
2035 else {
2036 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2037 IRQF_SHARED, DRIVER_NAME " (pio)", host);
2038 if (ret)
2039 goto clk_disable;
2040 }
2041
2042 writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2043
2044 amba_set_drvdata(dev, mmc);
2045
2046 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2047 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2048 amba_rev(dev), (unsigned long long)dev->res.start,
2049 dev->irq[0], dev->irq[1]);
2050
2051 mmci_dma_setup(host);
2052
2053 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2054 pm_runtime_use_autosuspend(&dev->dev);
2055
2056 mmc_add_host(mmc);
2057
2058 pm_runtime_put(&dev->dev);
2059 return 0;
2060
2061 clk_disable:
2062 clk_disable_unprepare(host->clk);
2063 host_free:
2064 mmc_free_host(mmc);
2065 return ret;
2066}
2067
2068static int mmci_remove(struct amba_device *dev)
2069{
2070 struct mmc_host *mmc = amba_get_drvdata(dev);
2071
2072 if (mmc) {
2073 struct mmci_host *host = mmc_priv(mmc);
2074 struct variant_data *variant = host->variant;
2075
2076 /*
2077 * Undo pm_runtime_put() in probe. We use the _sync
2078 * version here so that we can access the primecell.
2079 */
2080 pm_runtime_get_sync(&dev->dev);
2081
2082 mmc_remove_host(mmc);
2083
2084 writel(0, host->base + MMCIMASK0);
2085
2086 if (variant->mmcimask1)
2087 writel(0, host->base + MMCIMASK1);
2088
2089 writel(0, host->base + MMCICOMMAND);
2090 writel(0, host->base + MMCIDATACTRL);
2091
2092 mmci_dma_release(host);
2093 clk_disable_unprepare(host->clk);
2094 mmc_free_host(mmc);
2095 }
2096
2097 return 0;
2098}
2099
2100#ifdef CONFIG_PM
2101static void mmci_save(struct mmci_host *host)
2102{
2103 unsigned long flags;
2104
2105 spin_lock_irqsave(&host->lock, flags);
2106
2107 writel(0, host->base + MMCIMASK0);
2108 if (host->variant->pwrreg_nopower) {
2109 writel(0, host->base + MMCIDATACTRL);
2110 writel(0, host->base + MMCIPOWER);
2111 writel(0, host->base + MMCICLOCK);
2112 }
2113 mmci_reg_delay(host);
2114
2115 spin_unlock_irqrestore(&host->lock, flags);
2116}
2117
2118static void mmci_restore(struct mmci_host *host)
2119{
2120 unsigned long flags;
2121
2122 spin_lock_irqsave(&host->lock, flags);
2123
2124 if (host->variant->pwrreg_nopower) {
2125 writel(host->clk_reg, host->base + MMCICLOCK);
2126 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2127 writel(host->pwr_reg, host->base + MMCIPOWER);
2128 }
2129 writel(MCI_IRQENABLE | host->variant->start_err,
2130 host->base + MMCIMASK0);
2131 mmci_reg_delay(host);
2132
2133 spin_unlock_irqrestore(&host->lock, flags);
2134}
2135
2136static int mmci_runtime_suspend(struct device *dev)
2137{
2138 struct amba_device *adev = to_amba_device(dev);
2139 struct mmc_host *mmc = amba_get_drvdata(adev);
2140
2141 if (mmc) {
2142 struct mmci_host *host = mmc_priv(mmc);
2143 pinctrl_pm_select_sleep_state(dev);
2144 mmci_save(host);
2145 clk_disable_unprepare(host->clk);
2146 }
2147
2148 return 0;
2149}
2150
2151static int mmci_runtime_resume(struct device *dev)
2152{
2153 struct amba_device *adev = to_amba_device(dev);
2154 struct mmc_host *mmc = amba_get_drvdata(adev);
2155
2156 if (mmc) {
2157 struct mmci_host *host = mmc_priv(mmc);
2158 clk_prepare_enable(host->clk);
2159 mmci_restore(host);
2160 pinctrl_pm_select_default_state(dev);
2161 }
2162
2163 return 0;
2164}
2165#endif
2166
2167static const struct dev_pm_ops mmci_dev_pm_ops = {
2168 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2169 pm_runtime_force_resume)
2170 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2171};
2172
2173static const struct amba_id mmci_ids[] = {
2174 {
2175 .id = 0x00041180,
2176 .mask = 0xff0fffff,
2177 .data = &variant_arm,
2178 },
2179 {
2180 .id = 0x01041180,
2181 .mask = 0xff0fffff,
2182 .data = &variant_arm_extended_fifo,
2183 },
2184 {
2185 .id = 0x02041180,
2186 .mask = 0xff0fffff,
2187 .data = &variant_arm_extended_fifo_hwfc,
2188 },
2189 {
2190 .id = 0x00041181,
2191 .mask = 0x000fffff,
2192 .data = &variant_arm,
2193 },
2194 /* ST Micro variants */
2195 {
2196 .id = 0x00180180,
2197 .mask = 0x00ffffff,
2198 .data = &variant_u300,
2199 },
2200 {
2201 .id = 0x10180180,
2202 .mask = 0xf0ffffff,
2203 .data = &variant_nomadik,
2204 },
2205 {
2206 .id = 0x00280180,
2207 .mask = 0x00ffffff,
2208 .data = &variant_nomadik,
2209 },
2210 {
2211 .id = 0x00480180,
2212 .mask = 0xf0ffffff,
2213 .data = &variant_ux500,
2214 },
2215 {
2216 .id = 0x10480180,
2217 .mask = 0xf0ffffff,
2218 .data = &variant_ux500v2,
2219 },
2220 {
2221 .id = 0x00880180,
2222 .mask = 0x00ffffff,
2223 .data = &variant_stm32,
2224 },
2225 {
2226 .id = 0x10153180,
2227 .mask = 0xf0ffffff,
2228 .data = &variant_stm32_sdmmc,
2229 },
2230 /* Qualcomm variants */
2231 {
2232 .id = 0x00051180,
2233 .mask = 0x000fffff,
2234 .data = &variant_qcom,
2235 },
2236 { 0, 0 },
2237};
2238
2239MODULE_DEVICE_TABLE(amba, mmci_ids);
2240
2241static struct amba_driver mmci_driver = {
2242 .drv = {
2243 .name = DRIVER_NAME,
2244 .pm = &mmci_dev_pm_ops,
2245 },
2246 .probe = mmci_probe,
2247 .remove = mmci_remove,
2248 .id_table = mmci_ids,
2249};
2250
2251module_amba_driver(mmci_driver);
2252
2253module_param(fmax, uint, 0444);
2254
2255MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2256MODULE_LICENSE("GPL");