Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Freescale MPC85xx, MPC83xx DMA Engine support
   4 *
   5 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
   6 *
   7 * Author:
   8 *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
   9 *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
  10 *
  11 * Description:
  12 *   DMA engine driver for Freescale MPC8540 DMA controller, which is
  13 *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
  14 *   The support for MPC8349 DMA controller is also added.
  15 *
  16 * This driver instructs the DMA controller to issue the PCI Read Multiple
  17 * command for PCI read operations, instead of using the default PCI Read Line
  18 * command. Please be aware that this setting may result in read pre-fetching
  19 * on some platforms.
  20 */
  21
  22#include <linux/init.h>
  23#include <linux/module.h>
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include <linux/interrupt.h>
  27#include <linux/dmaengine.h>
  28#include <linux/delay.h>
  29#include <linux/dma-mapping.h>
  30#include <linux/dmapool.h>
  31#include <linux/of.h>
  32#include <linux/of_address.h>
  33#include <linux/of_irq.h>
  34#include <linux/platform_device.h>
  35#include <linux/fsldma.h>
  36#include "dmaengine.h"
  37#include "fsldma.h"
  38
  39#define chan_dbg(chan, fmt, arg...)					\
  40	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
  41#define chan_err(chan, fmt, arg...)					\
  42	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
  43
  44static const char msg_ld_oom[] = "No free memory for link descriptor";
  45
  46/*
  47 * Register Helpers
  48 */
  49
  50static void set_sr(struct fsldma_chan *chan, u32 val)
  51{
  52	FSL_DMA_OUT(chan, &chan->regs->sr, val, 32);
  53}
  54
  55static u32 get_sr(struct fsldma_chan *chan)
  56{
  57	return FSL_DMA_IN(chan, &chan->regs->sr, 32);
  58}
  59
  60static void set_mr(struct fsldma_chan *chan, u32 val)
  61{
  62	FSL_DMA_OUT(chan, &chan->regs->mr, val, 32);
  63}
  64
  65static u32 get_mr(struct fsldma_chan *chan)
  66{
  67	return FSL_DMA_IN(chan, &chan->regs->mr, 32);
  68}
  69
  70static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
  71{
  72	FSL_DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
  73}
  74
  75static dma_addr_t get_cdar(struct fsldma_chan *chan)
  76{
  77	return FSL_DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
  78}
  79
  80static void set_bcr(struct fsldma_chan *chan, u32 val)
  81{
  82	FSL_DMA_OUT(chan, &chan->regs->bcr, val, 32);
  83}
  84
  85static u32 get_bcr(struct fsldma_chan *chan)
  86{
  87	return FSL_DMA_IN(chan, &chan->regs->bcr, 32);
  88}
  89
  90/*
  91 * Descriptor Helpers
  92 */
  93
  94static void set_desc_cnt(struct fsldma_chan *chan,
  95				struct fsl_dma_ld_hw *hw, u32 count)
  96{
  97	hw->count = CPU_TO_DMA(chan, count, 32);
  98}
  99
 100static void set_desc_src(struct fsldma_chan *chan,
 101			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
 102{
 103	u64 snoop_bits;
 104
 105	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 106		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
 107	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
 108}
 109
 110static void set_desc_dst(struct fsldma_chan *chan,
 111			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
 112{
 113	u64 snoop_bits;
 114
 115	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 116		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
 117	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
 118}
 119
 120static void set_desc_next(struct fsldma_chan *chan,
 121			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
 122{
 123	u64 snoop_bits;
 124
 125	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
 126		? FSL_DMA_SNEN : 0;
 127	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
 128}
 129
 130static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
 131{
 132	u64 snoop_bits;
 133
 134	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
 135		? FSL_DMA_SNEN : 0;
 136
 137	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
 138		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
 139			| snoop_bits, 64);
 140}
 141
 142/*
 143 * DMA Engine Hardware Control Helpers
 144 */
 145
 146static void dma_init(struct fsldma_chan *chan)
 147{
 148	/* Reset the channel */
 149	set_mr(chan, 0);
 150
 151	switch (chan->feature & FSL_DMA_IP_MASK) {
 152	case FSL_DMA_IP_85XX:
 153		/* Set the channel to below modes:
 154		 * EIE - Error interrupt enable
 155		 * EOLNIE - End of links interrupt enable
 156		 * BWC - Bandwidth sharing among channels
 157		 */
 158		set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
 159			| FSL_DMA_MR_EOLNIE);
 160		break;
 161	case FSL_DMA_IP_83XX:
 162		/* Set the channel to below modes:
 163		 * EOTIE - End-of-transfer interrupt enable
 164		 * PRC_RM - PCI read multiple
 165		 */
 166		set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
 167		break;
 168	}
 169}
 170
 171static int dma_is_idle(struct fsldma_chan *chan)
 172{
 173	u32 sr = get_sr(chan);
 174	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
 175}
 176
 177/*
 178 * Start the DMA controller
 179 *
 180 * Preconditions:
 181 * - the CDAR register must point to the start descriptor
 182 * - the MRn[CS] bit must be cleared
 183 */
 184static void dma_start(struct fsldma_chan *chan)
 185{
 186	u32 mode;
 187
 188	mode = get_mr(chan);
 189
 190	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
 191		set_bcr(chan, 0);
 192		mode |= FSL_DMA_MR_EMP_EN;
 193	} else {
 194		mode &= ~FSL_DMA_MR_EMP_EN;
 195	}
 196
 197	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
 198		mode |= FSL_DMA_MR_EMS_EN;
 199	} else {
 200		mode &= ~FSL_DMA_MR_EMS_EN;
 201		mode |= FSL_DMA_MR_CS;
 202	}
 203
 204	set_mr(chan, mode);
 205}
 206
 207static void dma_halt(struct fsldma_chan *chan)
 208{
 209	u32 mode;
 210	int i;
 211
 212	/* read the mode register */
 213	mode = get_mr(chan);
 214
 215	/*
 216	 * The 85xx controller supports channel abort, which will stop
 217	 * the current transfer. On 83xx, this bit is the transfer error
 218	 * mask bit, which should not be changed.
 219	 */
 220	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
 221		mode |= FSL_DMA_MR_CA;
 222		set_mr(chan, mode);
 223
 224		mode &= ~FSL_DMA_MR_CA;
 225	}
 226
 227	/* stop the DMA controller */
 228	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
 229	set_mr(chan, mode);
 230
 231	/* wait for the DMA controller to become idle */
 232	for (i = 0; i < 100; i++) {
 233		if (dma_is_idle(chan))
 234			return;
 235
 236		udelay(10);
 237	}
 238
 239	if (!dma_is_idle(chan))
 240		chan_err(chan, "DMA halt timeout!\n");
 241}
 242
 243/**
 244 * fsl_chan_set_src_loop_size - Set source address hold transfer size
 245 * @chan : Freescale DMA channel
 246 * @size     : Address loop size, 0 for disable loop
 247 *
 248 * The set source address hold transfer size. The source
 249 * address hold or loop transfer size is when the DMA transfer
 250 * data from source address (SA), if the loop size is 4, the DMA will
 251 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
 252 * SA + 1 ... and so on.
 253 */
 254static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
 255{
 256	u32 mode;
 257
 258	mode = get_mr(chan);
 259
 260	switch (size) {
 261	case 0:
 262		mode &= ~FSL_DMA_MR_SAHE;
 263		break;
 264	case 1:
 265	case 2:
 266	case 4:
 267	case 8:
 268		mode &= ~FSL_DMA_MR_SAHTS_MASK;
 269		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
 270		break;
 271	}
 272
 273	set_mr(chan, mode);
 274}
 275
 276/**
 277 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
 278 * @chan : Freescale DMA channel
 279 * @size     : Address loop size, 0 for disable loop
 280 *
 281 * The set destination address hold transfer size. The destination
 282 * address hold or loop transfer size is when the DMA transfer
 283 * data to destination address (TA), if the loop size is 4, the DMA will
 284 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
 285 * TA + 1 ... and so on.
 286 */
 287static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
 288{
 289	u32 mode;
 290
 291	mode = get_mr(chan);
 292
 293	switch (size) {
 294	case 0:
 295		mode &= ~FSL_DMA_MR_DAHE;
 296		break;
 297	case 1:
 298	case 2:
 299	case 4:
 300	case 8:
 301		mode &= ~FSL_DMA_MR_DAHTS_MASK;
 302		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
 303		break;
 304	}
 305
 306	set_mr(chan, mode);
 307}
 308
 309/**
 310 * fsl_chan_set_request_count - Set DMA Request Count for external control
 311 * @chan : Freescale DMA channel
 312 * @size     : Number of bytes to transfer in a single request
 313 *
 314 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 315 * The DMA request count is how many bytes are allowed to transfer before
 316 * pausing the channel, after which a new assertion of DREQ# resumes channel
 317 * operation.
 318 *
 319 * A size of 0 disables external pause control. The maximum size is 1024.
 320 */
 321static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
 322{
 323	u32 mode;
 324
 325	BUG_ON(size > 1024);
 326
 327	mode = get_mr(chan);
 328	mode &= ~FSL_DMA_MR_BWC_MASK;
 329	mode |= (__ilog2(size) << 24) & FSL_DMA_MR_BWC_MASK;
 330
 331	set_mr(chan, mode);
 332}
 333
 334/**
 335 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
 336 * @chan : Freescale DMA channel
 337 * @enable   : 0 is disabled, 1 is enabled.
 338 *
 339 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 340 * The DMA Request Count feature should be used in addition to this feature
 341 * to set the number of bytes to transfer before pausing the channel.
 342 */
 343static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
 344{
 345	if (enable)
 346		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
 347	else
 348		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
 349}
 350
 351/**
 352 * fsl_chan_toggle_ext_start - Toggle channel external start status
 353 * @chan : Freescale DMA channel
 354 * @enable   : 0 is disabled, 1 is enabled.
 355 *
 356 * If enable the external start, the channel can be started by an
 357 * external DMA start pin. So the dma_start() does not start the
 358 * transfer immediately. The DMA channel will wait for the
 359 * control pin asserted.
 360 */
 361static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
 362{
 363	if (enable)
 364		chan->feature |= FSL_DMA_CHAN_START_EXT;
 365	else
 366		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
 367}
 368
 369int fsl_dma_external_start(struct dma_chan *dchan, int enable)
 370{
 371	struct fsldma_chan *chan;
 372
 373	if (!dchan)
 374		return -EINVAL;
 375
 376	chan = to_fsl_chan(dchan);
 377
 378	fsl_chan_toggle_ext_start(chan, enable);
 379	return 0;
 380}
 381EXPORT_SYMBOL_GPL(fsl_dma_external_start);
 382
 383static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
 384{
 385	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
 386
 387	if (list_empty(&chan->ld_pending))
 388		goto out_splice;
 389
 390	/*
 391	 * Add the hardware descriptor to the chain of hardware descriptors
 392	 * that already exists in memory.
 393	 *
 394	 * This will un-set the EOL bit of the existing transaction, and the
 395	 * last link in this transaction will become the EOL descriptor.
 396	 */
 397	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
 398
 399	/*
 400	 * Add the software descriptor and all children to the list
 401	 * of pending transactions
 402	 */
 403out_splice:
 404	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
 405}
 406
 407static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
 408{
 409	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
 410	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
 411	struct fsl_desc_sw *child;
 412	dma_cookie_t cookie = -EINVAL;
 413
 414	spin_lock_bh(&chan->desc_lock);
 415
 416#ifdef CONFIG_PM
 417	if (unlikely(chan->pm_state != RUNNING)) {
 418		chan_dbg(chan, "cannot submit due to suspend\n");
 419		spin_unlock_bh(&chan->desc_lock);
 420		return -1;
 421	}
 422#endif
 423
 424	/*
 425	 * assign cookies to all of the software descriptors
 426	 * that make up this transaction
 427	 */
 428	list_for_each_entry(child, &desc->tx_list, node) {
 429		cookie = dma_cookie_assign(&child->async_tx);
 430	}
 431
 432	/* put this transaction onto the tail of the pending queue */
 433	append_ld_queue(chan, desc);
 434
 435	spin_unlock_bh(&chan->desc_lock);
 436
 437	return cookie;
 438}
 439
 440/**
 441 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
 442 * @chan : Freescale DMA channel
 443 * @desc: descriptor to be freed
 444 */
 445static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
 446		struct fsl_desc_sw *desc)
 447{
 448	list_del(&desc->node);
 449	chan_dbg(chan, "LD %p free\n", desc);
 450	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
 451}
 452
 453/**
 454 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
 455 * @chan : Freescale DMA channel
 456 *
 457 * Return - The descriptor allocated. NULL for failed.
 458 */
 459static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
 460{
 461	struct fsl_desc_sw *desc;
 462	dma_addr_t pdesc;
 463
 464	desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
 465	if (!desc) {
 466		chan_dbg(chan, "out of memory for link descriptor\n");
 467		return NULL;
 468	}
 469
 470	INIT_LIST_HEAD(&desc->tx_list);
 471	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
 472	desc->async_tx.tx_submit = fsl_dma_tx_submit;
 473	desc->async_tx.phys = pdesc;
 474
 475	chan_dbg(chan, "LD %p allocated\n", desc);
 476
 477	return desc;
 478}
 479
 480/**
 481 * fsldma_clean_completed_descriptor - free all descriptors which
 482 * has been completed and acked
 483 * @chan: Freescale DMA channel
 484 *
 485 * This function is used on all completed and acked descriptors.
 486 * All descriptors should only be freed in this function.
 487 */
 488static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
 489{
 490	struct fsl_desc_sw *desc, *_desc;
 491
 492	/* Run the callback for each descriptor, in order */
 493	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
 494		if (async_tx_test_ack(&desc->async_tx))
 495			fsl_dma_free_descriptor(chan, desc);
 496}
 497
 498/**
 499 * fsldma_run_tx_complete_actions - cleanup a single link descriptor
 500 * @chan: Freescale DMA channel
 501 * @desc: descriptor to cleanup and free
 502 * @cookie: Freescale DMA transaction identifier
 503 *
 504 * This function is used on a descriptor which has been executed by the DMA
 505 * controller. It will run any callbacks, submit any dependencies.
 506 */
 507static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
 508		struct fsl_desc_sw *desc, dma_cookie_t cookie)
 509{
 510	struct dma_async_tx_descriptor *txd = &desc->async_tx;
 511	dma_cookie_t ret = cookie;
 512
 513	BUG_ON(txd->cookie < 0);
 514
 515	if (txd->cookie > 0) {
 516		ret = txd->cookie;
 517
 518		dma_descriptor_unmap(txd);
 519		/* Run the link descriptor callback function */
 520		dmaengine_desc_get_callback_invoke(txd, NULL);
 521	}
 522
 523	/* Run any dependencies */
 524	dma_run_dependencies(txd);
 525
 526	return ret;
 527}
 528
 529/**
 530 * fsldma_clean_running_descriptor - move the completed descriptor from
 531 * ld_running to ld_completed
 532 * @chan: Freescale DMA channel
 533 * @desc: the descriptor which is completed
 534 *
 535 * Free the descriptor directly if acked by async_tx api, or move it to
 536 * queue ld_completed.
 537 */
 538static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
 539		struct fsl_desc_sw *desc)
 540{
 541	/* Remove from the list of transactions */
 542	list_del(&desc->node);
 543
 544	/*
 545	 * the client is allowed to attach dependent operations
 546	 * until 'ack' is set
 547	 */
 548	if (!async_tx_test_ack(&desc->async_tx)) {
 549		/*
 550		 * Move this descriptor to the list of descriptors which is
 551		 * completed, but still awaiting the 'ack' bit to be set.
 552		 */
 553		list_add_tail(&desc->node, &chan->ld_completed);
 554		return;
 555	}
 556
 557	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
 558}
 559
 560/**
 561 * fsl_chan_xfer_ld_queue - transfer any pending transactions
 562 * @chan : Freescale DMA channel
 563 *
 564 * HARDWARE STATE: idle
 565 * LOCKING: must hold chan->desc_lock
 566 */
 567static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
 568{
 569	struct fsl_desc_sw *desc;
 570
 571	/*
 572	 * If the list of pending descriptors is empty, then we
 573	 * don't need to do any work at all
 574	 */
 575	if (list_empty(&chan->ld_pending)) {
 576		chan_dbg(chan, "no pending LDs\n");
 577		return;
 578	}
 579
 580	/*
 581	 * The DMA controller is not idle, which means that the interrupt
 582	 * handler will start any queued transactions when it runs after
 583	 * this transaction finishes
 584	 */
 585	if (!chan->idle) {
 586		chan_dbg(chan, "DMA controller still busy\n");
 587		return;
 588	}
 589
 590	/*
 591	 * If there are some link descriptors which have not been
 592	 * transferred, we need to start the controller
 593	 */
 594
 595	/*
 596	 * Move all elements from the queue of pending transactions
 597	 * onto the list of running transactions
 598	 */
 599	chan_dbg(chan, "idle, starting controller\n");
 600	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
 601	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
 602
 603	/*
 604	 * The 85xx DMA controller doesn't clear the channel start bit
 605	 * automatically at the end of a transfer. Therefore we must clear
 606	 * it in software before starting the transfer.
 607	 */
 608	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
 609		u32 mode;
 610
 611		mode = get_mr(chan);
 612		mode &= ~FSL_DMA_MR_CS;
 613		set_mr(chan, mode);
 614	}
 615
 616	/*
 617	 * Program the descriptor's address into the DMA controller,
 618	 * then start the DMA transaction
 619	 */
 620	set_cdar(chan, desc->async_tx.phys);
 621	get_cdar(chan);
 622
 623	dma_start(chan);
 624	chan->idle = false;
 625}
 626
 627/**
 628 * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
 629 * and move them to ld_completed to free until flag 'ack' is set
 630 * @chan: Freescale DMA channel
 631 *
 632 * This function is used on descriptors which have been executed by the DMA
 633 * controller. It will run any callbacks, submit any dependencies, then
 634 * free these descriptors if flag 'ack' is set.
 635 */
 636static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
 637{
 638	struct fsl_desc_sw *desc, *_desc;
 639	dma_cookie_t cookie = 0;
 640	dma_addr_t curr_phys = get_cdar(chan);
 641	int seen_current = 0;
 642
 643	fsldma_clean_completed_descriptor(chan);
 644
 645	/* Run the callback for each descriptor, in order */
 646	list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
 647		/*
 648		 * do not advance past the current descriptor loaded into the
 649		 * hardware channel, subsequent descriptors are either in
 650		 * process or have not been submitted
 651		 */
 652		if (seen_current)
 653			break;
 654
 655		/*
 656		 * stop the search if we reach the current descriptor and the
 657		 * channel is busy
 658		 */
 659		if (desc->async_tx.phys == curr_phys) {
 660			seen_current = 1;
 661			if (!dma_is_idle(chan))
 662				break;
 663		}
 664
 665		cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
 666
 667		fsldma_clean_running_descriptor(chan, desc);
 668	}
 669
 670	/*
 671	 * Start any pending transactions automatically
 672	 *
 673	 * In the ideal case, we keep the DMA controller busy while we go
 674	 * ahead and free the descriptors below.
 675	 */
 676	fsl_chan_xfer_ld_queue(chan);
 677
 678	if (cookie > 0)
 679		chan->common.completed_cookie = cookie;
 680}
 681
 682/**
 683 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
 684 * @chan : Freescale DMA channel
 685 *
 686 * This function will create a dma pool for descriptor allocation.
 687 *
 688 * Return - The number of descriptors allocated.
 689 */
 690static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
 691{
 692	struct fsldma_chan *chan = to_fsl_chan(dchan);
 693
 694	/* Has this channel already been allocated? */
 695	if (chan->desc_pool)
 696		return 1;
 697
 698	/*
 699	 * We need the descriptor to be aligned to 32bytes
 700	 * for meeting FSL DMA specification requirement.
 701	 */
 702	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
 703					  sizeof(struct fsl_desc_sw),
 704					  __alignof__(struct fsl_desc_sw), 0);
 705	if (!chan->desc_pool) {
 706		chan_err(chan, "unable to allocate descriptor pool\n");
 707		return -ENOMEM;
 708	}
 709
 710	/* there is at least one descriptor free to be allocated */
 711	return 1;
 712}
 713
 714/**
 715 * fsldma_free_desc_list - Free all descriptors in a queue
 716 * @chan: Freescae DMA channel
 717 * @list: the list to free
 718 *
 719 * LOCKING: must hold chan->desc_lock
 720 */
 721static void fsldma_free_desc_list(struct fsldma_chan *chan,
 722				  struct list_head *list)
 723{
 724	struct fsl_desc_sw *desc, *_desc;
 725
 726	list_for_each_entry_safe(desc, _desc, list, node)
 727		fsl_dma_free_descriptor(chan, desc);
 728}
 729
 730static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
 731					  struct list_head *list)
 732{
 733	struct fsl_desc_sw *desc, *_desc;
 734
 735	list_for_each_entry_safe_reverse(desc, _desc, list, node)
 736		fsl_dma_free_descriptor(chan, desc);
 737}
 738
 739/**
 740 * fsl_dma_free_chan_resources - Free all resources of the channel.
 741 * @chan : Freescale DMA channel
 742 */
 743static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
 744{
 745	struct fsldma_chan *chan = to_fsl_chan(dchan);
 746
 747	chan_dbg(chan, "free all channel resources\n");
 748	spin_lock_bh(&chan->desc_lock);
 749	fsldma_cleanup_descriptors(chan);
 750	fsldma_free_desc_list(chan, &chan->ld_pending);
 751	fsldma_free_desc_list(chan, &chan->ld_running);
 752	fsldma_free_desc_list(chan, &chan->ld_completed);
 753	spin_unlock_bh(&chan->desc_lock);
 754
 755	dma_pool_destroy(chan->desc_pool);
 756	chan->desc_pool = NULL;
 757}
 758
 759static struct dma_async_tx_descriptor *
 760fsl_dma_prep_memcpy(struct dma_chan *dchan,
 761	dma_addr_t dma_dst, dma_addr_t dma_src,
 762	size_t len, unsigned long flags)
 763{
 764	struct fsldma_chan *chan;
 765	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
 766	size_t copy;
 767
 768	if (!dchan)
 769		return NULL;
 770
 771	if (!len)
 772		return NULL;
 773
 774	chan = to_fsl_chan(dchan);
 775
 776	do {
 777
 778		/* Allocate the link descriptor from DMA pool */
 779		new = fsl_dma_alloc_descriptor(chan);
 780		if (!new) {
 781			chan_err(chan, "%s\n", msg_ld_oom);
 782			goto fail;
 783		}
 784
 785		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
 786
 787		set_desc_cnt(chan, &new->hw, copy);
 788		set_desc_src(chan, &new->hw, dma_src);
 789		set_desc_dst(chan, &new->hw, dma_dst);
 790
 791		if (!first)
 792			first = new;
 793		else
 794			set_desc_next(chan, &prev->hw, new->async_tx.phys);
 795
 796		new->async_tx.cookie = 0;
 797		async_tx_ack(&new->async_tx);
 798
 799		prev = new;
 800		len -= copy;
 801		dma_src += copy;
 802		dma_dst += copy;
 803
 804		/* Insert the link descriptor to the LD ring */
 805		list_add_tail(&new->node, &first->tx_list);
 806	} while (len);
 807
 808	new->async_tx.flags = flags; /* client is in control of this ack */
 809	new->async_tx.cookie = -EBUSY;
 810
 811	/* Set End-of-link to the last link descriptor of new list */
 812	set_ld_eol(chan, new);
 813
 814	return &first->async_tx;
 815
 816fail:
 817	if (!first)
 818		return NULL;
 819
 820	fsldma_free_desc_list_reverse(chan, &first->tx_list);
 821	return NULL;
 822}
 823
 824static int fsl_dma_device_terminate_all(struct dma_chan *dchan)
 825{
 826	struct fsldma_chan *chan;
 827
 828	if (!dchan)
 829		return -EINVAL;
 830
 831	chan = to_fsl_chan(dchan);
 832
 833	spin_lock_bh(&chan->desc_lock);
 834
 835	/* Halt the DMA engine */
 836	dma_halt(chan);
 837
 838	/* Remove and free all of the descriptors in the LD queue */
 839	fsldma_free_desc_list(chan, &chan->ld_pending);
 840	fsldma_free_desc_list(chan, &chan->ld_running);
 841	fsldma_free_desc_list(chan, &chan->ld_completed);
 842	chan->idle = true;
 843
 844	spin_unlock_bh(&chan->desc_lock);
 845	return 0;
 846}
 847
 848static int fsl_dma_device_config(struct dma_chan *dchan,
 849				 struct dma_slave_config *config)
 850{
 851	struct fsldma_chan *chan;
 852	int size;
 853
 854	if (!dchan)
 855		return -EINVAL;
 856
 857	chan = to_fsl_chan(dchan);
 858
 859	/* make sure the channel supports setting burst size */
 860	if (!chan->set_request_count)
 861		return -ENXIO;
 862
 863	/* we set the controller burst size depending on direction */
 864	if (config->direction == DMA_MEM_TO_DEV)
 865		size = config->dst_addr_width * config->dst_maxburst;
 866	else
 867		size = config->src_addr_width * config->src_maxburst;
 868
 869	chan->set_request_count(chan, size);
 870	return 0;
 871}
 872
 873
 874/**
 875 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
 876 * @chan : Freescale DMA channel
 877 */
 878static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
 879{
 880	struct fsldma_chan *chan = to_fsl_chan(dchan);
 881
 882	spin_lock_bh(&chan->desc_lock);
 883	fsl_chan_xfer_ld_queue(chan);
 884	spin_unlock_bh(&chan->desc_lock);
 885}
 886
 887/**
 888 * fsl_tx_status - Determine the DMA status
 889 * @chan : Freescale DMA channel
 890 */
 891static enum dma_status fsl_tx_status(struct dma_chan *dchan,
 892					dma_cookie_t cookie,
 893					struct dma_tx_state *txstate)
 894{
 895	struct fsldma_chan *chan = to_fsl_chan(dchan);
 896	enum dma_status ret;
 897
 898	ret = dma_cookie_status(dchan, cookie, txstate);
 899	if (ret == DMA_COMPLETE)
 900		return ret;
 901
 902	spin_lock_bh(&chan->desc_lock);
 903	fsldma_cleanup_descriptors(chan);
 904	spin_unlock_bh(&chan->desc_lock);
 905
 906	return dma_cookie_status(dchan, cookie, txstate);
 907}
 908
 909/*----------------------------------------------------------------------------*/
 910/* Interrupt Handling                                                         */
 911/*----------------------------------------------------------------------------*/
 912
 913static irqreturn_t fsldma_chan_irq(int irq, void *data)
 914{
 915	struct fsldma_chan *chan = data;
 916	u32 stat;
 917
 918	/* save and clear the status register */
 919	stat = get_sr(chan);
 920	set_sr(chan, stat);
 921	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
 922
 923	/* check that this was really our device */
 924	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
 925	if (!stat)
 926		return IRQ_NONE;
 927
 928	if (stat & FSL_DMA_SR_TE)
 929		chan_err(chan, "Transfer Error!\n");
 930
 931	/*
 932	 * Programming Error
 933	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
 934	 * trigger a PE interrupt.
 935	 */
 936	if (stat & FSL_DMA_SR_PE) {
 937		chan_dbg(chan, "irq: Programming Error INT\n");
 938		stat &= ~FSL_DMA_SR_PE;
 939		if (get_bcr(chan) != 0)
 940			chan_err(chan, "Programming Error!\n");
 941	}
 942
 943	/*
 944	 * For MPC8349, EOCDI event need to update cookie
 945	 * and start the next transfer if it exist.
 946	 */
 947	if (stat & FSL_DMA_SR_EOCDI) {
 948		chan_dbg(chan, "irq: End-of-Chain link INT\n");
 949		stat &= ~FSL_DMA_SR_EOCDI;
 950	}
 951
 952	/*
 953	 * If it current transfer is the end-of-transfer,
 954	 * we should clear the Channel Start bit for
 955	 * prepare next transfer.
 956	 */
 957	if (stat & FSL_DMA_SR_EOLNI) {
 958		chan_dbg(chan, "irq: End-of-link INT\n");
 959		stat &= ~FSL_DMA_SR_EOLNI;
 960	}
 961
 962	/* check that the DMA controller is really idle */
 963	if (!dma_is_idle(chan))
 964		chan_err(chan, "irq: controller not idle!\n");
 965
 966	/* check that we handled all of the bits */
 967	if (stat)
 968		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
 969
 970	/*
 971	 * Schedule the tasklet to handle all cleanup of the current
 972	 * transaction. It will start a new transaction if there is
 973	 * one pending.
 974	 */
 975	tasklet_schedule(&chan->tasklet);
 976	chan_dbg(chan, "irq: Exit\n");
 977	return IRQ_HANDLED;
 978}
 979
 980static void dma_do_tasklet(struct tasklet_struct *t)
 981{
 982	struct fsldma_chan *chan = from_tasklet(chan, t, tasklet);
 983
 984	chan_dbg(chan, "tasklet entry\n");
 985
 986	spin_lock(&chan->desc_lock);
 987
 988	/* the hardware is now idle and ready for more */
 989	chan->idle = true;
 990
 991	/* Run all cleanup for descriptors which have been completed */
 992	fsldma_cleanup_descriptors(chan);
 993
 994	spin_unlock(&chan->desc_lock);
 995
 996	chan_dbg(chan, "tasklet exit\n");
 997}
 998
 999static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1000{
1001	struct fsldma_device *fdev = data;
1002	struct fsldma_chan *chan;
1003	unsigned int handled = 0;
1004	u32 gsr, mask;
1005	int i;
1006
1007	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1008						   : in_le32(fdev->regs);
1009	mask = 0xff000000;
1010	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1011
1012	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1013		chan = fdev->chan[i];
1014		if (!chan)
1015			continue;
1016
1017		if (gsr & mask) {
1018			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1019			fsldma_chan_irq(irq, chan);
1020			handled++;
1021		}
1022
1023		gsr &= ~mask;
1024		mask >>= 8;
1025	}
1026
1027	return IRQ_RETVAL(handled);
1028}
1029
1030static void fsldma_free_irqs(struct fsldma_device *fdev)
1031{
1032	struct fsldma_chan *chan;
1033	int i;
1034
1035	if (fdev->irq) {
1036		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1037		free_irq(fdev->irq, fdev);
1038		return;
1039	}
1040
1041	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1042		chan = fdev->chan[i];
1043		if (chan && chan->irq) {
1044			chan_dbg(chan, "free per-channel IRQ\n");
1045			free_irq(chan->irq, chan);
1046		}
1047	}
1048}
1049
1050static int fsldma_request_irqs(struct fsldma_device *fdev)
1051{
1052	struct fsldma_chan *chan;
1053	int ret;
1054	int i;
1055
1056	/* if we have a per-controller IRQ, use that */
1057	if (fdev->irq) {
1058		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1059		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1060				  "fsldma-controller", fdev);
1061		return ret;
1062	}
1063
1064	/* no per-controller IRQ, use the per-channel IRQs */
1065	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1066		chan = fdev->chan[i];
1067		if (!chan)
1068			continue;
1069
1070		if (!chan->irq) {
1071			chan_err(chan, "interrupts property missing in device tree\n");
1072			ret = -ENODEV;
1073			goto out_unwind;
1074		}
1075
1076		chan_dbg(chan, "request per-channel IRQ\n");
1077		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1078				  "fsldma-chan", chan);
1079		if (ret) {
1080			chan_err(chan, "unable to request per-channel IRQ\n");
1081			goto out_unwind;
1082		}
1083	}
1084
1085	return 0;
1086
1087out_unwind:
1088	for (/* none */; i >= 0; i--) {
1089		chan = fdev->chan[i];
1090		if (!chan)
1091			continue;
1092
1093		if (!chan->irq)
1094			continue;
1095
1096		free_irq(chan->irq, chan);
1097	}
1098
1099	return ret;
1100}
1101
1102/*----------------------------------------------------------------------------*/
1103/* OpenFirmware Subsystem                                                     */
1104/*----------------------------------------------------------------------------*/
1105
1106static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1107	struct device_node *node, u32 feature, const char *compatible)
1108{
1109	struct fsldma_chan *chan;
1110	struct resource res;
1111	int err;
1112
1113	/* alloc channel */
1114	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1115	if (!chan) {
1116		err = -ENOMEM;
1117		goto out_return;
1118	}
1119
1120	/* ioremap registers for use */
1121	chan->regs = of_iomap(node, 0);
1122	if (!chan->regs) {
1123		dev_err(fdev->dev, "unable to ioremap registers\n");
1124		err = -ENOMEM;
1125		goto out_free_chan;
1126	}
1127
1128	err = of_address_to_resource(node, 0, &res);
1129	if (err) {
1130		dev_err(fdev->dev, "unable to find 'reg' property\n");
1131		goto out_iounmap_regs;
1132	}
1133
1134	chan->feature = feature;
1135	if (!fdev->feature)
1136		fdev->feature = chan->feature;
1137
1138	/*
1139	 * If the DMA device's feature is different than the feature
1140	 * of its channels, report the bug
1141	 */
1142	WARN_ON(fdev->feature != chan->feature);
1143
1144	chan->dev = fdev->dev;
1145	chan->id = (res.start & 0xfff) < 0x300 ?
1146		   ((res.start - 0x100) & 0xfff) >> 7 :
1147		   ((res.start - 0x200) & 0xfff) >> 7;
1148	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1149		dev_err(fdev->dev, "too many channels for device\n");
1150		err = -EINVAL;
1151		goto out_iounmap_regs;
1152	}
1153
1154	fdev->chan[chan->id] = chan;
1155	tasklet_setup(&chan->tasklet, dma_do_tasklet);
1156	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1157
1158	/* Initialize the channel */
1159	dma_init(chan);
1160
1161	/* Clear cdar registers */
1162	set_cdar(chan, 0);
1163
1164	switch (chan->feature & FSL_DMA_IP_MASK) {
1165	case FSL_DMA_IP_85XX:
1166		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1167		fallthrough;
1168	case FSL_DMA_IP_83XX:
1169		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1170		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1171		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1172		chan->set_request_count = fsl_chan_set_request_count;
1173	}
1174
1175	spin_lock_init(&chan->desc_lock);
1176	INIT_LIST_HEAD(&chan->ld_pending);
1177	INIT_LIST_HEAD(&chan->ld_running);
1178	INIT_LIST_HEAD(&chan->ld_completed);
1179	chan->idle = true;
1180#ifdef CONFIG_PM
1181	chan->pm_state = RUNNING;
1182#endif
1183
1184	chan->common.device = &fdev->common;
1185	dma_cookie_init(&chan->common);
1186
1187	/* find the IRQ line, if it exists in the device tree */
1188	chan->irq = irq_of_parse_and_map(node, 0);
1189
1190	/* Add the channel to DMA device channel list */
1191	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1192
1193	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1194		 chan->irq ? chan->irq : fdev->irq);
1195
1196	return 0;
1197
1198out_iounmap_regs:
1199	iounmap(chan->regs);
1200out_free_chan:
1201	kfree(chan);
1202out_return:
1203	return err;
1204}
1205
1206static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1207{
1208	irq_dispose_mapping(chan->irq);
1209	list_del(&chan->common.device_node);
1210	iounmap(chan->regs);
1211	kfree(chan);
1212}
1213
1214static int fsldma_of_probe(struct platform_device *op)
1215{
1216	struct fsldma_device *fdev;
1217	struct device_node *child;
1218	unsigned int i;
1219	int err;
1220
1221	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1222	if (!fdev) {
1223		err = -ENOMEM;
1224		goto out_return;
1225	}
1226
1227	fdev->dev = &op->dev;
1228	INIT_LIST_HEAD(&fdev->common.channels);
1229
1230	/* ioremap the registers for use */
1231	fdev->regs = of_iomap(op->dev.of_node, 0);
1232	if (!fdev->regs) {
1233		dev_err(&op->dev, "unable to ioremap registers\n");
1234		err = -ENOMEM;
1235		goto out_free;
1236	}
1237
1238	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1239	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1240
1241	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1242	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1243	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1244	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1245	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1246	fdev->common.device_tx_status = fsl_tx_status;
1247	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1248	fdev->common.device_config = fsl_dma_device_config;
1249	fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1250	fdev->common.dev = &op->dev;
1251
1252	fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS;
1253	fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS;
1254	fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1255	fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1256
1257	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1258
1259	platform_set_drvdata(op, fdev);
1260
1261	/*
1262	 * We cannot use of_platform_bus_probe() because there is no
1263	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1264	 * channel object.
1265	 */
1266	for_each_child_of_node(op->dev.of_node, child) {
1267		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1268			fsl_dma_chan_probe(fdev, child,
1269				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1270				"fsl,eloplus-dma-channel");
1271		}
1272
1273		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1274			fsl_dma_chan_probe(fdev, child,
1275				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1276				"fsl,elo-dma-channel");
1277		}
1278	}
1279
1280	/*
1281	 * Hookup the IRQ handler(s)
1282	 *
1283	 * If we have a per-controller interrupt, we prefer that to the
1284	 * per-channel interrupts to reduce the number of shared interrupt
1285	 * handlers on the same IRQ line
1286	 */
1287	err = fsldma_request_irqs(fdev);
1288	if (err) {
1289		dev_err(fdev->dev, "unable to request IRQs\n");
1290		goto out_free_fdev;
1291	}
1292
1293	dma_async_device_register(&fdev->common);
1294	return 0;
1295
1296out_free_fdev:
1297	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1298		if (fdev->chan[i])
1299			fsl_dma_chan_remove(fdev->chan[i]);
1300	}
1301	irq_dispose_mapping(fdev->irq);
1302	iounmap(fdev->regs);
1303out_free:
1304	kfree(fdev);
1305out_return:
1306	return err;
1307}
1308
1309static void fsldma_of_remove(struct platform_device *op)
1310{
1311	struct fsldma_device *fdev;
1312	unsigned int i;
1313
1314	fdev = platform_get_drvdata(op);
1315	dma_async_device_unregister(&fdev->common);
1316
1317	fsldma_free_irqs(fdev);
1318
1319	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1320		if (fdev->chan[i])
1321			fsl_dma_chan_remove(fdev->chan[i]);
1322	}
1323	irq_dispose_mapping(fdev->irq);
1324
1325	iounmap(fdev->regs);
1326	kfree(fdev);
 
 
1327}
1328
1329#ifdef CONFIG_PM
1330static int fsldma_suspend_late(struct device *dev)
1331{
1332	struct fsldma_device *fdev = dev_get_drvdata(dev);
1333	struct fsldma_chan *chan;
1334	int i;
1335
1336	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1337		chan = fdev->chan[i];
1338		if (!chan)
1339			continue;
1340
1341		spin_lock_bh(&chan->desc_lock);
1342		if (unlikely(!chan->idle))
1343			goto out;
1344		chan->regs_save.mr = get_mr(chan);
1345		chan->pm_state = SUSPENDED;
1346		spin_unlock_bh(&chan->desc_lock);
1347	}
1348	return 0;
1349
1350out:
1351	for (; i >= 0; i--) {
1352		chan = fdev->chan[i];
1353		if (!chan)
1354			continue;
1355		chan->pm_state = RUNNING;
1356		spin_unlock_bh(&chan->desc_lock);
1357	}
1358	return -EBUSY;
1359}
1360
1361static int fsldma_resume_early(struct device *dev)
1362{
1363	struct fsldma_device *fdev = dev_get_drvdata(dev);
1364	struct fsldma_chan *chan;
1365	u32 mode;
1366	int i;
1367
1368	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1369		chan = fdev->chan[i];
1370		if (!chan)
1371			continue;
1372
1373		spin_lock_bh(&chan->desc_lock);
1374		mode = chan->regs_save.mr
1375			& ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1376		set_mr(chan, mode);
1377		chan->pm_state = RUNNING;
1378		spin_unlock_bh(&chan->desc_lock);
1379	}
1380
1381	return 0;
1382}
1383
1384static const struct dev_pm_ops fsldma_pm_ops = {
1385	.suspend_late	= fsldma_suspend_late,
1386	.resume_early	= fsldma_resume_early,
1387};
1388#endif
1389
1390static const struct of_device_id fsldma_of_ids[] = {
1391	{ .compatible = "fsl,elo3-dma", },
1392	{ .compatible = "fsl,eloplus-dma", },
1393	{ .compatible = "fsl,elo-dma", },
1394	{}
1395};
1396MODULE_DEVICE_TABLE(of, fsldma_of_ids);
1397
1398static struct platform_driver fsldma_of_driver = {
1399	.driver = {
1400		.name = "fsl-elo-dma",
1401		.of_match_table = fsldma_of_ids,
1402#ifdef CONFIG_PM
1403		.pm = &fsldma_pm_ops,
1404#endif
1405	},
1406	.probe = fsldma_of_probe,
1407	.remove_new = fsldma_of_remove,
1408};
1409
1410/*----------------------------------------------------------------------------*/
1411/* Module Init / Exit                                                         */
1412/*----------------------------------------------------------------------------*/
1413
1414static __init int fsldma_init(void)
1415{
1416	pr_info("Freescale Elo series DMA driver\n");
1417	return platform_driver_register(&fsldma_of_driver);
1418}
1419
1420static void __exit fsldma_exit(void)
1421{
1422	platform_driver_unregister(&fsldma_of_driver);
1423}
1424
1425subsys_initcall(fsldma_init);
1426module_exit(fsldma_exit);
1427
1428MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1429MODULE_LICENSE("GPL");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Freescale MPC85xx, MPC83xx DMA Engine support
   4 *
   5 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
   6 *
   7 * Author:
   8 *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
   9 *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
  10 *
  11 * Description:
  12 *   DMA engine driver for Freescale MPC8540 DMA controller, which is
  13 *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
  14 *   The support for MPC8349 DMA controller is also added.
  15 *
  16 * This driver instructs the DMA controller to issue the PCI Read Multiple
  17 * command for PCI read operations, instead of using the default PCI Read Line
  18 * command. Please be aware that this setting may result in read pre-fetching
  19 * on some platforms.
  20 */
  21
  22#include <linux/init.h>
  23#include <linux/module.h>
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include <linux/interrupt.h>
  27#include <linux/dmaengine.h>
  28#include <linux/delay.h>
  29#include <linux/dma-mapping.h>
  30#include <linux/dmapool.h>
 
  31#include <linux/of_address.h>
  32#include <linux/of_irq.h>
  33#include <linux/of_platform.h>
  34#include <linux/fsldma.h>
  35#include "dmaengine.h"
  36#include "fsldma.h"
  37
  38#define chan_dbg(chan, fmt, arg...)					\
  39	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
  40#define chan_err(chan, fmt, arg...)					\
  41	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
  42
  43static const char msg_ld_oom[] = "No free memory for link descriptor";
  44
  45/*
  46 * Register Helpers
  47 */
  48
  49static void set_sr(struct fsldma_chan *chan, u32 val)
  50{
  51	FSL_DMA_OUT(chan, &chan->regs->sr, val, 32);
  52}
  53
  54static u32 get_sr(struct fsldma_chan *chan)
  55{
  56	return FSL_DMA_IN(chan, &chan->regs->sr, 32);
  57}
  58
  59static void set_mr(struct fsldma_chan *chan, u32 val)
  60{
  61	FSL_DMA_OUT(chan, &chan->regs->mr, val, 32);
  62}
  63
  64static u32 get_mr(struct fsldma_chan *chan)
  65{
  66	return FSL_DMA_IN(chan, &chan->regs->mr, 32);
  67}
  68
  69static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
  70{
  71	FSL_DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
  72}
  73
  74static dma_addr_t get_cdar(struct fsldma_chan *chan)
  75{
  76	return FSL_DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
  77}
  78
  79static void set_bcr(struct fsldma_chan *chan, u32 val)
  80{
  81	FSL_DMA_OUT(chan, &chan->regs->bcr, val, 32);
  82}
  83
  84static u32 get_bcr(struct fsldma_chan *chan)
  85{
  86	return FSL_DMA_IN(chan, &chan->regs->bcr, 32);
  87}
  88
  89/*
  90 * Descriptor Helpers
  91 */
  92
  93static void set_desc_cnt(struct fsldma_chan *chan,
  94				struct fsl_dma_ld_hw *hw, u32 count)
  95{
  96	hw->count = CPU_TO_DMA(chan, count, 32);
  97}
  98
  99static void set_desc_src(struct fsldma_chan *chan,
 100			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
 101{
 102	u64 snoop_bits;
 103
 104	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 105		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
 106	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
 107}
 108
 109static void set_desc_dst(struct fsldma_chan *chan,
 110			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
 111{
 112	u64 snoop_bits;
 113
 114	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 115		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
 116	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
 117}
 118
 119static void set_desc_next(struct fsldma_chan *chan,
 120			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
 121{
 122	u64 snoop_bits;
 123
 124	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
 125		? FSL_DMA_SNEN : 0;
 126	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
 127}
 128
 129static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
 130{
 131	u64 snoop_bits;
 132
 133	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
 134		? FSL_DMA_SNEN : 0;
 135
 136	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
 137		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
 138			| snoop_bits, 64);
 139}
 140
 141/*
 142 * DMA Engine Hardware Control Helpers
 143 */
 144
 145static void dma_init(struct fsldma_chan *chan)
 146{
 147	/* Reset the channel */
 148	set_mr(chan, 0);
 149
 150	switch (chan->feature & FSL_DMA_IP_MASK) {
 151	case FSL_DMA_IP_85XX:
 152		/* Set the channel to below modes:
 153		 * EIE - Error interrupt enable
 154		 * EOLNIE - End of links interrupt enable
 155		 * BWC - Bandwidth sharing among channels
 156		 */
 157		set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
 158			| FSL_DMA_MR_EOLNIE);
 159		break;
 160	case FSL_DMA_IP_83XX:
 161		/* Set the channel to below modes:
 162		 * EOTIE - End-of-transfer interrupt enable
 163		 * PRC_RM - PCI read multiple
 164		 */
 165		set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
 166		break;
 167	}
 168}
 169
 170static int dma_is_idle(struct fsldma_chan *chan)
 171{
 172	u32 sr = get_sr(chan);
 173	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
 174}
 175
 176/*
 177 * Start the DMA controller
 178 *
 179 * Preconditions:
 180 * - the CDAR register must point to the start descriptor
 181 * - the MRn[CS] bit must be cleared
 182 */
 183static void dma_start(struct fsldma_chan *chan)
 184{
 185	u32 mode;
 186
 187	mode = get_mr(chan);
 188
 189	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
 190		set_bcr(chan, 0);
 191		mode |= FSL_DMA_MR_EMP_EN;
 192	} else {
 193		mode &= ~FSL_DMA_MR_EMP_EN;
 194	}
 195
 196	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
 197		mode |= FSL_DMA_MR_EMS_EN;
 198	} else {
 199		mode &= ~FSL_DMA_MR_EMS_EN;
 200		mode |= FSL_DMA_MR_CS;
 201	}
 202
 203	set_mr(chan, mode);
 204}
 205
 206static void dma_halt(struct fsldma_chan *chan)
 207{
 208	u32 mode;
 209	int i;
 210
 211	/* read the mode register */
 212	mode = get_mr(chan);
 213
 214	/*
 215	 * The 85xx controller supports channel abort, which will stop
 216	 * the current transfer. On 83xx, this bit is the transfer error
 217	 * mask bit, which should not be changed.
 218	 */
 219	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
 220		mode |= FSL_DMA_MR_CA;
 221		set_mr(chan, mode);
 222
 223		mode &= ~FSL_DMA_MR_CA;
 224	}
 225
 226	/* stop the DMA controller */
 227	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
 228	set_mr(chan, mode);
 229
 230	/* wait for the DMA controller to become idle */
 231	for (i = 0; i < 100; i++) {
 232		if (dma_is_idle(chan))
 233			return;
 234
 235		udelay(10);
 236	}
 237
 238	if (!dma_is_idle(chan))
 239		chan_err(chan, "DMA halt timeout!\n");
 240}
 241
 242/**
 243 * fsl_chan_set_src_loop_size - Set source address hold transfer size
 244 * @chan : Freescale DMA channel
 245 * @size     : Address loop size, 0 for disable loop
 246 *
 247 * The set source address hold transfer size. The source
 248 * address hold or loop transfer size is when the DMA transfer
 249 * data from source address (SA), if the loop size is 4, the DMA will
 250 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
 251 * SA + 1 ... and so on.
 252 */
 253static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
 254{
 255	u32 mode;
 256
 257	mode = get_mr(chan);
 258
 259	switch (size) {
 260	case 0:
 261		mode &= ~FSL_DMA_MR_SAHE;
 262		break;
 263	case 1:
 264	case 2:
 265	case 4:
 266	case 8:
 267		mode &= ~FSL_DMA_MR_SAHTS_MASK;
 268		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
 269		break;
 270	}
 271
 272	set_mr(chan, mode);
 273}
 274
 275/**
 276 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
 277 * @chan : Freescale DMA channel
 278 * @size     : Address loop size, 0 for disable loop
 279 *
 280 * The set destination address hold transfer size. The destination
 281 * address hold or loop transfer size is when the DMA transfer
 282 * data to destination address (TA), if the loop size is 4, the DMA will
 283 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
 284 * TA + 1 ... and so on.
 285 */
 286static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
 287{
 288	u32 mode;
 289
 290	mode = get_mr(chan);
 291
 292	switch (size) {
 293	case 0:
 294		mode &= ~FSL_DMA_MR_DAHE;
 295		break;
 296	case 1:
 297	case 2:
 298	case 4:
 299	case 8:
 300		mode &= ~FSL_DMA_MR_DAHTS_MASK;
 301		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
 302		break;
 303	}
 304
 305	set_mr(chan, mode);
 306}
 307
 308/**
 309 * fsl_chan_set_request_count - Set DMA Request Count for external control
 310 * @chan : Freescale DMA channel
 311 * @size     : Number of bytes to transfer in a single request
 312 *
 313 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 314 * The DMA request count is how many bytes are allowed to transfer before
 315 * pausing the channel, after which a new assertion of DREQ# resumes channel
 316 * operation.
 317 *
 318 * A size of 0 disables external pause control. The maximum size is 1024.
 319 */
 320static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
 321{
 322	u32 mode;
 323
 324	BUG_ON(size > 1024);
 325
 326	mode = get_mr(chan);
 327	mode &= ~FSL_DMA_MR_BWC_MASK;
 328	mode |= (__ilog2(size) << 24) & FSL_DMA_MR_BWC_MASK;
 329
 330	set_mr(chan, mode);
 331}
 332
 333/**
 334 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
 335 * @chan : Freescale DMA channel
 336 * @enable   : 0 is disabled, 1 is enabled.
 337 *
 338 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 339 * The DMA Request Count feature should be used in addition to this feature
 340 * to set the number of bytes to transfer before pausing the channel.
 341 */
 342static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
 343{
 344	if (enable)
 345		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
 346	else
 347		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
 348}
 349
 350/**
 351 * fsl_chan_toggle_ext_start - Toggle channel external start status
 352 * @chan : Freescale DMA channel
 353 * @enable   : 0 is disabled, 1 is enabled.
 354 *
 355 * If enable the external start, the channel can be started by an
 356 * external DMA start pin. So the dma_start() does not start the
 357 * transfer immediately. The DMA channel will wait for the
 358 * control pin asserted.
 359 */
 360static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
 361{
 362	if (enable)
 363		chan->feature |= FSL_DMA_CHAN_START_EXT;
 364	else
 365		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
 366}
 367
 368int fsl_dma_external_start(struct dma_chan *dchan, int enable)
 369{
 370	struct fsldma_chan *chan;
 371
 372	if (!dchan)
 373		return -EINVAL;
 374
 375	chan = to_fsl_chan(dchan);
 376
 377	fsl_chan_toggle_ext_start(chan, enable);
 378	return 0;
 379}
 380EXPORT_SYMBOL_GPL(fsl_dma_external_start);
 381
 382static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
 383{
 384	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
 385
 386	if (list_empty(&chan->ld_pending))
 387		goto out_splice;
 388
 389	/*
 390	 * Add the hardware descriptor to the chain of hardware descriptors
 391	 * that already exists in memory.
 392	 *
 393	 * This will un-set the EOL bit of the existing transaction, and the
 394	 * last link in this transaction will become the EOL descriptor.
 395	 */
 396	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
 397
 398	/*
 399	 * Add the software descriptor and all children to the list
 400	 * of pending transactions
 401	 */
 402out_splice:
 403	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
 404}
 405
 406static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
 407{
 408	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
 409	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
 410	struct fsl_desc_sw *child;
 411	dma_cookie_t cookie = -EINVAL;
 412
 413	spin_lock_bh(&chan->desc_lock);
 414
 415#ifdef CONFIG_PM
 416	if (unlikely(chan->pm_state != RUNNING)) {
 417		chan_dbg(chan, "cannot submit due to suspend\n");
 418		spin_unlock_bh(&chan->desc_lock);
 419		return -1;
 420	}
 421#endif
 422
 423	/*
 424	 * assign cookies to all of the software descriptors
 425	 * that make up this transaction
 426	 */
 427	list_for_each_entry(child, &desc->tx_list, node) {
 428		cookie = dma_cookie_assign(&child->async_tx);
 429	}
 430
 431	/* put this transaction onto the tail of the pending queue */
 432	append_ld_queue(chan, desc);
 433
 434	spin_unlock_bh(&chan->desc_lock);
 435
 436	return cookie;
 437}
 438
 439/**
 440 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
 441 * @chan : Freescale DMA channel
 442 * @desc: descriptor to be freed
 443 */
 444static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
 445		struct fsl_desc_sw *desc)
 446{
 447	list_del(&desc->node);
 448	chan_dbg(chan, "LD %p free\n", desc);
 449	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
 450}
 451
 452/**
 453 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
 454 * @chan : Freescale DMA channel
 455 *
 456 * Return - The descriptor allocated. NULL for failed.
 457 */
 458static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
 459{
 460	struct fsl_desc_sw *desc;
 461	dma_addr_t pdesc;
 462
 463	desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
 464	if (!desc) {
 465		chan_dbg(chan, "out of memory for link descriptor\n");
 466		return NULL;
 467	}
 468
 469	INIT_LIST_HEAD(&desc->tx_list);
 470	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
 471	desc->async_tx.tx_submit = fsl_dma_tx_submit;
 472	desc->async_tx.phys = pdesc;
 473
 474	chan_dbg(chan, "LD %p allocated\n", desc);
 475
 476	return desc;
 477}
 478
 479/**
 480 * fsldma_clean_completed_descriptor - free all descriptors which
 481 * has been completed and acked
 482 * @chan: Freescale DMA channel
 483 *
 484 * This function is used on all completed and acked descriptors.
 485 * All descriptors should only be freed in this function.
 486 */
 487static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
 488{
 489	struct fsl_desc_sw *desc, *_desc;
 490
 491	/* Run the callback for each descriptor, in order */
 492	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
 493		if (async_tx_test_ack(&desc->async_tx))
 494			fsl_dma_free_descriptor(chan, desc);
 495}
 496
 497/**
 498 * fsldma_run_tx_complete_actions - cleanup a single link descriptor
 499 * @chan: Freescale DMA channel
 500 * @desc: descriptor to cleanup and free
 501 * @cookie: Freescale DMA transaction identifier
 502 *
 503 * This function is used on a descriptor which has been executed by the DMA
 504 * controller. It will run any callbacks, submit any dependencies.
 505 */
 506static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
 507		struct fsl_desc_sw *desc, dma_cookie_t cookie)
 508{
 509	struct dma_async_tx_descriptor *txd = &desc->async_tx;
 510	dma_cookie_t ret = cookie;
 511
 512	BUG_ON(txd->cookie < 0);
 513
 514	if (txd->cookie > 0) {
 515		ret = txd->cookie;
 516
 517		dma_descriptor_unmap(txd);
 518		/* Run the link descriptor callback function */
 519		dmaengine_desc_get_callback_invoke(txd, NULL);
 520	}
 521
 522	/* Run any dependencies */
 523	dma_run_dependencies(txd);
 524
 525	return ret;
 526}
 527
 528/**
 529 * fsldma_clean_running_descriptor - move the completed descriptor from
 530 * ld_running to ld_completed
 531 * @chan: Freescale DMA channel
 532 * @desc: the descriptor which is completed
 533 *
 534 * Free the descriptor directly if acked by async_tx api, or move it to
 535 * queue ld_completed.
 536 */
 537static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
 538		struct fsl_desc_sw *desc)
 539{
 540	/* Remove from the list of transactions */
 541	list_del(&desc->node);
 542
 543	/*
 544	 * the client is allowed to attach dependent operations
 545	 * until 'ack' is set
 546	 */
 547	if (!async_tx_test_ack(&desc->async_tx)) {
 548		/*
 549		 * Move this descriptor to the list of descriptors which is
 550		 * completed, but still awaiting the 'ack' bit to be set.
 551		 */
 552		list_add_tail(&desc->node, &chan->ld_completed);
 553		return;
 554	}
 555
 556	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
 557}
 558
 559/**
 560 * fsl_chan_xfer_ld_queue - transfer any pending transactions
 561 * @chan : Freescale DMA channel
 562 *
 563 * HARDWARE STATE: idle
 564 * LOCKING: must hold chan->desc_lock
 565 */
 566static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
 567{
 568	struct fsl_desc_sw *desc;
 569
 570	/*
 571	 * If the list of pending descriptors is empty, then we
 572	 * don't need to do any work at all
 573	 */
 574	if (list_empty(&chan->ld_pending)) {
 575		chan_dbg(chan, "no pending LDs\n");
 576		return;
 577	}
 578
 579	/*
 580	 * The DMA controller is not idle, which means that the interrupt
 581	 * handler will start any queued transactions when it runs after
 582	 * this transaction finishes
 583	 */
 584	if (!chan->idle) {
 585		chan_dbg(chan, "DMA controller still busy\n");
 586		return;
 587	}
 588
 589	/*
 590	 * If there are some link descriptors which have not been
 591	 * transferred, we need to start the controller
 592	 */
 593
 594	/*
 595	 * Move all elements from the queue of pending transactions
 596	 * onto the list of running transactions
 597	 */
 598	chan_dbg(chan, "idle, starting controller\n");
 599	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
 600	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
 601
 602	/*
 603	 * The 85xx DMA controller doesn't clear the channel start bit
 604	 * automatically at the end of a transfer. Therefore we must clear
 605	 * it in software before starting the transfer.
 606	 */
 607	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
 608		u32 mode;
 609
 610		mode = get_mr(chan);
 611		mode &= ~FSL_DMA_MR_CS;
 612		set_mr(chan, mode);
 613	}
 614
 615	/*
 616	 * Program the descriptor's address into the DMA controller,
 617	 * then start the DMA transaction
 618	 */
 619	set_cdar(chan, desc->async_tx.phys);
 620	get_cdar(chan);
 621
 622	dma_start(chan);
 623	chan->idle = false;
 624}
 625
 626/**
 627 * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
 628 * and move them to ld_completed to free until flag 'ack' is set
 629 * @chan: Freescale DMA channel
 630 *
 631 * This function is used on descriptors which have been executed by the DMA
 632 * controller. It will run any callbacks, submit any dependencies, then
 633 * free these descriptors if flag 'ack' is set.
 634 */
 635static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
 636{
 637	struct fsl_desc_sw *desc, *_desc;
 638	dma_cookie_t cookie = 0;
 639	dma_addr_t curr_phys = get_cdar(chan);
 640	int seen_current = 0;
 641
 642	fsldma_clean_completed_descriptor(chan);
 643
 644	/* Run the callback for each descriptor, in order */
 645	list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
 646		/*
 647		 * do not advance past the current descriptor loaded into the
 648		 * hardware channel, subsequent descriptors are either in
 649		 * process or have not been submitted
 650		 */
 651		if (seen_current)
 652			break;
 653
 654		/*
 655		 * stop the search if we reach the current descriptor and the
 656		 * channel is busy
 657		 */
 658		if (desc->async_tx.phys == curr_phys) {
 659			seen_current = 1;
 660			if (!dma_is_idle(chan))
 661				break;
 662		}
 663
 664		cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
 665
 666		fsldma_clean_running_descriptor(chan, desc);
 667	}
 668
 669	/*
 670	 * Start any pending transactions automatically
 671	 *
 672	 * In the ideal case, we keep the DMA controller busy while we go
 673	 * ahead and free the descriptors below.
 674	 */
 675	fsl_chan_xfer_ld_queue(chan);
 676
 677	if (cookie > 0)
 678		chan->common.completed_cookie = cookie;
 679}
 680
 681/**
 682 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
 683 * @chan : Freescale DMA channel
 684 *
 685 * This function will create a dma pool for descriptor allocation.
 686 *
 687 * Return - The number of descriptors allocated.
 688 */
 689static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
 690{
 691	struct fsldma_chan *chan = to_fsl_chan(dchan);
 692
 693	/* Has this channel already been allocated? */
 694	if (chan->desc_pool)
 695		return 1;
 696
 697	/*
 698	 * We need the descriptor to be aligned to 32bytes
 699	 * for meeting FSL DMA specification requirement.
 700	 */
 701	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
 702					  sizeof(struct fsl_desc_sw),
 703					  __alignof__(struct fsl_desc_sw), 0);
 704	if (!chan->desc_pool) {
 705		chan_err(chan, "unable to allocate descriptor pool\n");
 706		return -ENOMEM;
 707	}
 708
 709	/* there is at least one descriptor free to be allocated */
 710	return 1;
 711}
 712
 713/**
 714 * fsldma_free_desc_list - Free all descriptors in a queue
 715 * @chan: Freescae DMA channel
 716 * @list: the list to free
 717 *
 718 * LOCKING: must hold chan->desc_lock
 719 */
 720static void fsldma_free_desc_list(struct fsldma_chan *chan,
 721				  struct list_head *list)
 722{
 723	struct fsl_desc_sw *desc, *_desc;
 724
 725	list_for_each_entry_safe(desc, _desc, list, node)
 726		fsl_dma_free_descriptor(chan, desc);
 727}
 728
 729static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
 730					  struct list_head *list)
 731{
 732	struct fsl_desc_sw *desc, *_desc;
 733
 734	list_for_each_entry_safe_reverse(desc, _desc, list, node)
 735		fsl_dma_free_descriptor(chan, desc);
 736}
 737
 738/**
 739 * fsl_dma_free_chan_resources - Free all resources of the channel.
 740 * @chan : Freescale DMA channel
 741 */
 742static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
 743{
 744	struct fsldma_chan *chan = to_fsl_chan(dchan);
 745
 746	chan_dbg(chan, "free all channel resources\n");
 747	spin_lock_bh(&chan->desc_lock);
 748	fsldma_cleanup_descriptors(chan);
 749	fsldma_free_desc_list(chan, &chan->ld_pending);
 750	fsldma_free_desc_list(chan, &chan->ld_running);
 751	fsldma_free_desc_list(chan, &chan->ld_completed);
 752	spin_unlock_bh(&chan->desc_lock);
 753
 754	dma_pool_destroy(chan->desc_pool);
 755	chan->desc_pool = NULL;
 756}
 757
 758static struct dma_async_tx_descriptor *
 759fsl_dma_prep_memcpy(struct dma_chan *dchan,
 760	dma_addr_t dma_dst, dma_addr_t dma_src,
 761	size_t len, unsigned long flags)
 762{
 763	struct fsldma_chan *chan;
 764	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
 765	size_t copy;
 766
 767	if (!dchan)
 768		return NULL;
 769
 770	if (!len)
 771		return NULL;
 772
 773	chan = to_fsl_chan(dchan);
 774
 775	do {
 776
 777		/* Allocate the link descriptor from DMA pool */
 778		new = fsl_dma_alloc_descriptor(chan);
 779		if (!new) {
 780			chan_err(chan, "%s\n", msg_ld_oom);
 781			goto fail;
 782		}
 783
 784		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
 785
 786		set_desc_cnt(chan, &new->hw, copy);
 787		set_desc_src(chan, &new->hw, dma_src);
 788		set_desc_dst(chan, &new->hw, dma_dst);
 789
 790		if (!first)
 791			first = new;
 792		else
 793			set_desc_next(chan, &prev->hw, new->async_tx.phys);
 794
 795		new->async_tx.cookie = 0;
 796		async_tx_ack(&new->async_tx);
 797
 798		prev = new;
 799		len -= copy;
 800		dma_src += copy;
 801		dma_dst += copy;
 802
 803		/* Insert the link descriptor to the LD ring */
 804		list_add_tail(&new->node, &first->tx_list);
 805	} while (len);
 806
 807	new->async_tx.flags = flags; /* client is in control of this ack */
 808	new->async_tx.cookie = -EBUSY;
 809
 810	/* Set End-of-link to the last link descriptor of new list */
 811	set_ld_eol(chan, new);
 812
 813	return &first->async_tx;
 814
 815fail:
 816	if (!first)
 817		return NULL;
 818
 819	fsldma_free_desc_list_reverse(chan, &first->tx_list);
 820	return NULL;
 821}
 822
 823static int fsl_dma_device_terminate_all(struct dma_chan *dchan)
 824{
 825	struct fsldma_chan *chan;
 826
 827	if (!dchan)
 828		return -EINVAL;
 829
 830	chan = to_fsl_chan(dchan);
 831
 832	spin_lock_bh(&chan->desc_lock);
 833
 834	/* Halt the DMA engine */
 835	dma_halt(chan);
 836
 837	/* Remove and free all of the descriptors in the LD queue */
 838	fsldma_free_desc_list(chan, &chan->ld_pending);
 839	fsldma_free_desc_list(chan, &chan->ld_running);
 840	fsldma_free_desc_list(chan, &chan->ld_completed);
 841	chan->idle = true;
 842
 843	spin_unlock_bh(&chan->desc_lock);
 844	return 0;
 845}
 846
 847static int fsl_dma_device_config(struct dma_chan *dchan,
 848				 struct dma_slave_config *config)
 849{
 850	struct fsldma_chan *chan;
 851	int size;
 852
 853	if (!dchan)
 854		return -EINVAL;
 855
 856	chan = to_fsl_chan(dchan);
 857
 858	/* make sure the channel supports setting burst size */
 859	if (!chan->set_request_count)
 860		return -ENXIO;
 861
 862	/* we set the controller burst size depending on direction */
 863	if (config->direction == DMA_MEM_TO_DEV)
 864		size = config->dst_addr_width * config->dst_maxburst;
 865	else
 866		size = config->src_addr_width * config->src_maxburst;
 867
 868	chan->set_request_count(chan, size);
 869	return 0;
 870}
 871
 872
 873/**
 874 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
 875 * @chan : Freescale DMA channel
 876 */
 877static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
 878{
 879	struct fsldma_chan *chan = to_fsl_chan(dchan);
 880
 881	spin_lock_bh(&chan->desc_lock);
 882	fsl_chan_xfer_ld_queue(chan);
 883	spin_unlock_bh(&chan->desc_lock);
 884}
 885
 886/**
 887 * fsl_tx_status - Determine the DMA status
 888 * @chan : Freescale DMA channel
 889 */
 890static enum dma_status fsl_tx_status(struct dma_chan *dchan,
 891					dma_cookie_t cookie,
 892					struct dma_tx_state *txstate)
 893{
 894	struct fsldma_chan *chan = to_fsl_chan(dchan);
 895	enum dma_status ret;
 896
 897	ret = dma_cookie_status(dchan, cookie, txstate);
 898	if (ret == DMA_COMPLETE)
 899		return ret;
 900
 901	spin_lock_bh(&chan->desc_lock);
 902	fsldma_cleanup_descriptors(chan);
 903	spin_unlock_bh(&chan->desc_lock);
 904
 905	return dma_cookie_status(dchan, cookie, txstate);
 906}
 907
 908/*----------------------------------------------------------------------------*/
 909/* Interrupt Handling                                                         */
 910/*----------------------------------------------------------------------------*/
 911
 912static irqreturn_t fsldma_chan_irq(int irq, void *data)
 913{
 914	struct fsldma_chan *chan = data;
 915	u32 stat;
 916
 917	/* save and clear the status register */
 918	stat = get_sr(chan);
 919	set_sr(chan, stat);
 920	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
 921
 922	/* check that this was really our device */
 923	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
 924	if (!stat)
 925		return IRQ_NONE;
 926
 927	if (stat & FSL_DMA_SR_TE)
 928		chan_err(chan, "Transfer Error!\n");
 929
 930	/*
 931	 * Programming Error
 932	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
 933	 * trigger a PE interrupt.
 934	 */
 935	if (stat & FSL_DMA_SR_PE) {
 936		chan_dbg(chan, "irq: Programming Error INT\n");
 937		stat &= ~FSL_DMA_SR_PE;
 938		if (get_bcr(chan) != 0)
 939			chan_err(chan, "Programming Error!\n");
 940	}
 941
 942	/*
 943	 * For MPC8349, EOCDI event need to update cookie
 944	 * and start the next transfer if it exist.
 945	 */
 946	if (stat & FSL_DMA_SR_EOCDI) {
 947		chan_dbg(chan, "irq: End-of-Chain link INT\n");
 948		stat &= ~FSL_DMA_SR_EOCDI;
 949	}
 950
 951	/*
 952	 * If it current transfer is the end-of-transfer,
 953	 * we should clear the Channel Start bit for
 954	 * prepare next transfer.
 955	 */
 956	if (stat & FSL_DMA_SR_EOLNI) {
 957		chan_dbg(chan, "irq: End-of-link INT\n");
 958		stat &= ~FSL_DMA_SR_EOLNI;
 959	}
 960
 961	/* check that the DMA controller is really idle */
 962	if (!dma_is_idle(chan))
 963		chan_err(chan, "irq: controller not idle!\n");
 964
 965	/* check that we handled all of the bits */
 966	if (stat)
 967		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
 968
 969	/*
 970	 * Schedule the tasklet to handle all cleanup of the current
 971	 * transaction. It will start a new transaction if there is
 972	 * one pending.
 973	 */
 974	tasklet_schedule(&chan->tasklet);
 975	chan_dbg(chan, "irq: Exit\n");
 976	return IRQ_HANDLED;
 977}
 978
 979static void dma_do_tasklet(unsigned long data)
 980{
 981	struct fsldma_chan *chan = (struct fsldma_chan *)data;
 982
 983	chan_dbg(chan, "tasklet entry\n");
 984
 985	spin_lock(&chan->desc_lock);
 986
 987	/* the hardware is now idle and ready for more */
 988	chan->idle = true;
 989
 990	/* Run all cleanup for descriptors which have been completed */
 991	fsldma_cleanup_descriptors(chan);
 992
 993	spin_unlock(&chan->desc_lock);
 994
 995	chan_dbg(chan, "tasklet exit\n");
 996}
 997
 998static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
 999{
1000	struct fsldma_device *fdev = data;
1001	struct fsldma_chan *chan;
1002	unsigned int handled = 0;
1003	u32 gsr, mask;
1004	int i;
1005
1006	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1007						   : in_le32(fdev->regs);
1008	mask = 0xff000000;
1009	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1010
1011	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1012		chan = fdev->chan[i];
1013		if (!chan)
1014			continue;
1015
1016		if (gsr & mask) {
1017			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1018			fsldma_chan_irq(irq, chan);
1019			handled++;
1020		}
1021
1022		gsr &= ~mask;
1023		mask >>= 8;
1024	}
1025
1026	return IRQ_RETVAL(handled);
1027}
1028
1029static void fsldma_free_irqs(struct fsldma_device *fdev)
1030{
1031	struct fsldma_chan *chan;
1032	int i;
1033
1034	if (fdev->irq) {
1035		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1036		free_irq(fdev->irq, fdev);
1037		return;
1038	}
1039
1040	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1041		chan = fdev->chan[i];
1042		if (chan && chan->irq) {
1043			chan_dbg(chan, "free per-channel IRQ\n");
1044			free_irq(chan->irq, chan);
1045		}
1046	}
1047}
1048
1049static int fsldma_request_irqs(struct fsldma_device *fdev)
1050{
1051	struct fsldma_chan *chan;
1052	int ret;
1053	int i;
1054
1055	/* if we have a per-controller IRQ, use that */
1056	if (fdev->irq) {
1057		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1058		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1059				  "fsldma-controller", fdev);
1060		return ret;
1061	}
1062
1063	/* no per-controller IRQ, use the per-channel IRQs */
1064	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1065		chan = fdev->chan[i];
1066		if (!chan)
1067			continue;
1068
1069		if (!chan->irq) {
1070			chan_err(chan, "interrupts property missing in device tree\n");
1071			ret = -ENODEV;
1072			goto out_unwind;
1073		}
1074
1075		chan_dbg(chan, "request per-channel IRQ\n");
1076		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1077				  "fsldma-chan", chan);
1078		if (ret) {
1079			chan_err(chan, "unable to request per-channel IRQ\n");
1080			goto out_unwind;
1081		}
1082	}
1083
1084	return 0;
1085
1086out_unwind:
1087	for (/* none */; i >= 0; i--) {
1088		chan = fdev->chan[i];
1089		if (!chan)
1090			continue;
1091
1092		if (!chan->irq)
1093			continue;
1094
1095		free_irq(chan->irq, chan);
1096	}
1097
1098	return ret;
1099}
1100
1101/*----------------------------------------------------------------------------*/
1102/* OpenFirmware Subsystem                                                     */
1103/*----------------------------------------------------------------------------*/
1104
1105static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1106	struct device_node *node, u32 feature, const char *compatible)
1107{
1108	struct fsldma_chan *chan;
1109	struct resource res;
1110	int err;
1111
1112	/* alloc channel */
1113	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1114	if (!chan) {
1115		err = -ENOMEM;
1116		goto out_return;
1117	}
1118
1119	/* ioremap registers for use */
1120	chan->regs = of_iomap(node, 0);
1121	if (!chan->regs) {
1122		dev_err(fdev->dev, "unable to ioremap registers\n");
1123		err = -ENOMEM;
1124		goto out_free_chan;
1125	}
1126
1127	err = of_address_to_resource(node, 0, &res);
1128	if (err) {
1129		dev_err(fdev->dev, "unable to find 'reg' property\n");
1130		goto out_iounmap_regs;
1131	}
1132
1133	chan->feature = feature;
1134	if (!fdev->feature)
1135		fdev->feature = chan->feature;
1136
1137	/*
1138	 * If the DMA device's feature is different than the feature
1139	 * of its channels, report the bug
1140	 */
1141	WARN_ON(fdev->feature != chan->feature);
1142
1143	chan->dev = fdev->dev;
1144	chan->id = (res.start & 0xfff) < 0x300 ?
1145		   ((res.start - 0x100) & 0xfff) >> 7 :
1146		   ((res.start - 0x200) & 0xfff) >> 7;
1147	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1148		dev_err(fdev->dev, "too many channels for device\n");
1149		err = -EINVAL;
1150		goto out_iounmap_regs;
1151	}
1152
1153	fdev->chan[chan->id] = chan;
1154	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1155	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1156
1157	/* Initialize the channel */
1158	dma_init(chan);
1159
1160	/* Clear cdar registers */
1161	set_cdar(chan, 0);
1162
1163	switch (chan->feature & FSL_DMA_IP_MASK) {
1164	case FSL_DMA_IP_85XX:
1165		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1166		/* Fall through */
1167	case FSL_DMA_IP_83XX:
1168		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1169		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1170		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1171		chan->set_request_count = fsl_chan_set_request_count;
1172	}
1173
1174	spin_lock_init(&chan->desc_lock);
1175	INIT_LIST_HEAD(&chan->ld_pending);
1176	INIT_LIST_HEAD(&chan->ld_running);
1177	INIT_LIST_HEAD(&chan->ld_completed);
1178	chan->idle = true;
1179#ifdef CONFIG_PM
1180	chan->pm_state = RUNNING;
1181#endif
1182
1183	chan->common.device = &fdev->common;
1184	dma_cookie_init(&chan->common);
1185
1186	/* find the IRQ line, if it exists in the device tree */
1187	chan->irq = irq_of_parse_and_map(node, 0);
1188
1189	/* Add the channel to DMA device channel list */
1190	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1191
1192	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1193		 chan->irq ? chan->irq : fdev->irq);
1194
1195	return 0;
1196
1197out_iounmap_regs:
1198	iounmap(chan->regs);
1199out_free_chan:
1200	kfree(chan);
1201out_return:
1202	return err;
1203}
1204
1205static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1206{
1207	irq_dispose_mapping(chan->irq);
1208	list_del(&chan->common.device_node);
1209	iounmap(chan->regs);
1210	kfree(chan);
1211}
1212
1213static int fsldma_of_probe(struct platform_device *op)
1214{
1215	struct fsldma_device *fdev;
1216	struct device_node *child;
 
1217	int err;
1218
1219	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1220	if (!fdev) {
1221		err = -ENOMEM;
1222		goto out_return;
1223	}
1224
1225	fdev->dev = &op->dev;
1226	INIT_LIST_HEAD(&fdev->common.channels);
1227
1228	/* ioremap the registers for use */
1229	fdev->regs = of_iomap(op->dev.of_node, 0);
1230	if (!fdev->regs) {
1231		dev_err(&op->dev, "unable to ioremap registers\n");
1232		err = -ENOMEM;
1233		goto out_free;
1234	}
1235
1236	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1237	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1238
1239	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1240	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1241	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1242	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1243	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1244	fdev->common.device_tx_status = fsl_tx_status;
1245	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1246	fdev->common.device_config = fsl_dma_device_config;
1247	fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1248	fdev->common.dev = &op->dev;
1249
1250	fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS;
1251	fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS;
1252	fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1253	fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1254
1255	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1256
1257	platform_set_drvdata(op, fdev);
1258
1259	/*
1260	 * We cannot use of_platform_bus_probe() because there is no
1261	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1262	 * channel object.
1263	 */
1264	for_each_child_of_node(op->dev.of_node, child) {
1265		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1266			fsl_dma_chan_probe(fdev, child,
1267				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1268				"fsl,eloplus-dma-channel");
1269		}
1270
1271		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1272			fsl_dma_chan_probe(fdev, child,
1273				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1274				"fsl,elo-dma-channel");
1275		}
1276	}
1277
1278	/*
1279	 * Hookup the IRQ handler(s)
1280	 *
1281	 * If we have a per-controller interrupt, we prefer that to the
1282	 * per-channel interrupts to reduce the number of shared interrupt
1283	 * handlers on the same IRQ line
1284	 */
1285	err = fsldma_request_irqs(fdev);
1286	if (err) {
1287		dev_err(fdev->dev, "unable to request IRQs\n");
1288		goto out_free_fdev;
1289	}
1290
1291	dma_async_device_register(&fdev->common);
1292	return 0;
1293
1294out_free_fdev:
 
 
 
 
1295	irq_dispose_mapping(fdev->irq);
1296	iounmap(fdev->regs);
1297out_free:
1298	kfree(fdev);
1299out_return:
1300	return err;
1301}
1302
1303static int fsldma_of_remove(struct platform_device *op)
1304{
1305	struct fsldma_device *fdev;
1306	unsigned int i;
1307
1308	fdev = platform_get_drvdata(op);
1309	dma_async_device_unregister(&fdev->common);
1310
1311	fsldma_free_irqs(fdev);
1312
1313	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1314		if (fdev->chan[i])
1315			fsl_dma_chan_remove(fdev->chan[i]);
1316	}
 
1317
1318	iounmap(fdev->regs);
1319	kfree(fdev);
1320
1321	return 0;
1322}
1323
1324#ifdef CONFIG_PM
1325static int fsldma_suspend_late(struct device *dev)
1326{
1327	struct fsldma_device *fdev = dev_get_drvdata(dev);
1328	struct fsldma_chan *chan;
1329	int i;
1330
1331	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1332		chan = fdev->chan[i];
1333		if (!chan)
1334			continue;
1335
1336		spin_lock_bh(&chan->desc_lock);
1337		if (unlikely(!chan->idle))
1338			goto out;
1339		chan->regs_save.mr = get_mr(chan);
1340		chan->pm_state = SUSPENDED;
1341		spin_unlock_bh(&chan->desc_lock);
1342	}
1343	return 0;
1344
1345out:
1346	for (; i >= 0; i--) {
1347		chan = fdev->chan[i];
1348		if (!chan)
1349			continue;
1350		chan->pm_state = RUNNING;
1351		spin_unlock_bh(&chan->desc_lock);
1352	}
1353	return -EBUSY;
1354}
1355
1356static int fsldma_resume_early(struct device *dev)
1357{
1358	struct fsldma_device *fdev = dev_get_drvdata(dev);
1359	struct fsldma_chan *chan;
1360	u32 mode;
1361	int i;
1362
1363	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1364		chan = fdev->chan[i];
1365		if (!chan)
1366			continue;
1367
1368		spin_lock_bh(&chan->desc_lock);
1369		mode = chan->regs_save.mr
1370			& ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1371		set_mr(chan, mode);
1372		chan->pm_state = RUNNING;
1373		spin_unlock_bh(&chan->desc_lock);
1374	}
1375
1376	return 0;
1377}
1378
1379static const struct dev_pm_ops fsldma_pm_ops = {
1380	.suspend_late	= fsldma_suspend_late,
1381	.resume_early	= fsldma_resume_early,
1382};
1383#endif
1384
1385static const struct of_device_id fsldma_of_ids[] = {
1386	{ .compatible = "fsl,elo3-dma", },
1387	{ .compatible = "fsl,eloplus-dma", },
1388	{ .compatible = "fsl,elo-dma", },
1389	{}
1390};
1391MODULE_DEVICE_TABLE(of, fsldma_of_ids);
1392
1393static struct platform_driver fsldma_of_driver = {
1394	.driver = {
1395		.name = "fsl-elo-dma",
1396		.of_match_table = fsldma_of_ids,
1397#ifdef CONFIG_PM
1398		.pm = &fsldma_pm_ops,
1399#endif
1400	},
1401	.probe = fsldma_of_probe,
1402	.remove = fsldma_of_remove,
1403};
1404
1405/*----------------------------------------------------------------------------*/
1406/* Module Init / Exit                                                         */
1407/*----------------------------------------------------------------------------*/
1408
1409static __init int fsldma_init(void)
1410{
1411	pr_info("Freescale Elo series DMA driver\n");
1412	return platform_driver_register(&fsldma_of_driver);
1413}
1414
1415static void __exit fsldma_exit(void)
1416{
1417	platform_driver_unregister(&fsldma_of_driver);
1418}
1419
1420subsys_initcall(fsldma_init);
1421module_exit(fsldma_exit);
1422
1423MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1424MODULE_LICENSE("GPL");