Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   4 *
   5 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   6 *  Copyright (C) 2010 ST-Ericsson SA
 
 
 
 
   7 */
   8#include <linux/module.h>
   9#include <linux/moduleparam.h>
  10#include <linux/init.h>
  11#include <linux/ioport.h>
  12#include <linux/device.h>
  13#include <linux/io.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/delay.h>
  18#include <linux/err.h>
  19#include <linux/highmem.h>
  20#include <linux/log2.h>
  21#include <linux/mmc/mmc.h>
  22#include <linux/mmc/pm.h>
  23#include <linux/mmc/host.h>
  24#include <linux/mmc/card.h>
  25#include <linux/mmc/sd.h>
  26#include <linux/mmc/slot-gpio.h>
  27#include <linux/amba/bus.h>
  28#include <linux/clk.h>
  29#include <linux/scatterlist.h>
  30#include <linux/of.h>
 
  31#include <linux/regulator/consumer.h>
  32#include <linux/dmaengine.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/amba/mmci.h>
  35#include <linux/pm_runtime.h>
  36#include <linux/types.h>
  37#include <linux/pinctrl/consumer.h>
  38#include <linux/reset.h>
  39#include <linux/gpio/consumer.h>
  40#include <linux/workqueue.h>
  41
  42#include <asm/div64.h>
  43#include <asm/io.h>
  44
  45#include "mmci.h"
 
  46
  47#define DRIVER_NAME "mmci-pl18x"
  48
  49static void mmci_variant_init(struct mmci_host *host);
  50static void ux500_variant_init(struct mmci_host *host);
  51static void ux500v2_variant_init(struct mmci_host *host);
  52
  53static unsigned int fmax = 515633;
  54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  55static struct variant_data variant_arm = {
  56	.fifosize		= 16 * 4,
  57	.fifohalfsize		= 8 * 4,
  58	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  59	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  60	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  61	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
  62	.datalength_bits	= 16,
  63	.datactrl_blocksz	= 11,
  64	.pwrreg_powerup		= MCI_PWR_UP,
  65	.f_max			= 100000000,
  66	.reversed_irq_handling	= true,
  67	.mmcimask1		= true,
  68	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
  69	.start_err		= MCI_STARTBITERR,
  70	.opendrain		= MCI_ROD,
  71	.init			= mmci_variant_init,
  72};
  73
  74static struct variant_data variant_arm_extended_fifo = {
  75	.fifosize		= 128 * 4,
  76	.fifohalfsize		= 64 * 4,
  77	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  78	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  79	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  80	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
  81	.datalength_bits	= 16,
  82	.datactrl_blocksz	= 11,
  83	.pwrreg_powerup		= MCI_PWR_UP,
  84	.f_max			= 100000000,
  85	.mmcimask1		= true,
  86	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
  87	.start_err		= MCI_STARTBITERR,
  88	.opendrain		= MCI_ROD,
  89	.init			= mmci_variant_init,
  90};
  91
  92static struct variant_data variant_arm_extended_fifo_hwfc = {
  93	.fifosize		= 128 * 4,
  94	.fifohalfsize		= 64 * 4,
  95	.clkreg_enable		= MCI_ARM_HWFCEN,
  96	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  97	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  98	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  99	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 100	.datalength_bits	= 16,
 101	.datactrl_blocksz	= 11,
 102	.pwrreg_powerup		= MCI_PWR_UP,
 103	.f_max			= 100000000,
 104	.mmcimask1		= true,
 105	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 106	.start_err		= MCI_STARTBITERR,
 107	.opendrain		= MCI_ROD,
 108	.init			= mmci_variant_init,
 109};
 110
 111static struct variant_data variant_u300 = {
 112	.fifosize		= 16 * 4,
 113	.fifohalfsize		= 8 * 4,
 114	.clkreg_enable		= MCI_ST_U300_HWFCEN,
 115	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 116	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 117	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 118	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 119	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 120	.datalength_bits	= 16,
 121	.datactrl_blocksz	= 11,
 122	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 123	.st_sdio			= true,
 124	.pwrreg_powerup		= MCI_PWR_ON,
 125	.f_max			= 100000000,
 126	.signal_direction	= true,
 127	.pwrreg_clkgate		= true,
 128	.pwrreg_nopower		= true,
 129	.mmcimask1		= true,
 130	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 131	.start_err		= MCI_STARTBITERR,
 132	.opendrain		= MCI_OD,
 133	.init			= mmci_variant_init,
 134};
 135
 136static struct variant_data variant_nomadik = {
 137	.fifosize		= 16 * 4,
 138	.fifohalfsize		= 8 * 4,
 139	.clkreg			= MCI_CLK_ENABLE,
 140	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 141	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 142	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 143	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 144	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 145	.datalength_bits	= 24,
 146	.datactrl_blocksz	= 11,
 147	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 148	.st_sdio		= true,
 149	.st_clkdiv		= true,
 150	.pwrreg_powerup		= MCI_PWR_ON,
 151	.f_max			= 100000000,
 152	.signal_direction	= true,
 153	.pwrreg_clkgate		= true,
 154	.pwrreg_nopower		= true,
 155	.mmcimask1		= true,
 156	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 157	.start_err		= MCI_STARTBITERR,
 158	.opendrain		= MCI_OD,
 159	.init			= mmci_variant_init,
 160};
 161
 162static struct variant_data variant_ux500 = {
 163	.fifosize		= 30 * 4,
 164	.fifohalfsize		= 8 * 4,
 165	.clkreg			= MCI_CLK_ENABLE,
 166	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 167	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 168	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 169	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 170	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 171	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 172	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 173	.datalength_bits	= 24,
 174	.datactrl_blocksz	= 11,
 175	.datactrl_any_blocksz	= true,
 176	.dma_power_of_2		= true,
 177	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 178	.st_sdio		= true,
 179	.st_clkdiv		= true,
 180	.pwrreg_powerup		= MCI_PWR_ON,
 181	.f_max			= 100000000,
 182	.signal_direction	= true,
 183	.pwrreg_clkgate		= true,
 184	.busy_detect		= true,
 185	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 186	.busy_detect_flag	= MCI_ST_CARDBUSY,
 187	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 188	.pwrreg_nopower		= true,
 189	.mmcimask1		= true,
 190	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 191	.start_err		= MCI_STARTBITERR,
 192	.opendrain		= MCI_OD,
 193	.init			= ux500_variant_init,
 194};
 195
 196static struct variant_data variant_ux500v2 = {
 197	.fifosize		= 30 * 4,
 198	.fifohalfsize		= 8 * 4,
 199	.clkreg			= MCI_CLK_ENABLE,
 200	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 201	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 202	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 203	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 204	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 205	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 206	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 207	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
 208	.datalength_bits	= 24,
 209	.datactrl_blocksz	= 11,
 210	.datactrl_any_blocksz	= true,
 211	.dma_power_of_2		= true,
 212	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 213	.st_sdio		= true,
 214	.st_clkdiv		= true,
 
 215	.pwrreg_powerup		= MCI_PWR_ON,
 216	.f_max			= 100000000,
 217	.signal_direction	= true,
 218	.pwrreg_clkgate		= true,
 219	.busy_detect		= true,
 220	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 221	.busy_detect_flag	= MCI_ST_CARDBUSY,
 222	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 223	.pwrreg_nopower		= true,
 224	.mmcimask1		= true,
 225	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 226	.start_err		= MCI_STARTBITERR,
 227	.opendrain		= MCI_OD,
 228	.init			= ux500v2_variant_init,
 229};
 230
 231static struct variant_data variant_stm32 = {
 232	.fifosize		= 32 * 4,
 233	.fifohalfsize		= 8 * 4,
 234	.clkreg			= MCI_CLK_ENABLE,
 235	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 236	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 237	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 238	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 239	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 240	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 241	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 242	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 243	.datalength_bits	= 24,
 244	.datactrl_blocksz	= 11,
 245	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 246	.st_sdio		= true,
 247	.st_clkdiv		= true,
 248	.pwrreg_powerup		= MCI_PWR_ON,
 249	.f_max			= 48000000,
 250	.pwrreg_clkgate		= true,
 251	.pwrreg_nopower		= true,
 252	.dma_flow_controller	= true,
 253	.init			= mmci_variant_init,
 254};
 255
 256static struct variant_data variant_stm32_sdmmc = {
 257	.fifosize		= 16 * 4,
 258	.fifohalfsize		= 8 * 4,
 259	.f_max			= 208000000,
 260	.stm32_clkdiv		= true,
 261	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
 262	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
 263	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
 264	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
 265	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
 266	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
 267	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
 268	.datactrl_first		= true,
 269	.datacnt_useless	= true,
 270	.datalength_bits	= 25,
 271	.datactrl_blocksz	= 14,
 272	.datactrl_any_blocksz	= true,
 273	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 274	.stm32_idmabsize_mask	= GENMASK(12, 5),
 275	.stm32_idmabsize_align	= BIT(5),
 276	.supports_sdio_irq	= true,
 277	.busy_timeout		= true,
 278	.busy_detect		= true,
 279	.busy_detect_flag	= MCI_STM32_BUSYD0,
 280	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
 281	.init			= sdmmc_variant_init,
 282};
 283
 284static struct variant_data variant_stm32_sdmmcv2 = {
 285	.fifosize		= 16 * 4,
 286	.fifohalfsize		= 8 * 4,
 287	.f_max			= 267000000,
 288	.stm32_clkdiv		= true,
 289	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
 290	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
 291	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
 292	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
 293	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
 294	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
 295	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
 296	.datactrl_first		= true,
 297	.datacnt_useless	= true,
 298	.datalength_bits	= 25,
 299	.datactrl_blocksz	= 14,
 300	.datactrl_any_blocksz	= true,
 301	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 302	.stm32_idmabsize_mask	= GENMASK(16, 5),
 303	.stm32_idmabsize_align	= BIT(5),
 304	.supports_sdio_irq	= true,
 305	.dma_lli		= true,
 306	.busy_timeout		= true,
 307	.busy_detect		= true,
 308	.busy_detect_flag	= MCI_STM32_BUSYD0,
 309	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
 310	.init			= sdmmc_variant_init,
 311};
 312
 313static struct variant_data variant_stm32_sdmmcv3 = {
 314	.fifosize		= 256 * 4,
 315	.fifohalfsize		= 128 * 4,
 316	.f_max			= 267000000,
 317	.stm32_clkdiv		= true,
 318	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
 319	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
 320	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
 321	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
 322	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
 323	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
 324	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
 325	.datactrl_first		= true,
 326	.datacnt_useless	= true,
 327	.datalength_bits	= 25,
 328	.datactrl_blocksz	= 14,
 329	.datactrl_any_blocksz	= true,
 330	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 331	.stm32_idmabsize_mask	= GENMASK(16, 6),
 332	.stm32_idmabsize_align	= BIT(6),
 333	.supports_sdio_irq	= true,
 334	.dma_lli		= true,
 335	.busy_timeout		= true,
 336	.busy_detect		= true,
 337	.busy_detect_flag	= MCI_STM32_BUSYD0,
 338	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
 339	.init			= sdmmc_variant_init,
 340};
 341
 342static struct variant_data variant_qcom = {
 343	.fifosize		= 16 * 4,
 344	.fifohalfsize		= 8 * 4,
 345	.clkreg			= MCI_CLK_ENABLE,
 346	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
 347				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
 348	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
 349	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
 350	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 351	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 352	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 353	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 354	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
 
 355	.datalength_bits	= 24,
 356	.datactrl_blocksz	= 11,
 357	.datactrl_any_blocksz	= true,
 358	.pwrreg_powerup		= MCI_PWR_UP,
 359	.f_max			= 208000000,
 360	.explicit_mclk_control	= true,
 361	.qcom_fifo		= true,
 362	.qcom_dml		= true,
 363	.mmcimask1		= true,
 364	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 365	.start_err		= MCI_STARTBITERR,
 366	.opendrain		= MCI_ROD,
 367	.init			= qcom_variant_init,
 368};
 369
 370/* Busy detection for the ST Micro variant */
 371static int mmci_card_busy(struct mmc_host *mmc)
 372{
 373	struct mmci_host *host = mmc_priv(mmc);
 374	unsigned long flags;
 375	int busy = 0;
 376
 377	spin_lock_irqsave(&host->lock, flags);
 378	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
 379		busy = 1;
 380	spin_unlock_irqrestore(&host->lock, flags);
 381
 382	return busy;
 383}
 384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 385static void mmci_reg_delay(struct mmci_host *host)
 386{
 387	/*
 388	 * According to the spec, at least three feedback clock cycles
 389	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 390	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 391	 * Worst delay time during card init is at 100 kHz => 30 us.
 392	 * Worst delay time when up and running is at 25 MHz => 120 ns.
 393	 */
 394	if (host->cclk < 25000000)
 395		udelay(30);
 396	else
 397		ndelay(120);
 398}
 399
 400/*
 401 * This must be called with host->lock held
 402 */
 403void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 404{
 405	if (host->clk_reg != clk) {
 406		host->clk_reg = clk;
 407		writel(clk, host->base + MMCICLOCK);
 408	}
 409}
 410
 411/*
 412 * This must be called with host->lock held
 413 */
 414void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 415{
 416	if (host->pwr_reg != pwr) {
 417		host->pwr_reg = pwr;
 418		writel(pwr, host->base + MMCIPOWER);
 419	}
 420}
 421
 422/*
 423 * This must be called with host->lock held
 424 */
 425static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 426{
 427	/* Keep busy mode in DPSM and SDIO mask if enabled */
 428	datactrl |= host->datactrl_reg & (host->variant->busy_dpsm_flag |
 429					  host->variant->datactrl_mask_sdio);
 430
 431	if (host->datactrl_reg != datactrl) {
 432		host->datactrl_reg = datactrl;
 433		writel(datactrl, host->base + MMCIDATACTRL);
 434	}
 435}
 436
 437/*
 438 * This must be called with host->lock held
 439 */
 440static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 441{
 442	struct variant_data *variant = host->variant;
 443	u32 clk = variant->clkreg;
 444
 445	/* Make sure cclk reflects the current calculated clock */
 446	host->cclk = 0;
 447
 448	if (desired) {
 449		if (variant->explicit_mclk_control) {
 450			host->cclk = host->mclk;
 451		} else if (desired >= host->mclk) {
 452			clk = MCI_CLK_BYPASS;
 453			if (variant->st_clkdiv)
 454				clk |= MCI_ST_UX500_NEG_EDGE;
 455			host->cclk = host->mclk;
 456		} else if (variant->st_clkdiv) {
 457			/*
 458			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 459			 * => clkdiv = (mclk / f) - 2
 460			 * Round the divider up so we don't exceed the max
 461			 * frequency
 462			 */
 463			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 464			if (clk >= 256)
 465				clk = 255;
 466			host->cclk = host->mclk / (clk + 2);
 467		} else {
 468			/*
 469			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 470			 * => clkdiv = mclk / (2 * f) - 1
 471			 */
 472			clk = host->mclk / (2 * desired) - 1;
 473			if (clk >= 256)
 474				clk = 255;
 475			host->cclk = host->mclk / (2 * (clk + 1));
 476		}
 477
 478		clk |= variant->clkreg_enable;
 479		clk |= MCI_CLK_ENABLE;
 480		/* This hasn't proven to be worthwhile */
 481		/* clk |= MCI_CLK_PWRSAVE; */
 482	}
 483
 484	/* Set actual clock for debug */
 485	host->mmc->actual_clock = host->cclk;
 486
 487	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 488		clk |= MCI_4BIT_BUS;
 489	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 490		clk |= variant->clkreg_8bit_bus_enable;
 491
 492	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 493	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 494		clk |= variant->clkreg_neg_edge_enable;
 495
 496	mmci_write_clkreg(host, clk);
 497}
 498
 499static void mmci_dma_release(struct mmci_host *host)
 500{
 501	if (host->ops && host->ops->dma_release)
 502		host->ops->dma_release(host);
 503
 504	host->use_dma = false;
 505}
 506
 507static void mmci_dma_setup(struct mmci_host *host)
 508{
 509	if (!host->ops || !host->ops->dma_setup)
 510		return;
 511
 512	if (host->ops->dma_setup(host))
 513		return;
 514
 515	/* initialize pre request cookie */
 516	host->next_cookie = 1;
 517
 518	host->use_dma = true;
 519}
 520
 521/*
 522 * Validate mmc prerequisites
 523 */
 524static int mmci_validate_data(struct mmci_host *host,
 525			      struct mmc_data *data)
 526{
 527	struct variant_data *variant = host->variant;
 528
 529	if (!data)
 530		return 0;
 531	if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
 532		dev_err(mmc_dev(host->mmc),
 533			"unsupported block size (%d bytes)\n", data->blksz);
 534		return -EINVAL;
 535	}
 536
 537	if (host->ops && host->ops->validate_data)
 538		return host->ops->validate_data(host, data);
 539
 540	return 0;
 541}
 542
 543static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
 544{
 545	int err;
 546
 547	if (!host->ops || !host->ops->prep_data)
 548		return 0;
 549
 550	err = host->ops->prep_data(host, data, next);
 551
 552	if (next && !err)
 553		data->host_cookie = ++host->next_cookie < 0 ?
 554			1 : host->next_cookie;
 555
 556	return err;
 557}
 558
 559static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
 560		      int err)
 561{
 562	if (host->ops && host->ops->unprep_data)
 563		host->ops->unprep_data(host, data, err);
 564
 565	data->host_cookie = 0;
 566}
 567
 568static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 569{
 570	WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
 571
 572	if (host->ops && host->ops->get_next_data)
 573		host->ops->get_next_data(host, data);
 574}
 575
 576static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
 577{
 578	struct mmc_data *data = host->data;
 579	int ret;
 580
 581	if (!host->use_dma)
 582		return -EINVAL;
 583
 584	ret = mmci_prep_data(host, data, false);
 585	if (ret)
 586		return ret;
 587
 588	if (!host->ops || !host->ops->dma_start)
 589		return -EINVAL;
 590
 591	/* Okay, go for it. */
 592	dev_vdbg(mmc_dev(host->mmc),
 593		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 594		 data->sg_len, data->blksz, data->blocks, data->flags);
 595
 596	ret = host->ops->dma_start(host, &datactrl);
 597	if (ret)
 598		return ret;
 599
 600	/* Trigger the DMA transfer */
 601	mmci_write_datactrlreg(host, datactrl);
 602
 603	/*
 604	 * Let the MMCI say when the data is ended and it's time
 605	 * to fire next DMA request. When that happens, MMCI will
 606	 * call mmci_data_end()
 607	 */
 608	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 609	       host->base + MMCIMASK0);
 610	return 0;
 611}
 612
 613static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 614{
 615	if (!host->use_dma)
 616		return;
 617
 618	if (host->ops && host->ops->dma_finalize)
 619		host->ops->dma_finalize(host, data);
 620}
 621
 622static void mmci_dma_error(struct mmci_host *host)
 623{
 624	if (!host->use_dma)
 625		return;
 626
 627	if (host->ops && host->ops->dma_error)
 628		host->ops->dma_error(host);
 629}
 630
 631static void
 632mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 633{
 634	writel(0, host->base + MMCICOMMAND);
 635
 636	BUG_ON(host->data);
 637
 638	host->mrq = NULL;
 639	host->cmd = NULL;
 640
 641	mmc_request_done(host->mmc, mrq);
 642}
 643
 644static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 645{
 646	void __iomem *base = host->base;
 647	struct variant_data *variant = host->variant;
 648
 649	if (host->singleirq) {
 650		unsigned int mask0 = readl(base + MMCIMASK0);
 651
 652		mask0 &= ~variant->irq_pio_mask;
 653		mask0 |= mask;
 654
 655		writel(mask0, base + MMCIMASK0);
 656	}
 657
 658	if (variant->mmcimask1)
 659		writel(mask, base + MMCIMASK1);
 660
 661	host->mask1_reg = mask;
 662}
 663
 664static void mmci_stop_data(struct mmci_host *host)
 665{
 666	mmci_write_datactrlreg(host, 0);
 667	mmci_set_mask1(host, 0);
 668	host->data = NULL;
 669}
 670
 671static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 672{
 673	unsigned int flags = SG_MITER_ATOMIC;
 674
 675	if (data->flags & MMC_DATA_READ)
 676		flags |= SG_MITER_TO_SG;
 677	else
 678		flags |= SG_MITER_FROM_SG;
 679
 680	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 681}
 682
 683static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
 684{
 685	return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
 686}
 687
 688static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
 689{
 690	return MCI_DPSM_ENABLE | (host->data->blksz << 16);
 691}
 692
 693static void ux500_busy_clear_mask_done(struct mmci_host *host)
 694{
 695	void __iomem *base = host->base;
 696
 697	writel(host->variant->busy_detect_mask, base + MMCICLEAR);
 698	writel(readl(base + MMCIMASK0) &
 699	       ~host->variant->busy_detect_mask, base + MMCIMASK0);
 700	host->busy_state = MMCI_BUSY_DONE;
 701	host->busy_status = 0;
 702}
 703
 704/*
 705 * ux500_busy_complete() - this will wait until the busy status
 706 * goes off, saving any status that occur in the meantime into
 707 * host->busy_status until we know the card is not busy any more.
 708 * The function returns true when the busy detection is ended
 709 * and we should continue processing the command.
 710 *
 711 * The Ux500 typically fires two IRQs over a busy cycle like this:
 712 *
 713 *  DAT0 busy          +-----------------+
 714 *                     |                 |
 715 *  DAT0 not busy  ----+                 +--------
 716 *
 717 *                     ^                 ^
 718 *                     |                 |
 719 *                    IRQ1              IRQ2
 720 */
 721static bool ux500_busy_complete(struct mmci_host *host, struct mmc_command *cmd,
 722				u32 status, u32 err_msk)
 723{
 724	void __iomem *base = host->base;
 725	int retries = 10;
 726
 727	if (status & err_msk) {
 728		/* Stop any ongoing busy detection if an error occurs */
 729		ux500_busy_clear_mask_done(host);
 730		goto out_ret_state;
 731	}
 732
 733	/*
 734	 * The state transitions are encoded in a state machine crossing
 735	 * the edges in this switch statement.
 736	 */
 737	switch (host->busy_state) {
 738
 739	/*
 740	 * Before unmasking for the busy end IRQ, confirm that the
 741	 * command was sent successfully. To keep track of having a
 742	 * command in-progress, waiting for busy signaling to end,
 743	 * store the status in host->busy_status.
 744	 *
 745	 * Note that, the card may need a couple of clock cycles before
 746	 * it starts signaling busy on DAT0, hence re-read the
 747	 * MMCISTATUS register here, to allow the busy bit to be set.
 748	 */
 749	case MMCI_BUSY_DONE:
 750		/*
 751		 * Save the first status register read to be sure to catch
 752		 * all bits that may be lost will retrying. If the command
 753		 * is still busy this will result in assigning 0 to
 754		 * host->busy_status, which is what it should be in IDLE.
 755		 */
 756		host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
 757		while (retries) {
 758			status = readl(base + MMCISTATUS);
 759			/* Keep accumulating status bits */
 760			host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
 761			if (status & host->variant->busy_detect_flag) {
 762				writel(readl(base + MMCIMASK0) |
 763				       host->variant->busy_detect_mask,
 764				       base + MMCIMASK0);
 765				host->busy_state = MMCI_BUSY_WAITING_FOR_START_IRQ;
 766				schedule_delayed_work(&host->ux500_busy_timeout_work,
 767				      msecs_to_jiffies(cmd->busy_timeout));
 768				goto out_ret_state;
 769			}
 770			retries--;
 771		}
 772		dev_dbg(mmc_dev(host->mmc),
 773			"no busy signalling in time CMD%02x\n", cmd->opcode);
 774		ux500_busy_clear_mask_done(host);
 775		break;
 776
 777	/*
 778	 * If there is a command in-progress that has been successfully
 779	 * sent, then bail out if busy status is set and wait for the
 780	 * busy end IRQ.
 781	 *
 782	 * Note that, the HW triggers an IRQ on both edges while
 783	 * monitoring DAT0 for busy completion, but there is only one
 784	 * status bit in MMCISTATUS for the busy state. Therefore
 785	 * both the start and the end interrupts needs to be cleared,
 786	 * one after the other. So, clear the busy start IRQ here.
 787	 */
 788	case MMCI_BUSY_WAITING_FOR_START_IRQ:
 789		if (status & host->variant->busy_detect_flag) {
 790			host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
 791			writel(host->variant->busy_detect_mask, base + MMCICLEAR);
 792			host->busy_state = MMCI_BUSY_WAITING_FOR_END_IRQ;
 793		} else {
 794			dev_dbg(mmc_dev(host->mmc),
 795				"lost busy status when waiting for busy start IRQ CMD%02x\n",
 796				cmd->opcode);
 797			cancel_delayed_work(&host->ux500_busy_timeout_work);
 798			ux500_busy_clear_mask_done(host);
 799		}
 800		break;
 801
 802	case MMCI_BUSY_WAITING_FOR_END_IRQ:
 803		if (!(status & host->variant->busy_detect_flag)) {
 804			host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
 805			writel(host->variant->busy_detect_mask, base + MMCICLEAR);
 806			cancel_delayed_work(&host->ux500_busy_timeout_work);
 807			ux500_busy_clear_mask_done(host);
 808		} else {
 809			dev_dbg(mmc_dev(host->mmc),
 810				"busy status still asserted when handling busy end IRQ - will keep waiting CMD%02x\n",
 811				cmd->opcode);
 812		}
 813		break;
 814
 815	default:
 816		dev_dbg(mmc_dev(host->mmc), "fell through on state %d, CMD%02x\n",
 817			host->busy_state, cmd->opcode);
 818		break;
 819	}
 820
 821out_ret_state:
 822	return (host->busy_state == MMCI_BUSY_DONE);
 823}
 824
 825/*
 826 * All the DMA operation mode stuff goes inside this ifdef.
 827 * This assumes that you have a generic DMA device interface,
 828 * no custom DMA interfaces are supported.
 829 */
 830#ifdef CONFIG_DMA_ENGINE
 831struct mmci_dmae_next {
 832	struct dma_async_tx_descriptor *desc;
 833	struct dma_chan	*chan;
 834};
 835
 836struct mmci_dmae_priv {
 837	struct dma_chan	*cur;
 838	struct dma_chan	*rx_channel;
 839	struct dma_chan	*tx_channel;
 840	struct dma_async_tx_descriptor	*desc_current;
 841	struct mmci_dmae_next next_data;
 842};
 843
 844int mmci_dmae_setup(struct mmci_host *host)
 845{
 846	const char *rxname, *txname;
 847	struct mmci_dmae_priv *dmae;
 848
 849	dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
 850	if (!dmae)
 851		return -ENOMEM;
 852
 853	host->dma_priv = dmae;
 854
 855	dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
 856	if (IS_ERR(dmae->rx_channel)) {
 857		int ret = PTR_ERR(dmae->rx_channel);
 858		dmae->rx_channel = NULL;
 859		return ret;
 860	}
 861
 862	dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
 863	if (IS_ERR(dmae->tx_channel)) {
 864		if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
 865			dev_warn(mmc_dev(host->mmc),
 866				 "Deferred probe for TX channel ignored\n");
 867		dmae->tx_channel = NULL;
 868	}
 869
 870	/*
 871	 * If only an RX channel is specified, the driver will
 872	 * attempt to use it bidirectionally, however if it
 873	 * is specified but cannot be located, DMA will be disabled.
 874	 */
 875	if (dmae->rx_channel && !dmae->tx_channel)
 876		dmae->tx_channel = dmae->rx_channel;
 877
 878	if (dmae->rx_channel)
 879		rxname = dma_chan_name(dmae->rx_channel);
 880	else
 881		rxname = "none";
 882
 883	if (dmae->tx_channel)
 884		txname = dma_chan_name(dmae->tx_channel);
 885	else
 886		txname = "none";
 887
 888	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 889		 rxname, txname);
 890
 891	/*
 892	 * Limit the maximum segment size in any SG entry according to
 893	 * the parameters of the DMA engine device.
 894	 */
 895	if (dmae->tx_channel) {
 896		struct device *dev = dmae->tx_channel->device->dev;
 897		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 898
 899		if (max_seg_size < host->mmc->max_seg_size)
 900			host->mmc->max_seg_size = max_seg_size;
 901	}
 902	if (dmae->rx_channel) {
 903		struct device *dev = dmae->rx_channel->device->dev;
 904		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 905
 906		if (max_seg_size < host->mmc->max_seg_size)
 907			host->mmc->max_seg_size = max_seg_size;
 908	}
 909
 910	if (!dmae->tx_channel || !dmae->rx_channel) {
 911		mmci_dmae_release(host);
 912		return -EINVAL;
 913	}
 914
 915	return 0;
 916}
 917
 918/*
 919 * This is used in or so inline it
 920 * so it can be discarded.
 921 */
 922void mmci_dmae_release(struct mmci_host *host)
 923{
 924	struct mmci_dmae_priv *dmae = host->dma_priv;
 
 
 
 
 
 925
 926	if (dmae->rx_channel)
 927		dma_release_channel(dmae->rx_channel);
 928	if (dmae->tx_channel)
 929		dma_release_channel(dmae->tx_channel);
 930	dmae->rx_channel = dmae->tx_channel = NULL;
 
 
 
 931}
 932
 933static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 934{
 935	struct mmci_dmae_priv *dmae = host->dma_priv;
 936	struct dma_chan *chan;
 937
 938	if (data->flags & MMC_DATA_READ)
 939		chan = dmae->rx_channel;
 940	else
 941		chan = dmae->tx_channel;
 942
 943	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
 944		     mmc_get_dma_dir(data));
 945}
 946
 947void mmci_dmae_error(struct mmci_host *host)
 948{
 949	struct mmci_dmae_priv *dmae = host->dma_priv;
 950
 951	if (!dma_inprogress(host))
 952		return;
 953
 954	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 955	dmaengine_terminate_all(dmae->cur);
 956	host->dma_in_progress = false;
 957	dmae->cur = NULL;
 958	dmae->desc_current = NULL;
 959	host->data->host_cookie = 0;
 960
 961	mmci_dma_unmap(host, host->data);
 962}
 963
 964void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
 965{
 966	struct mmci_dmae_priv *dmae = host->dma_priv;
 967	u32 status;
 968	int i;
 969
 970	if (!dma_inprogress(host))
 971		return;
 972
 973	/* Wait up to 1ms for the DMA to complete */
 974	for (i = 0; ; i++) {
 975		status = readl(host->base + MMCISTATUS);
 976		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 977			break;
 978		udelay(10);
 979	}
 980
 981	/*
 982	 * Check to see whether we still have some data left in the FIFO -
 983	 * this catches DMA controllers which are unable to monitor the
 984	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 985	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 986	 */
 987	if (status & MCI_RXDATAAVLBLMASK) {
 988		mmci_dma_error(host);
 989		if (!data->error)
 990			data->error = -EIO;
 991	} else if (!data->host_cookie) {
 992		mmci_dma_unmap(host, data);
 993	}
 994
 
 
 
 995	/*
 996	 * Use of DMA with scatter-gather is impossible.
 997	 * Give up with DMA and switch back to PIO mode.
 998	 */
 999	if (status & MCI_RXDATAAVLBLMASK) {
1000		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
1001		mmci_dma_release(host);
1002	}
1003
1004	host->dma_in_progress = false;
1005	dmae->cur = NULL;
1006	dmae->desc_current = NULL;
1007}
1008
1009/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
1010static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
1011				struct dma_chan **dma_chan,
1012				struct dma_async_tx_descriptor **dma_desc)
1013{
1014	struct mmci_dmae_priv *dmae = host->dma_priv;
1015	struct variant_data *variant = host->variant;
1016	struct dma_slave_config conf = {
1017		.src_addr = host->phybase + MMCIFIFO,
1018		.dst_addr = host->phybase + MMCIFIFO,
1019		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1020		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1021		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
1022		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
1023		.device_fc = variant->dma_flow_controller,
1024	};
1025	struct dma_chan *chan;
1026	struct dma_device *device;
1027	struct dma_async_tx_descriptor *desc;
1028	int nr_sg;
1029	unsigned long flags = DMA_CTRL_ACK;
1030
1031	if (data->flags & MMC_DATA_READ) {
1032		conf.direction = DMA_DEV_TO_MEM;
1033		chan = dmae->rx_channel;
1034	} else {
1035		conf.direction = DMA_MEM_TO_DEV;
1036		chan = dmae->tx_channel;
1037	}
1038
1039	/* If there's no DMA channel, fall back to PIO */
1040	if (!chan)
1041		return -EINVAL;
1042
1043	/* If less than or equal to the fifo size, don't bother with DMA */
1044	if (data->blksz * data->blocks <= variant->fifosize)
1045		return -EINVAL;
1046
1047	/*
1048	 * This is necessary to get SDIO working on the Ux500. We do not yet
1049	 * know if this is a bug in:
1050	 * - The Ux500 DMA controller (DMA40)
1051	 * - The MMCI DMA interface on the Ux500
1052	 * some power of two blocks (such as 64 bytes) are sent regularly
1053	 * during SDIO traffic and those work fine so for these we enable DMA
1054	 * transfers.
1055	 */
1056	if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
1057		return -EINVAL;
1058
1059	device = chan->device;
1060	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
1061			   mmc_get_dma_dir(data));
1062	if (nr_sg == 0)
1063		return -EINVAL;
1064
1065	if (host->variant->qcom_dml)
1066		flags |= DMA_PREP_INTERRUPT;
1067
1068	dmaengine_slave_config(chan, &conf);
1069	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
1070					    conf.direction, flags);
1071	if (!desc)
1072		goto unmap_exit;
1073
1074	*dma_chan = chan;
1075	*dma_desc = desc;
1076
1077	return 0;
1078
1079 unmap_exit:
1080	dma_unmap_sg(device->dev, data->sg, data->sg_len,
1081		     mmc_get_dma_dir(data));
1082	return -ENOMEM;
1083}
1084
1085int mmci_dmae_prep_data(struct mmci_host *host,
1086			struct mmc_data *data,
1087			bool next)
1088{
1089	struct mmci_dmae_priv *dmae = host->dma_priv;
1090	struct mmci_dmae_next *nd = &dmae->next_data;
1091
1092	if (!host->use_dma)
1093		return -EINVAL;
1094
1095	if (next)
1096		return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
1097	/* Check if next job is already prepared. */
1098	if (dmae->cur && dmae->desc_current)
1099		return 0;
1100
1101	/* No job were prepared thus do it now. */
1102	return _mmci_dmae_prep_data(host, data, &dmae->cur,
1103				    &dmae->desc_current);
1104}
1105
1106int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
 
 
 
 
 
 
 
1107{
1108	struct mmci_dmae_priv *dmae = host->dma_priv;
1109	int ret;
 
1110
1111	host->dma_in_progress = true;
1112	ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1113	if (ret < 0) {
1114		host->dma_in_progress = false;
1115		return ret;
1116	}
1117	dma_async_issue_pending(dmae->cur);
1118
1119	*datactrl |= MCI_DPSM_DMAENABLE;
 
 
 
 
 
 
 
 
 
 
 
1120
 
 
 
 
 
 
 
 
 
 
1121	return 0;
1122}
1123
1124void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
1125{
1126	struct mmci_dmae_priv *dmae = host->dma_priv;
1127	struct mmci_dmae_next *next = &dmae->next_data;
1128
1129	if (!host->use_dma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1130		return;
1131
1132	WARN_ON(!data->host_cookie && (next->desc || next->chan));
1133
1134	dmae->desc_current = next->desc;
1135	dmae->cur = next->chan;
1136	next->desc = NULL;
1137	next->chan = NULL;
1138}
1139
1140void mmci_dmae_unprep_data(struct mmci_host *host,
1141			   struct mmc_data *data, int err)
 
1142
 
 
1143{
1144	struct mmci_dmae_priv *dmae = host->dma_priv;
 
1145
1146	if (!host->use_dma)
1147		return;
1148
1149	mmci_dma_unmap(host, data);
1150
1151	if (err) {
1152		struct mmci_dmae_next *next = &dmae->next_data;
1153		struct dma_chan *chan;
1154		if (data->flags & MMC_DATA_READ)
1155			chan = dmae->rx_channel;
1156		else
1157			chan = dmae->tx_channel;
1158		dmaengine_terminate_all(chan);
1159
1160		if (dmae->desc_current == next->desc)
1161			dmae->desc_current = NULL;
1162
1163		if (dmae->cur == next->chan) {
1164			host->dma_in_progress = false;
1165			dmae->cur = NULL;
1166		}
1167
1168		next->desc = NULL;
1169		next->chan = NULL;
 
1170	}
1171}
1172
1173static struct mmci_host_ops mmci_variant_ops = {
1174	.prep_data = mmci_dmae_prep_data,
1175	.unprep_data = mmci_dmae_unprep_data,
1176	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1177	.get_next_data = mmci_dmae_get_next_data,
1178	.dma_setup = mmci_dmae_setup,
1179	.dma_release = mmci_dmae_release,
1180	.dma_start = mmci_dmae_start,
1181	.dma_finalize = mmci_dmae_finalize,
1182	.dma_error = mmci_dmae_error,
1183};
1184#else
1185static struct mmci_host_ops mmci_variant_ops = {
1186	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1187};
1188#endif
1189
1190static void mmci_variant_init(struct mmci_host *host)
1191{
1192	host->ops = &mmci_variant_ops;
1193}
1194
1195static void ux500_variant_init(struct mmci_host *host)
1196{
1197	host->ops = &mmci_variant_ops;
1198	host->ops->busy_complete = ux500_busy_complete;
1199}
1200
1201static void ux500v2_variant_init(struct mmci_host *host)
1202{
1203	host->ops = &mmci_variant_ops;
1204	host->ops->busy_complete = ux500_busy_complete;
1205	host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1206}
1207
1208static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1209{
1210	struct mmci_host *host = mmc_priv(mmc);
1211	struct mmc_data *data = mrq->data;
1212
1213	if (!data)
1214		return;
1215
1216	WARN_ON(data->host_cookie);
1217
1218	if (mmci_validate_data(host, data))
1219		return;
 
 
1220
1221	mmci_prep_data(host, data, true);
 
1222}
1223
1224static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1225			      int err)
1226{
1227	struct mmci_host *host = mmc_priv(mmc);
1228	struct mmc_data *data = mrq->data;
1229
1230	if (!data || !data->host_cookie)
1231		return;
1232
1233	mmci_unprep_data(host, data, err);
1234}
1235
1236static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1237{
1238	struct variant_data *variant = host->variant;
1239	unsigned int datactrl, timeout, irqmask;
1240	unsigned long long clks;
1241	void __iomem *base;
 
1242
1243	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1244		data->blksz, data->blocks, data->flags);
1245
1246	host->data = data;
1247	host->size = data->blksz * data->blocks;
1248	data->bytes_xfered = 0;
1249
1250	clks = (unsigned long long)data->timeout_ns * host->cclk;
1251	do_div(clks, NSEC_PER_SEC);
1252
1253	timeout = data->timeout_clks + (unsigned int)clks;
1254
1255	base = host->base;
1256	writel(timeout, base + MMCIDATATIMER);
1257	writel(host->size, base + MMCIDATALENGTH);
1258
1259	datactrl = host->ops->get_datactrl_cfg(host);
1260	datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
 
 
 
 
 
 
 
 
 
 
1261
1262	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1263		u32 clk;
1264
1265		datactrl |= variant->datactrl_mask_sdio;
1266
1267		/*
1268		 * The ST Micro variant for SDIO small write transfers
1269		 * needs to have clock H/W flow control disabled,
1270		 * otherwise the transfer will not start. The threshold
1271		 * depends on the rate of MCLK.
1272		 */
1273		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1274		    (host->size < 8 ||
1275		     (host->size <= 8 && host->mclk > 50000000)))
1276			clk = host->clk_reg & ~variant->clkreg_enable;
1277		else
1278			clk = host->clk_reg | variant->clkreg_enable;
1279
1280		mmci_write_clkreg(host, clk);
1281	}
1282
1283	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1284	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1285		datactrl |= variant->datactrl_mask_ddrmode;
1286
1287	/*
1288	 * Attempt to use DMA operation mode, if this
1289	 * should fail, fall back to PIO mode
1290	 */
1291	if (!mmci_dma_start(host, datactrl))
1292		return;
1293
1294	/* IRQ mode, map the SG list for CPU reading/writing */
1295	mmci_init_sg(host, data);
1296
1297	if (data->flags & MMC_DATA_READ) {
1298		irqmask = MCI_RXFIFOHALFFULLMASK;
1299
1300		/*
1301		 * If we have less than the fifo 'half-full' threshold to
1302		 * transfer, trigger a PIO interrupt as soon as any data
1303		 * is available.
1304		 */
1305		if (host->size < variant->fifohalfsize)
1306			irqmask |= MCI_RXDATAAVLBLMASK;
1307	} else {
1308		/*
1309		 * We don't actually need to include "FIFO empty" here
1310		 * since its implicit in "FIFO half empty".
1311		 */
1312		irqmask = MCI_TXFIFOHALFEMPTYMASK;
1313	}
1314
1315	mmci_write_datactrlreg(host, datactrl);
1316	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1317	mmci_set_mask1(host, irqmask);
1318}
1319
1320static void
1321mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1322{
1323	void __iomem *base = host->base;
1324	bool busy_resp = cmd->flags & MMC_RSP_BUSY;
1325	unsigned long long clks;
1326
1327	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1328	    cmd->opcode, cmd->arg, cmd->flags);
1329
1330	if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1331		writel(0, base + MMCICOMMAND);
1332		mmci_reg_delay(host);
1333	}
1334
1335	if (host->variant->cmdreg_stop &&
1336	    cmd->opcode == MMC_STOP_TRANSMISSION)
1337		c |= host->variant->cmdreg_stop;
1338
1339	c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1340	if (cmd->flags & MMC_RSP_PRESENT) {
1341		if (cmd->flags & MMC_RSP_136)
1342			c |= host->variant->cmdreg_lrsp_crc;
1343		else if (cmd->flags & MMC_RSP_CRC)
1344			c |= host->variant->cmdreg_srsp_crc;
1345		else
1346			c |= host->variant->cmdreg_srsp;
1347	}
1348
1349	host->busy_status = 0;
1350	host->busy_state = MMCI_BUSY_DONE;
1351
1352	/* Assign a default timeout if the core does not provide one */
1353	if (busy_resp && !cmd->busy_timeout)
1354		cmd->busy_timeout = 10 * MSEC_PER_SEC;
1355
1356	if (busy_resp && host->variant->busy_timeout) {
1357		if (cmd->busy_timeout > host->mmc->max_busy_timeout)
1358			clks = (unsigned long long)host->mmc->max_busy_timeout * host->cclk;
1359		else
1360			clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1361
1362		do_div(clks, MSEC_PER_SEC);
1363		writel_relaxed(clks, host->base + MMCIDATATIMER);
1364	}
1365
1366	if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1367		host->ops->pre_sig_volt_switch(host);
1368
1369	if (/*interrupt*/0)
1370		c |= MCI_CPSM_INTERRUPT;
1371
1372	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1373		c |= host->variant->data_cmd_enable;
1374
1375	host->cmd = cmd;
1376
1377	writel(cmd->arg, base + MMCIARGUMENT);
1378	writel(c, base + MMCICOMMAND);
1379}
1380
1381static void mmci_stop_command(struct mmci_host *host)
1382{
1383	host->stop_abort.error = 0;
1384	mmci_start_command(host, &host->stop_abort, 0);
1385}
1386
1387static void
1388mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1389	      unsigned int status)
1390{
1391	unsigned int status_err;
1392
1393	/* Make sure we have data to handle */
1394	if (!data)
1395		return;
1396
1397	/* First check for errors */
1398	status_err = status & (host->variant->start_err |
1399			       MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1400			       MCI_TXUNDERRUN | MCI_RXOVERRUN);
1401
1402	if (status_err) {
1403		u32 remain, success;
1404
1405		/* Terminate the DMA transfer */
1406		mmci_dma_error(host);
 
 
 
1407
1408		/*
1409		 * Calculate how far we are into the transfer.  Note that
1410		 * the data counter gives the number of bytes transferred
1411		 * on the MMC bus, not on the host side.  On reads, this
1412		 * can be as much as a FIFO-worth of data ahead.  This
1413		 * matters for FIFO overruns only.
1414		 */
1415		if (!host->variant->datacnt_useless) {
1416			remain = readl(host->base + MMCIDATACNT);
1417			success = data->blksz * data->blocks - remain;
1418		} else {
1419			success = 0;
1420		}
1421
1422		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1423			status_err, success);
1424		if (status_err & MCI_DATACRCFAIL) {
1425			/* Last block was not successful */
1426			success -= 1;
1427			data->error = -EILSEQ;
1428		} else if (status_err & MCI_DATATIMEOUT) {
1429			data->error = -ETIMEDOUT;
1430		} else if (status_err & MCI_STARTBITERR) {
1431			data->error = -ECOMM;
1432		} else if (status_err & MCI_TXUNDERRUN) {
1433			data->error = -EIO;
1434		} else if (status_err & MCI_RXOVERRUN) {
1435			if (success > host->variant->fifosize)
1436				success -= host->variant->fifosize;
1437			else
1438				success = 0;
1439			data->error = -EIO;
1440		}
1441		data->bytes_xfered = round_down(success, data->blksz);
1442	}
1443
1444	if (status & MCI_DATABLOCKEND)
1445		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1446
1447	if (status & MCI_DATAEND || data->error) {
1448		mmci_dma_finalize(host, data);
1449
1450		mmci_stop_data(host);
1451
1452		if (!data->error)
1453			/* The error clause is handled above, success! */
1454			data->bytes_xfered = data->blksz * data->blocks;
1455
1456		if (!data->stop) {
1457			if (host->variant->cmdreg_stop && data->error)
1458				mmci_stop_command(host);
1459			else
1460				mmci_request_end(host, data->mrq);
1461		} else if (host->mrq->sbc && !data->error) {
1462			mmci_request_end(host, data->mrq);
1463		} else {
1464			mmci_start_command(host, data->stop, 0);
1465		}
1466	}
1467}
1468
1469static void
1470mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1471	     unsigned int status)
1472{
1473	u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1474	void __iomem *base = host->base;
1475	bool sbc, busy_resp;
1476
1477	if (!cmd)
1478		return;
1479
1480	sbc = (cmd == host->mrq->sbc);
1481	busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1482
1483	/*
1484	 * We need to be one of these interrupts to be considered worth
1485	 * handling. Note that we tag on any latent IRQs postponed
1486	 * due to waiting for busy status.
1487	 */
1488	if (host->variant->busy_timeout && busy_resp)
1489		err_msk |= MCI_DATATIMEOUT;
1490
1491	if (!((status | host->busy_status) &
1492	      (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1493		return;
1494
1495	/* Handle busy detection on DAT0 if the variant supports it. */
1496	if (busy_resp && host->variant->busy_detect)
1497		if (!host->ops->busy_complete(host, cmd, status, err_msk))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1498			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1499
1500	host->cmd = NULL;
1501
1502	if (status & MCI_CMDTIMEOUT) {
1503		cmd->error = -ETIMEDOUT;
1504	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1505		cmd->error = -EILSEQ;
1506	} else if (host->variant->busy_timeout && busy_resp &&
1507		   status & MCI_DATATIMEOUT) {
1508		cmd->error = -ETIMEDOUT;
1509		/*
1510		 * This will wake up mmci_irq_thread() which will issue
1511		 * a hardware reset of the MMCI block.
1512		 */
1513		host->irq_action = IRQ_WAKE_THREAD;
1514	} else {
1515		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1516		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1517		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1518		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1519	}
1520
1521	if ((!sbc && !cmd->data) || cmd->error) {
1522		if (host->data) {
1523			/* Terminate the DMA transfer */
1524			mmci_dma_error(host);
1525
1526			mmci_stop_data(host);
1527			if (host->variant->cmdreg_stop && cmd->error) {
1528				mmci_stop_command(host);
1529				return;
1530			}
 
1531		}
1532
1533		if (host->irq_action != IRQ_WAKE_THREAD)
1534			mmci_request_end(host, host->mrq);
1535
1536	} else if (sbc) {
1537		mmci_start_command(host, host->mrq->cmd, 0);
1538	} else if (!host->variant->datactrl_first &&
1539		   !(cmd->data->flags & MMC_DATA_READ)) {
1540		mmci_start_data(host, cmd->data);
1541	}
1542}
1543
1544static char *ux500_state_str(struct mmci_host *host)
1545{
1546	switch (host->busy_state) {
1547	case MMCI_BUSY_WAITING_FOR_START_IRQ:
1548		return "waiting for start IRQ";
1549	case MMCI_BUSY_WAITING_FOR_END_IRQ:
1550		return "waiting for end IRQ";
1551	case MMCI_BUSY_DONE:
1552		return "not waiting for IRQs";
1553	default:
1554		return "unknown";
1555	}
1556}
1557
1558/*
1559 * This busy timeout worker is used to "kick" the command IRQ if a
1560 * busy detect IRQ fails to appear in reasonable time. Only used on
1561 * variants with busy detection IRQ delivery.
1562 */
1563static void ux500_busy_timeout_work(struct work_struct *work)
1564{
1565	struct mmci_host *host = container_of(work, struct mmci_host,
1566					ux500_busy_timeout_work.work);
1567	unsigned long flags;
1568	u32 status;
1569
1570	spin_lock_irqsave(&host->lock, flags);
1571
1572	if (host->cmd) {
1573		/* If we are still busy let's tag on a cmd-timeout error. */
1574		status = readl(host->base + MMCISTATUS);
1575		if (status & host->variant->busy_detect_flag) {
1576			status |= MCI_CMDTIMEOUT;
1577			dev_err(mmc_dev(host->mmc),
1578				"timeout in state %s still busy with CMD%02x\n",
1579				ux500_state_str(host), host->cmd->opcode);
1580		} else {
1581			dev_err(mmc_dev(host->mmc),
1582				"timeout in state %s waiting for busy CMD%02x\n",
1583				ux500_state_str(host), host->cmd->opcode);
1584		}
1585
1586		mmci_cmd_irq(host, host->cmd, status);
1587	}
1588
1589	spin_unlock_irqrestore(&host->lock, flags);
1590}
1591
1592static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1593{
1594	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1595}
1596
1597static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1598{
1599	/*
1600	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1601	 * from the fifo range should be used
1602	 */
1603	if (status & MCI_RXFIFOHALFFULL)
1604		return host->variant->fifohalfsize;
1605	else if (status & MCI_RXDATAAVLBL)
1606		return 4;
1607
1608	return 0;
1609}
1610
1611static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1612{
1613	void __iomem *base = host->base;
1614	char *ptr = buffer;
1615	u32 status = readl(host->base + MMCISTATUS);
1616	int host_remain = host->size;
1617
1618	do {
1619		int count = host->get_rx_fifocnt(host, status, host_remain);
1620
1621		if (count > remain)
1622			count = remain;
1623
1624		if (count <= 0)
1625			break;
1626
1627		/*
1628		 * SDIO especially may want to send something that is
1629		 * not divisible by 4 (as opposed to card sectors
1630		 * etc). Therefore make sure to always read the last bytes
1631		 * while only doing full 32-bit reads towards the FIFO.
1632		 */
1633		if (unlikely(count & 0x3)) {
1634			if (count < 4) {
1635				unsigned char buf[4];
1636				ioread32_rep(base + MMCIFIFO, buf, 1);
1637				memcpy(ptr, buf, count);
1638			} else {
1639				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1640				count &= ~0x3;
1641			}
1642		} else {
1643			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1644		}
1645
1646		ptr += count;
1647		remain -= count;
1648		host_remain -= count;
1649
1650		if (remain == 0)
1651			break;
1652
1653		status = readl(base + MMCISTATUS);
1654	} while (status & MCI_RXDATAAVLBL);
1655
1656	return ptr - buffer;
1657}
1658
1659static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1660{
1661	struct variant_data *variant = host->variant;
1662	void __iomem *base = host->base;
1663	char *ptr = buffer;
1664
1665	do {
1666		unsigned int count, maxcnt;
1667
1668		maxcnt = status & MCI_TXFIFOEMPTY ?
1669			 variant->fifosize : variant->fifohalfsize;
1670		count = min(remain, maxcnt);
1671
1672		/*
1673		 * SDIO especially may want to send something that is
1674		 * not divisible by 4 (as opposed to card sectors
1675		 * etc), and the FIFO only accept full 32-bit writes.
1676		 * So compensate by adding +3 on the count, a single
1677		 * byte become a 32bit write, 7 bytes will be two
1678		 * 32bit writes etc.
1679		 */
1680		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1681
1682		ptr += count;
1683		remain -= count;
1684
1685		if (remain == 0)
1686			break;
1687
1688		status = readl(base + MMCISTATUS);
1689	} while (status & MCI_TXFIFOHALFEMPTY);
1690
1691	return ptr - buffer;
1692}
1693
1694/*
1695 * PIO data transfer IRQ handler.
1696 */
1697static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1698{
1699	struct mmci_host *host = dev_id;
1700	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1701	struct variant_data *variant = host->variant;
1702	void __iomem *base = host->base;
 
1703	u32 status;
1704
1705	status = readl(base + MMCISTATUS);
1706
1707	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1708
 
 
1709	do {
1710		unsigned int remain, len;
1711		char *buffer;
1712
1713		/*
1714		 * For write, we only need to test the half-empty flag
1715		 * here - if the FIFO is completely empty, then by
1716		 * definition it is more than half empty.
1717		 *
1718		 * For read, check for data available.
1719		 */
1720		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1721			break;
1722
1723		if (!sg_miter_next(sg_miter))
1724			break;
1725
1726		buffer = sg_miter->addr;
1727		remain = sg_miter->length;
1728
1729		len = 0;
1730		if (status & MCI_RXACTIVE)
1731			len = mmci_pio_read(host, buffer, remain);
1732		if (status & MCI_TXACTIVE)
1733			len = mmci_pio_write(host, buffer, remain, status);
1734
1735		sg_miter->consumed = len;
1736
1737		host->size -= len;
1738		remain -= len;
1739
1740		if (remain)
1741			break;
1742
1743		status = readl(base + MMCISTATUS);
1744	} while (1);
1745
1746	sg_miter_stop(sg_miter);
1747
 
 
1748	/*
1749	 * If we have less than the fifo 'half-full' threshold to transfer,
1750	 * trigger a PIO interrupt as soon as any data is available.
1751	 */
1752	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1753		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1754
1755	/*
1756	 * If we run out of data, disable the data IRQs; this
1757	 * prevents a race where the FIFO becomes empty before
1758	 * the chip itself has disabled the data path, and
1759	 * stops us racing with our data end IRQ.
1760	 */
1761	if (host->size == 0) {
1762		mmci_set_mask1(host, 0);
1763		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1764	}
1765
1766	return IRQ_HANDLED;
1767}
1768
1769static void mmci_write_sdio_irq_bit(struct mmci_host *host, int enable)
1770{
1771	void __iomem *base = host->base;
1772	u32 mask = readl_relaxed(base + MMCIMASK0);
1773
1774	if (enable)
1775		writel_relaxed(mask | MCI_ST_SDIOITMASK, base + MMCIMASK0);
1776	else
1777		writel_relaxed(mask & ~MCI_ST_SDIOITMASK, base + MMCIMASK0);
1778}
1779
1780static void mmci_signal_sdio_irq(struct mmci_host *host, u32 status)
1781{
1782	if (status & MCI_ST_SDIOIT) {
1783		mmci_write_sdio_irq_bit(host, 0);
1784		sdio_signal_irq(host->mmc);
1785	}
1786}
1787
1788/*
1789 * Handle completion of command and data transfers.
1790 */
1791static irqreturn_t mmci_irq(int irq, void *dev_id)
1792{
1793	struct mmci_host *host = dev_id;
1794	u32 status;
 
1795
1796	spin_lock(&host->lock);
1797	host->irq_action = IRQ_HANDLED;
1798
1799	do {
1800		status = readl(host->base + MMCISTATUS);
1801		if (!status)
1802			break;
1803
1804		if (host->singleirq) {
1805			if (status & host->mask1_reg)
1806				mmci_pio_irq(irq, dev_id);
1807
1808			status &= ~host->variant->irq_pio_mask;
1809		}
1810
1811		/*
1812		 * Busy detection is managed by mmci_cmd_irq(), including to
1813		 * clear the corresponding IRQ.
 
 
 
 
 
 
1814		 */
1815		status &= readl(host->base + MMCIMASK0);
1816		if (host->variant->busy_detect)
1817			writel(status & ~host->variant->busy_detect_mask,
1818			       host->base + MMCICLEAR);
1819		else
1820			writel(status, host->base + MMCICLEAR);
1821
1822		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1823
1824		if (host->variant->reversed_irq_handling) {
1825			mmci_data_irq(host, host->data, status);
1826			mmci_cmd_irq(host, host->cmd, status);
1827		} else {
1828			mmci_cmd_irq(host, host->cmd, status);
1829			mmci_data_irq(host, host->data, status);
1830		}
1831
1832		if (host->variant->supports_sdio_irq)
1833			mmci_signal_sdio_irq(host, status);
1834
1835		/*
1836		 * Busy detection has been handled by mmci_cmd_irq() above.
1837		 * Clear the status bit to prevent polling in IRQ context.
1838		 */
1839		if (host->variant->busy_detect_flag)
1840			status &= ~host->variant->busy_detect_flag;
1841
 
1842	} while (status);
1843
1844	spin_unlock(&host->lock);
1845
1846	return host->irq_action;
1847}
1848
1849/*
1850 * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1851 *
1852 * A reset is needed for some variants, where a datatimeout for a R1B request
1853 * causes the DPSM to stay busy (non-functional).
1854 */
1855static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1856{
1857	struct mmci_host *host = dev_id;
1858	unsigned long flags;
1859
1860	if (host->rst) {
1861		reset_control_assert(host->rst);
1862		udelay(2);
1863		reset_control_deassert(host->rst);
1864	}
1865
1866	spin_lock_irqsave(&host->lock, flags);
1867	writel(host->clk_reg, host->base + MMCICLOCK);
1868	writel(host->pwr_reg, host->base + MMCIPOWER);
1869	writel(MCI_IRQENABLE | host->variant->start_err,
1870	       host->base + MMCIMASK0);
1871
1872	host->irq_action = IRQ_HANDLED;
1873	mmci_request_end(host, host->mrq);
1874	spin_unlock_irqrestore(&host->lock, flags);
1875
1876	return host->irq_action;
1877}
1878
1879static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1880{
1881	struct mmci_host *host = mmc_priv(mmc);
1882	unsigned long flags;
1883
1884	WARN_ON(host->mrq != NULL);
1885
1886	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1887	if (mrq->cmd->error) {
1888		mmc_request_done(mmc, mrq);
1889		return;
1890	}
1891
1892	spin_lock_irqsave(&host->lock, flags);
1893
1894	host->mrq = mrq;
1895
1896	if (mrq->data)
1897		mmci_get_next_data(host, mrq->data);
1898
1899	if (mrq->data &&
1900	    (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1901		mmci_start_data(host, mrq->data);
1902
1903	if (mrq->sbc)
1904		mmci_start_command(host, mrq->sbc, 0);
1905	else
1906		mmci_start_command(host, mrq->cmd, 0);
1907
1908	spin_unlock_irqrestore(&host->lock, flags);
1909}
1910
1911static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1912{
1913	struct mmci_host *host = mmc_priv(mmc);
1914	u32 max_busy_timeout = 0;
1915
1916	if (!host->variant->busy_detect)
1917		return;
1918
1919	if (host->variant->busy_timeout && mmc->actual_clock)
1920		max_busy_timeout = U32_MAX / DIV_ROUND_UP(mmc->actual_clock,
1921							  MSEC_PER_SEC);
1922
1923	mmc->max_busy_timeout = max_busy_timeout;
1924}
1925
1926static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1927{
1928	struct mmci_host *host = mmc_priv(mmc);
1929	struct variant_data *variant = host->variant;
1930	u32 pwr = 0;
1931	unsigned long flags;
1932	int ret;
1933
 
 
 
 
1934	switch (ios->power_mode) {
1935	case MMC_POWER_OFF:
1936		if (!IS_ERR(mmc->supply.vmmc))
1937			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1938
1939		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1940			regulator_disable(mmc->supply.vqmmc);
1941			host->vqmmc_enabled = false;
1942		}
1943
1944		break;
1945	case MMC_POWER_UP:
1946		if (!IS_ERR(mmc->supply.vmmc))
1947			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1948
1949		/*
1950		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1951		 * and instead uses MCI_PWR_ON so apply whatever value is
1952		 * configured in the variant data.
1953		 */
1954		pwr |= variant->pwrreg_powerup;
1955
1956		break;
1957	case MMC_POWER_ON:
1958		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1959			ret = regulator_enable(mmc->supply.vqmmc);
1960			if (ret < 0)
1961				dev_err(mmc_dev(mmc),
1962					"failed to enable vqmmc regulator\n");
1963			else
1964				host->vqmmc_enabled = true;
1965		}
1966
1967		pwr |= MCI_PWR_ON;
1968		break;
1969	}
1970
1971	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1972		/*
1973		 * The ST Micro variant has some additional bits
1974		 * indicating signal direction for the signals in
1975		 * the SD/MMC bus and feedback-clock usage.
1976		 */
1977		pwr |= host->pwr_reg_add;
1978
1979		if (ios->bus_width == MMC_BUS_WIDTH_4)
1980			pwr &= ~MCI_ST_DATA74DIREN;
1981		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1982			pwr &= (~MCI_ST_DATA74DIREN &
1983				~MCI_ST_DATA31DIREN &
1984				~MCI_ST_DATA2DIREN);
1985	}
1986
1987	if (variant->opendrain) {
1988		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1989			pwr |= variant->opendrain;
1990	} else {
1991		/*
1992		 * If the variant cannot configure the pads by its own, then we
1993		 * expect the pinctrl to be able to do that for us
1994		 */
1995		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1996			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1997		else
1998			pinctrl_select_default_state(mmc_dev(mmc));
1999	}
2000
2001	/*
2002	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
2003	 * gating the clock, the MCI_PWR_ON bit is cleared.
2004	 */
2005	if (!ios->clock && variant->pwrreg_clkgate)
2006		pwr &= ~MCI_PWR_ON;
2007
2008	if (host->variant->explicit_mclk_control &&
2009	    ios->clock != host->clock_cache) {
2010		ret = clk_set_rate(host->clk, ios->clock);
2011		if (ret < 0)
2012			dev_err(mmc_dev(host->mmc),
2013				"Error setting clock rate (%d)\n", ret);
2014		else
2015			host->mclk = clk_get_rate(host->clk);
2016	}
2017	host->clock_cache = ios->clock;
2018
2019	spin_lock_irqsave(&host->lock, flags);
2020
2021	if (host->ops && host->ops->set_clkreg)
2022		host->ops->set_clkreg(host, ios->clock);
2023	else
2024		mmci_set_clkreg(host, ios->clock);
2025
2026	mmci_set_max_busy_timeout(mmc);
2027
2028	if (host->ops && host->ops->set_pwrreg)
2029		host->ops->set_pwrreg(host, pwr);
2030	else
2031		mmci_write_pwrreg(host, pwr);
2032
2033	mmci_reg_delay(host);
2034
2035	spin_unlock_irqrestore(&host->lock, flags);
2036}
2037
2038static int mmci_get_cd(struct mmc_host *mmc)
2039{
2040	struct mmci_host *host = mmc_priv(mmc);
2041	struct mmci_platform_data *plat = host->plat;
2042	unsigned int status = mmc_gpio_get_cd(mmc);
2043
2044	if (status == -ENOSYS) {
2045		if (!plat->status)
2046			return 1; /* Assume always present */
2047
2048		status = plat->status(mmc_dev(host->mmc));
2049	}
2050	return status;
2051}
2052
2053static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
2054{
2055	struct mmci_host *host = mmc_priv(mmc);
2056	int ret;
2057
2058	ret = mmc_regulator_set_vqmmc(mmc, ios);
2059
2060	if (!ret && host->ops && host->ops->post_sig_volt_switch)
2061		ret = host->ops->post_sig_volt_switch(host, ios);
2062	else if (ret)
2063		ret = 0;
2064
2065	if (ret < 0)
2066		dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
2067
2068	return ret;
2069}
2070
2071static void mmci_enable_sdio_irq(struct mmc_host *mmc, int enable)
2072{
2073	struct mmci_host *host = mmc_priv(mmc);
2074	unsigned long flags;
2075
2076	if (enable)
2077		/* Keep the SDIO mode bit if SDIO irqs are enabled */
2078		pm_runtime_get_sync(mmc_dev(mmc));
2079
2080	spin_lock_irqsave(&host->lock, flags);
2081	mmci_write_sdio_irq_bit(host, enable);
2082	spin_unlock_irqrestore(&host->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
2083
2084	if (!enable) {
2085		pm_runtime_mark_last_busy(mmc_dev(mmc));
2086		pm_runtime_put_autosuspend(mmc_dev(mmc));
2087	}
2088}
2089
2090static void mmci_ack_sdio_irq(struct mmc_host *mmc)
2091{
2092	struct mmci_host *host = mmc_priv(mmc);
2093	unsigned long flags;
2094
2095	spin_lock_irqsave(&host->lock, flags);
2096	mmci_write_sdio_irq_bit(host, 1);
2097	spin_unlock_irqrestore(&host->lock, flags);
2098}
2099
2100static struct mmc_host_ops mmci_ops = {
2101	.request	= mmci_request,
2102	.pre_req	= mmci_pre_request,
2103	.post_req	= mmci_post_request,
2104	.set_ios	= mmci_set_ios,
2105	.get_ro		= mmc_gpio_get_ro,
2106	.get_cd		= mmci_get_cd,
2107	.start_signal_voltage_switch = mmci_sig_volt_switch,
2108};
2109
2110static void mmci_probe_level_translator(struct mmc_host *mmc)
2111{
2112	struct device *dev = mmc_dev(mmc);
2113	struct mmci_host *host = mmc_priv(mmc);
2114	struct gpio_desc *cmd_gpio;
2115	struct gpio_desc *ck_gpio;
2116	struct gpio_desc *ckin_gpio;
2117	int clk_hi, clk_lo;
2118
2119	/*
2120	 * Assume the level translator is present if st,use-ckin is set.
2121	 * This is to cater for DTs which do not implement this test.
2122	 */
2123	host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
2124
2125	cmd_gpio = gpiod_get(dev, "st,cmd", GPIOD_OUT_HIGH);
2126	if (IS_ERR(cmd_gpio))
2127		goto exit_cmd;
2128
2129	ck_gpio = gpiod_get(dev, "st,ck", GPIOD_OUT_HIGH);
2130	if (IS_ERR(ck_gpio))
2131		goto exit_ck;
2132
2133	ckin_gpio = gpiod_get(dev, "st,ckin", GPIOD_IN);
2134	if (IS_ERR(ckin_gpio))
2135		goto exit_ckin;
2136
2137	/* All GPIOs are valid, test whether level translator works */
2138
2139	/* Sample CKIN */
2140	clk_hi = !!gpiod_get_value(ckin_gpio);
2141
2142	/* Set CK low */
2143	gpiod_set_value(ck_gpio, 0);
2144
2145	/* Sample CKIN */
2146	clk_lo = !!gpiod_get_value(ckin_gpio);
2147
2148	/* Tristate all */
2149	gpiod_direction_input(cmd_gpio);
2150	gpiod_direction_input(ck_gpio);
2151
2152	/* Level translator is present if CK signal is propagated to CKIN */
2153	if (!clk_hi || clk_lo) {
2154		host->clk_reg_add &= ~MCI_STM32_CLK_SELCKIN;
2155		dev_warn(dev,
2156			 "Level translator inoperable, CK signal not detected on CKIN, disabling.\n");
2157	}
2158
2159	gpiod_put(ckin_gpio);
2160
2161exit_ckin:
2162	gpiod_put(ck_gpio);
2163exit_ck:
2164	gpiod_put(cmd_gpio);
2165exit_cmd:
2166	pinctrl_select_default_state(dev);
2167}
2168
2169static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
2170{
2171	struct mmci_host *host = mmc_priv(mmc);
2172	int ret = mmc_of_parse(mmc);
2173
2174	if (ret)
2175		return ret;
2176
2177	if (of_property_read_bool(np, "st,sig-dir-dat0"))
2178		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
2179	if (of_property_read_bool(np, "st,sig-dir-dat2"))
2180		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
2181	if (of_property_read_bool(np, "st,sig-dir-dat31"))
2182		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
2183	if (of_property_read_bool(np, "st,sig-dir-dat74"))
2184		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
2185	if (of_property_read_bool(np, "st,sig-dir-cmd"))
2186		host->pwr_reg_add |= MCI_ST_CMDDIREN;
2187	if (of_property_read_bool(np, "st,sig-pin-fbclk"))
2188		host->pwr_reg_add |= MCI_ST_FBCLKEN;
2189	if (of_property_read_bool(np, "st,sig-dir"))
2190		host->pwr_reg_add |= MCI_STM32_DIRPOL;
2191	if (of_property_read_bool(np, "st,neg-edge"))
2192		host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
2193	if (of_property_read_bool(np, "st,use-ckin"))
2194		mmci_probe_level_translator(mmc);
2195
2196	if (of_property_read_bool(np, "mmc-cap-mmc-highspeed"))
2197		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
2198	if (of_property_read_bool(np, "mmc-cap-sd-highspeed"))
2199		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
2200
2201	return 0;
2202}
2203
2204static int mmci_probe(struct amba_device *dev,
2205	const struct amba_id *id)
2206{
2207	struct mmci_platform_data *plat = dev->dev.platform_data;
2208	struct device_node *np = dev->dev.of_node;
2209	struct variant_data *variant = id->data;
2210	struct mmci_host *host;
2211	struct mmc_host *mmc;
2212	int ret;
2213
2214	/* Must have platform data or Device Tree. */
2215	if (!plat && !np) {
2216		dev_err(&dev->dev, "No plat data or DT found\n");
2217		return -EINVAL;
2218	}
2219
2220	if (!plat) {
2221		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
2222		if (!plat)
2223			return -ENOMEM;
2224	}
2225
2226	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
2227	if (!mmc)
2228		return -ENOMEM;
2229
2230	host = mmc_priv(mmc);
2231	host->mmc = mmc;
2232	host->mmc_ops = &mmci_ops;
2233	mmc->ops = &mmci_ops;
2234
2235	ret = mmci_of_parse(np, mmc);
2236	if (ret)
2237		goto host_free;
2238
 
 
 
2239	/*
2240	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
2241	 * pins can be set accordingly using pinctrl
2242	 */
2243	if (!variant->opendrain) {
2244		host->pinctrl = devm_pinctrl_get(&dev->dev);
2245		if (IS_ERR(host->pinctrl)) {
2246			dev_err(&dev->dev, "failed to get pinctrl");
2247			ret = PTR_ERR(host->pinctrl);
2248			goto host_free;
2249		}
2250
 
 
 
 
 
 
 
 
2251		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
2252							    MMCI_PINCTRL_STATE_OPENDRAIN);
2253		if (IS_ERR(host->pins_opendrain)) {
2254			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
2255			ret = PTR_ERR(host->pins_opendrain);
2256			goto host_free;
2257		}
2258	}
2259
2260	host->hw_designer = amba_manf(dev);
2261	host->hw_revision = amba_rev(dev);
2262	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
2263	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
2264
2265	host->clk = devm_clk_get(&dev->dev, NULL);
2266	if (IS_ERR(host->clk)) {
2267		ret = PTR_ERR(host->clk);
2268		goto host_free;
2269	}
2270
2271	ret = clk_prepare_enable(host->clk);
2272	if (ret)
2273		goto host_free;
2274
2275	if (variant->qcom_fifo)
2276		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
2277	else
2278		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
2279
2280	host->plat = plat;
2281	host->variant = variant;
2282	host->mclk = clk_get_rate(host->clk);
2283	/*
2284	 * According to the spec, mclk is max 100 MHz,
2285	 * so we try to adjust the clock down to this,
2286	 * (if possible).
2287	 */
2288	if (host->mclk > variant->f_max) {
2289		ret = clk_set_rate(host->clk, variant->f_max);
2290		if (ret < 0)
2291			goto clk_disable;
2292		host->mclk = clk_get_rate(host->clk);
2293		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2294			host->mclk);
2295	}
2296
2297	host->phybase = dev->res.start;
2298	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2299	if (IS_ERR(host->base)) {
2300		ret = PTR_ERR(host->base);
2301		goto clk_disable;
2302	}
2303
2304	if (variant->init)
2305		variant->init(host);
2306
2307	/*
2308	 * The ARM and ST versions of the block have slightly different
2309	 * clock divider equations which means that the minimum divider
2310	 * differs too.
2311	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2312	 */
2313	if (variant->st_clkdiv)
2314		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2315	else if (variant->stm32_clkdiv)
2316		mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2317	else if (variant->explicit_mclk_control)
2318		mmc->f_min = clk_round_rate(host->clk, 100000);
2319	else
2320		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2321	/*
2322	 * If no maximum operating frequency is supplied, fall back to use
2323	 * the module parameter, which has a (low) default value in case it
2324	 * is not specified. Either value must not exceed the clock rate into
2325	 * the block, of course.
2326	 */
2327	if (mmc->f_max)
2328		mmc->f_max = variant->explicit_mclk_control ?
2329				min(variant->f_max, mmc->f_max) :
2330				min(host->mclk, mmc->f_max);
2331	else
2332		mmc->f_max = variant->explicit_mclk_control ?
2333				fmax : min(host->mclk, fmax);
2334
2335
2336	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2337
2338	host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2339	if (IS_ERR(host->rst)) {
2340		ret = PTR_ERR(host->rst);
2341		goto clk_disable;
2342	}
2343	ret = reset_control_deassert(host->rst);
2344	if (ret)
2345		dev_err(mmc_dev(mmc), "failed to de-assert reset\n");
2346
2347	/* Get regulators and the supported OCR mask */
2348	ret = mmc_regulator_get_supply(mmc);
2349	if (ret)
2350		goto clk_disable;
2351
2352	if (!mmc->ocr_avail)
2353		mmc->ocr_avail = plat->ocr_mask;
2354	else if (plat->ocr_mask)
2355		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2356
 
 
 
 
 
 
 
2357	/* We support these capabilities. */
2358	mmc->caps |= MMC_CAP_CMD23;
2359
2360	/*
2361	 * Enable busy detection.
2362	 */
2363	if (variant->busy_detect) {
2364		mmci_ops.card_busy = mmci_card_busy;
2365		/*
2366		 * Not all variants have a flag to enable busy detection
2367		 * in the DPSM, but if they do, set it here.
2368		 */
2369		if (variant->busy_dpsm_flag)
2370			mmci_write_datactrlreg(host,
2371					       host->variant->busy_dpsm_flag);
2372		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
 
2373	}
2374
2375	if (variant->supports_sdio_irq && host->mmc->caps & MMC_CAP_SDIO_IRQ) {
2376		mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2377
2378		mmci_ops.enable_sdio_irq = mmci_enable_sdio_irq;
2379		mmci_ops.ack_sdio_irq	= mmci_ack_sdio_irq;
2380
2381		mmci_write_datactrlreg(host,
2382				       host->variant->datactrl_mask_sdio);
2383	}
2384
2385	/* Variants with mandatory busy timeout in HW needs R1B responses. */
2386	if (variant->busy_timeout)
2387		mmc->caps |= MMC_CAP_NEED_RSP_BUSY;
2388
2389	/* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2390	host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2391	host->stop_abort.arg = 0;
2392	host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2393
2394	/* We support these PM capabilities. */
2395	mmc->pm_caps |= MMC_PM_KEEP_POWER;
2396
2397	/*
2398	 * We can do SGIO
2399	 */
2400	mmc->max_segs = NR_SG;
2401
2402	/*
2403	 * Since only a certain number of bits are valid in the data length
2404	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
2405	 * single request.
2406	 */
2407	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2408
2409	/*
2410	 * Set the maximum segment size.  Since we aren't doing DMA
2411	 * (yet) we are only limited by the data length register.
2412	 */
2413	mmc->max_seg_size = mmc->max_req_size;
2414
2415	/*
2416	 * Block size can be up to 2048 bytes, but must be a power of two.
2417	 */
2418	mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2419
2420	/*
2421	 * Limit the number of blocks transferred so that we don't overflow
2422	 * the maximum request size.
2423	 */
2424	mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2425
2426	spin_lock_init(&host->lock);
2427
2428	writel(0, host->base + MMCIMASK0);
2429
2430	if (variant->mmcimask1)
2431		writel(0, host->base + MMCIMASK1);
2432
2433	writel(0xfff, host->base + MMCICLEAR);
2434
2435	/*
2436	 * If:
2437	 * - not using DT but using a descriptor table, or
2438	 * - using a table of descriptors ALONGSIDE DT, or
2439	 * look up these descriptors named "cd" and "wp" right here, fail
2440	 * silently of these do not exist
2441	 */
2442	if (!np) {
2443		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2444		if (ret == -EPROBE_DEFER)
2445			goto clk_disable;
 
 
 
 
 
 
 
2446
2447		ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2448		if (ret == -EPROBE_DEFER)
2449			goto clk_disable;
 
 
 
 
 
 
 
2450	}
2451
2452	ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2453					mmci_irq_thread, IRQF_SHARED,
2454					DRIVER_NAME " (cmd)", host);
2455	if (ret)
2456		goto clk_disable;
2457
2458	if (!dev->irq[1])
2459		host->singleirq = true;
2460	else {
2461		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2462				IRQF_SHARED, DRIVER_NAME " (pio)", host);
2463		if (ret)
2464			goto clk_disable;
2465	}
2466
2467	if (host->variant->busy_detect)
2468		INIT_DELAYED_WORK(&host->ux500_busy_timeout_work,
2469				  ux500_busy_timeout_work);
2470
2471	writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2472
2473	amba_set_drvdata(dev, mmc);
2474
2475	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2476		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2477		 amba_rev(dev), (unsigned long long)dev->res.start,
2478		 dev->irq[0], dev->irq[1]);
2479
2480	mmci_dma_setup(host);
2481
2482	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2483	pm_runtime_use_autosuspend(&dev->dev);
2484
2485	ret = mmc_add_host(mmc);
2486	if (ret)
2487		goto clk_disable;
2488
2489	pm_runtime_put(&dev->dev);
2490	return 0;
2491
2492 clk_disable:
2493	clk_disable_unprepare(host->clk);
2494 host_free:
2495	mmc_free_host(mmc);
2496	return ret;
2497}
2498
2499static void mmci_remove(struct amba_device *dev)
2500{
2501	struct mmc_host *mmc = amba_get_drvdata(dev);
2502
2503	if (mmc) {
2504		struct mmci_host *host = mmc_priv(mmc);
2505		struct variant_data *variant = host->variant;
2506
2507		/*
2508		 * Undo pm_runtime_put() in probe.  We use the _sync
2509		 * version here so that we can access the primecell.
2510		 */
2511		pm_runtime_get_sync(&dev->dev);
2512
2513		mmc_remove_host(mmc);
2514
2515		writel(0, host->base + MMCIMASK0);
2516
2517		if (variant->mmcimask1)
2518			writel(0, host->base + MMCIMASK1);
2519
2520		writel(0, host->base + MMCICOMMAND);
2521		writel(0, host->base + MMCIDATACTRL);
2522
2523		mmci_dma_release(host);
2524		clk_disable_unprepare(host->clk);
2525		mmc_free_host(mmc);
2526	}
 
 
2527}
2528
2529#ifdef CONFIG_PM
2530static void mmci_save(struct mmci_host *host)
2531{
2532	unsigned long flags;
2533
2534	spin_lock_irqsave(&host->lock, flags);
2535
2536	writel(0, host->base + MMCIMASK0);
2537	if (host->variant->pwrreg_nopower) {
2538		writel(0, host->base + MMCIDATACTRL);
2539		writel(0, host->base + MMCIPOWER);
2540		writel(0, host->base + MMCICLOCK);
2541	}
2542	mmci_reg_delay(host);
2543
2544	spin_unlock_irqrestore(&host->lock, flags);
2545}
2546
2547static void mmci_restore(struct mmci_host *host)
2548{
2549	unsigned long flags;
2550
2551	spin_lock_irqsave(&host->lock, flags);
2552
2553	if (host->variant->pwrreg_nopower) {
2554		writel(host->clk_reg, host->base + MMCICLOCK);
2555		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2556		writel(host->pwr_reg, host->base + MMCIPOWER);
2557	}
2558	writel(MCI_IRQENABLE | host->variant->start_err,
2559	       host->base + MMCIMASK0);
2560	mmci_reg_delay(host);
2561
2562	spin_unlock_irqrestore(&host->lock, flags);
2563}
2564
2565static int mmci_runtime_suspend(struct device *dev)
2566{
2567	struct amba_device *adev = to_amba_device(dev);
2568	struct mmc_host *mmc = amba_get_drvdata(adev);
2569
2570	if (mmc) {
2571		struct mmci_host *host = mmc_priv(mmc);
2572		pinctrl_pm_select_sleep_state(dev);
2573		mmci_save(host);
2574		clk_disable_unprepare(host->clk);
2575	}
2576
2577	return 0;
2578}
2579
2580static int mmci_runtime_resume(struct device *dev)
2581{
2582	struct amba_device *adev = to_amba_device(dev);
2583	struct mmc_host *mmc = amba_get_drvdata(adev);
2584
2585	if (mmc) {
2586		struct mmci_host *host = mmc_priv(mmc);
2587		clk_prepare_enable(host->clk);
2588		mmci_restore(host);
2589		pinctrl_select_default_state(dev);
2590	}
2591
2592	return 0;
2593}
2594#endif
2595
2596static const struct dev_pm_ops mmci_dev_pm_ops = {
2597	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2598				pm_runtime_force_resume)
2599	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2600};
2601
2602static const struct amba_id mmci_ids[] = {
2603	{
2604		.id	= 0x00041180,
2605		.mask	= 0xff0fffff,
2606		.data	= &variant_arm,
2607	},
2608	{
2609		.id	= 0x01041180,
2610		.mask	= 0xff0fffff,
2611		.data	= &variant_arm_extended_fifo,
2612	},
2613	{
2614		.id	= 0x02041180,
2615		.mask	= 0xff0fffff,
2616		.data	= &variant_arm_extended_fifo_hwfc,
2617	},
2618	{
2619		.id	= 0x00041181,
2620		.mask	= 0x000fffff,
2621		.data	= &variant_arm,
2622	},
2623	/* ST Micro variants */
2624	{
2625		.id     = 0x00180180,
2626		.mask   = 0x00ffffff,
2627		.data	= &variant_u300,
2628	},
2629	{
2630		.id     = 0x10180180,
2631		.mask   = 0xf0ffffff,
2632		.data	= &variant_nomadik,
2633	},
2634	{
2635		.id     = 0x00280180,
2636		.mask   = 0x00ffffff,
2637		.data	= &variant_nomadik,
2638	},
2639	{
2640		.id     = 0x00480180,
2641		.mask   = 0xf0ffffff,
2642		.data	= &variant_ux500,
2643	},
2644	{
2645		.id     = 0x10480180,
2646		.mask   = 0xf0ffffff,
2647		.data	= &variant_ux500v2,
2648	},
2649	{
2650		.id     = 0x00880180,
2651		.mask   = 0x00ffffff,
2652		.data	= &variant_stm32,
2653	},
2654	{
2655		.id     = 0x10153180,
2656		.mask	= 0xf0ffffff,
2657		.data	= &variant_stm32_sdmmc,
2658	},
2659	{
2660		.id     = 0x00253180,
2661		.mask	= 0xf0ffffff,
2662		.data	= &variant_stm32_sdmmcv2,
2663	},
2664	{
2665		.id     = 0x20253180,
2666		.mask	= 0xf0ffffff,
2667		.data	= &variant_stm32_sdmmcv2,
2668	},
2669	{
2670		.id     = 0x00353180,
2671		.mask	= 0xf0ffffff,
2672		.data	= &variant_stm32_sdmmcv3,
2673	},
2674	/* Qualcomm variants */
2675	{
2676		.id     = 0x00051180,
2677		.mask	= 0x000fffff,
2678		.data	= &variant_qcom,
2679	},
2680	{ 0, 0 },
2681};
2682
2683MODULE_DEVICE_TABLE(amba, mmci_ids);
2684
2685static struct amba_driver mmci_driver = {
2686	.drv		= {
2687		.name	= DRIVER_NAME,
2688		.pm	= &mmci_dev_pm_ops,
2689		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
2690	},
2691	.probe		= mmci_probe,
2692	.remove		= mmci_remove,
2693	.id_table	= mmci_ids,
2694};
2695
2696module_amba_driver(mmci_driver);
2697
2698module_param(fmax, uint, 0444);
2699
2700MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2701MODULE_LICENSE("GPL");
v4.17
 
   1/*
   2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   3 *
   4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   5 *  Copyright (C) 2010 ST-Ericsson SA
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/moduleparam.h>
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/device.h>
  16#include <linux/io.h>
  17#include <linux/interrupt.h>
  18#include <linux/kernel.h>
  19#include <linux/slab.h>
  20#include <linux/delay.h>
  21#include <linux/err.h>
  22#include <linux/highmem.h>
  23#include <linux/log2.h>
 
  24#include <linux/mmc/pm.h>
  25#include <linux/mmc/host.h>
  26#include <linux/mmc/card.h>
 
  27#include <linux/mmc/slot-gpio.h>
  28#include <linux/amba/bus.h>
  29#include <linux/clk.h>
  30#include <linux/scatterlist.h>
  31#include <linux/gpio.h>
  32#include <linux/of_gpio.h>
  33#include <linux/regulator/consumer.h>
  34#include <linux/dmaengine.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/amba/mmci.h>
  37#include <linux/pm_runtime.h>
  38#include <linux/types.h>
  39#include <linux/pinctrl/consumer.h>
 
 
 
  40
  41#include <asm/div64.h>
  42#include <asm/io.h>
  43
  44#include "mmci.h"
  45#include "mmci_qcom_dml.h"
  46
  47#define DRIVER_NAME "mmci-pl18x"
  48
 
 
 
 
  49static unsigned int fmax = 515633;
  50
  51/**
  52 * struct variant_data - MMCI variant-specific quirks
  53 * @clkreg: default value for MCICLOCK register
  54 * @clkreg_enable: enable value for MMCICLOCK register
  55 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
  56 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
  57 * @datalength_bits: number of bits in the MMCIDATALENGTH register
  58 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
  59 *	      is asserted (likewise for RX)
  60 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
  61 *		  is asserted (likewise for RX)
  62 * @data_cmd_enable: enable value for data commands.
  63 * @st_sdio: enable ST specific SDIO logic
  64 * @st_clkdiv: true if using a ST-specific clock divider algorithm
  65 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
  66 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
  67 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
  68 *		     register
  69 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
  70 * @pwrreg_powerup: power up value for MMCIPOWER register
  71 * @f_max: maximum clk frequency supported by the controller.
  72 * @signal_direction: input/out direction of bus signals can be indicated
  73 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
  74 * @busy_detect: true if the variant supports busy detection on DAT0.
  75 * @busy_dpsm_flag: bitmask enabling busy detection in the DPSM
  76 * @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register
  77 *		      indicating that the card is busy
  78 * @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for
  79 *		      getting busy end detection interrupts
  80 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
  81 * @explicit_mclk_control: enable explicit mclk control in driver.
  82 * @qcom_fifo: enables qcom specific fifo pio read logic.
  83 * @qcom_dml: enables qcom specific dma glue for dma transfers.
  84 * @reversed_irq_handling: handle data irq before cmd irq.
  85 * @mmcimask1: true if variant have a MMCIMASK1 register.
  86 * @start_err: bitmask identifying the STARTBITERR bit inside MMCISTATUS
  87 *	       register.
  88 * @opendrain: bitmask identifying the OPENDRAIN bit inside MMCIPOWER register
  89 */
  90struct variant_data {
  91	unsigned int		clkreg;
  92	unsigned int		clkreg_enable;
  93	unsigned int		clkreg_8bit_bus_enable;
  94	unsigned int		clkreg_neg_edge_enable;
  95	unsigned int		datalength_bits;
  96	unsigned int		fifosize;
  97	unsigned int		fifohalfsize;
  98	unsigned int		data_cmd_enable;
  99	unsigned int		datactrl_mask_ddrmode;
 100	unsigned int		datactrl_mask_sdio;
 101	bool			st_sdio;
 102	bool			st_clkdiv;
 103	bool			blksz_datactrl16;
 104	bool			blksz_datactrl4;
 105	u32			pwrreg_powerup;
 106	u32			f_max;
 107	bool			signal_direction;
 108	bool			pwrreg_clkgate;
 109	bool			busy_detect;
 110	u32			busy_dpsm_flag;
 111	u32			busy_detect_flag;
 112	u32			busy_detect_mask;
 113	bool			pwrreg_nopower;
 114	bool			explicit_mclk_control;
 115	bool			qcom_fifo;
 116	bool			qcom_dml;
 117	bool			reversed_irq_handling;
 118	bool			mmcimask1;
 119	u32			start_err;
 120	u32			opendrain;
 121};
 122
 123static struct variant_data variant_arm = {
 124	.fifosize		= 16 * 4,
 125	.fifohalfsize		= 8 * 4,
 
 
 
 
 126	.datalength_bits	= 16,
 
 127	.pwrreg_powerup		= MCI_PWR_UP,
 128	.f_max			= 100000000,
 129	.reversed_irq_handling	= true,
 130	.mmcimask1		= true,
 
 131	.start_err		= MCI_STARTBITERR,
 132	.opendrain		= MCI_ROD,
 
 133};
 134
 135static struct variant_data variant_arm_extended_fifo = {
 136	.fifosize		= 128 * 4,
 137	.fifohalfsize		= 64 * 4,
 
 
 
 
 138	.datalength_bits	= 16,
 
 139	.pwrreg_powerup		= MCI_PWR_UP,
 140	.f_max			= 100000000,
 141	.mmcimask1		= true,
 
 142	.start_err		= MCI_STARTBITERR,
 143	.opendrain		= MCI_ROD,
 
 144};
 145
 146static struct variant_data variant_arm_extended_fifo_hwfc = {
 147	.fifosize		= 128 * 4,
 148	.fifohalfsize		= 64 * 4,
 149	.clkreg_enable		= MCI_ARM_HWFCEN,
 
 
 
 
 150	.datalength_bits	= 16,
 
 151	.pwrreg_powerup		= MCI_PWR_UP,
 152	.f_max			= 100000000,
 153	.mmcimask1		= true,
 
 154	.start_err		= MCI_STARTBITERR,
 155	.opendrain		= MCI_ROD,
 
 156};
 157
 158static struct variant_data variant_u300 = {
 159	.fifosize		= 16 * 4,
 160	.fifohalfsize		= 8 * 4,
 161	.clkreg_enable		= MCI_ST_U300_HWFCEN,
 162	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 
 
 
 
 163	.datalength_bits	= 16,
 
 164	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 165	.st_sdio			= true,
 166	.pwrreg_powerup		= MCI_PWR_ON,
 167	.f_max			= 100000000,
 168	.signal_direction	= true,
 169	.pwrreg_clkgate		= true,
 170	.pwrreg_nopower		= true,
 171	.mmcimask1		= true,
 
 172	.start_err		= MCI_STARTBITERR,
 173	.opendrain		= MCI_OD,
 
 174};
 175
 176static struct variant_data variant_nomadik = {
 177	.fifosize		= 16 * 4,
 178	.fifohalfsize		= 8 * 4,
 179	.clkreg			= MCI_CLK_ENABLE,
 180	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 
 
 
 
 181	.datalength_bits	= 24,
 
 182	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 183	.st_sdio		= true,
 184	.st_clkdiv		= true,
 185	.pwrreg_powerup		= MCI_PWR_ON,
 186	.f_max			= 100000000,
 187	.signal_direction	= true,
 188	.pwrreg_clkgate		= true,
 189	.pwrreg_nopower		= true,
 190	.mmcimask1		= true,
 
 191	.start_err		= MCI_STARTBITERR,
 192	.opendrain		= MCI_OD,
 
 193};
 194
 195static struct variant_data variant_ux500 = {
 196	.fifosize		= 30 * 4,
 197	.fifohalfsize		= 8 * 4,
 198	.clkreg			= MCI_CLK_ENABLE,
 199	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 200	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 201	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 
 
 
 
 202	.datalength_bits	= 24,
 
 
 
 203	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 204	.st_sdio		= true,
 205	.st_clkdiv		= true,
 206	.pwrreg_powerup		= MCI_PWR_ON,
 207	.f_max			= 100000000,
 208	.signal_direction	= true,
 209	.pwrreg_clkgate		= true,
 210	.busy_detect		= true,
 211	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 212	.busy_detect_flag	= MCI_ST_CARDBUSY,
 213	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 214	.pwrreg_nopower		= true,
 215	.mmcimask1		= true,
 
 216	.start_err		= MCI_STARTBITERR,
 217	.opendrain		= MCI_OD,
 
 218};
 219
 220static struct variant_data variant_ux500v2 = {
 221	.fifosize		= 30 * 4,
 222	.fifohalfsize		= 8 * 4,
 223	.clkreg			= MCI_CLK_ENABLE,
 224	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 225	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 226	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 
 
 
 
 227	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
 228	.datalength_bits	= 24,
 
 
 
 229	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 230	.st_sdio		= true,
 231	.st_clkdiv		= true,
 232	.blksz_datactrl16	= true,
 233	.pwrreg_powerup		= MCI_PWR_ON,
 234	.f_max			= 100000000,
 235	.signal_direction	= true,
 236	.pwrreg_clkgate		= true,
 237	.busy_detect		= true,
 238	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 239	.busy_detect_flag	= MCI_ST_CARDBUSY,
 240	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 241	.pwrreg_nopower		= true,
 242	.mmcimask1		= true,
 
 243	.start_err		= MCI_STARTBITERR,
 244	.opendrain		= MCI_OD,
 
 245};
 246
 247static struct variant_data variant_stm32 = {
 248	.fifosize		= 32 * 4,
 249	.fifohalfsize		= 8 * 4,
 250	.clkreg			= MCI_CLK_ENABLE,
 251	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 252	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 253	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 
 
 
 
 
 254	.datalength_bits	= 24,
 
 255	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 256	.st_sdio		= true,
 257	.st_clkdiv		= true,
 258	.pwrreg_powerup		= MCI_PWR_ON,
 259	.f_max			= 48000000,
 260	.pwrreg_clkgate		= true,
 261	.pwrreg_nopower		= true,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262};
 263
 264static struct variant_data variant_qcom = {
 265	.fifosize		= 16 * 4,
 266	.fifohalfsize		= 8 * 4,
 267	.clkreg			= MCI_CLK_ENABLE,
 268	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
 269				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
 270	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
 271	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
 
 
 
 
 272	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
 273	.blksz_datactrl4	= true,
 274	.datalength_bits	= 24,
 
 
 275	.pwrreg_powerup		= MCI_PWR_UP,
 276	.f_max			= 208000000,
 277	.explicit_mclk_control	= true,
 278	.qcom_fifo		= true,
 279	.qcom_dml		= true,
 280	.mmcimask1		= true,
 
 281	.start_err		= MCI_STARTBITERR,
 282	.opendrain		= MCI_ROD,
 
 283};
 284
 285/* Busy detection for the ST Micro variant */
 286static int mmci_card_busy(struct mmc_host *mmc)
 287{
 288	struct mmci_host *host = mmc_priv(mmc);
 289	unsigned long flags;
 290	int busy = 0;
 291
 292	spin_lock_irqsave(&host->lock, flags);
 293	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
 294		busy = 1;
 295	spin_unlock_irqrestore(&host->lock, flags);
 296
 297	return busy;
 298}
 299
 300/*
 301 * Validate mmc prerequisites
 302 */
 303static int mmci_validate_data(struct mmci_host *host,
 304			      struct mmc_data *data)
 305{
 306	if (!data)
 307		return 0;
 308
 309	if (!is_power_of_2(data->blksz)) {
 310		dev_err(mmc_dev(host->mmc),
 311			"unsupported block size (%d bytes)\n", data->blksz);
 312		return -EINVAL;
 313	}
 314
 315	return 0;
 316}
 317
 318static void mmci_reg_delay(struct mmci_host *host)
 319{
 320	/*
 321	 * According to the spec, at least three feedback clock cycles
 322	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 323	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 324	 * Worst delay time during card init is at 100 kHz => 30 us.
 325	 * Worst delay time when up and running is at 25 MHz => 120 ns.
 326	 */
 327	if (host->cclk < 25000000)
 328		udelay(30);
 329	else
 330		ndelay(120);
 331}
 332
 333/*
 334 * This must be called with host->lock held
 335 */
 336static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 337{
 338	if (host->clk_reg != clk) {
 339		host->clk_reg = clk;
 340		writel(clk, host->base + MMCICLOCK);
 341	}
 342}
 343
 344/*
 345 * This must be called with host->lock held
 346 */
 347static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 348{
 349	if (host->pwr_reg != pwr) {
 350		host->pwr_reg = pwr;
 351		writel(pwr, host->base + MMCIPOWER);
 352	}
 353}
 354
 355/*
 356 * This must be called with host->lock held
 357 */
 358static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 359{
 360	/* Keep busy mode in DPSM if enabled */
 361	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
 
 362
 363	if (host->datactrl_reg != datactrl) {
 364		host->datactrl_reg = datactrl;
 365		writel(datactrl, host->base + MMCIDATACTRL);
 366	}
 367}
 368
 369/*
 370 * This must be called with host->lock held
 371 */
 372static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 373{
 374	struct variant_data *variant = host->variant;
 375	u32 clk = variant->clkreg;
 376
 377	/* Make sure cclk reflects the current calculated clock */
 378	host->cclk = 0;
 379
 380	if (desired) {
 381		if (variant->explicit_mclk_control) {
 382			host->cclk = host->mclk;
 383		} else if (desired >= host->mclk) {
 384			clk = MCI_CLK_BYPASS;
 385			if (variant->st_clkdiv)
 386				clk |= MCI_ST_UX500_NEG_EDGE;
 387			host->cclk = host->mclk;
 388		} else if (variant->st_clkdiv) {
 389			/*
 390			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 391			 * => clkdiv = (mclk / f) - 2
 392			 * Round the divider up so we don't exceed the max
 393			 * frequency
 394			 */
 395			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 396			if (clk >= 256)
 397				clk = 255;
 398			host->cclk = host->mclk / (clk + 2);
 399		} else {
 400			/*
 401			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 402			 * => clkdiv = mclk / (2 * f) - 1
 403			 */
 404			clk = host->mclk / (2 * desired) - 1;
 405			if (clk >= 256)
 406				clk = 255;
 407			host->cclk = host->mclk / (2 * (clk + 1));
 408		}
 409
 410		clk |= variant->clkreg_enable;
 411		clk |= MCI_CLK_ENABLE;
 412		/* This hasn't proven to be worthwhile */
 413		/* clk |= MCI_CLK_PWRSAVE; */
 414	}
 415
 416	/* Set actual clock for debug */
 417	host->mmc->actual_clock = host->cclk;
 418
 419	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 420		clk |= MCI_4BIT_BUS;
 421	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 422		clk |= variant->clkreg_8bit_bus_enable;
 423
 424	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 425	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 426		clk |= variant->clkreg_neg_edge_enable;
 427
 428	mmci_write_clkreg(host, clk);
 429}
 430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 431static void
 432mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 433{
 434	writel(0, host->base + MMCICOMMAND);
 435
 436	BUG_ON(host->data);
 437
 438	host->mrq = NULL;
 439	host->cmd = NULL;
 440
 441	mmc_request_done(host->mmc, mrq);
 442}
 443
 444static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 445{
 446	void __iomem *base = host->base;
 447	struct variant_data *variant = host->variant;
 448
 449	if (host->singleirq) {
 450		unsigned int mask0 = readl(base + MMCIMASK0);
 451
 452		mask0 &= ~MCI_IRQ1MASK;
 453		mask0 |= mask;
 454
 455		writel(mask0, base + MMCIMASK0);
 456	}
 457
 458	if (variant->mmcimask1)
 459		writel(mask, base + MMCIMASK1);
 460
 461	host->mask1_reg = mask;
 462}
 463
 464static void mmci_stop_data(struct mmci_host *host)
 465{
 466	mmci_write_datactrlreg(host, 0);
 467	mmci_set_mask1(host, 0);
 468	host->data = NULL;
 469}
 470
 471static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 472{
 473	unsigned int flags = SG_MITER_ATOMIC;
 474
 475	if (data->flags & MMC_DATA_READ)
 476		flags |= SG_MITER_TO_SG;
 477	else
 478		flags |= SG_MITER_FROM_SG;
 479
 480	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 481}
 482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 483/*
 484 * All the DMA operation mode stuff goes inside this ifdef.
 485 * This assumes that you have a generic DMA device interface,
 486 * no custom DMA interfaces are supported.
 487 */
 488#ifdef CONFIG_DMA_ENGINE
 489static void mmci_dma_setup(struct mmci_host *host)
 
 
 
 
 
 
 
 
 
 
 
 
 
 490{
 491	const char *rxname, *txname;
 492	struct variant_data *variant = host->variant;
 
 
 
 
 
 
 493
 494	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
 495	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
 
 
 
 
 496
 497	/* initialize pre request cookie */
 498	host->next_data.cookie = 1;
 
 
 
 
 
 499
 500	/*
 501	 * If only an RX channel is specified, the driver will
 502	 * attempt to use it bidirectionally, however if it is
 503	 * is specified but cannot be located, DMA will be disabled.
 504	 */
 505	if (host->dma_rx_channel && !host->dma_tx_channel)
 506		host->dma_tx_channel = host->dma_rx_channel;
 507
 508	if (host->dma_rx_channel)
 509		rxname = dma_chan_name(host->dma_rx_channel);
 510	else
 511		rxname = "none";
 512
 513	if (host->dma_tx_channel)
 514		txname = dma_chan_name(host->dma_tx_channel);
 515	else
 516		txname = "none";
 517
 518	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 519		 rxname, txname);
 520
 521	/*
 522	 * Limit the maximum segment size in any SG entry according to
 523	 * the parameters of the DMA engine device.
 524	 */
 525	if (host->dma_tx_channel) {
 526		struct device *dev = host->dma_tx_channel->device->dev;
 527		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 528
 529		if (max_seg_size < host->mmc->max_seg_size)
 530			host->mmc->max_seg_size = max_seg_size;
 531	}
 532	if (host->dma_rx_channel) {
 533		struct device *dev = host->dma_rx_channel->device->dev;
 534		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 535
 536		if (max_seg_size < host->mmc->max_seg_size)
 537			host->mmc->max_seg_size = max_seg_size;
 538	}
 539
 540	if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
 541		if (dml_hw_init(host, host->mmc->parent->of_node))
 542			variant->qcom_dml = false;
 
 
 
 543}
 544
 545/*
 546 * This is used in or so inline it
 547 * so it can be discarded.
 548 */
 549static inline void mmci_dma_release(struct mmci_host *host)
 550{
 551	if (host->dma_rx_channel)
 552		dma_release_channel(host->dma_rx_channel);
 553	if (host->dma_tx_channel)
 554		dma_release_channel(host->dma_tx_channel);
 555	host->dma_rx_channel = host->dma_tx_channel = NULL;
 556}
 557
 558static void mmci_dma_data_error(struct mmci_host *host)
 559{
 560	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 561	dmaengine_terminate_all(host->dma_current);
 562	host->dma_in_progress = false;
 563	host->dma_current = NULL;
 564	host->dma_desc_current = NULL;
 565	host->data->host_cookie = 0;
 566}
 567
 568static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 569{
 
 570	struct dma_chan *chan;
 571
 572	if (data->flags & MMC_DATA_READ)
 573		chan = host->dma_rx_channel;
 574	else
 575		chan = host->dma_tx_channel;
 576
 577	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
 578		     mmc_get_dma_dir(data));
 579}
 580
 581static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 582{
 
 583	u32 status;
 584	int i;
 585
 
 
 
 586	/* Wait up to 1ms for the DMA to complete */
 587	for (i = 0; ; i++) {
 588		status = readl(host->base + MMCISTATUS);
 589		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 590			break;
 591		udelay(10);
 592	}
 593
 594	/*
 595	 * Check to see whether we still have some data left in the FIFO -
 596	 * this catches DMA controllers which are unable to monitor the
 597	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 598	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 599	 */
 600	if (status & MCI_RXDATAAVLBLMASK) {
 601		mmci_dma_data_error(host);
 602		if (!data->error)
 603			data->error = -EIO;
 
 
 604	}
 605
 606	if (!data->host_cookie)
 607		mmci_dma_unmap(host, data);
 608
 609	/*
 610	 * Use of DMA with scatter-gather is impossible.
 611	 * Give up with DMA and switch back to PIO mode.
 612	 */
 613	if (status & MCI_RXDATAAVLBLMASK) {
 614		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 615		mmci_dma_release(host);
 616	}
 617
 618	host->dma_in_progress = false;
 619	host->dma_current = NULL;
 620	host->dma_desc_current = NULL;
 621}
 622
 623/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
 624static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
 625				struct dma_chan **dma_chan,
 626				struct dma_async_tx_descriptor **dma_desc)
 627{
 
 628	struct variant_data *variant = host->variant;
 629	struct dma_slave_config conf = {
 630		.src_addr = host->phybase + MMCIFIFO,
 631		.dst_addr = host->phybase + MMCIFIFO,
 632		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 633		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 634		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 635		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 636		.device_fc = false,
 637	};
 638	struct dma_chan *chan;
 639	struct dma_device *device;
 640	struct dma_async_tx_descriptor *desc;
 641	int nr_sg;
 642	unsigned long flags = DMA_CTRL_ACK;
 643
 644	if (data->flags & MMC_DATA_READ) {
 645		conf.direction = DMA_DEV_TO_MEM;
 646		chan = host->dma_rx_channel;
 647	} else {
 648		conf.direction = DMA_MEM_TO_DEV;
 649		chan = host->dma_tx_channel;
 650	}
 651
 652	/* If there's no DMA channel, fall back to PIO */
 653	if (!chan)
 654		return -EINVAL;
 655
 656	/* If less than or equal to the fifo size, don't bother with DMA */
 657	if (data->blksz * data->blocks <= variant->fifosize)
 658		return -EINVAL;
 659
 
 
 
 
 
 
 
 
 
 
 
 
 660	device = chan->device;
 661	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
 662			   mmc_get_dma_dir(data));
 663	if (nr_sg == 0)
 664		return -EINVAL;
 665
 666	if (host->variant->qcom_dml)
 667		flags |= DMA_PREP_INTERRUPT;
 668
 669	dmaengine_slave_config(chan, &conf);
 670	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 671					    conf.direction, flags);
 672	if (!desc)
 673		goto unmap_exit;
 674
 675	*dma_chan = chan;
 676	*dma_desc = desc;
 677
 678	return 0;
 679
 680 unmap_exit:
 681	dma_unmap_sg(device->dev, data->sg, data->sg_len,
 682		     mmc_get_dma_dir(data));
 683	return -ENOMEM;
 684}
 685
 686static inline int mmci_dma_prep_data(struct mmci_host *host,
 687				     struct mmc_data *data)
 
 688{
 
 
 
 
 
 
 
 
 689	/* Check if next job is already prepared. */
 690	if (host->dma_current && host->dma_desc_current)
 691		return 0;
 692
 693	/* No job were prepared thus do it now. */
 694	return __mmci_dma_prep_data(host, data, &host->dma_current,
 695				    &host->dma_desc_current);
 696}
 697
 698static inline int mmci_dma_prep_next(struct mmci_host *host,
 699				     struct mmc_data *data)
 700{
 701	struct mmci_host_next *nd = &host->next_data;
 702	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
 703}
 704
 705static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 706{
 
 707	int ret;
 708	struct mmc_data *data = host->data;
 709
 710	ret = mmci_dma_prep_data(host, host->data);
 711	if (ret)
 
 
 712		return ret;
 
 
 713
 714	/* Okay, go for it. */
 715	dev_vdbg(mmc_dev(host->mmc),
 716		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 717		 data->sg_len, data->blksz, data->blocks, data->flags);
 718	host->dma_in_progress = true;
 719	dmaengine_submit(host->dma_desc_current);
 720	dma_async_issue_pending(host->dma_current);
 721
 722	if (host->variant->qcom_dml)
 723		dml_start_xfer(host, data);
 724
 725	datactrl |= MCI_DPSM_DMAENABLE;
 726
 727	/* Trigger the DMA transfer */
 728	mmci_write_datactrlreg(host, datactrl);
 729
 730	/*
 731	 * Let the MMCI say when the data is ended and it's time
 732	 * to fire next DMA request. When that happens, MMCI will
 733	 * call mmci_data_end()
 734	 */
 735	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 736	       host->base + MMCIMASK0);
 737	return 0;
 738}
 739
 740static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 741{
 742	struct mmci_host_next *next = &host->next_data;
 
 743
 744	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
 745	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
 746
 747	host->dma_desc_current = next->dma_desc;
 748	host->dma_current = next->dma_chan;
 749	next->dma_desc = NULL;
 750	next->dma_chan = NULL;
 751}
 752
 753static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
 754{
 755	struct mmci_host *host = mmc_priv(mmc);
 756	struct mmc_data *data = mrq->data;
 757	struct mmci_host_next *nd = &host->next_data;
 758
 759	if (!data)
 760		return;
 761
 762	BUG_ON(data->host_cookie);
 763
 764	if (mmci_validate_data(host, data))
 765		return;
 
 
 
 766
 767	if (!mmci_dma_prep_next(host, data))
 768		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
 769}
 770
 771static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
 772			      int err)
 773{
 774	struct mmci_host *host = mmc_priv(mmc);
 775	struct mmc_data *data = mrq->data;
 776
 777	if (!data || !data->host_cookie)
 778		return;
 779
 780	mmci_dma_unmap(host, data);
 781
 782	if (err) {
 783		struct mmci_host_next *next = &host->next_data;
 784		struct dma_chan *chan;
 785		if (data->flags & MMC_DATA_READ)
 786			chan = host->dma_rx_channel;
 787		else
 788			chan = host->dma_tx_channel;
 789		dmaengine_terminate_all(chan);
 790
 791		if (host->dma_desc_current == next->dma_desc)
 792			host->dma_desc_current = NULL;
 793
 794		if (host->dma_current == next->dma_chan) {
 795			host->dma_in_progress = false;
 796			host->dma_current = NULL;
 797		}
 798
 799		next->dma_desc = NULL;
 800		next->dma_chan = NULL;
 801		data->host_cookie = 0;
 802	}
 803}
 804
 
 
 
 
 
 
 
 
 
 
 
 805#else
 806/* Blank functions if the DMA engine is not available */
 807static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 
 
 
 
 808{
 
 809}
 810static inline void mmci_dma_setup(struct mmci_host *host)
 
 811{
 
 
 812}
 813
 814static inline void mmci_dma_release(struct mmci_host *host)
 815{
 
 
 
 816}
 817
 818static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 819{
 820}
 
 
 
 
 
 
 821
 822static inline void mmci_dma_finalize(struct mmci_host *host,
 823				     struct mmc_data *data)
 824{
 825}
 826
 827static inline void mmci_dma_data_error(struct mmci_host *host)
 828{
 829}
 830
 831static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 
 832{
 833	return -ENOSYS;
 834}
 835
 836#define mmci_pre_request NULL
 837#define mmci_post_request NULL
 838
 839#endif
 
 840
 841static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
 842{
 843	struct variant_data *variant = host->variant;
 844	unsigned int datactrl, timeout, irqmask;
 845	unsigned long long clks;
 846	void __iomem *base;
 847	int blksz_bits;
 848
 849	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
 850		data->blksz, data->blocks, data->flags);
 851
 852	host->data = data;
 853	host->size = data->blksz * data->blocks;
 854	data->bytes_xfered = 0;
 855
 856	clks = (unsigned long long)data->timeout_ns * host->cclk;
 857	do_div(clks, NSEC_PER_SEC);
 858
 859	timeout = data->timeout_clks + (unsigned int)clks;
 860
 861	base = host->base;
 862	writel(timeout, base + MMCIDATATIMER);
 863	writel(host->size, base + MMCIDATALENGTH);
 864
 865	blksz_bits = ffs(data->blksz) - 1;
 866	BUG_ON(1 << blksz_bits != data->blksz);
 867
 868	if (variant->blksz_datactrl16)
 869		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
 870	else if (variant->blksz_datactrl4)
 871		datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
 872	else
 873		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
 874
 875	if (data->flags & MMC_DATA_READ)
 876		datactrl |= MCI_DPSM_DIRECTION;
 877
 878	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
 879		u32 clk;
 880
 881		datactrl |= variant->datactrl_mask_sdio;
 882
 883		/*
 884		 * The ST Micro variant for SDIO small write transfers
 885		 * needs to have clock H/W flow control disabled,
 886		 * otherwise the transfer will not start. The threshold
 887		 * depends on the rate of MCLK.
 888		 */
 889		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
 890		    (host->size < 8 ||
 891		     (host->size <= 8 && host->mclk > 50000000)))
 892			clk = host->clk_reg & ~variant->clkreg_enable;
 893		else
 894			clk = host->clk_reg | variant->clkreg_enable;
 895
 896		mmci_write_clkreg(host, clk);
 897	}
 898
 899	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 900	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 901		datactrl |= variant->datactrl_mask_ddrmode;
 902
 903	/*
 904	 * Attempt to use DMA operation mode, if this
 905	 * should fail, fall back to PIO mode
 906	 */
 907	if (!mmci_dma_start_data(host, datactrl))
 908		return;
 909
 910	/* IRQ mode, map the SG list for CPU reading/writing */
 911	mmci_init_sg(host, data);
 912
 913	if (data->flags & MMC_DATA_READ) {
 914		irqmask = MCI_RXFIFOHALFFULLMASK;
 915
 916		/*
 917		 * If we have less than the fifo 'half-full' threshold to
 918		 * transfer, trigger a PIO interrupt as soon as any data
 919		 * is available.
 920		 */
 921		if (host->size < variant->fifohalfsize)
 922			irqmask |= MCI_RXDATAAVLBLMASK;
 923	} else {
 924		/*
 925		 * We don't actually need to include "FIFO empty" here
 926		 * since its implicit in "FIFO half empty".
 927		 */
 928		irqmask = MCI_TXFIFOHALFEMPTYMASK;
 929	}
 930
 931	mmci_write_datactrlreg(host, datactrl);
 932	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
 933	mmci_set_mask1(host, irqmask);
 934}
 935
 936static void
 937mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
 938{
 939	void __iomem *base = host->base;
 
 
 940
 941	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
 942	    cmd->opcode, cmd->arg, cmd->flags);
 943
 944	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
 945		writel(0, base + MMCICOMMAND);
 946		mmci_reg_delay(host);
 947	}
 948
 949	c |= cmd->opcode | MCI_CPSM_ENABLE;
 
 
 
 
 950	if (cmd->flags & MMC_RSP_PRESENT) {
 951		if (cmd->flags & MMC_RSP_136)
 952			c |= MCI_CPSM_LONGRSP;
 953		c |= MCI_CPSM_RESPONSE;
 
 
 
 954	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 955	if (/*interrupt*/0)
 956		c |= MCI_CPSM_INTERRUPT;
 957
 958	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
 959		c |= host->variant->data_cmd_enable;
 960
 961	host->cmd = cmd;
 962
 963	writel(cmd->arg, base + MMCIARGUMENT);
 964	writel(c, base + MMCICOMMAND);
 965}
 966
 
 
 
 
 
 
 967static void
 968mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
 969	      unsigned int status)
 970{
 
 
 971	/* Make sure we have data to handle */
 972	if (!data)
 973		return;
 974
 975	/* First check for errors */
 976	if (status & (MCI_DATACRCFAIL | MCI_DATATIMEOUT |
 977		      host->variant->start_err |
 978		      MCI_TXUNDERRUN | MCI_RXOVERRUN)) {
 
 
 979		u32 remain, success;
 980
 981		/* Terminate the DMA transfer */
 982		if (dma_inprogress(host)) {
 983			mmci_dma_data_error(host);
 984			mmci_dma_unmap(host, data);
 985		}
 986
 987		/*
 988		 * Calculate how far we are into the transfer.  Note that
 989		 * the data counter gives the number of bytes transferred
 990		 * on the MMC bus, not on the host side.  On reads, this
 991		 * can be as much as a FIFO-worth of data ahead.  This
 992		 * matters for FIFO overruns only.
 993		 */
 994		remain = readl(host->base + MMCIDATACNT);
 995		success = data->blksz * data->blocks - remain;
 
 
 
 
 996
 997		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
 998			status, success);
 999		if (status & MCI_DATACRCFAIL) {
1000			/* Last block was not successful */
1001			success -= 1;
1002			data->error = -EILSEQ;
1003		} else if (status & MCI_DATATIMEOUT) {
1004			data->error = -ETIMEDOUT;
1005		} else if (status & MCI_STARTBITERR) {
1006			data->error = -ECOMM;
1007		} else if (status & MCI_TXUNDERRUN) {
1008			data->error = -EIO;
1009		} else if (status & MCI_RXOVERRUN) {
1010			if (success > host->variant->fifosize)
1011				success -= host->variant->fifosize;
1012			else
1013				success = 0;
1014			data->error = -EIO;
1015		}
1016		data->bytes_xfered = round_down(success, data->blksz);
1017	}
1018
1019	if (status & MCI_DATABLOCKEND)
1020		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1021
1022	if (status & MCI_DATAEND || data->error) {
1023		if (dma_inprogress(host))
1024			mmci_dma_finalize(host, data);
1025		mmci_stop_data(host);
1026
1027		if (!data->error)
1028			/* The error clause is handled above, success! */
1029			data->bytes_xfered = data->blksz * data->blocks;
1030
1031		if (!data->stop || host->mrq->sbc) {
 
 
 
 
 
1032			mmci_request_end(host, data->mrq);
1033		} else {
1034			mmci_start_command(host, data->stop, 0);
1035		}
1036	}
1037}
1038
1039static void
1040mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1041	     unsigned int status)
1042{
 
1043	void __iomem *base = host->base;
1044	bool sbc;
1045
1046	if (!cmd)
1047		return;
1048
1049	sbc = (cmd == host->mrq->sbc);
 
1050
1051	/*
1052	 * We need to be one of these interrupts to be considered worth
1053	 * handling. Note that we tag on any latent IRQs postponed
1054	 * due to waiting for busy status.
1055	 */
1056	if (!((status|host->busy_status) &
1057	      (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
 
 
 
1058		return;
1059
1060	/*
1061	 * ST Micro variant: handle busy detection.
1062	 */
1063	if (host->variant->busy_detect) {
1064		bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1065
1066		/* We are busy with a command, return */
1067		if (host->busy_status &&
1068		    (status & host->variant->busy_detect_flag))
1069			return;
1070
1071		/*
1072		 * We were not busy, but we now got a busy response on
1073		 * something that was not an error, and we double-check
1074		 * that the special busy status bit is still set before
1075		 * proceeding.
1076		 */
1077		if (!host->busy_status && busy_resp &&
1078		    !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1079		    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1080
1081			/* Clear the busy start IRQ */
1082			writel(host->variant->busy_detect_mask,
1083			       host->base + MMCICLEAR);
1084
1085			/* Unmask the busy end IRQ */
1086			writel(readl(base + MMCIMASK0) |
1087			       host->variant->busy_detect_mask,
1088			       base + MMCIMASK0);
1089			/*
1090			 * Now cache the last response status code (until
1091			 * the busy bit goes low), and return.
1092			 */
1093			host->busy_status =
1094				status & (MCI_CMDSENT|MCI_CMDRESPEND);
1095			return;
1096		}
1097
1098		/*
1099		 * At this point we are not busy with a command, we have
1100		 * not received a new busy request, clear and mask the busy
1101		 * end IRQ and fall through to process the IRQ.
1102		 */
1103		if (host->busy_status) {
1104
1105			writel(host->variant->busy_detect_mask,
1106			       host->base + MMCICLEAR);
1107
1108			writel(readl(base + MMCIMASK0) &
1109			       ~host->variant->busy_detect_mask,
1110			       base + MMCIMASK0);
1111			host->busy_status = 0;
1112		}
1113	}
1114
1115	host->cmd = NULL;
1116
1117	if (status & MCI_CMDTIMEOUT) {
1118		cmd->error = -ETIMEDOUT;
1119	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1120		cmd->error = -EILSEQ;
 
 
 
 
 
 
 
 
1121	} else {
1122		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1123		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1124		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1125		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1126	}
1127
1128	if ((!sbc && !cmd->data) || cmd->error) {
1129		if (host->data) {
1130			/* Terminate the DMA transfer */
1131			if (dma_inprogress(host)) {
1132				mmci_dma_data_error(host);
1133				mmci_dma_unmap(host, host->data);
 
 
 
1134			}
1135			mmci_stop_data(host);
1136		}
1137		mmci_request_end(host, host->mrq);
 
 
 
1138	} else if (sbc) {
1139		mmci_start_command(host, host->mrq->cmd, 0);
1140	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
 
1141		mmci_start_data(host, cmd->data);
1142	}
1143}
1144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1145static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1146{
1147	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1148}
1149
1150static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1151{
1152	/*
1153	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1154	 * from the fifo range should be used
1155	 */
1156	if (status & MCI_RXFIFOHALFFULL)
1157		return host->variant->fifohalfsize;
1158	else if (status & MCI_RXDATAAVLBL)
1159		return 4;
1160
1161	return 0;
1162}
1163
1164static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1165{
1166	void __iomem *base = host->base;
1167	char *ptr = buffer;
1168	u32 status = readl(host->base + MMCISTATUS);
1169	int host_remain = host->size;
1170
1171	do {
1172		int count = host->get_rx_fifocnt(host, status, host_remain);
1173
1174		if (count > remain)
1175			count = remain;
1176
1177		if (count <= 0)
1178			break;
1179
1180		/*
1181		 * SDIO especially may want to send something that is
1182		 * not divisible by 4 (as opposed to card sectors
1183		 * etc). Therefore make sure to always read the last bytes
1184		 * while only doing full 32-bit reads towards the FIFO.
1185		 */
1186		if (unlikely(count & 0x3)) {
1187			if (count < 4) {
1188				unsigned char buf[4];
1189				ioread32_rep(base + MMCIFIFO, buf, 1);
1190				memcpy(ptr, buf, count);
1191			} else {
1192				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1193				count &= ~0x3;
1194			}
1195		} else {
1196			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1197		}
1198
1199		ptr += count;
1200		remain -= count;
1201		host_remain -= count;
1202
1203		if (remain == 0)
1204			break;
1205
1206		status = readl(base + MMCISTATUS);
1207	} while (status & MCI_RXDATAAVLBL);
1208
1209	return ptr - buffer;
1210}
1211
1212static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1213{
1214	struct variant_data *variant = host->variant;
1215	void __iomem *base = host->base;
1216	char *ptr = buffer;
1217
1218	do {
1219		unsigned int count, maxcnt;
1220
1221		maxcnt = status & MCI_TXFIFOEMPTY ?
1222			 variant->fifosize : variant->fifohalfsize;
1223		count = min(remain, maxcnt);
1224
1225		/*
1226		 * SDIO especially may want to send something that is
1227		 * not divisible by 4 (as opposed to card sectors
1228		 * etc), and the FIFO only accept full 32-bit writes.
1229		 * So compensate by adding +3 on the count, a single
1230		 * byte become a 32bit write, 7 bytes will be two
1231		 * 32bit writes etc.
1232		 */
1233		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1234
1235		ptr += count;
1236		remain -= count;
1237
1238		if (remain == 0)
1239			break;
1240
1241		status = readl(base + MMCISTATUS);
1242	} while (status & MCI_TXFIFOHALFEMPTY);
1243
1244	return ptr - buffer;
1245}
1246
1247/*
1248 * PIO data transfer IRQ handler.
1249 */
1250static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1251{
1252	struct mmci_host *host = dev_id;
1253	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1254	struct variant_data *variant = host->variant;
1255	void __iomem *base = host->base;
1256	unsigned long flags;
1257	u32 status;
1258
1259	status = readl(base + MMCISTATUS);
1260
1261	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1262
1263	local_irq_save(flags);
1264
1265	do {
1266		unsigned int remain, len;
1267		char *buffer;
1268
1269		/*
1270		 * For write, we only need to test the half-empty flag
1271		 * here - if the FIFO is completely empty, then by
1272		 * definition it is more than half empty.
1273		 *
1274		 * For read, check for data available.
1275		 */
1276		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1277			break;
1278
1279		if (!sg_miter_next(sg_miter))
1280			break;
1281
1282		buffer = sg_miter->addr;
1283		remain = sg_miter->length;
1284
1285		len = 0;
1286		if (status & MCI_RXACTIVE)
1287			len = mmci_pio_read(host, buffer, remain);
1288		if (status & MCI_TXACTIVE)
1289			len = mmci_pio_write(host, buffer, remain, status);
1290
1291		sg_miter->consumed = len;
1292
1293		host->size -= len;
1294		remain -= len;
1295
1296		if (remain)
1297			break;
1298
1299		status = readl(base + MMCISTATUS);
1300	} while (1);
1301
1302	sg_miter_stop(sg_miter);
1303
1304	local_irq_restore(flags);
1305
1306	/*
1307	 * If we have less than the fifo 'half-full' threshold to transfer,
1308	 * trigger a PIO interrupt as soon as any data is available.
1309	 */
1310	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1311		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1312
1313	/*
1314	 * If we run out of data, disable the data IRQs; this
1315	 * prevents a race where the FIFO becomes empty before
1316	 * the chip itself has disabled the data path, and
1317	 * stops us racing with our data end IRQ.
1318	 */
1319	if (host->size == 0) {
1320		mmci_set_mask1(host, 0);
1321		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1322	}
1323
1324	return IRQ_HANDLED;
1325}
1326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1327/*
1328 * Handle completion of command and data transfers.
1329 */
1330static irqreturn_t mmci_irq(int irq, void *dev_id)
1331{
1332	struct mmci_host *host = dev_id;
1333	u32 status;
1334	int ret = 0;
1335
1336	spin_lock(&host->lock);
 
1337
1338	do {
1339		status = readl(host->base + MMCISTATUS);
 
 
1340
1341		if (host->singleirq) {
1342			if (status & host->mask1_reg)
1343				mmci_pio_irq(irq, dev_id);
1344
1345			status &= ~MCI_IRQ1MASK;
1346		}
1347
1348		/*
1349		 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1350		 * enabled) in mmci_cmd_irq() function where ST Micro busy
1351		 * detection variant is handled. Considering the HW seems to be
1352		 * triggering the IRQ on both edges while monitoring DAT0 for
1353		 * busy completion and that same status bit is used to monitor
1354		 * start and end of busy detection, special care must be taken
1355		 * to make sure that both start and end interrupts are always
1356		 * cleared one after the other.
1357		 */
1358		status &= readl(host->base + MMCIMASK0);
1359		if (host->variant->busy_detect)
1360			writel(status & ~host->variant->busy_detect_mask,
1361			       host->base + MMCICLEAR);
1362		else
1363			writel(status, host->base + MMCICLEAR);
1364
1365		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1366
1367		if (host->variant->reversed_irq_handling) {
1368			mmci_data_irq(host, host->data, status);
1369			mmci_cmd_irq(host, host->cmd, status);
1370		} else {
1371			mmci_cmd_irq(host, host->cmd, status);
1372			mmci_data_irq(host, host->data, status);
1373		}
1374
 
 
 
1375		/*
1376		 * Don't poll for busy completion in irq context.
 
1377		 */
1378		if (host->variant->busy_detect && host->busy_status)
1379			status &= ~host->variant->busy_detect_flag;
1380
1381		ret = 1;
1382	} while (status);
1383
1384	spin_unlock(&host->lock);
1385
1386	return IRQ_RETVAL(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1387}
1388
1389static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1390{
1391	struct mmci_host *host = mmc_priv(mmc);
1392	unsigned long flags;
1393
1394	WARN_ON(host->mrq != NULL);
1395
1396	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1397	if (mrq->cmd->error) {
1398		mmc_request_done(mmc, mrq);
1399		return;
1400	}
1401
1402	spin_lock_irqsave(&host->lock, flags);
1403
1404	host->mrq = mrq;
1405
1406	if (mrq->data)
1407		mmci_get_next_data(host, mrq->data);
1408
1409	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
 
1410		mmci_start_data(host, mrq->data);
1411
1412	if (mrq->sbc)
1413		mmci_start_command(host, mrq->sbc, 0);
1414	else
1415		mmci_start_command(host, mrq->cmd, 0);
1416
1417	spin_unlock_irqrestore(&host->lock, flags);
1418}
1419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1420static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1421{
1422	struct mmci_host *host = mmc_priv(mmc);
1423	struct variant_data *variant = host->variant;
1424	u32 pwr = 0;
1425	unsigned long flags;
1426	int ret;
1427
1428	if (host->plat->ios_handler &&
1429		host->plat->ios_handler(mmc_dev(mmc), ios))
1430			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1431
1432	switch (ios->power_mode) {
1433	case MMC_POWER_OFF:
1434		if (!IS_ERR(mmc->supply.vmmc))
1435			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1436
1437		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1438			regulator_disable(mmc->supply.vqmmc);
1439			host->vqmmc_enabled = false;
1440		}
1441
1442		break;
1443	case MMC_POWER_UP:
1444		if (!IS_ERR(mmc->supply.vmmc))
1445			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1446
1447		/*
1448		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1449		 * and instead uses MCI_PWR_ON so apply whatever value is
1450		 * configured in the variant data.
1451		 */
1452		pwr |= variant->pwrreg_powerup;
1453
1454		break;
1455	case MMC_POWER_ON:
1456		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1457			ret = regulator_enable(mmc->supply.vqmmc);
1458			if (ret < 0)
1459				dev_err(mmc_dev(mmc),
1460					"failed to enable vqmmc regulator\n");
1461			else
1462				host->vqmmc_enabled = true;
1463		}
1464
1465		pwr |= MCI_PWR_ON;
1466		break;
1467	}
1468
1469	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1470		/*
1471		 * The ST Micro variant has some additional bits
1472		 * indicating signal direction for the signals in
1473		 * the SD/MMC bus and feedback-clock usage.
1474		 */
1475		pwr |= host->pwr_reg_add;
1476
1477		if (ios->bus_width == MMC_BUS_WIDTH_4)
1478			pwr &= ~MCI_ST_DATA74DIREN;
1479		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1480			pwr &= (~MCI_ST_DATA74DIREN &
1481				~MCI_ST_DATA31DIREN &
1482				~MCI_ST_DATA2DIREN);
1483	}
1484
1485	if (variant->opendrain) {
1486		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1487			pwr |= variant->opendrain;
1488	} else {
1489		/*
1490		 * If the variant cannot configure the pads by its own, then we
1491		 * expect the pinctrl to be able to do that for us
1492		 */
1493		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1494			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1495		else
1496			pinctrl_select_state(host->pinctrl, host->pins_default);
1497	}
1498
1499	/*
1500	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1501	 * gating the clock, the MCI_PWR_ON bit is cleared.
1502	 */
1503	if (!ios->clock && variant->pwrreg_clkgate)
1504		pwr &= ~MCI_PWR_ON;
1505
1506	if (host->variant->explicit_mclk_control &&
1507	    ios->clock != host->clock_cache) {
1508		ret = clk_set_rate(host->clk, ios->clock);
1509		if (ret < 0)
1510			dev_err(mmc_dev(host->mmc),
1511				"Error setting clock rate (%d)\n", ret);
1512		else
1513			host->mclk = clk_get_rate(host->clk);
1514	}
1515	host->clock_cache = ios->clock;
1516
1517	spin_lock_irqsave(&host->lock, flags);
1518
1519	mmci_set_clkreg(host, ios->clock);
1520	mmci_write_pwrreg(host, pwr);
 
 
 
 
 
 
 
 
 
 
1521	mmci_reg_delay(host);
1522
1523	spin_unlock_irqrestore(&host->lock, flags);
1524}
1525
1526static int mmci_get_cd(struct mmc_host *mmc)
1527{
1528	struct mmci_host *host = mmc_priv(mmc);
1529	struct mmci_platform_data *plat = host->plat;
1530	unsigned int status = mmc_gpio_get_cd(mmc);
1531
1532	if (status == -ENOSYS) {
1533		if (!plat->status)
1534			return 1; /* Assume always present */
1535
1536		status = plat->status(mmc_dev(host->mmc));
1537	}
1538	return status;
1539}
1540
1541static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1542{
1543	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544
1545	if (!IS_ERR(mmc->supply.vqmmc)) {
 
 
1546
1547		switch (ios->signal_voltage) {
1548		case MMC_SIGNAL_VOLTAGE_330:
1549			ret = regulator_set_voltage(mmc->supply.vqmmc,
1550						2700000, 3600000);
1551			break;
1552		case MMC_SIGNAL_VOLTAGE_180:
1553			ret = regulator_set_voltage(mmc->supply.vqmmc,
1554						1700000, 1950000);
1555			break;
1556		case MMC_SIGNAL_VOLTAGE_120:
1557			ret = regulator_set_voltage(mmc->supply.vqmmc,
1558						1100000, 1300000);
1559			break;
1560		}
1561
1562		if (ret)
1563			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
 
1564	}
 
 
 
 
 
 
1565
1566	return ret;
 
 
1567}
1568
1569static struct mmc_host_ops mmci_ops = {
1570	.request	= mmci_request,
1571	.pre_req	= mmci_pre_request,
1572	.post_req	= mmci_post_request,
1573	.set_ios	= mmci_set_ios,
1574	.get_ro		= mmc_gpio_get_ro,
1575	.get_cd		= mmci_get_cd,
1576	.start_signal_voltage_switch = mmci_sig_volt_switch,
1577};
1578
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1579static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1580{
1581	struct mmci_host *host = mmc_priv(mmc);
1582	int ret = mmc_of_parse(mmc);
1583
1584	if (ret)
1585		return ret;
1586
1587	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1588		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1589	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1590		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1591	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1592		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1593	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1594		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1595	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1596		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1597	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1598		host->pwr_reg_add |= MCI_ST_FBCLKEN;
 
 
 
 
 
 
1599
1600	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1601		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1602	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1603		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1604
1605	return 0;
1606}
1607
1608static int mmci_probe(struct amba_device *dev,
1609	const struct amba_id *id)
1610{
1611	struct mmci_platform_data *plat = dev->dev.platform_data;
1612	struct device_node *np = dev->dev.of_node;
1613	struct variant_data *variant = id->data;
1614	struct mmci_host *host;
1615	struct mmc_host *mmc;
1616	int ret;
1617
1618	/* Must have platform data or Device Tree. */
1619	if (!plat && !np) {
1620		dev_err(&dev->dev, "No plat data or DT found\n");
1621		return -EINVAL;
1622	}
1623
1624	if (!plat) {
1625		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1626		if (!plat)
1627			return -ENOMEM;
1628	}
1629
1630	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1631	if (!mmc)
1632		return -ENOMEM;
1633
 
 
 
 
 
1634	ret = mmci_of_parse(np, mmc);
1635	if (ret)
1636		goto host_free;
1637
1638	host = mmc_priv(mmc);
1639	host->mmc = mmc;
1640
1641	/*
1642	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1643	 * pins can be set accordingly using pinctrl
1644	 */
1645	if (!variant->opendrain) {
1646		host->pinctrl = devm_pinctrl_get(&dev->dev);
1647		if (IS_ERR(host->pinctrl)) {
1648			dev_err(&dev->dev, "failed to get pinctrl");
1649			ret = PTR_ERR(host->pinctrl);
1650			goto host_free;
1651		}
1652
1653		host->pins_default = pinctrl_lookup_state(host->pinctrl,
1654							  PINCTRL_STATE_DEFAULT);
1655		if (IS_ERR(host->pins_default)) {
1656			dev_err(mmc_dev(mmc), "Can't select default pins\n");
1657			ret = PTR_ERR(host->pins_default);
1658			goto host_free;
1659		}
1660
1661		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1662							    MMCI_PINCTRL_STATE_OPENDRAIN);
1663		if (IS_ERR(host->pins_opendrain)) {
1664			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1665			ret = PTR_ERR(host->pins_opendrain);
1666			goto host_free;
1667		}
1668	}
1669
1670	host->hw_designer = amba_manf(dev);
1671	host->hw_revision = amba_rev(dev);
1672	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1673	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1674
1675	host->clk = devm_clk_get(&dev->dev, NULL);
1676	if (IS_ERR(host->clk)) {
1677		ret = PTR_ERR(host->clk);
1678		goto host_free;
1679	}
1680
1681	ret = clk_prepare_enable(host->clk);
1682	if (ret)
1683		goto host_free;
1684
1685	if (variant->qcom_fifo)
1686		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1687	else
1688		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1689
1690	host->plat = plat;
1691	host->variant = variant;
1692	host->mclk = clk_get_rate(host->clk);
1693	/*
1694	 * According to the spec, mclk is max 100 MHz,
1695	 * so we try to adjust the clock down to this,
1696	 * (if possible).
1697	 */
1698	if (host->mclk > variant->f_max) {
1699		ret = clk_set_rate(host->clk, variant->f_max);
1700		if (ret < 0)
1701			goto clk_disable;
1702		host->mclk = clk_get_rate(host->clk);
1703		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1704			host->mclk);
1705	}
1706
1707	host->phybase = dev->res.start;
1708	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1709	if (IS_ERR(host->base)) {
1710		ret = PTR_ERR(host->base);
1711		goto clk_disable;
1712	}
1713
 
 
 
1714	/*
1715	 * The ARM and ST versions of the block have slightly different
1716	 * clock divider equations which means that the minimum divider
1717	 * differs too.
1718	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1719	 */
1720	if (variant->st_clkdiv)
1721		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
 
 
1722	else if (variant->explicit_mclk_control)
1723		mmc->f_min = clk_round_rate(host->clk, 100000);
1724	else
1725		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1726	/*
1727	 * If no maximum operating frequency is supplied, fall back to use
1728	 * the module parameter, which has a (low) default value in case it
1729	 * is not specified. Either value must not exceed the clock rate into
1730	 * the block, of course.
1731	 */
1732	if (mmc->f_max)
1733		mmc->f_max = variant->explicit_mclk_control ?
1734				min(variant->f_max, mmc->f_max) :
1735				min(host->mclk, mmc->f_max);
1736	else
1737		mmc->f_max = variant->explicit_mclk_control ?
1738				fmax : min(host->mclk, fmax);
1739
1740
1741	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1742
 
 
 
 
 
 
 
 
 
1743	/* Get regulators and the supported OCR mask */
1744	ret = mmc_regulator_get_supply(mmc);
1745	if (ret)
1746		goto clk_disable;
1747
1748	if (!mmc->ocr_avail)
1749		mmc->ocr_avail = plat->ocr_mask;
1750	else if (plat->ocr_mask)
1751		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1752
1753	/* DT takes precedence over platform data. */
1754	if (!np) {
1755		if (!plat->cd_invert)
1756			mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1757		mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1758	}
1759
1760	/* We support these capabilities. */
1761	mmc->caps |= MMC_CAP_CMD23;
1762
1763	/*
1764	 * Enable busy detection.
1765	 */
1766	if (variant->busy_detect) {
1767		mmci_ops.card_busy = mmci_card_busy;
1768		/*
1769		 * Not all variants have a flag to enable busy detection
1770		 * in the DPSM, but if they do, set it here.
1771		 */
1772		if (variant->busy_dpsm_flag)
1773			mmci_write_datactrlreg(host,
1774					       host->variant->busy_dpsm_flag);
1775		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1776		mmc->max_busy_timeout = 0;
1777	}
1778
1779	mmc->ops = &mmci_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1780
1781	/* We support these PM capabilities. */
1782	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1783
1784	/*
1785	 * We can do SGIO
1786	 */
1787	mmc->max_segs = NR_SG;
1788
1789	/*
1790	 * Since only a certain number of bits are valid in the data length
1791	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1792	 * single request.
1793	 */
1794	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1795
1796	/*
1797	 * Set the maximum segment size.  Since we aren't doing DMA
1798	 * (yet) we are only limited by the data length register.
1799	 */
1800	mmc->max_seg_size = mmc->max_req_size;
1801
1802	/*
1803	 * Block size can be up to 2048 bytes, but must be a power of two.
1804	 */
1805	mmc->max_blk_size = 1 << 11;
1806
1807	/*
1808	 * Limit the number of blocks transferred so that we don't overflow
1809	 * the maximum request size.
1810	 */
1811	mmc->max_blk_count = mmc->max_req_size >> 11;
1812
1813	spin_lock_init(&host->lock);
1814
1815	writel(0, host->base + MMCIMASK0);
1816
1817	if (variant->mmcimask1)
1818		writel(0, host->base + MMCIMASK1);
1819
1820	writel(0xfff, host->base + MMCICLEAR);
1821
1822	/*
1823	 * If:
1824	 * - not using DT but using a descriptor table, or
1825	 * - using a table of descriptors ALONGSIDE DT, or
1826	 * look up these descriptors named "cd" and "wp" right here, fail
1827	 * silently of these do not exist and proceed to try platform data
1828	 */
1829	if (!np) {
1830		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1831		if (ret < 0) {
1832			if (ret == -EPROBE_DEFER)
1833				goto clk_disable;
1834			else if (gpio_is_valid(plat->gpio_cd)) {
1835				ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1836				if (ret)
1837					goto clk_disable;
1838			}
1839		}
1840
1841		ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1842		if (ret < 0) {
1843			if (ret == -EPROBE_DEFER)
1844				goto clk_disable;
1845			else if (gpio_is_valid(plat->gpio_wp)) {
1846				ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1847				if (ret)
1848					goto clk_disable;
1849			}
1850		}
1851	}
1852
1853	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1854			DRIVER_NAME " (cmd)", host);
 
1855	if (ret)
1856		goto clk_disable;
1857
1858	if (!dev->irq[1])
1859		host->singleirq = true;
1860	else {
1861		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1862				IRQF_SHARED, DRIVER_NAME " (pio)", host);
1863		if (ret)
1864			goto clk_disable;
1865	}
1866
1867	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
 
 
 
 
1868
1869	amba_set_drvdata(dev, mmc);
1870
1871	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1872		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1873		 amba_rev(dev), (unsigned long long)dev->res.start,
1874		 dev->irq[0], dev->irq[1]);
1875
1876	mmci_dma_setup(host);
1877
1878	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1879	pm_runtime_use_autosuspend(&dev->dev);
1880
1881	mmc_add_host(mmc);
 
 
1882
1883	pm_runtime_put(&dev->dev);
1884	return 0;
1885
1886 clk_disable:
1887	clk_disable_unprepare(host->clk);
1888 host_free:
1889	mmc_free_host(mmc);
1890	return ret;
1891}
1892
1893static int mmci_remove(struct amba_device *dev)
1894{
1895	struct mmc_host *mmc = amba_get_drvdata(dev);
1896
1897	if (mmc) {
1898		struct mmci_host *host = mmc_priv(mmc);
1899		struct variant_data *variant = host->variant;
1900
1901		/*
1902		 * Undo pm_runtime_put() in probe.  We use the _sync
1903		 * version here so that we can access the primecell.
1904		 */
1905		pm_runtime_get_sync(&dev->dev);
1906
1907		mmc_remove_host(mmc);
1908
1909		writel(0, host->base + MMCIMASK0);
1910
1911		if (variant->mmcimask1)
1912			writel(0, host->base + MMCIMASK1);
1913
1914		writel(0, host->base + MMCICOMMAND);
1915		writel(0, host->base + MMCIDATACTRL);
1916
1917		mmci_dma_release(host);
1918		clk_disable_unprepare(host->clk);
1919		mmc_free_host(mmc);
1920	}
1921
1922	return 0;
1923}
1924
1925#ifdef CONFIG_PM
1926static void mmci_save(struct mmci_host *host)
1927{
1928	unsigned long flags;
1929
1930	spin_lock_irqsave(&host->lock, flags);
1931
1932	writel(0, host->base + MMCIMASK0);
1933	if (host->variant->pwrreg_nopower) {
1934		writel(0, host->base + MMCIDATACTRL);
1935		writel(0, host->base + MMCIPOWER);
1936		writel(0, host->base + MMCICLOCK);
1937	}
1938	mmci_reg_delay(host);
1939
1940	spin_unlock_irqrestore(&host->lock, flags);
1941}
1942
1943static void mmci_restore(struct mmci_host *host)
1944{
1945	unsigned long flags;
1946
1947	spin_lock_irqsave(&host->lock, flags);
1948
1949	if (host->variant->pwrreg_nopower) {
1950		writel(host->clk_reg, host->base + MMCICLOCK);
1951		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1952		writel(host->pwr_reg, host->base + MMCIPOWER);
1953	}
1954	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
 
1955	mmci_reg_delay(host);
1956
1957	spin_unlock_irqrestore(&host->lock, flags);
1958}
1959
1960static int mmci_runtime_suspend(struct device *dev)
1961{
1962	struct amba_device *adev = to_amba_device(dev);
1963	struct mmc_host *mmc = amba_get_drvdata(adev);
1964
1965	if (mmc) {
1966		struct mmci_host *host = mmc_priv(mmc);
1967		pinctrl_pm_select_sleep_state(dev);
1968		mmci_save(host);
1969		clk_disable_unprepare(host->clk);
1970	}
1971
1972	return 0;
1973}
1974
1975static int mmci_runtime_resume(struct device *dev)
1976{
1977	struct amba_device *adev = to_amba_device(dev);
1978	struct mmc_host *mmc = amba_get_drvdata(adev);
1979
1980	if (mmc) {
1981		struct mmci_host *host = mmc_priv(mmc);
1982		clk_prepare_enable(host->clk);
1983		mmci_restore(host);
1984		pinctrl_pm_select_default_state(dev);
1985	}
1986
1987	return 0;
1988}
1989#endif
1990
1991static const struct dev_pm_ops mmci_dev_pm_ops = {
1992	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1993				pm_runtime_force_resume)
1994	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1995};
1996
1997static const struct amba_id mmci_ids[] = {
1998	{
1999		.id	= 0x00041180,
2000		.mask	= 0xff0fffff,
2001		.data	= &variant_arm,
2002	},
2003	{
2004		.id	= 0x01041180,
2005		.mask	= 0xff0fffff,
2006		.data	= &variant_arm_extended_fifo,
2007	},
2008	{
2009		.id	= 0x02041180,
2010		.mask	= 0xff0fffff,
2011		.data	= &variant_arm_extended_fifo_hwfc,
2012	},
2013	{
2014		.id	= 0x00041181,
2015		.mask	= 0x000fffff,
2016		.data	= &variant_arm,
2017	},
2018	/* ST Micro variants */
2019	{
2020		.id     = 0x00180180,
2021		.mask   = 0x00ffffff,
2022		.data	= &variant_u300,
2023	},
2024	{
2025		.id     = 0x10180180,
2026		.mask   = 0xf0ffffff,
2027		.data	= &variant_nomadik,
2028	},
2029	{
2030		.id     = 0x00280180,
2031		.mask   = 0x00ffffff,
2032		.data	= &variant_nomadik,
2033	},
2034	{
2035		.id     = 0x00480180,
2036		.mask   = 0xf0ffffff,
2037		.data	= &variant_ux500,
2038	},
2039	{
2040		.id     = 0x10480180,
2041		.mask   = 0xf0ffffff,
2042		.data	= &variant_ux500v2,
2043	},
2044	{
2045		.id     = 0x00880180,
2046		.mask   = 0x00ffffff,
2047		.data	= &variant_stm32,
2048	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2049	/* Qualcomm variants */
2050	{
2051		.id     = 0x00051180,
2052		.mask	= 0x000fffff,
2053		.data	= &variant_qcom,
2054	},
2055	{ 0, 0 },
2056};
2057
2058MODULE_DEVICE_TABLE(amba, mmci_ids);
2059
2060static struct amba_driver mmci_driver = {
2061	.drv		= {
2062		.name	= DRIVER_NAME,
2063		.pm	= &mmci_dev_pm_ops,
 
2064	},
2065	.probe		= mmci_probe,
2066	.remove		= mmci_remove,
2067	.id_table	= mmci_ids,
2068};
2069
2070module_amba_driver(mmci_driver);
2071
2072module_param(fmax, uint, 0444);
2073
2074MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2075MODULE_LICENSE("GPL");