Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
   5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   8 * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
   9 *
  10 * This software is available to you under a choice of one of two
  11 * licenses.  You may choose to be licensed under the terms of the GNU
  12 * General Public License (GPL) Version 2, available from the file
  13 * COPYING in the main directory of this source tree, or the
  14 * OpenIB.org BSD license below:
  15 *
  16 *     Redistribution and use in source and binary forms, with or
  17 *     without modification, are permitted provided that the following
  18 *     conditions are met:
  19 *
  20 *      - Redistributions of source code must retain the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer.
  23 *
  24 *      - Redistributions in binary form must reproduce the above
  25 *        copyright notice, this list of conditions and the following
  26 *        disclaimer in the documentation and/or other materials
  27 *        provided with the distribution.
  28 *
  29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36 * SOFTWARE.
  37 */
  38
  39#include <linux/errno.h>
  40#include <linux/err.h>
  41#include <linux/export.h>
  42#include <linux/string.h>
  43#include <linux/slab.h>
  44#include <linux/in.h>
  45#include <linux/in6.h>
  46#include <net/addrconf.h>
  47#include <linux/security.h>
  48
  49#include <rdma/ib_verbs.h>
  50#include <rdma/ib_cache.h>
  51#include <rdma/ib_addr.h>
  52#include <rdma/rw.h>
  53#include <rdma/lag.h>
  54
  55#include "core_priv.h"
  56#include <trace/events/rdma_core.h>
  57
  58static int ib_resolve_eth_dmac(struct ib_device *device,
  59			       struct rdma_ah_attr *ah_attr);
  60
  61static const char * const ib_events[] = {
  62	[IB_EVENT_CQ_ERR]		= "CQ error",
  63	[IB_EVENT_QP_FATAL]		= "QP fatal error",
  64	[IB_EVENT_QP_REQ_ERR]		= "QP request error",
  65	[IB_EVENT_QP_ACCESS_ERR]	= "QP access error",
  66	[IB_EVENT_COMM_EST]		= "communication established",
  67	[IB_EVENT_SQ_DRAINED]		= "send queue drained",
  68	[IB_EVENT_PATH_MIG]		= "path migration successful",
  69	[IB_EVENT_PATH_MIG_ERR]		= "path migration error",
  70	[IB_EVENT_DEVICE_FATAL]		= "device fatal error",
  71	[IB_EVENT_PORT_ACTIVE]		= "port active",
  72	[IB_EVENT_PORT_ERR]		= "port error",
  73	[IB_EVENT_LID_CHANGE]		= "LID change",
  74	[IB_EVENT_PKEY_CHANGE]		= "P_key change",
  75	[IB_EVENT_SM_CHANGE]		= "SM change",
  76	[IB_EVENT_SRQ_ERR]		= "SRQ error",
  77	[IB_EVENT_SRQ_LIMIT_REACHED]	= "SRQ limit reached",
  78	[IB_EVENT_QP_LAST_WQE_REACHED]	= "last WQE reached",
  79	[IB_EVENT_CLIENT_REREGISTER]	= "client reregister",
  80	[IB_EVENT_GID_CHANGE]		= "GID changed",
  81};
  82
  83const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
  84{
  85	size_t index = event;
  86
  87	return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
  88			ib_events[index] : "unrecognized event";
  89}
  90EXPORT_SYMBOL(ib_event_msg);
  91
  92static const char * const wc_statuses[] = {
  93	[IB_WC_SUCCESS]			= "success",
  94	[IB_WC_LOC_LEN_ERR]		= "local length error",
  95	[IB_WC_LOC_QP_OP_ERR]		= "local QP operation error",
  96	[IB_WC_LOC_EEC_OP_ERR]		= "local EE context operation error",
  97	[IB_WC_LOC_PROT_ERR]		= "local protection error",
  98	[IB_WC_WR_FLUSH_ERR]		= "WR flushed",
  99	[IB_WC_MW_BIND_ERR]		= "memory bind operation error",
 100	[IB_WC_BAD_RESP_ERR]		= "bad response error",
 101	[IB_WC_LOC_ACCESS_ERR]		= "local access error",
 102	[IB_WC_REM_INV_REQ_ERR]		= "remote invalid request error",
 103	[IB_WC_REM_ACCESS_ERR]		= "remote access error",
 104	[IB_WC_REM_OP_ERR]		= "remote operation error",
 105	[IB_WC_RETRY_EXC_ERR]		= "transport retry counter exceeded",
 106	[IB_WC_RNR_RETRY_EXC_ERR]	= "RNR retry counter exceeded",
 107	[IB_WC_LOC_RDD_VIOL_ERR]	= "local RDD violation error",
 108	[IB_WC_REM_INV_RD_REQ_ERR]	= "remote invalid RD request",
 109	[IB_WC_REM_ABORT_ERR]		= "operation aborted",
 110	[IB_WC_INV_EECN_ERR]		= "invalid EE context number",
 111	[IB_WC_INV_EEC_STATE_ERR]	= "invalid EE context state",
 112	[IB_WC_FATAL_ERR]		= "fatal error",
 113	[IB_WC_RESP_TIMEOUT_ERR]	= "response timeout error",
 114	[IB_WC_GENERAL_ERR]		= "general error",
 115};
 116
 117const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
 118{
 119	size_t index = status;
 120
 121	return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
 122			wc_statuses[index] : "unrecognized status";
 123}
 124EXPORT_SYMBOL(ib_wc_status_msg);
 125
 126__attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
 127{
 128	switch (rate) {
 129	case IB_RATE_2_5_GBPS: return   1;
 130	case IB_RATE_5_GBPS:   return   2;
 131	case IB_RATE_10_GBPS:  return   4;
 132	case IB_RATE_20_GBPS:  return   8;
 133	case IB_RATE_30_GBPS:  return  12;
 134	case IB_RATE_40_GBPS:  return  16;
 135	case IB_RATE_60_GBPS:  return  24;
 136	case IB_RATE_80_GBPS:  return  32;
 137	case IB_RATE_120_GBPS: return  48;
 138	case IB_RATE_14_GBPS:  return   6;
 139	case IB_RATE_56_GBPS:  return  22;
 140	case IB_RATE_112_GBPS: return  45;
 141	case IB_RATE_168_GBPS: return  67;
 142	case IB_RATE_25_GBPS:  return  10;
 143	case IB_RATE_100_GBPS: return  40;
 144	case IB_RATE_200_GBPS: return  80;
 145	case IB_RATE_300_GBPS: return 120;
 146	case IB_RATE_28_GBPS:  return  11;
 147	case IB_RATE_50_GBPS:  return  20;
 148	case IB_RATE_400_GBPS: return 160;
 149	case IB_RATE_600_GBPS: return 240;
 150	case IB_RATE_800_GBPS: return 320;
 151	default:	       return  -1;
 152	}
 153}
 154EXPORT_SYMBOL(ib_rate_to_mult);
 155
 156__attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
 157{
 158	switch (mult) {
 159	case 1:   return IB_RATE_2_5_GBPS;
 160	case 2:   return IB_RATE_5_GBPS;
 161	case 4:   return IB_RATE_10_GBPS;
 162	case 8:   return IB_RATE_20_GBPS;
 163	case 12:  return IB_RATE_30_GBPS;
 164	case 16:  return IB_RATE_40_GBPS;
 165	case 24:  return IB_RATE_60_GBPS;
 166	case 32:  return IB_RATE_80_GBPS;
 167	case 48:  return IB_RATE_120_GBPS;
 168	case 6:   return IB_RATE_14_GBPS;
 169	case 22:  return IB_RATE_56_GBPS;
 170	case 45:  return IB_RATE_112_GBPS;
 171	case 67:  return IB_RATE_168_GBPS;
 172	case 10:  return IB_RATE_25_GBPS;
 173	case 40:  return IB_RATE_100_GBPS;
 174	case 80:  return IB_RATE_200_GBPS;
 175	case 120: return IB_RATE_300_GBPS;
 176	case 11:  return IB_RATE_28_GBPS;
 177	case 20:  return IB_RATE_50_GBPS;
 178	case 160: return IB_RATE_400_GBPS;
 179	case 240: return IB_RATE_600_GBPS;
 180	case 320: return IB_RATE_800_GBPS;
 181	default:  return IB_RATE_PORT_CURRENT;
 182	}
 183}
 184EXPORT_SYMBOL(mult_to_ib_rate);
 185
 186__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
 187{
 188	switch (rate) {
 189	case IB_RATE_2_5_GBPS: return 2500;
 190	case IB_RATE_5_GBPS:   return 5000;
 191	case IB_RATE_10_GBPS:  return 10000;
 192	case IB_RATE_20_GBPS:  return 20000;
 193	case IB_RATE_30_GBPS:  return 30000;
 194	case IB_RATE_40_GBPS:  return 40000;
 195	case IB_RATE_60_GBPS:  return 60000;
 196	case IB_RATE_80_GBPS:  return 80000;
 197	case IB_RATE_120_GBPS: return 120000;
 198	case IB_RATE_14_GBPS:  return 14062;
 199	case IB_RATE_56_GBPS:  return 56250;
 200	case IB_RATE_112_GBPS: return 112500;
 201	case IB_RATE_168_GBPS: return 168750;
 202	case IB_RATE_25_GBPS:  return 25781;
 203	case IB_RATE_100_GBPS: return 103125;
 204	case IB_RATE_200_GBPS: return 206250;
 205	case IB_RATE_300_GBPS: return 309375;
 206	case IB_RATE_28_GBPS:  return 28125;
 207	case IB_RATE_50_GBPS:  return 53125;
 208	case IB_RATE_400_GBPS: return 425000;
 209	case IB_RATE_600_GBPS: return 637500;
 210	case IB_RATE_800_GBPS: return 850000;
 211	default:	       return -1;
 212	}
 213}
 214EXPORT_SYMBOL(ib_rate_to_mbps);
 215
 216__attribute_const__ enum rdma_transport_type
 217rdma_node_get_transport(unsigned int node_type)
 218{
 219
 220	if (node_type == RDMA_NODE_USNIC)
 221		return RDMA_TRANSPORT_USNIC;
 222	if (node_type == RDMA_NODE_USNIC_UDP)
 223		return RDMA_TRANSPORT_USNIC_UDP;
 224	if (node_type == RDMA_NODE_RNIC)
 225		return RDMA_TRANSPORT_IWARP;
 226	if (node_type == RDMA_NODE_UNSPECIFIED)
 227		return RDMA_TRANSPORT_UNSPECIFIED;
 228
 229	return RDMA_TRANSPORT_IB;
 230}
 231EXPORT_SYMBOL(rdma_node_get_transport);
 232
 233enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
 234					      u32 port_num)
 235{
 236	enum rdma_transport_type lt;
 237	if (device->ops.get_link_layer)
 238		return device->ops.get_link_layer(device, port_num);
 239
 240	lt = rdma_node_get_transport(device->node_type);
 241	if (lt == RDMA_TRANSPORT_IB)
 242		return IB_LINK_LAYER_INFINIBAND;
 243
 244	return IB_LINK_LAYER_ETHERNET;
 245}
 246EXPORT_SYMBOL(rdma_port_get_link_layer);
 247
 248/* Protection domains */
 249
 250/**
 251 * __ib_alloc_pd - Allocates an unused protection domain.
 252 * @device: The device on which to allocate the protection domain.
 253 * @flags: protection domain flags
 254 * @caller: caller's build-time module name
 255 *
 256 * A protection domain object provides an association between QPs, shared
 257 * receive queues, address handles, memory regions, and memory windows.
 258 *
 259 * Every PD has a local_dma_lkey which can be used as the lkey value for local
 260 * memory operations.
 261 */
 262struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
 263		const char *caller)
 264{
 265	struct ib_pd *pd;
 266	int mr_access_flags = 0;
 267	int ret;
 268
 269	pd = rdma_zalloc_drv_obj(device, ib_pd);
 270	if (!pd)
 271		return ERR_PTR(-ENOMEM);
 272
 273	pd->device = device;
 
 
 
 274	pd->flags = flags;
 275
 276	rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
 277	rdma_restrack_set_name(&pd->res, caller);
 278
 279	ret = device->ops.alloc_pd(pd, NULL);
 280	if (ret) {
 281		rdma_restrack_put(&pd->res);
 282		kfree(pd);
 283		return ERR_PTR(ret);
 284	}
 285	rdma_restrack_add(&pd->res);
 286
 287	if (device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY)
 288		pd->local_dma_lkey = device->local_dma_lkey;
 289	else
 290		mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
 291
 292	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
 293		pr_warn("%s: enabling unsafe global rkey\n", caller);
 294		mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
 295	}
 296
 297	if (mr_access_flags) {
 298		struct ib_mr *mr;
 299
 300		mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
 301		if (IS_ERR(mr)) {
 302			ib_dealloc_pd(pd);
 303			return ERR_CAST(mr);
 304		}
 305
 306		mr->device	= pd->device;
 307		mr->pd		= pd;
 308		mr->type        = IB_MR_TYPE_DMA;
 309		mr->uobject	= NULL;
 310		mr->need_inval	= false;
 311
 312		pd->__internal_mr = mr;
 313
 314		if (!(device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY))
 315			pd->local_dma_lkey = pd->__internal_mr->lkey;
 316
 317		if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
 318			pd->unsafe_global_rkey = pd->__internal_mr->rkey;
 319	}
 320
 321	return pd;
 322}
 323EXPORT_SYMBOL(__ib_alloc_pd);
 324
 325/**
 326 * ib_dealloc_pd_user - Deallocates a protection domain.
 327 * @pd: The protection domain to deallocate.
 328 * @udata: Valid user data or NULL for kernel object
 329 *
 330 * It is an error to call this function while any resources in the pd still
 331 * exist.  The caller is responsible to synchronously destroy them and
 332 * guarantee no new allocations will happen.
 333 */
 334int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
 335{
 336	int ret;
 337
 338	if (pd->__internal_mr) {
 339		ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
 340		WARN_ON(ret);
 341		pd->__internal_mr = NULL;
 342	}
 343
 344	ret = pd->device->ops.dealloc_pd(pd, udata);
 345	if (ret)
 346		return ret;
 347
 348	rdma_restrack_del(&pd->res);
 
 349	kfree(pd);
 350	return ret;
 351}
 352EXPORT_SYMBOL(ib_dealloc_pd_user);
 353
 354/* Address handles */
 355
 356/**
 357 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
 358 * @dest:       Pointer to destination ah_attr. Contents of the destination
 359 *              pointer is assumed to be invalid and attribute are overwritten.
 360 * @src:        Pointer to source ah_attr.
 361 */
 362void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
 363		       const struct rdma_ah_attr *src)
 364{
 365	*dest = *src;
 366	if (dest->grh.sgid_attr)
 367		rdma_hold_gid_attr(dest->grh.sgid_attr);
 368}
 369EXPORT_SYMBOL(rdma_copy_ah_attr);
 370
 371/**
 372 * rdma_replace_ah_attr - Replace valid ah_attr with new one.
 373 * @old:        Pointer to existing ah_attr which needs to be replaced.
 374 *              old is assumed to be valid or zero'd
 375 * @new:        Pointer to the new ah_attr.
 376 *
 377 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
 378 * old the ah_attr is valid; after that it copies the new attribute and holds
 379 * the reference to the replaced ah_attr.
 380 */
 381void rdma_replace_ah_attr(struct rdma_ah_attr *old,
 382			  const struct rdma_ah_attr *new)
 383{
 384	rdma_destroy_ah_attr(old);
 385	*old = *new;
 386	if (old->grh.sgid_attr)
 387		rdma_hold_gid_attr(old->grh.sgid_attr);
 388}
 389EXPORT_SYMBOL(rdma_replace_ah_attr);
 390
 391/**
 392 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
 393 * @dest:       Pointer to destination ah_attr to copy to.
 394 *              dest is assumed to be valid or zero'd
 395 * @src:        Pointer to the new ah_attr.
 396 *
 397 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
 398 * if it is valid. This also transfers ownership of internal references from
 399 * src to dest, making src invalid in the process. No new reference of the src
 400 * ah_attr is taken.
 401 */
 402void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
 403{
 404	rdma_destroy_ah_attr(dest);
 405	*dest = *src;
 406	src->grh.sgid_attr = NULL;
 407}
 408EXPORT_SYMBOL(rdma_move_ah_attr);
 409
 410/*
 411 * Validate that the rdma_ah_attr is valid for the device before passing it
 412 * off to the driver.
 413 */
 414static int rdma_check_ah_attr(struct ib_device *device,
 415			      struct rdma_ah_attr *ah_attr)
 416{
 417	if (!rdma_is_port_valid(device, ah_attr->port_num))
 418		return -EINVAL;
 419
 420	if ((rdma_is_grh_required(device, ah_attr->port_num) ||
 421	     ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
 422	    !(ah_attr->ah_flags & IB_AH_GRH))
 423		return -EINVAL;
 424
 425	if (ah_attr->grh.sgid_attr) {
 426		/*
 427		 * Make sure the passed sgid_attr is consistent with the
 428		 * parameters
 429		 */
 430		if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
 431		    ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
 432			return -EINVAL;
 433	}
 434	return 0;
 435}
 436
 437/*
 438 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
 439 * On success the caller is responsible to call rdma_unfill_sgid_attr().
 440 */
 441static int rdma_fill_sgid_attr(struct ib_device *device,
 442			       struct rdma_ah_attr *ah_attr,
 443			       const struct ib_gid_attr **old_sgid_attr)
 444{
 445	const struct ib_gid_attr *sgid_attr;
 446	struct ib_global_route *grh;
 447	int ret;
 448
 449	*old_sgid_attr = ah_attr->grh.sgid_attr;
 450
 451	ret = rdma_check_ah_attr(device, ah_attr);
 452	if (ret)
 453		return ret;
 454
 455	if (!(ah_attr->ah_flags & IB_AH_GRH))
 456		return 0;
 457
 458	grh = rdma_ah_retrieve_grh(ah_attr);
 459	if (grh->sgid_attr)
 460		return 0;
 461
 462	sgid_attr =
 463		rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
 464	if (IS_ERR(sgid_attr))
 465		return PTR_ERR(sgid_attr);
 466
 467	/* Move ownerhip of the kref into the ah_attr */
 468	grh->sgid_attr = sgid_attr;
 469	return 0;
 470}
 471
 472static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
 473				  const struct ib_gid_attr *old_sgid_attr)
 474{
 475	/*
 476	 * Fill didn't change anything, the caller retains ownership of
 477	 * whatever it passed
 478	 */
 479	if (ah_attr->grh.sgid_attr == old_sgid_attr)
 480		return;
 481
 482	/*
 483	 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
 484	 * doesn't see any change in the rdma_ah_attr. If we get here
 485	 * old_sgid_attr is NULL.
 486	 */
 487	rdma_destroy_ah_attr(ah_attr);
 488}
 489
 490static const struct ib_gid_attr *
 491rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
 492		      const struct ib_gid_attr *old_attr)
 493{
 494	if (old_attr)
 495		rdma_put_gid_attr(old_attr);
 496	if (ah_attr->ah_flags & IB_AH_GRH) {
 497		rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
 498		return ah_attr->grh.sgid_attr;
 499	}
 500	return NULL;
 501}
 502
 503static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
 504				     struct rdma_ah_attr *ah_attr,
 505				     u32 flags,
 506				     struct ib_udata *udata,
 507				     struct net_device *xmit_slave)
 508{
 509	struct rdma_ah_init_attr init_attr = {};
 510	struct ib_device *device = pd->device;
 511	struct ib_ah *ah;
 512	int ret;
 513
 514	might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
 515
 516	if (!udata && !device->ops.create_ah)
 517		return ERR_PTR(-EOPNOTSUPP);
 518
 519	ah = rdma_zalloc_drv_obj_gfp(
 520		device, ib_ah,
 521		(flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
 522	if (!ah)
 523		return ERR_PTR(-ENOMEM);
 524
 525	ah->device = device;
 526	ah->pd = pd;
 527	ah->type = ah_attr->type;
 528	ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
 529	init_attr.ah_attr = ah_attr;
 530	init_attr.flags = flags;
 531	init_attr.xmit_slave = xmit_slave;
 532
 533	if (udata)
 534		ret = device->ops.create_user_ah(ah, &init_attr, udata);
 535	else
 536		ret = device->ops.create_ah(ah, &init_attr, NULL);
 537	if (ret) {
 538		if (ah->sgid_attr)
 539			rdma_put_gid_attr(ah->sgid_attr);
 540		kfree(ah);
 541		return ERR_PTR(ret);
 542	}
 543
 544	atomic_inc(&pd->usecnt);
 545	return ah;
 546}
 547
 548/**
 549 * rdma_create_ah - Creates an address handle for the
 550 * given address vector.
 551 * @pd: The protection domain associated with the address handle.
 552 * @ah_attr: The attributes of the address vector.
 553 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
 554 *
 555 * It returns 0 on success and returns appropriate error code on error.
 556 * The address handle is used to reference a local or global destination
 557 * in all UD QP post sends.
 558 */
 559struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
 560			     u32 flags)
 561{
 562	const struct ib_gid_attr *old_sgid_attr;
 563	struct net_device *slave;
 564	struct ib_ah *ah;
 565	int ret;
 566
 567	ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
 568	if (ret)
 569		return ERR_PTR(ret);
 570	slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
 571					   (flags & RDMA_CREATE_AH_SLEEPABLE) ?
 572					   GFP_KERNEL : GFP_ATOMIC);
 573	if (IS_ERR(slave)) {
 574		rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 575		return (void *)slave;
 576	}
 577	ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
 578	rdma_lag_put_ah_roce_slave(slave);
 579	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 580	return ah;
 581}
 582EXPORT_SYMBOL(rdma_create_ah);
 583
 584/**
 585 * rdma_create_user_ah - Creates an address handle for the
 586 * given address vector.
 587 * It resolves destination mac address for ah attribute of RoCE type.
 588 * @pd: The protection domain associated with the address handle.
 589 * @ah_attr: The attributes of the address vector.
 590 * @udata: pointer to user's input output buffer information need by
 591 *         provider driver.
 592 *
 593 * It returns 0 on success and returns appropriate error code on error.
 594 * The address handle is used to reference a local or global destination
 595 * in all UD QP post sends.
 596 */
 597struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
 598				  struct rdma_ah_attr *ah_attr,
 599				  struct ib_udata *udata)
 600{
 601	const struct ib_gid_attr *old_sgid_attr;
 602	struct ib_ah *ah;
 603	int err;
 604
 605	err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
 606	if (err)
 607		return ERR_PTR(err);
 608
 609	if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
 610		err = ib_resolve_eth_dmac(pd->device, ah_attr);
 611		if (err) {
 612			ah = ERR_PTR(err);
 613			goto out;
 614		}
 615	}
 616
 617	ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
 618			     udata, NULL);
 619
 620out:
 621	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 622	return ah;
 623}
 624EXPORT_SYMBOL(rdma_create_user_ah);
 625
 626int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
 627{
 628	const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
 629	struct iphdr ip4h_checked;
 630	const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
 631
 632	/* If it's IPv6, the version must be 6, otherwise, the first
 633	 * 20 bytes (before the IPv4 header) are garbled.
 634	 */
 635	if (ip6h->version != 6)
 636		return (ip4h->version == 4) ? 4 : 0;
 637	/* version may be 6 or 4 because the first 20 bytes could be garbled */
 638
 639	/* RoCE v2 requires no options, thus header length
 640	 * must be 5 words
 641	 */
 642	if (ip4h->ihl != 5)
 643		return 6;
 644
 645	/* Verify checksum.
 646	 * We can't write on scattered buffers so we need to copy to
 647	 * temp buffer.
 648	 */
 649	memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
 650	ip4h_checked.check = 0;
 651	ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
 652	/* if IPv4 header checksum is OK, believe it */
 653	if (ip4h->check == ip4h_checked.check)
 654		return 4;
 655	return 6;
 656}
 657EXPORT_SYMBOL(ib_get_rdma_header_version);
 658
 659static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
 660						     u32 port_num,
 661						     const struct ib_grh *grh)
 662{
 663	int grh_version;
 664
 665	if (rdma_protocol_ib(device, port_num))
 666		return RDMA_NETWORK_IB;
 667
 668	grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
 669
 670	if (grh_version == 4)
 671		return RDMA_NETWORK_IPV4;
 672
 673	if (grh->next_hdr == IPPROTO_UDP)
 674		return RDMA_NETWORK_IPV6;
 675
 676	return RDMA_NETWORK_ROCE_V1;
 677}
 678
 679struct find_gid_index_context {
 680	u16 vlan_id;
 681	enum ib_gid_type gid_type;
 682};
 683
 684static bool find_gid_index(const union ib_gid *gid,
 685			   const struct ib_gid_attr *gid_attr,
 686			   void *context)
 687{
 688	struct find_gid_index_context *ctx = context;
 689	u16 vlan_id = 0xffff;
 690	int ret;
 691
 692	if (ctx->gid_type != gid_attr->gid_type)
 693		return false;
 694
 695	ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
 696	if (ret)
 697		return false;
 698
 699	return ctx->vlan_id == vlan_id;
 700}
 701
 702static const struct ib_gid_attr *
 703get_sgid_attr_from_eth(struct ib_device *device, u32 port_num,
 704		       u16 vlan_id, const union ib_gid *sgid,
 705		       enum ib_gid_type gid_type)
 706{
 707	struct find_gid_index_context context = {.vlan_id = vlan_id,
 708						 .gid_type = gid_type};
 709
 710	return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
 711				       &context);
 712}
 713
 714int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
 715			      enum rdma_network_type net_type,
 716			      union ib_gid *sgid, union ib_gid *dgid)
 717{
 718	struct sockaddr_in  src_in;
 719	struct sockaddr_in  dst_in;
 720	__be32 src_saddr, dst_saddr;
 721
 722	if (!sgid || !dgid)
 723		return -EINVAL;
 724
 725	if (net_type == RDMA_NETWORK_IPV4) {
 726		memcpy(&src_in.sin_addr.s_addr,
 727		       &hdr->roce4grh.saddr, 4);
 728		memcpy(&dst_in.sin_addr.s_addr,
 729		       &hdr->roce4grh.daddr, 4);
 730		src_saddr = src_in.sin_addr.s_addr;
 731		dst_saddr = dst_in.sin_addr.s_addr;
 732		ipv6_addr_set_v4mapped(src_saddr,
 733				       (struct in6_addr *)sgid);
 734		ipv6_addr_set_v4mapped(dst_saddr,
 735				       (struct in6_addr *)dgid);
 736		return 0;
 737	} else if (net_type == RDMA_NETWORK_IPV6 ||
 738		   net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) {
 739		*dgid = hdr->ibgrh.dgid;
 740		*sgid = hdr->ibgrh.sgid;
 741		return 0;
 742	} else {
 743		return -EINVAL;
 744	}
 745}
 746EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
 747
 748/* Resolve destination mac address and hop limit for unicast destination
 749 * GID entry, considering the source GID entry as well.
 750 * ah_attribute must have valid port_num, sgid_index.
 751 */
 752static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
 753				       struct rdma_ah_attr *ah_attr)
 754{
 755	struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
 756	const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
 757	int hop_limit = 0xff;
 758	int ret = 0;
 759
 760	/* If destination is link local and source GID is RoCEv1,
 761	 * IP stack is not used.
 762	 */
 763	if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
 764	    sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
 765		rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
 766				ah_attr->roce.dmac);
 767		return ret;
 768	}
 769
 770	ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
 771					   ah_attr->roce.dmac,
 772					   sgid_attr, &hop_limit);
 773
 774	grh->hop_limit = hop_limit;
 775	return ret;
 776}
 777
 778/*
 779 * This function initializes address handle attributes from the incoming packet.
 780 * Incoming packet has dgid of the receiver node on which this code is
 781 * getting executed and, sgid contains the GID of the sender.
 782 *
 783 * When resolving mac address of destination, the arrived dgid is used
 784 * as sgid and, sgid is used as dgid because sgid contains destinations
 785 * GID whom to respond to.
 786 *
 787 * On success the caller is responsible to call rdma_destroy_ah_attr on the
 788 * attr.
 789 */
 790int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
 791			    const struct ib_wc *wc, const struct ib_grh *grh,
 792			    struct rdma_ah_attr *ah_attr)
 793{
 794	u32 flow_class;
 795	int ret;
 796	enum rdma_network_type net_type = RDMA_NETWORK_IB;
 797	enum ib_gid_type gid_type = IB_GID_TYPE_IB;
 798	const struct ib_gid_attr *sgid_attr;
 799	int hoplimit = 0xff;
 800	union ib_gid dgid;
 801	union ib_gid sgid;
 802
 803	might_sleep();
 804
 805	memset(ah_attr, 0, sizeof *ah_attr);
 806	ah_attr->type = rdma_ah_find_type(device, port_num);
 807	if (rdma_cap_eth_ah(device, port_num)) {
 808		if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
 809			net_type = wc->network_hdr_type;
 810		else
 811			net_type = ib_get_net_type_by_grh(device, port_num, grh);
 812		gid_type = ib_network_to_gid_type(net_type);
 813	}
 814	ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
 815					&sgid, &dgid);
 816	if (ret)
 817		return ret;
 818
 819	rdma_ah_set_sl(ah_attr, wc->sl);
 820	rdma_ah_set_port_num(ah_attr, port_num);
 821
 822	if (rdma_protocol_roce(device, port_num)) {
 823		u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
 824				wc->vlan_id : 0xffff;
 825
 826		if (!(wc->wc_flags & IB_WC_GRH))
 827			return -EPROTOTYPE;
 828
 829		sgid_attr = get_sgid_attr_from_eth(device, port_num,
 830						   vlan_id, &dgid,
 831						   gid_type);
 832		if (IS_ERR(sgid_attr))
 833			return PTR_ERR(sgid_attr);
 834
 835		flow_class = be32_to_cpu(grh->version_tclass_flow);
 836		rdma_move_grh_sgid_attr(ah_attr,
 837					&sgid,
 838					flow_class & 0xFFFFF,
 839					hoplimit,
 840					(flow_class >> 20) & 0xFF,
 841					sgid_attr);
 842
 843		ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
 844		if (ret)
 845			rdma_destroy_ah_attr(ah_attr);
 846
 847		return ret;
 848	} else {
 849		rdma_ah_set_dlid(ah_attr, wc->slid);
 850		rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
 851
 852		if ((wc->wc_flags & IB_WC_GRH) == 0)
 853			return 0;
 854
 855		if (dgid.global.interface_id !=
 856					cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
 857			sgid_attr = rdma_find_gid_by_port(
 858				device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
 859		} else
 860			sgid_attr = rdma_get_gid_attr(device, port_num, 0);
 861
 862		if (IS_ERR(sgid_attr))
 863			return PTR_ERR(sgid_attr);
 864		flow_class = be32_to_cpu(grh->version_tclass_flow);
 865		rdma_move_grh_sgid_attr(ah_attr,
 866					&sgid,
 867					flow_class & 0xFFFFF,
 868					hoplimit,
 869					(flow_class >> 20) & 0xFF,
 870					sgid_attr);
 871
 872		return 0;
 873	}
 874}
 875EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
 876
 877/**
 878 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
 879 * of the reference
 880 *
 881 * @attr:	Pointer to AH attribute structure
 882 * @dgid:	Destination GID
 883 * @flow_label:	Flow label
 884 * @hop_limit:	Hop limit
 885 * @traffic_class: traffic class
 886 * @sgid_attr:	Pointer to SGID attribute
 887 *
 888 * This takes ownership of the sgid_attr reference. The caller must ensure
 889 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
 890 * calling this function.
 891 */
 892void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
 893			     u32 flow_label, u8 hop_limit, u8 traffic_class,
 894			     const struct ib_gid_attr *sgid_attr)
 895{
 896	rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
 897			traffic_class);
 898	attr->grh.sgid_attr = sgid_attr;
 899}
 900EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
 901
 902/**
 903 * rdma_destroy_ah_attr - Release reference to SGID attribute of
 904 * ah attribute.
 905 * @ah_attr: Pointer to ah attribute
 906 *
 907 * Release reference to the SGID attribute of the ah attribute if it is
 908 * non NULL. It is safe to call this multiple times, and safe to call it on
 909 * a zero initialized ah_attr.
 910 */
 911void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
 912{
 913	if (ah_attr->grh.sgid_attr) {
 914		rdma_put_gid_attr(ah_attr->grh.sgid_attr);
 915		ah_attr->grh.sgid_attr = NULL;
 916	}
 917}
 918EXPORT_SYMBOL(rdma_destroy_ah_attr);
 919
 920struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
 921				   const struct ib_grh *grh, u32 port_num)
 922{
 923	struct rdma_ah_attr ah_attr;
 924	struct ib_ah *ah;
 925	int ret;
 926
 927	ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
 928	if (ret)
 929		return ERR_PTR(ret);
 930
 931	ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
 932
 933	rdma_destroy_ah_attr(&ah_attr);
 934	return ah;
 935}
 936EXPORT_SYMBOL(ib_create_ah_from_wc);
 937
 938int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
 939{
 940	const struct ib_gid_attr *old_sgid_attr;
 941	int ret;
 942
 943	if (ah->type != ah_attr->type)
 944		return -EINVAL;
 945
 946	ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
 947	if (ret)
 948		return ret;
 949
 950	ret = ah->device->ops.modify_ah ?
 951		ah->device->ops.modify_ah(ah, ah_attr) :
 952		-EOPNOTSUPP;
 953
 954	ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
 955	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 956	return ret;
 957}
 958EXPORT_SYMBOL(rdma_modify_ah);
 959
 960int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
 961{
 962	ah_attr->grh.sgid_attr = NULL;
 963
 964	return ah->device->ops.query_ah ?
 965		ah->device->ops.query_ah(ah, ah_attr) :
 966		-EOPNOTSUPP;
 967}
 968EXPORT_SYMBOL(rdma_query_ah);
 969
 970int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
 971{
 972	const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
 973	struct ib_pd *pd;
 974	int ret;
 975
 976	might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
 977
 978	pd = ah->pd;
 979
 980	ret = ah->device->ops.destroy_ah(ah, flags);
 981	if (ret)
 982		return ret;
 983
 984	atomic_dec(&pd->usecnt);
 985	if (sgid_attr)
 986		rdma_put_gid_attr(sgid_attr);
 987
 988	kfree(ah);
 989	return ret;
 990}
 991EXPORT_SYMBOL(rdma_destroy_ah_user);
 992
 993/* Shared receive queues */
 994
 995/**
 996 * ib_create_srq_user - Creates a SRQ associated with the specified protection
 997 *   domain.
 998 * @pd: The protection domain associated with the SRQ.
 999 * @srq_init_attr: A list of initial attributes required to create the
1000 *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
1001 *   the actual capabilities of the created SRQ.
1002 * @uobject: uobject pointer if this is not a kernel SRQ
1003 * @udata: udata pointer if this is not a kernel SRQ
1004 *
1005 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1006 * requested size of the SRQ, and set to the actual values allocated
1007 * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1008 * will always be at least as large as the requested values.
1009 */
1010struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1011				  struct ib_srq_init_attr *srq_init_attr,
1012				  struct ib_usrq_object *uobject,
1013				  struct ib_udata *udata)
1014{
1015	struct ib_srq *srq;
1016	int ret;
1017
 
 
 
1018	srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1019	if (!srq)
1020		return ERR_PTR(-ENOMEM);
1021
1022	srq->device = pd->device;
1023	srq->pd = pd;
1024	srq->event_handler = srq_init_attr->event_handler;
1025	srq->srq_context = srq_init_attr->srq_context;
1026	srq->srq_type = srq_init_attr->srq_type;
1027	srq->uobject = uobject;
1028
1029	if (ib_srq_has_cq(srq->srq_type)) {
1030		srq->ext.cq = srq_init_attr->ext.cq;
1031		atomic_inc(&srq->ext.cq->usecnt);
1032	}
1033	if (srq->srq_type == IB_SRQT_XRC) {
1034		srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1035		if (srq->ext.xrc.xrcd)
1036			atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1037	}
1038	atomic_inc(&pd->usecnt);
1039
1040	rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ);
1041	rdma_restrack_parent_name(&srq->res, &pd->res);
1042
1043	ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1044	if (ret) {
1045		rdma_restrack_put(&srq->res);
1046		atomic_dec(&pd->usecnt);
1047		if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1048			atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1049		if (ib_srq_has_cq(srq->srq_type))
1050			atomic_dec(&srq->ext.cq->usecnt);
1051		kfree(srq);
1052		return ERR_PTR(ret);
1053	}
1054
1055	rdma_restrack_add(&srq->res);
1056
1057	return srq;
1058}
1059EXPORT_SYMBOL(ib_create_srq_user);
1060
1061int ib_modify_srq(struct ib_srq *srq,
1062		  struct ib_srq_attr *srq_attr,
1063		  enum ib_srq_attr_mask srq_attr_mask)
1064{
1065	return srq->device->ops.modify_srq ?
1066		srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1067					    NULL) : -EOPNOTSUPP;
1068}
1069EXPORT_SYMBOL(ib_modify_srq);
1070
1071int ib_query_srq(struct ib_srq *srq,
1072		 struct ib_srq_attr *srq_attr)
1073{
1074	return srq->device->ops.query_srq ?
1075		srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1076}
1077EXPORT_SYMBOL(ib_query_srq);
1078
1079int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1080{
1081	int ret;
1082
1083	if (atomic_read(&srq->usecnt))
1084		return -EBUSY;
1085
1086	ret = srq->device->ops.destroy_srq(srq, udata);
1087	if (ret)
1088		return ret;
1089
1090	atomic_dec(&srq->pd->usecnt);
1091	if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1092		atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1093	if (ib_srq_has_cq(srq->srq_type))
1094		atomic_dec(&srq->ext.cq->usecnt);
1095	rdma_restrack_del(&srq->res);
1096	kfree(srq);
1097
1098	return ret;
1099}
1100EXPORT_SYMBOL(ib_destroy_srq_user);
1101
1102/* Queue pairs */
1103
1104static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1105{
1106	struct ib_qp *qp = context;
1107	unsigned long flags;
1108
1109	spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1110	list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1111		if (event->element.qp->event_handler)
1112			event->element.qp->event_handler(event, event->element.qp->qp_context);
1113	spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
 
 
 
 
 
 
 
1114}
1115
1116static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1117				  void (*event_handler)(struct ib_event *, void *),
1118				  void *qp_context)
1119{
1120	struct ib_qp *qp;
1121	unsigned long flags;
1122	int err;
1123
1124	qp = kzalloc(sizeof *qp, GFP_KERNEL);
1125	if (!qp)
1126		return ERR_PTR(-ENOMEM);
1127
1128	qp->real_qp = real_qp;
1129	err = ib_open_shared_qp_security(qp, real_qp->device);
1130	if (err) {
1131		kfree(qp);
1132		return ERR_PTR(err);
1133	}
1134
1135	qp->real_qp = real_qp;
1136	atomic_inc(&real_qp->usecnt);
1137	qp->device = real_qp->device;
1138	qp->event_handler = event_handler;
1139	qp->qp_context = qp_context;
1140	qp->qp_num = real_qp->qp_num;
1141	qp->qp_type = real_qp->qp_type;
1142
1143	spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1144	list_add(&qp->open_list, &real_qp->open_list);
1145	spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1146
1147	return qp;
1148}
1149
1150struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1151			 struct ib_qp_open_attr *qp_open_attr)
1152{
1153	struct ib_qp *qp, *real_qp;
1154
1155	if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1156		return ERR_PTR(-EINVAL);
1157
1158	down_read(&xrcd->tgt_qps_rwsem);
1159	real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1160	if (!real_qp) {
1161		up_read(&xrcd->tgt_qps_rwsem);
1162		return ERR_PTR(-EINVAL);
 
 
 
1163	}
1164	qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1165			  qp_open_attr->qp_context);
1166	up_read(&xrcd->tgt_qps_rwsem);
1167	return qp;
1168}
1169EXPORT_SYMBOL(ib_open_qp);
1170
1171static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1172					struct ib_qp_init_attr *qp_init_attr)
 
1173{
1174	struct ib_qp *real_qp = qp;
1175	int err;
1176
1177	qp->event_handler = __ib_shared_qp_event_handler;
1178	qp->qp_context = qp;
1179	qp->pd = NULL;
1180	qp->send_cq = qp->recv_cq = NULL;
1181	qp->srq = NULL;
1182	qp->xrcd = qp_init_attr->xrcd;
1183	atomic_inc(&qp_init_attr->xrcd->usecnt);
1184	INIT_LIST_HEAD(&qp->open_list);
1185
1186	qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1187			  qp_init_attr->qp_context);
1188	if (IS_ERR(qp))
1189		return qp;
1190
1191	err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1192			      real_qp, GFP_KERNEL));
1193	if (err) {
1194		ib_close_qp(qp);
1195		return ERR_PTR(err);
1196	}
1197	return qp;
1198}
1199
1200static struct ib_qp *create_qp(struct ib_device *dev, struct ib_pd *pd,
1201			       struct ib_qp_init_attr *attr,
1202			       struct ib_udata *udata,
1203			       struct ib_uqp_object *uobj, const char *caller)
1204{
1205	struct ib_udata dummy = {};
1206	struct ib_qp *qp;
1207	int ret;
1208
1209	if (!dev->ops.create_qp)
1210		return ERR_PTR(-EOPNOTSUPP);
1211
1212	qp = rdma_zalloc_drv_obj_numa(dev, ib_qp);
1213	if (!qp)
1214		return ERR_PTR(-ENOMEM);
1215
1216	qp->device = dev;
1217	qp->pd = pd;
1218	qp->uobject = uobj;
1219	qp->real_qp = qp;
1220
1221	qp->qp_type = attr->qp_type;
1222	qp->rwq_ind_tbl = attr->rwq_ind_tbl;
1223	qp->srq = attr->srq;
1224	qp->event_handler = attr->event_handler;
1225	qp->port = attr->port_num;
1226	qp->qp_context = attr->qp_context;
1227
1228	spin_lock_init(&qp->mr_lock);
1229	INIT_LIST_HEAD(&qp->rdma_mrs);
1230	INIT_LIST_HEAD(&qp->sig_mrs);
1231
1232	qp->send_cq = attr->send_cq;
1233	qp->recv_cq = attr->recv_cq;
1234
1235	rdma_restrack_new(&qp->res, RDMA_RESTRACK_QP);
1236	WARN_ONCE(!udata && !caller, "Missing kernel QP owner");
1237	rdma_restrack_set_name(&qp->res, udata ? NULL : caller);
1238	ret = dev->ops.create_qp(qp, attr, udata);
1239	if (ret)
1240		goto err_create;
1241
1242	/*
1243	 * TODO: The mlx4 internally overwrites send_cq and recv_cq.
1244	 * Unfortunately, it is not an easy task to fix that driver.
 
 
1245	 */
1246	qp->send_cq = attr->send_cq;
1247	qp->recv_cq = attr->recv_cq;
1248
1249	ret = ib_create_qp_security(qp, dev);
1250	if (ret)
1251		goto err_security;
1252
1253	rdma_restrack_add(&qp->res);
1254	return qp;
 
1255
1256err_security:
1257	qp->device->ops.destroy_qp(qp, udata ? &dummy : NULL);
1258err_create:
1259	rdma_restrack_put(&qp->res);
1260	kfree(qp);
1261	return ERR_PTR(ret);
1262
1263}
 
1264
1265/**
1266 * ib_create_qp_user - Creates a QP associated with the specified protection
1267 *   domain.
1268 * @dev: IB device
1269 * @pd: The protection domain associated with the QP.
1270 * @attr: A list of initial attributes required to create the
1271 *   QP.  If QP creation succeeds, then the attributes are updated to
1272 *   the actual capabilities of the created QP.
1273 * @udata: User data
1274 * @uobj: uverbs obect
1275 * @caller: caller's build-time module name
1276 */
1277struct ib_qp *ib_create_qp_user(struct ib_device *dev, struct ib_pd *pd,
1278				struct ib_qp_init_attr *attr,
1279				struct ib_udata *udata,
1280				struct ib_uqp_object *uobj, const char *caller)
1281{
1282	struct ib_qp *qp, *xrc_qp;
1283
1284	if (attr->qp_type == IB_QPT_XRC_TGT)
1285		qp = create_qp(dev, pd, attr, NULL, NULL, caller);
1286	else
1287		qp = create_qp(dev, pd, attr, udata, uobj, NULL);
1288	if (attr->qp_type != IB_QPT_XRC_TGT || IS_ERR(qp))
1289		return qp;
1290
1291	xrc_qp = create_xrc_qp_user(qp, attr);
1292	if (IS_ERR(xrc_qp)) {
1293		ib_destroy_qp(qp);
 
1294		return xrc_qp;
1295	}
1296
1297	xrc_qp->uobject = uobj;
1298	return xrc_qp;
1299}
1300EXPORT_SYMBOL(ib_create_qp_user);
1301
1302void ib_qp_usecnt_inc(struct ib_qp *qp)
1303{
1304	if (qp->pd)
1305		atomic_inc(&qp->pd->usecnt);
1306	if (qp->send_cq)
1307		atomic_inc(&qp->send_cq->usecnt);
1308	if (qp->recv_cq)
1309		atomic_inc(&qp->recv_cq->usecnt);
1310	if (qp->srq)
1311		atomic_inc(&qp->srq->usecnt);
1312	if (qp->rwq_ind_tbl)
1313		atomic_inc(&qp->rwq_ind_tbl->usecnt);
1314}
1315EXPORT_SYMBOL(ib_qp_usecnt_inc);
1316
1317void ib_qp_usecnt_dec(struct ib_qp *qp)
1318{
1319	if (qp->rwq_ind_tbl)
1320		atomic_dec(&qp->rwq_ind_tbl->usecnt);
1321	if (qp->srq)
1322		atomic_dec(&qp->srq->usecnt);
1323	if (qp->recv_cq)
1324		atomic_dec(&qp->recv_cq->usecnt);
1325	if (qp->send_cq)
1326		atomic_dec(&qp->send_cq->usecnt);
1327	if (qp->pd)
1328		atomic_dec(&qp->pd->usecnt);
1329}
1330EXPORT_SYMBOL(ib_qp_usecnt_dec);
1331
1332struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
1333				  struct ib_qp_init_attr *qp_init_attr,
1334				  const char *caller)
1335{
1336	struct ib_device *device = pd->device;
1337	struct ib_qp *qp;
1338	int ret;
1339
1340	/*
1341	 * If the callers is using the RDMA API calculate the resources
1342	 * needed for the RDMA READ/WRITE operations.
1343	 *
1344	 * Note that these callers need to pass in a port number.
1345	 */
1346	if (qp_init_attr->cap.max_rdma_ctxs)
1347		rdma_rw_init_qp(device, qp_init_attr);
1348
1349	qp = create_qp(device, pd, qp_init_attr, NULL, NULL, caller);
1350	if (IS_ERR(qp))
1351		return qp;
1352
1353	ib_qp_usecnt_inc(qp);
 
 
 
 
1354
1355	if (qp_init_attr->cap.max_rdma_ctxs) {
1356		ret = rdma_rw_init_mrs(qp, qp_init_attr);
1357		if (ret)
1358			goto err;
1359	}
1360
1361	/*
1362	 * Note: all hw drivers guarantee that max_send_sge is lower than
1363	 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1364	 * max_send_sge <= max_sge_rd.
1365	 */
1366	qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1367	qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1368				 device->attrs.max_sge_rd);
1369	if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1370		qp->integrity_en = true;
1371
1372	return qp;
1373
1374err:
1375	ib_destroy_qp(qp);
1376	return ERR_PTR(ret);
1377
1378}
1379EXPORT_SYMBOL(ib_create_qp_kernel);
1380
1381static const struct {
1382	int			valid;
1383	enum ib_qp_attr_mask	req_param[IB_QPT_MAX];
1384	enum ib_qp_attr_mask	opt_param[IB_QPT_MAX];
1385} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1386	[IB_QPS_RESET] = {
1387		[IB_QPS_RESET] = { .valid = 1 },
1388		[IB_QPS_INIT]  = {
1389			.valid = 1,
1390			.req_param = {
1391				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1392						IB_QP_PORT			|
1393						IB_QP_QKEY),
1394				[IB_QPT_RAW_PACKET] = IB_QP_PORT,
1395				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
1396						IB_QP_PORT			|
1397						IB_QP_ACCESS_FLAGS),
1398				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
1399						IB_QP_PORT			|
1400						IB_QP_ACCESS_FLAGS),
1401				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
1402						IB_QP_PORT			|
1403						IB_QP_ACCESS_FLAGS),
1404				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
1405						IB_QP_PORT			|
1406						IB_QP_ACCESS_FLAGS),
1407				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1408						IB_QP_QKEY),
1409				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1410						IB_QP_QKEY),
1411			}
1412		},
1413	},
1414	[IB_QPS_INIT]  = {
1415		[IB_QPS_RESET] = { .valid = 1 },
1416		[IB_QPS_ERR] =   { .valid = 1 },
1417		[IB_QPS_INIT]  = {
1418			.valid = 1,
1419			.opt_param = {
1420				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1421						IB_QP_PORT			|
1422						IB_QP_QKEY),
1423				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
1424						IB_QP_PORT			|
1425						IB_QP_ACCESS_FLAGS),
1426				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
1427						IB_QP_PORT			|
1428						IB_QP_ACCESS_FLAGS),
1429				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
1430						IB_QP_PORT			|
1431						IB_QP_ACCESS_FLAGS),
1432				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
1433						IB_QP_PORT			|
1434						IB_QP_ACCESS_FLAGS),
1435				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1436						IB_QP_QKEY),
1437				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1438						IB_QP_QKEY),
1439			}
1440		},
1441		[IB_QPS_RTR]   = {
1442			.valid = 1,
1443			.req_param = {
1444				[IB_QPT_UC]  = (IB_QP_AV			|
1445						IB_QP_PATH_MTU			|
1446						IB_QP_DEST_QPN			|
1447						IB_QP_RQ_PSN),
1448				[IB_QPT_RC]  = (IB_QP_AV			|
1449						IB_QP_PATH_MTU			|
1450						IB_QP_DEST_QPN			|
1451						IB_QP_RQ_PSN			|
1452						IB_QP_MAX_DEST_RD_ATOMIC	|
1453						IB_QP_MIN_RNR_TIMER),
1454				[IB_QPT_XRC_INI] = (IB_QP_AV			|
1455						IB_QP_PATH_MTU			|
1456						IB_QP_DEST_QPN			|
1457						IB_QP_RQ_PSN),
1458				[IB_QPT_XRC_TGT] = (IB_QP_AV			|
1459						IB_QP_PATH_MTU			|
1460						IB_QP_DEST_QPN			|
1461						IB_QP_RQ_PSN			|
1462						IB_QP_MAX_DEST_RD_ATOMIC	|
1463						IB_QP_MIN_RNR_TIMER),
1464			},
1465			.opt_param = {
1466				 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1467						 IB_QP_QKEY),
1468				 [IB_QPT_UC]  = (IB_QP_ALT_PATH			|
1469						 IB_QP_ACCESS_FLAGS		|
1470						 IB_QP_PKEY_INDEX),
1471				 [IB_QPT_RC]  = (IB_QP_ALT_PATH			|
1472						 IB_QP_ACCESS_FLAGS		|
1473						 IB_QP_PKEY_INDEX),
1474				 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH		|
1475						 IB_QP_ACCESS_FLAGS		|
1476						 IB_QP_PKEY_INDEX),
1477				 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH		|
1478						 IB_QP_ACCESS_FLAGS		|
1479						 IB_QP_PKEY_INDEX),
1480				 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1481						 IB_QP_QKEY),
1482				 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1483						 IB_QP_QKEY),
1484			 },
1485		},
1486	},
1487	[IB_QPS_RTR]   = {
1488		[IB_QPS_RESET] = { .valid = 1 },
1489		[IB_QPS_ERR] =   { .valid = 1 },
1490		[IB_QPS_RTS]   = {
1491			.valid = 1,
1492			.req_param = {
1493				[IB_QPT_UD]  = IB_QP_SQ_PSN,
1494				[IB_QPT_UC]  = IB_QP_SQ_PSN,
1495				[IB_QPT_RC]  = (IB_QP_TIMEOUT			|
1496						IB_QP_RETRY_CNT			|
1497						IB_QP_RNR_RETRY			|
1498						IB_QP_SQ_PSN			|
1499						IB_QP_MAX_QP_RD_ATOMIC),
1500				[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT		|
1501						IB_QP_RETRY_CNT			|
1502						IB_QP_RNR_RETRY			|
1503						IB_QP_SQ_PSN			|
1504						IB_QP_MAX_QP_RD_ATOMIC),
1505				[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT		|
1506						IB_QP_SQ_PSN),
1507				[IB_QPT_SMI] = IB_QP_SQ_PSN,
1508				[IB_QPT_GSI] = IB_QP_SQ_PSN,
1509			},
1510			.opt_param = {
1511				 [IB_QPT_UD]  = (IB_QP_CUR_STATE		|
1512						 IB_QP_QKEY),
1513				 [IB_QPT_UC]  = (IB_QP_CUR_STATE		|
1514						 IB_QP_ALT_PATH			|
1515						 IB_QP_ACCESS_FLAGS		|
1516						 IB_QP_PATH_MIG_STATE),
1517				 [IB_QPT_RC]  = (IB_QP_CUR_STATE		|
1518						 IB_QP_ALT_PATH			|
1519						 IB_QP_ACCESS_FLAGS		|
1520						 IB_QP_MIN_RNR_TIMER		|
1521						 IB_QP_PATH_MIG_STATE),
1522				 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1523						 IB_QP_ALT_PATH			|
1524						 IB_QP_ACCESS_FLAGS		|
1525						 IB_QP_PATH_MIG_STATE),
1526				 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1527						 IB_QP_ALT_PATH			|
1528						 IB_QP_ACCESS_FLAGS		|
1529						 IB_QP_MIN_RNR_TIMER		|
1530						 IB_QP_PATH_MIG_STATE),
1531				 [IB_QPT_SMI] = (IB_QP_CUR_STATE		|
1532						 IB_QP_QKEY),
1533				 [IB_QPT_GSI] = (IB_QP_CUR_STATE		|
1534						 IB_QP_QKEY),
1535				 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1536			 }
1537		}
1538	},
1539	[IB_QPS_RTS]   = {
1540		[IB_QPS_RESET] = { .valid = 1 },
1541		[IB_QPS_ERR] =   { .valid = 1 },
1542		[IB_QPS_RTS]   = {
1543			.valid = 1,
1544			.opt_param = {
1545				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1546						IB_QP_QKEY),
1547				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1548						IB_QP_ACCESS_FLAGS		|
1549						IB_QP_ALT_PATH			|
1550						IB_QP_PATH_MIG_STATE),
1551				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1552						IB_QP_ACCESS_FLAGS		|
1553						IB_QP_ALT_PATH			|
1554						IB_QP_PATH_MIG_STATE		|
1555						IB_QP_MIN_RNR_TIMER),
1556				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1557						IB_QP_ACCESS_FLAGS		|
1558						IB_QP_ALT_PATH			|
1559						IB_QP_PATH_MIG_STATE),
1560				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1561						IB_QP_ACCESS_FLAGS		|
1562						IB_QP_ALT_PATH			|
1563						IB_QP_PATH_MIG_STATE		|
1564						IB_QP_MIN_RNR_TIMER),
1565				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1566						IB_QP_QKEY),
1567				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1568						IB_QP_QKEY),
1569				[IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1570			}
1571		},
1572		[IB_QPS_SQD]   = {
1573			.valid = 1,
1574			.opt_param = {
1575				[IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1576				[IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1577				[IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1578				[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1579				[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1580				[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1581				[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1582			}
1583		},
1584	},
1585	[IB_QPS_SQD]   = {
1586		[IB_QPS_RESET] = { .valid = 1 },
1587		[IB_QPS_ERR] =   { .valid = 1 },
1588		[IB_QPS_RTS]   = {
1589			.valid = 1,
1590			.opt_param = {
1591				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1592						IB_QP_QKEY),
1593				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1594						IB_QP_ALT_PATH			|
1595						IB_QP_ACCESS_FLAGS		|
1596						IB_QP_PATH_MIG_STATE),
1597				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1598						IB_QP_ALT_PATH			|
1599						IB_QP_ACCESS_FLAGS		|
1600						IB_QP_MIN_RNR_TIMER		|
1601						IB_QP_PATH_MIG_STATE),
1602				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1603						IB_QP_ALT_PATH			|
1604						IB_QP_ACCESS_FLAGS		|
1605						IB_QP_PATH_MIG_STATE),
1606				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1607						IB_QP_ALT_PATH			|
1608						IB_QP_ACCESS_FLAGS		|
1609						IB_QP_MIN_RNR_TIMER		|
1610						IB_QP_PATH_MIG_STATE),
1611				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1612						IB_QP_QKEY),
1613				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1614						IB_QP_QKEY),
1615			}
1616		},
1617		[IB_QPS_SQD]   = {
1618			.valid = 1,
1619			.opt_param = {
1620				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1621						IB_QP_QKEY),
1622				[IB_QPT_UC]  = (IB_QP_AV			|
1623						IB_QP_ALT_PATH			|
1624						IB_QP_ACCESS_FLAGS		|
1625						IB_QP_PKEY_INDEX		|
1626						IB_QP_PATH_MIG_STATE),
1627				[IB_QPT_RC]  = (IB_QP_PORT			|
1628						IB_QP_AV			|
1629						IB_QP_TIMEOUT			|
1630						IB_QP_RETRY_CNT			|
1631						IB_QP_RNR_RETRY			|
1632						IB_QP_MAX_QP_RD_ATOMIC		|
1633						IB_QP_MAX_DEST_RD_ATOMIC	|
1634						IB_QP_ALT_PATH			|
1635						IB_QP_ACCESS_FLAGS		|
1636						IB_QP_PKEY_INDEX		|
1637						IB_QP_MIN_RNR_TIMER		|
1638						IB_QP_PATH_MIG_STATE),
1639				[IB_QPT_XRC_INI] = (IB_QP_PORT			|
1640						IB_QP_AV			|
1641						IB_QP_TIMEOUT			|
1642						IB_QP_RETRY_CNT			|
1643						IB_QP_RNR_RETRY			|
1644						IB_QP_MAX_QP_RD_ATOMIC		|
1645						IB_QP_ALT_PATH			|
1646						IB_QP_ACCESS_FLAGS		|
1647						IB_QP_PKEY_INDEX		|
1648						IB_QP_PATH_MIG_STATE),
1649				[IB_QPT_XRC_TGT] = (IB_QP_PORT			|
1650						IB_QP_AV			|
1651						IB_QP_TIMEOUT			|
1652						IB_QP_MAX_DEST_RD_ATOMIC	|
1653						IB_QP_ALT_PATH			|
1654						IB_QP_ACCESS_FLAGS		|
1655						IB_QP_PKEY_INDEX		|
1656						IB_QP_MIN_RNR_TIMER		|
1657						IB_QP_PATH_MIG_STATE),
1658				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1659						IB_QP_QKEY),
1660				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1661						IB_QP_QKEY),
1662			}
1663		}
1664	},
1665	[IB_QPS_SQE]   = {
1666		[IB_QPS_RESET] = { .valid = 1 },
1667		[IB_QPS_ERR] =   { .valid = 1 },
1668		[IB_QPS_RTS]   = {
1669			.valid = 1,
1670			.opt_param = {
1671				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1672						IB_QP_QKEY),
1673				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1674						IB_QP_ACCESS_FLAGS),
1675				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1676						IB_QP_QKEY),
1677				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1678						IB_QP_QKEY),
1679			}
1680		}
1681	},
1682	[IB_QPS_ERR] = {
1683		[IB_QPS_RESET] = { .valid = 1 },
1684		[IB_QPS_ERR] =   { .valid = 1 }
1685	}
1686};
1687
1688bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1689			enum ib_qp_type type, enum ib_qp_attr_mask mask)
1690{
1691	enum ib_qp_attr_mask req_param, opt_param;
1692
1693	if (mask & IB_QP_CUR_STATE  &&
1694	    cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1695	    cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1696		return false;
1697
1698	if (!qp_state_table[cur_state][next_state].valid)
1699		return false;
1700
1701	req_param = qp_state_table[cur_state][next_state].req_param[type];
1702	opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1703
1704	if ((mask & req_param) != req_param)
1705		return false;
1706
1707	if (mask & ~(req_param | opt_param | IB_QP_STATE))
1708		return false;
1709
1710	return true;
1711}
1712EXPORT_SYMBOL(ib_modify_qp_is_ok);
1713
1714/**
1715 * ib_resolve_eth_dmac - Resolve destination mac address
1716 * @device:		Device to consider
1717 * @ah_attr:		address handle attribute which describes the
1718 *			source and destination parameters
1719 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1720 * returns 0 on success or appropriate error code. It initializes the
1721 * necessary ah_attr fields when call is successful.
1722 */
1723static int ib_resolve_eth_dmac(struct ib_device *device,
1724			       struct rdma_ah_attr *ah_attr)
1725{
1726	int ret = 0;
1727
1728	if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1729		if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1730			__be32 addr = 0;
1731
1732			memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1733			ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1734		} else {
1735			ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1736					(char *)ah_attr->roce.dmac);
1737		}
1738	} else {
1739		ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1740	}
1741	return ret;
1742}
1743
1744static bool is_qp_type_connected(const struct ib_qp *qp)
1745{
1746	return (qp->qp_type == IB_QPT_UC ||
1747		qp->qp_type == IB_QPT_RC ||
1748		qp->qp_type == IB_QPT_XRC_INI ||
1749		qp->qp_type == IB_QPT_XRC_TGT);
1750}
1751
1752/*
1753 * IB core internal function to perform QP attributes modification.
1754 */
1755static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1756			 int attr_mask, struct ib_udata *udata)
1757{
1758	u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1759	const struct ib_gid_attr *old_sgid_attr_av;
1760	const struct ib_gid_attr *old_sgid_attr_alt_av;
1761	int ret;
1762
1763	attr->xmit_slave = NULL;
1764	if (attr_mask & IB_QP_AV) {
1765		ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1766					  &old_sgid_attr_av);
1767		if (ret)
1768			return ret;
1769
1770		if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1771		    is_qp_type_connected(qp)) {
1772			struct net_device *slave;
1773
1774			/*
1775			 * If the user provided the qp_attr then we have to
1776			 * resolve it. Kerne users have to provide already
1777			 * resolved rdma_ah_attr's.
1778			 */
1779			if (udata) {
1780				ret = ib_resolve_eth_dmac(qp->device,
1781							  &attr->ah_attr);
1782				if (ret)
1783					goto out_av;
1784			}
1785			slave = rdma_lag_get_ah_roce_slave(qp->device,
1786							   &attr->ah_attr,
1787							   GFP_KERNEL);
1788			if (IS_ERR(slave)) {
1789				ret = PTR_ERR(slave);
1790				goto out_av;
1791			}
1792			attr->xmit_slave = slave;
1793		}
1794	}
1795	if (attr_mask & IB_QP_ALT_PATH) {
1796		/*
1797		 * FIXME: This does not track the migration state, so if the
1798		 * user loads a new alternate path after the HW has migrated
1799		 * from primary->alternate we will keep the wrong
1800		 * references. This is OK for IB because the reference
1801		 * counting does not serve any functional purpose.
1802		 */
1803		ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1804					  &old_sgid_attr_alt_av);
1805		if (ret)
1806			goto out_av;
1807
1808		/*
1809		 * Today the core code can only handle alternate paths and APM
1810		 * for IB. Ban them in roce mode.
1811		 */
1812		if (!(rdma_protocol_ib(qp->device,
1813				       attr->alt_ah_attr.port_num) &&
1814		      rdma_protocol_ib(qp->device, port))) {
1815			ret = -EINVAL;
1816			goto out;
1817		}
1818	}
1819
 
 
 
 
 
 
 
 
 
 
 
 
1820	if (rdma_ib_or_roce(qp->device, port)) {
1821		if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1822			dev_warn(&qp->device->dev,
1823				 "%s rq_psn overflow, masking to 24 bits\n",
1824				 __func__);
1825			attr->rq_psn &= 0xffffff;
1826		}
1827
1828		if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1829			dev_warn(&qp->device->dev,
1830				 " %s sq_psn overflow, masking to 24 bits\n",
1831				 __func__);
1832			attr->sq_psn &= 0xffffff;
1833		}
1834	}
1835
1836	/*
1837	 * Bind this qp to a counter automatically based on the rdma counter
1838	 * rules. This only set in RST2INIT with port specified
1839	 */
1840	if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1841	    ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1842		rdma_counter_bind_qp_auto(qp, attr->port_num);
1843
1844	ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1845	if (ret)
1846		goto out;
1847
1848	if (attr_mask & IB_QP_PORT)
1849		qp->port = attr->port_num;
1850	if (attr_mask & IB_QP_AV)
1851		qp->av_sgid_attr =
1852			rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1853	if (attr_mask & IB_QP_ALT_PATH)
1854		qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1855			&attr->alt_ah_attr, qp->alt_path_sgid_attr);
1856
1857out:
1858	if (attr_mask & IB_QP_ALT_PATH)
1859		rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1860out_av:
1861	if (attr_mask & IB_QP_AV) {
1862		rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1863		rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1864	}
1865	return ret;
1866}
1867
1868/**
1869 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1870 * @ib_qp: The QP to modify.
1871 * @attr: On input, specifies the QP attributes to modify.  On output,
1872 *   the current values of selected QP attributes are returned.
1873 * @attr_mask: A bit-mask used to specify which attributes of the QP
1874 *   are being modified.
1875 * @udata: pointer to user's input output buffer information
1876 *   are being modified.
1877 * It returns 0 on success and returns appropriate error code on error.
1878 */
1879int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1880			    int attr_mask, struct ib_udata *udata)
1881{
1882	return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1883}
1884EXPORT_SYMBOL(ib_modify_qp_with_udata);
1885
1886static void ib_get_width_and_speed(u32 netdev_speed, u32 lanes,
1887				   u16 *speed, u8 *width)
1888{
1889	if (!lanes) {
1890		if (netdev_speed <= SPEED_1000) {
1891			*width = IB_WIDTH_1X;
1892			*speed = IB_SPEED_SDR;
1893		} else if (netdev_speed <= SPEED_10000) {
1894			*width = IB_WIDTH_1X;
1895			*speed = IB_SPEED_FDR10;
1896		} else if (netdev_speed <= SPEED_20000) {
1897			*width = IB_WIDTH_4X;
1898			*speed = IB_SPEED_DDR;
1899		} else if (netdev_speed <= SPEED_25000) {
1900			*width = IB_WIDTH_1X;
1901			*speed = IB_SPEED_EDR;
1902		} else if (netdev_speed <= SPEED_40000) {
1903			*width = IB_WIDTH_4X;
1904			*speed = IB_SPEED_FDR10;
1905		} else if (netdev_speed <= SPEED_50000) {
1906			*width = IB_WIDTH_2X;
1907			*speed = IB_SPEED_EDR;
1908		} else if (netdev_speed <= SPEED_100000) {
1909			*width = IB_WIDTH_4X;
1910			*speed = IB_SPEED_EDR;
1911		} else if (netdev_speed <= SPEED_200000) {
1912			*width = IB_WIDTH_4X;
1913			*speed = IB_SPEED_HDR;
1914		} else {
1915			*width = IB_WIDTH_4X;
1916			*speed = IB_SPEED_NDR;
1917		}
1918
1919		return;
1920	}
1921
1922	switch (lanes) {
1923	case 1:
1924		*width = IB_WIDTH_1X;
1925		break;
1926	case 2:
1927		*width = IB_WIDTH_2X;
1928		break;
1929	case 4:
1930		*width = IB_WIDTH_4X;
1931		break;
1932	case 8:
1933		*width = IB_WIDTH_8X;
1934		break;
1935	case 12:
1936		*width = IB_WIDTH_12X;
1937		break;
1938	default:
1939		*width = IB_WIDTH_1X;
1940	}
1941
1942	switch (netdev_speed / lanes) {
1943	case SPEED_2500:
1944		*speed = IB_SPEED_SDR;
1945		break;
1946	case SPEED_5000:
1947		*speed = IB_SPEED_DDR;
1948		break;
1949	case SPEED_10000:
1950		*speed = IB_SPEED_FDR10;
1951		break;
1952	case SPEED_14000:
1953		*speed = IB_SPEED_FDR;
1954		break;
1955	case SPEED_25000:
1956		*speed = IB_SPEED_EDR;
1957		break;
1958	case SPEED_50000:
1959		*speed = IB_SPEED_HDR;
1960		break;
1961	case SPEED_100000:
1962		*speed = IB_SPEED_NDR;
1963		break;
1964	default:
1965		*speed = IB_SPEED_SDR;
1966	}
1967}
1968
1969int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width)
1970{
1971	int rc;
1972	u32 netdev_speed;
1973	struct net_device *netdev;
1974	struct ethtool_link_ksettings lksettings = {};
1975
1976	if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1977		return -EINVAL;
1978
1979	netdev = ib_device_get_netdev(dev, port_num);
1980	if (!netdev)
1981		return -ENODEV;
1982
1983	rtnl_lock();
1984	rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1985	rtnl_unlock();
1986
1987	dev_put(netdev);
1988
1989	if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
1990		netdev_speed = lksettings.base.speed;
1991	} else {
1992		netdev_speed = SPEED_1000;
1993		if (rc)
1994			pr_warn("%s speed is unknown, defaulting to %u\n",
1995				netdev->name, netdev_speed);
1996	}
1997
1998	ib_get_width_and_speed(netdev_speed, lksettings.lanes,
1999			       speed, width);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2000
2001	return 0;
2002}
2003EXPORT_SYMBOL(ib_get_eth_speed);
2004
2005int ib_modify_qp(struct ib_qp *qp,
2006		 struct ib_qp_attr *qp_attr,
2007		 int qp_attr_mask)
2008{
2009	return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
2010}
2011EXPORT_SYMBOL(ib_modify_qp);
2012
2013int ib_query_qp(struct ib_qp *qp,
2014		struct ib_qp_attr *qp_attr,
2015		int qp_attr_mask,
2016		struct ib_qp_init_attr *qp_init_attr)
2017{
2018	qp_attr->ah_attr.grh.sgid_attr = NULL;
2019	qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
2020
2021	return qp->device->ops.query_qp ?
2022		qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
2023					 qp_init_attr) : -EOPNOTSUPP;
2024}
2025EXPORT_SYMBOL(ib_query_qp);
2026
2027int ib_close_qp(struct ib_qp *qp)
2028{
2029	struct ib_qp *real_qp;
2030	unsigned long flags;
2031
2032	real_qp = qp->real_qp;
2033	if (real_qp == qp)
2034		return -EINVAL;
2035
2036	spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
2037	list_del(&qp->open_list);
2038	spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
2039
2040	atomic_dec(&real_qp->usecnt);
2041	if (qp->qp_sec)
2042		ib_close_shared_qp_security(qp->qp_sec);
2043	kfree(qp);
2044
2045	return 0;
2046}
2047EXPORT_SYMBOL(ib_close_qp);
2048
2049static int __ib_destroy_shared_qp(struct ib_qp *qp)
2050{
2051	struct ib_xrcd *xrcd;
2052	struct ib_qp *real_qp;
2053	int ret;
2054
2055	real_qp = qp->real_qp;
2056	xrcd = real_qp->xrcd;
2057	down_write(&xrcd->tgt_qps_rwsem);
 
2058	ib_close_qp(qp);
2059	if (atomic_read(&real_qp->usecnt) == 0)
2060		xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
2061	else
2062		real_qp = NULL;
2063	up_write(&xrcd->tgt_qps_rwsem);
2064
2065	if (real_qp) {
2066		ret = ib_destroy_qp(real_qp);
2067		if (!ret)
2068			atomic_dec(&xrcd->usecnt);
 
 
2069	}
2070
2071	return 0;
2072}
2073
2074int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
2075{
2076	const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
2077	const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
 
 
 
 
2078	struct ib_qp_security *sec;
2079	int ret;
2080
2081	WARN_ON_ONCE(qp->mrs_used > 0);
2082
2083	if (atomic_read(&qp->usecnt))
2084		return -EBUSY;
2085
2086	if (qp->real_qp != qp)
2087		return __ib_destroy_shared_qp(qp);
2088
 
 
 
 
 
2089	sec  = qp->qp_sec;
2090	if (sec)
2091		ib_destroy_qp_security_begin(sec);
2092
2093	if (!qp->uobject)
2094		rdma_rw_cleanup_mrs(qp);
2095
2096	rdma_counter_unbind_qp(qp, true);
 
2097	ret = qp->device->ops.destroy_qp(qp, udata);
2098	if (ret) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2099		if (sec)
2100			ib_destroy_qp_security_abort(sec);
2101		return ret;
2102	}
2103
2104	if (alt_path_sgid_attr)
2105		rdma_put_gid_attr(alt_path_sgid_attr);
2106	if (av_sgid_attr)
2107		rdma_put_gid_attr(av_sgid_attr);
2108
2109	ib_qp_usecnt_dec(qp);
2110	if (sec)
2111		ib_destroy_qp_security_end(sec);
2112
2113	rdma_restrack_del(&qp->res);
2114	kfree(qp);
2115	return ret;
2116}
2117EXPORT_SYMBOL(ib_destroy_qp_user);
2118
2119/* Completion queues */
2120
2121struct ib_cq *__ib_create_cq(struct ib_device *device,
2122			     ib_comp_handler comp_handler,
2123			     void (*event_handler)(struct ib_event *, void *),
2124			     void *cq_context,
2125			     const struct ib_cq_init_attr *cq_attr,
2126			     const char *caller)
2127{
2128	struct ib_cq *cq;
2129	int ret;
2130
2131	cq = rdma_zalloc_drv_obj(device, ib_cq);
2132	if (!cq)
2133		return ERR_PTR(-ENOMEM);
2134
2135	cq->device = device;
2136	cq->uobject = NULL;
2137	cq->comp_handler = comp_handler;
2138	cq->event_handler = event_handler;
2139	cq->cq_context = cq_context;
2140	atomic_set(&cq->usecnt, 0);
2141
2142	rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
2143	rdma_restrack_set_name(&cq->res, caller);
2144
2145	ret = device->ops.create_cq(cq, cq_attr, NULL);
2146	if (ret) {
2147		rdma_restrack_put(&cq->res);
2148		kfree(cq);
2149		return ERR_PTR(ret);
2150	}
2151
2152	rdma_restrack_add(&cq->res);
2153	return cq;
2154}
2155EXPORT_SYMBOL(__ib_create_cq);
2156
2157int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2158{
2159	if (cq->shared)
2160		return -EOPNOTSUPP;
2161
2162	return cq->device->ops.modify_cq ?
2163		cq->device->ops.modify_cq(cq, cq_count,
2164					  cq_period) : -EOPNOTSUPP;
2165}
2166EXPORT_SYMBOL(rdma_set_cq_moderation);
2167
2168int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2169{
2170	int ret;
2171
2172	if (WARN_ON_ONCE(cq->shared))
2173		return -EOPNOTSUPP;
2174
2175	if (atomic_read(&cq->usecnt))
2176		return -EBUSY;
2177
2178	ret = cq->device->ops.destroy_cq(cq, udata);
2179	if (ret)
2180		return ret;
2181
2182	rdma_restrack_del(&cq->res);
 
2183	kfree(cq);
2184	return ret;
2185}
2186EXPORT_SYMBOL(ib_destroy_cq_user);
2187
2188int ib_resize_cq(struct ib_cq *cq, int cqe)
2189{
2190	if (cq->shared)
2191		return -EOPNOTSUPP;
2192
2193	return cq->device->ops.resize_cq ?
2194		cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2195}
2196EXPORT_SYMBOL(ib_resize_cq);
2197
2198/* Memory regions */
2199
2200struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2201			     u64 virt_addr, int access_flags)
2202{
2203	struct ib_mr *mr;
2204
2205	if (access_flags & IB_ACCESS_ON_DEMAND) {
2206		if (!(pd->device->attrs.kernel_cap_flags &
2207		      IBK_ON_DEMAND_PAGING)) {
2208			pr_debug("ODP support not available\n");
2209			return ERR_PTR(-EINVAL);
2210		}
2211	}
2212
2213	mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2214					 access_flags, NULL);
2215
2216	if (IS_ERR(mr))
2217		return mr;
2218
2219	mr->device = pd->device;
2220	mr->type = IB_MR_TYPE_USER;
2221	mr->pd = pd;
2222	mr->dm = NULL;
2223	atomic_inc(&pd->usecnt);
2224	mr->iova =  virt_addr;
2225	mr->length = length;
2226
2227	rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2228	rdma_restrack_parent_name(&mr->res, &pd->res);
2229	rdma_restrack_add(&mr->res);
2230
2231	return mr;
2232}
2233EXPORT_SYMBOL(ib_reg_user_mr);
2234
2235int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2236		 u32 flags, struct ib_sge *sg_list, u32 num_sge)
2237{
2238	if (!pd->device->ops.advise_mr)
2239		return -EOPNOTSUPP;
2240
2241	if (!num_sge)
2242		return 0;
2243
2244	return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2245					 NULL);
2246}
2247EXPORT_SYMBOL(ib_advise_mr);
2248
2249int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2250{
2251	struct ib_pd *pd = mr->pd;
2252	struct ib_dm *dm = mr->dm;
2253	struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2254	int ret;
2255
2256	trace_mr_dereg(mr);
2257	rdma_restrack_del(&mr->res);
2258	ret = mr->device->ops.dereg_mr(mr, udata);
2259	if (!ret) {
2260		atomic_dec(&pd->usecnt);
2261		if (dm)
2262			atomic_dec(&dm->usecnt);
2263		kfree(sig_attrs);
2264	}
2265
2266	return ret;
2267}
2268EXPORT_SYMBOL(ib_dereg_mr_user);
2269
2270/**
2271 * ib_alloc_mr() - Allocates a memory region
2272 * @pd:            protection domain associated with the region
2273 * @mr_type:       memory region type
2274 * @max_num_sg:    maximum sg entries available for registration.
 
2275 *
2276 * Notes:
2277 * Memory registeration page/sg lists must not exceed max_num_sg.
2278 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2279 * max_num_sg * used_page_size.
2280 *
2281 */
2282struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2283			  u32 max_num_sg)
2284{
2285	struct ib_mr *mr;
2286
2287	if (!pd->device->ops.alloc_mr) {
2288		mr = ERR_PTR(-EOPNOTSUPP);
2289		goto out;
2290	}
2291
2292	if (mr_type == IB_MR_TYPE_INTEGRITY) {
2293		WARN_ON_ONCE(1);
2294		mr = ERR_PTR(-EINVAL);
2295		goto out;
2296	}
2297
2298	mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2299	if (IS_ERR(mr))
2300		goto out;
2301
2302	mr->device = pd->device;
2303	mr->pd = pd;
2304	mr->dm = NULL;
2305	mr->uobject = NULL;
2306	atomic_inc(&pd->usecnt);
2307	mr->need_inval = false;
2308	mr->type = mr_type;
2309	mr->sig_attrs = NULL;
 
 
 
 
 
2310
2311	rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2312	rdma_restrack_parent_name(&mr->res, &pd->res);
2313	rdma_restrack_add(&mr->res);
2314out:
2315	trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2316	return mr;
2317}
2318EXPORT_SYMBOL(ib_alloc_mr);
2319
2320/**
2321 * ib_alloc_mr_integrity() - Allocates an integrity memory region
2322 * @pd:                      protection domain associated with the region
2323 * @max_num_data_sg:         maximum data sg entries available for registration
2324 * @max_num_meta_sg:         maximum metadata sg entries available for
2325 *                           registration
2326 *
2327 * Notes:
2328 * Memory registration page/sg lists must not exceed max_num_sg,
2329 * also the integrity page/sg lists must not exceed max_num_meta_sg.
2330 *
2331 */
2332struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2333				    u32 max_num_data_sg,
2334				    u32 max_num_meta_sg)
2335{
2336	struct ib_mr *mr;
2337	struct ib_sig_attrs *sig_attrs;
2338
2339	if (!pd->device->ops.alloc_mr_integrity ||
2340	    !pd->device->ops.map_mr_sg_pi) {
2341		mr = ERR_PTR(-EOPNOTSUPP);
2342		goto out;
2343	}
2344
2345	if (!max_num_meta_sg) {
2346		mr = ERR_PTR(-EINVAL);
2347		goto out;
2348	}
2349
2350	sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2351	if (!sig_attrs) {
2352		mr = ERR_PTR(-ENOMEM);
2353		goto out;
2354	}
2355
2356	mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2357						max_num_meta_sg);
2358	if (IS_ERR(mr)) {
2359		kfree(sig_attrs);
2360		goto out;
2361	}
2362
2363	mr->device = pd->device;
2364	mr->pd = pd;
2365	mr->dm = NULL;
2366	mr->uobject = NULL;
2367	atomic_inc(&pd->usecnt);
2368	mr->need_inval = false;
 
 
2369	mr->type = IB_MR_TYPE_INTEGRITY;
2370	mr->sig_attrs = sig_attrs;
2371
2372	rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2373	rdma_restrack_parent_name(&mr->res, &pd->res);
2374	rdma_restrack_add(&mr->res);
2375out:
2376	trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2377	return mr;
2378}
2379EXPORT_SYMBOL(ib_alloc_mr_integrity);
2380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2381/* Multicast groups */
2382
2383static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2384{
2385	struct ib_qp_init_attr init_attr = {};
2386	struct ib_qp_attr attr = {};
2387	int num_eth_ports = 0;
2388	unsigned int port;
2389
2390	/* If QP state >= init, it is assigned to a port and we can check this
2391	 * port only.
2392	 */
2393	if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2394		if (attr.qp_state >= IB_QPS_INIT) {
2395			if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2396			    IB_LINK_LAYER_INFINIBAND)
2397				return true;
2398			goto lid_check;
2399		}
2400	}
2401
2402	/* Can't get a quick answer, iterate over all ports */
2403	rdma_for_each_port(qp->device, port)
2404		if (rdma_port_get_link_layer(qp->device, port) !=
2405		    IB_LINK_LAYER_INFINIBAND)
2406			num_eth_ports++;
2407
2408	/* If we have at lease one Ethernet port, RoCE annex declares that
2409	 * multicast LID should be ignored. We can't tell at this step if the
2410	 * QP belongs to an IB or Ethernet port.
2411	 */
2412	if (num_eth_ports)
2413		return true;
2414
2415	/* If all the ports are IB, we can check according to IB spec. */
2416lid_check:
2417	return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2418		 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2419}
2420
2421int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2422{
2423	int ret;
2424
2425	if (!qp->device->ops.attach_mcast)
2426		return -EOPNOTSUPP;
2427
2428	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2429	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2430		return -EINVAL;
2431
2432	ret = qp->device->ops.attach_mcast(qp, gid, lid);
2433	if (!ret)
2434		atomic_inc(&qp->usecnt);
2435	return ret;
2436}
2437EXPORT_SYMBOL(ib_attach_mcast);
2438
2439int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2440{
2441	int ret;
2442
2443	if (!qp->device->ops.detach_mcast)
2444		return -EOPNOTSUPP;
2445
2446	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2447	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2448		return -EINVAL;
2449
2450	ret = qp->device->ops.detach_mcast(qp, gid, lid);
2451	if (!ret)
2452		atomic_dec(&qp->usecnt);
2453	return ret;
2454}
2455EXPORT_SYMBOL(ib_detach_mcast);
2456
2457/**
2458 * ib_alloc_xrcd_user - Allocates an XRC domain.
2459 * @device: The device on which to allocate the XRC domain.
2460 * @inode: inode to connect XRCD
2461 * @udata: Valid user data or NULL for kernel object
2462 */
2463struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2464				   struct inode *inode, struct ib_udata *udata)
2465{
2466	struct ib_xrcd *xrcd;
2467	int ret;
2468
2469	if (!device->ops.alloc_xrcd)
2470		return ERR_PTR(-EOPNOTSUPP);
2471
2472	xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2473	if (!xrcd)
2474		return ERR_PTR(-ENOMEM);
2475
2476	xrcd->device = device;
2477	xrcd->inode = inode;
2478	atomic_set(&xrcd->usecnt, 0);
2479	init_rwsem(&xrcd->tgt_qps_rwsem);
2480	xa_init(&xrcd->tgt_qps);
2481
2482	ret = device->ops.alloc_xrcd(xrcd, udata);
2483	if (ret)
2484		goto err;
2485	return xrcd;
2486err:
2487	kfree(xrcd);
2488	return ERR_PTR(ret);
2489}
2490EXPORT_SYMBOL(ib_alloc_xrcd_user);
2491
2492/**
2493 * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2494 * @xrcd: The XRC domain to deallocate.
2495 * @udata: Valid user data or NULL for kernel object
2496 */
2497int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2498{
 
2499	int ret;
2500
2501	if (atomic_read(&xrcd->usecnt))
2502		return -EBUSY;
2503
2504	WARN_ON(!xa_empty(&xrcd->tgt_qps));
2505	ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2506	if (ret)
2507		return ret;
2508	kfree(xrcd);
2509	return ret;
 
 
 
2510}
2511EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2512
2513/**
2514 * ib_create_wq - Creates a WQ associated with the specified protection
2515 * domain.
2516 * @pd: The protection domain associated with the WQ.
2517 * @wq_attr: A list of initial attributes required to create the
2518 * WQ. If WQ creation succeeds, then the attributes are updated to
2519 * the actual capabilities of the created WQ.
2520 *
2521 * wq_attr->max_wr and wq_attr->max_sge determine
2522 * the requested size of the WQ, and set to the actual values allocated
2523 * on return.
2524 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2525 * at least as large as the requested values.
2526 */
2527struct ib_wq *ib_create_wq(struct ib_pd *pd,
2528			   struct ib_wq_init_attr *wq_attr)
2529{
2530	struct ib_wq *wq;
2531
2532	if (!pd->device->ops.create_wq)
2533		return ERR_PTR(-EOPNOTSUPP);
2534
2535	wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2536	if (!IS_ERR(wq)) {
2537		wq->event_handler = wq_attr->event_handler;
2538		wq->wq_context = wq_attr->wq_context;
2539		wq->wq_type = wq_attr->wq_type;
2540		wq->cq = wq_attr->cq;
2541		wq->device = pd->device;
2542		wq->pd = pd;
2543		wq->uobject = NULL;
2544		atomic_inc(&pd->usecnt);
2545		atomic_inc(&wq_attr->cq->usecnt);
2546		atomic_set(&wq->usecnt, 0);
2547	}
2548	return wq;
2549}
2550EXPORT_SYMBOL(ib_create_wq);
2551
2552/**
2553 * ib_destroy_wq_user - Destroys the specified user WQ.
2554 * @wq: The WQ to destroy.
2555 * @udata: Valid user data
2556 */
2557int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
2558{
2559	struct ib_cq *cq = wq->cq;
2560	struct ib_pd *pd = wq->pd;
2561	int ret;
2562
2563	if (atomic_read(&wq->usecnt))
2564		return -EBUSY;
2565
2566	ret = wq->device->ops.destroy_wq(wq, udata);
2567	if (ret)
2568		return ret;
2569
2570	atomic_dec(&pd->usecnt);
2571	atomic_dec(&cq->usecnt);
2572	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2573}
2574EXPORT_SYMBOL(ib_destroy_wq_user);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2575
2576int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2577		       struct ib_mr_status *mr_status)
2578{
2579	if (!mr->device->ops.check_mr_status)
2580		return -EOPNOTSUPP;
2581
2582	return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2583}
2584EXPORT_SYMBOL(ib_check_mr_status);
2585
2586int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
2587			 int state)
2588{
2589	if (!device->ops.set_vf_link_state)
2590		return -EOPNOTSUPP;
2591
2592	return device->ops.set_vf_link_state(device, vf, port, state);
2593}
2594EXPORT_SYMBOL(ib_set_vf_link_state);
2595
2596int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
2597		     struct ifla_vf_info *info)
2598{
2599	if (!device->ops.get_vf_config)
2600		return -EOPNOTSUPP;
2601
2602	return device->ops.get_vf_config(device, vf, port, info);
2603}
2604EXPORT_SYMBOL(ib_get_vf_config);
2605
2606int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
2607		    struct ifla_vf_stats *stats)
2608{
2609	if (!device->ops.get_vf_stats)
2610		return -EOPNOTSUPP;
2611
2612	return device->ops.get_vf_stats(device, vf, port, stats);
2613}
2614EXPORT_SYMBOL(ib_get_vf_stats);
2615
2616int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
2617		   int type)
2618{
2619	if (!device->ops.set_vf_guid)
2620		return -EOPNOTSUPP;
2621
2622	return device->ops.set_vf_guid(device, vf, port, guid, type);
2623}
2624EXPORT_SYMBOL(ib_set_vf_guid);
2625
2626int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
2627		   struct ifla_vf_guid *node_guid,
2628		   struct ifla_vf_guid *port_guid)
2629{
2630	if (!device->ops.get_vf_guid)
2631		return -EOPNOTSUPP;
2632
2633	return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2634}
2635EXPORT_SYMBOL(ib_get_vf_guid);
2636/**
2637 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2638 *     information) and set an appropriate memory region for registration.
2639 * @mr:             memory region
2640 * @data_sg:        dma mapped scatterlist for data
2641 * @data_sg_nents:  number of entries in data_sg
2642 * @data_sg_offset: offset in bytes into data_sg
2643 * @meta_sg:        dma mapped scatterlist for metadata
2644 * @meta_sg_nents:  number of entries in meta_sg
2645 * @meta_sg_offset: offset in bytes into meta_sg
2646 * @page_size:      page vector desired page size
2647 *
2648 * Constraints:
2649 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2650 *
2651 * Return: 0 on success.
2652 *
2653 * After this completes successfully, the  memory region
2654 * is ready for registration.
2655 */
2656int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2657		    int data_sg_nents, unsigned int *data_sg_offset,
2658		    struct scatterlist *meta_sg, int meta_sg_nents,
2659		    unsigned int *meta_sg_offset, unsigned int page_size)
2660{
2661	if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2662		     WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2663		return -EOPNOTSUPP;
2664
2665	mr->page_size = page_size;
2666
2667	return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2668					    data_sg_offset, meta_sg,
2669					    meta_sg_nents, meta_sg_offset);
2670}
2671EXPORT_SYMBOL(ib_map_mr_sg_pi);
2672
2673/**
2674 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2675 *     and set it the memory region.
2676 * @mr:            memory region
2677 * @sg:            dma mapped scatterlist
2678 * @sg_nents:      number of entries in sg
2679 * @sg_offset:     offset in bytes into sg
2680 * @page_size:     page vector desired page size
2681 *
2682 * Constraints:
2683 *
2684 * - The first sg element is allowed to have an offset.
2685 * - Each sg element must either be aligned to page_size or virtually
2686 *   contiguous to the previous element. In case an sg element has a
2687 *   non-contiguous offset, the mapping prefix will not include it.
2688 * - The last sg element is allowed to have length less than page_size.
2689 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2690 *   then only max_num_sg entries will be mapped.
2691 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2692 *   constraints holds and the page_size argument is ignored.
2693 *
2694 * Returns the number of sg elements that were mapped to the memory region.
2695 *
2696 * After this completes successfully, the  memory region
2697 * is ready for registration.
2698 */
2699int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2700		 unsigned int *sg_offset, unsigned int page_size)
2701{
2702	if (unlikely(!mr->device->ops.map_mr_sg))
2703		return -EOPNOTSUPP;
2704
2705	mr->page_size = page_size;
2706
2707	return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2708}
2709EXPORT_SYMBOL(ib_map_mr_sg);
2710
2711/**
2712 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2713 *     to a page vector
2714 * @mr:            memory region
2715 * @sgl:           dma mapped scatterlist
2716 * @sg_nents:      number of entries in sg
2717 * @sg_offset_p:   ==== =======================================================
2718 *                 IN   start offset in bytes into sg
2719 *                 OUT  offset in bytes for element n of the sg of the first
2720 *                      byte that has not been processed where n is the return
2721 *                      value of this function.
2722 *                 ==== =======================================================
2723 * @set_page:      driver page assignment function pointer
2724 *
2725 * Core service helper for drivers to convert the largest
2726 * prefix of given sg list to a page vector. The sg list
2727 * prefix converted is the prefix that meet the requirements
2728 * of ib_map_mr_sg.
2729 *
2730 * Returns the number of sg elements that were assigned to
2731 * a page vector.
2732 */
2733int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2734		unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2735{
2736	struct scatterlist *sg;
2737	u64 last_end_dma_addr = 0;
2738	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2739	unsigned int last_page_off = 0;
2740	u64 page_mask = ~((u64)mr->page_size - 1);
2741	int i, ret;
2742
2743	if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2744		return -EINVAL;
2745
2746	mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2747	mr->length = 0;
2748
2749	for_each_sg(sgl, sg, sg_nents, i) {
2750		u64 dma_addr = sg_dma_address(sg) + sg_offset;
2751		u64 prev_addr = dma_addr;
2752		unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2753		u64 end_dma_addr = dma_addr + dma_len;
2754		u64 page_addr = dma_addr & page_mask;
2755
2756		/*
2757		 * For the second and later elements, check whether either the
2758		 * end of element i-1 or the start of element i is not aligned
2759		 * on a page boundary.
2760		 */
2761		if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2762			/* Stop mapping if there is a gap. */
2763			if (last_end_dma_addr != dma_addr)
2764				break;
2765
2766			/*
2767			 * Coalesce this element with the last. If it is small
2768			 * enough just update mr->length. Otherwise start
2769			 * mapping from the next page.
2770			 */
2771			goto next_page;
2772		}
2773
2774		do {
2775			ret = set_page(mr, page_addr);
2776			if (unlikely(ret < 0)) {
2777				sg_offset = prev_addr - sg_dma_address(sg);
2778				mr->length += prev_addr - dma_addr;
2779				if (sg_offset_p)
2780					*sg_offset_p = sg_offset;
2781				return i || sg_offset ? i : ret;
2782			}
2783			prev_addr = page_addr;
2784next_page:
2785			page_addr += mr->page_size;
2786		} while (page_addr < end_dma_addr);
2787
2788		mr->length += dma_len;
2789		last_end_dma_addr = end_dma_addr;
2790		last_page_off = end_dma_addr & ~page_mask;
2791
2792		sg_offset = 0;
2793	}
2794
2795	if (sg_offset_p)
2796		*sg_offset_p = 0;
2797	return i;
2798}
2799EXPORT_SYMBOL(ib_sg_to_pages);
2800
2801struct ib_drain_cqe {
2802	struct ib_cqe cqe;
2803	struct completion done;
2804};
2805
2806static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2807{
2808	struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2809						cqe);
2810
2811	complete(&cqe->done);
2812}
2813
2814/*
2815 * Post a WR and block until its completion is reaped for the SQ.
2816 */
2817static void __ib_drain_sq(struct ib_qp *qp)
2818{
2819	struct ib_cq *cq = qp->send_cq;
2820	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2821	struct ib_drain_cqe sdrain;
2822	struct ib_rdma_wr swr = {
2823		.wr = {
2824			.next = NULL,
2825			{ .wr_cqe	= &sdrain.cqe, },
2826			.opcode	= IB_WR_RDMA_WRITE,
2827		},
2828	};
2829	int ret;
2830
2831	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2832	if (ret) {
2833		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2834		return;
2835	}
2836
2837	sdrain.cqe.done = ib_drain_qp_done;
2838	init_completion(&sdrain.done);
2839
2840	ret = ib_post_send(qp, &swr.wr, NULL);
2841	if (ret) {
2842		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2843		return;
2844	}
2845
2846	if (cq->poll_ctx == IB_POLL_DIRECT)
2847		while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2848			ib_process_cq_direct(cq, -1);
2849	else
2850		wait_for_completion(&sdrain.done);
2851}
2852
2853/*
2854 * Post a WR and block until its completion is reaped for the RQ.
2855 */
2856static void __ib_drain_rq(struct ib_qp *qp)
2857{
2858	struct ib_cq *cq = qp->recv_cq;
2859	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2860	struct ib_drain_cqe rdrain;
2861	struct ib_recv_wr rwr = {};
2862	int ret;
2863
2864	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2865	if (ret) {
2866		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2867		return;
2868	}
2869
2870	rwr.wr_cqe = &rdrain.cqe;
2871	rdrain.cqe.done = ib_drain_qp_done;
2872	init_completion(&rdrain.done);
2873
2874	ret = ib_post_recv(qp, &rwr, NULL);
2875	if (ret) {
2876		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2877		return;
2878	}
2879
2880	if (cq->poll_ctx == IB_POLL_DIRECT)
2881		while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2882			ib_process_cq_direct(cq, -1);
2883	else
2884		wait_for_completion(&rdrain.done);
2885}
2886
2887/**
2888 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2889 *		   application.
2890 * @qp:            queue pair to drain
2891 *
2892 * If the device has a provider-specific drain function, then
2893 * call that.  Otherwise call the generic drain function
2894 * __ib_drain_sq().
2895 *
2896 * The caller must:
2897 *
2898 * ensure there is room in the CQ and SQ for the drain work request and
2899 * completion.
2900 *
2901 * allocate the CQ using ib_alloc_cq().
2902 *
2903 * ensure that there are no other contexts that are posting WRs concurrently.
2904 * Otherwise the drain is not guaranteed.
2905 */
2906void ib_drain_sq(struct ib_qp *qp)
2907{
2908	if (qp->device->ops.drain_sq)
2909		qp->device->ops.drain_sq(qp);
2910	else
2911		__ib_drain_sq(qp);
2912	trace_cq_drain_complete(qp->send_cq);
2913}
2914EXPORT_SYMBOL(ib_drain_sq);
2915
2916/**
2917 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2918 *		   application.
2919 * @qp:            queue pair to drain
2920 *
2921 * If the device has a provider-specific drain function, then
2922 * call that.  Otherwise call the generic drain function
2923 * __ib_drain_rq().
2924 *
2925 * The caller must:
2926 *
2927 * ensure there is room in the CQ and RQ for the drain work request and
2928 * completion.
2929 *
2930 * allocate the CQ using ib_alloc_cq().
2931 *
2932 * ensure that there are no other contexts that are posting WRs concurrently.
2933 * Otherwise the drain is not guaranteed.
2934 */
2935void ib_drain_rq(struct ib_qp *qp)
2936{
2937	if (qp->device->ops.drain_rq)
2938		qp->device->ops.drain_rq(qp);
2939	else
2940		__ib_drain_rq(qp);
2941	trace_cq_drain_complete(qp->recv_cq);
2942}
2943EXPORT_SYMBOL(ib_drain_rq);
2944
2945/**
2946 * ib_drain_qp() - Block until all CQEs have been consumed by the
2947 *		   application on both the RQ and SQ.
2948 * @qp:            queue pair to drain
2949 *
2950 * The caller must:
2951 *
2952 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2953 * and completions.
2954 *
2955 * allocate the CQs using ib_alloc_cq().
2956 *
2957 * ensure that there are no other contexts that are posting WRs concurrently.
2958 * Otherwise the drain is not guaranteed.
2959 */
2960void ib_drain_qp(struct ib_qp *qp)
2961{
2962	ib_drain_sq(qp);
2963	if (!qp->srq)
2964		ib_drain_rq(qp);
2965}
2966EXPORT_SYMBOL(ib_drain_qp);
2967
2968struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
2969				     enum rdma_netdev_t type, const char *name,
2970				     unsigned char name_assign_type,
2971				     void (*setup)(struct net_device *))
2972{
2973	struct rdma_netdev_alloc_params params;
2974	struct net_device *netdev;
2975	int rc;
2976
2977	if (!device->ops.rdma_netdev_get_params)
2978		return ERR_PTR(-EOPNOTSUPP);
2979
2980	rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2981						&params);
2982	if (rc)
2983		return ERR_PTR(rc);
2984
2985	netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2986				  setup, params.txqs, params.rxqs);
2987	if (!netdev)
2988		return ERR_PTR(-ENOMEM);
2989
2990	return netdev;
2991}
2992EXPORT_SYMBOL(rdma_alloc_netdev);
2993
2994int rdma_init_netdev(struct ib_device *device, u32 port_num,
2995		     enum rdma_netdev_t type, const char *name,
2996		     unsigned char name_assign_type,
2997		     void (*setup)(struct net_device *),
2998		     struct net_device *netdev)
2999{
3000	struct rdma_netdev_alloc_params params;
3001	int rc;
3002
3003	if (!device->ops.rdma_netdev_get_params)
3004		return -EOPNOTSUPP;
3005
3006	rc = device->ops.rdma_netdev_get_params(device, port_num, type,
3007						&params);
3008	if (rc)
3009		return rc;
3010
3011	return params.initialize_rdma_netdev(device, port_num,
3012					     netdev, params.param);
3013}
3014EXPORT_SYMBOL(rdma_init_netdev);
3015
3016void __rdma_block_iter_start(struct ib_block_iter *biter,
3017			     struct scatterlist *sglist, unsigned int nents,
3018			     unsigned long pgsz)
3019{
3020	memset(biter, 0, sizeof(struct ib_block_iter));
3021	biter->__sg = sglist;
3022	biter->__sg_nents = nents;
3023
3024	/* Driver provides best block size to use */
3025	biter->__pg_bit = __fls(pgsz);
3026}
3027EXPORT_SYMBOL(__rdma_block_iter_start);
3028
3029bool __rdma_block_iter_next(struct ib_block_iter *biter)
3030{
3031	unsigned int block_offset;
3032	unsigned int sg_delta;
3033
3034	if (!biter->__sg_nents || !biter->__sg)
3035		return false;
3036
3037	biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
3038	block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
3039	sg_delta = BIT_ULL(biter->__pg_bit) - block_offset;
3040
3041	if (sg_dma_len(biter->__sg) - biter->__sg_advance > sg_delta) {
3042		biter->__sg_advance += sg_delta;
3043	} else {
3044		biter->__sg_advance = 0;
3045		biter->__sg = sg_next(biter->__sg);
3046		biter->__sg_nents--;
3047	}
3048
3049	return true;
3050}
3051EXPORT_SYMBOL(__rdma_block_iter_next);
3052
3053/**
3054 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
3055 *   for the drivers.
3056 * @descs: array of static descriptors
3057 * @num_counters: number of elements in array
3058 * @lifespan: milliseconds between updates
3059 */
3060struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
3061	const struct rdma_stat_desc *descs, int num_counters,
3062	unsigned long lifespan)
3063{
3064	struct rdma_hw_stats *stats;
3065
3066	stats = kzalloc(struct_size(stats, value, num_counters), GFP_KERNEL);
3067	if (!stats)
3068		return NULL;
3069
3070	stats->is_disabled = kcalloc(BITS_TO_LONGS(num_counters),
3071				     sizeof(*stats->is_disabled), GFP_KERNEL);
3072	if (!stats->is_disabled)
3073		goto err;
3074
3075	stats->descs = descs;
3076	stats->num_counters = num_counters;
3077	stats->lifespan = msecs_to_jiffies(lifespan);
3078	mutex_init(&stats->lock);
3079
3080	return stats;
3081
3082err:
3083	kfree(stats);
3084	return NULL;
3085}
3086EXPORT_SYMBOL(rdma_alloc_hw_stats_struct);
3087
3088/**
3089 * rdma_free_hw_stats_struct - Helper function to release rdma_hw_stats
3090 * @stats: statistics to release
3091 */
3092void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats)
3093{
3094	if (!stats)
3095		return;
3096
3097	kfree(stats->is_disabled);
3098	kfree(stats);
3099}
3100EXPORT_SYMBOL(rdma_free_hw_stats_struct);
v5.4
   1/*
   2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
   5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   8 * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
   9 *
  10 * This software is available to you under a choice of one of two
  11 * licenses.  You may choose to be licensed under the terms of the GNU
  12 * General Public License (GPL) Version 2, available from the file
  13 * COPYING in the main directory of this source tree, or the
  14 * OpenIB.org BSD license below:
  15 *
  16 *     Redistribution and use in source and binary forms, with or
  17 *     without modification, are permitted provided that the following
  18 *     conditions are met:
  19 *
  20 *      - Redistributions of source code must retain the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer.
  23 *
  24 *      - Redistributions in binary form must reproduce the above
  25 *        copyright notice, this list of conditions and the following
  26 *        disclaimer in the documentation and/or other materials
  27 *        provided with the distribution.
  28 *
  29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36 * SOFTWARE.
  37 */
  38
  39#include <linux/errno.h>
  40#include <linux/err.h>
  41#include <linux/export.h>
  42#include <linux/string.h>
  43#include <linux/slab.h>
  44#include <linux/in.h>
  45#include <linux/in6.h>
  46#include <net/addrconf.h>
  47#include <linux/security.h>
  48
  49#include <rdma/ib_verbs.h>
  50#include <rdma/ib_cache.h>
  51#include <rdma/ib_addr.h>
  52#include <rdma/rw.h>
 
  53
  54#include "core_priv.h"
 
  55
  56static int ib_resolve_eth_dmac(struct ib_device *device,
  57			       struct rdma_ah_attr *ah_attr);
  58
  59static const char * const ib_events[] = {
  60	[IB_EVENT_CQ_ERR]		= "CQ error",
  61	[IB_EVENT_QP_FATAL]		= "QP fatal error",
  62	[IB_EVENT_QP_REQ_ERR]		= "QP request error",
  63	[IB_EVENT_QP_ACCESS_ERR]	= "QP access error",
  64	[IB_EVENT_COMM_EST]		= "communication established",
  65	[IB_EVENT_SQ_DRAINED]		= "send queue drained",
  66	[IB_EVENT_PATH_MIG]		= "path migration successful",
  67	[IB_EVENT_PATH_MIG_ERR]		= "path migration error",
  68	[IB_EVENT_DEVICE_FATAL]		= "device fatal error",
  69	[IB_EVENT_PORT_ACTIVE]		= "port active",
  70	[IB_EVENT_PORT_ERR]		= "port error",
  71	[IB_EVENT_LID_CHANGE]		= "LID change",
  72	[IB_EVENT_PKEY_CHANGE]		= "P_key change",
  73	[IB_EVENT_SM_CHANGE]		= "SM change",
  74	[IB_EVENT_SRQ_ERR]		= "SRQ error",
  75	[IB_EVENT_SRQ_LIMIT_REACHED]	= "SRQ limit reached",
  76	[IB_EVENT_QP_LAST_WQE_REACHED]	= "last WQE reached",
  77	[IB_EVENT_CLIENT_REREGISTER]	= "client reregister",
  78	[IB_EVENT_GID_CHANGE]		= "GID changed",
  79};
  80
  81const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
  82{
  83	size_t index = event;
  84
  85	return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
  86			ib_events[index] : "unrecognized event";
  87}
  88EXPORT_SYMBOL(ib_event_msg);
  89
  90static const char * const wc_statuses[] = {
  91	[IB_WC_SUCCESS]			= "success",
  92	[IB_WC_LOC_LEN_ERR]		= "local length error",
  93	[IB_WC_LOC_QP_OP_ERR]		= "local QP operation error",
  94	[IB_WC_LOC_EEC_OP_ERR]		= "local EE context operation error",
  95	[IB_WC_LOC_PROT_ERR]		= "local protection error",
  96	[IB_WC_WR_FLUSH_ERR]		= "WR flushed",
  97	[IB_WC_MW_BIND_ERR]		= "memory management operation error",
  98	[IB_WC_BAD_RESP_ERR]		= "bad response error",
  99	[IB_WC_LOC_ACCESS_ERR]		= "local access error",
 100	[IB_WC_REM_INV_REQ_ERR]		= "invalid request error",
 101	[IB_WC_REM_ACCESS_ERR]		= "remote access error",
 102	[IB_WC_REM_OP_ERR]		= "remote operation error",
 103	[IB_WC_RETRY_EXC_ERR]		= "transport retry counter exceeded",
 104	[IB_WC_RNR_RETRY_EXC_ERR]	= "RNR retry counter exceeded",
 105	[IB_WC_LOC_RDD_VIOL_ERR]	= "local RDD violation error",
 106	[IB_WC_REM_INV_RD_REQ_ERR]	= "remote invalid RD request",
 107	[IB_WC_REM_ABORT_ERR]		= "operation aborted",
 108	[IB_WC_INV_EECN_ERR]		= "invalid EE context number",
 109	[IB_WC_INV_EEC_STATE_ERR]	= "invalid EE context state",
 110	[IB_WC_FATAL_ERR]		= "fatal error",
 111	[IB_WC_RESP_TIMEOUT_ERR]	= "response timeout error",
 112	[IB_WC_GENERAL_ERR]		= "general error",
 113};
 114
 115const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
 116{
 117	size_t index = status;
 118
 119	return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
 120			wc_statuses[index] : "unrecognized status";
 121}
 122EXPORT_SYMBOL(ib_wc_status_msg);
 123
 124__attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
 125{
 126	switch (rate) {
 127	case IB_RATE_2_5_GBPS: return   1;
 128	case IB_RATE_5_GBPS:   return   2;
 129	case IB_RATE_10_GBPS:  return   4;
 130	case IB_RATE_20_GBPS:  return   8;
 131	case IB_RATE_30_GBPS:  return  12;
 132	case IB_RATE_40_GBPS:  return  16;
 133	case IB_RATE_60_GBPS:  return  24;
 134	case IB_RATE_80_GBPS:  return  32;
 135	case IB_RATE_120_GBPS: return  48;
 136	case IB_RATE_14_GBPS:  return   6;
 137	case IB_RATE_56_GBPS:  return  22;
 138	case IB_RATE_112_GBPS: return  45;
 139	case IB_RATE_168_GBPS: return  67;
 140	case IB_RATE_25_GBPS:  return  10;
 141	case IB_RATE_100_GBPS: return  40;
 142	case IB_RATE_200_GBPS: return  80;
 143	case IB_RATE_300_GBPS: return 120;
 144	case IB_RATE_28_GBPS:  return  11;
 145	case IB_RATE_50_GBPS:  return  20;
 146	case IB_RATE_400_GBPS: return 160;
 147	case IB_RATE_600_GBPS: return 240;
 
 148	default:	       return  -1;
 149	}
 150}
 151EXPORT_SYMBOL(ib_rate_to_mult);
 152
 153__attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
 154{
 155	switch (mult) {
 156	case 1:   return IB_RATE_2_5_GBPS;
 157	case 2:   return IB_RATE_5_GBPS;
 158	case 4:   return IB_RATE_10_GBPS;
 159	case 8:   return IB_RATE_20_GBPS;
 160	case 12:  return IB_RATE_30_GBPS;
 161	case 16:  return IB_RATE_40_GBPS;
 162	case 24:  return IB_RATE_60_GBPS;
 163	case 32:  return IB_RATE_80_GBPS;
 164	case 48:  return IB_RATE_120_GBPS;
 165	case 6:   return IB_RATE_14_GBPS;
 166	case 22:  return IB_RATE_56_GBPS;
 167	case 45:  return IB_RATE_112_GBPS;
 168	case 67:  return IB_RATE_168_GBPS;
 169	case 10:  return IB_RATE_25_GBPS;
 170	case 40:  return IB_RATE_100_GBPS;
 171	case 80:  return IB_RATE_200_GBPS;
 172	case 120: return IB_RATE_300_GBPS;
 173	case 11:  return IB_RATE_28_GBPS;
 174	case 20:  return IB_RATE_50_GBPS;
 175	case 160: return IB_RATE_400_GBPS;
 176	case 240: return IB_RATE_600_GBPS;
 
 177	default:  return IB_RATE_PORT_CURRENT;
 178	}
 179}
 180EXPORT_SYMBOL(mult_to_ib_rate);
 181
 182__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
 183{
 184	switch (rate) {
 185	case IB_RATE_2_5_GBPS: return 2500;
 186	case IB_RATE_5_GBPS:   return 5000;
 187	case IB_RATE_10_GBPS:  return 10000;
 188	case IB_RATE_20_GBPS:  return 20000;
 189	case IB_RATE_30_GBPS:  return 30000;
 190	case IB_RATE_40_GBPS:  return 40000;
 191	case IB_RATE_60_GBPS:  return 60000;
 192	case IB_RATE_80_GBPS:  return 80000;
 193	case IB_RATE_120_GBPS: return 120000;
 194	case IB_RATE_14_GBPS:  return 14062;
 195	case IB_RATE_56_GBPS:  return 56250;
 196	case IB_RATE_112_GBPS: return 112500;
 197	case IB_RATE_168_GBPS: return 168750;
 198	case IB_RATE_25_GBPS:  return 25781;
 199	case IB_RATE_100_GBPS: return 103125;
 200	case IB_RATE_200_GBPS: return 206250;
 201	case IB_RATE_300_GBPS: return 309375;
 202	case IB_RATE_28_GBPS:  return 28125;
 203	case IB_RATE_50_GBPS:  return 53125;
 204	case IB_RATE_400_GBPS: return 425000;
 205	case IB_RATE_600_GBPS: return 637500;
 
 206	default:	       return -1;
 207	}
 208}
 209EXPORT_SYMBOL(ib_rate_to_mbps);
 210
 211__attribute_const__ enum rdma_transport_type
 212rdma_node_get_transport(unsigned int node_type)
 213{
 214
 215	if (node_type == RDMA_NODE_USNIC)
 216		return RDMA_TRANSPORT_USNIC;
 217	if (node_type == RDMA_NODE_USNIC_UDP)
 218		return RDMA_TRANSPORT_USNIC_UDP;
 219	if (node_type == RDMA_NODE_RNIC)
 220		return RDMA_TRANSPORT_IWARP;
 221	if (node_type == RDMA_NODE_UNSPECIFIED)
 222		return RDMA_TRANSPORT_UNSPECIFIED;
 223
 224	return RDMA_TRANSPORT_IB;
 225}
 226EXPORT_SYMBOL(rdma_node_get_transport);
 227
 228enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
 
 229{
 230	enum rdma_transport_type lt;
 231	if (device->ops.get_link_layer)
 232		return device->ops.get_link_layer(device, port_num);
 233
 234	lt = rdma_node_get_transport(device->node_type);
 235	if (lt == RDMA_TRANSPORT_IB)
 236		return IB_LINK_LAYER_INFINIBAND;
 237
 238	return IB_LINK_LAYER_ETHERNET;
 239}
 240EXPORT_SYMBOL(rdma_port_get_link_layer);
 241
 242/* Protection domains */
 243
 244/**
 245 * ib_alloc_pd - Allocates an unused protection domain.
 246 * @device: The device on which to allocate the protection domain.
 
 
 247 *
 248 * A protection domain object provides an association between QPs, shared
 249 * receive queues, address handles, memory regions, and memory windows.
 250 *
 251 * Every PD has a local_dma_lkey which can be used as the lkey value for local
 252 * memory operations.
 253 */
 254struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
 255		const char *caller)
 256{
 257	struct ib_pd *pd;
 258	int mr_access_flags = 0;
 259	int ret;
 260
 261	pd = rdma_zalloc_drv_obj(device, ib_pd);
 262	if (!pd)
 263		return ERR_PTR(-ENOMEM);
 264
 265	pd->device = device;
 266	pd->uobject = NULL;
 267	pd->__internal_mr = NULL;
 268	atomic_set(&pd->usecnt, 0);
 269	pd->flags = flags;
 270
 271	pd->res.type = RDMA_RESTRACK_PD;
 272	rdma_restrack_set_task(&pd->res, caller);
 273
 274	ret = device->ops.alloc_pd(pd, NULL);
 275	if (ret) {
 
 276		kfree(pd);
 277		return ERR_PTR(ret);
 278	}
 279	rdma_restrack_kadd(&pd->res);
 280
 281	if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
 282		pd->local_dma_lkey = device->local_dma_lkey;
 283	else
 284		mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
 285
 286	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
 287		pr_warn("%s: enabling unsafe global rkey\n", caller);
 288		mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
 289	}
 290
 291	if (mr_access_flags) {
 292		struct ib_mr *mr;
 293
 294		mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
 295		if (IS_ERR(mr)) {
 296			ib_dealloc_pd(pd);
 297			return ERR_CAST(mr);
 298		}
 299
 300		mr->device	= pd->device;
 301		mr->pd		= pd;
 302		mr->type        = IB_MR_TYPE_DMA;
 303		mr->uobject	= NULL;
 304		mr->need_inval	= false;
 305
 306		pd->__internal_mr = mr;
 307
 308		if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
 309			pd->local_dma_lkey = pd->__internal_mr->lkey;
 310
 311		if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
 312			pd->unsafe_global_rkey = pd->__internal_mr->rkey;
 313	}
 314
 315	return pd;
 316}
 317EXPORT_SYMBOL(__ib_alloc_pd);
 318
 319/**
 320 * ib_dealloc_pd_user - Deallocates a protection domain.
 321 * @pd: The protection domain to deallocate.
 322 * @udata: Valid user data or NULL for kernel object
 323 *
 324 * It is an error to call this function while any resources in the pd still
 325 * exist.  The caller is responsible to synchronously destroy them and
 326 * guarantee no new allocations will happen.
 327 */
 328void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
 329{
 330	int ret;
 331
 332	if (pd->__internal_mr) {
 333		ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
 334		WARN_ON(ret);
 335		pd->__internal_mr = NULL;
 336	}
 337
 338	/* uverbs manipulates usecnt with proper locking, while the kabi
 339	   requires the caller to guarantee we can't race here. */
 340	WARN_ON(atomic_read(&pd->usecnt));
 341
 342	rdma_restrack_del(&pd->res);
 343	pd->device->ops.dealloc_pd(pd, udata);
 344	kfree(pd);
 
 345}
 346EXPORT_SYMBOL(ib_dealloc_pd_user);
 347
 348/* Address handles */
 349
 350/**
 351 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
 352 * @dest:       Pointer to destination ah_attr. Contents of the destination
 353 *              pointer is assumed to be invalid and attribute are overwritten.
 354 * @src:        Pointer to source ah_attr.
 355 */
 356void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
 357		       const struct rdma_ah_attr *src)
 358{
 359	*dest = *src;
 360	if (dest->grh.sgid_attr)
 361		rdma_hold_gid_attr(dest->grh.sgid_attr);
 362}
 363EXPORT_SYMBOL(rdma_copy_ah_attr);
 364
 365/**
 366 * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
 367 * @old:        Pointer to existing ah_attr which needs to be replaced.
 368 *              old is assumed to be valid or zero'd
 369 * @new:        Pointer to the new ah_attr.
 370 *
 371 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
 372 * old the ah_attr is valid; after that it copies the new attribute and holds
 373 * the reference to the replaced ah_attr.
 374 */
 375void rdma_replace_ah_attr(struct rdma_ah_attr *old,
 376			  const struct rdma_ah_attr *new)
 377{
 378	rdma_destroy_ah_attr(old);
 379	*old = *new;
 380	if (old->grh.sgid_attr)
 381		rdma_hold_gid_attr(old->grh.sgid_attr);
 382}
 383EXPORT_SYMBOL(rdma_replace_ah_attr);
 384
 385/**
 386 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
 387 * @dest:       Pointer to destination ah_attr to copy to.
 388 *              dest is assumed to be valid or zero'd
 389 * @src:        Pointer to the new ah_attr.
 390 *
 391 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
 392 * if it is valid. This also transfers ownership of internal references from
 393 * src to dest, making src invalid in the process. No new reference of the src
 394 * ah_attr is taken.
 395 */
 396void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
 397{
 398	rdma_destroy_ah_attr(dest);
 399	*dest = *src;
 400	src->grh.sgid_attr = NULL;
 401}
 402EXPORT_SYMBOL(rdma_move_ah_attr);
 403
 404/*
 405 * Validate that the rdma_ah_attr is valid for the device before passing it
 406 * off to the driver.
 407 */
 408static int rdma_check_ah_attr(struct ib_device *device,
 409			      struct rdma_ah_attr *ah_attr)
 410{
 411	if (!rdma_is_port_valid(device, ah_attr->port_num))
 412		return -EINVAL;
 413
 414	if ((rdma_is_grh_required(device, ah_attr->port_num) ||
 415	     ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
 416	    !(ah_attr->ah_flags & IB_AH_GRH))
 417		return -EINVAL;
 418
 419	if (ah_attr->grh.sgid_attr) {
 420		/*
 421		 * Make sure the passed sgid_attr is consistent with the
 422		 * parameters
 423		 */
 424		if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
 425		    ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
 426			return -EINVAL;
 427	}
 428	return 0;
 429}
 430
 431/*
 432 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
 433 * On success the caller is responsible to call rdma_unfill_sgid_attr().
 434 */
 435static int rdma_fill_sgid_attr(struct ib_device *device,
 436			       struct rdma_ah_attr *ah_attr,
 437			       const struct ib_gid_attr **old_sgid_attr)
 438{
 439	const struct ib_gid_attr *sgid_attr;
 440	struct ib_global_route *grh;
 441	int ret;
 442
 443	*old_sgid_attr = ah_attr->grh.sgid_attr;
 444
 445	ret = rdma_check_ah_attr(device, ah_attr);
 446	if (ret)
 447		return ret;
 448
 449	if (!(ah_attr->ah_flags & IB_AH_GRH))
 450		return 0;
 451
 452	grh = rdma_ah_retrieve_grh(ah_attr);
 453	if (grh->sgid_attr)
 454		return 0;
 455
 456	sgid_attr =
 457		rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
 458	if (IS_ERR(sgid_attr))
 459		return PTR_ERR(sgid_attr);
 460
 461	/* Move ownerhip of the kref into the ah_attr */
 462	grh->sgid_attr = sgid_attr;
 463	return 0;
 464}
 465
 466static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
 467				  const struct ib_gid_attr *old_sgid_attr)
 468{
 469	/*
 470	 * Fill didn't change anything, the caller retains ownership of
 471	 * whatever it passed
 472	 */
 473	if (ah_attr->grh.sgid_attr == old_sgid_attr)
 474		return;
 475
 476	/*
 477	 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
 478	 * doesn't see any change in the rdma_ah_attr. If we get here
 479	 * old_sgid_attr is NULL.
 480	 */
 481	rdma_destroy_ah_attr(ah_attr);
 482}
 483
 484static const struct ib_gid_attr *
 485rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
 486		      const struct ib_gid_attr *old_attr)
 487{
 488	if (old_attr)
 489		rdma_put_gid_attr(old_attr);
 490	if (ah_attr->ah_flags & IB_AH_GRH) {
 491		rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
 492		return ah_attr->grh.sgid_attr;
 493	}
 494	return NULL;
 495}
 496
 497static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
 498				     struct rdma_ah_attr *ah_attr,
 499				     u32 flags,
 500				     struct ib_udata *udata)
 
 501{
 
 502	struct ib_device *device = pd->device;
 503	struct ib_ah *ah;
 504	int ret;
 505
 506	might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
 507
 508	if (!device->ops.create_ah)
 509		return ERR_PTR(-EOPNOTSUPP);
 510
 511	ah = rdma_zalloc_drv_obj_gfp(
 512		device, ib_ah,
 513		(flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
 514	if (!ah)
 515		return ERR_PTR(-ENOMEM);
 516
 517	ah->device = device;
 518	ah->pd = pd;
 519	ah->type = ah_attr->type;
 520	ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
 
 
 
 521
 522	ret = device->ops.create_ah(ah, ah_attr, flags, udata);
 
 
 
 523	if (ret) {
 
 
 524		kfree(ah);
 525		return ERR_PTR(ret);
 526	}
 527
 528	atomic_inc(&pd->usecnt);
 529	return ah;
 530}
 531
 532/**
 533 * rdma_create_ah - Creates an address handle for the
 534 * given address vector.
 535 * @pd: The protection domain associated with the address handle.
 536 * @ah_attr: The attributes of the address vector.
 537 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
 538 *
 539 * It returns 0 on success and returns appropriate error code on error.
 540 * The address handle is used to reference a local or global destination
 541 * in all UD QP post sends.
 542 */
 543struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
 544			     u32 flags)
 545{
 546	const struct ib_gid_attr *old_sgid_attr;
 
 547	struct ib_ah *ah;
 548	int ret;
 549
 550	ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
 551	if (ret)
 552		return ERR_PTR(ret);
 553
 554	ah = _rdma_create_ah(pd, ah_attr, flags, NULL);
 555
 
 
 
 
 
 
 556	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 557	return ah;
 558}
 559EXPORT_SYMBOL(rdma_create_ah);
 560
 561/**
 562 * rdma_create_user_ah - Creates an address handle for the
 563 * given address vector.
 564 * It resolves destination mac address for ah attribute of RoCE type.
 565 * @pd: The protection domain associated with the address handle.
 566 * @ah_attr: The attributes of the address vector.
 567 * @udata: pointer to user's input output buffer information need by
 568 *         provider driver.
 569 *
 570 * It returns 0 on success and returns appropriate error code on error.
 571 * The address handle is used to reference a local or global destination
 572 * in all UD QP post sends.
 573 */
 574struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
 575				  struct rdma_ah_attr *ah_attr,
 576				  struct ib_udata *udata)
 577{
 578	const struct ib_gid_attr *old_sgid_attr;
 579	struct ib_ah *ah;
 580	int err;
 581
 582	err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
 583	if (err)
 584		return ERR_PTR(err);
 585
 586	if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
 587		err = ib_resolve_eth_dmac(pd->device, ah_attr);
 588		if (err) {
 589			ah = ERR_PTR(err);
 590			goto out;
 591		}
 592	}
 593
 594	ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, udata);
 
 595
 596out:
 597	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 598	return ah;
 599}
 600EXPORT_SYMBOL(rdma_create_user_ah);
 601
 602int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
 603{
 604	const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
 605	struct iphdr ip4h_checked;
 606	const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
 607
 608	/* If it's IPv6, the version must be 6, otherwise, the first
 609	 * 20 bytes (before the IPv4 header) are garbled.
 610	 */
 611	if (ip6h->version != 6)
 612		return (ip4h->version == 4) ? 4 : 0;
 613	/* version may be 6 or 4 because the first 20 bytes could be garbled */
 614
 615	/* RoCE v2 requires no options, thus header length
 616	 * must be 5 words
 617	 */
 618	if (ip4h->ihl != 5)
 619		return 6;
 620
 621	/* Verify checksum.
 622	 * We can't write on scattered buffers so we need to copy to
 623	 * temp buffer.
 624	 */
 625	memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
 626	ip4h_checked.check = 0;
 627	ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
 628	/* if IPv4 header checksum is OK, believe it */
 629	if (ip4h->check == ip4h_checked.check)
 630		return 4;
 631	return 6;
 632}
 633EXPORT_SYMBOL(ib_get_rdma_header_version);
 634
 635static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
 636						     u8 port_num,
 637						     const struct ib_grh *grh)
 638{
 639	int grh_version;
 640
 641	if (rdma_protocol_ib(device, port_num))
 642		return RDMA_NETWORK_IB;
 643
 644	grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
 645
 646	if (grh_version == 4)
 647		return RDMA_NETWORK_IPV4;
 648
 649	if (grh->next_hdr == IPPROTO_UDP)
 650		return RDMA_NETWORK_IPV6;
 651
 652	return RDMA_NETWORK_ROCE_V1;
 653}
 654
 655struct find_gid_index_context {
 656	u16 vlan_id;
 657	enum ib_gid_type gid_type;
 658};
 659
 660static bool find_gid_index(const union ib_gid *gid,
 661			   const struct ib_gid_attr *gid_attr,
 662			   void *context)
 663{
 664	struct find_gid_index_context *ctx = context;
 665	u16 vlan_id = 0xffff;
 666	int ret;
 667
 668	if (ctx->gid_type != gid_attr->gid_type)
 669		return false;
 670
 671	ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
 672	if (ret)
 673		return false;
 674
 675	return ctx->vlan_id == vlan_id;
 676}
 677
 678static const struct ib_gid_attr *
 679get_sgid_attr_from_eth(struct ib_device *device, u8 port_num,
 680		       u16 vlan_id, const union ib_gid *sgid,
 681		       enum ib_gid_type gid_type)
 682{
 683	struct find_gid_index_context context = {.vlan_id = vlan_id,
 684						 .gid_type = gid_type};
 685
 686	return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
 687				       &context);
 688}
 689
 690int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
 691			      enum rdma_network_type net_type,
 692			      union ib_gid *sgid, union ib_gid *dgid)
 693{
 694	struct sockaddr_in  src_in;
 695	struct sockaddr_in  dst_in;
 696	__be32 src_saddr, dst_saddr;
 697
 698	if (!sgid || !dgid)
 699		return -EINVAL;
 700
 701	if (net_type == RDMA_NETWORK_IPV4) {
 702		memcpy(&src_in.sin_addr.s_addr,
 703		       &hdr->roce4grh.saddr, 4);
 704		memcpy(&dst_in.sin_addr.s_addr,
 705		       &hdr->roce4grh.daddr, 4);
 706		src_saddr = src_in.sin_addr.s_addr;
 707		dst_saddr = dst_in.sin_addr.s_addr;
 708		ipv6_addr_set_v4mapped(src_saddr,
 709				       (struct in6_addr *)sgid);
 710		ipv6_addr_set_v4mapped(dst_saddr,
 711				       (struct in6_addr *)dgid);
 712		return 0;
 713	} else if (net_type == RDMA_NETWORK_IPV6 ||
 714		   net_type == RDMA_NETWORK_IB) {
 715		*dgid = hdr->ibgrh.dgid;
 716		*sgid = hdr->ibgrh.sgid;
 717		return 0;
 718	} else {
 719		return -EINVAL;
 720	}
 721}
 722EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
 723
 724/* Resolve destination mac address and hop limit for unicast destination
 725 * GID entry, considering the source GID entry as well.
 726 * ah_attribute must have have valid port_num, sgid_index.
 727 */
 728static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
 729				       struct rdma_ah_attr *ah_attr)
 730{
 731	struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
 732	const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
 733	int hop_limit = 0xff;
 734	int ret = 0;
 735
 736	/* If destination is link local and source GID is RoCEv1,
 737	 * IP stack is not used.
 738	 */
 739	if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
 740	    sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
 741		rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
 742				ah_attr->roce.dmac);
 743		return ret;
 744	}
 745
 746	ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
 747					   ah_attr->roce.dmac,
 748					   sgid_attr, &hop_limit);
 749
 750	grh->hop_limit = hop_limit;
 751	return ret;
 752}
 753
 754/*
 755 * This function initializes address handle attributes from the incoming packet.
 756 * Incoming packet has dgid of the receiver node on which this code is
 757 * getting executed and, sgid contains the GID of the sender.
 758 *
 759 * When resolving mac address of destination, the arrived dgid is used
 760 * as sgid and, sgid is used as dgid because sgid contains destinations
 761 * GID whom to respond to.
 762 *
 763 * On success the caller is responsible to call rdma_destroy_ah_attr on the
 764 * attr.
 765 */
 766int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
 767			    const struct ib_wc *wc, const struct ib_grh *grh,
 768			    struct rdma_ah_attr *ah_attr)
 769{
 770	u32 flow_class;
 771	int ret;
 772	enum rdma_network_type net_type = RDMA_NETWORK_IB;
 773	enum ib_gid_type gid_type = IB_GID_TYPE_IB;
 774	const struct ib_gid_attr *sgid_attr;
 775	int hoplimit = 0xff;
 776	union ib_gid dgid;
 777	union ib_gid sgid;
 778
 779	might_sleep();
 780
 781	memset(ah_attr, 0, sizeof *ah_attr);
 782	ah_attr->type = rdma_ah_find_type(device, port_num);
 783	if (rdma_cap_eth_ah(device, port_num)) {
 784		if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
 785			net_type = wc->network_hdr_type;
 786		else
 787			net_type = ib_get_net_type_by_grh(device, port_num, grh);
 788		gid_type = ib_network_to_gid_type(net_type);
 789	}
 790	ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
 791					&sgid, &dgid);
 792	if (ret)
 793		return ret;
 794
 795	rdma_ah_set_sl(ah_attr, wc->sl);
 796	rdma_ah_set_port_num(ah_attr, port_num);
 797
 798	if (rdma_protocol_roce(device, port_num)) {
 799		u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
 800				wc->vlan_id : 0xffff;
 801
 802		if (!(wc->wc_flags & IB_WC_GRH))
 803			return -EPROTOTYPE;
 804
 805		sgid_attr = get_sgid_attr_from_eth(device, port_num,
 806						   vlan_id, &dgid,
 807						   gid_type);
 808		if (IS_ERR(sgid_attr))
 809			return PTR_ERR(sgid_attr);
 810
 811		flow_class = be32_to_cpu(grh->version_tclass_flow);
 812		rdma_move_grh_sgid_attr(ah_attr,
 813					&sgid,
 814					flow_class & 0xFFFFF,
 815					hoplimit,
 816					(flow_class >> 20) & 0xFF,
 817					sgid_attr);
 818
 819		ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
 820		if (ret)
 821			rdma_destroy_ah_attr(ah_attr);
 822
 823		return ret;
 824	} else {
 825		rdma_ah_set_dlid(ah_attr, wc->slid);
 826		rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
 827
 828		if ((wc->wc_flags & IB_WC_GRH) == 0)
 829			return 0;
 830
 831		if (dgid.global.interface_id !=
 832					cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
 833			sgid_attr = rdma_find_gid_by_port(
 834				device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
 835		} else
 836			sgid_attr = rdma_get_gid_attr(device, port_num, 0);
 837
 838		if (IS_ERR(sgid_attr))
 839			return PTR_ERR(sgid_attr);
 840		flow_class = be32_to_cpu(grh->version_tclass_flow);
 841		rdma_move_grh_sgid_attr(ah_attr,
 842					&sgid,
 843					flow_class & 0xFFFFF,
 844					hoplimit,
 845					(flow_class >> 20) & 0xFF,
 846					sgid_attr);
 847
 848		return 0;
 849	}
 850}
 851EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
 852
 853/**
 854 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
 855 * of the reference
 856 *
 857 * @attr:	Pointer to AH attribute structure
 858 * @dgid:	Destination GID
 859 * @flow_label:	Flow label
 860 * @hop_limit:	Hop limit
 861 * @traffic_class: traffic class
 862 * @sgid_attr:	Pointer to SGID attribute
 863 *
 864 * This takes ownership of the sgid_attr reference. The caller must ensure
 865 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
 866 * calling this function.
 867 */
 868void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
 869			     u32 flow_label, u8 hop_limit, u8 traffic_class,
 870			     const struct ib_gid_attr *sgid_attr)
 871{
 872	rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
 873			traffic_class);
 874	attr->grh.sgid_attr = sgid_attr;
 875}
 876EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
 877
 878/**
 879 * rdma_destroy_ah_attr - Release reference to SGID attribute of
 880 * ah attribute.
 881 * @ah_attr: Pointer to ah attribute
 882 *
 883 * Release reference to the SGID attribute of the ah attribute if it is
 884 * non NULL. It is safe to call this multiple times, and safe to call it on
 885 * a zero initialized ah_attr.
 886 */
 887void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
 888{
 889	if (ah_attr->grh.sgid_attr) {
 890		rdma_put_gid_attr(ah_attr->grh.sgid_attr);
 891		ah_attr->grh.sgid_attr = NULL;
 892	}
 893}
 894EXPORT_SYMBOL(rdma_destroy_ah_attr);
 895
 896struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
 897				   const struct ib_grh *grh, u8 port_num)
 898{
 899	struct rdma_ah_attr ah_attr;
 900	struct ib_ah *ah;
 901	int ret;
 902
 903	ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
 904	if (ret)
 905		return ERR_PTR(ret);
 906
 907	ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
 908
 909	rdma_destroy_ah_attr(&ah_attr);
 910	return ah;
 911}
 912EXPORT_SYMBOL(ib_create_ah_from_wc);
 913
 914int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
 915{
 916	const struct ib_gid_attr *old_sgid_attr;
 917	int ret;
 918
 919	if (ah->type != ah_attr->type)
 920		return -EINVAL;
 921
 922	ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
 923	if (ret)
 924		return ret;
 925
 926	ret = ah->device->ops.modify_ah ?
 927		ah->device->ops.modify_ah(ah, ah_attr) :
 928		-EOPNOTSUPP;
 929
 930	ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
 931	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 932	return ret;
 933}
 934EXPORT_SYMBOL(rdma_modify_ah);
 935
 936int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
 937{
 938	ah_attr->grh.sgid_attr = NULL;
 939
 940	return ah->device->ops.query_ah ?
 941		ah->device->ops.query_ah(ah, ah_attr) :
 942		-EOPNOTSUPP;
 943}
 944EXPORT_SYMBOL(rdma_query_ah);
 945
 946int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
 947{
 948	const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
 949	struct ib_pd *pd;
 
 950
 951	might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
 952
 953	pd = ah->pd;
 954
 955	ah->device->ops.destroy_ah(ah, flags);
 
 
 
 956	atomic_dec(&pd->usecnt);
 957	if (sgid_attr)
 958		rdma_put_gid_attr(sgid_attr);
 959
 960	kfree(ah);
 961	return 0;
 962}
 963EXPORT_SYMBOL(rdma_destroy_ah_user);
 964
 965/* Shared receive queues */
 966
 967struct ib_srq *ib_create_srq(struct ib_pd *pd,
 968			     struct ib_srq_init_attr *srq_init_attr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 969{
 970	struct ib_srq *srq;
 971	int ret;
 972
 973	if (!pd->device->ops.create_srq)
 974		return ERR_PTR(-EOPNOTSUPP);
 975
 976	srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
 977	if (!srq)
 978		return ERR_PTR(-ENOMEM);
 979
 980	srq->device = pd->device;
 981	srq->pd = pd;
 982	srq->event_handler = srq_init_attr->event_handler;
 983	srq->srq_context = srq_init_attr->srq_context;
 984	srq->srq_type = srq_init_attr->srq_type;
 
 985
 986	if (ib_srq_has_cq(srq->srq_type)) {
 987		srq->ext.cq = srq_init_attr->ext.cq;
 988		atomic_inc(&srq->ext.cq->usecnt);
 989	}
 990	if (srq->srq_type == IB_SRQT_XRC) {
 991		srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
 992		atomic_inc(&srq->ext.xrc.xrcd->usecnt);
 
 993	}
 994	atomic_inc(&pd->usecnt);
 995
 996	ret = pd->device->ops.create_srq(srq, srq_init_attr, NULL);
 
 
 
 997	if (ret) {
 998		atomic_dec(&srq->pd->usecnt);
 999		if (srq->srq_type == IB_SRQT_XRC)
 
1000			atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1001		if (ib_srq_has_cq(srq->srq_type))
1002			atomic_dec(&srq->ext.cq->usecnt);
1003		kfree(srq);
1004		return ERR_PTR(ret);
1005	}
1006
 
 
1007	return srq;
1008}
1009EXPORT_SYMBOL(ib_create_srq);
1010
1011int ib_modify_srq(struct ib_srq *srq,
1012		  struct ib_srq_attr *srq_attr,
1013		  enum ib_srq_attr_mask srq_attr_mask)
1014{
1015	return srq->device->ops.modify_srq ?
1016		srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1017					    NULL) : -EOPNOTSUPP;
1018}
1019EXPORT_SYMBOL(ib_modify_srq);
1020
1021int ib_query_srq(struct ib_srq *srq,
1022		 struct ib_srq_attr *srq_attr)
1023{
1024	return srq->device->ops.query_srq ?
1025		srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1026}
1027EXPORT_SYMBOL(ib_query_srq);
1028
1029int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1030{
 
 
1031	if (atomic_read(&srq->usecnt))
1032		return -EBUSY;
1033
1034	srq->device->ops.destroy_srq(srq, udata);
 
 
1035
1036	atomic_dec(&srq->pd->usecnt);
1037	if (srq->srq_type == IB_SRQT_XRC)
1038		atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1039	if (ib_srq_has_cq(srq->srq_type))
1040		atomic_dec(&srq->ext.cq->usecnt);
 
1041	kfree(srq);
1042
1043	return 0;
1044}
1045EXPORT_SYMBOL(ib_destroy_srq_user);
1046
1047/* Queue pairs */
1048
1049static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1050{
1051	struct ib_qp *qp = context;
1052	unsigned long flags;
1053
1054	spin_lock_irqsave(&qp->device->event_handler_lock, flags);
1055	list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1056		if (event->element.qp->event_handler)
1057			event->element.qp->event_handler(event, event->element.qp->qp_context);
1058	spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
1059}
1060
1061static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
1062{
1063	mutex_lock(&xrcd->tgt_qp_mutex);
1064	list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
1065	mutex_unlock(&xrcd->tgt_qp_mutex);
1066}
1067
1068static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1069				  void (*event_handler)(struct ib_event *, void *),
1070				  void *qp_context)
1071{
1072	struct ib_qp *qp;
1073	unsigned long flags;
1074	int err;
1075
1076	qp = kzalloc(sizeof *qp, GFP_KERNEL);
1077	if (!qp)
1078		return ERR_PTR(-ENOMEM);
1079
1080	qp->real_qp = real_qp;
1081	err = ib_open_shared_qp_security(qp, real_qp->device);
1082	if (err) {
1083		kfree(qp);
1084		return ERR_PTR(err);
1085	}
1086
1087	qp->real_qp = real_qp;
1088	atomic_inc(&real_qp->usecnt);
1089	qp->device = real_qp->device;
1090	qp->event_handler = event_handler;
1091	qp->qp_context = qp_context;
1092	qp->qp_num = real_qp->qp_num;
1093	qp->qp_type = real_qp->qp_type;
1094
1095	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1096	list_add(&qp->open_list, &real_qp->open_list);
1097	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1098
1099	return qp;
1100}
1101
1102struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1103			 struct ib_qp_open_attr *qp_open_attr)
1104{
1105	struct ib_qp *qp, *real_qp;
1106
1107	if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1108		return ERR_PTR(-EINVAL);
1109
1110	qp = ERR_PTR(-EINVAL);
1111	mutex_lock(&xrcd->tgt_qp_mutex);
1112	list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
1113		if (real_qp->qp_num == qp_open_attr->qp_num) {
1114			qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1115					  qp_open_attr->qp_context);
1116			break;
1117		}
1118	}
1119	mutex_unlock(&xrcd->tgt_qp_mutex);
 
 
1120	return qp;
1121}
1122EXPORT_SYMBOL(ib_open_qp);
1123
1124static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1125					struct ib_qp_init_attr *qp_init_attr,
1126					struct ib_udata *udata)
1127{
1128	struct ib_qp *real_qp = qp;
 
1129
1130	qp->event_handler = __ib_shared_qp_event_handler;
1131	qp->qp_context = qp;
1132	qp->pd = NULL;
1133	qp->send_cq = qp->recv_cq = NULL;
1134	qp->srq = NULL;
1135	qp->xrcd = qp_init_attr->xrcd;
1136	atomic_inc(&qp_init_attr->xrcd->usecnt);
1137	INIT_LIST_HEAD(&qp->open_list);
1138
1139	qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1140			  qp_init_attr->qp_context);
1141	if (IS_ERR(qp))
1142		return qp;
1143
1144	__ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
 
 
 
 
 
1145	return qp;
1146}
1147
1148struct ib_qp *ib_create_qp_user(struct ib_pd *pd,
1149				struct ib_qp_init_attr *qp_init_attr,
1150				struct ib_udata *udata)
 
1151{
1152	struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
1153	struct ib_qp *qp;
1154	int ret;
1155
1156	if (qp_init_attr->rwq_ind_tbl &&
1157	    (qp_init_attr->recv_cq ||
1158	    qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
1159	    qp_init_attr->cap.max_recv_sge))
1160		return ERR_PTR(-EINVAL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1161
1162	if ((qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) &&
1163	    !(device->attrs.device_cap_flags & IB_DEVICE_INTEGRITY_HANDOVER))
1164		return ERR_PTR(-EINVAL);
 
 
 
1165
1166	/*
1167	 * If the callers is using the RDMA API calculate the resources
1168	 * needed for the RDMA READ/WRITE operations.
1169	 *
1170	 * Note that these callers need to pass in a port number.
1171	 */
1172	if (qp_init_attr->cap.max_rdma_ctxs)
1173		rdma_rw_init_qp(device, qp_init_attr);
 
 
 
 
1174
1175	qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
1176	if (IS_ERR(qp))
1177		return qp;
1178
1179	ret = ib_create_qp_security(qp, device);
1180	if (ret)
1181		goto err;
 
 
 
1182
1183	qp->qp_type    = qp_init_attr->qp_type;
1184	qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
1185
1186	atomic_set(&qp->usecnt, 0);
1187	qp->mrs_used = 0;
1188	spin_lock_init(&qp->mr_lock);
1189	INIT_LIST_HEAD(&qp->rdma_mrs);
1190	INIT_LIST_HEAD(&qp->sig_mrs);
1191	qp->port = 0;
 
 
 
 
 
 
 
 
 
 
 
 
1192
1193	if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
1194		struct ib_qp *xrc_qp =
1195			create_xrc_qp_user(qp, qp_init_attr, udata);
 
 
 
1196
1197		if (IS_ERR(xrc_qp)) {
1198			ret = PTR_ERR(xrc_qp);
1199			goto err;
1200		}
1201		return xrc_qp;
1202	}
1203
1204	qp->event_handler = qp_init_attr->event_handler;
1205	qp->qp_context = qp_init_attr->qp_context;
1206	if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
1207		qp->recv_cq = NULL;
1208		qp->srq = NULL;
1209	} else {
1210		qp->recv_cq = qp_init_attr->recv_cq;
1211		if (qp_init_attr->recv_cq)
1212			atomic_inc(&qp_init_attr->recv_cq->usecnt);
1213		qp->srq = qp_init_attr->srq;
1214		if (qp->srq)
1215			atomic_inc(&qp_init_attr->srq->usecnt);
1216	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1217
1218	qp->send_cq = qp_init_attr->send_cq;
1219	qp->xrcd    = NULL;
 
1220
1221	atomic_inc(&pd->usecnt);
1222	if (qp_init_attr->send_cq)
1223		atomic_inc(&qp_init_attr->send_cq->usecnt);
1224	if (qp_init_attr->rwq_ind_tbl)
1225		atomic_inc(&qp->rwq_ind_tbl->usecnt);
1226
1227	if (qp_init_attr->cap.max_rdma_ctxs) {
1228		ret = rdma_rw_init_mrs(qp, qp_init_attr);
1229		if (ret)
1230			goto err;
1231	}
1232
1233	/*
1234	 * Note: all hw drivers guarantee that max_send_sge is lower than
1235	 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1236	 * max_send_sge <= max_sge_rd.
1237	 */
1238	qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1239	qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1240				 device->attrs.max_sge_rd);
1241	if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1242		qp->integrity_en = true;
1243
1244	return qp;
1245
1246err:
1247	ib_destroy_qp(qp);
1248	return ERR_PTR(ret);
1249
1250}
1251EXPORT_SYMBOL(ib_create_qp_user);
1252
1253static const struct {
1254	int			valid;
1255	enum ib_qp_attr_mask	req_param[IB_QPT_MAX];
1256	enum ib_qp_attr_mask	opt_param[IB_QPT_MAX];
1257} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1258	[IB_QPS_RESET] = {
1259		[IB_QPS_RESET] = { .valid = 1 },
1260		[IB_QPS_INIT]  = {
1261			.valid = 1,
1262			.req_param = {
1263				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1264						IB_QP_PORT			|
1265						IB_QP_QKEY),
1266				[IB_QPT_RAW_PACKET] = IB_QP_PORT,
1267				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
1268						IB_QP_PORT			|
1269						IB_QP_ACCESS_FLAGS),
1270				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
1271						IB_QP_PORT			|
1272						IB_QP_ACCESS_FLAGS),
1273				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
1274						IB_QP_PORT			|
1275						IB_QP_ACCESS_FLAGS),
1276				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
1277						IB_QP_PORT			|
1278						IB_QP_ACCESS_FLAGS),
1279				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1280						IB_QP_QKEY),
1281				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1282						IB_QP_QKEY),
1283			}
1284		},
1285	},
1286	[IB_QPS_INIT]  = {
1287		[IB_QPS_RESET] = { .valid = 1 },
1288		[IB_QPS_ERR] =   { .valid = 1 },
1289		[IB_QPS_INIT]  = {
1290			.valid = 1,
1291			.opt_param = {
1292				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1293						IB_QP_PORT			|
1294						IB_QP_QKEY),
1295				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
1296						IB_QP_PORT			|
1297						IB_QP_ACCESS_FLAGS),
1298				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
1299						IB_QP_PORT			|
1300						IB_QP_ACCESS_FLAGS),
1301				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
1302						IB_QP_PORT			|
1303						IB_QP_ACCESS_FLAGS),
1304				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
1305						IB_QP_PORT			|
1306						IB_QP_ACCESS_FLAGS),
1307				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1308						IB_QP_QKEY),
1309				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1310						IB_QP_QKEY),
1311			}
1312		},
1313		[IB_QPS_RTR]   = {
1314			.valid = 1,
1315			.req_param = {
1316				[IB_QPT_UC]  = (IB_QP_AV			|
1317						IB_QP_PATH_MTU			|
1318						IB_QP_DEST_QPN			|
1319						IB_QP_RQ_PSN),
1320				[IB_QPT_RC]  = (IB_QP_AV			|
1321						IB_QP_PATH_MTU			|
1322						IB_QP_DEST_QPN			|
1323						IB_QP_RQ_PSN			|
1324						IB_QP_MAX_DEST_RD_ATOMIC	|
1325						IB_QP_MIN_RNR_TIMER),
1326				[IB_QPT_XRC_INI] = (IB_QP_AV			|
1327						IB_QP_PATH_MTU			|
1328						IB_QP_DEST_QPN			|
1329						IB_QP_RQ_PSN),
1330				[IB_QPT_XRC_TGT] = (IB_QP_AV			|
1331						IB_QP_PATH_MTU			|
1332						IB_QP_DEST_QPN			|
1333						IB_QP_RQ_PSN			|
1334						IB_QP_MAX_DEST_RD_ATOMIC	|
1335						IB_QP_MIN_RNR_TIMER),
1336			},
1337			.opt_param = {
1338				 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1339						 IB_QP_QKEY),
1340				 [IB_QPT_UC]  = (IB_QP_ALT_PATH			|
1341						 IB_QP_ACCESS_FLAGS		|
1342						 IB_QP_PKEY_INDEX),
1343				 [IB_QPT_RC]  = (IB_QP_ALT_PATH			|
1344						 IB_QP_ACCESS_FLAGS		|
1345						 IB_QP_PKEY_INDEX),
1346				 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH		|
1347						 IB_QP_ACCESS_FLAGS		|
1348						 IB_QP_PKEY_INDEX),
1349				 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH		|
1350						 IB_QP_ACCESS_FLAGS		|
1351						 IB_QP_PKEY_INDEX),
1352				 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1353						 IB_QP_QKEY),
1354				 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1355						 IB_QP_QKEY),
1356			 },
1357		},
1358	},
1359	[IB_QPS_RTR]   = {
1360		[IB_QPS_RESET] = { .valid = 1 },
1361		[IB_QPS_ERR] =   { .valid = 1 },
1362		[IB_QPS_RTS]   = {
1363			.valid = 1,
1364			.req_param = {
1365				[IB_QPT_UD]  = IB_QP_SQ_PSN,
1366				[IB_QPT_UC]  = IB_QP_SQ_PSN,
1367				[IB_QPT_RC]  = (IB_QP_TIMEOUT			|
1368						IB_QP_RETRY_CNT			|
1369						IB_QP_RNR_RETRY			|
1370						IB_QP_SQ_PSN			|
1371						IB_QP_MAX_QP_RD_ATOMIC),
1372				[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT		|
1373						IB_QP_RETRY_CNT			|
1374						IB_QP_RNR_RETRY			|
1375						IB_QP_SQ_PSN			|
1376						IB_QP_MAX_QP_RD_ATOMIC),
1377				[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT		|
1378						IB_QP_SQ_PSN),
1379				[IB_QPT_SMI] = IB_QP_SQ_PSN,
1380				[IB_QPT_GSI] = IB_QP_SQ_PSN,
1381			},
1382			.opt_param = {
1383				 [IB_QPT_UD]  = (IB_QP_CUR_STATE		|
1384						 IB_QP_QKEY),
1385				 [IB_QPT_UC]  = (IB_QP_CUR_STATE		|
1386						 IB_QP_ALT_PATH			|
1387						 IB_QP_ACCESS_FLAGS		|
1388						 IB_QP_PATH_MIG_STATE),
1389				 [IB_QPT_RC]  = (IB_QP_CUR_STATE		|
1390						 IB_QP_ALT_PATH			|
1391						 IB_QP_ACCESS_FLAGS		|
1392						 IB_QP_MIN_RNR_TIMER		|
1393						 IB_QP_PATH_MIG_STATE),
1394				 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1395						 IB_QP_ALT_PATH			|
1396						 IB_QP_ACCESS_FLAGS		|
1397						 IB_QP_PATH_MIG_STATE),
1398				 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1399						 IB_QP_ALT_PATH			|
1400						 IB_QP_ACCESS_FLAGS		|
1401						 IB_QP_MIN_RNR_TIMER		|
1402						 IB_QP_PATH_MIG_STATE),
1403				 [IB_QPT_SMI] = (IB_QP_CUR_STATE		|
1404						 IB_QP_QKEY),
1405				 [IB_QPT_GSI] = (IB_QP_CUR_STATE		|
1406						 IB_QP_QKEY),
1407				 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1408			 }
1409		}
1410	},
1411	[IB_QPS_RTS]   = {
1412		[IB_QPS_RESET] = { .valid = 1 },
1413		[IB_QPS_ERR] =   { .valid = 1 },
1414		[IB_QPS_RTS]   = {
1415			.valid = 1,
1416			.opt_param = {
1417				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1418						IB_QP_QKEY),
1419				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1420						IB_QP_ACCESS_FLAGS		|
1421						IB_QP_ALT_PATH			|
1422						IB_QP_PATH_MIG_STATE),
1423				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1424						IB_QP_ACCESS_FLAGS		|
1425						IB_QP_ALT_PATH			|
1426						IB_QP_PATH_MIG_STATE		|
1427						IB_QP_MIN_RNR_TIMER),
1428				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1429						IB_QP_ACCESS_FLAGS		|
1430						IB_QP_ALT_PATH			|
1431						IB_QP_PATH_MIG_STATE),
1432				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1433						IB_QP_ACCESS_FLAGS		|
1434						IB_QP_ALT_PATH			|
1435						IB_QP_PATH_MIG_STATE		|
1436						IB_QP_MIN_RNR_TIMER),
1437				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1438						IB_QP_QKEY),
1439				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1440						IB_QP_QKEY),
1441				[IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1442			}
1443		},
1444		[IB_QPS_SQD]   = {
1445			.valid = 1,
1446			.opt_param = {
1447				[IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1448				[IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1449				[IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1450				[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1451				[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1452				[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1453				[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1454			}
1455		},
1456	},
1457	[IB_QPS_SQD]   = {
1458		[IB_QPS_RESET] = { .valid = 1 },
1459		[IB_QPS_ERR] =   { .valid = 1 },
1460		[IB_QPS_RTS]   = {
1461			.valid = 1,
1462			.opt_param = {
1463				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1464						IB_QP_QKEY),
1465				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1466						IB_QP_ALT_PATH			|
1467						IB_QP_ACCESS_FLAGS		|
1468						IB_QP_PATH_MIG_STATE),
1469				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1470						IB_QP_ALT_PATH			|
1471						IB_QP_ACCESS_FLAGS		|
1472						IB_QP_MIN_RNR_TIMER		|
1473						IB_QP_PATH_MIG_STATE),
1474				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1475						IB_QP_ALT_PATH			|
1476						IB_QP_ACCESS_FLAGS		|
1477						IB_QP_PATH_MIG_STATE),
1478				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1479						IB_QP_ALT_PATH			|
1480						IB_QP_ACCESS_FLAGS		|
1481						IB_QP_MIN_RNR_TIMER		|
1482						IB_QP_PATH_MIG_STATE),
1483				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1484						IB_QP_QKEY),
1485				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1486						IB_QP_QKEY),
1487			}
1488		},
1489		[IB_QPS_SQD]   = {
1490			.valid = 1,
1491			.opt_param = {
1492				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1493						IB_QP_QKEY),
1494				[IB_QPT_UC]  = (IB_QP_AV			|
1495						IB_QP_ALT_PATH			|
1496						IB_QP_ACCESS_FLAGS		|
1497						IB_QP_PKEY_INDEX		|
1498						IB_QP_PATH_MIG_STATE),
1499				[IB_QPT_RC]  = (IB_QP_PORT			|
1500						IB_QP_AV			|
1501						IB_QP_TIMEOUT			|
1502						IB_QP_RETRY_CNT			|
1503						IB_QP_RNR_RETRY			|
1504						IB_QP_MAX_QP_RD_ATOMIC		|
1505						IB_QP_MAX_DEST_RD_ATOMIC	|
1506						IB_QP_ALT_PATH			|
1507						IB_QP_ACCESS_FLAGS		|
1508						IB_QP_PKEY_INDEX		|
1509						IB_QP_MIN_RNR_TIMER		|
1510						IB_QP_PATH_MIG_STATE),
1511				[IB_QPT_XRC_INI] = (IB_QP_PORT			|
1512						IB_QP_AV			|
1513						IB_QP_TIMEOUT			|
1514						IB_QP_RETRY_CNT			|
1515						IB_QP_RNR_RETRY			|
1516						IB_QP_MAX_QP_RD_ATOMIC		|
1517						IB_QP_ALT_PATH			|
1518						IB_QP_ACCESS_FLAGS		|
1519						IB_QP_PKEY_INDEX		|
1520						IB_QP_PATH_MIG_STATE),
1521				[IB_QPT_XRC_TGT] = (IB_QP_PORT			|
1522						IB_QP_AV			|
1523						IB_QP_TIMEOUT			|
1524						IB_QP_MAX_DEST_RD_ATOMIC	|
1525						IB_QP_ALT_PATH			|
1526						IB_QP_ACCESS_FLAGS		|
1527						IB_QP_PKEY_INDEX		|
1528						IB_QP_MIN_RNR_TIMER		|
1529						IB_QP_PATH_MIG_STATE),
1530				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1531						IB_QP_QKEY),
1532				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1533						IB_QP_QKEY),
1534			}
1535		}
1536	},
1537	[IB_QPS_SQE]   = {
1538		[IB_QPS_RESET] = { .valid = 1 },
1539		[IB_QPS_ERR] =   { .valid = 1 },
1540		[IB_QPS_RTS]   = {
1541			.valid = 1,
1542			.opt_param = {
1543				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1544						IB_QP_QKEY),
1545				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1546						IB_QP_ACCESS_FLAGS),
1547				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1548						IB_QP_QKEY),
1549				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1550						IB_QP_QKEY),
1551			}
1552		}
1553	},
1554	[IB_QPS_ERR] = {
1555		[IB_QPS_RESET] = { .valid = 1 },
1556		[IB_QPS_ERR] =   { .valid = 1 }
1557	}
1558};
1559
1560bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1561			enum ib_qp_type type, enum ib_qp_attr_mask mask)
1562{
1563	enum ib_qp_attr_mask req_param, opt_param;
1564
1565	if (mask & IB_QP_CUR_STATE  &&
1566	    cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1567	    cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1568		return false;
1569
1570	if (!qp_state_table[cur_state][next_state].valid)
1571		return false;
1572
1573	req_param = qp_state_table[cur_state][next_state].req_param[type];
1574	opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1575
1576	if ((mask & req_param) != req_param)
1577		return false;
1578
1579	if (mask & ~(req_param | opt_param | IB_QP_STATE))
1580		return false;
1581
1582	return true;
1583}
1584EXPORT_SYMBOL(ib_modify_qp_is_ok);
1585
1586/**
1587 * ib_resolve_eth_dmac - Resolve destination mac address
1588 * @device:		Device to consider
1589 * @ah_attr:		address handle attribute which describes the
1590 *			source and destination parameters
1591 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1592 * returns 0 on success or appropriate error code. It initializes the
1593 * necessary ah_attr fields when call is successful.
1594 */
1595static int ib_resolve_eth_dmac(struct ib_device *device,
1596			       struct rdma_ah_attr *ah_attr)
1597{
1598	int ret = 0;
1599
1600	if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1601		if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1602			__be32 addr = 0;
1603
1604			memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1605			ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1606		} else {
1607			ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1608					(char *)ah_attr->roce.dmac);
1609		}
1610	} else {
1611		ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1612	}
1613	return ret;
1614}
1615
1616static bool is_qp_type_connected(const struct ib_qp *qp)
1617{
1618	return (qp->qp_type == IB_QPT_UC ||
1619		qp->qp_type == IB_QPT_RC ||
1620		qp->qp_type == IB_QPT_XRC_INI ||
1621		qp->qp_type == IB_QPT_XRC_TGT);
1622}
1623
1624/**
1625 * IB core internal function to perform QP attributes modification.
1626 */
1627static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1628			 int attr_mask, struct ib_udata *udata)
1629{
1630	u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1631	const struct ib_gid_attr *old_sgid_attr_av;
1632	const struct ib_gid_attr *old_sgid_attr_alt_av;
1633	int ret;
1634
 
1635	if (attr_mask & IB_QP_AV) {
1636		ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1637					  &old_sgid_attr_av);
1638		if (ret)
1639			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1640	}
1641	if (attr_mask & IB_QP_ALT_PATH) {
1642		/*
1643		 * FIXME: This does not track the migration state, so if the
1644		 * user loads a new alternate path after the HW has migrated
1645		 * from primary->alternate we will keep the wrong
1646		 * references. This is OK for IB because the reference
1647		 * counting does not serve any functional purpose.
1648		 */
1649		ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1650					  &old_sgid_attr_alt_av);
1651		if (ret)
1652			goto out_av;
1653
1654		/*
1655		 * Today the core code can only handle alternate paths and APM
1656		 * for IB. Ban them in roce mode.
1657		 */
1658		if (!(rdma_protocol_ib(qp->device,
1659				       attr->alt_ah_attr.port_num) &&
1660		      rdma_protocol_ib(qp->device, port))) {
1661			ret = EINVAL;
1662			goto out;
1663		}
1664	}
1665
1666	/*
1667	 * If the user provided the qp_attr then we have to resolve it. Kernel
1668	 * users have to provide already resolved rdma_ah_attr's
1669	 */
1670	if (udata && (attr_mask & IB_QP_AV) &&
1671	    attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1672	    is_qp_type_connected(qp)) {
1673		ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1674		if (ret)
1675			goto out;
1676	}
1677
1678	if (rdma_ib_or_roce(qp->device, port)) {
1679		if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1680			dev_warn(&qp->device->dev,
1681				 "%s rq_psn overflow, masking to 24 bits\n",
1682				 __func__);
1683			attr->rq_psn &= 0xffffff;
1684		}
1685
1686		if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1687			dev_warn(&qp->device->dev,
1688				 " %s sq_psn overflow, masking to 24 bits\n",
1689				 __func__);
1690			attr->sq_psn &= 0xffffff;
1691		}
1692	}
1693
1694	/*
1695	 * Bind this qp to a counter automatically based on the rdma counter
1696	 * rules. This only set in RST2INIT with port specified
1697	 */
1698	if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1699	    ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1700		rdma_counter_bind_qp_auto(qp, attr->port_num);
1701
1702	ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1703	if (ret)
1704		goto out;
1705
1706	if (attr_mask & IB_QP_PORT)
1707		qp->port = attr->port_num;
1708	if (attr_mask & IB_QP_AV)
1709		qp->av_sgid_attr =
1710			rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1711	if (attr_mask & IB_QP_ALT_PATH)
1712		qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1713			&attr->alt_ah_attr, qp->alt_path_sgid_attr);
1714
1715out:
1716	if (attr_mask & IB_QP_ALT_PATH)
1717		rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1718out_av:
1719	if (attr_mask & IB_QP_AV)
 
1720		rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
 
1721	return ret;
1722}
1723
1724/**
1725 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1726 * @ib_qp: The QP to modify.
1727 * @attr: On input, specifies the QP attributes to modify.  On output,
1728 *   the current values of selected QP attributes are returned.
1729 * @attr_mask: A bit-mask used to specify which attributes of the QP
1730 *   are being modified.
1731 * @udata: pointer to user's input output buffer information
1732 *   are being modified.
1733 * It returns 0 on success and returns appropriate error code on error.
1734 */
1735int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1736			    int attr_mask, struct ib_udata *udata)
1737{
1738	return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1739}
1740EXPORT_SYMBOL(ib_modify_qp_with_udata);
1741
1742int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1743{
1744	int rc;
1745	u32 netdev_speed;
1746	struct net_device *netdev;
1747	struct ethtool_link_ksettings lksettings;
1748
1749	if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1750		return -EINVAL;
1751
1752	netdev = ib_device_get_netdev(dev, port_num);
1753	if (!netdev)
1754		return -ENODEV;
1755
1756	rtnl_lock();
1757	rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1758	rtnl_unlock();
1759
1760	dev_put(netdev);
1761
1762	if (!rc) {
1763		netdev_speed = lksettings.base.speed;
1764	} else {
1765		netdev_speed = SPEED_1000;
1766		pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1767			netdev_speed);
 
1768	}
1769
1770	if (netdev_speed <= SPEED_1000) {
1771		*width = IB_WIDTH_1X;
1772		*speed = IB_SPEED_SDR;
1773	} else if (netdev_speed <= SPEED_10000) {
1774		*width = IB_WIDTH_1X;
1775		*speed = IB_SPEED_FDR10;
1776	} else if (netdev_speed <= SPEED_20000) {
1777		*width = IB_WIDTH_4X;
1778		*speed = IB_SPEED_DDR;
1779	} else if (netdev_speed <= SPEED_25000) {
1780		*width = IB_WIDTH_1X;
1781		*speed = IB_SPEED_EDR;
1782	} else if (netdev_speed <= SPEED_40000) {
1783		*width = IB_WIDTH_4X;
1784		*speed = IB_SPEED_FDR10;
1785	} else {
1786		*width = IB_WIDTH_4X;
1787		*speed = IB_SPEED_EDR;
1788	}
1789
1790	return 0;
1791}
1792EXPORT_SYMBOL(ib_get_eth_speed);
1793
1794int ib_modify_qp(struct ib_qp *qp,
1795		 struct ib_qp_attr *qp_attr,
1796		 int qp_attr_mask)
1797{
1798	return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1799}
1800EXPORT_SYMBOL(ib_modify_qp);
1801
1802int ib_query_qp(struct ib_qp *qp,
1803		struct ib_qp_attr *qp_attr,
1804		int qp_attr_mask,
1805		struct ib_qp_init_attr *qp_init_attr)
1806{
1807	qp_attr->ah_attr.grh.sgid_attr = NULL;
1808	qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1809
1810	return qp->device->ops.query_qp ?
1811		qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1812					 qp_init_attr) : -EOPNOTSUPP;
1813}
1814EXPORT_SYMBOL(ib_query_qp);
1815
1816int ib_close_qp(struct ib_qp *qp)
1817{
1818	struct ib_qp *real_qp;
1819	unsigned long flags;
1820
1821	real_qp = qp->real_qp;
1822	if (real_qp == qp)
1823		return -EINVAL;
1824
1825	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1826	list_del(&qp->open_list);
1827	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1828
1829	atomic_dec(&real_qp->usecnt);
1830	if (qp->qp_sec)
1831		ib_close_shared_qp_security(qp->qp_sec);
1832	kfree(qp);
1833
1834	return 0;
1835}
1836EXPORT_SYMBOL(ib_close_qp);
1837
1838static int __ib_destroy_shared_qp(struct ib_qp *qp)
1839{
1840	struct ib_xrcd *xrcd;
1841	struct ib_qp *real_qp;
1842	int ret;
1843
1844	real_qp = qp->real_qp;
1845	xrcd = real_qp->xrcd;
1846
1847	mutex_lock(&xrcd->tgt_qp_mutex);
1848	ib_close_qp(qp);
1849	if (atomic_read(&real_qp->usecnt) == 0)
1850		list_del(&real_qp->xrcd_list);
1851	else
1852		real_qp = NULL;
1853	mutex_unlock(&xrcd->tgt_qp_mutex);
1854
1855	if (real_qp) {
1856		ret = ib_destroy_qp(real_qp);
1857		if (!ret)
1858			atomic_dec(&xrcd->usecnt);
1859		else
1860			__ib_insert_xrcd_qp(xrcd, real_qp);
1861	}
1862
1863	return 0;
1864}
1865
1866int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
1867{
1868	const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
1869	const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
1870	struct ib_pd *pd;
1871	struct ib_cq *scq, *rcq;
1872	struct ib_srq *srq;
1873	struct ib_rwq_ind_table *ind_tbl;
1874	struct ib_qp_security *sec;
1875	int ret;
1876
1877	WARN_ON_ONCE(qp->mrs_used > 0);
1878
1879	if (atomic_read(&qp->usecnt))
1880		return -EBUSY;
1881
1882	if (qp->real_qp != qp)
1883		return __ib_destroy_shared_qp(qp);
1884
1885	pd   = qp->pd;
1886	scq  = qp->send_cq;
1887	rcq  = qp->recv_cq;
1888	srq  = qp->srq;
1889	ind_tbl = qp->rwq_ind_tbl;
1890	sec  = qp->qp_sec;
1891	if (sec)
1892		ib_destroy_qp_security_begin(sec);
1893
1894	if (!qp->uobject)
1895		rdma_rw_cleanup_mrs(qp);
1896
1897	rdma_counter_unbind_qp(qp, true);
1898	rdma_restrack_del(&qp->res);
1899	ret = qp->device->ops.destroy_qp(qp, udata);
1900	if (!ret) {
1901		if (alt_path_sgid_attr)
1902			rdma_put_gid_attr(alt_path_sgid_attr);
1903		if (av_sgid_attr)
1904			rdma_put_gid_attr(av_sgid_attr);
1905		if (pd)
1906			atomic_dec(&pd->usecnt);
1907		if (scq)
1908			atomic_dec(&scq->usecnt);
1909		if (rcq)
1910			atomic_dec(&rcq->usecnt);
1911		if (srq)
1912			atomic_dec(&srq->usecnt);
1913		if (ind_tbl)
1914			atomic_dec(&ind_tbl->usecnt);
1915		if (sec)
1916			ib_destroy_qp_security_end(sec);
1917	} else {
1918		if (sec)
1919			ib_destroy_qp_security_abort(sec);
 
1920	}
1921
 
 
 
 
 
 
 
 
 
 
 
1922	return ret;
1923}
1924EXPORT_SYMBOL(ib_destroy_qp_user);
1925
1926/* Completion queues */
1927
1928struct ib_cq *__ib_create_cq(struct ib_device *device,
1929			     ib_comp_handler comp_handler,
1930			     void (*event_handler)(struct ib_event *, void *),
1931			     void *cq_context,
1932			     const struct ib_cq_init_attr *cq_attr,
1933			     const char *caller)
1934{
1935	struct ib_cq *cq;
1936	int ret;
1937
1938	cq = rdma_zalloc_drv_obj(device, ib_cq);
1939	if (!cq)
1940		return ERR_PTR(-ENOMEM);
1941
1942	cq->device = device;
1943	cq->uobject = NULL;
1944	cq->comp_handler = comp_handler;
1945	cq->event_handler = event_handler;
1946	cq->cq_context = cq_context;
1947	atomic_set(&cq->usecnt, 0);
1948	cq->res.type = RDMA_RESTRACK_CQ;
1949	rdma_restrack_set_task(&cq->res, caller);
 
1950
1951	ret = device->ops.create_cq(cq, cq_attr, NULL);
1952	if (ret) {
 
1953		kfree(cq);
1954		return ERR_PTR(ret);
1955	}
1956
1957	rdma_restrack_kadd(&cq->res);
1958	return cq;
1959}
1960EXPORT_SYMBOL(__ib_create_cq);
1961
1962int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1963{
 
 
 
1964	return cq->device->ops.modify_cq ?
1965		cq->device->ops.modify_cq(cq, cq_count,
1966					  cq_period) : -EOPNOTSUPP;
1967}
1968EXPORT_SYMBOL(rdma_set_cq_moderation);
1969
1970int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
1971{
 
 
 
 
 
1972	if (atomic_read(&cq->usecnt))
1973		return -EBUSY;
1974
 
 
 
 
1975	rdma_restrack_del(&cq->res);
1976	cq->device->ops.destroy_cq(cq, udata);
1977	kfree(cq);
1978	return 0;
1979}
1980EXPORT_SYMBOL(ib_destroy_cq_user);
1981
1982int ib_resize_cq(struct ib_cq *cq, int cqe)
1983{
 
 
 
1984	return cq->device->ops.resize_cq ?
1985		cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
1986}
1987EXPORT_SYMBOL(ib_resize_cq);
1988
1989/* Memory regions */
1990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1991int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
1992{
1993	struct ib_pd *pd = mr->pd;
1994	struct ib_dm *dm = mr->dm;
1995	struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
1996	int ret;
1997
 
1998	rdma_restrack_del(&mr->res);
1999	ret = mr->device->ops.dereg_mr(mr, udata);
2000	if (!ret) {
2001		atomic_dec(&pd->usecnt);
2002		if (dm)
2003			atomic_dec(&dm->usecnt);
2004		kfree(sig_attrs);
2005	}
2006
2007	return ret;
2008}
2009EXPORT_SYMBOL(ib_dereg_mr_user);
2010
2011/**
2012 * ib_alloc_mr_user() - Allocates a memory region
2013 * @pd:            protection domain associated with the region
2014 * @mr_type:       memory region type
2015 * @max_num_sg:    maximum sg entries available for registration.
2016 * @udata:	   user data or null for kernel objects
2017 *
2018 * Notes:
2019 * Memory registeration page/sg lists must not exceed max_num_sg.
2020 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2021 * max_num_sg * used_page_size.
2022 *
2023 */
2024struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
2025			       u32 max_num_sg, struct ib_udata *udata)
2026{
2027	struct ib_mr *mr;
2028
2029	if (!pd->device->ops.alloc_mr)
2030		return ERR_PTR(-EOPNOTSUPP);
 
 
 
 
 
 
 
 
2031
2032	if (WARN_ON_ONCE(mr_type == IB_MR_TYPE_INTEGRITY))
2033		return ERR_PTR(-EINVAL);
 
2034
2035	mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg, udata);
2036	if (!IS_ERR(mr)) {
2037		mr->device  = pd->device;
2038		mr->pd      = pd;
2039		mr->dm      = NULL;
2040		mr->uobject = NULL;
2041		atomic_inc(&pd->usecnt);
2042		mr->need_inval = false;
2043		mr->res.type = RDMA_RESTRACK_MR;
2044		rdma_restrack_kadd(&mr->res);
2045		mr->type = mr_type;
2046		mr->sig_attrs = NULL;
2047	}
2048
 
 
 
 
 
2049	return mr;
2050}
2051EXPORT_SYMBOL(ib_alloc_mr_user);
2052
2053/**
2054 * ib_alloc_mr_integrity() - Allocates an integrity memory region
2055 * @pd:                      protection domain associated with the region
2056 * @max_num_data_sg:         maximum data sg entries available for registration
2057 * @max_num_meta_sg:         maximum metadata sg entries available for
2058 *                           registration
2059 *
2060 * Notes:
2061 * Memory registration page/sg lists must not exceed max_num_sg,
2062 * also the integrity page/sg lists must not exceed max_num_meta_sg.
2063 *
2064 */
2065struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2066				    u32 max_num_data_sg,
2067				    u32 max_num_meta_sg)
2068{
2069	struct ib_mr *mr;
2070	struct ib_sig_attrs *sig_attrs;
2071
2072	if (!pd->device->ops.alloc_mr_integrity ||
2073	    !pd->device->ops.map_mr_sg_pi)
2074		return ERR_PTR(-EOPNOTSUPP);
 
 
2075
2076	if (!max_num_meta_sg)
2077		return ERR_PTR(-EINVAL);
 
 
2078
2079	sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2080	if (!sig_attrs)
2081		return ERR_PTR(-ENOMEM);
 
 
2082
2083	mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2084						max_num_meta_sg);
2085	if (IS_ERR(mr)) {
2086		kfree(sig_attrs);
2087		return mr;
2088	}
2089
2090	mr->device = pd->device;
2091	mr->pd = pd;
2092	mr->dm = NULL;
2093	mr->uobject = NULL;
2094	atomic_inc(&pd->usecnt);
2095	mr->need_inval = false;
2096	mr->res.type = RDMA_RESTRACK_MR;
2097	rdma_restrack_kadd(&mr->res);
2098	mr->type = IB_MR_TYPE_INTEGRITY;
2099	mr->sig_attrs = sig_attrs;
2100
 
 
 
 
 
2101	return mr;
2102}
2103EXPORT_SYMBOL(ib_alloc_mr_integrity);
2104
2105/* "Fast" memory regions */
2106
2107struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2108			    int mr_access_flags,
2109			    struct ib_fmr_attr *fmr_attr)
2110{
2111	struct ib_fmr *fmr;
2112
2113	if (!pd->device->ops.alloc_fmr)
2114		return ERR_PTR(-EOPNOTSUPP);
2115
2116	fmr = pd->device->ops.alloc_fmr(pd, mr_access_flags, fmr_attr);
2117	if (!IS_ERR(fmr)) {
2118		fmr->device = pd->device;
2119		fmr->pd     = pd;
2120		atomic_inc(&pd->usecnt);
2121	}
2122
2123	return fmr;
2124}
2125EXPORT_SYMBOL(ib_alloc_fmr);
2126
2127int ib_unmap_fmr(struct list_head *fmr_list)
2128{
2129	struct ib_fmr *fmr;
2130
2131	if (list_empty(fmr_list))
2132		return 0;
2133
2134	fmr = list_entry(fmr_list->next, struct ib_fmr, list);
2135	return fmr->device->ops.unmap_fmr(fmr_list);
2136}
2137EXPORT_SYMBOL(ib_unmap_fmr);
2138
2139int ib_dealloc_fmr(struct ib_fmr *fmr)
2140{
2141	struct ib_pd *pd;
2142	int ret;
2143
2144	pd = fmr->pd;
2145	ret = fmr->device->ops.dealloc_fmr(fmr);
2146	if (!ret)
2147		atomic_dec(&pd->usecnt);
2148
2149	return ret;
2150}
2151EXPORT_SYMBOL(ib_dealloc_fmr);
2152
2153/* Multicast groups */
2154
2155static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2156{
2157	struct ib_qp_init_attr init_attr = {};
2158	struct ib_qp_attr attr = {};
2159	int num_eth_ports = 0;
2160	int port;
2161
2162	/* If QP state >= init, it is assigned to a port and we can check this
2163	 * port only.
2164	 */
2165	if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2166		if (attr.qp_state >= IB_QPS_INIT) {
2167			if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2168			    IB_LINK_LAYER_INFINIBAND)
2169				return true;
2170			goto lid_check;
2171		}
2172	}
2173
2174	/* Can't get a quick answer, iterate over all ports */
2175	for (port = 0; port < qp->device->phys_port_cnt; port++)
2176		if (rdma_port_get_link_layer(qp->device, port) !=
2177		    IB_LINK_LAYER_INFINIBAND)
2178			num_eth_ports++;
2179
2180	/* If we have at lease one Ethernet port, RoCE annex declares that
2181	 * multicast LID should be ignored. We can't tell at this step if the
2182	 * QP belongs to an IB or Ethernet port.
2183	 */
2184	if (num_eth_ports)
2185		return true;
2186
2187	/* If all the ports are IB, we can check according to IB spec. */
2188lid_check:
2189	return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2190		 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2191}
2192
2193int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2194{
2195	int ret;
2196
2197	if (!qp->device->ops.attach_mcast)
2198		return -EOPNOTSUPP;
2199
2200	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2201	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2202		return -EINVAL;
2203
2204	ret = qp->device->ops.attach_mcast(qp, gid, lid);
2205	if (!ret)
2206		atomic_inc(&qp->usecnt);
2207	return ret;
2208}
2209EXPORT_SYMBOL(ib_attach_mcast);
2210
2211int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2212{
2213	int ret;
2214
2215	if (!qp->device->ops.detach_mcast)
2216		return -EOPNOTSUPP;
2217
2218	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2219	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2220		return -EINVAL;
2221
2222	ret = qp->device->ops.detach_mcast(qp, gid, lid);
2223	if (!ret)
2224		atomic_dec(&qp->usecnt);
2225	return ret;
2226}
2227EXPORT_SYMBOL(ib_detach_mcast);
2228
2229struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller)
 
 
 
 
 
 
 
2230{
2231	struct ib_xrcd *xrcd;
 
2232
2233	if (!device->ops.alloc_xrcd)
2234		return ERR_PTR(-EOPNOTSUPP);
2235
2236	xrcd = device->ops.alloc_xrcd(device, NULL);
2237	if (!IS_ERR(xrcd)) {
2238		xrcd->device = device;
2239		xrcd->inode = NULL;
2240		atomic_set(&xrcd->usecnt, 0);
2241		mutex_init(&xrcd->tgt_qp_mutex);
2242		INIT_LIST_HEAD(&xrcd->tgt_qp_list);
2243	}
 
2244
 
 
 
2245	return xrcd;
 
 
 
2246}
2247EXPORT_SYMBOL(__ib_alloc_xrcd);
2248
2249int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata)
 
 
 
 
 
2250{
2251	struct ib_qp *qp;
2252	int ret;
2253
2254	if (atomic_read(&xrcd->usecnt))
2255		return -EBUSY;
2256
2257	while (!list_empty(&xrcd->tgt_qp_list)) {
2258		qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
2259		ret = ib_destroy_qp(qp);
2260		if (ret)
2261			return ret;
2262	}
2263	mutex_destroy(&xrcd->tgt_qp_mutex);
2264
2265	return xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2266}
2267EXPORT_SYMBOL(ib_dealloc_xrcd);
2268
2269/**
2270 * ib_create_wq - Creates a WQ associated with the specified protection
2271 * domain.
2272 * @pd: The protection domain associated with the WQ.
2273 * @wq_attr: A list of initial attributes required to create the
2274 * WQ. If WQ creation succeeds, then the attributes are updated to
2275 * the actual capabilities of the created WQ.
2276 *
2277 * wq_attr->max_wr and wq_attr->max_sge determine
2278 * the requested size of the WQ, and set to the actual values allocated
2279 * on return.
2280 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2281 * at least as large as the requested values.
2282 */
2283struct ib_wq *ib_create_wq(struct ib_pd *pd,
2284			   struct ib_wq_init_attr *wq_attr)
2285{
2286	struct ib_wq *wq;
2287
2288	if (!pd->device->ops.create_wq)
2289		return ERR_PTR(-EOPNOTSUPP);
2290
2291	wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2292	if (!IS_ERR(wq)) {
2293		wq->event_handler = wq_attr->event_handler;
2294		wq->wq_context = wq_attr->wq_context;
2295		wq->wq_type = wq_attr->wq_type;
2296		wq->cq = wq_attr->cq;
2297		wq->device = pd->device;
2298		wq->pd = pd;
2299		wq->uobject = NULL;
2300		atomic_inc(&pd->usecnt);
2301		atomic_inc(&wq_attr->cq->usecnt);
2302		atomic_set(&wq->usecnt, 0);
2303	}
2304	return wq;
2305}
2306EXPORT_SYMBOL(ib_create_wq);
2307
2308/**
2309 * ib_destroy_wq - Destroys the specified user WQ.
2310 * @wq: The WQ to destroy.
2311 * @udata: Valid user data
2312 */
2313int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata)
2314{
2315	struct ib_cq *cq = wq->cq;
2316	struct ib_pd *pd = wq->pd;
 
2317
2318	if (atomic_read(&wq->usecnt))
2319		return -EBUSY;
2320
2321	wq->device->ops.destroy_wq(wq, udata);
 
 
 
2322	atomic_dec(&pd->usecnt);
2323	atomic_dec(&cq->usecnt);
2324
2325	return 0;
2326}
2327EXPORT_SYMBOL(ib_destroy_wq);
2328
2329/**
2330 * ib_modify_wq - Modifies the specified WQ.
2331 * @wq: The WQ to modify.
2332 * @wq_attr: On input, specifies the WQ attributes to modify.
2333 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2334 *   are being modified.
2335 * On output, the current values of selected WQ attributes are returned.
2336 */
2337int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
2338		 u32 wq_attr_mask)
2339{
2340	int err;
2341
2342	if (!wq->device->ops.modify_wq)
2343		return -EOPNOTSUPP;
2344
2345	err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL);
2346	return err;
2347}
2348EXPORT_SYMBOL(ib_modify_wq);
2349
2350/*
2351 * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
2352 * @device: The device on which to create the rwq indirection table.
2353 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
2354 * create the Indirection Table.
2355 *
2356 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
2357 *	than the created ib_rwq_ind_table object and the caller is responsible
2358 *	for its memory allocation/free.
2359 */
2360struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
2361						 struct ib_rwq_ind_table_init_attr *init_attr)
2362{
2363	struct ib_rwq_ind_table *rwq_ind_table;
2364	int i;
2365	u32 table_size;
2366
2367	if (!device->ops.create_rwq_ind_table)
2368		return ERR_PTR(-EOPNOTSUPP);
2369
2370	table_size = (1 << init_attr->log_ind_tbl_size);
2371	rwq_ind_table = device->ops.create_rwq_ind_table(device,
2372							 init_attr, NULL);
2373	if (IS_ERR(rwq_ind_table))
2374		return rwq_ind_table;
2375
2376	rwq_ind_table->ind_tbl = init_attr->ind_tbl;
2377	rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
2378	rwq_ind_table->device = device;
2379	rwq_ind_table->uobject = NULL;
2380	atomic_set(&rwq_ind_table->usecnt, 0);
2381
2382	for (i = 0; i < table_size; i++)
2383		atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
2384
2385	return rwq_ind_table;
2386}
2387EXPORT_SYMBOL(ib_create_rwq_ind_table);
2388
2389/*
2390 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
2391 * @wq_ind_table: The Indirection Table to destroy.
2392*/
2393int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
2394{
2395	int err, i;
2396	u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
2397	struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
2398
2399	if (atomic_read(&rwq_ind_table->usecnt))
2400		return -EBUSY;
2401
2402	err = rwq_ind_table->device->ops.destroy_rwq_ind_table(rwq_ind_table);
2403	if (!err) {
2404		for (i = 0; i < table_size; i++)
2405			atomic_dec(&ind_tbl[i]->usecnt);
2406	}
2407
2408	return err;
2409}
2410EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
2411
2412int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2413		       struct ib_mr_status *mr_status)
2414{
2415	if (!mr->device->ops.check_mr_status)
2416		return -EOPNOTSUPP;
2417
2418	return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2419}
2420EXPORT_SYMBOL(ib_check_mr_status);
2421
2422int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2423			 int state)
2424{
2425	if (!device->ops.set_vf_link_state)
2426		return -EOPNOTSUPP;
2427
2428	return device->ops.set_vf_link_state(device, vf, port, state);
2429}
2430EXPORT_SYMBOL(ib_set_vf_link_state);
2431
2432int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2433		     struct ifla_vf_info *info)
2434{
2435	if (!device->ops.get_vf_config)
2436		return -EOPNOTSUPP;
2437
2438	return device->ops.get_vf_config(device, vf, port, info);
2439}
2440EXPORT_SYMBOL(ib_get_vf_config);
2441
2442int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2443		    struct ifla_vf_stats *stats)
2444{
2445	if (!device->ops.get_vf_stats)
2446		return -EOPNOTSUPP;
2447
2448	return device->ops.get_vf_stats(device, vf, port, stats);
2449}
2450EXPORT_SYMBOL(ib_get_vf_stats);
2451
2452int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2453		   int type)
2454{
2455	if (!device->ops.set_vf_guid)
2456		return -EOPNOTSUPP;
2457
2458	return device->ops.set_vf_guid(device, vf, port, guid, type);
2459}
2460EXPORT_SYMBOL(ib_set_vf_guid);
2461
 
 
 
 
 
 
 
 
 
 
2462/**
2463 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2464 *     information) and set an appropriate memory region for registration.
2465 * @mr:             memory region
2466 * @data_sg:        dma mapped scatterlist for data
2467 * @data_sg_nents:  number of entries in data_sg
2468 * @data_sg_offset: offset in bytes into data_sg
2469 * @meta_sg:        dma mapped scatterlist for metadata
2470 * @meta_sg_nents:  number of entries in meta_sg
2471 * @meta_sg_offset: offset in bytes into meta_sg
2472 * @page_size:      page vector desired page size
2473 *
2474 * Constraints:
2475 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2476 *
2477 * Return: 0 on success.
2478 *
2479 * After this completes successfully, the  memory region
2480 * is ready for registration.
2481 */
2482int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2483		    int data_sg_nents, unsigned int *data_sg_offset,
2484		    struct scatterlist *meta_sg, int meta_sg_nents,
2485		    unsigned int *meta_sg_offset, unsigned int page_size)
2486{
2487	if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2488		     WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2489		return -EOPNOTSUPP;
2490
2491	mr->page_size = page_size;
2492
2493	return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2494					    data_sg_offset, meta_sg,
2495					    meta_sg_nents, meta_sg_offset);
2496}
2497EXPORT_SYMBOL(ib_map_mr_sg_pi);
2498
2499/**
2500 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2501 *     and set it the memory region.
2502 * @mr:            memory region
2503 * @sg:            dma mapped scatterlist
2504 * @sg_nents:      number of entries in sg
2505 * @sg_offset:     offset in bytes into sg
2506 * @page_size:     page vector desired page size
2507 *
2508 * Constraints:
 
2509 * - The first sg element is allowed to have an offset.
2510 * - Each sg element must either be aligned to page_size or virtually
2511 *   contiguous to the previous element. In case an sg element has a
2512 *   non-contiguous offset, the mapping prefix will not include it.
2513 * - The last sg element is allowed to have length less than page_size.
2514 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2515 *   then only max_num_sg entries will be mapped.
2516 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2517 *   constraints holds and the page_size argument is ignored.
2518 *
2519 * Returns the number of sg elements that were mapped to the memory region.
2520 *
2521 * After this completes successfully, the  memory region
2522 * is ready for registration.
2523 */
2524int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2525		 unsigned int *sg_offset, unsigned int page_size)
2526{
2527	if (unlikely(!mr->device->ops.map_mr_sg))
2528		return -EOPNOTSUPP;
2529
2530	mr->page_size = page_size;
2531
2532	return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2533}
2534EXPORT_SYMBOL(ib_map_mr_sg);
2535
2536/**
2537 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2538 *     to a page vector
2539 * @mr:            memory region
2540 * @sgl:           dma mapped scatterlist
2541 * @sg_nents:      number of entries in sg
2542 * @sg_offset_p:   IN:  start offset in bytes into sg
2543 *                 OUT: offset in bytes for element n of the sg of the first
 
2544 *                      byte that has not been processed where n is the return
2545 *                      value of this function.
 
2546 * @set_page:      driver page assignment function pointer
2547 *
2548 * Core service helper for drivers to convert the largest
2549 * prefix of given sg list to a page vector. The sg list
2550 * prefix converted is the prefix that meet the requirements
2551 * of ib_map_mr_sg.
2552 *
2553 * Returns the number of sg elements that were assigned to
2554 * a page vector.
2555 */
2556int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2557		unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2558{
2559	struct scatterlist *sg;
2560	u64 last_end_dma_addr = 0;
2561	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2562	unsigned int last_page_off = 0;
2563	u64 page_mask = ~((u64)mr->page_size - 1);
2564	int i, ret;
2565
2566	if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2567		return -EINVAL;
2568
2569	mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2570	mr->length = 0;
2571
2572	for_each_sg(sgl, sg, sg_nents, i) {
2573		u64 dma_addr = sg_dma_address(sg) + sg_offset;
2574		u64 prev_addr = dma_addr;
2575		unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2576		u64 end_dma_addr = dma_addr + dma_len;
2577		u64 page_addr = dma_addr & page_mask;
2578
2579		/*
2580		 * For the second and later elements, check whether either the
2581		 * end of element i-1 or the start of element i is not aligned
2582		 * on a page boundary.
2583		 */
2584		if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2585			/* Stop mapping if there is a gap. */
2586			if (last_end_dma_addr != dma_addr)
2587				break;
2588
2589			/*
2590			 * Coalesce this element with the last. If it is small
2591			 * enough just update mr->length. Otherwise start
2592			 * mapping from the next page.
2593			 */
2594			goto next_page;
2595		}
2596
2597		do {
2598			ret = set_page(mr, page_addr);
2599			if (unlikely(ret < 0)) {
2600				sg_offset = prev_addr - sg_dma_address(sg);
2601				mr->length += prev_addr - dma_addr;
2602				if (sg_offset_p)
2603					*sg_offset_p = sg_offset;
2604				return i || sg_offset ? i : ret;
2605			}
2606			prev_addr = page_addr;
2607next_page:
2608			page_addr += mr->page_size;
2609		} while (page_addr < end_dma_addr);
2610
2611		mr->length += dma_len;
2612		last_end_dma_addr = end_dma_addr;
2613		last_page_off = end_dma_addr & ~page_mask;
2614
2615		sg_offset = 0;
2616	}
2617
2618	if (sg_offset_p)
2619		*sg_offset_p = 0;
2620	return i;
2621}
2622EXPORT_SYMBOL(ib_sg_to_pages);
2623
2624struct ib_drain_cqe {
2625	struct ib_cqe cqe;
2626	struct completion done;
2627};
2628
2629static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2630{
2631	struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2632						cqe);
2633
2634	complete(&cqe->done);
2635}
2636
2637/*
2638 * Post a WR and block until its completion is reaped for the SQ.
2639 */
2640static void __ib_drain_sq(struct ib_qp *qp)
2641{
2642	struct ib_cq *cq = qp->send_cq;
2643	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2644	struct ib_drain_cqe sdrain;
2645	struct ib_rdma_wr swr = {
2646		.wr = {
2647			.next = NULL,
2648			{ .wr_cqe	= &sdrain.cqe, },
2649			.opcode	= IB_WR_RDMA_WRITE,
2650		},
2651	};
2652	int ret;
2653
2654	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2655	if (ret) {
2656		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2657		return;
2658	}
2659
2660	sdrain.cqe.done = ib_drain_qp_done;
2661	init_completion(&sdrain.done);
2662
2663	ret = ib_post_send(qp, &swr.wr, NULL);
2664	if (ret) {
2665		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2666		return;
2667	}
2668
2669	if (cq->poll_ctx == IB_POLL_DIRECT)
2670		while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2671			ib_process_cq_direct(cq, -1);
2672	else
2673		wait_for_completion(&sdrain.done);
2674}
2675
2676/*
2677 * Post a WR and block until its completion is reaped for the RQ.
2678 */
2679static void __ib_drain_rq(struct ib_qp *qp)
2680{
2681	struct ib_cq *cq = qp->recv_cq;
2682	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2683	struct ib_drain_cqe rdrain;
2684	struct ib_recv_wr rwr = {};
2685	int ret;
2686
2687	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2688	if (ret) {
2689		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2690		return;
2691	}
2692
2693	rwr.wr_cqe = &rdrain.cqe;
2694	rdrain.cqe.done = ib_drain_qp_done;
2695	init_completion(&rdrain.done);
2696
2697	ret = ib_post_recv(qp, &rwr, NULL);
2698	if (ret) {
2699		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2700		return;
2701	}
2702
2703	if (cq->poll_ctx == IB_POLL_DIRECT)
2704		while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2705			ib_process_cq_direct(cq, -1);
2706	else
2707		wait_for_completion(&rdrain.done);
2708}
2709
2710/**
2711 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2712 *		   application.
2713 * @qp:            queue pair to drain
2714 *
2715 * If the device has a provider-specific drain function, then
2716 * call that.  Otherwise call the generic drain function
2717 * __ib_drain_sq().
2718 *
2719 * The caller must:
2720 *
2721 * ensure there is room in the CQ and SQ for the drain work request and
2722 * completion.
2723 *
2724 * allocate the CQ using ib_alloc_cq().
2725 *
2726 * ensure that there are no other contexts that are posting WRs concurrently.
2727 * Otherwise the drain is not guaranteed.
2728 */
2729void ib_drain_sq(struct ib_qp *qp)
2730{
2731	if (qp->device->ops.drain_sq)
2732		qp->device->ops.drain_sq(qp);
2733	else
2734		__ib_drain_sq(qp);
 
2735}
2736EXPORT_SYMBOL(ib_drain_sq);
2737
2738/**
2739 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2740 *		   application.
2741 * @qp:            queue pair to drain
2742 *
2743 * If the device has a provider-specific drain function, then
2744 * call that.  Otherwise call the generic drain function
2745 * __ib_drain_rq().
2746 *
2747 * The caller must:
2748 *
2749 * ensure there is room in the CQ and RQ for the drain work request and
2750 * completion.
2751 *
2752 * allocate the CQ using ib_alloc_cq().
2753 *
2754 * ensure that there are no other contexts that are posting WRs concurrently.
2755 * Otherwise the drain is not guaranteed.
2756 */
2757void ib_drain_rq(struct ib_qp *qp)
2758{
2759	if (qp->device->ops.drain_rq)
2760		qp->device->ops.drain_rq(qp);
2761	else
2762		__ib_drain_rq(qp);
 
2763}
2764EXPORT_SYMBOL(ib_drain_rq);
2765
2766/**
2767 * ib_drain_qp() - Block until all CQEs have been consumed by the
2768 *		   application on both the RQ and SQ.
2769 * @qp:            queue pair to drain
2770 *
2771 * The caller must:
2772 *
2773 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2774 * and completions.
2775 *
2776 * allocate the CQs using ib_alloc_cq().
2777 *
2778 * ensure that there are no other contexts that are posting WRs concurrently.
2779 * Otherwise the drain is not guaranteed.
2780 */
2781void ib_drain_qp(struct ib_qp *qp)
2782{
2783	ib_drain_sq(qp);
2784	if (!qp->srq)
2785		ib_drain_rq(qp);
2786}
2787EXPORT_SYMBOL(ib_drain_qp);
2788
2789struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
2790				     enum rdma_netdev_t type, const char *name,
2791				     unsigned char name_assign_type,
2792				     void (*setup)(struct net_device *))
2793{
2794	struct rdma_netdev_alloc_params params;
2795	struct net_device *netdev;
2796	int rc;
2797
2798	if (!device->ops.rdma_netdev_get_params)
2799		return ERR_PTR(-EOPNOTSUPP);
2800
2801	rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2802						&params);
2803	if (rc)
2804		return ERR_PTR(rc);
2805
2806	netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2807				  setup, params.txqs, params.rxqs);
2808	if (!netdev)
2809		return ERR_PTR(-ENOMEM);
2810
2811	return netdev;
2812}
2813EXPORT_SYMBOL(rdma_alloc_netdev);
2814
2815int rdma_init_netdev(struct ib_device *device, u8 port_num,
2816		     enum rdma_netdev_t type, const char *name,
2817		     unsigned char name_assign_type,
2818		     void (*setup)(struct net_device *),
2819		     struct net_device *netdev)
2820{
2821	struct rdma_netdev_alloc_params params;
2822	int rc;
2823
2824	if (!device->ops.rdma_netdev_get_params)
2825		return -EOPNOTSUPP;
2826
2827	rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2828						&params);
2829	if (rc)
2830		return rc;
2831
2832	return params.initialize_rdma_netdev(device, port_num,
2833					     netdev, params.param);
2834}
2835EXPORT_SYMBOL(rdma_init_netdev);
2836
2837void __rdma_block_iter_start(struct ib_block_iter *biter,
2838			     struct scatterlist *sglist, unsigned int nents,
2839			     unsigned long pgsz)
2840{
2841	memset(biter, 0, sizeof(struct ib_block_iter));
2842	biter->__sg = sglist;
2843	biter->__sg_nents = nents;
2844
2845	/* Driver provides best block size to use */
2846	biter->__pg_bit = __fls(pgsz);
2847}
2848EXPORT_SYMBOL(__rdma_block_iter_start);
2849
2850bool __rdma_block_iter_next(struct ib_block_iter *biter)
2851{
2852	unsigned int block_offset;
 
2853
2854	if (!biter->__sg_nents || !biter->__sg)
2855		return false;
2856
2857	biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
2858	block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
2859	biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset;
2860
2861	if (biter->__sg_advance >= sg_dma_len(biter->__sg)) {
 
 
2862		biter->__sg_advance = 0;
2863		biter->__sg = sg_next(biter->__sg);
2864		biter->__sg_nents--;
2865	}
2866
2867	return true;
2868}
2869EXPORT_SYMBOL(__rdma_block_iter_next);