Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) Ericsson AB 2007-2008
   4 * Copyright (C) ST-Ericsson SA 2008-2010
   5 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
   6 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
   7 */
   8
   9#include <linux/dma-mapping.h>
  10#include <linux/kernel.h>
  11#include <linux/slab.h>
  12#include <linux/export.h>
  13#include <linux/dmaengine.h>
  14#include <linux/platform_device.h>
  15#include <linux/clk.h>
  16#include <linux/delay.h>
  17#include <linux/log2.h>
  18#include <linux/pm.h>
  19#include <linux/pm_runtime.h>
  20#include <linux/err.h>
  21#include <linux/of.h>
  22#include <linux/of_address.h>
  23#include <linux/of_dma.h>
  24#include <linux/amba/bus.h>
  25#include <linux/regulator/consumer.h>
 
  26
  27#include "dmaengine.h"
  28#include "ste_dma40.h"
  29#include "ste_dma40_ll.h"
  30
  31/**
  32 * struct stedma40_platform_data - Configuration struct for the dma device.
  33 *
  34 * @disabled_channels: A vector, ending with -1, that marks physical channels
  35 * that are for different reasons not available for the driver.
  36 * @soft_lli_chans: A vector, that marks physical channels will use LLI by SW
  37 * which avoids HW bug that exists in some versions of the controller.
  38 * SoftLLI introduces relink overhead that could impact performance for
  39 * certain use cases.
  40 * @num_of_soft_lli_chans: The number of channels that needs to be configured
  41 * to use SoftLLI.
  42 * @use_esram_lcla: flag for mapping the lcla into esram region
  43 * @num_of_memcpy_chans: The number of channels reserved for memcpy.
  44 * @num_of_phy_chans: The number of physical channels implemented in HW.
  45 * 0 means reading the number of channels from DMA HW but this is only valid
  46 * for 'multiple of 4' channels, like 8.
  47 */
  48struct stedma40_platform_data {
  49	int				 disabled_channels[STEDMA40_MAX_PHYS];
  50	int				*soft_lli_chans;
  51	int				 num_of_soft_lli_chans;
  52	bool				 use_esram_lcla;
  53	int				 num_of_memcpy_chans;
  54	int				 num_of_phy_chans;
  55};
  56
  57#define D40_NAME "dma40"
  58
  59#define D40_PHY_CHAN -1
  60
  61/* For masking out/in 2 bit channel positions */
  62#define D40_CHAN_POS(chan)  (2 * (chan / 2))
  63#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  64
  65/* Maximum iterations taken before giving up suspending a channel */
  66#define D40_SUSPEND_MAX_IT 500
  67
  68/* Milliseconds */
  69#define DMA40_AUTOSUSPEND_DELAY	100
  70
  71/* Hardware requirement on LCLA alignment */
  72#define LCLA_ALIGNMENT 0x40000
  73
  74/* Max number of links per event group */
  75#define D40_LCLA_LINK_PER_EVENT_GRP 128
  76#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  77
  78/* Max number of logical channels per physical channel */
  79#define D40_MAX_LOG_CHAN_PER_PHY 32
  80
  81/* Attempts before giving up to trying to get pages that are aligned */
  82#define MAX_LCLA_ALLOC_ATTEMPTS 256
  83
  84/* Bit markings for allocation map */
  85#define D40_ALLOC_FREE		BIT(31)
  86#define D40_ALLOC_PHY		BIT(30)
  87#define D40_ALLOC_LOG_FREE	0
  88
  89#define D40_MEMCPY_MAX_CHANS	8
  90
  91/* Reserved event lines for memcpy only. */
  92#define DB8500_DMA_MEMCPY_EV_0	51
  93#define DB8500_DMA_MEMCPY_EV_1	56
  94#define DB8500_DMA_MEMCPY_EV_2	57
  95#define DB8500_DMA_MEMCPY_EV_3	58
  96#define DB8500_DMA_MEMCPY_EV_4	59
  97#define DB8500_DMA_MEMCPY_EV_5	60
  98
  99static int dma40_memcpy_channels[] = {
 100	DB8500_DMA_MEMCPY_EV_0,
 101	DB8500_DMA_MEMCPY_EV_1,
 102	DB8500_DMA_MEMCPY_EV_2,
 103	DB8500_DMA_MEMCPY_EV_3,
 104	DB8500_DMA_MEMCPY_EV_4,
 105	DB8500_DMA_MEMCPY_EV_5,
 106};
 107
 108/* Default configuration for physical memcpy */
 109static const struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
 110	.mode = STEDMA40_MODE_PHYSICAL,
 111	.dir = DMA_MEM_TO_MEM,
 112
 113	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 114	.src_info.psize = STEDMA40_PSIZE_PHY_1,
 115	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 116
 117	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 118	.dst_info.psize = STEDMA40_PSIZE_PHY_1,
 119	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 120};
 121
 122/* Default configuration for logical memcpy */
 123static const struct stedma40_chan_cfg dma40_memcpy_conf_log = {
 124	.mode = STEDMA40_MODE_LOGICAL,
 125	.dir = DMA_MEM_TO_MEM,
 126
 127	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 128	.src_info.psize = STEDMA40_PSIZE_LOG_1,
 129	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 130
 131	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 132	.dst_info.psize = STEDMA40_PSIZE_LOG_1,
 133	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 134};
 135
 136/**
 137 * enum d40_command - The different commands and/or statuses.
 138 *
 139 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 140 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 141 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 142 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 143 */
 144enum d40_command {
 145	D40_DMA_STOP		= 0,
 146	D40_DMA_RUN		= 1,
 147	D40_DMA_SUSPEND_REQ	= 2,
 148	D40_DMA_SUSPENDED	= 3
 149};
 150
 151/*
 152 * enum d40_events - The different Event Enables for the event lines.
 153 *
 154 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
 155 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
 156 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
 157 * @D40_ROUND_EVENTLINE: Status check for event line.
 158 */
 159
 160enum d40_events {
 161	D40_DEACTIVATE_EVENTLINE	= 0,
 162	D40_ACTIVATE_EVENTLINE		= 1,
 163	D40_SUSPEND_REQ_EVENTLINE	= 2,
 164	D40_ROUND_EVENTLINE		= 3
 165};
 166
 167/*
 168 * These are the registers that has to be saved and later restored
 169 * when the DMA hw is powered off.
 170 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
 171 */
 172static __maybe_unused u32 d40_backup_regs[] = {
 173	D40_DREG_LCPA,
 174	D40_DREG_LCLA,
 175	D40_DREG_PRMSE,
 176	D40_DREG_PRMSO,
 177	D40_DREG_PRMOE,
 178	D40_DREG_PRMOO,
 179};
 180
 181#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
 182
 183/*
 184 * since 9540 and 8540 has the same HW revision
 185 * use v4a for 9540 or earlier
 186 * use v4b for 8540 or later
 187 * HW revision:
 188 * DB8500ed has revision 0
 189 * DB8500v1 has revision 2
 190 * DB8500v2 has revision 3
 191 * AP9540v1 has revision 4
 192 * DB8540v1 has revision 4
 193 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
 194 */
 195static u32 d40_backup_regs_v4a[] = {
 196	D40_DREG_PSEG1,
 197	D40_DREG_PSEG2,
 198	D40_DREG_PSEG3,
 199	D40_DREG_PSEG4,
 200	D40_DREG_PCEG1,
 201	D40_DREG_PCEG2,
 202	D40_DREG_PCEG3,
 203	D40_DREG_PCEG4,
 204	D40_DREG_RSEG1,
 205	D40_DREG_RSEG2,
 206	D40_DREG_RSEG3,
 207	D40_DREG_RSEG4,
 208	D40_DREG_RCEG1,
 209	D40_DREG_RCEG2,
 210	D40_DREG_RCEG3,
 211	D40_DREG_RCEG4,
 212};
 213
 214#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
 215
 216static u32 d40_backup_regs_v4b[] = {
 217	D40_DREG_CPSEG1,
 218	D40_DREG_CPSEG2,
 219	D40_DREG_CPSEG3,
 220	D40_DREG_CPSEG4,
 221	D40_DREG_CPSEG5,
 222	D40_DREG_CPCEG1,
 223	D40_DREG_CPCEG2,
 224	D40_DREG_CPCEG3,
 225	D40_DREG_CPCEG4,
 226	D40_DREG_CPCEG5,
 227	D40_DREG_CRSEG1,
 228	D40_DREG_CRSEG2,
 229	D40_DREG_CRSEG3,
 230	D40_DREG_CRSEG4,
 231	D40_DREG_CRSEG5,
 232	D40_DREG_CRCEG1,
 233	D40_DREG_CRCEG2,
 234	D40_DREG_CRCEG3,
 235	D40_DREG_CRCEG4,
 236	D40_DREG_CRCEG5,
 237};
 238
 239#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
 240
 241static __maybe_unused u32 d40_backup_regs_chan[] = {
 242	D40_CHAN_REG_SSCFG,
 243	D40_CHAN_REG_SSELT,
 244	D40_CHAN_REG_SSPTR,
 245	D40_CHAN_REG_SSLNK,
 246	D40_CHAN_REG_SDCFG,
 247	D40_CHAN_REG_SDELT,
 248	D40_CHAN_REG_SDPTR,
 249	D40_CHAN_REG_SDLNK,
 250};
 251
 252#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
 253			     BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
 254
 255/**
 256 * struct d40_interrupt_lookup - lookup table for interrupt handler
 257 *
 258 * @src: Interrupt mask register.
 259 * @clr: Interrupt clear register.
 260 * @is_error: true if this is an error interrupt.
 261 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 262 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 263 */
 264struct d40_interrupt_lookup {
 265	u32 src;
 266	u32 clr;
 267	bool is_error;
 268	int offset;
 269};
 270
 271
 272static struct d40_interrupt_lookup il_v4a[] = {
 273	{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
 274	{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
 275	{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
 276	{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
 277	{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
 278	{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
 279	{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
 280	{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
 281	{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
 282	{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
 283};
 284
 285static struct d40_interrupt_lookup il_v4b[] = {
 286	{D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
 287	{D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
 288	{D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
 289	{D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
 290	{D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
 291	{D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
 292	{D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
 293	{D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
 294	{D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
 295	{D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
 296	{D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
 297	{D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
 298};
 299
 300/**
 301 * struct d40_reg_val - simple lookup struct
 302 *
 303 * @reg: The register.
 304 * @val: The value that belongs to the register in reg.
 305 */
 306struct d40_reg_val {
 307	unsigned int reg;
 308	unsigned int val;
 309};
 310
 311static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
 312	/* Clock every part of the DMA block from start */
 313	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 314
 315	/* Interrupts on all logical channels */
 316	{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
 317	{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
 318	{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
 319	{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
 320	{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
 321	{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
 322	{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
 323	{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
 324	{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
 325	{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
 326	{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
 327	{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
 328};
 329static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
 330	/* Clock every part of the DMA block from start */
 331	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 332
 333	/* Interrupts on all logical channels */
 334	{ .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
 335	{ .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
 336	{ .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
 337	{ .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
 338	{ .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
 339	{ .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
 340	{ .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
 341	{ .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
 342	{ .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
 343	{ .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
 344	{ .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
 345	{ .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
 346	{ .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
 347	{ .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
 348	{ .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
 349};
 350
 351/**
 352 * struct d40_lli_pool - Structure for keeping LLIs in memory
 353 *
 354 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 355 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 356 * pre_alloc_lli is used.
 357 * @dma_addr: DMA address, if mapped
 358 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 359 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 360 * one buffer to one buffer.
 361 */
 362struct d40_lli_pool {
 363	void	*base;
 364	int	 size;
 365	dma_addr_t	dma_addr;
 366	/* Space for dst and src, plus an extra for padding */
 367	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
 368};
 369
 370/**
 371 * struct d40_desc - A descriptor is one DMA job.
 372 *
 373 * @lli_phy: LLI settings for physical channel. Both src and dst=
 374 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 375 * lli_len equals one.
 376 * @lli_log: Same as above but for logical channels.
 377 * @lli_pool: The pool with two entries pre-allocated.
 378 * @lli_len: Number of llis of current descriptor.
 379 * @lli_current: Number of transferred llis.
 380 * @lcla_alloc: Number of LCLA entries allocated.
 381 * @txd: DMA engine struct. Used for among other things for communication
 382 * during a transfer.
 383 * @node: List entry.
 384 * @is_in_client_list: true if the client owns this descriptor.
 385 * @cyclic: true if this is a cyclic job
 386 *
 387 * This descriptor is used for both logical and physical transfers.
 388 */
 389struct d40_desc {
 390	/* LLI physical */
 391	struct d40_phy_lli_bidir	 lli_phy;
 392	/* LLI logical */
 393	struct d40_log_lli_bidir	 lli_log;
 394
 395	struct d40_lli_pool		 lli_pool;
 396	int				 lli_len;
 397	int				 lli_current;
 398	int				 lcla_alloc;
 399
 400	struct dma_async_tx_descriptor	 txd;
 401	struct list_head		 node;
 402
 403	bool				 is_in_client_list;
 404	bool				 cyclic;
 405};
 406
 407/**
 408 * struct d40_lcla_pool - LCLA pool settings and data.
 409 *
 410 * @base: The virtual address of LCLA. 18 bit aligned.
 411 * @dma_addr: DMA address, if mapped
 412 * @base_unaligned: The original kmalloc pointer, if kmalloc is used.
 413 * This pointer is only there for clean-up on error.
 414 * @pages: The number of pages needed for all physical channels.
 415 * Only used later for clean-up on error
 416 * @lock: Lock to protect the content in this struct.
 417 * @alloc_map: big map over which LCLA entry is own by which job.
 418 */
 419struct d40_lcla_pool {
 420	void		*base;
 421	dma_addr_t	dma_addr;
 422	void		*base_unaligned;
 423	int		 pages;
 424	spinlock_t	 lock;
 425	struct d40_desc	**alloc_map;
 426};
 427
 428/**
 429 * struct d40_phy_res - struct for handling eventlines mapped to physical
 430 * channels.
 431 *
 432 * @lock: A lock protection this entity.
 433 * @reserved: True if used by secure world or otherwise.
 434 * @num: The physical channel number of this entity.
 435 * @allocated_src: Bit mapped to show which src event line's are mapped to
 436 * this physical channel. Can also be free or physically allocated.
 437 * @allocated_dst: Same as for src but is dst.
 438 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
 439 * event line number.
 440 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
 441 */
 442struct d40_phy_res {
 443	spinlock_t lock;
 444	bool	   reserved;
 445	int	   num;
 446	u32	   allocated_src;
 447	u32	   allocated_dst;
 448	bool	   use_soft_lli;
 449};
 450
 451struct d40_base;
 452
 453/**
 454 * struct d40_chan - Struct that describes a channel.
 455 *
 456 * @lock: A spinlock to protect this struct.
 457 * @log_num: The logical number, if any of this channel.
 458 * @pending_tx: The number of pending transfers. Used between interrupt handler
 459 * and tasklet.
 460 * @busy: Set to true when transfer is ongoing on this channel.
 461 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 462 * point is NULL, then the channel is not allocated.
 463 * @chan: DMA engine handle.
 464 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 465 * transfer and call client callback.
 466 * @client: Cliented owned descriptor list.
 467 * @pending_queue: Submitted jobs, to be issued by issue_pending()
 468 * @active: Active descriptor.
 469 * @done: Completed jobs
 470 * @queue: Queued jobs.
 471 * @prepare_queue: Prepared jobs.
 472 * @dma_cfg: The client configuration of this dma channel.
 473 * @slave_config: DMA slave configuration.
 474 * @configured: whether the dma_cfg configuration is valid
 475 * @base: Pointer to the device instance struct.
 476 * @src_def_cfg: Default cfg register setting for src.
 477 * @dst_def_cfg: Default cfg register setting for dst.
 478 * @log_def: Default logical channel settings.
 479 * @lcpa: Pointer to dst and src lcpa settings.
 480 * @runtime_addr: runtime configured address.
 481 * @runtime_direction: runtime configured direction.
 482 *
 483 * This struct can either "be" a logical or a physical channel.
 484 */
 485struct d40_chan {
 486	spinlock_t			 lock;
 487	int				 log_num;
 488	int				 pending_tx;
 489	bool				 busy;
 490	struct d40_phy_res		*phy_chan;
 491	struct dma_chan			 chan;
 492	struct tasklet_struct		 tasklet;
 493	struct list_head		 client;
 494	struct list_head		 pending_queue;
 495	struct list_head		 active;
 496	struct list_head		 done;
 497	struct list_head		 queue;
 498	struct list_head		 prepare_queue;
 499	struct stedma40_chan_cfg	 dma_cfg;
 500	struct dma_slave_config		 slave_config;
 501	bool				 configured;
 502	struct d40_base			*base;
 503	/* Default register configurations */
 504	u32				 src_def_cfg;
 505	u32				 dst_def_cfg;
 506	struct d40_def_lcsp		 log_def;
 507	struct d40_log_lli_full		*lcpa;
 508	/* Runtime reconfiguration */
 509	dma_addr_t			runtime_addr;
 510	enum dma_transfer_direction	runtime_direction;
 511};
 512
 513/**
 514 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
 515 * controller
 516 *
 517 * @backup: the pointer to the registers address array for backup
 518 * @backup_size: the size of the registers address array for backup
 519 * @realtime_en: the realtime enable register
 520 * @realtime_clear: the realtime clear register
 521 * @high_prio_en: the high priority enable register
 522 * @high_prio_clear: the high priority clear register
 523 * @interrupt_en: the interrupt enable register
 524 * @interrupt_clear: the interrupt clear register
 525 * @il: the pointer to struct d40_interrupt_lookup
 526 * @il_size: the size of d40_interrupt_lookup array
 527 * @init_reg: the pointer to the struct d40_reg_val
 528 * @init_reg_size: the size of d40_reg_val array
 529 */
 530struct d40_gen_dmac {
 531	u32				*backup;
 532	u32				 backup_size;
 533	u32				 realtime_en;
 534	u32				 realtime_clear;
 535	u32				 high_prio_en;
 536	u32				 high_prio_clear;
 537	u32				 interrupt_en;
 538	u32				 interrupt_clear;
 539	struct d40_interrupt_lookup	*il;
 540	u32				 il_size;
 541	struct d40_reg_val		*init_reg;
 542	u32				 init_reg_size;
 543};
 544
 545/**
 546 * struct d40_base - The big global struct, one for each probe'd instance.
 547 *
 548 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 549 * @execmd_lock: Lock for execute command usage since several channels share
 550 * the same physical register.
 551 * @dev: The device structure.
 552 * @virtbase: The virtual base address of the DMA's register.
 553 * @rev: silicon revision detected.
 554 * @clk: Pointer to the DMA clock structure.
 
 
 555 * @irq: The IRQ number.
 556 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
 557 * transfers).
 558 * @num_phy_chans: The number of physical channels. Read from HW. This
 559 * is the number of available channels for this driver, not counting "Secure
 560 * mode" allocated physical channels.
 561 * @num_log_chans: The number of logical channels. Calculated from
 562 * num_phy_chans.
 563 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 564 * @dma_slave: dma_device channels that can do only do slave transfers.
 565 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
 566 * @phy_chans: Room for all possible physical channels in system.
 567 * @log_chans: Room for all possible logical channels in system.
 568 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 569 * to log_chans entries.
 570 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 571 * to phy_chans entries.
 572 * @plat_data: Pointer to provided platform_data which is the driver
 573 * configuration.
 574 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
 575 * @phy_res: Vector containing all physical channels.
 576 * @lcla_pool: lcla pool settings and data.
 577 * @lcpa_base: The virtual mapped address of LCPA.
 578 * @phy_lcpa: The physical address of the LCPA.
 579 * @lcpa_size: The size of the LCPA area.
 580 * @desc_slab: cache for descriptors.
 581 * @reg_val_backup: Here the values of some hardware registers are stored
 582 * before the DMA is powered off. They are restored when the power is back on.
 583 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
 584 * later
 585 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
 586 * @regs_interrupt: Scratch space for registers during interrupt.
 587 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
 588 * @gen_dmac: the struct for generic registers values to represent u8500/8540
 589 * DMA controller
 590 */
 591struct d40_base {
 592	spinlock_t			 interrupt_lock;
 593	spinlock_t			 execmd_lock;
 594	struct device			 *dev;
 595	void __iomem			 *virtbase;
 596	u8				  rev:4;
 597	struct clk			 *clk;
 
 
 598	int				  irq;
 599	int				  num_memcpy_chans;
 600	int				  num_phy_chans;
 601	int				  num_log_chans;
 
 602	struct dma_device		  dma_both;
 603	struct dma_device		  dma_slave;
 604	struct dma_device		  dma_memcpy;
 605	struct d40_chan			 *phy_chans;
 606	struct d40_chan			 *log_chans;
 607	struct d40_chan			**lookup_log_chans;
 608	struct d40_chan			**lookup_phy_chans;
 609	struct stedma40_platform_data	 *plat_data;
 610	struct regulator		 *lcpa_regulator;
 611	/* Physical half channels */
 612	struct d40_phy_res		 *phy_res;
 613	struct d40_lcla_pool		  lcla_pool;
 614	void				 *lcpa_base;
 615	dma_addr_t			  phy_lcpa;
 616	resource_size_t			  lcpa_size;
 617	struct kmem_cache		 *desc_slab;
 618	u32				  reg_val_backup[BACKUP_REGS_SZ];
 619	u32				  reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
 620	u32				 *reg_val_backup_chan;
 621	u32				 *regs_interrupt;
 622	u16				  gcc_pwr_off_mask;
 623	struct d40_gen_dmac		  gen_dmac;
 624};
 625
 626static struct device *chan2dev(struct d40_chan *d40c)
 627{
 628	return &d40c->chan.dev->device;
 629}
 630
 631static bool chan_is_physical(struct d40_chan *chan)
 632{
 633	return chan->log_num == D40_PHY_CHAN;
 634}
 635
 636static bool chan_is_logical(struct d40_chan *chan)
 637{
 638	return !chan_is_physical(chan);
 639}
 640
 641static void __iomem *chan_base(struct d40_chan *chan)
 642{
 643	return chan->base->virtbase + D40_DREG_PCBASE +
 644	       chan->phy_chan->num * D40_DREG_PCDELTA;
 645}
 646
 647#define d40_err(dev, format, arg...)		\
 648	dev_err(dev, "[%s] " format, __func__, ## arg)
 649
 650#define chan_err(d40c, format, arg...)		\
 651	d40_err(chan2dev(d40c), format, ## arg)
 652
 653static int d40_set_runtime_config_write(struct dma_chan *chan,
 654				  struct dma_slave_config *config,
 655				  enum dma_transfer_direction direction);
 656
 657static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
 658			      int lli_len)
 659{
 660	bool is_log = chan_is_logical(d40c);
 661	u32 align;
 662	void *base;
 663
 664	if (is_log)
 665		align = sizeof(struct d40_log_lli);
 666	else
 667		align = sizeof(struct d40_phy_lli);
 668
 669	if (lli_len == 1) {
 670		base = d40d->lli_pool.pre_alloc_lli;
 671		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
 672		d40d->lli_pool.base = NULL;
 673	} else {
 674		d40d->lli_pool.size = lli_len * 2 * align;
 675
 676		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
 677		d40d->lli_pool.base = base;
 678
 679		if (d40d->lli_pool.base == NULL)
 680			return -ENOMEM;
 681	}
 682
 683	if (is_log) {
 684		d40d->lli_log.src = PTR_ALIGN(base, align);
 685		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
 686
 687		d40d->lli_pool.dma_addr = 0;
 688	} else {
 689		d40d->lli_phy.src = PTR_ALIGN(base, align);
 690		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
 691
 692		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
 693							 d40d->lli_phy.src,
 694							 d40d->lli_pool.size,
 695							 DMA_TO_DEVICE);
 696
 697		if (dma_mapping_error(d40c->base->dev,
 698				      d40d->lli_pool.dma_addr)) {
 699			kfree(d40d->lli_pool.base);
 700			d40d->lli_pool.base = NULL;
 701			d40d->lli_pool.dma_addr = 0;
 702			return -ENOMEM;
 703		}
 704	}
 705
 706	return 0;
 707}
 708
 709static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
 710{
 711	if (d40d->lli_pool.dma_addr)
 712		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
 713				 d40d->lli_pool.size, DMA_TO_DEVICE);
 714
 715	kfree(d40d->lli_pool.base);
 716	d40d->lli_pool.base = NULL;
 717	d40d->lli_pool.size = 0;
 718	d40d->lli_log.src = NULL;
 719	d40d->lli_log.dst = NULL;
 720	d40d->lli_phy.src = NULL;
 721	d40d->lli_phy.dst = NULL;
 722}
 723
 724static int d40_lcla_alloc_one(struct d40_chan *d40c,
 725			      struct d40_desc *d40d)
 726{
 727	unsigned long flags;
 728	int i;
 729	int ret = -EINVAL;
 730
 731	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 732
 733	/*
 734	 * Allocate both src and dst at the same time, therefore the half
 735	 * start on 1 since 0 can't be used since zero is used as end marker.
 736	 */
 737	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 738		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
 739
 740		if (!d40c->base->lcla_pool.alloc_map[idx]) {
 741			d40c->base->lcla_pool.alloc_map[idx] = d40d;
 742			d40d->lcla_alloc++;
 743			ret = i;
 744			break;
 745		}
 746	}
 747
 748	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 749
 750	return ret;
 751}
 752
 753static int d40_lcla_free_all(struct d40_chan *d40c,
 754			     struct d40_desc *d40d)
 755{
 756	unsigned long flags;
 757	int i;
 758	int ret = -EINVAL;
 759
 760	if (chan_is_physical(d40c))
 761		return 0;
 762
 763	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 764
 765	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 766		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
 767
 768		if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
 769			d40c->base->lcla_pool.alloc_map[idx] = NULL;
 770			d40d->lcla_alloc--;
 771			if (d40d->lcla_alloc == 0) {
 772				ret = 0;
 773				break;
 774			}
 775		}
 776	}
 777
 778	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 779
 780	return ret;
 781
 782}
 783
 784static void d40_desc_remove(struct d40_desc *d40d)
 785{
 786	list_del(&d40d->node);
 787}
 788
 789static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
 790{
 791	struct d40_desc *desc = NULL;
 792
 793	if (!list_empty(&d40c->client)) {
 794		struct d40_desc *d;
 795		struct d40_desc *_d;
 796
 797		list_for_each_entry_safe(d, _d, &d40c->client, node) {
 798			if (async_tx_test_ack(&d->txd)) {
 799				d40_desc_remove(d);
 800				desc = d;
 801				memset(desc, 0, sizeof(*desc));
 802				break;
 803			}
 804		}
 805	}
 806
 807	if (!desc)
 808		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
 809
 810	if (desc)
 811		INIT_LIST_HEAD(&desc->node);
 812
 813	return desc;
 814}
 815
 816static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
 817{
 818
 819	d40_pool_lli_free(d40c, d40d);
 820	d40_lcla_free_all(d40c, d40d);
 821	kmem_cache_free(d40c->base->desc_slab, d40d);
 822}
 823
 824static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
 825{
 826	list_add_tail(&desc->node, &d40c->active);
 827}
 828
 829static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
 830{
 831	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
 832	struct d40_phy_lli *lli_src = desc->lli_phy.src;
 833	void __iomem *base = chan_base(chan);
 834
 835	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
 836	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
 837	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
 838	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
 839
 840	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
 841	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
 842	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
 843	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
 844}
 845
 846static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
 847{
 848	list_add_tail(&desc->node, &d40c->done);
 849}
 850
 851static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
 852{
 853	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
 854	struct d40_log_lli_bidir *lli = &desc->lli_log;
 855	int lli_current = desc->lli_current;
 856	int lli_len = desc->lli_len;
 857	bool cyclic = desc->cyclic;
 858	int curr_lcla = -EINVAL;
 859	int first_lcla = 0;
 860	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
 861	bool linkback;
 862
 863	/*
 864	 * We may have partially running cyclic transfers, in case we did't get
 865	 * enough LCLA entries.
 866	 */
 867	linkback = cyclic && lli_current == 0;
 868
 869	/*
 870	 * For linkback, we need one LCLA even with only one link, because we
 871	 * can't link back to the one in LCPA space
 872	 */
 873	if (linkback || (lli_len - lli_current > 1)) {
 874		/*
 875		 * If the channel is expected to use only soft_lli don't
 876		 * allocate a lcla. This is to avoid a HW issue that exists
 877		 * in some controller during a peripheral to memory transfer
 878		 * that uses linked lists.
 879		 */
 880		if (!(chan->phy_chan->use_soft_lli &&
 881			chan->dma_cfg.dir == DMA_DEV_TO_MEM))
 882			curr_lcla = d40_lcla_alloc_one(chan, desc);
 883
 884		first_lcla = curr_lcla;
 885	}
 886
 887	/*
 888	 * For linkback, we normally load the LCPA in the loop since we need to
 889	 * link it to the second LCLA and not the first.  However, if we
 890	 * couldn't even get a first LCLA, then we have to run in LCPA and
 891	 * reload manually.
 892	 */
 893	if (!linkback || curr_lcla == -EINVAL) {
 894		unsigned int flags = 0;
 895
 896		if (curr_lcla == -EINVAL)
 897			flags |= LLI_TERM_INT;
 898
 899		d40_log_lli_lcpa_write(chan->lcpa,
 900				       &lli->dst[lli_current],
 901				       &lli->src[lli_current],
 902				       curr_lcla,
 903				       flags);
 904		lli_current++;
 905	}
 906
 907	if (curr_lcla < 0)
 908		goto set_current;
 909
 910	for (; lli_current < lli_len; lli_current++) {
 911		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
 912					   8 * curr_lcla * 2;
 913		struct d40_log_lli *lcla = pool->base + lcla_offset;
 914		unsigned int flags = 0;
 915		int next_lcla;
 916
 917		if (lli_current + 1 < lli_len)
 918			next_lcla = d40_lcla_alloc_one(chan, desc);
 919		else
 920			next_lcla = linkback ? first_lcla : -EINVAL;
 921
 922		if (cyclic || next_lcla == -EINVAL)
 923			flags |= LLI_TERM_INT;
 924
 925		if (linkback && curr_lcla == first_lcla) {
 926			/* First link goes in both LCPA and LCLA */
 927			d40_log_lli_lcpa_write(chan->lcpa,
 928					       &lli->dst[lli_current],
 929					       &lli->src[lli_current],
 930					       next_lcla, flags);
 931		}
 932
 933		/*
 934		 * One unused LCLA in the cyclic case if the very first
 935		 * next_lcla fails...
 936		 */
 937		d40_log_lli_lcla_write(lcla,
 938				       &lli->dst[lli_current],
 939				       &lli->src[lli_current],
 940				       next_lcla, flags);
 941
 942		/*
 943		 * Cache maintenance is not needed if lcla is
 944		 * mapped in esram
 945		 */
 946		if (!use_esram_lcla) {
 947			dma_sync_single_range_for_device(chan->base->dev,
 948						pool->dma_addr, lcla_offset,
 949						2 * sizeof(struct d40_log_lli),
 950						DMA_TO_DEVICE);
 951		}
 952		curr_lcla = next_lcla;
 953
 954		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
 955			lli_current++;
 956			break;
 957		}
 958	}
 959 set_current:
 960	desc->lli_current = lli_current;
 961}
 962
 963static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
 964{
 965	if (chan_is_physical(d40c)) {
 966		d40_phy_lli_load(d40c, d40d);
 967		d40d->lli_current = d40d->lli_len;
 968	} else
 969		d40_log_lli_to_lcxa(d40c, d40d);
 970}
 971
 972static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
 973{
 974	return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
 975}
 976
 977/* remove desc from current queue and add it to the pending_queue */
 978static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
 979{
 980	d40_desc_remove(desc);
 981	desc->is_in_client_list = false;
 982	list_add_tail(&desc->node, &d40c->pending_queue);
 983}
 984
 985static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
 986{
 987	return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
 988					node);
 989}
 990
 991static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
 992{
 993	return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
 994}
 995
 996static struct d40_desc *d40_first_done(struct d40_chan *d40c)
 997{
 998	return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
 999}
1000
1001static int d40_psize_2_burst_size(bool is_log, int psize)
1002{
1003	if (is_log) {
1004		if (psize == STEDMA40_PSIZE_LOG_1)
1005			return 1;
1006	} else {
1007		if (psize == STEDMA40_PSIZE_PHY_1)
1008			return 1;
1009	}
1010
1011	return 2 << psize;
1012}
1013
1014/*
1015 * The dma only supports transmitting packages up to
1016 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
1017 *
1018 * Calculate the total number of dma elements required to send the entire sg list.
1019 */
1020static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
1021{
1022	int dmalen;
1023	u32 max_w = max(data_width1, data_width2);
1024	u32 min_w = min(data_width1, data_width2);
1025	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1026
1027	if (seg_max > STEDMA40_MAX_SEG_SIZE)
1028		seg_max -= max_w;
1029
1030	if (!IS_ALIGNED(size, max_w))
1031		return -EINVAL;
1032
1033	if (size <= seg_max)
1034		dmalen = 1;
1035	else {
1036		dmalen = size / seg_max;
1037		if (dmalen * seg_max < size)
1038			dmalen++;
1039	}
1040	return dmalen;
1041}
1042
1043static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1044			   u32 data_width1, u32 data_width2)
1045{
1046	struct scatterlist *sg;
1047	int i;
1048	int len = 0;
1049	int ret;
1050
1051	for_each_sg(sgl, sg, sg_len, i) {
1052		ret = d40_size_2_dmalen(sg_dma_len(sg),
1053					data_width1, data_width2);
1054		if (ret < 0)
1055			return ret;
1056		len += ret;
1057	}
1058	return len;
1059}
1060
1061static int __d40_execute_command_phy(struct d40_chan *d40c,
1062				     enum d40_command command)
1063{
1064	u32 status;
1065	int i;
1066	void __iomem *active_reg;
1067	int ret = 0;
1068	unsigned long flags;
1069	u32 wmask;
1070
1071	if (command == D40_DMA_STOP) {
1072		ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1073		if (ret)
1074			return ret;
1075	}
1076
1077	spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1078
1079	if (d40c->phy_chan->num % 2 == 0)
1080		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1081	else
1082		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1083
1084	if (command == D40_DMA_SUSPEND_REQ) {
1085		status = (readl(active_reg) &
1086			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1087			D40_CHAN_POS(d40c->phy_chan->num);
1088
1089		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1090			goto unlock;
1091	}
1092
1093	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1094	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1095	       active_reg);
1096
1097	if (command == D40_DMA_SUSPEND_REQ) {
1098
1099		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1100			status = (readl(active_reg) &
1101				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1102				D40_CHAN_POS(d40c->phy_chan->num);
1103
1104			cpu_relax();
1105			/*
1106			 * Reduce the number of bus accesses while
1107			 * waiting for the DMA to suspend.
1108			 */
1109			udelay(3);
1110
1111			if (status == D40_DMA_STOP ||
1112			    status == D40_DMA_SUSPENDED)
1113				break;
1114		}
1115
1116		if (i == D40_SUSPEND_MAX_IT) {
1117			chan_err(d40c,
1118				"unable to suspend the chl %d (log: %d) status %x\n",
1119				d40c->phy_chan->num, d40c->log_num,
1120				status);
1121			dump_stack();
1122			ret = -EBUSY;
1123		}
1124
1125	}
1126 unlock:
1127	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1128	return ret;
1129}
1130
1131static void d40_term_all(struct d40_chan *d40c)
1132{
1133	struct d40_desc *d40d;
1134	struct d40_desc *_d;
1135
1136	/* Release completed descriptors */
1137	while ((d40d = d40_first_done(d40c))) {
1138		d40_desc_remove(d40d);
1139		d40_desc_free(d40c, d40d);
1140	}
1141
1142	/* Release active descriptors */
1143	while ((d40d = d40_first_active_get(d40c))) {
1144		d40_desc_remove(d40d);
1145		d40_desc_free(d40c, d40d);
1146	}
1147
1148	/* Release queued descriptors waiting for transfer */
1149	while ((d40d = d40_first_queued(d40c))) {
1150		d40_desc_remove(d40d);
1151		d40_desc_free(d40c, d40d);
1152	}
1153
1154	/* Release pending descriptors */
1155	while ((d40d = d40_first_pending(d40c))) {
1156		d40_desc_remove(d40d);
1157		d40_desc_free(d40c, d40d);
1158	}
1159
1160	/* Release client owned descriptors */
1161	if (!list_empty(&d40c->client))
1162		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1163			d40_desc_remove(d40d);
1164			d40_desc_free(d40c, d40d);
1165		}
1166
1167	/* Release descriptors in prepare queue */
1168	if (!list_empty(&d40c->prepare_queue))
1169		list_for_each_entry_safe(d40d, _d,
1170					 &d40c->prepare_queue, node) {
1171			d40_desc_remove(d40d);
1172			d40_desc_free(d40c, d40d);
1173		}
1174
1175	d40c->pending_tx = 0;
1176}
1177
1178static void __d40_config_set_event(struct d40_chan *d40c,
1179				   enum d40_events event_type, u32 event,
1180				   int reg)
1181{
1182	void __iomem *addr = chan_base(d40c) + reg;
1183	int tries;
1184	u32 status;
1185
1186	switch (event_type) {
1187
1188	case D40_DEACTIVATE_EVENTLINE:
1189
1190		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1191		       | ~D40_EVENTLINE_MASK(event), addr);
1192		break;
1193
1194	case D40_SUSPEND_REQ_EVENTLINE:
1195		status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1196			  D40_EVENTLINE_POS(event);
1197
1198		if (status == D40_DEACTIVATE_EVENTLINE ||
1199		    status == D40_SUSPEND_REQ_EVENTLINE)
1200			break;
1201
1202		writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1203		       | ~D40_EVENTLINE_MASK(event), addr);
1204
1205		for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1206
1207			status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1208				  D40_EVENTLINE_POS(event);
1209
1210			cpu_relax();
1211			/*
1212			 * Reduce the number of bus accesses while
1213			 * waiting for the DMA to suspend.
1214			 */
1215			udelay(3);
1216
1217			if (status == D40_DEACTIVATE_EVENTLINE)
1218				break;
1219		}
1220
1221		if (tries == D40_SUSPEND_MAX_IT) {
1222			chan_err(d40c,
1223				"unable to stop the event_line chl %d (log: %d)"
1224				"status %x\n", d40c->phy_chan->num,
1225				 d40c->log_num, status);
1226		}
1227		break;
1228
1229	case D40_ACTIVATE_EVENTLINE:
1230	/*
1231	 * The hardware sometimes doesn't register the enable when src and dst
1232	 * event lines are active on the same logical channel.  Retry to ensure
1233	 * it does.  Usually only one retry is sufficient.
1234	 */
1235		tries = 100;
1236		while (--tries) {
1237			writel((D40_ACTIVATE_EVENTLINE <<
1238				D40_EVENTLINE_POS(event)) |
1239				~D40_EVENTLINE_MASK(event), addr);
1240
1241			if (readl(addr) & D40_EVENTLINE_MASK(event))
1242				break;
1243		}
1244
1245		if (tries != 99)
1246			dev_dbg(chan2dev(d40c),
1247				"[%s] workaround enable S%cLNK (%d tries)\n",
1248				__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1249				100 - tries);
1250
1251		WARN_ON(!tries);
1252		break;
1253
1254	case D40_ROUND_EVENTLINE:
1255		BUG();
1256		break;
1257
1258	}
1259}
1260
1261static void d40_config_set_event(struct d40_chan *d40c,
1262				 enum d40_events event_type)
1263{
1264	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1265
1266	/* Enable event line connected to device (or memcpy) */
1267	if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1268	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1269		__d40_config_set_event(d40c, event_type, event,
1270				       D40_CHAN_REG_SSLNK);
1271
1272	if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1273		__d40_config_set_event(d40c, event_type, event,
1274				       D40_CHAN_REG_SDLNK);
1275}
1276
1277static u32 d40_chan_has_events(struct d40_chan *d40c)
1278{
1279	void __iomem *chanbase = chan_base(d40c);
1280	u32 val;
1281
1282	val = readl(chanbase + D40_CHAN_REG_SSLNK);
1283	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1284
1285	return val;
1286}
1287
1288static int
1289__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1290{
1291	unsigned long flags;
1292	int ret = 0;
1293	u32 active_status;
1294	void __iomem *active_reg;
1295
1296	if (d40c->phy_chan->num % 2 == 0)
1297		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1298	else
1299		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1300
1301
1302	spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1303
1304	switch (command) {
1305	case D40_DMA_STOP:
1306	case D40_DMA_SUSPEND_REQ:
1307
1308		active_status = (readl(active_reg) &
1309				 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1310				 D40_CHAN_POS(d40c->phy_chan->num);
1311
1312		if (active_status == D40_DMA_RUN)
1313			d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1314		else
1315			d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1316
1317		if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1318			ret = __d40_execute_command_phy(d40c, command);
1319
1320		break;
1321
1322	case D40_DMA_RUN:
1323
1324		d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1325		ret = __d40_execute_command_phy(d40c, command);
1326		break;
1327
1328	case D40_DMA_SUSPENDED:
1329		BUG();
1330		break;
1331	}
1332
1333	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1334	return ret;
1335}
1336
1337static int d40_channel_execute_command(struct d40_chan *d40c,
1338				       enum d40_command command)
1339{
1340	if (chan_is_logical(d40c))
1341		return __d40_execute_command_log(d40c, command);
1342	else
1343		return __d40_execute_command_phy(d40c, command);
1344}
1345
1346static u32 d40_get_prmo(struct d40_chan *d40c)
1347{
1348	static const unsigned int phy_map[] = {
1349		[STEDMA40_PCHAN_BASIC_MODE]
1350			= D40_DREG_PRMO_PCHAN_BASIC,
1351		[STEDMA40_PCHAN_MODULO_MODE]
1352			= D40_DREG_PRMO_PCHAN_MODULO,
1353		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
1354			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1355	};
1356	static const unsigned int log_map[] = {
1357		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1358			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1359		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1360			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1361		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1362			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1363	};
1364
1365	if (chan_is_physical(d40c))
1366		return phy_map[d40c->dma_cfg.mode_opt];
1367	else
1368		return log_map[d40c->dma_cfg.mode_opt];
1369}
1370
1371static void d40_config_write(struct d40_chan *d40c)
1372{
1373	u32 addr_base;
1374	u32 var;
1375
1376	/* Odd addresses are even addresses + 4 */
1377	addr_base = (d40c->phy_chan->num % 2) * 4;
1378	/* Setup channel mode to logical or physical */
1379	var = ((u32)(chan_is_logical(d40c)) + 1) <<
1380		D40_CHAN_POS(d40c->phy_chan->num);
1381	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1382
1383	/* Setup operational mode option register */
1384	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1385
1386	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1387
1388	if (chan_is_logical(d40c)) {
1389		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1390			   & D40_SREG_ELEM_LOG_LIDX_MASK;
1391		void __iomem *chanbase = chan_base(d40c);
1392
1393		/* Set default config for CFG reg */
1394		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1395		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1396
1397		/* Set LIDX for lcla */
1398		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1399		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1400
1401		/* Clear LNK which will be used by d40_chan_has_events() */
1402		writel(0, chanbase + D40_CHAN_REG_SSLNK);
1403		writel(0, chanbase + D40_CHAN_REG_SDLNK);
1404	}
1405}
1406
1407static u32 d40_residue(struct d40_chan *d40c)
1408{
1409	u32 num_elt;
1410
1411	if (chan_is_logical(d40c))
1412		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1413			>> D40_MEM_LCSP2_ECNT_POS;
1414	else {
1415		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1416		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1417			  >> D40_SREG_ELEM_PHY_ECNT_POS;
1418	}
1419
1420	return num_elt * d40c->dma_cfg.dst_info.data_width;
1421}
1422
1423static bool d40_tx_is_linked(struct d40_chan *d40c)
1424{
1425	bool is_link;
1426
1427	if (chan_is_logical(d40c))
1428		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1429	else
1430		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1431			  & D40_SREG_LNK_PHYS_LNK_MASK;
1432
1433	return is_link;
1434}
1435
1436static int d40_pause(struct dma_chan *chan)
1437{
1438	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1439	int res = 0;
1440	unsigned long flags;
1441
1442	if (d40c->phy_chan == NULL) {
1443		chan_err(d40c, "Channel is not allocated!\n");
1444		return -EINVAL;
1445	}
1446
1447	if (!d40c->busy)
1448		return 0;
1449
1450	spin_lock_irqsave(&d40c->lock, flags);
1451	pm_runtime_get_sync(d40c->base->dev);
1452
1453	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1454
1455	pm_runtime_mark_last_busy(d40c->base->dev);
1456	pm_runtime_put_autosuspend(d40c->base->dev);
1457	spin_unlock_irqrestore(&d40c->lock, flags);
1458	return res;
1459}
1460
1461static int d40_resume(struct dma_chan *chan)
1462{
1463	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1464	int res = 0;
1465	unsigned long flags;
1466
1467	if (d40c->phy_chan == NULL) {
1468		chan_err(d40c, "Channel is not allocated!\n");
1469		return -EINVAL;
1470	}
1471
1472	if (!d40c->busy)
1473		return 0;
1474
1475	spin_lock_irqsave(&d40c->lock, flags);
1476	pm_runtime_get_sync(d40c->base->dev);
1477
1478	/* If bytes left to transfer or linked tx resume job */
1479	if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1480		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1481
1482	pm_runtime_mark_last_busy(d40c->base->dev);
1483	pm_runtime_put_autosuspend(d40c->base->dev);
1484	spin_unlock_irqrestore(&d40c->lock, flags);
1485	return res;
1486}
1487
1488static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1489{
1490	struct d40_chan *d40c = container_of(tx->chan,
1491					     struct d40_chan,
1492					     chan);
1493	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1494	unsigned long flags;
1495	dma_cookie_t cookie;
1496
1497	spin_lock_irqsave(&d40c->lock, flags);
1498	cookie = dma_cookie_assign(tx);
1499	d40_desc_queue(d40c, d40d);
1500	spin_unlock_irqrestore(&d40c->lock, flags);
1501
1502	return cookie;
1503}
1504
1505static int d40_start(struct d40_chan *d40c)
1506{
1507	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1508}
1509
1510static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1511{
1512	struct d40_desc *d40d;
1513	int err;
1514
1515	/* Start queued jobs, if any */
1516	d40d = d40_first_queued(d40c);
1517
1518	if (d40d != NULL) {
1519		if (!d40c->busy) {
1520			d40c->busy = true;
1521			pm_runtime_get_sync(d40c->base->dev);
1522		}
1523
1524		/* Remove from queue */
1525		d40_desc_remove(d40d);
1526
1527		/* Add to active queue */
1528		d40_desc_submit(d40c, d40d);
1529
1530		/* Initiate DMA job */
1531		d40_desc_load(d40c, d40d);
1532
1533		/* Start dma job */
1534		err = d40_start(d40c);
1535
1536		if (err)
1537			return NULL;
1538	}
1539
1540	return d40d;
1541}
1542
1543/* called from interrupt context */
1544static void dma_tc_handle(struct d40_chan *d40c)
1545{
1546	struct d40_desc *d40d;
1547
1548	/* Get first active entry from list */
1549	d40d = d40_first_active_get(d40c);
1550
1551	if (d40d == NULL)
1552		return;
1553
1554	if (d40d->cyclic) {
1555		/*
1556		 * If this was a paritially loaded list, we need to reloaded
1557		 * it, and only when the list is completed.  We need to check
1558		 * for done because the interrupt will hit for every link, and
1559		 * not just the last one.
1560		 */
1561		if (d40d->lli_current < d40d->lli_len
1562		    && !d40_tx_is_linked(d40c)
1563		    && !d40_residue(d40c)) {
1564			d40_lcla_free_all(d40c, d40d);
1565			d40_desc_load(d40c, d40d);
1566			(void) d40_start(d40c);
1567
1568			if (d40d->lli_current == d40d->lli_len)
1569				d40d->lli_current = 0;
1570		}
1571	} else {
1572		d40_lcla_free_all(d40c, d40d);
1573
1574		if (d40d->lli_current < d40d->lli_len) {
1575			d40_desc_load(d40c, d40d);
1576			/* Start dma job */
1577			(void) d40_start(d40c);
1578			return;
1579		}
1580
1581		if (d40_queue_start(d40c) == NULL) {
1582			d40c->busy = false;
1583
1584			pm_runtime_mark_last_busy(d40c->base->dev);
1585			pm_runtime_put_autosuspend(d40c->base->dev);
1586		}
1587
1588		d40_desc_remove(d40d);
1589		d40_desc_done(d40c, d40d);
1590	}
1591
1592	d40c->pending_tx++;
1593	tasklet_schedule(&d40c->tasklet);
1594
1595}
1596
1597static void dma_tasklet(struct tasklet_struct *t)
1598{
1599	struct d40_chan *d40c = from_tasklet(d40c, t, tasklet);
1600	struct d40_desc *d40d;
1601	unsigned long flags;
1602	bool callback_active;
1603	struct dmaengine_desc_callback cb;
1604
1605	spin_lock_irqsave(&d40c->lock, flags);
1606
1607	/* Get first entry from the done list */
1608	d40d = d40_first_done(d40c);
1609	if (d40d == NULL) {
1610		/* Check if we have reached here for cyclic job */
1611		d40d = d40_first_active_get(d40c);
1612		if (d40d == NULL || !d40d->cyclic)
1613			goto check_pending_tx;
1614	}
1615
1616	if (!d40d->cyclic)
1617		dma_cookie_complete(&d40d->txd);
1618
1619	/*
1620	 * If terminating a channel pending_tx is set to zero.
1621	 * This prevents any finished active jobs to return to the client.
1622	 */
1623	if (d40c->pending_tx == 0) {
1624		spin_unlock_irqrestore(&d40c->lock, flags);
1625		return;
1626	}
1627
1628	/* Callback to client */
1629	callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1630	dmaengine_desc_get_callback(&d40d->txd, &cb);
1631
1632	if (!d40d->cyclic) {
1633		if (async_tx_test_ack(&d40d->txd)) {
1634			d40_desc_remove(d40d);
1635			d40_desc_free(d40c, d40d);
1636		} else if (!d40d->is_in_client_list) {
1637			d40_desc_remove(d40d);
1638			d40_lcla_free_all(d40c, d40d);
1639			list_add_tail(&d40d->node, &d40c->client);
1640			d40d->is_in_client_list = true;
1641		}
1642	}
1643
1644	d40c->pending_tx--;
1645
1646	if (d40c->pending_tx)
1647		tasklet_schedule(&d40c->tasklet);
1648
1649	spin_unlock_irqrestore(&d40c->lock, flags);
1650
1651	if (callback_active)
1652		dmaengine_desc_callback_invoke(&cb, NULL);
1653
1654	return;
1655 check_pending_tx:
1656	/* Rescue maneuver if receiving double interrupts */
1657	if (d40c->pending_tx > 0)
1658		d40c->pending_tx--;
1659	spin_unlock_irqrestore(&d40c->lock, flags);
1660}
1661
1662static irqreturn_t d40_handle_interrupt(int irq, void *data)
1663{
1664	int i;
1665	u32 idx;
1666	u32 row;
1667	long chan = -1;
1668	struct d40_chan *d40c;
 
1669	struct d40_base *base = data;
1670	u32 *regs = base->regs_interrupt;
1671	struct d40_interrupt_lookup *il = base->gen_dmac.il;
1672	u32 il_size = base->gen_dmac.il_size;
1673
1674	spin_lock(&base->interrupt_lock);
1675
1676	/* Read interrupt status of both logical and physical channels */
1677	for (i = 0; i < il_size; i++)
1678		regs[i] = readl(base->virtbase + il[i].src);
1679
1680	for (;;) {
1681
1682		chan = find_next_bit((unsigned long *)regs,
1683				     BITS_PER_LONG * il_size, chan + 1);
1684
1685		/* No more set bits found? */
1686		if (chan == BITS_PER_LONG * il_size)
1687			break;
1688
1689		row = chan / BITS_PER_LONG;
1690		idx = chan & (BITS_PER_LONG - 1);
1691
1692		if (il[row].offset == D40_PHY_CHAN)
1693			d40c = base->lookup_phy_chans[idx];
1694		else
1695			d40c = base->lookup_log_chans[il[row].offset + idx];
1696
1697		if (!d40c) {
1698			/*
1699			 * No error because this can happen if something else
1700			 * in the system is using the channel.
1701			 */
1702			continue;
1703		}
1704
1705		/* ACK interrupt */
1706		writel(BIT(idx), base->virtbase + il[row].clr);
1707
1708		spin_lock(&d40c->lock);
1709
1710		if (!il[row].is_error)
1711			dma_tc_handle(d40c);
1712		else
1713			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1714				chan, il[row].offset, idx);
1715
1716		spin_unlock(&d40c->lock);
1717	}
1718
1719	spin_unlock(&base->interrupt_lock);
1720
1721	return IRQ_HANDLED;
1722}
1723
1724static int d40_validate_conf(struct d40_chan *d40c,
1725			     struct stedma40_chan_cfg *conf)
1726{
1727	int res = 0;
1728	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1729
1730	if (!conf->dir) {
1731		chan_err(d40c, "Invalid direction.\n");
1732		res = -EINVAL;
1733	}
1734
1735	if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
1736	    (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1737	    (conf->dev_type < 0)) {
1738		chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1739		res = -EINVAL;
1740	}
1741
1742	if (conf->dir == DMA_DEV_TO_DEV) {
1743		/*
1744		 * DMAC HW supports it. Will be added to this driver,
1745		 * in case any dma client requires it.
1746		 */
1747		chan_err(d40c, "periph to periph not supported\n");
1748		res = -EINVAL;
1749	}
1750
1751	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1752	    conf->src_info.data_width !=
1753	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1754	    conf->dst_info.data_width) {
1755		/*
1756		 * The DMAC hardware only supports
1757		 * src (burst x width) == dst (burst x width)
1758		 */
1759
1760		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1761		res = -EINVAL;
1762	}
1763
1764	return res;
1765}
1766
1767static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1768			       bool is_src, int log_event_line, bool is_log,
1769			       bool *first_user)
1770{
1771	unsigned long flags;
1772	spin_lock_irqsave(&phy->lock, flags);
1773
1774	*first_user = ((phy->allocated_src | phy->allocated_dst)
1775			== D40_ALLOC_FREE);
1776
1777	if (!is_log) {
1778		/* Physical interrupts are masked per physical full channel */
1779		if (phy->allocated_src == D40_ALLOC_FREE &&
1780		    phy->allocated_dst == D40_ALLOC_FREE) {
1781			phy->allocated_dst = D40_ALLOC_PHY;
1782			phy->allocated_src = D40_ALLOC_PHY;
1783			goto found_unlock;
1784		} else
1785			goto not_found_unlock;
1786	}
1787
1788	/* Logical channel */
1789	if (is_src) {
1790		if (phy->allocated_src == D40_ALLOC_PHY)
1791			goto not_found_unlock;
1792
1793		if (phy->allocated_src == D40_ALLOC_FREE)
1794			phy->allocated_src = D40_ALLOC_LOG_FREE;
1795
1796		if (!(phy->allocated_src & BIT(log_event_line))) {
1797			phy->allocated_src |= BIT(log_event_line);
1798			goto found_unlock;
1799		} else
1800			goto not_found_unlock;
1801	} else {
1802		if (phy->allocated_dst == D40_ALLOC_PHY)
1803			goto not_found_unlock;
1804
1805		if (phy->allocated_dst == D40_ALLOC_FREE)
1806			phy->allocated_dst = D40_ALLOC_LOG_FREE;
1807
1808		if (!(phy->allocated_dst & BIT(log_event_line))) {
1809			phy->allocated_dst |= BIT(log_event_line);
1810			goto found_unlock;
1811		}
1812	}
1813 not_found_unlock:
1814	spin_unlock_irqrestore(&phy->lock, flags);
1815	return false;
1816 found_unlock:
1817	spin_unlock_irqrestore(&phy->lock, flags);
1818	return true;
1819}
1820
1821static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1822			       int log_event_line)
1823{
1824	unsigned long flags;
1825	bool is_free = false;
1826
1827	spin_lock_irqsave(&phy->lock, flags);
1828	if (!log_event_line) {
1829		phy->allocated_dst = D40_ALLOC_FREE;
1830		phy->allocated_src = D40_ALLOC_FREE;
1831		is_free = true;
1832		goto unlock;
1833	}
1834
1835	/* Logical channel */
1836	if (is_src) {
1837		phy->allocated_src &= ~BIT(log_event_line);
1838		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1839			phy->allocated_src = D40_ALLOC_FREE;
1840	} else {
1841		phy->allocated_dst &= ~BIT(log_event_line);
1842		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1843			phy->allocated_dst = D40_ALLOC_FREE;
1844	}
1845
1846	is_free = ((phy->allocated_src | phy->allocated_dst) ==
1847		   D40_ALLOC_FREE);
1848 unlock:
1849	spin_unlock_irqrestore(&phy->lock, flags);
1850
1851	return is_free;
1852}
1853
1854static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1855{
1856	int dev_type = d40c->dma_cfg.dev_type;
1857	int event_group;
1858	int event_line;
1859	struct d40_phy_res *phys;
1860	int i;
1861	int j;
1862	int log_num;
1863	int num_phy_chans;
1864	bool is_src;
1865	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1866
1867	phys = d40c->base->phy_res;
1868	num_phy_chans = d40c->base->num_phy_chans;
1869
1870	if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1871		log_num = 2 * dev_type;
1872		is_src = true;
1873	} else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1874		   d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1875		/* dst event lines are used for logical memcpy */
1876		log_num = 2 * dev_type + 1;
1877		is_src = false;
1878	} else
1879		return -EINVAL;
1880
1881	event_group = D40_TYPE_TO_GROUP(dev_type);
1882	event_line = D40_TYPE_TO_EVENT(dev_type);
1883
1884	if (!is_log) {
1885		if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1886			/* Find physical half channel */
1887			if (d40c->dma_cfg.use_fixed_channel) {
1888				i = d40c->dma_cfg.phy_channel;
1889				if (d40_alloc_mask_set(&phys[i], is_src,
1890						       0, is_log,
1891						       first_phy_user))
1892					goto found_phy;
1893			} else {
1894				for (i = 0; i < num_phy_chans; i++) {
1895					if (d40_alloc_mask_set(&phys[i], is_src,
1896						       0, is_log,
1897						       first_phy_user))
1898						goto found_phy;
1899				}
1900			}
1901		} else
1902			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1903				int phy_num = j  + event_group * 2;
1904				for (i = phy_num; i < phy_num + 2; i++) {
1905					if (d40_alloc_mask_set(&phys[i],
1906							       is_src,
1907							       0,
1908							       is_log,
1909							       first_phy_user))
1910						goto found_phy;
1911				}
1912			}
1913		return -EINVAL;
1914found_phy:
1915		d40c->phy_chan = &phys[i];
1916		d40c->log_num = D40_PHY_CHAN;
1917		goto out;
1918	}
1919	if (dev_type == -1)
1920		return -EINVAL;
1921
1922	/* Find logical channel */
1923	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1924		int phy_num = j + event_group * 2;
1925
1926		if (d40c->dma_cfg.use_fixed_channel) {
1927			i = d40c->dma_cfg.phy_channel;
1928
1929			if ((i != phy_num) && (i != phy_num + 1)) {
1930				dev_err(chan2dev(d40c),
1931					"invalid fixed phy channel %d\n", i);
1932				return -EINVAL;
1933			}
1934
1935			if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1936					       is_log, first_phy_user))
1937				goto found_log;
1938
1939			dev_err(chan2dev(d40c),
1940				"could not allocate fixed phy channel %d\n", i);
1941			return -EINVAL;
1942		}
1943
1944		/*
1945		 * Spread logical channels across all available physical rather
1946		 * than pack every logical channel at the first available phy
1947		 * channels.
1948		 */
1949		if (is_src) {
1950			for (i = phy_num; i < phy_num + 2; i++) {
1951				if (d40_alloc_mask_set(&phys[i], is_src,
1952						       event_line, is_log,
1953						       first_phy_user))
1954					goto found_log;
1955			}
1956		} else {
1957			for (i = phy_num + 1; i >= phy_num; i--) {
1958				if (d40_alloc_mask_set(&phys[i], is_src,
1959						       event_line, is_log,
1960						       first_phy_user))
1961					goto found_log;
1962			}
1963		}
1964	}
1965	return -EINVAL;
1966
1967found_log:
1968	d40c->phy_chan = &phys[i];
1969	d40c->log_num = log_num;
1970out:
1971
1972	if (is_log)
1973		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1974	else
1975		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1976
1977	return 0;
1978
1979}
1980
1981static int d40_config_memcpy(struct d40_chan *d40c)
1982{
1983	dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1984
1985	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1986		d40c->dma_cfg = dma40_memcpy_conf_log;
1987		d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1988
1989		d40_log_cfg(&d40c->dma_cfg,
1990			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1991
1992	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
1993		   dma_has_cap(DMA_SLAVE, cap)) {
1994		d40c->dma_cfg = dma40_memcpy_conf_phy;
1995
1996		/* Generate interrupt at end of transfer or relink. */
1997		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
1998
1999		/* Generate interrupt on error. */
2000		d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2001		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2002
2003	} else {
2004		chan_err(d40c, "No memcpy\n");
2005		return -EINVAL;
2006	}
2007
2008	return 0;
2009}
2010
2011static int d40_free_dma(struct d40_chan *d40c)
2012{
2013
2014	int res = 0;
2015	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2016	struct d40_phy_res *phy = d40c->phy_chan;
2017	bool is_src;
2018
2019	/* Terminate all queued and active transfers */
2020	d40_term_all(d40c);
2021
2022	if (phy == NULL) {
2023		chan_err(d40c, "phy == null\n");
2024		return -EINVAL;
2025	}
2026
2027	if (phy->allocated_src == D40_ALLOC_FREE &&
2028	    phy->allocated_dst == D40_ALLOC_FREE) {
2029		chan_err(d40c, "channel already free\n");
2030		return -EINVAL;
2031	}
2032
2033	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2034	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2035		is_src = false;
2036	else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2037		is_src = true;
2038	else {
2039		chan_err(d40c, "Unknown direction\n");
2040		return -EINVAL;
2041	}
2042
2043	pm_runtime_get_sync(d40c->base->dev);
2044	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2045	if (res) {
2046		chan_err(d40c, "stop failed\n");
2047		goto mark_last_busy;
2048	}
2049
2050	d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2051
2052	if (chan_is_logical(d40c))
2053		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2054	else
2055		d40c->base->lookup_phy_chans[phy->num] = NULL;
2056
2057	if (d40c->busy) {
2058		pm_runtime_mark_last_busy(d40c->base->dev);
2059		pm_runtime_put_autosuspend(d40c->base->dev);
2060	}
2061
2062	d40c->busy = false;
2063	d40c->phy_chan = NULL;
2064	d40c->configured = false;
2065 mark_last_busy:
2066	pm_runtime_mark_last_busy(d40c->base->dev);
2067	pm_runtime_put_autosuspend(d40c->base->dev);
2068	return res;
2069}
2070
2071static bool d40_is_paused(struct d40_chan *d40c)
2072{
2073	void __iomem *chanbase = chan_base(d40c);
2074	bool is_paused = false;
2075	unsigned long flags;
2076	void __iomem *active_reg;
2077	u32 status;
2078	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2079
2080	spin_lock_irqsave(&d40c->lock, flags);
2081
2082	if (chan_is_physical(d40c)) {
2083		if (d40c->phy_chan->num % 2 == 0)
2084			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2085		else
2086			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2087
2088		status = (readl(active_reg) &
2089			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2090			D40_CHAN_POS(d40c->phy_chan->num);
2091		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2092			is_paused = true;
2093		goto unlock;
2094	}
2095
2096	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2097	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2098		status = readl(chanbase + D40_CHAN_REG_SDLNK);
2099	} else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2100		status = readl(chanbase + D40_CHAN_REG_SSLNK);
2101	} else {
2102		chan_err(d40c, "Unknown direction\n");
2103		goto unlock;
2104	}
2105
2106	status = (status & D40_EVENTLINE_MASK(event)) >>
2107		D40_EVENTLINE_POS(event);
2108
2109	if (status != D40_DMA_RUN)
2110		is_paused = true;
2111 unlock:
2112	spin_unlock_irqrestore(&d40c->lock, flags);
2113	return is_paused;
2114
2115}
2116
2117static u32 stedma40_residue(struct dma_chan *chan)
2118{
2119	struct d40_chan *d40c =
2120		container_of(chan, struct d40_chan, chan);
2121	u32 bytes_left;
2122	unsigned long flags;
2123
2124	spin_lock_irqsave(&d40c->lock, flags);
2125	bytes_left = d40_residue(d40c);
2126	spin_unlock_irqrestore(&d40c->lock, flags);
2127
2128	return bytes_left;
2129}
2130
2131static int
2132d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2133		struct scatterlist *sg_src, struct scatterlist *sg_dst,
2134		unsigned int sg_len, dma_addr_t src_dev_addr,
2135		dma_addr_t dst_dev_addr)
2136{
2137	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2138	struct stedma40_half_channel_info *src_info = &cfg->src_info;
2139	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2140	int ret;
2141
2142	ret = d40_log_sg_to_lli(sg_src, sg_len,
2143				src_dev_addr,
2144				desc->lli_log.src,
2145				chan->log_def.lcsp1,
2146				src_info->data_width,
2147				dst_info->data_width);
2148
2149	ret = d40_log_sg_to_lli(sg_dst, sg_len,
2150				dst_dev_addr,
2151				desc->lli_log.dst,
2152				chan->log_def.lcsp3,
2153				dst_info->data_width,
2154				src_info->data_width);
2155
2156	return ret < 0 ? ret : 0;
2157}
2158
2159static int
2160d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2161		struct scatterlist *sg_src, struct scatterlist *sg_dst,
2162		unsigned int sg_len, dma_addr_t src_dev_addr,
2163		dma_addr_t dst_dev_addr)
2164{
2165	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2166	struct stedma40_half_channel_info *src_info = &cfg->src_info;
2167	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2168	unsigned long flags = 0;
2169	int ret;
2170
2171	if (desc->cyclic)
2172		flags |= LLI_CYCLIC | LLI_TERM_INT;
2173
2174	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2175				desc->lli_phy.src,
2176				virt_to_phys(desc->lli_phy.src),
2177				chan->src_def_cfg,
2178				src_info, dst_info, flags);
2179
2180	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2181				desc->lli_phy.dst,
2182				virt_to_phys(desc->lli_phy.dst),
2183				chan->dst_def_cfg,
2184				dst_info, src_info, flags);
2185
2186	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2187				   desc->lli_pool.size, DMA_TO_DEVICE);
2188
2189	return ret < 0 ? ret : 0;
2190}
2191
2192static struct d40_desc *
2193d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2194	      unsigned int sg_len, unsigned long dma_flags)
2195{
2196	struct stedma40_chan_cfg *cfg;
2197	struct d40_desc *desc;
2198	int ret;
2199
2200	desc = d40_desc_get(chan);
2201	if (!desc)
2202		return NULL;
2203
2204	cfg = &chan->dma_cfg;
2205	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2206					cfg->dst_info.data_width);
2207	if (desc->lli_len < 0) {
2208		chan_err(chan, "Unaligned size\n");
2209		goto free_desc;
2210	}
2211
2212	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2213	if (ret < 0) {
2214		chan_err(chan, "Could not allocate lli\n");
2215		goto free_desc;
2216	}
2217
2218	desc->lli_current = 0;
2219	desc->txd.flags = dma_flags;
2220	desc->txd.tx_submit = d40_tx_submit;
2221
2222	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2223
2224	return desc;
2225 free_desc:
2226	d40_desc_free(chan, desc);
2227	return NULL;
2228}
2229
2230static struct dma_async_tx_descriptor *
2231d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2232	    struct scatterlist *sg_dst, unsigned int sg_len,
2233	    enum dma_transfer_direction direction, unsigned long dma_flags)
2234{
2235	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2236	dma_addr_t src_dev_addr;
2237	dma_addr_t dst_dev_addr;
2238	struct d40_desc *desc;
2239	unsigned long flags;
2240	int ret;
2241
2242	if (!chan->phy_chan) {
2243		chan_err(chan, "Cannot prepare unallocated channel\n");
2244		return NULL;
2245	}
2246
2247	d40_set_runtime_config_write(dchan, &chan->slave_config, direction);
2248
2249	spin_lock_irqsave(&chan->lock, flags);
2250
2251	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2252	if (desc == NULL)
2253		goto unlock;
2254
2255	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2256		desc->cyclic = true;
2257
2258	src_dev_addr = 0;
2259	dst_dev_addr = 0;
2260	if (direction == DMA_DEV_TO_MEM)
2261		src_dev_addr = chan->runtime_addr;
2262	else if (direction == DMA_MEM_TO_DEV)
2263		dst_dev_addr = chan->runtime_addr;
2264
2265	if (chan_is_logical(chan))
2266		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2267				      sg_len, src_dev_addr, dst_dev_addr);
2268	else
2269		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2270				      sg_len, src_dev_addr, dst_dev_addr);
2271
2272	if (ret) {
2273		chan_err(chan, "Failed to prepare %s sg job: %d\n",
2274			 chan_is_logical(chan) ? "log" : "phy", ret);
2275		goto free_desc;
2276	}
2277
2278	/*
2279	 * add descriptor to the prepare queue in order to be able
2280	 * to free them later in terminate_all
2281	 */
2282	list_add_tail(&desc->node, &chan->prepare_queue);
2283
2284	spin_unlock_irqrestore(&chan->lock, flags);
2285
2286	return &desc->txd;
2287 free_desc:
2288	d40_desc_free(chan, desc);
2289 unlock:
2290	spin_unlock_irqrestore(&chan->lock, flags);
2291	return NULL;
2292}
2293
2294static bool stedma40_filter(struct dma_chan *chan, void *data)
2295{
2296	struct stedma40_chan_cfg *info = data;
2297	struct d40_chan *d40c =
2298		container_of(chan, struct d40_chan, chan);
2299	int err;
2300
2301	if (data) {
2302		err = d40_validate_conf(d40c, info);
2303		if (!err)
2304			d40c->dma_cfg = *info;
2305	} else
2306		err = d40_config_memcpy(d40c);
2307
2308	if (!err)
2309		d40c->configured = true;
2310
2311	return err == 0;
2312}
 
2313
2314static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2315{
2316	bool realtime = d40c->dma_cfg.realtime;
2317	bool highprio = d40c->dma_cfg.high_priority;
2318	u32 rtreg;
2319	u32 event = D40_TYPE_TO_EVENT(dev_type);
2320	u32 group = D40_TYPE_TO_GROUP(dev_type);
2321	u32 bit = BIT(event);
2322	u32 prioreg;
2323	struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2324
2325	rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2326	/*
2327	 * Due to a hardware bug, in some cases a logical channel triggered by
2328	 * a high priority destination event line can generate extra packet
2329	 * transactions.
2330	 *
2331	 * The workaround is to not set the high priority level for the
2332	 * destination event lines that trigger logical channels.
2333	 */
2334	if (!src && chan_is_logical(d40c))
2335		highprio = false;
2336
2337	prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2338
2339	/* Destination event lines are stored in the upper halfword */
2340	if (!src)
2341		bit <<= 16;
2342
2343	writel(bit, d40c->base->virtbase + prioreg + group * 4);
2344	writel(bit, d40c->base->virtbase + rtreg + group * 4);
2345}
2346
2347static void d40_set_prio_realtime(struct d40_chan *d40c)
2348{
2349	if (d40c->base->rev < 3)
2350		return;
2351
2352	if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
2353	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2354		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2355
2356	if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
2357	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2358		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2359}
2360
2361#define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
2362#define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
2363#define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2364#define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2365#define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2366
2367static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2368				  struct of_dma *ofdma)
2369{
2370	struct stedma40_chan_cfg cfg;
2371	dma_cap_mask_t cap;
2372	u32 flags;
2373
2374	memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2375
2376	dma_cap_zero(cap);
2377	dma_cap_set(DMA_SLAVE, cap);
2378
2379	cfg.dev_type = dma_spec->args[0];
2380	flags = dma_spec->args[2];
2381
2382	switch (D40_DT_FLAGS_MODE(flags)) {
2383	case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2384	case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2385	}
2386
2387	switch (D40_DT_FLAGS_DIR(flags)) {
2388	case 0:
2389		cfg.dir = DMA_MEM_TO_DEV;
2390		cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2391		break;
2392	case 1:
2393		cfg.dir = DMA_DEV_TO_MEM;
2394		cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2395		break;
2396	}
2397
2398	if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2399		cfg.phy_channel = dma_spec->args[1];
2400		cfg.use_fixed_channel = true;
2401	}
2402
2403	if (D40_DT_FLAGS_HIGH_PRIO(flags))
2404		cfg.high_priority = true;
2405
2406	return dma_request_channel(cap, stedma40_filter, &cfg);
2407}
2408
2409/* DMA ENGINE functions */
2410static int d40_alloc_chan_resources(struct dma_chan *chan)
2411{
2412	int err;
2413	unsigned long flags;
2414	struct d40_chan *d40c =
2415		container_of(chan, struct d40_chan, chan);
2416	bool is_free_phy;
2417	spin_lock_irqsave(&d40c->lock, flags);
2418
2419	dma_cookie_init(chan);
2420
2421	/* If no dma configuration is set use default configuration (memcpy) */
2422	if (!d40c->configured) {
2423		err = d40_config_memcpy(d40c);
2424		if (err) {
2425			chan_err(d40c, "Failed to configure memcpy channel\n");
2426			goto mark_last_busy;
2427		}
2428	}
2429
2430	err = d40_allocate_channel(d40c, &is_free_phy);
2431	if (err) {
2432		chan_err(d40c, "Failed to allocate channel\n");
2433		d40c->configured = false;
2434		goto mark_last_busy;
2435	}
2436
2437	pm_runtime_get_sync(d40c->base->dev);
2438
2439	d40_set_prio_realtime(d40c);
2440
2441	if (chan_is_logical(d40c)) {
2442		if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2443			d40c->lcpa = d40c->base->lcpa_base +
2444				d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2445		else
2446			d40c->lcpa = d40c->base->lcpa_base +
2447				d40c->dma_cfg.dev_type *
2448				D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2449
2450		/* Unmask the Global Interrupt Mask. */
2451		d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2452		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2453	}
2454
2455	dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2456		 chan_is_logical(d40c) ? "logical" : "physical",
2457		 d40c->phy_chan->num,
2458		 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2459
2460
2461	/*
2462	 * Only write channel configuration to the DMA if the physical
2463	 * resource is free. In case of multiple logical channels
2464	 * on the same physical resource, only the first write is necessary.
2465	 */
2466	if (is_free_phy)
2467		d40_config_write(d40c);
2468 mark_last_busy:
2469	pm_runtime_mark_last_busy(d40c->base->dev);
2470	pm_runtime_put_autosuspend(d40c->base->dev);
2471	spin_unlock_irqrestore(&d40c->lock, flags);
2472	return err;
2473}
2474
2475static void d40_free_chan_resources(struct dma_chan *chan)
2476{
2477	struct d40_chan *d40c =
2478		container_of(chan, struct d40_chan, chan);
2479	int err;
2480	unsigned long flags;
2481
2482	if (d40c->phy_chan == NULL) {
2483		chan_err(d40c, "Cannot free unallocated channel\n");
2484		return;
2485	}
2486
2487	spin_lock_irqsave(&d40c->lock, flags);
2488
2489	err = d40_free_dma(d40c);
2490
2491	if (err)
2492		chan_err(d40c, "Failed to free channel\n");
2493	spin_unlock_irqrestore(&d40c->lock, flags);
2494}
2495
2496static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2497						       dma_addr_t dst,
2498						       dma_addr_t src,
2499						       size_t size,
2500						       unsigned long dma_flags)
2501{
2502	struct scatterlist dst_sg;
2503	struct scatterlist src_sg;
2504
2505	sg_init_table(&dst_sg, 1);
2506	sg_init_table(&src_sg, 1);
2507
2508	sg_dma_address(&dst_sg) = dst;
2509	sg_dma_address(&src_sg) = src;
2510
2511	sg_dma_len(&dst_sg) = size;
2512	sg_dma_len(&src_sg) = size;
2513
2514	return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
2515			   DMA_MEM_TO_MEM, dma_flags);
2516}
2517
2518static struct dma_async_tx_descriptor *
2519d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2520		  unsigned int sg_len, enum dma_transfer_direction direction,
2521		  unsigned long dma_flags, void *context)
2522{
2523	if (!is_slave_direction(direction))
2524		return NULL;
2525
2526	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2527}
2528
2529static struct dma_async_tx_descriptor *
2530dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2531		     size_t buf_len, size_t period_len,
2532		     enum dma_transfer_direction direction, unsigned long flags)
2533{
2534	unsigned int periods = buf_len / period_len;
2535	struct dma_async_tx_descriptor *txd;
2536	struct scatterlist *sg;
2537	int i;
2538
2539	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2540	if (!sg)
2541		return NULL;
2542
2543	for (i = 0; i < periods; i++) {
2544		sg_dma_address(&sg[i]) = dma_addr;
2545		sg_dma_len(&sg[i]) = period_len;
2546		dma_addr += period_len;
2547	}
2548
2549	sg_chain(sg, periods + 1, sg);
2550
2551	txd = d40_prep_sg(chan, sg, sg, periods, direction,
2552			  DMA_PREP_INTERRUPT);
2553
2554	kfree(sg);
2555
2556	return txd;
2557}
2558
2559static enum dma_status d40_tx_status(struct dma_chan *chan,
2560				     dma_cookie_t cookie,
2561				     struct dma_tx_state *txstate)
2562{
2563	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2564	enum dma_status ret;
2565
2566	if (d40c->phy_chan == NULL) {
2567		chan_err(d40c, "Cannot read status of unallocated channel\n");
2568		return -EINVAL;
2569	}
2570
2571	ret = dma_cookie_status(chan, cookie, txstate);
2572	if (ret != DMA_COMPLETE && txstate)
2573		dma_set_residue(txstate, stedma40_residue(chan));
2574
2575	if (d40_is_paused(d40c))
2576		ret = DMA_PAUSED;
2577
2578	return ret;
2579}
2580
2581static void d40_issue_pending(struct dma_chan *chan)
2582{
2583	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2584	unsigned long flags;
2585
2586	if (d40c->phy_chan == NULL) {
2587		chan_err(d40c, "Channel is not allocated!\n");
2588		return;
2589	}
2590
2591	spin_lock_irqsave(&d40c->lock, flags);
2592
2593	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2594
2595	/* Busy means that queued jobs are already being processed */
2596	if (!d40c->busy)
2597		(void) d40_queue_start(d40c);
2598
2599	spin_unlock_irqrestore(&d40c->lock, flags);
2600}
2601
2602static int d40_terminate_all(struct dma_chan *chan)
2603{
2604	unsigned long flags;
2605	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2606	int ret;
2607
2608	if (d40c->phy_chan == NULL) {
2609		chan_err(d40c, "Channel is not allocated!\n");
2610		return -EINVAL;
2611	}
2612
2613	spin_lock_irqsave(&d40c->lock, flags);
2614
2615	pm_runtime_get_sync(d40c->base->dev);
2616	ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2617	if (ret)
2618		chan_err(d40c, "Failed to stop channel\n");
2619
2620	d40_term_all(d40c);
2621	pm_runtime_mark_last_busy(d40c->base->dev);
2622	pm_runtime_put_autosuspend(d40c->base->dev);
2623	if (d40c->busy) {
2624		pm_runtime_mark_last_busy(d40c->base->dev);
2625		pm_runtime_put_autosuspend(d40c->base->dev);
2626	}
2627	d40c->busy = false;
2628
2629	spin_unlock_irqrestore(&d40c->lock, flags);
2630	return 0;
2631}
2632
2633static int
2634dma40_config_to_halfchannel(struct d40_chan *d40c,
2635			    struct stedma40_half_channel_info *info,
2636			    u32 maxburst)
2637{
2638	int psize;
2639
2640	if (chan_is_logical(d40c)) {
2641		if (maxburst >= 16)
2642			psize = STEDMA40_PSIZE_LOG_16;
2643		else if (maxburst >= 8)
2644			psize = STEDMA40_PSIZE_LOG_8;
2645		else if (maxburst >= 4)
2646			psize = STEDMA40_PSIZE_LOG_4;
2647		else
2648			psize = STEDMA40_PSIZE_LOG_1;
2649	} else {
2650		if (maxburst >= 16)
2651			psize = STEDMA40_PSIZE_PHY_16;
2652		else if (maxburst >= 8)
2653			psize = STEDMA40_PSIZE_PHY_8;
2654		else if (maxburst >= 4)
2655			psize = STEDMA40_PSIZE_PHY_4;
2656		else
2657			psize = STEDMA40_PSIZE_PHY_1;
2658	}
2659
2660	info->psize = psize;
2661	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2662
2663	return 0;
2664}
2665
2666static int d40_set_runtime_config(struct dma_chan *chan,
2667				  struct dma_slave_config *config)
2668{
2669	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2670
2671	memcpy(&d40c->slave_config, config, sizeof(*config));
2672
2673	return 0;
2674}
2675
2676/* Runtime reconfiguration extension */
2677static int d40_set_runtime_config_write(struct dma_chan *chan,
2678				  struct dma_slave_config *config,
2679				  enum dma_transfer_direction direction)
2680{
2681	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2682	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2683	enum dma_slave_buswidth src_addr_width, dst_addr_width;
2684	dma_addr_t config_addr;
2685	u32 src_maxburst, dst_maxburst;
2686	int ret;
2687
2688	if (d40c->phy_chan == NULL) {
2689		chan_err(d40c, "Channel is not allocated!\n");
2690		return -EINVAL;
2691	}
2692
2693	src_addr_width = config->src_addr_width;
2694	src_maxburst = config->src_maxburst;
2695	dst_addr_width = config->dst_addr_width;
2696	dst_maxburst = config->dst_maxburst;
2697
2698	if (direction == DMA_DEV_TO_MEM) {
2699		config_addr = config->src_addr;
2700
2701		if (cfg->dir != DMA_DEV_TO_MEM)
2702			dev_dbg(d40c->base->dev,
2703				"channel was not configured for peripheral "
2704				"to memory transfer (%d) overriding\n",
2705				cfg->dir);
2706		cfg->dir = DMA_DEV_TO_MEM;
2707
2708		/* Configure the memory side */
2709		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2710			dst_addr_width = src_addr_width;
2711		if (dst_maxburst == 0)
2712			dst_maxburst = src_maxburst;
2713
2714	} else if (direction == DMA_MEM_TO_DEV) {
2715		config_addr = config->dst_addr;
2716
2717		if (cfg->dir != DMA_MEM_TO_DEV)
2718			dev_dbg(d40c->base->dev,
2719				"channel was not configured for memory "
2720				"to peripheral transfer (%d) overriding\n",
2721				cfg->dir);
2722		cfg->dir = DMA_MEM_TO_DEV;
2723
2724		/* Configure the memory side */
2725		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2726			src_addr_width = dst_addr_width;
2727		if (src_maxburst == 0)
2728			src_maxburst = dst_maxburst;
2729	} else {
2730		dev_err(d40c->base->dev,
2731			"unrecognized channel direction %d\n",
2732			direction);
2733		return -EINVAL;
2734	}
2735
2736	if (config_addr <= 0) {
2737		dev_err(d40c->base->dev, "no address supplied\n");
2738		return -EINVAL;
2739	}
2740
2741	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2742		dev_err(d40c->base->dev,
2743			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2744			src_maxburst,
2745			src_addr_width,
2746			dst_maxburst,
2747			dst_addr_width);
2748		return -EINVAL;
2749	}
2750
2751	if (src_maxburst > 16) {
2752		src_maxburst = 16;
2753		dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2754	} else if (dst_maxburst > 16) {
2755		dst_maxburst = 16;
2756		src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2757	}
2758
2759	/* Only valid widths are; 1, 2, 4 and 8. */
2760	if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2761	    src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2762	    dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2763	    dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2764	    !is_power_of_2(src_addr_width) ||
2765	    !is_power_of_2(dst_addr_width))
2766		return -EINVAL;
2767
2768	cfg->src_info.data_width = src_addr_width;
2769	cfg->dst_info.data_width = dst_addr_width;
2770
2771	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2772					  src_maxburst);
2773	if (ret)
2774		return ret;
2775
2776	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2777					  dst_maxburst);
2778	if (ret)
2779		return ret;
2780
2781	/* Fill in register values */
2782	if (chan_is_logical(d40c))
2783		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2784	else
2785		d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2786
2787	/* These settings will take precedence later */
2788	d40c->runtime_addr = config_addr;
2789	d40c->runtime_direction = direction;
2790	dev_dbg(d40c->base->dev,
2791		"configured channel %s for %s, data width %d/%d, "
2792		"maxburst %d/%d elements, LE, no flow control\n",
2793		dma_chan_name(chan),
2794		(direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2795		src_addr_width, dst_addr_width,
2796		src_maxburst, dst_maxburst);
2797
2798	return 0;
2799}
2800
2801/* Initialization functions */
2802
2803static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2804				 struct d40_chan *chans, int offset,
2805				 int num_chans)
2806{
2807	int i = 0;
2808	struct d40_chan *d40c;
2809
2810	INIT_LIST_HEAD(&dma->channels);
2811
2812	for (i = offset; i < offset + num_chans; i++) {
2813		d40c = &chans[i];
2814		d40c->base = base;
2815		d40c->chan.device = dma;
2816
2817		spin_lock_init(&d40c->lock);
2818
2819		d40c->log_num = D40_PHY_CHAN;
2820
2821		INIT_LIST_HEAD(&d40c->done);
2822		INIT_LIST_HEAD(&d40c->active);
2823		INIT_LIST_HEAD(&d40c->queue);
2824		INIT_LIST_HEAD(&d40c->pending_queue);
2825		INIT_LIST_HEAD(&d40c->client);
2826		INIT_LIST_HEAD(&d40c->prepare_queue);
2827
2828		tasklet_setup(&d40c->tasklet, dma_tasklet);
 
2829
2830		list_add_tail(&d40c->chan.device_node,
2831			      &dma->channels);
2832	}
2833}
2834
2835static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2836{
2837	if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) {
2838		dev->device_prep_slave_sg = d40_prep_slave_sg;
2839		dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2840	}
2841
2842	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2843		dev->device_prep_dma_memcpy = d40_prep_memcpy;
2844		dev->directions = BIT(DMA_MEM_TO_MEM);
2845		/*
2846		 * This controller can only access address at even
2847		 * 32bit boundaries, i.e. 2^2
2848		 */
2849		dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
2850	}
2851
2852	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2853		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2854
2855	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2856	dev->device_free_chan_resources = d40_free_chan_resources;
2857	dev->device_issue_pending = d40_issue_pending;
2858	dev->device_tx_status = d40_tx_status;
2859	dev->device_config = d40_set_runtime_config;
2860	dev->device_pause = d40_pause;
2861	dev->device_resume = d40_resume;
2862	dev->device_terminate_all = d40_terminate_all;
2863	dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2864	dev->dev = base->dev;
2865}
2866
2867static int __init d40_dmaengine_init(struct d40_base *base,
2868				     int num_reserved_chans)
2869{
2870	int err ;
2871
2872	d40_chan_init(base, &base->dma_slave, base->log_chans,
2873		      0, base->num_log_chans);
2874
2875	dma_cap_zero(base->dma_slave.cap_mask);
2876	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2877	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2878
2879	d40_ops_init(base, &base->dma_slave);
2880
2881	err = dmaenginem_async_device_register(&base->dma_slave);
2882
2883	if (err) {
2884		d40_err(base->dev, "Failed to register slave channels\n");
2885		goto exit;
2886	}
2887
2888	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2889		      base->num_log_chans, base->num_memcpy_chans);
2890
2891	dma_cap_zero(base->dma_memcpy.cap_mask);
2892	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2893
2894	d40_ops_init(base, &base->dma_memcpy);
2895
2896	err = dmaenginem_async_device_register(&base->dma_memcpy);
2897
2898	if (err) {
2899		d40_err(base->dev,
2900			"Failed to register memcpy only channels\n");
2901		goto exit;
2902	}
2903
2904	d40_chan_init(base, &base->dma_both, base->phy_chans,
2905		      0, num_reserved_chans);
2906
2907	dma_cap_zero(base->dma_both.cap_mask);
2908	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2909	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2910	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2911
2912	d40_ops_init(base, &base->dma_both);
2913	err = dmaenginem_async_device_register(&base->dma_both);
2914
2915	if (err) {
2916		d40_err(base->dev,
2917			"Failed to register logical and physical capable channels\n");
2918		goto exit;
2919	}
2920	return 0;
2921 exit:
2922	return err;
2923}
2924
2925/* Suspend resume functionality */
2926#ifdef CONFIG_PM_SLEEP
2927static int dma40_suspend(struct device *dev)
2928{
2929	struct d40_base *base = dev_get_drvdata(dev);
2930	int ret;
2931
2932	ret = pm_runtime_force_suspend(dev);
2933	if (ret)
2934		return ret;
2935
2936	if (base->lcpa_regulator)
2937		ret = regulator_disable(base->lcpa_regulator);
2938	return ret;
2939}
2940
2941static int dma40_resume(struct device *dev)
2942{
2943	struct d40_base *base = dev_get_drvdata(dev);
2944	int ret = 0;
2945
2946	if (base->lcpa_regulator) {
2947		ret = regulator_enable(base->lcpa_regulator);
2948		if (ret)
2949			return ret;
2950	}
2951
2952	return pm_runtime_force_resume(dev);
2953}
2954#endif
2955
2956#ifdef CONFIG_PM
2957static void dma40_backup(void __iomem *baseaddr, u32 *backup,
2958			 u32 *regaddr, int num, bool save)
2959{
2960	int i;
2961
2962	for (i = 0; i < num; i++) {
2963		void __iomem *addr = baseaddr + regaddr[i];
2964
2965		if (save)
2966			backup[i] = readl_relaxed(addr);
2967		else
2968			writel_relaxed(backup[i], addr);
2969	}
2970}
2971
2972static void d40_save_restore_registers(struct d40_base *base, bool save)
2973{
2974	int i;
2975
2976	/* Save/Restore channel specific registers */
2977	for (i = 0; i < base->num_phy_chans; i++) {
2978		void __iomem *addr;
2979		int idx;
2980
2981		if (base->phy_res[i].reserved)
2982			continue;
2983
2984		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
2985		idx = i * ARRAY_SIZE(d40_backup_regs_chan);
2986
2987		dma40_backup(addr, &base->reg_val_backup_chan[idx],
2988			     d40_backup_regs_chan,
2989			     ARRAY_SIZE(d40_backup_regs_chan),
2990			     save);
2991	}
2992
2993	/* Save/Restore global registers */
2994	dma40_backup(base->virtbase, base->reg_val_backup,
2995		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
2996		     save);
2997
2998	/* Save/Restore registers only existing on dma40 v3 and later */
2999	if (base->gen_dmac.backup)
3000		dma40_backup(base->virtbase, base->reg_val_backup_v4,
3001			     base->gen_dmac.backup,
3002			base->gen_dmac.backup_size,
3003			save);
3004}
3005
3006static int dma40_runtime_suspend(struct device *dev)
3007{
3008	struct d40_base *base = dev_get_drvdata(dev);
3009
3010	d40_save_restore_registers(base, true);
3011
3012	/* Don't disable/enable clocks for v1 due to HW bugs */
3013	if (base->rev != 1)
3014		writel_relaxed(base->gcc_pwr_off_mask,
3015			       base->virtbase + D40_DREG_GCC);
3016
3017	return 0;
3018}
3019
3020static int dma40_runtime_resume(struct device *dev)
3021{
3022	struct d40_base *base = dev_get_drvdata(dev);
3023
3024	d40_save_restore_registers(base, false);
3025
3026	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3027		       base->virtbase + D40_DREG_GCC);
3028	return 0;
3029}
3030#endif
3031
3032static const struct dev_pm_ops dma40_pm_ops = {
3033	SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3034	SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3035				dma40_runtime_resume,
3036				NULL)
3037};
3038
3039/* Initialization functions. */
3040
3041static int __init d40_phy_res_init(struct d40_base *base)
3042{
3043	int i;
3044	int num_phy_chans_avail = 0;
3045	u32 val[2];
3046	int odd_even_bit = -2;
3047	int gcc = D40_DREG_GCC_ENA;
3048
3049	val[0] = readl(base->virtbase + D40_DREG_PRSME);
3050	val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3051
3052	for (i = 0; i < base->num_phy_chans; i++) {
3053		base->phy_res[i].num = i;
3054		odd_even_bit += 2 * ((i % 2) == 0);
3055		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3056			/* Mark security only channels as occupied */
3057			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3058			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3059			base->phy_res[i].reserved = true;
3060			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3061						       D40_DREG_GCC_SRC);
3062			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3063						       D40_DREG_GCC_DST);
3064
3065
3066		} else {
3067			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3068			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3069			base->phy_res[i].reserved = false;
3070			num_phy_chans_avail++;
3071		}
3072		spin_lock_init(&base->phy_res[i].lock);
3073	}
3074
3075	/* Mark disabled channels as occupied */
3076	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3077		int chan = base->plat_data->disabled_channels[i];
3078
3079		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3080		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3081		base->phy_res[chan].reserved = true;
3082		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3083					       D40_DREG_GCC_SRC);
3084		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3085					       D40_DREG_GCC_DST);
3086		num_phy_chans_avail--;
3087	}
3088
3089	/* Mark soft_lli channels */
3090	for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3091		int chan = base->plat_data->soft_lli_chans[i];
3092
3093		base->phy_res[chan].use_soft_lli = true;
3094	}
3095
3096	dev_info(base->dev, "%d of %d physical DMA channels available\n",
3097		 num_phy_chans_avail, base->num_phy_chans);
3098
3099	/* Verify settings extended vs standard */
3100	val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3101
3102	for (i = 0; i < base->num_phy_chans; i++) {
3103
3104		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3105		    (val[0] & 0x3) != 1)
3106			dev_info(base->dev,
3107				 "[%s] INFO: channel %d is misconfigured (%d)\n",
3108				 __func__, i, val[0] & 0x3);
3109
3110		val[0] = val[0] >> 2;
3111	}
3112
3113	/*
3114	 * To keep things simple, Enable all clocks initially.
3115	 * The clocks will get managed later post channel allocation.
3116	 * The clocks for the event lines on which reserved channels exists
3117	 * are not managed here.
3118	 */
3119	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3120	base->gcc_pwr_off_mask = gcc;
3121
3122	return num_phy_chans_avail;
3123}
3124
3125/* Called from the registered devm action */
3126static void d40_drop_kmem_cache_action(void *d)
3127{
3128	struct kmem_cache *desc_slab = d;
3129
3130	kmem_cache_destroy(desc_slab);
3131}
3132
3133static int __init d40_hw_detect_init(struct platform_device *pdev,
3134				     struct d40_base **retbase)
3135{
3136	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3137	struct device *dev = &pdev->dev;
3138	struct clk *clk;
3139	void __iomem *virtbase;
 
3140	struct d40_base *base;
3141	int num_log_chans;
3142	int num_phy_chans;
3143	int num_memcpy_chans;
 
3144	int i;
3145	u32 pid;
3146	u32 cid;
3147	u8 rev;
3148	int ret;
3149
3150	clk = devm_clk_get_enabled(dev, NULL);
3151	if (IS_ERR(clk))
3152		return PTR_ERR(clk);
 
 
 
 
 
 
 
 
3153
3154	/* Get IO for DMAC base address */
3155	virtbase = devm_platform_ioremap_resource_byname(pdev, "base");
3156	if (IS_ERR(virtbase))
3157		return PTR_ERR(virtbase);
 
 
 
 
 
 
 
 
3158
3159	/* This is just a regular AMBA PrimeCell ID actually */
3160	for (pid = 0, i = 0; i < 4; i++)
3161		pid |= (readl(virtbase + SZ_4K - 0x20 + 4 * i)
3162			& 255) << (i * 8);
3163	for (cid = 0, i = 0; i < 4; i++)
3164		cid |= (readl(virtbase + SZ_4K - 0x10 + 4 * i)
3165			& 255) << (i * 8);
3166
3167	if (cid != AMBA_CID) {
3168		d40_err(dev, "Unknown hardware! No PrimeCell ID\n");
3169		return -EINVAL;
3170	}
3171	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3172		d40_err(dev, "Unknown designer! Got %x wanted %x\n",
3173			AMBA_MANF_BITS(pid),
3174			AMBA_VENDOR_ST);
3175		return -EINVAL;
3176	}
3177	/*
3178	 * HW revision:
3179	 * DB8500ed has revision 0
3180	 * ? has revision 1
3181	 * DB8500v1 has revision 2
3182	 * DB8500v2 has revision 3
3183	 * AP9540v1 has revision 4
3184	 * DB8540v1 has revision 4
3185	 */
3186	rev = AMBA_REV_BITS(pid);
3187	if (rev < 2) {
3188		d40_err(dev, "hardware revision: %d is not supported", rev);
3189		return -EINVAL;
3190	}
3191
3192	/* The number of physical channels on this HW */
3193	if (plat_data->num_of_phy_chans)
3194		num_phy_chans = plat_data->num_of_phy_chans;
3195	else
3196		num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3197
3198	/* The number of channels used for memcpy */
3199	if (plat_data->num_of_memcpy_chans)
3200		num_memcpy_chans = plat_data->num_of_memcpy_chans;
3201	else
3202		num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3203
3204	num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3205
3206	dev_info(dev,
3207		 "hardware rev: %d with %d physical and %d logical channels\n",
3208		 rev, num_phy_chans, num_log_chans);
3209
3210	base = devm_kzalloc(dev,
3211		ALIGN(sizeof(struct d40_base), 4) +
3212		(num_phy_chans + num_log_chans + num_memcpy_chans) *
3213		sizeof(struct d40_chan), GFP_KERNEL);
3214
3215	if (!base)
3216		return -ENOMEM;
3217
3218	base->rev = rev;
3219	base->clk = clk;
3220	base->num_memcpy_chans = num_memcpy_chans;
3221	base->num_phy_chans = num_phy_chans;
3222	base->num_log_chans = num_log_chans;
 
 
3223	base->virtbase = virtbase;
3224	base->plat_data = plat_data;
3225	base->dev = dev;
3226	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3227	base->log_chans = &base->phy_chans[num_phy_chans];
3228
3229	if (base->plat_data->num_of_phy_chans == 14) {
3230		base->gen_dmac.backup = d40_backup_regs_v4b;
3231		base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3232		base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3233		base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3234		base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3235		base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3236		base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3237		base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3238		base->gen_dmac.il = il_v4b;
3239		base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3240		base->gen_dmac.init_reg = dma_init_reg_v4b;
3241		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3242	} else {
3243		if (base->rev >= 3) {
3244			base->gen_dmac.backup = d40_backup_regs_v4a;
3245			base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3246		}
3247		base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3248		base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3249		base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3250		base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3251		base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3252		base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3253		base->gen_dmac.il = il_v4a;
3254		base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3255		base->gen_dmac.init_reg = dma_init_reg_v4a;
3256		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3257	}
3258
3259	base->phy_res = devm_kcalloc(dev, num_phy_chans,
3260				     sizeof(*base->phy_res),
3261				     GFP_KERNEL);
3262	if (!base->phy_res)
3263		return -ENOMEM;
3264
3265	base->lookup_phy_chans = devm_kcalloc(dev, num_phy_chans,
3266					      sizeof(*base->lookup_phy_chans),
3267					      GFP_KERNEL);
3268	if (!base->lookup_phy_chans)
3269		return -ENOMEM;
3270
3271	base->lookup_log_chans = devm_kcalloc(dev, num_log_chans,
3272					      sizeof(*base->lookup_log_chans),
3273					      GFP_KERNEL);
3274	if (!base->lookup_log_chans)
3275		return -ENOMEM;
3276
3277	base->reg_val_backup_chan = devm_kmalloc_array(dev, base->num_phy_chans,
3278						  sizeof(d40_backup_regs_chan),
3279						  GFP_KERNEL);
3280	if (!base->reg_val_backup_chan)
3281		return -ENOMEM;
3282
3283	base->lcla_pool.alloc_map = devm_kcalloc(dev, num_phy_chans
3284					    * D40_LCLA_LINK_PER_EVENT_GRP,
3285					    sizeof(*base->lcla_pool.alloc_map),
3286					    GFP_KERNEL);
3287	if (!base->lcla_pool.alloc_map)
3288		return -ENOMEM;
3289
3290	base->regs_interrupt = devm_kmalloc_array(dev, base->gen_dmac.il_size,
3291					     sizeof(*base->regs_interrupt),
3292					     GFP_KERNEL);
3293	if (!base->regs_interrupt)
3294		return -ENOMEM;
3295
3296	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3297					    0, SLAB_HWCACHE_ALIGN,
3298					    NULL);
3299	if (!base->desc_slab)
3300		return -ENOMEM;
3301
3302	ret = devm_add_action_or_reset(dev, d40_drop_kmem_cache_action,
3303				       base->desc_slab);
3304	if (ret)
3305		return ret;
3306
3307	*retbase = base;
3308
3309	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3310}
3311
3312static void __init d40_hw_init(struct d40_base *base)
3313{
3314
3315	int i;
3316	u32 prmseo[2] = {0, 0};
3317	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3318	u32 pcmis = 0;
3319	u32 pcicr = 0;
3320	struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3321	u32 reg_size = base->gen_dmac.init_reg_size;
3322
3323	for (i = 0; i < reg_size; i++)
3324		writel(dma_init_reg[i].val,
3325		       base->virtbase + dma_init_reg[i].reg);
3326
3327	/* Configure all our dma channels to default settings */
3328	for (i = 0; i < base->num_phy_chans; i++) {
3329
3330		activeo[i % 2] = activeo[i % 2] << 2;
3331
3332		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3333		    == D40_ALLOC_PHY) {
3334			activeo[i % 2] |= 3;
3335			continue;
3336		}
3337
3338		/* Enable interrupt # */
3339		pcmis = (pcmis << 1) | 1;
3340
3341		/* Clear interrupt # */
3342		pcicr = (pcicr << 1) | 1;
3343
3344		/* Set channel to physical mode */
3345		prmseo[i % 2] = prmseo[i % 2] << 2;
3346		prmseo[i % 2] |= 1;
3347
3348	}
3349
3350	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3351	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3352	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3353	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3354
3355	/* Write which interrupt to enable */
3356	writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3357
3358	/* Write which interrupt to clear */
3359	writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3360
3361	/* These are __initdata and cannot be accessed after init */
3362	base->gen_dmac.init_reg = NULL;
3363	base->gen_dmac.init_reg_size = 0;
3364}
3365
3366static int __init d40_lcla_allocate(struct d40_base *base)
3367{
3368	struct d40_lcla_pool *pool = &base->lcla_pool;
3369	unsigned long *page_list;
3370	int i, j;
3371	int ret;
3372
3373	/*
3374	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3375	 * To full fill this hardware requirement without wasting 256 kb
3376	 * we allocate pages until we get an aligned one.
3377	 */
3378	page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
3379				  sizeof(*page_list),
3380				  GFP_KERNEL);
3381	if (!page_list)
3382		return -ENOMEM;
3383
3384	/* Calculating how many pages that are required */
3385	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3386
3387	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3388		page_list[i] = __get_free_pages(GFP_KERNEL,
3389						base->lcla_pool.pages);
3390		if (!page_list[i]) {
3391
3392			d40_err(base->dev, "Failed to allocate %d pages.\n",
3393				base->lcla_pool.pages);
3394			ret = -ENOMEM;
3395
3396			for (j = 0; j < i; j++)
3397				free_pages(page_list[j], base->lcla_pool.pages);
3398			goto free_page_list;
3399		}
3400
3401		if ((virt_to_phys((void *)page_list[i]) &
3402		     (LCLA_ALIGNMENT - 1)) == 0)
3403			break;
3404	}
3405
3406	for (j = 0; j < i; j++)
3407		free_pages(page_list[j], base->lcla_pool.pages);
3408
3409	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3410		base->lcla_pool.base = (void *)page_list[i];
3411	} else {
3412		/*
3413		 * After many attempts and no success with finding the correct
3414		 * alignment, try with allocating a big buffer.
3415		 */
3416		dev_warn(base->dev,
3417			 "[%s] Failed to get %d pages @ 18 bit align.\n",
3418			 __func__, base->lcla_pool.pages);
3419		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3420							 base->num_phy_chans +
3421							 LCLA_ALIGNMENT,
3422							 GFP_KERNEL);
3423		if (!base->lcla_pool.base_unaligned) {
3424			ret = -ENOMEM;
3425			goto free_page_list;
3426		}
3427
3428		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3429						 LCLA_ALIGNMENT);
3430	}
3431
3432	pool->dma_addr = dma_map_single(base->dev, pool->base,
3433					SZ_1K * base->num_phy_chans,
3434					DMA_TO_DEVICE);
3435	if (dma_mapping_error(base->dev, pool->dma_addr)) {
3436		pool->dma_addr = 0;
3437		ret = -ENOMEM;
3438		goto free_page_list;
3439	}
3440
3441	writel(virt_to_phys(base->lcla_pool.base),
3442	       base->virtbase + D40_DREG_LCLA);
3443	ret = 0;
3444 free_page_list:
3445	kfree(page_list);
3446	return ret;
3447}
3448
3449static int __init d40_of_probe(struct device *dev,
3450			       struct device_node *np)
3451{
3452	struct stedma40_platform_data *pdata;
3453	int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3454	const __be32 *list;
3455
3456	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3457	if (!pdata)
3458		return -ENOMEM;
3459
3460	/* If absent this value will be obtained from h/w. */
3461	of_property_read_u32(np, "dma-channels", &num_phy);
3462	if (num_phy > 0)
3463		pdata->num_of_phy_chans = num_phy;
3464
3465	list = of_get_property(np, "memcpy-channels", &num_memcpy);
3466	num_memcpy /= sizeof(*list);
3467
3468	if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3469		d40_err(dev,
3470			"Invalid number of memcpy channels specified (%d)\n",
3471			num_memcpy);
3472		return -EINVAL;
3473	}
3474	pdata->num_of_memcpy_chans = num_memcpy;
3475
3476	of_property_read_u32_array(np, "memcpy-channels",
3477				   dma40_memcpy_channels,
3478				   num_memcpy);
3479
3480	list = of_get_property(np, "disabled-channels", &num_disabled);
3481	num_disabled /= sizeof(*list);
3482
3483	if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3484		d40_err(dev,
3485			"Invalid number of disabled channels specified (%d)\n",
3486			num_disabled);
3487		return -EINVAL;
3488	}
3489
3490	of_property_read_u32_array(np, "disabled-channels",
3491				   pdata->disabled_channels,
3492				   num_disabled);
3493	pdata->disabled_channels[num_disabled] = -1;
3494
3495	dev->platform_data = pdata;
3496
3497	return 0;
3498}
3499
3500static int __init d40_probe(struct platform_device *pdev)
3501{
3502	struct device *dev = &pdev->dev;
3503	struct device_node *np = pdev->dev.of_node;
3504	struct device_node *np_lcpa;
3505	struct d40_base *base;
3506	struct resource *res;
3507	struct resource res_lcpa;
3508	int num_reserved_chans;
3509	u32 val;
3510	int ret;
3511
3512	if (d40_of_probe(dev, np)) {
3513		ret = -ENOMEM;
3514		goto report_failure;
 
 
 
 
 
 
 
3515	}
3516
3517	ret = d40_hw_detect_init(pdev, &base);
3518	if (ret)
3519		goto report_failure;
3520
3521	num_reserved_chans = d40_phy_res_init(base);
3522
3523	platform_set_drvdata(pdev, base);
3524
3525	spin_lock_init(&base->interrupt_lock);
3526	spin_lock_init(&base->execmd_lock);
3527
3528	/* Get IO for logical channel parameter address (LCPA) */
3529	np_lcpa = of_parse_phandle(np, "sram", 0);
3530	if (!np_lcpa) {
3531		dev_err(dev, "no LCPA SRAM node\n");
3532		ret = -EINVAL;
3533		goto report_failure;
3534	}
3535	/* This is no device so read the address directly from the node */
3536	ret = of_address_to_resource(np_lcpa, 0, &res_lcpa);
3537	if (ret) {
3538		dev_err(dev, "no LCPA SRAM resource\n");
3539		goto report_failure;
 
 
 
3540	}
3541	base->lcpa_size = resource_size(&res_lcpa);
3542	base->phy_lcpa = res_lcpa.start;
3543	dev_info(dev, "found LCPA SRAM at %pad, size %pa\n",
3544		 &base->phy_lcpa, &base->lcpa_size);
3545
3546	/* We make use of ESRAM memory for this. */
3547	val = readl(base->virtbase + D40_DREG_LCPA);
3548	if (base->phy_lcpa != val && val != 0) {
3549		dev_warn(dev,
3550			 "[%s] Mismatch LCPA dma 0x%x, def %08x\n",
3551			 __func__, val, (u32)base->phy_lcpa);
3552	} else
3553		writel(base->phy_lcpa, base->virtbase + D40_DREG_LCPA);
3554
3555	base->lcpa_base = devm_ioremap(dev, base->phy_lcpa, base->lcpa_size);
3556	if (!base->lcpa_base) {
3557		ret = -ENOMEM;
3558		d40_err(dev, "Failed to ioremap LCPA region\n");
3559		goto report_failure;
3560	}
3561	/* If lcla has to be located in ESRAM we don't need to allocate */
3562	if (base->plat_data->use_esram_lcla) {
3563		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3564							"lcla_esram");
3565		if (!res) {
3566			ret = -ENOENT;
3567			d40_err(dev,
3568				"No \"lcla_esram\" memory resource\n");
3569			goto report_failure;
3570		}
3571		base->lcla_pool.base = devm_ioremap(dev, res->start,
3572						    resource_size(res));
3573		if (!base->lcla_pool.base) {
3574			ret = -ENOMEM;
3575			d40_err(dev, "Failed to ioremap LCLA region\n");
3576			goto report_failure;
3577		}
3578		writel(res->start, base->virtbase + D40_DREG_LCLA);
3579
3580	} else {
3581		ret = d40_lcla_allocate(base);
3582		if (ret) {
3583			d40_err(dev, "Failed to allocate LCLA area\n");
3584			goto destroy_cache;
3585		}
3586	}
3587
3588	spin_lock_init(&base->lcla_pool.lock);
3589
3590	base->irq = platform_get_irq(pdev, 0);
3591	if (base->irq < 0) {
3592		ret = base->irq;
3593		goto destroy_cache;
3594	}
3595
3596	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3597	if (ret) {
3598		d40_err(dev, "No IRQ defined\n");
3599		goto destroy_cache;
3600	}
3601
3602	if (base->plat_data->use_esram_lcla) {
3603
3604		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3605		if (IS_ERR(base->lcpa_regulator)) {
3606			d40_err(dev, "Failed to get lcpa_regulator\n");
3607			ret = PTR_ERR(base->lcpa_regulator);
3608			base->lcpa_regulator = NULL;
3609			goto destroy_cache;
3610		}
3611
3612		ret = regulator_enable(base->lcpa_regulator);
3613		if (ret) {
3614			d40_err(dev,
3615				"Failed to enable lcpa_regulator\n");
3616			regulator_put(base->lcpa_regulator);
3617			base->lcpa_regulator = NULL;
3618			goto destroy_cache;
3619		}
3620	}
3621
3622	writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3623
3624	pm_runtime_irq_safe(base->dev);
3625	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3626	pm_runtime_use_autosuspend(base->dev);
3627	pm_runtime_mark_last_busy(base->dev);
3628	pm_runtime_set_active(base->dev);
3629	pm_runtime_enable(base->dev);
3630
3631	ret = d40_dmaengine_init(base, num_reserved_chans);
3632	if (ret)
3633		goto destroy_cache;
3634
 
3635	ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3636	if (ret) {
3637		d40_err(dev, "Failed to set dma max seg size\n");
3638		goto destroy_cache;
3639	}
3640
3641	d40_hw_init(base);
3642
3643	ret = of_dma_controller_register(np, d40_xlate, NULL);
3644	if (ret) {
3645		dev_err(dev,
3646			"could not register of_dma_controller\n");
3647		goto destroy_cache;
3648	}
3649
3650	dev_info(base->dev, "initialized\n");
3651	return 0;
3652
3653 destroy_cache:
 
 
 
 
 
 
 
 
 
3654	if (base->lcla_pool.dma_addr)
3655		dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3656				 SZ_1K * base->num_phy_chans,
3657				 DMA_TO_DEVICE);
3658
3659	if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3660		free_pages((unsigned long)base->lcla_pool.base,
3661			   base->lcla_pool.pages);
3662
3663	kfree(base->lcla_pool.base_unaligned);
3664
 
 
 
 
 
 
 
 
 
 
 
3665	if (base->lcpa_regulator) {
3666		regulator_disable(base->lcpa_regulator);
3667		regulator_put(base->lcpa_regulator);
3668	}
3669	pm_runtime_disable(base->dev);
3670
 
 
 
 
 
3671 report_failure:
3672	d40_err(dev, "probe failed\n");
3673	return ret;
3674}
3675
3676static const struct of_device_id d40_match[] = {
3677        { .compatible = "stericsson,dma40", },
3678        {}
3679};
3680
3681static struct platform_driver d40_driver = {
3682	.driver = {
3683		.name  = D40_NAME,
3684		.pm = &dma40_pm_ops,
3685		.of_match_table = d40_match,
3686	},
3687};
3688
3689static int __init stedma40_init(void)
3690{
3691	return platform_driver_probe(&d40_driver, d40_probe);
3692}
3693subsys_initcall(stedma40_init);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) Ericsson AB 2007-2008
   4 * Copyright (C) ST-Ericsson SA 2008-2010
   5 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
   6 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
   7 */
   8
   9#include <linux/dma-mapping.h>
  10#include <linux/kernel.h>
  11#include <linux/slab.h>
  12#include <linux/export.h>
  13#include <linux/dmaengine.h>
  14#include <linux/platform_device.h>
  15#include <linux/clk.h>
  16#include <linux/delay.h>
  17#include <linux/log2.h>
  18#include <linux/pm.h>
  19#include <linux/pm_runtime.h>
  20#include <linux/err.h>
  21#include <linux/of.h>
 
  22#include <linux/of_dma.h>
  23#include <linux/amba/bus.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/platform_data/dma-ste-dma40.h>
  26
  27#include "dmaengine.h"
 
  28#include "ste_dma40_ll.h"
  29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  30#define D40_NAME "dma40"
  31
  32#define D40_PHY_CHAN -1
  33
  34/* For masking out/in 2 bit channel positions */
  35#define D40_CHAN_POS(chan)  (2 * (chan / 2))
  36#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  37
  38/* Maximum iterations taken before giving up suspending a channel */
  39#define D40_SUSPEND_MAX_IT 500
  40
  41/* Milliseconds */
  42#define DMA40_AUTOSUSPEND_DELAY	100
  43
  44/* Hardware requirement on LCLA alignment */
  45#define LCLA_ALIGNMENT 0x40000
  46
  47/* Max number of links per event group */
  48#define D40_LCLA_LINK_PER_EVENT_GRP 128
  49#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  50
  51/* Max number of logical channels per physical channel */
  52#define D40_MAX_LOG_CHAN_PER_PHY 32
  53
  54/* Attempts before giving up to trying to get pages that are aligned */
  55#define MAX_LCLA_ALLOC_ATTEMPTS 256
  56
  57/* Bit markings for allocation map */
  58#define D40_ALLOC_FREE		BIT(31)
  59#define D40_ALLOC_PHY		BIT(30)
  60#define D40_ALLOC_LOG_FREE	0
  61
  62#define D40_MEMCPY_MAX_CHANS	8
  63
  64/* Reserved event lines for memcpy only. */
  65#define DB8500_DMA_MEMCPY_EV_0	51
  66#define DB8500_DMA_MEMCPY_EV_1	56
  67#define DB8500_DMA_MEMCPY_EV_2	57
  68#define DB8500_DMA_MEMCPY_EV_3	58
  69#define DB8500_DMA_MEMCPY_EV_4	59
  70#define DB8500_DMA_MEMCPY_EV_5	60
  71
  72static int dma40_memcpy_channels[] = {
  73	DB8500_DMA_MEMCPY_EV_0,
  74	DB8500_DMA_MEMCPY_EV_1,
  75	DB8500_DMA_MEMCPY_EV_2,
  76	DB8500_DMA_MEMCPY_EV_3,
  77	DB8500_DMA_MEMCPY_EV_4,
  78	DB8500_DMA_MEMCPY_EV_5,
  79};
  80
  81/* Default configuration for physcial memcpy */
  82static const struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
  83	.mode = STEDMA40_MODE_PHYSICAL,
  84	.dir = DMA_MEM_TO_MEM,
  85
  86	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  87	.src_info.psize = STEDMA40_PSIZE_PHY_1,
  88	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  89
  90	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  91	.dst_info.psize = STEDMA40_PSIZE_PHY_1,
  92	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  93};
  94
  95/* Default configuration for logical memcpy */
  96static const struct stedma40_chan_cfg dma40_memcpy_conf_log = {
  97	.mode = STEDMA40_MODE_LOGICAL,
  98	.dir = DMA_MEM_TO_MEM,
  99
 100	.src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 101	.src_info.psize = STEDMA40_PSIZE_LOG_1,
 102	.src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 103
 104	.dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 105	.dst_info.psize = STEDMA40_PSIZE_LOG_1,
 106	.dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 107};
 108
 109/**
 110 * enum 40_command - The different commands and/or statuses.
 111 *
 112 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 113 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 114 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 115 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 116 */
 117enum d40_command {
 118	D40_DMA_STOP		= 0,
 119	D40_DMA_RUN		= 1,
 120	D40_DMA_SUSPEND_REQ	= 2,
 121	D40_DMA_SUSPENDED	= 3
 122};
 123
 124/*
 125 * enum d40_events - The different Event Enables for the event lines.
 126 *
 127 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
 128 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
 129 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
 130 * @D40_ROUND_EVENTLINE: Status check for event line.
 131 */
 132
 133enum d40_events {
 134	D40_DEACTIVATE_EVENTLINE	= 0,
 135	D40_ACTIVATE_EVENTLINE		= 1,
 136	D40_SUSPEND_REQ_EVENTLINE	= 2,
 137	D40_ROUND_EVENTLINE		= 3
 138};
 139
 140/*
 141 * These are the registers that has to be saved and later restored
 142 * when the DMA hw is powered off.
 143 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
 144 */
 145static __maybe_unused u32 d40_backup_regs[] = {
 146	D40_DREG_LCPA,
 147	D40_DREG_LCLA,
 148	D40_DREG_PRMSE,
 149	D40_DREG_PRMSO,
 150	D40_DREG_PRMOE,
 151	D40_DREG_PRMOO,
 152};
 153
 154#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
 155
 156/*
 157 * since 9540 and 8540 has the same HW revision
 158 * use v4a for 9540 or ealier
 159 * use v4b for 8540 or later
 160 * HW revision:
 161 * DB8500ed has revision 0
 162 * DB8500v1 has revision 2
 163 * DB8500v2 has revision 3
 164 * AP9540v1 has revision 4
 165 * DB8540v1 has revision 4
 166 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
 167 */
 168static u32 d40_backup_regs_v4a[] = {
 169	D40_DREG_PSEG1,
 170	D40_DREG_PSEG2,
 171	D40_DREG_PSEG3,
 172	D40_DREG_PSEG4,
 173	D40_DREG_PCEG1,
 174	D40_DREG_PCEG2,
 175	D40_DREG_PCEG3,
 176	D40_DREG_PCEG4,
 177	D40_DREG_RSEG1,
 178	D40_DREG_RSEG2,
 179	D40_DREG_RSEG3,
 180	D40_DREG_RSEG4,
 181	D40_DREG_RCEG1,
 182	D40_DREG_RCEG2,
 183	D40_DREG_RCEG3,
 184	D40_DREG_RCEG4,
 185};
 186
 187#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
 188
 189static u32 d40_backup_regs_v4b[] = {
 190	D40_DREG_CPSEG1,
 191	D40_DREG_CPSEG2,
 192	D40_DREG_CPSEG3,
 193	D40_DREG_CPSEG4,
 194	D40_DREG_CPSEG5,
 195	D40_DREG_CPCEG1,
 196	D40_DREG_CPCEG2,
 197	D40_DREG_CPCEG3,
 198	D40_DREG_CPCEG4,
 199	D40_DREG_CPCEG5,
 200	D40_DREG_CRSEG1,
 201	D40_DREG_CRSEG2,
 202	D40_DREG_CRSEG3,
 203	D40_DREG_CRSEG4,
 204	D40_DREG_CRSEG5,
 205	D40_DREG_CRCEG1,
 206	D40_DREG_CRCEG2,
 207	D40_DREG_CRCEG3,
 208	D40_DREG_CRCEG4,
 209	D40_DREG_CRCEG5,
 210};
 211
 212#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
 213
 214static __maybe_unused u32 d40_backup_regs_chan[] = {
 215	D40_CHAN_REG_SSCFG,
 216	D40_CHAN_REG_SSELT,
 217	D40_CHAN_REG_SSPTR,
 218	D40_CHAN_REG_SSLNK,
 219	D40_CHAN_REG_SDCFG,
 220	D40_CHAN_REG_SDELT,
 221	D40_CHAN_REG_SDPTR,
 222	D40_CHAN_REG_SDLNK,
 223};
 224
 225#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
 226			     BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
 227
 228/**
 229 * struct d40_interrupt_lookup - lookup table for interrupt handler
 230 *
 231 * @src: Interrupt mask register.
 232 * @clr: Interrupt clear register.
 233 * @is_error: true if this is an error interrupt.
 234 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 235 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 236 */
 237struct d40_interrupt_lookup {
 238	u32 src;
 239	u32 clr;
 240	bool is_error;
 241	int offset;
 242};
 243
 244
 245static struct d40_interrupt_lookup il_v4a[] = {
 246	{D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
 247	{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
 248	{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
 249	{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
 250	{D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
 251	{D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
 252	{D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
 253	{D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
 254	{D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
 255	{D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
 256};
 257
 258static struct d40_interrupt_lookup il_v4b[] = {
 259	{D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
 260	{D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
 261	{D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
 262	{D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
 263	{D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
 264	{D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
 265	{D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
 266	{D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
 267	{D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
 268	{D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
 269	{D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
 270	{D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
 271};
 272
 273/**
 274 * struct d40_reg_val - simple lookup struct
 275 *
 276 * @reg: The register.
 277 * @val: The value that belongs to the register in reg.
 278 */
 279struct d40_reg_val {
 280	unsigned int reg;
 281	unsigned int val;
 282};
 283
 284static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
 285	/* Clock every part of the DMA block from start */
 286	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 287
 288	/* Interrupts on all logical channels */
 289	{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
 290	{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
 291	{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
 292	{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
 293	{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
 294	{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
 295	{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
 296	{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
 297	{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
 298	{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
 299	{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
 300	{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
 301};
 302static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
 303	/* Clock every part of the DMA block from start */
 304	{ .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 305
 306	/* Interrupts on all logical channels */
 307	{ .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
 308	{ .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
 309	{ .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
 310	{ .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
 311	{ .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
 312	{ .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
 313	{ .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
 314	{ .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
 315	{ .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
 316	{ .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
 317	{ .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
 318	{ .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
 319	{ .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
 320	{ .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
 321	{ .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
 322};
 323
 324/**
 325 * struct d40_lli_pool - Structure for keeping LLIs in memory
 326 *
 327 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 328 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 329 * pre_alloc_lli is used.
 330 * @dma_addr: DMA address, if mapped
 331 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 332 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 333 * one buffer to one buffer.
 334 */
 335struct d40_lli_pool {
 336	void	*base;
 337	int	 size;
 338	dma_addr_t	dma_addr;
 339	/* Space for dst and src, plus an extra for padding */
 340	u8	 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
 341};
 342
 343/**
 344 * struct d40_desc - A descriptor is one DMA job.
 345 *
 346 * @lli_phy: LLI settings for physical channel. Both src and dst=
 347 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 348 * lli_len equals one.
 349 * @lli_log: Same as above but for logical channels.
 350 * @lli_pool: The pool with two entries pre-allocated.
 351 * @lli_len: Number of llis of current descriptor.
 352 * @lli_current: Number of transferred llis.
 353 * @lcla_alloc: Number of LCLA entries allocated.
 354 * @txd: DMA engine struct. Used for among other things for communication
 355 * during a transfer.
 356 * @node: List entry.
 357 * @is_in_client_list: true if the client owns this descriptor.
 358 * @cyclic: true if this is a cyclic job
 359 *
 360 * This descriptor is used for both logical and physical transfers.
 361 */
 362struct d40_desc {
 363	/* LLI physical */
 364	struct d40_phy_lli_bidir	 lli_phy;
 365	/* LLI logical */
 366	struct d40_log_lli_bidir	 lli_log;
 367
 368	struct d40_lli_pool		 lli_pool;
 369	int				 lli_len;
 370	int				 lli_current;
 371	int				 lcla_alloc;
 372
 373	struct dma_async_tx_descriptor	 txd;
 374	struct list_head		 node;
 375
 376	bool				 is_in_client_list;
 377	bool				 cyclic;
 378};
 379
 380/**
 381 * struct d40_lcla_pool - LCLA pool settings and data.
 382 *
 383 * @base: The virtual address of LCLA. 18 bit aligned.
 384 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 
 385 * This pointer is only there for clean-up on error.
 386 * @pages: The number of pages needed for all physical channels.
 387 * Only used later for clean-up on error
 388 * @lock: Lock to protect the content in this struct.
 389 * @alloc_map: big map over which LCLA entry is own by which job.
 390 */
 391struct d40_lcla_pool {
 392	void		*base;
 393	dma_addr_t	dma_addr;
 394	void		*base_unaligned;
 395	int		 pages;
 396	spinlock_t	 lock;
 397	struct d40_desc	**alloc_map;
 398};
 399
 400/**
 401 * struct d40_phy_res - struct for handling eventlines mapped to physical
 402 * channels.
 403 *
 404 * @lock: A lock protection this entity.
 405 * @reserved: True if used by secure world or otherwise.
 406 * @num: The physical channel number of this entity.
 407 * @allocated_src: Bit mapped to show which src event line's are mapped to
 408 * this physical channel. Can also be free or physically allocated.
 409 * @allocated_dst: Same as for src but is dst.
 410 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
 411 * event line number.
 412 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
 413 */
 414struct d40_phy_res {
 415	spinlock_t lock;
 416	bool	   reserved;
 417	int	   num;
 418	u32	   allocated_src;
 419	u32	   allocated_dst;
 420	bool	   use_soft_lli;
 421};
 422
 423struct d40_base;
 424
 425/**
 426 * struct d40_chan - Struct that describes a channel.
 427 *
 428 * @lock: A spinlock to protect this struct.
 429 * @log_num: The logical number, if any of this channel.
 430 * @pending_tx: The number of pending transfers. Used between interrupt handler
 431 * and tasklet.
 432 * @busy: Set to true when transfer is ongoing on this channel.
 433 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 434 * point is NULL, then the channel is not allocated.
 435 * @chan: DMA engine handle.
 436 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 437 * transfer and call client callback.
 438 * @client: Cliented owned descriptor list.
 439 * @pending_queue: Submitted jobs, to be issued by issue_pending()
 440 * @active: Active descriptor.
 441 * @done: Completed jobs
 442 * @queue: Queued jobs.
 443 * @prepare_queue: Prepared jobs.
 444 * @dma_cfg: The client configuration of this dma channel.
 445 * @slave_config: DMA slave configuration.
 446 * @configured: whether the dma_cfg configuration is valid
 447 * @base: Pointer to the device instance struct.
 448 * @src_def_cfg: Default cfg register setting for src.
 449 * @dst_def_cfg: Default cfg register setting for dst.
 450 * @log_def: Default logical channel settings.
 451 * @lcpa: Pointer to dst and src lcpa settings.
 452 * @runtime_addr: runtime configured address.
 453 * @runtime_direction: runtime configured direction.
 454 *
 455 * This struct can either "be" a logical or a physical channel.
 456 */
 457struct d40_chan {
 458	spinlock_t			 lock;
 459	int				 log_num;
 460	int				 pending_tx;
 461	bool				 busy;
 462	struct d40_phy_res		*phy_chan;
 463	struct dma_chan			 chan;
 464	struct tasklet_struct		 tasklet;
 465	struct list_head		 client;
 466	struct list_head		 pending_queue;
 467	struct list_head		 active;
 468	struct list_head		 done;
 469	struct list_head		 queue;
 470	struct list_head		 prepare_queue;
 471	struct stedma40_chan_cfg	 dma_cfg;
 472	struct dma_slave_config		 slave_config;
 473	bool				 configured;
 474	struct d40_base			*base;
 475	/* Default register configurations */
 476	u32				 src_def_cfg;
 477	u32				 dst_def_cfg;
 478	struct d40_def_lcsp		 log_def;
 479	struct d40_log_lli_full		*lcpa;
 480	/* Runtime reconfiguration */
 481	dma_addr_t			runtime_addr;
 482	enum dma_transfer_direction	runtime_direction;
 483};
 484
 485/**
 486 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
 487 * controller
 488 *
 489 * @backup: the pointer to the registers address array for backup
 490 * @backup_size: the size of the registers address array for backup
 491 * @realtime_en: the realtime enable register
 492 * @realtime_clear: the realtime clear register
 493 * @high_prio_en: the high priority enable register
 494 * @high_prio_clear: the high priority clear register
 495 * @interrupt_en: the interrupt enable register
 496 * @interrupt_clear: the interrupt clear register
 497 * @il: the pointer to struct d40_interrupt_lookup
 498 * @il_size: the size of d40_interrupt_lookup array
 499 * @init_reg: the pointer to the struct d40_reg_val
 500 * @init_reg_size: the size of d40_reg_val array
 501 */
 502struct d40_gen_dmac {
 503	u32				*backup;
 504	u32				 backup_size;
 505	u32				 realtime_en;
 506	u32				 realtime_clear;
 507	u32				 high_prio_en;
 508	u32				 high_prio_clear;
 509	u32				 interrupt_en;
 510	u32				 interrupt_clear;
 511	struct d40_interrupt_lookup	*il;
 512	u32				 il_size;
 513	struct d40_reg_val		*init_reg;
 514	u32				 init_reg_size;
 515};
 516
 517/**
 518 * struct d40_base - The big global struct, one for each probe'd instance.
 519 *
 520 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 521 * @execmd_lock: Lock for execute command usage since several channels share
 522 * the same physical register.
 523 * @dev: The device structure.
 524 * @virtbase: The virtual base address of the DMA's register.
 525 * @rev: silicon revision detected.
 526 * @clk: Pointer to the DMA clock structure.
 527 * @phy_start: Physical memory start of the DMA registers.
 528 * @phy_size: Size of the DMA register map.
 529 * @irq: The IRQ number.
 530 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
 531 * transfers).
 532 * @num_phy_chans: The number of physical channels. Read from HW. This
 533 * is the number of available channels for this driver, not counting "Secure
 534 * mode" allocated physical channels.
 535 * @num_log_chans: The number of logical channels. Calculated from
 536 * num_phy_chans.
 537 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 538 * @dma_slave: dma_device channels that can do only do slave transfers.
 539 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
 540 * @phy_chans: Room for all possible physical channels in system.
 541 * @log_chans: Room for all possible logical channels in system.
 542 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 543 * to log_chans entries.
 544 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 545 * to phy_chans entries.
 546 * @plat_data: Pointer to provided platform_data which is the driver
 547 * configuration.
 548 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
 549 * @phy_res: Vector containing all physical channels.
 550 * @lcla_pool: lcla pool settings and data.
 551 * @lcpa_base: The virtual mapped address of LCPA.
 552 * @phy_lcpa: The physical address of the LCPA.
 553 * @lcpa_size: The size of the LCPA area.
 554 * @desc_slab: cache for descriptors.
 555 * @reg_val_backup: Here the values of some hardware registers are stored
 556 * before the DMA is powered off. They are restored when the power is back on.
 557 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
 558 * later
 559 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
 560 * @regs_interrupt: Scratch space for registers during interrupt.
 561 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
 562 * @gen_dmac: the struct for generic registers values to represent u8500/8540
 563 * DMA controller
 564 */
 565struct d40_base {
 566	spinlock_t			 interrupt_lock;
 567	spinlock_t			 execmd_lock;
 568	struct device			 *dev;
 569	void __iomem			 *virtbase;
 570	u8				  rev:4;
 571	struct clk			 *clk;
 572	phys_addr_t			  phy_start;
 573	resource_size_t			  phy_size;
 574	int				  irq;
 575	int				  num_memcpy_chans;
 576	int				  num_phy_chans;
 577	int				  num_log_chans;
 578	struct device_dma_parameters	  dma_parms;
 579	struct dma_device		  dma_both;
 580	struct dma_device		  dma_slave;
 581	struct dma_device		  dma_memcpy;
 582	struct d40_chan			 *phy_chans;
 583	struct d40_chan			 *log_chans;
 584	struct d40_chan			**lookup_log_chans;
 585	struct d40_chan			**lookup_phy_chans;
 586	struct stedma40_platform_data	 *plat_data;
 587	struct regulator		 *lcpa_regulator;
 588	/* Physical half channels */
 589	struct d40_phy_res		 *phy_res;
 590	struct d40_lcla_pool		  lcla_pool;
 591	void				 *lcpa_base;
 592	dma_addr_t			  phy_lcpa;
 593	resource_size_t			  lcpa_size;
 594	struct kmem_cache		 *desc_slab;
 595	u32				  reg_val_backup[BACKUP_REGS_SZ];
 596	u32				  reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
 597	u32				 *reg_val_backup_chan;
 598	u32				 *regs_interrupt;
 599	u16				  gcc_pwr_off_mask;
 600	struct d40_gen_dmac		  gen_dmac;
 601};
 602
 603static struct device *chan2dev(struct d40_chan *d40c)
 604{
 605	return &d40c->chan.dev->device;
 606}
 607
 608static bool chan_is_physical(struct d40_chan *chan)
 609{
 610	return chan->log_num == D40_PHY_CHAN;
 611}
 612
 613static bool chan_is_logical(struct d40_chan *chan)
 614{
 615	return !chan_is_physical(chan);
 616}
 617
 618static void __iomem *chan_base(struct d40_chan *chan)
 619{
 620	return chan->base->virtbase + D40_DREG_PCBASE +
 621	       chan->phy_chan->num * D40_DREG_PCDELTA;
 622}
 623
 624#define d40_err(dev, format, arg...)		\
 625	dev_err(dev, "[%s] " format, __func__, ## arg)
 626
 627#define chan_err(d40c, format, arg...)		\
 628	d40_err(chan2dev(d40c), format, ## arg)
 629
 630static int d40_set_runtime_config_write(struct dma_chan *chan,
 631				  struct dma_slave_config *config,
 632				  enum dma_transfer_direction direction);
 633
 634static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
 635			      int lli_len)
 636{
 637	bool is_log = chan_is_logical(d40c);
 638	u32 align;
 639	void *base;
 640
 641	if (is_log)
 642		align = sizeof(struct d40_log_lli);
 643	else
 644		align = sizeof(struct d40_phy_lli);
 645
 646	if (lli_len == 1) {
 647		base = d40d->lli_pool.pre_alloc_lli;
 648		d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
 649		d40d->lli_pool.base = NULL;
 650	} else {
 651		d40d->lli_pool.size = lli_len * 2 * align;
 652
 653		base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
 654		d40d->lli_pool.base = base;
 655
 656		if (d40d->lli_pool.base == NULL)
 657			return -ENOMEM;
 658	}
 659
 660	if (is_log) {
 661		d40d->lli_log.src = PTR_ALIGN(base, align);
 662		d40d->lli_log.dst = d40d->lli_log.src + lli_len;
 663
 664		d40d->lli_pool.dma_addr = 0;
 665	} else {
 666		d40d->lli_phy.src = PTR_ALIGN(base, align);
 667		d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
 668
 669		d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
 670							 d40d->lli_phy.src,
 671							 d40d->lli_pool.size,
 672							 DMA_TO_DEVICE);
 673
 674		if (dma_mapping_error(d40c->base->dev,
 675				      d40d->lli_pool.dma_addr)) {
 676			kfree(d40d->lli_pool.base);
 677			d40d->lli_pool.base = NULL;
 678			d40d->lli_pool.dma_addr = 0;
 679			return -ENOMEM;
 680		}
 681	}
 682
 683	return 0;
 684}
 685
 686static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
 687{
 688	if (d40d->lli_pool.dma_addr)
 689		dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
 690				 d40d->lli_pool.size, DMA_TO_DEVICE);
 691
 692	kfree(d40d->lli_pool.base);
 693	d40d->lli_pool.base = NULL;
 694	d40d->lli_pool.size = 0;
 695	d40d->lli_log.src = NULL;
 696	d40d->lli_log.dst = NULL;
 697	d40d->lli_phy.src = NULL;
 698	d40d->lli_phy.dst = NULL;
 699}
 700
 701static int d40_lcla_alloc_one(struct d40_chan *d40c,
 702			      struct d40_desc *d40d)
 703{
 704	unsigned long flags;
 705	int i;
 706	int ret = -EINVAL;
 707
 708	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 709
 710	/*
 711	 * Allocate both src and dst at the same time, therefore the half
 712	 * start on 1 since 0 can't be used since zero is used as end marker.
 713	 */
 714	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 715		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
 716
 717		if (!d40c->base->lcla_pool.alloc_map[idx]) {
 718			d40c->base->lcla_pool.alloc_map[idx] = d40d;
 719			d40d->lcla_alloc++;
 720			ret = i;
 721			break;
 722		}
 723	}
 724
 725	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 726
 727	return ret;
 728}
 729
 730static int d40_lcla_free_all(struct d40_chan *d40c,
 731			     struct d40_desc *d40d)
 732{
 733	unsigned long flags;
 734	int i;
 735	int ret = -EINVAL;
 736
 737	if (chan_is_physical(d40c))
 738		return 0;
 739
 740	spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 741
 742	for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 743		int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
 744
 745		if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
 746			d40c->base->lcla_pool.alloc_map[idx] = NULL;
 747			d40d->lcla_alloc--;
 748			if (d40d->lcla_alloc == 0) {
 749				ret = 0;
 750				break;
 751			}
 752		}
 753	}
 754
 755	spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 756
 757	return ret;
 758
 759}
 760
 761static void d40_desc_remove(struct d40_desc *d40d)
 762{
 763	list_del(&d40d->node);
 764}
 765
 766static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
 767{
 768	struct d40_desc *desc = NULL;
 769
 770	if (!list_empty(&d40c->client)) {
 771		struct d40_desc *d;
 772		struct d40_desc *_d;
 773
 774		list_for_each_entry_safe(d, _d, &d40c->client, node) {
 775			if (async_tx_test_ack(&d->txd)) {
 776				d40_desc_remove(d);
 777				desc = d;
 778				memset(desc, 0, sizeof(*desc));
 779				break;
 780			}
 781		}
 782	}
 783
 784	if (!desc)
 785		desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
 786
 787	if (desc)
 788		INIT_LIST_HEAD(&desc->node);
 789
 790	return desc;
 791}
 792
 793static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
 794{
 795
 796	d40_pool_lli_free(d40c, d40d);
 797	d40_lcla_free_all(d40c, d40d);
 798	kmem_cache_free(d40c->base->desc_slab, d40d);
 799}
 800
 801static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
 802{
 803	list_add_tail(&desc->node, &d40c->active);
 804}
 805
 806static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
 807{
 808	struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
 809	struct d40_phy_lli *lli_src = desc->lli_phy.src;
 810	void __iomem *base = chan_base(chan);
 811
 812	writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
 813	writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
 814	writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
 815	writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
 816
 817	writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
 818	writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
 819	writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
 820	writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
 821}
 822
 823static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
 824{
 825	list_add_tail(&desc->node, &d40c->done);
 826}
 827
 828static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
 829{
 830	struct d40_lcla_pool *pool = &chan->base->lcla_pool;
 831	struct d40_log_lli_bidir *lli = &desc->lli_log;
 832	int lli_current = desc->lli_current;
 833	int lli_len = desc->lli_len;
 834	bool cyclic = desc->cyclic;
 835	int curr_lcla = -EINVAL;
 836	int first_lcla = 0;
 837	bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
 838	bool linkback;
 839
 840	/*
 841	 * We may have partially running cyclic transfers, in case we did't get
 842	 * enough LCLA entries.
 843	 */
 844	linkback = cyclic && lli_current == 0;
 845
 846	/*
 847	 * For linkback, we need one LCLA even with only one link, because we
 848	 * can't link back to the one in LCPA space
 849	 */
 850	if (linkback || (lli_len - lli_current > 1)) {
 851		/*
 852		 * If the channel is expected to use only soft_lli don't
 853		 * allocate a lcla. This is to avoid a HW issue that exists
 854		 * in some controller during a peripheral to memory transfer
 855		 * that uses linked lists.
 856		 */
 857		if (!(chan->phy_chan->use_soft_lli &&
 858			chan->dma_cfg.dir == DMA_DEV_TO_MEM))
 859			curr_lcla = d40_lcla_alloc_one(chan, desc);
 860
 861		first_lcla = curr_lcla;
 862	}
 863
 864	/*
 865	 * For linkback, we normally load the LCPA in the loop since we need to
 866	 * link it to the second LCLA and not the first.  However, if we
 867	 * couldn't even get a first LCLA, then we have to run in LCPA and
 868	 * reload manually.
 869	 */
 870	if (!linkback || curr_lcla == -EINVAL) {
 871		unsigned int flags = 0;
 872
 873		if (curr_lcla == -EINVAL)
 874			flags |= LLI_TERM_INT;
 875
 876		d40_log_lli_lcpa_write(chan->lcpa,
 877				       &lli->dst[lli_current],
 878				       &lli->src[lli_current],
 879				       curr_lcla,
 880				       flags);
 881		lli_current++;
 882	}
 883
 884	if (curr_lcla < 0)
 885		goto set_current;
 886
 887	for (; lli_current < lli_len; lli_current++) {
 888		unsigned int lcla_offset = chan->phy_chan->num * 1024 +
 889					   8 * curr_lcla * 2;
 890		struct d40_log_lli *lcla = pool->base + lcla_offset;
 891		unsigned int flags = 0;
 892		int next_lcla;
 893
 894		if (lli_current + 1 < lli_len)
 895			next_lcla = d40_lcla_alloc_one(chan, desc);
 896		else
 897			next_lcla = linkback ? first_lcla : -EINVAL;
 898
 899		if (cyclic || next_lcla == -EINVAL)
 900			flags |= LLI_TERM_INT;
 901
 902		if (linkback && curr_lcla == first_lcla) {
 903			/* First link goes in both LCPA and LCLA */
 904			d40_log_lli_lcpa_write(chan->lcpa,
 905					       &lli->dst[lli_current],
 906					       &lli->src[lli_current],
 907					       next_lcla, flags);
 908		}
 909
 910		/*
 911		 * One unused LCLA in the cyclic case if the very first
 912		 * next_lcla fails...
 913		 */
 914		d40_log_lli_lcla_write(lcla,
 915				       &lli->dst[lli_current],
 916				       &lli->src[lli_current],
 917				       next_lcla, flags);
 918
 919		/*
 920		 * Cache maintenance is not needed if lcla is
 921		 * mapped in esram
 922		 */
 923		if (!use_esram_lcla) {
 924			dma_sync_single_range_for_device(chan->base->dev,
 925						pool->dma_addr, lcla_offset,
 926						2 * sizeof(struct d40_log_lli),
 927						DMA_TO_DEVICE);
 928		}
 929		curr_lcla = next_lcla;
 930
 931		if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
 932			lli_current++;
 933			break;
 934		}
 935	}
 936 set_current:
 937	desc->lli_current = lli_current;
 938}
 939
 940static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
 941{
 942	if (chan_is_physical(d40c)) {
 943		d40_phy_lli_load(d40c, d40d);
 944		d40d->lli_current = d40d->lli_len;
 945	} else
 946		d40_log_lli_to_lcxa(d40c, d40d);
 947}
 948
 949static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
 950{
 951	return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
 952}
 953
 954/* remove desc from current queue and add it to the pending_queue */
 955static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
 956{
 957	d40_desc_remove(desc);
 958	desc->is_in_client_list = false;
 959	list_add_tail(&desc->node, &d40c->pending_queue);
 960}
 961
 962static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
 963{
 964	return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
 965					node);
 966}
 967
 968static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
 969{
 970	return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
 971}
 972
 973static struct d40_desc *d40_first_done(struct d40_chan *d40c)
 974{
 975	return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
 976}
 977
 978static int d40_psize_2_burst_size(bool is_log, int psize)
 979{
 980	if (is_log) {
 981		if (psize == STEDMA40_PSIZE_LOG_1)
 982			return 1;
 983	} else {
 984		if (psize == STEDMA40_PSIZE_PHY_1)
 985			return 1;
 986	}
 987
 988	return 2 << psize;
 989}
 990
 991/*
 992 * The dma only supports transmitting packages up to
 993 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
 994 *
 995 * Calculate the total number of dma elements required to send the entire sg list.
 996 */
 997static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
 998{
 999	int dmalen;
1000	u32 max_w = max(data_width1, data_width2);
1001	u32 min_w = min(data_width1, data_width2);
1002	u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1003
1004	if (seg_max > STEDMA40_MAX_SEG_SIZE)
1005		seg_max -= max_w;
1006
1007	if (!IS_ALIGNED(size, max_w))
1008		return -EINVAL;
1009
1010	if (size <= seg_max)
1011		dmalen = 1;
1012	else {
1013		dmalen = size / seg_max;
1014		if (dmalen * seg_max < size)
1015			dmalen++;
1016	}
1017	return dmalen;
1018}
1019
1020static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1021			   u32 data_width1, u32 data_width2)
1022{
1023	struct scatterlist *sg;
1024	int i;
1025	int len = 0;
1026	int ret;
1027
1028	for_each_sg(sgl, sg, sg_len, i) {
1029		ret = d40_size_2_dmalen(sg_dma_len(sg),
1030					data_width1, data_width2);
1031		if (ret < 0)
1032			return ret;
1033		len += ret;
1034	}
1035	return len;
1036}
1037
1038static int __d40_execute_command_phy(struct d40_chan *d40c,
1039				     enum d40_command command)
1040{
1041	u32 status;
1042	int i;
1043	void __iomem *active_reg;
1044	int ret = 0;
1045	unsigned long flags;
1046	u32 wmask;
1047
1048	if (command == D40_DMA_STOP) {
1049		ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1050		if (ret)
1051			return ret;
1052	}
1053
1054	spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1055
1056	if (d40c->phy_chan->num % 2 == 0)
1057		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1058	else
1059		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1060
1061	if (command == D40_DMA_SUSPEND_REQ) {
1062		status = (readl(active_reg) &
1063			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1064			D40_CHAN_POS(d40c->phy_chan->num);
1065
1066		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1067			goto unlock;
1068	}
1069
1070	wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1071	writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1072	       active_reg);
1073
1074	if (command == D40_DMA_SUSPEND_REQ) {
1075
1076		for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1077			status = (readl(active_reg) &
1078				  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1079				D40_CHAN_POS(d40c->phy_chan->num);
1080
1081			cpu_relax();
1082			/*
1083			 * Reduce the number of bus accesses while
1084			 * waiting for the DMA to suspend.
1085			 */
1086			udelay(3);
1087
1088			if (status == D40_DMA_STOP ||
1089			    status == D40_DMA_SUSPENDED)
1090				break;
1091		}
1092
1093		if (i == D40_SUSPEND_MAX_IT) {
1094			chan_err(d40c,
1095				"unable to suspend the chl %d (log: %d) status %x\n",
1096				d40c->phy_chan->num, d40c->log_num,
1097				status);
1098			dump_stack();
1099			ret = -EBUSY;
1100		}
1101
1102	}
1103 unlock:
1104	spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1105	return ret;
1106}
1107
1108static void d40_term_all(struct d40_chan *d40c)
1109{
1110	struct d40_desc *d40d;
1111	struct d40_desc *_d;
1112
1113	/* Release completed descriptors */
1114	while ((d40d = d40_first_done(d40c))) {
1115		d40_desc_remove(d40d);
1116		d40_desc_free(d40c, d40d);
1117	}
1118
1119	/* Release active descriptors */
1120	while ((d40d = d40_first_active_get(d40c))) {
1121		d40_desc_remove(d40d);
1122		d40_desc_free(d40c, d40d);
1123	}
1124
1125	/* Release queued descriptors waiting for transfer */
1126	while ((d40d = d40_first_queued(d40c))) {
1127		d40_desc_remove(d40d);
1128		d40_desc_free(d40c, d40d);
1129	}
1130
1131	/* Release pending descriptors */
1132	while ((d40d = d40_first_pending(d40c))) {
1133		d40_desc_remove(d40d);
1134		d40_desc_free(d40c, d40d);
1135	}
1136
1137	/* Release client owned descriptors */
1138	if (!list_empty(&d40c->client))
1139		list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1140			d40_desc_remove(d40d);
1141			d40_desc_free(d40c, d40d);
1142		}
1143
1144	/* Release descriptors in prepare queue */
1145	if (!list_empty(&d40c->prepare_queue))
1146		list_for_each_entry_safe(d40d, _d,
1147					 &d40c->prepare_queue, node) {
1148			d40_desc_remove(d40d);
1149			d40_desc_free(d40c, d40d);
1150		}
1151
1152	d40c->pending_tx = 0;
1153}
1154
1155static void __d40_config_set_event(struct d40_chan *d40c,
1156				   enum d40_events event_type, u32 event,
1157				   int reg)
1158{
1159	void __iomem *addr = chan_base(d40c) + reg;
1160	int tries;
1161	u32 status;
1162
1163	switch (event_type) {
1164
1165	case D40_DEACTIVATE_EVENTLINE:
1166
1167		writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1168		       | ~D40_EVENTLINE_MASK(event), addr);
1169		break;
1170
1171	case D40_SUSPEND_REQ_EVENTLINE:
1172		status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1173			  D40_EVENTLINE_POS(event);
1174
1175		if (status == D40_DEACTIVATE_EVENTLINE ||
1176		    status == D40_SUSPEND_REQ_EVENTLINE)
1177			break;
1178
1179		writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1180		       | ~D40_EVENTLINE_MASK(event), addr);
1181
1182		for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1183
1184			status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1185				  D40_EVENTLINE_POS(event);
1186
1187			cpu_relax();
1188			/*
1189			 * Reduce the number of bus accesses while
1190			 * waiting for the DMA to suspend.
1191			 */
1192			udelay(3);
1193
1194			if (status == D40_DEACTIVATE_EVENTLINE)
1195				break;
1196		}
1197
1198		if (tries == D40_SUSPEND_MAX_IT) {
1199			chan_err(d40c,
1200				"unable to stop the event_line chl %d (log: %d)"
1201				"status %x\n", d40c->phy_chan->num,
1202				 d40c->log_num, status);
1203		}
1204		break;
1205
1206	case D40_ACTIVATE_EVENTLINE:
1207	/*
1208	 * The hardware sometimes doesn't register the enable when src and dst
1209	 * event lines are active on the same logical channel.  Retry to ensure
1210	 * it does.  Usually only one retry is sufficient.
1211	 */
1212		tries = 100;
1213		while (--tries) {
1214			writel((D40_ACTIVATE_EVENTLINE <<
1215				D40_EVENTLINE_POS(event)) |
1216				~D40_EVENTLINE_MASK(event), addr);
1217
1218			if (readl(addr) & D40_EVENTLINE_MASK(event))
1219				break;
1220		}
1221
1222		if (tries != 99)
1223			dev_dbg(chan2dev(d40c),
1224				"[%s] workaround enable S%cLNK (%d tries)\n",
1225				__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1226				100 - tries);
1227
1228		WARN_ON(!tries);
1229		break;
1230
1231	case D40_ROUND_EVENTLINE:
1232		BUG();
1233		break;
1234
1235	}
1236}
1237
1238static void d40_config_set_event(struct d40_chan *d40c,
1239				 enum d40_events event_type)
1240{
1241	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1242
1243	/* Enable event line connected to device (or memcpy) */
1244	if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1245	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1246		__d40_config_set_event(d40c, event_type, event,
1247				       D40_CHAN_REG_SSLNK);
1248
1249	if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1250		__d40_config_set_event(d40c, event_type, event,
1251				       D40_CHAN_REG_SDLNK);
1252}
1253
1254static u32 d40_chan_has_events(struct d40_chan *d40c)
1255{
1256	void __iomem *chanbase = chan_base(d40c);
1257	u32 val;
1258
1259	val = readl(chanbase + D40_CHAN_REG_SSLNK);
1260	val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1261
1262	return val;
1263}
1264
1265static int
1266__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1267{
1268	unsigned long flags;
1269	int ret = 0;
1270	u32 active_status;
1271	void __iomem *active_reg;
1272
1273	if (d40c->phy_chan->num % 2 == 0)
1274		active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1275	else
1276		active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1277
1278
1279	spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1280
1281	switch (command) {
1282	case D40_DMA_STOP:
1283	case D40_DMA_SUSPEND_REQ:
1284
1285		active_status = (readl(active_reg) &
1286				 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1287				 D40_CHAN_POS(d40c->phy_chan->num);
1288
1289		if (active_status == D40_DMA_RUN)
1290			d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1291		else
1292			d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1293
1294		if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1295			ret = __d40_execute_command_phy(d40c, command);
1296
1297		break;
1298
1299	case D40_DMA_RUN:
1300
1301		d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1302		ret = __d40_execute_command_phy(d40c, command);
1303		break;
1304
1305	case D40_DMA_SUSPENDED:
1306		BUG();
1307		break;
1308	}
1309
1310	spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1311	return ret;
1312}
1313
1314static int d40_channel_execute_command(struct d40_chan *d40c,
1315				       enum d40_command command)
1316{
1317	if (chan_is_logical(d40c))
1318		return __d40_execute_command_log(d40c, command);
1319	else
1320		return __d40_execute_command_phy(d40c, command);
1321}
1322
1323static u32 d40_get_prmo(struct d40_chan *d40c)
1324{
1325	static const unsigned int phy_map[] = {
1326		[STEDMA40_PCHAN_BASIC_MODE]
1327			= D40_DREG_PRMO_PCHAN_BASIC,
1328		[STEDMA40_PCHAN_MODULO_MODE]
1329			= D40_DREG_PRMO_PCHAN_MODULO,
1330		[STEDMA40_PCHAN_DOUBLE_DST_MODE]
1331			= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1332	};
1333	static const unsigned int log_map[] = {
1334		[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1335			= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1336		[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1337			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1338		[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1339			= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1340	};
1341
1342	if (chan_is_physical(d40c))
1343		return phy_map[d40c->dma_cfg.mode_opt];
1344	else
1345		return log_map[d40c->dma_cfg.mode_opt];
1346}
1347
1348static void d40_config_write(struct d40_chan *d40c)
1349{
1350	u32 addr_base;
1351	u32 var;
1352
1353	/* Odd addresses are even addresses + 4 */
1354	addr_base = (d40c->phy_chan->num % 2) * 4;
1355	/* Setup channel mode to logical or physical */
1356	var = ((u32)(chan_is_logical(d40c)) + 1) <<
1357		D40_CHAN_POS(d40c->phy_chan->num);
1358	writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1359
1360	/* Setup operational mode option register */
1361	var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1362
1363	writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1364
1365	if (chan_is_logical(d40c)) {
1366		int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1367			   & D40_SREG_ELEM_LOG_LIDX_MASK;
1368		void __iomem *chanbase = chan_base(d40c);
1369
1370		/* Set default config for CFG reg */
1371		writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1372		writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1373
1374		/* Set LIDX for lcla */
1375		writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1376		writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1377
1378		/* Clear LNK which will be used by d40_chan_has_events() */
1379		writel(0, chanbase + D40_CHAN_REG_SSLNK);
1380		writel(0, chanbase + D40_CHAN_REG_SDLNK);
1381	}
1382}
1383
1384static u32 d40_residue(struct d40_chan *d40c)
1385{
1386	u32 num_elt;
1387
1388	if (chan_is_logical(d40c))
1389		num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1390			>> D40_MEM_LCSP2_ECNT_POS;
1391	else {
1392		u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1393		num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1394			  >> D40_SREG_ELEM_PHY_ECNT_POS;
1395	}
1396
1397	return num_elt * d40c->dma_cfg.dst_info.data_width;
1398}
1399
1400static bool d40_tx_is_linked(struct d40_chan *d40c)
1401{
1402	bool is_link;
1403
1404	if (chan_is_logical(d40c))
1405		is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1406	else
1407		is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1408			  & D40_SREG_LNK_PHYS_LNK_MASK;
1409
1410	return is_link;
1411}
1412
1413static int d40_pause(struct dma_chan *chan)
1414{
1415	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1416	int res = 0;
1417	unsigned long flags;
1418
1419	if (d40c->phy_chan == NULL) {
1420		chan_err(d40c, "Channel is not allocated!\n");
1421		return -EINVAL;
1422	}
1423
1424	if (!d40c->busy)
1425		return 0;
1426
1427	spin_lock_irqsave(&d40c->lock, flags);
1428	pm_runtime_get_sync(d40c->base->dev);
1429
1430	res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1431
1432	pm_runtime_mark_last_busy(d40c->base->dev);
1433	pm_runtime_put_autosuspend(d40c->base->dev);
1434	spin_unlock_irqrestore(&d40c->lock, flags);
1435	return res;
1436}
1437
1438static int d40_resume(struct dma_chan *chan)
1439{
1440	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1441	int res = 0;
1442	unsigned long flags;
1443
1444	if (d40c->phy_chan == NULL) {
1445		chan_err(d40c, "Channel is not allocated!\n");
1446		return -EINVAL;
1447	}
1448
1449	if (!d40c->busy)
1450		return 0;
1451
1452	spin_lock_irqsave(&d40c->lock, flags);
1453	pm_runtime_get_sync(d40c->base->dev);
1454
1455	/* If bytes left to transfer or linked tx resume job */
1456	if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1457		res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1458
1459	pm_runtime_mark_last_busy(d40c->base->dev);
1460	pm_runtime_put_autosuspend(d40c->base->dev);
1461	spin_unlock_irqrestore(&d40c->lock, flags);
1462	return res;
1463}
1464
1465static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1466{
1467	struct d40_chan *d40c = container_of(tx->chan,
1468					     struct d40_chan,
1469					     chan);
1470	struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1471	unsigned long flags;
1472	dma_cookie_t cookie;
1473
1474	spin_lock_irqsave(&d40c->lock, flags);
1475	cookie = dma_cookie_assign(tx);
1476	d40_desc_queue(d40c, d40d);
1477	spin_unlock_irqrestore(&d40c->lock, flags);
1478
1479	return cookie;
1480}
1481
1482static int d40_start(struct d40_chan *d40c)
1483{
1484	return d40_channel_execute_command(d40c, D40_DMA_RUN);
1485}
1486
1487static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1488{
1489	struct d40_desc *d40d;
1490	int err;
1491
1492	/* Start queued jobs, if any */
1493	d40d = d40_first_queued(d40c);
1494
1495	if (d40d != NULL) {
1496		if (!d40c->busy) {
1497			d40c->busy = true;
1498			pm_runtime_get_sync(d40c->base->dev);
1499		}
1500
1501		/* Remove from queue */
1502		d40_desc_remove(d40d);
1503
1504		/* Add to active queue */
1505		d40_desc_submit(d40c, d40d);
1506
1507		/* Initiate DMA job */
1508		d40_desc_load(d40c, d40d);
1509
1510		/* Start dma job */
1511		err = d40_start(d40c);
1512
1513		if (err)
1514			return NULL;
1515	}
1516
1517	return d40d;
1518}
1519
1520/* called from interrupt context */
1521static void dma_tc_handle(struct d40_chan *d40c)
1522{
1523	struct d40_desc *d40d;
1524
1525	/* Get first active entry from list */
1526	d40d = d40_first_active_get(d40c);
1527
1528	if (d40d == NULL)
1529		return;
1530
1531	if (d40d->cyclic) {
1532		/*
1533		 * If this was a paritially loaded list, we need to reloaded
1534		 * it, and only when the list is completed.  We need to check
1535		 * for done because the interrupt will hit for every link, and
1536		 * not just the last one.
1537		 */
1538		if (d40d->lli_current < d40d->lli_len
1539		    && !d40_tx_is_linked(d40c)
1540		    && !d40_residue(d40c)) {
1541			d40_lcla_free_all(d40c, d40d);
1542			d40_desc_load(d40c, d40d);
1543			(void) d40_start(d40c);
1544
1545			if (d40d->lli_current == d40d->lli_len)
1546				d40d->lli_current = 0;
1547		}
1548	} else {
1549		d40_lcla_free_all(d40c, d40d);
1550
1551		if (d40d->lli_current < d40d->lli_len) {
1552			d40_desc_load(d40c, d40d);
1553			/* Start dma job */
1554			(void) d40_start(d40c);
1555			return;
1556		}
1557
1558		if (d40_queue_start(d40c) == NULL) {
1559			d40c->busy = false;
1560
1561			pm_runtime_mark_last_busy(d40c->base->dev);
1562			pm_runtime_put_autosuspend(d40c->base->dev);
1563		}
1564
1565		d40_desc_remove(d40d);
1566		d40_desc_done(d40c, d40d);
1567	}
1568
1569	d40c->pending_tx++;
1570	tasklet_schedule(&d40c->tasklet);
1571
1572}
1573
1574static void dma_tasklet(unsigned long data)
1575{
1576	struct d40_chan *d40c = (struct d40_chan *) data;
1577	struct d40_desc *d40d;
1578	unsigned long flags;
1579	bool callback_active;
1580	struct dmaengine_desc_callback cb;
1581
1582	spin_lock_irqsave(&d40c->lock, flags);
1583
1584	/* Get first entry from the done list */
1585	d40d = d40_first_done(d40c);
1586	if (d40d == NULL) {
1587		/* Check if we have reached here for cyclic job */
1588		d40d = d40_first_active_get(d40c);
1589		if (d40d == NULL || !d40d->cyclic)
1590			goto check_pending_tx;
1591	}
1592
1593	if (!d40d->cyclic)
1594		dma_cookie_complete(&d40d->txd);
1595
1596	/*
1597	 * If terminating a channel pending_tx is set to zero.
1598	 * This prevents any finished active jobs to return to the client.
1599	 */
1600	if (d40c->pending_tx == 0) {
1601		spin_unlock_irqrestore(&d40c->lock, flags);
1602		return;
1603	}
1604
1605	/* Callback to client */
1606	callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1607	dmaengine_desc_get_callback(&d40d->txd, &cb);
1608
1609	if (!d40d->cyclic) {
1610		if (async_tx_test_ack(&d40d->txd)) {
1611			d40_desc_remove(d40d);
1612			d40_desc_free(d40c, d40d);
1613		} else if (!d40d->is_in_client_list) {
1614			d40_desc_remove(d40d);
1615			d40_lcla_free_all(d40c, d40d);
1616			list_add_tail(&d40d->node, &d40c->client);
1617			d40d->is_in_client_list = true;
1618		}
1619	}
1620
1621	d40c->pending_tx--;
1622
1623	if (d40c->pending_tx)
1624		tasklet_schedule(&d40c->tasklet);
1625
1626	spin_unlock_irqrestore(&d40c->lock, flags);
1627
1628	if (callback_active)
1629		dmaengine_desc_callback_invoke(&cb, NULL);
1630
1631	return;
1632 check_pending_tx:
1633	/* Rescue manouver if receiving double interrupts */
1634	if (d40c->pending_tx > 0)
1635		d40c->pending_tx--;
1636	spin_unlock_irqrestore(&d40c->lock, flags);
1637}
1638
1639static irqreturn_t d40_handle_interrupt(int irq, void *data)
1640{
1641	int i;
1642	u32 idx;
1643	u32 row;
1644	long chan = -1;
1645	struct d40_chan *d40c;
1646	unsigned long flags;
1647	struct d40_base *base = data;
1648	u32 *regs = base->regs_interrupt;
1649	struct d40_interrupt_lookup *il = base->gen_dmac.il;
1650	u32 il_size = base->gen_dmac.il_size;
1651
1652	spin_lock_irqsave(&base->interrupt_lock, flags);
1653
1654	/* Read interrupt status of both logical and physical channels */
1655	for (i = 0; i < il_size; i++)
1656		regs[i] = readl(base->virtbase + il[i].src);
1657
1658	for (;;) {
1659
1660		chan = find_next_bit((unsigned long *)regs,
1661				     BITS_PER_LONG * il_size, chan + 1);
1662
1663		/* No more set bits found? */
1664		if (chan == BITS_PER_LONG * il_size)
1665			break;
1666
1667		row = chan / BITS_PER_LONG;
1668		idx = chan & (BITS_PER_LONG - 1);
1669
1670		if (il[row].offset == D40_PHY_CHAN)
1671			d40c = base->lookup_phy_chans[idx];
1672		else
1673			d40c = base->lookup_log_chans[il[row].offset + idx];
1674
1675		if (!d40c) {
1676			/*
1677			 * No error because this can happen if something else
1678			 * in the system is using the channel.
1679			 */
1680			continue;
1681		}
1682
1683		/* ACK interrupt */
1684		writel(BIT(idx), base->virtbase + il[row].clr);
1685
1686		spin_lock(&d40c->lock);
1687
1688		if (!il[row].is_error)
1689			dma_tc_handle(d40c);
1690		else
1691			d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1692				chan, il[row].offset, idx);
1693
1694		spin_unlock(&d40c->lock);
1695	}
1696
1697	spin_unlock_irqrestore(&base->interrupt_lock, flags);
1698
1699	return IRQ_HANDLED;
1700}
1701
1702static int d40_validate_conf(struct d40_chan *d40c,
1703			     struct stedma40_chan_cfg *conf)
1704{
1705	int res = 0;
1706	bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1707
1708	if (!conf->dir) {
1709		chan_err(d40c, "Invalid direction.\n");
1710		res = -EINVAL;
1711	}
1712
1713	if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
1714	    (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1715	    (conf->dev_type < 0)) {
1716		chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1717		res = -EINVAL;
1718	}
1719
1720	if (conf->dir == DMA_DEV_TO_DEV) {
1721		/*
1722		 * DMAC HW supports it. Will be added to this driver,
1723		 * in case any dma client requires it.
1724		 */
1725		chan_err(d40c, "periph to periph not supported\n");
1726		res = -EINVAL;
1727	}
1728
1729	if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1730	    conf->src_info.data_width !=
1731	    d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1732	    conf->dst_info.data_width) {
1733		/*
1734		 * The DMAC hardware only supports
1735		 * src (burst x width) == dst (burst x width)
1736		 */
1737
1738		chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1739		res = -EINVAL;
1740	}
1741
1742	return res;
1743}
1744
1745static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1746			       bool is_src, int log_event_line, bool is_log,
1747			       bool *first_user)
1748{
1749	unsigned long flags;
1750	spin_lock_irqsave(&phy->lock, flags);
1751
1752	*first_user = ((phy->allocated_src | phy->allocated_dst)
1753			== D40_ALLOC_FREE);
1754
1755	if (!is_log) {
1756		/* Physical interrupts are masked per physical full channel */
1757		if (phy->allocated_src == D40_ALLOC_FREE &&
1758		    phy->allocated_dst == D40_ALLOC_FREE) {
1759			phy->allocated_dst = D40_ALLOC_PHY;
1760			phy->allocated_src = D40_ALLOC_PHY;
1761			goto found_unlock;
1762		} else
1763			goto not_found_unlock;
1764	}
1765
1766	/* Logical channel */
1767	if (is_src) {
1768		if (phy->allocated_src == D40_ALLOC_PHY)
1769			goto not_found_unlock;
1770
1771		if (phy->allocated_src == D40_ALLOC_FREE)
1772			phy->allocated_src = D40_ALLOC_LOG_FREE;
1773
1774		if (!(phy->allocated_src & BIT(log_event_line))) {
1775			phy->allocated_src |= BIT(log_event_line);
1776			goto found_unlock;
1777		} else
1778			goto not_found_unlock;
1779	} else {
1780		if (phy->allocated_dst == D40_ALLOC_PHY)
1781			goto not_found_unlock;
1782
1783		if (phy->allocated_dst == D40_ALLOC_FREE)
1784			phy->allocated_dst = D40_ALLOC_LOG_FREE;
1785
1786		if (!(phy->allocated_dst & BIT(log_event_line))) {
1787			phy->allocated_dst |= BIT(log_event_line);
1788			goto found_unlock;
1789		}
1790	}
1791 not_found_unlock:
1792	spin_unlock_irqrestore(&phy->lock, flags);
1793	return false;
1794 found_unlock:
1795	spin_unlock_irqrestore(&phy->lock, flags);
1796	return true;
1797}
1798
1799static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1800			       int log_event_line)
1801{
1802	unsigned long flags;
1803	bool is_free = false;
1804
1805	spin_lock_irqsave(&phy->lock, flags);
1806	if (!log_event_line) {
1807		phy->allocated_dst = D40_ALLOC_FREE;
1808		phy->allocated_src = D40_ALLOC_FREE;
1809		is_free = true;
1810		goto unlock;
1811	}
1812
1813	/* Logical channel */
1814	if (is_src) {
1815		phy->allocated_src &= ~BIT(log_event_line);
1816		if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1817			phy->allocated_src = D40_ALLOC_FREE;
1818	} else {
1819		phy->allocated_dst &= ~BIT(log_event_line);
1820		if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1821			phy->allocated_dst = D40_ALLOC_FREE;
1822	}
1823
1824	is_free = ((phy->allocated_src | phy->allocated_dst) ==
1825		   D40_ALLOC_FREE);
1826 unlock:
1827	spin_unlock_irqrestore(&phy->lock, flags);
1828
1829	return is_free;
1830}
1831
1832static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1833{
1834	int dev_type = d40c->dma_cfg.dev_type;
1835	int event_group;
1836	int event_line;
1837	struct d40_phy_res *phys;
1838	int i;
1839	int j;
1840	int log_num;
1841	int num_phy_chans;
1842	bool is_src;
1843	bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1844
1845	phys = d40c->base->phy_res;
1846	num_phy_chans = d40c->base->num_phy_chans;
1847
1848	if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1849		log_num = 2 * dev_type;
1850		is_src = true;
1851	} else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1852		   d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1853		/* dst event lines are used for logical memcpy */
1854		log_num = 2 * dev_type + 1;
1855		is_src = false;
1856	} else
1857		return -EINVAL;
1858
1859	event_group = D40_TYPE_TO_GROUP(dev_type);
1860	event_line = D40_TYPE_TO_EVENT(dev_type);
1861
1862	if (!is_log) {
1863		if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1864			/* Find physical half channel */
1865			if (d40c->dma_cfg.use_fixed_channel) {
1866				i = d40c->dma_cfg.phy_channel;
1867				if (d40_alloc_mask_set(&phys[i], is_src,
1868						       0, is_log,
1869						       first_phy_user))
1870					goto found_phy;
1871			} else {
1872				for (i = 0; i < num_phy_chans; i++) {
1873					if (d40_alloc_mask_set(&phys[i], is_src,
1874						       0, is_log,
1875						       first_phy_user))
1876						goto found_phy;
1877				}
1878			}
1879		} else
1880			for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1881				int phy_num = j  + event_group * 2;
1882				for (i = phy_num; i < phy_num + 2; i++) {
1883					if (d40_alloc_mask_set(&phys[i],
1884							       is_src,
1885							       0,
1886							       is_log,
1887							       first_phy_user))
1888						goto found_phy;
1889				}
1890			}
1891		return -EINVAL;
1892found_phy:
1893		d40c->phy_chan = &phys[i];
1894		d40c->log_num = D40_PHY_CHAN;
1895		goto out;
1896	}
1897	if (dev_type == -1)
1898		return -EINVAL;
1899
1900	/* Find logical channel */
1901	for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1902		int phy_num = j + event_group * 2;
1903
1904		if (d40c->dma_cfg.use_fixed_channel) {
1905			i = d40c->dma_cfg.phy_channel;
1906
1907			if ((i != phy_num) && (i != phy_num + 1)) {
1908				dev_err(chan2dev(d40c),
1909					"invalid fixed phy channel %d\n", i);
1910				return -EINVAL;
1911			}
1912
1913			if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1914					       is_log, first_phy_user))
1915				goto found_log;
1916
1917			dev_err(chan2dev(d40c),
1918				"could not allocate fixed phy channel %d\n", i);
1919			return -EINVAL;
1920		}
1921
1922		/*
1923		 * Spread logical channels across all available physical rather
1924		 * than pack every logical channel at the first available phy
1925		 * channels.
1926		 */
1927		if (is_src) {
1928			for (i = phy_num; i < phy_num + 2; i++) {
1929				if (d40_alloc_mask_set(&phys[i], is_src,
1930						       event_line, is_log,
1931						       first_phy_user))
1932					goto found_log;
1933			}
1934		} else {
1935			for (i = phy_num + 1; i >= phy_num; i--) {
1936				if (d40_alloc_mask_set(&phys[i], is_src,
1937						       event_line, is_log,
1938						       first_phy_user))
1939					goto found_log;
1940			}
1941		}
1942	}
1943	return -EINVAL;
1944
1945found_log:
1946	d40c->phy_chan = &phys[i];
1947	d40c->log_num = log_num;
1948out:
1949
1950	if (is_log)
1951		d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1952	else
1953		d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1954
1955	return 0;
1956
1957}
1958
1959static int d40_config_memcpy(struct d40_chan *d40c)
1960{
1961	dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1962
1963	if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1964		d40c->dma_cfg = dma40_memcpy_conf_log;
1965		d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1966
1967		d40_log_cfg(&d40c->dma_cfg,
1968			    &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1969
1970	} else if (dma_has_cap(DMA_MEMCPY, cap) &&
1971		   dma_has_cap(DMA_SLAVE, cap)) {
1972		d40c->dma_cfg = dma40_memcpy_conf_phy;
1973
1974		/* Generate interrrupt at end of transfer or relink. */
1975		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
1976
1977		/* Generate interrupt on error. */
1978		d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1979		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1980
1981	} else {
1982		chan_err(d40c, "No memcpy\n");
1983		return -EINVAL;
1984	}
1985
1986	return 0;
1987}
1988
1989static int d40_free_dma(struct d40_chan *d40c)
1990{
1991
1992	int res = 0;
1993	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1994	struct d40_phy_res *phy = d40c->phy_chan;
1995	bool is_src;
1996
1997	/* Terminate all queued and active transfers */
1998	d40_term_all(d40c);
1999
2000	if (phy == NULL) {
2001		chan_err(d40c, "phy == null\n");
2002		return -EINVAL;
2003	}
2004
2005	if (phy->allocated_src == D40_ALLOC_FREE &&
2006	    phy->allocated_dst == D40_ALLOC_FREE) {
2007		chan_err(d40c, "channel already free\n");
2008		return -EINVAL;
2009	}
2010
2011	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2012	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2013		is_src = false;
2014	else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2015		is_src = true;
2016	else {
2017		chan_err(d40c, "Unknown direction\n");
2018		return -EINVAL;
2019	}
2020
2021	pm_runtime_get_sync(d40c->base->dev);
2022	res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2023	if (res) {
2024		chan_err(d40c, "stop failed\n");
2025		goto mark_last_busy;
2026	}
2027
2028	d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2029
2030	if (chan_is_logical(d40c))
2031		d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2032	else
2033		d40c->base->lookup_phy_chans[phy->num] = NULL;
2034
2035	if (d40c->busy) {
2036		pm_runtime_mark_last_busy(d40c->base->dev);
2037		pm_runtime_put_autosuspend(d40c->base->dev);
2038	}
2039
2040	d40c->busy = false;
2041	d40c->phy_chan = NULL;
2042	d40c->configured = false;
2043 mark_last_busy:
2044	pm_runtime_mark_last_busy(d40c->base->dev);
2045	pm_runtime_put_autosuspend(d40c->base->dev);
2046	return res;
2047}
2048
2049static bool d40_is_paused(struct d40_chan *d40c)
2050{
2051	void __iomem *chanbase = chan_base(d40c);
2052	bool is_paused = false;
2053	unsigned long flags;
2054	void __iomem *active_reg;
2055	u32 status;
2056	u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2057
2058	spin_lock_irqsave(&d40c->lock, flags);
2059
2060	if (chan_is_physical(d40c)) {
2061		if (d40c->phy_chan->num % 2 == 0)
2062			active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2063		else
2064			active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2065
2066		status = (readl(active_reg) &
2067			  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2068			D40_CHAN_POS(d40c->phy_chan->num);
2069		if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2070			is_paused = true;
2071		goto unlock;
2072	}
2073
2074	if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2075	    d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2076		status = readl(chanbase + D40_CHAN_REG_SDLNK);
2077	} else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2078		status = readl(chanbase + D40_CHAN_REG_SSLNK);
2079	} else {
2080		chan_err(d40c, "Unknown direction\n");
2081		goto unlock;
2082	}
2083
2084	status = (status & D40_EVENTLINE_MASK(event)) >>
2085		D40_EVENTLINE_POS(event);
2086
2087	if (status != D40_DMA_RUN)
2088		is_paused = true;
2089 unlock:
2090	spin_unlock_irqrestore(&d40c->lock, flags);
2091	return is_paused;
2092
2093}
2094
2095static u32 stedma40_residue(struct dma_chan *chan)
2096{
2097	struct d40_chan *d40c =
2098		container_of(chan, struct d40_chan, chan);
2099	u32 bytes_left;
2100	unsigned long flags;
2101
2102	spin_lock_irqsave(&d40c->lock, flags);
2103	bytes_left = d40_residue(d40c);
2104	spin_unlock_irqrestore(&d40c->lock, flags);
2105
2106	return bytes_left;
2107}
2108
2109static int
2110d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2111		struct scatterlist *sg_src, struct scatterlist *sg_dst,
2112		unsigned int sg_len, dma_addr_t src_dev_addr,
2113		dma_addr_t dst_dev_addr)
2114{
2115	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2116	struct stedma40_half_channel_info *src_info = &cfg->src_info;
2117	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2118	int ret;
2119
2120	ret = d40_log_sg_to_lli(sg_src, sg_len,
2121				src_dev_addr,
2122				desc->lli_log.src,
2123				chan->log_def.lcsp1,
2124				src_info->data_width,
2125				dst_info->data_width);
2126
2127	ret = d40_log_sg_to_lli(sg_dst, sg_len,
2128				dst_dev_addr,
2129				desc->lli_log.dst,
2130				chan->log_def.lcsp3,
2131				dst_info->data_width,
2132				src_info->data_width);
2133
2134	return ret < 0 ? ret : 0;
2135}
2136
2137static int
2138d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2139		struct scatterlist *sg_src, struct scatterlist *sg_dst,
2140		unsigned int sg_len, dma_addr_t src_dev_addr,
2141		dma_addr_t dst_dev_addr)
2142{
2143	struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2144	struct stedma40_half_channel_info *src_info = &cfg->src_info;
2145	struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2146	unsigned long flags = 0;
2147	int ret;
2148
2149	if (desc->cyclic)
2150		flags |= LLI_CYCLIC | LLI_TERM_INT;
2151
2152	ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2153				desc->lli_phy.src,
2154				virt_to_phys(desc->lli_phy.src),
2155				chan->src_def_cfg,
2156				src_info, dst_info, flags);
2157
2158	ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2159				desc->lli_phy.dst,
2160				virt_to_phys(desc->lli_phy.dst),
2161				chan->dst_def_cfg,
2162				dst_info, src_info, flags);
2163
2164	dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2165				   desc->lli_pool.size, DMA_TO_DEVICE);
2166
2167	return ret < 0 ? ret : 0;
2168}
2169
2170static struct d40_desc *
2171d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2172	      unsigned int sg_len, unsigned long dma_flags)
2173{
2174	struct stedma40_chan_cfg *cfg;
2175	struct d40_desc *desc;
2176	int ret;
2177
2178	desc = d40_desc_get(chan);
2179	if (!desc)
2180		return NULL;
2181
2182	cfg = &chan->dma_cfg;
2183	desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2184					cfg->dst_info.data_width);
2185	if (desc->lli_len < 0) {
2186		chan_err(chan, "Unaligned size\n");
2187		goto free_desc;
2188	}
2189
2190	ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2191	if (ret < 0) {
2192		chan_err(chan, "Could not allocate lli\n");
2193		goto free_desc;
2194	}
2195
2196	desc->lli_current = 0;
2197	desc->txd.flags = dma_flags;
2198	desc->txd.tx_submit = d40_tx_submit;
2199
2200	dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2201
2202	return desc;
2203 free_desc:
2204	d40_desc_free(chan, desc);
2205	return NULL;
2206}
2207
2208static struct dma_async_tx_descriptor *
2209d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2210	    struct scatterlist *sg_dst, unsigned int sg_len,
2211	    enum dma_transfer_direction direction, unsigned long dma_flags)
2212{
2213	struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2214	dma_addr_t src_dev_addr;
2215	dma_addr_t dst_dev_addr;
2216	struct d40_desc *desc;
2217	unsigned long flags;
2218	int ret;
2219
2220	if (!chan->phy_chan) {
2221		chan_err(chan, "Cannot prepare unallocated channel\n");
2222		return NULL;
2223	}
2224
2225	d40_set_runtime_config_write(dchan, &chan->slave_config, direction);
2226
2227	spin_lock_irqsave(&chan->lock, flags);
2228
2229	desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2230	if (desc == NULL)
2231		goto unlock;
2232
2233	if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2234		desc->cyclic = true;
2235
2236	src_dev_addr = 0;
2237	dst_dev_addr = 0;
2238	if (direction == DMA_DEV_TO_MEM)
2239		src_dev_addr = chan->runtime_addr;
2240	else if (direction == DMA_MEM_TO_DEV)
2241		dst_dev_addr = chan->runtime_addr;
2242
2243	if (chan_is_logical(chan))
2244		ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2245				      sg_len, src_dev_addr, dst_dev_addr);
2246	else
2247		ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2248				      sg_len, src_dev_addr, dst_dev_addr);
2249
2250	if (ret) {
2251		chan_err(chan, "Failed to prepare %s sg job: %d\n",
2252			 chan_is_logical(chan) ? "log" : "phy", ret);
2253		goto free_desc;
2254	}
2255
2256	/*
2257	 * add descriptor to the prepare queue in order to be able
2258	 * to free them later in terminate_all
2259	 */
2260	list_add_tail(&desc->node, &chan->prepare_queue);
2261
2262	spin_unlock_irqrestore(&chan->lock, flags);
2263
2264	return &desc->txd;
2265 free_desc:
2266	d40_desc_free(chan, desc);
2267 unlock:
2268	spin_unlock_irqrestore(&chan->lock, flags);
2269	return NULL;
2270}
2271
2272bool stedma40_filter(struct dma_chan *chan, void *data)
2273{
2274	struct stedma40_chan_cfg *info = data;
2275	struct d40_chan *d40c =
2276		container_of(chan, struct d40_chan, chan);
2277	int err;
2278
2279	if (data) {
2280		err = d40_validate_conf(d40c, info);
2281		if (!err)
2282			d40c->dma_cfg = *info;
2283	} else
2284		err = d40_config_memcpy(d40c);
2285
2286	if (!err)
2287		d40c->configured = true;
2288
2289	return err == 0;
2290}
2291EXPORT_SYMBOL(stedma40_filter);
2292
2293static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2294{
2295	bool realtime = d40c->dma_cfg.realtime;
2296	bool highprio = d40c->dma_cfg.high_priority;
2297	u32 rtreg;
2298	u32 event = D40_TYPE_TO_EVENT(dev_type);
2299	u32 group = D40_TYPE_TO_GROUP(dev_type);
2300	u32 bit = BIT(event);
2301	u32 prioreg;
2302	struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2303
2304	rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2305	/*
2306	 * Due to a hardware bug, in some cases a logical channel triggered by
2307	 * a high priority destination event line can generate extra packet
2308	 * transactions.
2309	 *
2310	 * The workaround is to not set the high priority level for the
2311	 * destination event lines that trigger logical channels.
2312	 */
2313	if (!src && chan_is_logical(d40c))
2314		highprio = false;
2315
2316	prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2317
2318	/* Destination event lines are stored in the upper halfword */
2319	if (!src)
2320		bit <<= 16;
2321
2322	writel(bit, d40c->base->virtbase + prioreg + group * 4);
2323	writel(bit, d40c->base->virtbase + rtreg + group * 4);
2324}
2325
2326static void d40_set_prio_realtime(struct d40_chan *d40c)
2327{
2328	if (d40c->base->rev < 3)
2329		return;
2330
2331	if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
2332	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2333		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2334
2335	if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
2336	    (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2337		__d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2338}
2339
2340#define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
2341#define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
2342#define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2343#define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2344#define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2345
2346static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2347				  struct of_dma *ofdma)
2348{
2349	struct stedma40_chan_cfg cfg;
2350	dma_cap_mask_t cap;
2351	u32 flags;
2352
2353	memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2354
2355	dma_cap_zero(cap);
2356	dma_cap_set(DMA_SLAVE, cap);
2357
2358	cfg.dev_type = dma_spec->args[0];
2359	flags = dma_spec->args[2];
2360
2361	switch (D40_DT_FLAGS_MODE(flags)) {
2362	case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2363	case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2364	}
2365
2366	switch (D40_DT_FLAGS_DIR(flags)) {
2367	case 0:
2368		cfg.dir = DMA_MEM_TO_DEV;
2369		cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2370		break;
2371	case 1:
2372		cfg.dir = DMA_DEV_TO_MEM;
2373		cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2374		break;
2375	}
2376
2377	if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2378		cfg.phy_channel = dma_spec->args[1];
2379		cfg.use_fixed_channel = true;
2380	}
2381
2382	if (D40_DT_FLAGS_HIGH_PRIO(flags))
2383		cfg.high_priority = true;
2384
2385	return dma_request_channel(cap, stedma40_filter, &cfg);
2386}
2387
2388/* DMA ENGINE functions */
2389static int d40_alloc_chan_resources(struct dma_chan *chan)
2390{
2391	int err;
2392	unsigned long flags;
2393	struct d40_chan *d40c =
2394		container_of(chan, struct d40_chan, chan);
2395	bool is_free_phy;
2396	spin_lock_irqsave(&d40c->lock, flags);
2397
2398	dma_cookie_init(chan);
2399
2400	/* If no dma configuration is set use default configuration (memcpy) */
2401	if (!d40c->configured) {
2402		err = d40_config_memcpy(d40c);
2403		if (err) {
2404			chan_err(d40c, "Failed to configure memcpy channel\n");
2405			goto mark_last_busy;
2406		}
2407	}
2408
2409	err = d40_allocate_channel(d40c, &is_free_phy);
2410	if (err) {
2411		chan_err(d40c, "Failed to allocate channel\n");
2412		d40c->configured = false;
2413		goto mark_last_busy;
2414	}
2415
2416	pm_runtime_get_sync(d40c->base->dev);
2417
2418	d40_set_prio_realtime(d40c);
2419
2420	if (chan_is_logical(d40c)) {
2421		if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2422			d40c->lcpa = d40c->base->lcpa_base +
2423				d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2424		else
2425			d40c->lcpa = d40c->base->lcpa_base +
2426				d40c->dma_cfg.dev_type *
2427				D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2428
2429		/* Unmask the Global Interrupt Mask. */
2430		d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2431		d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2432	}
2433
2434	dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2435		 chan_is_logical(d40c) ? "logical" : "physical",
2436		 d40c->phy_chan->num,
2437		 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2438
2439
2440	/*
2441	 * Only write channel configuration to the DMA if the physical
2442	 * resource is free. In case of multiple logical channels
2443	 * on the same physical resource, only the first write is necessary.
2444	 */
2445	if (is_free_phy)
2446		d40_config_write(d40c);
2447 mark_last_busy:
2448	pm_runtime_mark_last_busy(d40c->base->dev);
2449	pm_runtime_put_autosuspend(d40c->base->dev);
2450	spin_unlock_irqrestore(&d40c->lock, flags);
2451	return err;
2452}
2453
2454static void d40_free_chan_resources(struct dma_chan *chan)
2455{
2456	struct d40_chan *d40c =
2457		container_of(chan, struct d40_chan, chan);
2458	int err;
2459	unsigned long flags;
2460
2461	if (d40c->phy_chan == NULL) {
2462		chan_err(d40c, "Cannot free unallocated channel\n");
2463		return;
2464	}
2465
2466	spin_lock_irqsave(&d40c->lock, flags);
2467
2468	err = d40_free_dma(d40c);
2469
2470	if (err)
2471		chan_err(d40c, "Failed to free channel\n");
2472	spin_unlock_irqrestore(&d40c->lock, flags);
2473}
2474
2475static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2476						       dma_addr_t dst,
2477						       dma_addr_t src,
2478						       size_t size,
2479						       unsigned long dma_flags)
2480{
2481	struct scatterlist dst_sg;
2482	struct scatterlist src_sg;
2483
2484	sg_init_table(&dst_sg, 1);
2485	sg_init_table(&src_sg, 1);
2486
2487	sg_dma_address(&dst_sg) = dst;
2488	sg_dma_address(&src_sg) = src;
2489
2490	sg_dma_len(&dst_sg) = size;
2491	sg_dma_len(&src_sg) = size;
2492
2493	return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
2494			   DMA_MEM_TO_MEM, dma_flags);
2495}
2496
2497static struct dma_async_tx_descriptor *
2498d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2499		  unsigned int sg_len, enum dma_transfer_direction direction,
2500		  unsigned long dma_flags, void *context)
2501{
2502	if (!is_slave_direction(direction))
2503		return NULL;
2504
2505	return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2506}
2507
2508static struct dma_async_tx_descriptor *
2509dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2510		     size_t buf_len, size_t period_len,
2511		     enum dma_transfer_direction direction, unsigned long flags)
2512{
2513	unsigned int periods = buf_len / period_len;
2514	struct dma_async_tx_descriptor *txd;
2515	struct scatterlist *sg;
2516	int i;
2517
2518	sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2519	if (!sg)
2520		return NULL;
2521
2522	for (i = 0; i < periods; i++) {
2523		sg_dma_address(&sg[i]) = dma_addr;
2524		sg_dma_len(&sg[i]) = period_len;
2525		dma_addr += period_len;
2526	}
2527
2528	sg_chain(sg, periods + 1, sg);
2529
2530	txd = d40_prep_sg(chan, sg, sg, periods, direction,
2531			  DMA_PREP_INTERRUPT);
2532
2533	kfree(sg);
2534
2535	return txd;
2536}
2537
2538static enum dma_status d40_tx_status(struct dma_chan *chan,
2539				     dma_cookie_t cookie,
2540				     struct dma_tx_state *txstate)
2541{
2542	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2543	enum dma_status ret;
2544
2545	if (d40c->phy_chan == NULL) {
2546		chan_err(d40c, "Cannot read status of unallocated channel\n");
2547		return -EINVAL;
2548	}
2549
2550	ret = dma_cookie_status(chan, cookie, txstate);
2551	if (ret != DMA_COMPLETE && txstate)
2552		dma_set_residue(txstate, stedma40_residue(chan));
2553
2554	if (d40_is_paused(d40c))
2555		ret = DMA_PAUSED;
2556
2557	return ret;
2558}
2559
2560static void d40_issue_pending(struct dma_chan *chan)
2561{
2562	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2563	unsigned long flags;
2564
2565	if (d40c->phy_chan == NULL) {
2566		chan_err(d40c, "Channel is not allocated!\n");
2567		return;
2568	}
2569
2570	spin_lock_irqsave(&d40c->lock, flags);
2571
2572	list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2573
2574	/* Busy means that queued jobs are already being processed */
2575	if (!d40c->busy)
2576		(void) d40_queue_start(d40c);
2577
2578	spin_unlock_irqrestore(&d40c->lock, flags);
2579}
2580
2581static int d40_terminate_all(struct dma_chan *chan)
2582{
2583	unsigned long flags;
2584	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2585	int ret;
2586
2587	if (d40c->phy_chan == NULL) {
2588		chan_err(d40c, "Channel is not allocated!\n");
2589		return -EINVAL;
2590	}
2591
2592	spin_lock_irqsave(&d40c->lock, flags);
2593
2594	pm_runtime_get_sync(d40c->base->dev);
2595	ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2596	if (ret)
2597		chan_err(d40c, "Failed to stop channel\n");
2598
2599	d40_term_all(d40c);
2600	pm_runtime_mark_last_busy(d40c->base->dev);
2601	pm_runtime_put_autosuspend(d40c->base->dev);
2602	if (d40c->busy) {
2603		pm_runtime_mark_last_busy(d40c->base->dev);
2604		pm_runtime_put_autosuspend(d40c->base->dev);
2605	}
2606	d40c->busy = false;
2607
2608	spin_unlock_irqrestore(&d40c->lock, flags);
2609	return 0;
2610}
2611
2612static int
2613dma40_config_to_halfchannel(struct d40_chan *d40c,
2614			    struct stedma40_half_channel_info *info,
2615			    u32 maxburst)
2616{
2617	int psize;
2618
2619	if (chan_is_logical(d40c)) {
2620		if (maxburst >= 16)
2621			psize = STEDMA40_PSIZE_LOG_16;
2622		else if (maxburst >= 8)
2623			psize = STEDMA40_PSIZE_LOG_8;
2624		else if (maxburst >= 4)
2625			psize = STEDMA40_PSIZE_LOG_4;
2626		else
2627			psize = STEDMA40_PSIZE_LOG_1;
2628	} else {
2629		if (maxburst >= 16)
2630			psize = STEDMA40_PSIZE_PHY_16;
2631		else if (maxburst >= 8)
2632			psize = STEDMA40_PSIZE_PHY_8;
2633		else if (maxburst >= 4)
2634			psize = STEDMA40_PSIZE_PHY_4;
2635		else
2636			psize = STEDMA40_PSIZE_PHY_1;
2637	}
2638
2639	info->psize = psize;
2640	info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2641
2642	return 0;
2643}
2644
2645static int d40_set_runtime_config(struct dma_chan *chan,
2646				  struct dma_slave_config *config)
2647{
2648	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2649
2650	memcpy(&d40c->slave_config, config, sizeof(*config));
2651
2652	return 0;
2653}
2654
2655/* Runtime reconfiguration extension */
2656static int d40_set_runtime_config_write(struct dma_chan *chan,
2657				  struct dma_slave_config *config,
2658				  enum dma_transfer_direction direction)
2659{
2660	struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2661	struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2662	enum dma_slave_buswidth src_addr_width, dst_addr_width;
2663	dma_addr_t config_addr;
2664	u32 src_maxburst, dst_maxburst;
2665	int ret;
2666
2667	if (d40c->phy_chan == NULL) {
2668		chan_err(d40c, "Channel is not allocated!\n");
2669		return -EINVAL;
2670	}
2671
2672	src_addr_width = config->src_addr_width;
2673	src_maxburst = config->src_maxburst;
2674	dst_addr_width = config->dst_addr_width;
2675	dst_maxburst = config->dst_maxburst;
2676
2677	if (direction == DMA_DEV_TO_MEM) {
2678		config_addr = config->src_addr;
2679
2680		if (cfg->dir != DMA_DEV_TO_MEM)
2681			dev_dbg(d40c->base->dev,
2682				"channel was not configured for peripheral "
2683				"to memory transfer (%d) overriding\n",
2684				cfg->dir);
2685		cfg->dir = DMA_DEV_TO_MEM;
2686
2687		/* Configure the memory side */
2688		if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2689			dst_addr_width = src_addr_width;
2690		if (dst_maxburst == 0)
2691			dst_maxburst = src_maxburst;
2692
2693	} else if (direction == DMA_MEM_TO_DEV) {
2694		config_addr = config->dst_addr;
2695
2696		if (cfg->dir != DMA_MEM_TO_DEV)
2697			dev_dbg(d40c->base->dev,
2698				"channel was not configured for memory "
2699				"to peripheral transfer (%d) overriding\n",
2700				cfg->dir);
2701		cfg->dir = DMA_MEM_TO_DEV;
2702
2703		/* Configure the memory side */
2704		if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2705			src_addr_width = dst_addr_width;
2706		if (src_maxburst == 0)
2707			src_maxburst = dst_maxburst;
2708	} else {
2709		dev_err(d40c->base->dev,
2710			"unrecognized channel direction %d\n",
2711			direction);
2712		return -EINVAL;
2713	}
2714
2715	if (config_addr <= 0) {
2716		dev_err(d40c->base->dev, "no address supplied\n");
2717		return -EINVAL;
2718	}
2719
2720	if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2721		dev_err(d40c->base->dev,
2722			"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2723			src_maxburst,
2724			src_addr_width,
2725			dst_maxburst,
2726			dst_addr_width);
2727		return -EINVAL;
2728	}
2729
2730	if (src_maxburst > 16) {
2731		src_maxburst = 16;
2732		dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2733	} else if (dst_maxburst > 16) {
2734		dst_maxburst = 16;
2735		src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2736	}
2737
2738	/* Only valid widths are; 1, 2, 4 and 8. */
2739	if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2740	    src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2741	    dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2742	    dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2743	    !is_power_of_2(src_addr_width) ||
2744	    !is_power_of_2(dst_addr_width))
2745		return -EINVAL;
2746
2747	cfg->src_info.data_width = src_addr_width;
2748	cfg->dst_info.data_width = dst_addr_width;
2749
2750	ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2751					  src_maxburst);
2752	if (ret)
2753		return ret;
2754
2755	ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2756					  dst_maxburst);
2757	if (ret)
2758		return ret;
2759
2760	/* Fill in register values */
2761	if (chan_is_logical(d40c))
2762		d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2763	else
2764		d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2765
2766	/* These settings will take precedence later */
2767	d40c->runtime_addr = config_addr;
2768	d40c->runtime_direction = direction;
2769	dev_dbg(d40c->base->dev,
2770		"configured channel %s for %s, data width %d/%d, "
2771		"maxburst %d/%d elements, LE, no flow control\n",
2772		dma_chan_name(chan),
2773		(direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2774		src_addr_width, dst_addr_width,
2775		src_maxburst, dst_maxburst);
2776
2777	return 0;
2778}
2779
2780/* Initialization functions */
2781
2782static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2783				 struct d40_chan *chans, int offset,
2784				 int num_chans)
2785{
2786	int i = 0;
2787	struct d40_chan *d40c;
2788
2789	INIT_LIST_HEAD(&dma->channels);
2790
2791	for (i = offset; i < offset + num_chans; i++) {
2792		d40c = &chans[i];
2793		d40c->base = base;
2794		d40c->chan.device = dma;
2795
2796		spin_lock_init(&d40c->lock);
2797
2798		d40c->log_num = D40_PHY_CHAN;
2799
2800		INIT_LIST_HEAD(&d40c->done);
2801		INIT_LIST_HEAD(&d40c->active);
2802		INIT_LIST_HEAD(&d40c->queue);
2803		INIT_LIST_HEAD(&d40c->pending_queue);
2804		INIT_LIST_HEAD(&d40c->client);
2805		INIT_LIST_HEAD(&d40c->prepare_queue);
2806
2807		tasklet_init(&d40c->tasklet, dma_tasklet,
2808			     (unsigned long) d40c);
2809
2810		list_add_tail(&d40c->chan.device_node,
2811			      &dma->channels);
2812	}
2813}
2814
2815static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2816{
2817	if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) {
2818		dev->device_prep_slave_sg = d40_prep_slave_sg;
2819		dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2820	}
2821
2822	if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2823		dev->device_prep_dma_memcpy = d40_prep_memcpy;
2824		dev->directions = BIT(DMA_MEM_TO_MEM);
2825		/*
2826		 * This controller can only access address at even
2827		 * 32bit boundaries, i.e. 2^2
2828		 */
2829		dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
2830	}
2831
2832	if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2833		dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2834
2835	dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2836	dev->device_free_chan_resources = d40_free_chan_resources;
2837	dev->device_issue_pending = d40_issue_pending;
2838	dev->device_tx_status = d40_tx_status;
2839	dev->device_config = d40_set_runtime_config;
2840	dev->device_pause = d40_pause;
2841	dev->device_resume = d40_resume;
2842	dev->device_terminate_all = d40_terminate_all;
2843	dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2844	dev->dev = base->dev;
2845}
2846
2847static int __init d40_dmaengine_init(struct d40_base *base,
2848				     int num_reserved_chans)
2849{
2850	int err ;
2851
2852	d40_chan_init(base, &base->dma_slave, base->log_chans,
2853		      0, base->num_log_chans);
2854
2855	dma_cap_zero(base->dma_slave.cap_mask);
2856	dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2857	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2858
2859	d40_ops_init(base, &base->dma_slave);
2860
2861	err = dmaenginem_async_device_register(&base->dma_slave);
2862
2863	if (err) {
2864		d40_err(base->dev, "Failed to register slave channels\n");
2865		goto exit;
2866	}
2867
2868	d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2869		      base->num_log_chans, base->num_memcpy_chans);
2870
2871	dma_cap_zero(base->dma_memcpy.cap_mask);
2872	dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2873
2874	d40_ops_init(base, &base->dma_memcpy);
2875
2876	err = dmaenginem_async_device_register(&base->dma_memcpy);
2877
2878	if (err) {
2879		d40_err(base->dev,
2880			"Failed to register memcpy only channels\n");
2881		goto exit;
2882	}
2883
2884	d40_chan_init(base, &base->dma_both, base->phy_chans,
2885		      0, num_reserved_chans);
2886
2887	dma_cap_zero(base->dma_both.cap_mask);
2888	dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2889	dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2890	dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2891
2892	d40_ops_init(base, &base->dma_both);
2893	err = dmaenginem_async_device_register(&base->dma_both);
2894
2895	if (err) {
2896		d40_err(base->dev,
2897			"Failed to register logical and physical capable channels\n");
2898		goto exit;
2899	}
2900	return 0;
2901 exit:
2902	return err;
2903}
2904
2905/* Suspend resume functionality */
2906#ifdef CONFIG_PM_SLEEP
2907static int dma40_suspend(struct device *dev)
2908{
2909	struct d40_base *base = dev_get_drvdata(dev);
2910	int ret;
2911
2912	ret = pm_runtime_force_suspend(dev);
2913	if (ret)
2914		return ret;
2915
2916	if (base->lcpa_regulator)
2917		ret = regulator_disable(base->lcpa_regulator);
2918	return ret;
2919}
2920
2921static int dma40_resume(struct device *dev)
2922{
2923	struct d40_base *base = dev_get_drvdata(dev);
2924	int ret = 0;
2925
2926	if (base->lcpa_regulator) {
2927		ret = regulator_enable(base->lcpa_regulator);
2928		if (ret)
2929			return ret;
2930	}
2931
2932	return pm_runtime_force_resume(dev);
2933}
2934#endif
2935
2936#ifdef CONFIG_PM
2937static void dma40_backup(void __iomem *baseaddr, u32 *backup,
2938			 u32 *regaddr, int num, bool save)
2939{
2940	int i;
2941
2942	for (i = 0; i < num; i++) {
2943		void __iomem *addr = baseaddr + regaddr[i];
2944
2945		if (save)
2946			backup[i] = readl_relaxed(addr);
2947		else
2948			writel_relaxed(backup[i], addr);
2949	}
2950}
2951
2952static void d40_save_restore_registers(struct d40_base *base, bool save)
2953{
2954	int i;
2955
2956	/* Save/Restore channel specific registers */
2957	for (i = 0; i < base->num_phy_chans; i++) {
2958		void __iomem *addr;
2959		int idx;
2960
2961		if (base->phy_res[i].reserved)
2962			continue;
2963
2964		addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
2965		idx = i * ARRAY_SIZE(d40_backup_regs_chan);
2966
2967		dma40_backup(addr, &base->reg_val_backup_chan[idx],
2968			     d40_backup_regs_chan,
2969			     ARRAY_SIZE(d40_backup_regs_chan),
2970			     save);
2971	}
2972
2973	/* Save/Restore global registers */
2974	dma40_backup(base->virtbase, base->reg_val_backup,
2975		     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
2976		     save);
2977
2978	/* Save/Restore registers only existing on dma40 v3 and later */
2979	if (base->gen_dmac.backup)
2980		dma40_backup(base->virtbase, base->reg_val_backup_v4,
2981			     base->gen_dmac.backup,
2982			base->gen_dmac.backup_size,
2983			save);
2984}
2985
2986static int dma40_runtime_suspend(struct device *dev)
2987{
2988	struct d40_base *base = dev_get_drvdata(dev);
2989
2990	d40_save_restore_registers(base, true);
2991
2992	/* Don't disable/enable clocks for v1 due to HW bugs */
2993	if (base->rev != 1)
2994		writel_relaxed(base->gcc_pwr_off_mask,
2995			       base->virtbase + D40_DREG_GCC);
2996
2997	return 0;
2998}
2999
3000static int dma40_runtime_resume(struct device *dev)
3001{
3002	struct d40_base *base = dev_get_drvdata(dev);
3003
3004	d40_save_restore_registers(base, false);
3005
3006	writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3007		       base->virtbase + D40_DREG_GCC);
3008	return 0;
3009}
3010#endif
3011
3012static const struct dev_pm_ops dma40_pm_ops = {
3013	SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3014	SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3015				dma40_runtime_resume,
3016				NULL)
3017};
3018
3019/* Initialization functions. */
3020
3021static int __init d40_phy_res_init(struct d40_base *base)
3022{
3023	int i;
3024	int num_phy_chans_avail = 0;
3025	u32 val[2];
3026	int odd_even_bit = -2;
3027	int gcc = D40_DREG_GCC_ENA;
3028
3029	val[0] = readl(base->virtbase + D40_DREG_PRSME);
3030	val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3031
3032	for (i = 0; i < base->num_phy_chans; i++) {
3033		base->phy_res[i].num = i;
3034		odd_even_bit += 2 * ((i % 2) == 0);
3035		if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3036			/* Mark security only channels as occupied */
3037			base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3038			base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3039			base->phy_res[i].reserved = true;
3040			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3041						       D40_DREG_GCC_SRC);
3042			gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3043						       D40_DREG_GCC_DST);
3044
3045
3046		} else {
3047			base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3048			base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3049			base->phy_res[i].reserved = false;
3050			num_phy_chans_avail++;
3051		}
3052		spin_lock_init(&base->phy_res[i].lock);
3053	}
3054
3055	/* Mark disabled channels as occupied */
3056	for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3057		int chan = base->plat_data->disabled_channels[i];
3058
3059		base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3060		base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3061		base->phy_res[chan].reserved = true;
3062		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3063					       D40_DREG_GCC_SRC);
3064		gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3065					       D40_DREG_GCC_DST);
3066		num_phy_chans_avail--;
3067	}
3068
3069	/* Mark soft_lli channels */
3070	for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3071		int chan = base->plat_data->soft_lli_chans[i];
3072
3073		base->phy_res[chan].use_soft_lli = true;
3074	}
3075
3076	dev_info(base->dev, "%d of %d physical DMA channels available\n",
3077		 num_phy_chans_avail, base->num_phy_chans);
3078
3079	/* Verify settings extended vs standard */
3080	val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3081
3082	for (i = 0; i < base->num_phy_chans; i++) {
3083
3084		if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3085		    (val[0] & 0x3) != 1)
3086			dev_info(base->dev,
3087				 "[%s] INFO: channel %d is misconfigured (%d)\n",
3088				 __func__, i, val[0] & 0x3);
3089
3090		val[0] = val[0] >> 2;
3091	}
3092
3093	/*
3094	 * To keep things simple, Enable all clocks initially.
3095	 * The clocks will get managed later post channel allocation.
3096	 * The clocks for the event lines on which reserved channels exists
3097	 * are not managed here.
3098	 */
3099	writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3100	base->gcc_pwr_off_mask = gcc;
3101
3102	return num_phy_chans_avail;
3103}
3104
3105static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
 
 
 
 
 
 
 
 
 
3106{
3107	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
 
3108	struct clk *clk;
3109	void __iomem *virtbase;
3110	struct resource *res;
3111	struct d40_base *base;
3112	int num_log_chans;
3113	int num_phy_chans;
3114	int num_memcpy_chans;
3115	int clk_ret = -EINVAL;
3116	int i;
3117	u32 pid;
3118	u32 cid;
3119	u8 rev;
 
3120
3121	clk = clk_get(&pdev->dev, NULL);
3122	if (IS_ERR(clk)) {
3123		d40_err(&pdev->dev, "No matching clock found\n");
3124		goto check_prepare_enabled;
3125	}
3126
3127	clk_ret = clk_prepare_enable(clk);
3128	if (clk_ret) {
3129		d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3130		goto disable_unprepare;
3131	}
3132
3133	/* Get IO for DMAC base address */
3134	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3135	if (!res)
3136		goto disable_unprepare;
3137
3138	if (request_mem_region(res->start, resource_size(res),
3139			       D40_NAME " I/O base") == NULL)
3140		goto release_region;
3141
3142	virtbase = ioremap(res->start, resource_size(res));
3143	if (!virtbase)
3144		goto release_region;
3145
3146	/* This is just a regular AMBA PrimeCell ID actually */
3147	for (pid = 0, i = 0; i < 4; i++)
3148		pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3149			& 255) << (i * 8);
3150	for (cid = 0, i = 0; i < 4; i++)
3151		cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3152			& 255) << (i * 8);
3153
3154	if (cid != AMBA_CID) {
3155		d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3156		goto unmap_io;
3157	}
3158	if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3159		d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3160			AMBA_MANF_BITS(pid),
3161			AMBA_VENDOR_ST);
3162		goto unmap_io;
3163	}
3164	/*
3165	 * HW revision:
3166	 * DB8500ed has revision 0
3167	 * ? has revision 1
3168	 * DB8500v1 has revision 2
3169	 * DB8500v2 has revision 3
3170	 * AP9540v1 has revision 4
3171	 * DB8540v1 has revision 4
3172	 */
3173	rev = AMBA_REV_BITS(pid);
3174	if (rev < 2) {
3175		d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3176		goto unmap_io;
3177	}
3178
3179	/* The number of physical channels on this HW */
3180	if (plat_data->num_of_phy_chans)
3181		num_phy_chans = plat_data->num_of_phy_chans;
3182	else
3183		num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3184
3185	/* The number of channels used for memcpy */
3186	if (plat_data->num_of_memcpy_chans)
3187		num_memcpy_chans = plat_data->num_of_memcpy_chans;
3188	else
3189		num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3190
3191	num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3192
3193	dev_info(&pdev->dev,
3194		 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3195		 rev, &res->start, num_phy_chans, num_log_chans);
3196
3197	base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3198		       (num_phy_chans + num_log_chans + num_memcpy_chans) *
3199		       sizeof(struct d40_chan), GFP_KERNEL);
 
3200
3201	if (base == NULL)
3202		goto unmap_io;
3203
3204	base->rev = rev;
3205	base->clk = clk;
3206	base->num_memcpy_chans = num_memcpy_chans;
3207	base->num_phy_chans = num_phy_chans;
3208	base->num_log_chans = num_log_chans;
3209	base->phy_start = res->start;
3210	base->phy_size = resource_size(res);
3211	base->virtbase = virtbase;
3212	base->plat_data = plat_data;
3213	base->dev = &pdev->dev;
3214	base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3215	base->log_chans = &base->phy_chans[num_phy_chans];
3216
3217	if (base->plat_data->num_of_phy_chans == 14) {
3218		base->gen_dmac.backup = d40_backup_regs_v4b;
3219		base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3220		base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3221		base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3222		base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3223		base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3224		base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3225		base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3226		base->gen_dmac.il = il_v4b;
3227		base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3228		base->gen_dmac.init_reg = dma_init_reg_v4b;
3229		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3230	} else {
3231		if (base->rev >= 3) {
3232			base->gen_dmac.backup = d40_backup_regs_v4a;
3233			base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3234		}
3235		base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3236		base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3237		base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3238		base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3239		base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3240		base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3241		base->gen_dmac.il = il_v4a;
3242		base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3243		base->gen_dmac.init_reg = dma_init_reg_v4a;
3244		base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3245	}
3246
3247	base->phy_res = kcalloc(num_phy_chans,
3248				sizeof(*base->phy_res),
3249				GFP_KERNEL);
3250	if (!base->phy_res)
3251		goto free_base;
3252
3253	base->lookup_phy_chans = kcalloc(num_phy_chans,
3254					 sizeof(*base->lookup_phy_chans),
3255					 GFP_KERNEL);
3256	if (!base->lookup_phy_chans)
3257		goto free_phy_res;
3258
3259	base->lookup_log_chans = kcalloc(num_log_chans,
3260					 sizeof(*base->lookup_log_chans),
3261					 GFP_KERNEL);
3262	if (!base->lookup_log_chans)
3263		goto free_phy_chans;
3264
3265	base->reg_val_backup_chan = kmalloc_array(base->num_phy_chans,
3266						  sizeof(d40_backup_regs_chan),
3267						  GFP_KERNEL);
3268	if (!base->reg_val_backup_chan)
3269		goto free_log_chans;
3270
3271	base->lcla_pool.alloc_map = kcalloc(num_phy_chans
3272					    * D40_LCLA_LINK_PER_EVENT_GRP,
3273					    sizeof(*base->lcla_pool.alloc_map),
3274					    GFP_KERNEL);
3275	if (!base->lcla_pool.alloc_map)
3276		goto free_backup_chan;
3277
3278	base->regs_interrupt = kmalloc_array(base->gen_dmac.il_size,
3279					     sizeof(*base->regs_interrupt),
3280					     GFP_KERNEL);
3281	if (!base->regs_interrupt)
3282		goto free_map;
3283
3284	base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3285					    0, SLAB_HWCACHE_ALIGN,
3286					    NULL);
3287	if (base->desc_slab == NULL)
3288		goto free_regs;
 
 
 
 
 
3289
 
3290
3291	return base;
3292 free_regs:
3293	kfree(base->regs_interrupt);
3294 free_map:
3295	kfree(base->lcla_pool.alloc_map);
3296 free_backup_chan:
3297	kfree(base->reg_val_backup_chan);
3298 free_log_chans:
3299	kfree(base->lookup_log_chans);
3300 free_phy_chans:
3301	kfree(base->lookup_phy_chans);
3302 free_phy_res:
3303	kfree(base->phy_res);
3304 free_base:
3305	kfree(base);
3306 unmap_io:
3307	iounmap(virtbase);
3308 release_region:
3309	release_mem_region(res->start, resource_size(res));
3310 check_prepare_enabled:
3311	if (!clk_ret)
3312 disable_unprepare:
3313		clk_disable_unprepare(clk);
3314	if (!IS_ERR(clk))
3315		clk_put(clk);
3316	return NULL;
3317}
3318
3319static void __init d40_hw_init(struct d40_base *base)
3320{
3321
3322	int i;
3323	u32 prmseo[2] = {0, 0};
3324	u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3325	u32 pcmis = 0;
3326	u32 pcicr = 0;
3327	struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3328	u32 reg_size = base->gen_dmac.init_reg_size;
3329
3330	for (i = 0; i < reg_size; i++)
3331		writel(dma_init_reg[i].val,
3332		       base->virtbase + dma_init_reg[i].reg);
3333
3334	/* Configure all our dma channels to default settings */
3335	for (i = 0; i < base->num_phy_chans; i++) {
3336
3337		activeo[i % 2] = activeo[i % 2] << 2;
3338
3339		if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3340		    == D40_ALLOC_PHY) {
3341			activeo[i % 2] |= 3;
3342			continue;
3343		}
3344
3345		/* Enable interrupt # */
3346		pcmis = (pcmis << 1) | 1;
3347
3348		/* Clear interrupt # */
3349		pcicr = (pcicr << 1) | 1;
3350
3351		/* Set channel to physical mode */
3352		prmseo[i % 2] = prmseo[i % 2] << 2;
3353		prmseo[i % 2] |= 1;
3354
3355	}
3356
3357	writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3358	writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3359	writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3360	writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3361
3362	/* Write which interrupt to enable */
3363	writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3364
3365	/* Write which interrupt to clear */
3366	writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3367
3368	/* These are __initdata and cannot be accessed after init */
3369	base->gen_dmac.init_reg = NULL;
3370	base->gen_dmac.init_reg_size = 0;
3371}
3372
3373static int __init d40_lcla_allocate(struct d40_base *base)
3374{
3375	struct d40_lcla_pool *pool = &base->lcla_pool;
3376	unsigned long *page_list;
3377	int i, j;
3378	int ret;
3379
3380	/*
3381	 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3382	 * To full fill this hardware requirement without wasting 256 kb
3383	 * we allocate pages until we get an aligned one.
3384	 */
3385	page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
3386				  sizeof(*page_list),
3387				  GFP_KERNEL);
3388	if (!page_list)
3389		return -ENOMEM;
3390
3391	/* Calculating how many pages that are required */
3392	base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3393
3394	for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3395		page_list[i] = __get_free_pages(GFP_KERNEL,
3396						base->lcla_pool.pages);
3397		if (!page_list[i]) {
3398
3399			d40_err(base->dev, "Failed to allocate %d pages.\n",
3400				base->lcla_pool.pages);
3401			ret = -ENOMEM;
3402
3403			for (j = 0; j < i; j++)
3404				free_pages(page_list[j], base->lcla_pool.pages);
3405			goto free_page_list;
3406		}
3407
3408		if ((virt_to_phys((void *)page_list[i]) &
3409		     (LCLA_ALIGNMENT - 1)) == 0)
3410			break;
3411	}
3412
3413	for (j = 0; j < i; j++)
3414		free_pages(page_list[j], base->lcla_pool.pages);
3415
3416	if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3417		base->lcla_pool.base = (void *)page_list[i];
3418	} else {
3419		/*
3420		 * After many attempts and no succees with finding the correct
3421		 * alignment, try with allocating a big buffer.
3422		 */
3423		dev_warn(base->dev,
3424			 "[%s] Failed to get %d pages @ 18 bit align.\n",
3425			 __func__, base->lcla_pool.pages);
3426		base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3427							 base->num_phy_chans +
3428							 LCLA_ALIGNMENT,
3429							 GFP_KERNEL);
3430		if (!base->lcla_pool.base_unaligned) {
3431			ret = -ENOMEM;
3432			goto free_page_list;
3433		}
3434
3435		base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3436						 LCLA_ALIGNMENT);
3437	}
3438
3439	pool->dma_addr = dma_map_single(base->dev, pool->base,
3440					SZ_1K * base->num_phy_chans,
3441					DMA_TO_DEVICE);
3442	if (dma_mapping_error(base->dev, pool->dma_addr)) {
3443		pool->dma_addr = 0;
3444		ret = -ENOMEM;
3445		goto free_page_list;
3446	}
3447
3448	writel(virt_to_phys(base->lcla_pool.base),
3449	       base->virtbase + D40_DREG_LCLA);
3450	ret = 0;
3451 free_page_list:
3452	kfree(page_list);
3453	return ret;
3454}
3455
3456static int __init d40_of_probe(struct platform_device *pdev,
3457			       struct device_node *np)
3458{
3459	struct stedma40_platform_data *pdata;
3460	int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3461	const __be32 *list;
3462
3463	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
3464	if (!pdata)
3465		return -ENOMEM;
3466
3467	/* If absent this value will be obtained from h/w. */
3468	of_property_read_u32(np, "dma-channels", &num_phy);
3469	if (num_phy > 0)
3470		pdata->num_of_phy_chans = num_phy;
3471
3472	list = of_get_property(np, "memcpy-channels", &num_memcpy);
3473	num_memcpy /= sizeof(*list);
3474
3475	if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3476		d40_err(&pdev->dev,
3477			"Invalid number of memcpy channels specified (%d)\n",
3478			num_memcpy);
3479		return -EINVAL;
3480	}
3481	pdata->num_of_memcpy_chans = num_memcpy;
3482
3483	of_property_read_u32_array(np, "memcpy-channels",
3484				   dma40_memcpy_channels,
3485				   num_memcpy);
3486
3487	list = of_get_property(np, "disabled-channels", &num_disabled);
3488	num_disabled /= sizeof(*list);
3489
3490	if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3491		d40_err(&pdev->dev,
3492			"Invalid number of disabled channels specified (%d)\n",
3493			num_disabled);
3494		return -EINVAL;
3495	}
3496
3497	of_property_read_u32_array(np, "disabled-channels",
3498				   pdata->disabled_channels,
3499				   num_disabled);
3500	pdata->disabled_channels[num_disabled] = -1;
3501
3502	pdev->dev.platform_data = pdata;
3503
3504	return 0;
3505}
3506
3507static int __init d40_probe(struct platform_device *pdev)
3508{
3509	struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3510	struct device_node *np = pdev->dev.of_node;
3511	int ret = -ENOENT;
3512	struct d40_base *base;
3513	struct resource *res;
 
3514	int num_reserved_chans;
3515	u32 val;
 
3516
3517	if (!plat_data) {
3518		if (np) {
3519			if (d40_of_probe(pdev, np)) {
3520				ret = -ENOMEM;
3521				goto report_failure;
3522			}
3523		} else {
3524			d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3525			goto report_failure;
3526		}
3527	}
3528
3529	base = d40_hw_detect_init(pdev);
3530	if (!base)
3531		goto report_failure;
3532
3533	num_reserved_chans = d40_phy_res_init(base);
3534
3535	platform_set_drvdata(pdev, base);
3536
3537	spin_lock_init(&base->interrupt_lock);
3538	spin_lock_init(&base->execmd_lock);
3539
3540	/* Get IO for logical channel parameter address */
3541	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3542	if (!res) {
3543		ret = -ENOENT;
3544		d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3545		goto destroy_cache;
3546	}
3547	base->lcpa_size = resource_size(res);
3548	base->phy_lcpa = res->start;
3549
3550	if (request_mem_region(res->start, resource_size(res),
3551			       D40_NAME " I/O lcpa") == NULL) {
3552		ret = -EBUSY;
3553		d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3554		goto destroy_cache;
3555	}
 
 
 
 
3556
3557	/* We make use of ESRAM memory for this. */
3558	val = readl(base->virtbase + D40_DREG_LCPA);
3559	if (res->start != val && val != 0) {
3560		dev_warn(&pdev->dev,
3561			 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3562			 __func__, val, &res->start);
3563	} else
3564		writel(res->start, base->virtbase + D40_DREG_LCPA);
3565
3566	base->lcpa_base = ioremap(res->start, resource_size(res));
3567	if (!base->lcpa_base) {
3568		ret = -ENOMEM;
3569		d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3570		goto destroy_cache;
3571	}
3572	/* If lcla has to be located in ESRAM we don't need to allocate */
3573	if (base->plat_data->use_esram_lcla) {
3574		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3575							"lcla_esram");
3576		if (!res) {
3577			ret = -ENOENT;
3578			d40_err(&pdev->dev,
3579				"No \"lcla_esram\" memory resource\n");
3580			goto destroy_cache;
3581		}
3582		base->lcla_pool.base = ioremap(res->start,
3583						resource_size(res));
3584		if (!base->lcla_pool.base) {
3585			ret = -ENOMEM;
3586			d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3587			goto destroy_cache;
3588		}
3589		writel(res->start, base->virtbase + D40_DREG_LCLA);
3590
3591	} else {
3592		ret = d40_lcla_allocate(base);
3593		if (ret) {
3594			d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3595			goto destroy_cache;
3596		}
3597	}
3598
3599	spin_lock_init(&base->lcla_pool.lock);
3600
3601	base->irq = platform_get_irq(pdev, 0);
 
 
 
 
3602
3603	ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3604	if (ret) {
3605		d40_err(&pdev->dev, "No IRQ defined\n");
3606		goto destroy_cache;
3607	}
3608
3609	if (base->plat_data->use_esram_lcla) {
3610
3611		base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3612		if (IS_ERR(base->lcpa_regulator)) {
3613			d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3614			ret = PTR_ERR(base->lcpa_regulator);
3615			base->lcpa_regulator = NULL;
3616			goto destroy_cache;
3617		}
3618
3619		ret = regulator_enable(base->lcpa_regulator);
3620		if (ret) {
3621			d40_err(&pdev->dev,
3622				"Failed to enable lcpa_regulator\n");
3623			regulator_put(base->lcpa_regulator);
3624			base->lcpa_regulator = NULL;
3625			goto destroy_cache;
3626		}
3627	}
3628
3629	writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3630
3631	pm_runtime_irq_safe(base->dev);
3632	pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3633	pm_runtime_use_autosuspend(base->dev);
3634	pm_runtime_mark_last_busy(base->dev);
3635	pm_runtime_set_active(base->dev);
3636	pm_runtime_enable(base->dev);
3637
3638	ret = d40_dmaengine_init(base, num_reserved_chans);
3639	if (ret)
3640		goto destroy_cache;
3641
3642	base->dev->dma_parms = &base->dma_parms;
3643	ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3644	if (ret) {
3645		d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3646		goto destroy_cache;
3647	}
3648
3649	d40_hw_init(base);
3650
3651	if (np) {
3652		ret = of_dma_controller_register(np, d40_xlate, NULL);
3653		if (ret)
3654			dev_err(&pdev->dev,
3655				"could not register of_dma_controller\n");
3656	}
3657
3658	dev_info(base->dev, "initialized\n");
3659	return 0;
 
3660 destroy_cache:
3661	kmem_cache_destroy(base->desc_slab);
3662	if (base->virtbase)
3663		iounmap(base->virtbase);
3664
3665	if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3666		iounmap(base->lcla_pool.base);
3667		base->lcla_pool.base = NULL;
3668	}
3669
3670	if (base->lcla_pool.dma_addr)
3671		dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3672				 SZ_1K * base->num_phy_chans,
3673				 DMA_TO_DEVICE);
3674
3675	if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3676		free_pages((unsigned long)base->lcla_pool.base,
3677			   base->lcla_pool.pages);
3678
3679	kfree(base->lcla_pool.base_unaligned);
3680
3681	if (base->phy_lcpa)
3682		release_mem_region(base->phy_lcpa,
3683				   base->lcpa_size);
3684	if (base->phy_start)
3685		release_mem_region(base->phy_start,
3686				   base->phy_size);
3687	if (base->clk) {
3688		clk_disable_unprepare(base->clk);
3689		clk_put(base->clk);
3690	}
3691
3692	if (base->lcpa_regulator) {
3693		regulator_disable(base->lcpa_regulator);
3694		regulator_put(base->lcpa_regulator);
3695	}
 
3696
3697	kfree(base->lcla_pool.alloc_map);
3698	kfree(base->lookup_log_chans);
3699	kfree(base->lookup_phy_chans);
3700	kfree(base->phy_res);
3701	kfree(base);
3702 report_failure:
3703	d40_err(&pdev->dev, "probe failed\n");
3704	return ret;
3705}
3706
3707static const struct of_device_id d40_match[] = {
3708        { .compatible = "stericsson,dma40", },
3709        {}
3710};
3711
3712static struct platform_driver d40_driver = {
3713	.driver = {
3714		.name  = D40_NAME,
3715		.pm = &dma40_pm_ops,
3716		.of_match_table = d40_match,
3717	},
3718};
3719
3720static int __init stedma40_init(void)
3721{
3722	return platform_driver_probe(&d40_driver, d40_probe);
3723}
3724subsys_initcall(stedma40_init);