Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Freescale MPC85xx, MPC83xx DMA Engine support
   4 *
   5 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
   6 *
   7 * Author:
   8 *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
   9 *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
  10 *
  11 * Description:
  12 *   DMA engine driver for Freescale MPC8540 DMA controller, which is
  13 *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
  14 *   The support for MPC8349 DMA controller is also added.
  15 *
  16 * This driver instructs the DMA controller to issue the PCI Read Multiple
  17 * command for PCI read operations, instead of using the default PCI Read Line
  18 * command. Please be aware that this setting may result in read pre-fetching
  19 * on some platforms.
 
 
 
 
 
 
  20 */
  21
  22#include <linux/init.h>
  23#include <linux/module.h>
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include <linux/interrupt.h>
  27#include <linux/dmaengine.h>
  28#include <linux/delay.h>
  29#include <linux/dma-mapping.h>
  30#include <linux/dmapool.h>
  31#include <linux/of.h>
  32#include <linux/of_address.h>
  33#include <linux/of_irq.h>
  34#include <linux/platform_device.h>
  35#include <linux/fsldma.h>
  36#include "dmaengine.h"
  37#include "fsldma.h"
  38
  39#define chan_dbg(chan, fmt, arg...)					\
  40	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
  41#define chan_err(chan, fmt, arg...)					\
  42	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
  43
  44static const char msg_ld_oom[] = "No free memory for link descriptor";
  45
  46/*
  47 * Register Helpers
  48 */
  49
  50static void set_sr(struct fsldma_chan *chan, u32 val)
  51{
  52	FSL_DMA_OUT(chan, &chan->regs->sr, val, 32);
  53}
  54
  55static u32 get_sr(struct fsldma_chan *chan)
  56{
  57	return FSL_DMA_IN(chan, &chan->regs->sr, 32);
  58}
  59
  60static void set_mr(struct fsldma_chan *chan, u32 val)
  61{
  62	FSL_DMA_OUT(chan, &chan->regs->mr, val, 32);
  63}
  64
  65static u32 get_mr(struct fsldma_chan *chan)
  66{
  67	return FSL_DMA_IN(chan, &chan->regs->mr, 32);
  68}
  69
  70static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
  71{
  72	FSL_DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
  73}
  74
  75static dma_addr_t get_cdar(struct fsldma_chan *chan)
  76{
  77	return FSL_DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
  78}
  79
  80static void set_bcr(struct fsldma_chan *chan, u32 val)
  81{
  82	FSL_DMA_OUT(chan, &chan->regs->bcr, val, 32);
  83}
  84
  85static u32 get_bcr(struct fsldma_chan *chan)
  86{
  87	return FSL_DMA_IN(chan, &chan->regs->bcr, 32);
  88}
  89
  90/*
  91 * Descriptor Helpers
  92 */
  93
  94static void set_desc_cnt(struct fsldma_chan *chan,
  95				struct fsl_dma_ld_hw *hw, u32 count)
  96{
  97	hw->count = CPU_TO_DMA(chan, count, 32);
  98}
  99
 
 
 
 
 
 100static void set_desc_src(struct fsldma_chan *chan,
 101			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
 102{
 103	u64 snoop_bits;
 104
 105	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 106		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
 107	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
 108}
 109
 
 
 
 
 
 
 
 
 
 
 110static void set_desc_dst(struct fsldma_chan *chan,
 111			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
 112{
 113	u64 snoop_bits;
 114
 115	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 116		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
 117	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
 118}
 119
 
 
 
 
 
 
 
 
 
 
 120static void set_desc_next(struct fsldma_chan *chan,
 121			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
 122{
 123	u64 snoop_bits;
 124
 125	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
 126		? FSL_DMA_SNEN : 0;
 127	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
 128}
 129
 130static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
 131{
 132	u64 snoop_bits;
 133
 134	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
 135		? FSL_DMA_SNEN : 0;
 136
 137	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
 138		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
 139			| snoop_bits, 64);
 140}
 141
 142/*
 143 * DMA Engine Hardware Control Helpers
 144 */
 145
 146static void dma_init(struct fsldma_chan *chan)
 147{
 148	/* Reset the channel */
 149	set_mr(chan, 0);
 150
 151	switch (chan->feature & FSL_DMA_IP_MASK) {
 152	case FSL_DMA_IP_85XX:
 153		/* Set the channel to below modes:
 154		 * EIE - Error interrupt enable
 155		 * EOLNIE - End of links interrupt enable
 156		 * BWC - Bandwidth sharing among channels
 157		 */
 158		set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
 159			| FSL_DMA_MR_EOLNIE);
 160		break;
 161	case FSL_DMA_IP_83XX:
 162		/* Set the channel to below modes:
 163		 * EOTIE - End-of-transfer interrupt enable
 164		 * PRC_RM - PCI read multiple
 165		 */
 166		set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
 
 167		break;
 168	}
 169}
 170
 171static int dma_is_idle(struct fsldma_chan *chan)
 172{
 173	u32 sr = get_sr(chan);
 174	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
 175}
 176
 177/*
 178 * Start the DMA controller
 179 *
 180 * Preconditions:
 181 * - the CDAR register must point to the start descriptor
 182 * - the MRn[CS] bit must be cleared
 183 */
 184static void dma_start(struct fsldma_chan *chan)
 185{
 186	u32 mode;
 187
 188	mode = get_mr(chan);
 189
 190	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
 191		set_bcr(chan, 0);
 192		mode |= FSL_DMA_MR_EMP_EN;
 193	} else {
 194		mode &= ~FSL_DMA_MR_EMP_EN;
 195	}
 196
 197	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
 198		mode |= FSL_DMA_MR_EMS_EN;
 199	} else {
 200		mode &= ~FSL_DMA_MR_EMS_EN;
 201		mode |= FSL_DMA_MR_CS;
 202	}
 203
 204	set_mr(chan, mode);
 205}
 206
 207static void dma_halt(struct fsldma_chan *chan)
 208{
 209	u32 mode;
 210	int i;
 211
 212	/* read the mode register */
 213	mode = get_mr(chan);
 214
 215	/*
 216	 * The 85xx controller supports channel abort, which will stop
 217	 * the current transfer. On 83xx, this bit is the transfer error
 218	 * mask bit, which should not be changed.
 219	 */
 220	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
 221		mode |= FSL_DMA_MR_CA;
 222		set_mr(chan, mode);
 223
 224		mode &= ~FSL_DMA_MR_CA;
 225	}
 226
 227	/* stop the DMA controller */
 228	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
 229	set_mr(chan, mode);
 230
 231	/* wait for the DMA controller to become idle */
 232	for (i = 0; i < 100; i++) {
 233		if (dma_is_idle(chan))
 234			return;
 235
 236		udelay(10);
 237	}
 238
 239	if (!dma_is_idle(chan))
 240		chan_err(chan, "DMA halt timeout!\n");
 241}
 242
 243/**
 244 * fsl_chan_set_src_loop_size - Set source address hold transfer size
 245 * @chan : Freescale DMA channel
 246 * @size     : Address loop size, 0 for disable loop
 247 *
 248 * The set source address hold transfer size. The source
 249 * address hold or loop transfer size is when the DMA transfer
 250 * data from source address (SA), if the loop size is 4, the DMA will
 251 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
 252 * SA + 1 ... and so on.
 253 */
 254static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
 255{
 256	u32 mode;
 257
 258	mode = get_mr(chan);
 259
 260	switch (size) {
 261	case 0:
 262		mode &= ~FSL_DMA_MR_SAHE;
 263		break;
 264	case 1:
 265	case 2:
 266	case 4:
 267	case 8:
 268		mode &= ~FSL_DMA_MR_SAHTS_MASK;
 269		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
 270		break;
 271	}
 272
 273	set_mr(chan, mode);
 274}
 275
 276/**
 277 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
 278 * @chan : Freescale DMA channel
 279 * @size     : Address loop size, 0 for disable loop
 280 *
 281 * The set destination address hold transfer size. The destination
 282 * address hold or loop transfer size is when the DMA transfer
 283 * data to destination address (TA), if the loop size is 4, the DMA will
 284 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
 285 * TA + 1 ... and so on.
 286 */
 287static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
 288{
 289	u32 mode;
 290
 291	mode = get_mr(chan);
 292
 293	switch (size) {
 294	case 0:
 295		mode &= ~FSL_DMA_MR_DAHE;
 296		break;
 297	case 1:
 298	case 2:
 299	case 4:
 300	case 8:
 301		mode &= ~FSL_DMA_MR_DAHTS_MASK;
 302		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
 303		break;
 304	}
 305
 306	set_mr(chan, mode);
 307}
 308
 309/**
 310 * fsl_chan_set_request_count - Set DMA Request Count for external control
 311 * @chan : Freescale DMA channel
 312 * @size     : Number of bytes to transfer in a single request
 313 *
 314 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 315 * The DMA request count is how many bytes are allowed to transfer before
 316 * pausing the channel, after which a new assertion of DREQ# resumes channel
 317 * operation.
 318 *
 319 * A size of 0 disables external pause control. The maximum size is 1024.
 320 */
 321static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
 322{
 323	u32 mode;
 324
 325	BUG_ON(size > 1024);
 326
 327	mode = get_mr(chan);
 328	mode &= ~FSL_DMA_MR_BWC_MASK;
 329	mode |= (__ilog2(size) << 24) & FSL_DMA_MR_BWC_MASK;
 330
 331	set_mr(chan, mode);
 332}
 333
 334/**
 335 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
 336 * @chan : Freescale DMA channel
 337 * @enable   : 0 is disabled, 1 is enabled.
 338 *
 339 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 340 * The DMA Request Count feature should be used in addition to this feature
 341 * to set the number of bytes to transfer before pausing the channel.
 342 */
 343static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
 344{
 345	if (enable)
 346		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
 347	else
 348		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
 349}
 350
 351/**
 352 * fsl_chan_toggle_ext_start - Toggle channel external start status
 353 * @chan : Freescale DMA channel
 354 * @enable   : 0 is disabled, 1 is enabled.
 355 *
 356 * If enable the external start, the channel can be started by an
 357 * external DMA start pin. So the dma_start() does not start the
 358 * transfer immediately. The DMA channel will wait for the
 359 * control pin asserted.
 360 */
 361static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
 362{
 363	if (enable)
 364		chan->feature |= FSL_DMA_CHAN_START_EXT;
 365	else
 366		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
 367}
 368
 369int fsl_dma_external_start(struct dma_chan *dchan, int enable)
 370{
 371	struct fsldma_chan *chan;
 372
 373	if (!dchan)
 374		return -EINVAL;
 375
 376	chan = to_fsl_chan(dchan);
 377
 378	fsl_chan_toggle_ext_start(chan, enable);
 379	return 0;
 380}
 381EXPORT_SYMBOL_GPL(fsl_dma_external_start);
 382
 383static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
 384{
 385	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
 386
 387	if (list_empty(&chan->ld_pending))
 388		goto out_splice;
 389
 390	/*
 391	 * Add the hardware descriptor to the chain of hardware descriptors
 392	 * that already exists in memory.
 393	 *
 394	 * This will un-set the EOL bit of the existing transaction, and the
 395	 * last link in this transaction will become the EOL descriptor.
 396	 */
 397	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
 398
 399	/*
 400	 * Add the software descriptor and all children to the list
 401	 * of pending transactions
 402	 */
 403out_splice:
 404	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
 405}
 406
 407static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
 408{
 409	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
 410	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
 411	struct fsl_desc_sw *child;
 412	dma_cookie_t cookie = -EINVAL;
 413
 414	spin_lock_bh(&chan->desc_lock);
 415
 416#ifdef CONFIG_PM
 417	if (unlikely(chan->pm_state != RUNNING)) {
 418		chan_dbg(chan, "cannot submit due to suspend\n");
 419		spin_unlock_bh(&chan->desc_lock);
 420		return -1;
 421	}
 422#endif
 423
 424	/*
 425	 * assign cookies to all of the software descriptors
 426	 * that make up this transaction
 427	 */
 428	list_for_each_entry(child, &desc->tx_list, node) {
 429		cookie = dma_cookie_assign(&child->async_tx);
 430	}
 431
 432	/* put this transaction onto the tail of the pending queue */
 433	append_ld_queue(chan, desc);
 434
 435	spin_unlock_bh(&chan->desc_lock);
 436
 437	return cookie;
 438}
 439
 440/**
 441 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
 442 * @chan : Freescale DMA channel
 443 * @desc: descriptor to be freed
 444 */
 445static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
 446		struct fsl_desc_sw *desc)
 447{
 448	list_del(&desc->node);
 449	chan_dbg(chan, "LD %p free\n", desc);
 450	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
 451}
 452
 453/**
 454 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
 455 * @chan : Freescale DMA channel
 456 *
 457 * Return - The descriptor allocated. NULL for failed.
 458 */
 459static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
 460{
 461	struct fsl_desc_sw *desc;
 462	dma_addr_t pdesc;
 463
 464	desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
 465	if (!desc) {
 466		chan_dbg(chan, "out of memory for link descriptor\n");
 467		return NULL;
 468	}
 469
 
 470	INIT_LIST_HEAD(&desc->tx_list);
 471	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
 472	desc->async_tx.tx_submit = fsl_dma_tx_submit;
 473	desc->async_tx.phys = pdesc;
 474
 
 475	chan_dbg(chan, "LD %p allocated\n", desc);
 
 476
 477	return desc;
 478}
 479
 480/**
 481 * fsldma_clean_completed_descriptor - free all descriptors which
 482 * has been completed and acked
 483 * @chan: Freescale DMA channel
 484 *
 485 * This function is used on all completed and acked descriptors.
 486 * All descriptors should only be freed in this function.
 487 */
 488static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
 489{
 490	struct fsl_desc_sw *desc, *_desc;
 491
 492	/* Run the callback for each descriptor, in order */
 493	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
 494		if (async_tx_test_ack(&desc->async_tx))
 495			fsl_dma_free_descriptor(chan, desc);
 496}
 497
 498/**
 499 * fsldma_run_tx_complete_actions - cleanup a single link descriptor
 500 * @chan: Freescale DMA channel
 501 * @desc: descriptor to cleanup and free
 502 * @cookie: Freescale DMA transaction identifier
 503 *
 504 * This function is used on a descriptor which has been executed by the DMA
 505 * controller. It will run any callbacks, submit any dependencies.
 506 */
 507static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
 508		struct fsl_desc_sw *desc, dma_cookie_t cookie)
 509{
 510	struct dma_async_tx_descriptor *txd = &desc->async_tx;
 511	dma_cookie_t ret = cookie;
 512
 513	BUG_ON(txd->cookie < 0);
 514
 515	if (txd->cookie > 0) {
 516		ret = txd->cookie;
 517
 518		dma_descriptor_unmap(txd);
 519		/* Run the link descriptor callback function */
 520		dmaengine_desc_get_callback_invoke(txd, NULL);
 521	}
 522
 523	/* Run any dependencies */
 524	dma_run_dependencies(txd);
 525
 526	return ret;
 527}
 528
 529/**
 530 * fsldma_clean_running_descriptor - move the completed descriptor from
 531 * ld_running to ld_completed
 532 * @chan: Freescale DMA channel
 533 * @desc: the descriptor which is completed
 534 *
 535 * Free the descriptor directly if acked by async_tx api, or move it to
 536 * queue ld_completed.
 537 */
 538static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
 539		struct fsl_desc_sw *desc)
 540{
 541	/* Remove from the list of transactions */
 542	list_del(&desc->node);
 543
 544	/*
 545	 * the client is allowed to attach dependent operations
 546	 * until 'ack' is set
 547	 */
 548	if (!async_tx_test_ack(&desc->async_tx)) {
 549		/*
 550		 * Move this descriptor to the list of descriptors which is
 551		 * completed, but still awaiting the 'ack' bit to be set.
 552		 */
 553		list_add_tail(&desc->node, &chan->ld_completed);
 554		return;
 555	}
 556
 557	dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
 558}
 559
 560/**
 561 * fsl_chan_xfer_ld_queue - transfer any pending transactions
 562 * @chan : Freescale DMA channel
 563 *
 564 * HARDWARE STATE: idle
 565 * LOCKING: must hold chan->desc_lock
 566 */
 567static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
 568{
 569	struct fsl_desc_sw *desc;
 570
 571	/*
 572	 * If the list of pending descriptors is empty, then we
 573	 * don't need to do any work at all
 574	 */
 575	if (list_empty(&chan->ld_pending)) {
 576		chan_dbg(chan, "no pending LDs\n");
 577		return;
 578	}
 579
 580	/*
 581	 * The DMA controller is not idle, which means that the interrupt
 582	 * handler will start any queued transactions when it runs after
 583	 * this transaction finishes
 584	 */
 585	if (!chan->idle) {
 586		chan_dbg(chan, "DMA controller still busy\n");
 587		return;
 588	}
 589
 590	/*
 591	 * If there are some link descriptors which have not been
 592	 * transferred, we need to start the controller
 593	 */
 594
 595	/*
 596	 * Move all elements from the queue of pending transactions
 597	 * onto the list of running transactions
 598	 */
 599	chan_dbg(chan, "idle, starting controller\n");
 600	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
 601	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
 602
 603	/*
 604	 * The 85xx DMA controller doesn't clear the channel start bit
 605	 * automatically at the end of a transfer. Therefore we must clear
 606	 * it in software before starting the transfer.
 607	 */
 608	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
 609		u32 mode;
 610
 611		mode = get_mr(chan);
 612		mode &= ~FSL_DMA_MR_CS;
 613		set_mr(chan, mode);
 614	}
 615
 616	/*
 617	 * Program the descriptor's address into the DMA controller,
 618	 * then start the DMA transaction
 619	 */
 620	set_cdar(chan, desc->async_tx.phys);
 621	get_cdar(chan);
 622
 623	dma_start(chan);
 624	chan->idle = false;
 625}
 626
 627/**
 628 * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
 629 * and move them to ld_completed to free until flag 'ack' is set
 630 * @chan: Freescale DMA channel
 631 *
 632 * This function is used on descriptors which have been executed by the DMA
 633 * controller. It will run any callbacks, submit any dependencies, then
 634 * free these descriptors if flag 'ack' is set.
 635 */
 636static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
 637{
 638	struct fsl_desc_sw *desc, *_desc;
 639	dma_cookie_t cookie = 0;
 640	dma_addr_t curr_phys = get_cdar(chan);
 641	int seen_current = 0;
 642
 643	fsldma_clean_completed_descriptor(chan);
 644
 645	/* Run the callback for each descriptor, in order */
 646	list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
 647		/*
 648		 * do not advance past the current descriptor loaded into the
 649		 * hardware channel, subsequent descriptors are either in
 650		 * process or have not been submitted
 651		 */
 652		if (seen_current)
 653			break;
 654
 655		/*
 656		 * stop the search if we reach the current descriptor and the
 657		 * channel is busy
 658		 */
 659		if (desc->async_tx.phys == curr_phys) {
 660			seen_current = 1;
 661			if (!dma_is_idle(chan))
 662				break;
 663		}
 664
 665		cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
 666
 667		fsldma_clean_running_descriptor(chan, desc);
 668	}
 669
 670	/*
 671	 * Start any pending transactions automatically
 672	 *
 673	 * In the ideal case, we keep the DMA controller busy while we go
 674	 * ahead and free the descriptors below.
 675	 */
 676	fsl_chan_xfer_ld_queue(chan);
 677
 678	if (cookie > 0)
 679		chan->common.completed_cookie = cookie;
 680}
 681
 682/**
 683 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
 684 * @chan : Freescale DMA channel
 685 *
 686 * This function will create a dma pool for descriptor allocation.
 687 *
 688 * Return - The number of descriptors allocated.
 689 */
 690static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
 691{
 692	struct fsldma_chan *chan = to_fsl_chan(dchan);
 693
 694	/* Has this channel already been allocated? */
 695	if (chan->desc_pool)
 696		return 1;
 697
 698	/*
 699	 * We need the descriptor to be aligned to 32bytes
 700	 * for meeting FSL DMA specification requirement.
 701	 */
 702	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
 703					  sizeof(struct fsl_desc_sw),
 704					  __alignof__(struct fsl_desc_sw), 0);
 705	if (!chan->desc_pool) {
 706		chan_err(chan, "unable to allocate descriptor pool\n");
 707		return -ENOMEM;
 708	}
 709
 710	/* there is at least one descriptor free to be allocated */
 711	return 1;
 712}
 713
 714/**
 715 * fsldma_free_desc_list - Free all descriptors in a queue
 716 * @chan: Freescae DMA channel
 717 * @list: the list to free
 718 *
 719 * LOCKING: must hold chan->desc_lock
 720 */
 721static void fsldma_free_desc_list(struct fsldma_chan *chan,
 722				  struct list_head *list)
 723{
 724	struct fsl_desc_sw *desc, *_desc;
 725
 726	list_for_each_entry_safe(desc, _desc, list, node)
 727		fsl_dma_free_descriptor(chan, desc);
 
 
 
 
 
 728}
 729
 730static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
 731					  struct list_head *list)
 732{
 733	struct fsl_desc_sw *desc, *_desc;
 734
 735	list_for_each_entry_safe_reverse(desc, _desc, list, node)
 736		fsl_dma_free_descriptor(chan, desc);
 
 
 
 
 
 737}
 738
 739/**
 740 * fsl_dma_free_chan_resources - Free all resources of the channel.
 741 * @chan : Freescale DMA channel
 742 */
 743static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
 744{
 745	struct fsldma_chan *chan = to_fsl_chan(dchan);
 
 746
 747	chan_dbg(chan, "free all channel resources\n");
 748	spin_lock_bh(&chan->desc_lock);
 749	fsldma_cleanup_descriptors(chan);
 750	fsldma_free_desc_list(chan, &chan->ld_pending);
 751	fsldma_free_desc_list(chan, &chan->ld_running);
 752	fsldma_free_desc_list(chan, &chan->ld_completed);
 753	spin_unlock_bh(&chan->desc_lock);
 754
 755	dma_pool_destroy(chan->desc_pool);
 756	chan->desc_pool = NULL;
 757}
 758
 759static struct dma_async_tx_descriptor *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 760fsl_dma_prep_memcpy(struct dma_chan *dchan,
 761	dma_addr_t dma_dst, dma_addr_t dma_src,
 762	size_t len, unsigned long flags)
 763{
 764	struct fsldma_chan *chan;
 765	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
 766	size_t copy;
 767
 768	if (!dchan)
 769		return NULL;
 770
 771	if (!len)
 772		return NULL;
 773
 774	chan = to_fsl_chan(dchan);
 775
 776	do {
 777
 778		/* Allocate the link descriptor from DMA pool */
 779		new = fsl_dma_alloc_descriptor(chan);
 780		if (!new) {
 781			chan_err(chan, "%s\n", msg_ld_oom);
 782			goto fail;
 783		}
 784
 785		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
 786
 787		set_desc_cnt(chan, &new->hw, copy);
 788		set_desc_src(chan, &new->hw, dma_src);
 789		set_desc_dst(chan, &new->hw, dma_dst);
 790
 791		if (!first)
 792			first = new;
 793		else
 794			set_desc_next(chan, &prev->hw, new->async_tx.phys);
 795
 796		new->async_tx.cookie = 0;
 797		async_tx_ack(&new->async_tx);
 798
 799		prev = new;
 800		len -= copy;
 801		dma_src += copy;
 802		dma_dst += copy;
 803
 804		/* Insert the link descriptor to the LD ring */
 805		list_add_tail(&new->node, &first->tx_list);
 806	} while (len);
 807
 808	new->async_tx.flags = flags; /* client is in control of this ack */
 809	new->async_tx.cookie = -EBUSY;
 810
 811	/* Set End-of-link to the last link descriptor of new list */
 812	set_ld_eol(chan, new);
 813
 814	return &first->async_tx;
 815
 816fail:
 817	if (!first)
 818		return NULL;
 819
 820	fsldma_free_desc_list_reverse(chan, &first->tx_list);
 821	return NULL;
 822}
 823
 824static int fsl_dma_device_terminate_all(struct dma_chan *dchan)
 
 
 
 825{
 826	struct fsldma_chan *chan;
 
 
 
 
 827
 828	if (!dchan)
 829		return -EINVAL;
 
 830
 831	chan = to_fsl_chan(dchan);
 
 832
 833	spin_lock_bh(&chan->desc_lock);
 
 
 
 834
 835	/* Halt the DMA engine */
 836	dma_halt(chan);
 
 
 
 
 
 
 
 
 
 
 837
 838	/* Remove and free all of the descriptors in the LD queue */
 839	fsldma_free_desc_list(chan, &chan->ld_pending);
 840	fsldma_free_desc_list(chan, &chan->ld_running);
 841	fsldma_free_desc_list(chan, &chan->ld_completed);
 842	chan->idle = true;
 843
 844	spin_unlock_bh(&chan->desc_lock);
 845	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 846}
 847
 848static int fsl_dma_device_config(struct dma_chan *dchan,
 849				 struct dma_slave_config *config)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850{
 
 
 
 
 
 
 
 
 
 
 
 
 
 851	struct fsldma_chan *chan;
 
 852	int size;
 853
 854	if (!dchan)
 855		return -EINVAL;
 856
 857	chan = to_fsl_chan(dchan);
 858
 859	/* make sure the channel supports setting burst size */
 860	if (!chan->set_request_count)
 861		return -ENXIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 862
 863	/* we set the controller burst size depending on direction */
 864	if (config->direction == DMA_MEM_TO_DEV)
 865		size = config->dst_addr_width * config->dst_maxburst;
 866	else
 867		size = config->src_addr_width * config->src_maxburst;
 
 
 
 
 
 
 
 
 
 
 868
 869	chan->set_request_count(chan, size);
 870	return 0;
 871}
 872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 873
 874/**
 875 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
 876 * @chan : Freescale DMA channel
 877 */
 878static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
 879{
 880	struct fsldma_chan *chan = to_fsl_chan(dchan);
 
 881
 882	spin_lock_bh(&chan->desc_lock);
 883	fsl_chan_xfer_ld_queue(chan);
 884	spin_unlock_bh(&chan->desc_lock);
 885}
 886
 887/**
 888 * fsl_tx_status - Determine the DMA status
 889 * @chan : Freescale DMA channel
 890 */
 891static enum dma_status fsl_tx_status(struct dma_chan *dchan,
 892					dma_cookie_t cookie,
 893					struct dma_tx_state *txstate)
 894{
 895	struct fsldma_chan *chan = to_fsl_chan(dchan);
 896	enum dma_status ret;
 
 897
 
 898	ret = dma_cookie_status(dchan, cookie, txstate);
 899	if (ret == DMA_COMPLETE)
 900		return ret;
 901
 902	spin_lock_bh(&chan->desc_lock);
 903	fsldma_cleanup_descriptors(chan);
 904	spin_unlock_bh(&chan->desc_lock);
 905
 906	return dma_cookie_status(dchan, cookie, txstate);
 907}
 908
 909/*----------------------------------------------------------------------------*/
 910/* Interrupt Handling                                                         */
 911/*----------------------------------------------------------------------------*/
 912
 913static irqreturn_t fsldma_chan_irq(int irq, void *data)
 914{
 915	struct fsldma_chan *chan = data;
 916	u32 stat;
 917
 918	/* save and clear the status register */
 919	stat = get_sr(chan);
 920	set_sr(chan, stat);
 921	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
 922
 923	/* check that this was really our device */
 924	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
 925	if (!stat)
 926		return IRQ_NONE;
 927
 928	if (stat & FSL_DMA_SR_TE)
 929		chan_err(chan, "Transfer Error!\n");
 930
 931	/*
 932	 * Programming Error
 933	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
 934	 * trigger a PE interrupt.
 935	 */
 936	if (stat & FSL_DMA_SR_PE) {
 937		chan_dbg(chan, "irq: Programming Error INT\n");
 938		stat &= ~FSL_DMA_SR_PE;
 939		if (get_bcr(chan) != 0)
 940			chan_err(chan, "Programming Error!\n");
 941	}
 942
 943	/*
 944	 * For MPC8349, EOCDI event need to update cookie
 945	 * and start the next transfer if it exist.
 946	 */
 947	if (stat & FSL_DMA_SR_EOCDI) {
 948		chan_dbg(chan, "irq: End-of-Chain link INT\n");
 949		stat &= ~FSL_DMA_SR_EOCDI;
 950	}
 951
 952	/*
 953	 * If it current transfer is the end-of-transfer,
 954	 * we should clear the Channel Start bit for
 955	 * prepare next transfer.
 956	 */
 957	if (stat & FSL_DMA_SR_EOLNI) {
 958		chan_dbg(chan, "irq: End-of-link INT\n");
 959		stat &= ~FSL_DMA_SR_EOLNI;
 960	}
 961
 962	/* check that the DMA controller is really idle */
 963	if (!dma_is_idle(chan))
 964		chan_err(chan, "irq: controller not idle!\n");
 965
 966	/* check that we handled all of the bits */
 967	if (stat)
 968		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
 969
 970	/*
 971	 * Schedule the tasklet to handle all cleanup of the current
 972	 * transaction. It will start a new transaction if there is
 973	 * one pending.
 974	 */
 975	tasklet_schedule(&chan->tasklet);
 976	chan_dbg(chan, "irq: Exit\n");
 977	return IRQ_HANDLED;
 978}
 979
 980static void dma_do_tasklet(struct tasklet_struct *t)
 981{
 982	struct fsldma_chan *chan = from_tasklet(chan, t, tasklet);
 
 
 
 983
 984	chan_dbg(chan, "tasklet entry\n");
 985
 986	spin_lock(&chan->desc_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987
 988	/* the hardware is now idle and ready for more */
 989	chan->idle = true;
 990
 991	/* Run all cleanup for descriptors which have been completed */
 992	fsldma_cleanup_descriptors(chan);
 
 
 
 
 
 
 
 
 
 
 
 
 993
 994	spin_unlock(&chan->desc_lock);
 
 
 995
 996	chan_dbg(chan, "tasklet exit\n");
 997}
 998
 999static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1000{
1001	struct fsldma_device *fdev = data;
1002	struct fsldma_chan *chan;
1003	unsigned int handled = 0;
1004	u32 gsr, mask;
1005	int i;
1006
1007	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1008						   : in_le32(fdev->regs);
1009	mask = 0xff000000;
1010	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1011
1012	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1013		chan = fdev->chan[i];
1014		if (!chan)
1015			continue;
1016
1017		if (gsr & mask) {
1018			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1019			fsldma_chan_irq(irq, chan);
1020			handled++;
1021		}
1022
1023		gsr &= ~mask;
1024		mask >>= 8;
1025	}
1026
1027	return IRQ_RETVAL(handled);
1028}
1029
1030static void fsldma_free_irqs(struct fsldma_device *fdev)
1031{
1032	struct fsldma_chan *chan;
1033	int i;
1034
1035	if (fdev->irq) {
1036		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1037		free_irq(fdev->irq, fdev);
1038		return;
1039	}
1040
1041	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1042		chan = fdev->chan[i];
1043		if (chan && chan->irq) {
1044			chan_dbg(chan, "free per-channel IRQ\n");
1045			free_irq(chan->irq, chan);
1046		}
1047	}
1048}
1049
1050static int fsldma_request_irqs(struct fsldma_device *fdev)
1051{
1052	struct fsldma_chan *chan;
1053	int ret;
1054	int i;
1055
1056	/* if we have a per-controller IRQ, use that */
1057	if (fdev->irq) {
1058		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1059		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1060				  "fsldma-controller", fdev);
1061		return ret;
1062	}
1063
1064	/* no per-controller IRQ, use the per-channel IRQs */
1065	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1066		chan = fdev->chan[i];
1067		if (!chan)
1068			continue;
1069
1070		if (!chan->irq) {
1071			chan_err(chan, "interrupts property missing in device tree\n");
1072			ret = -ENODEV;
1073			goto out_unwind;
1074		}
1075
1076		chan_dbg(chan, "request per-channel IRQ\n");
1077		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1078				  "fsldma-chan", chan);
1079		if (ret) {
1080			chan_err(chan, "unable to request per-channel IRQ\n");
1081			goto out_unwind;
1082		}
1083	}
1084
1085	return 0;
1086
1087out_unwind:
1088	for (/* none */; i >= 0; i--) {
1089		chan = fdev->chan[i];
1090		if (!chan)
1091			continue;
1092
1093		if (!chan->irq)
1094			continue;
1095
1096		free_irq(chan->irq, chan);
1097	}
1098
1099	return ret;
1100}
1101
1102/*----------------------------------------------------------------------------*/
1103/* OpenFirmware Subsystem                                                     */
1104/*----------------------------------------------------------------------------*/
1105
1106static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1107	struct device_node *node, u32 feature, const char *compatible)
1108{
1109	struct fsldma_chan *chan;
1110	struct resource res;
1111	int err;
1112
1113	/* alloc channel */
1114	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1115	if (!chan) {
 
1116		err = -ENOMEM;
1117		goto out_return;
1118	}
1119
1120	/* ioremap registers for use */
1121	chan->regs = of_iomap(node, 0);
1122	if (!chan->regs) {
1123		dev_err(fdev->dev, "unable to ioremap registers\n");
1124		err = -ENOMEM;
1125		goto out_free_chan;
1126	}
1127
1128	err = of_address_to_resource(node, 0, &res);
1129	if (err) {
1130		dev_err(fdev->dev, "unable to find 'reg' property\n");
1131		goto out_iounmap_regs;
1132	}
1133
1134	chan->feature = feature;
1135	if (!fdev->feature)
1136		fdev->feature = chan->feature;
1137
1138	/*
1139	 * If the DMA device's feature is different than the feature
1140	 * of its channels, report the bug
1141	 */
1142	WARN_ON(fdev->feature != chan->feature);
1143
1144	chan->dev = fdev->dev;
1145	chan->id = (res.start & 0xfff) < 0x300 ?
1146		   ((res.start - 0x100) & 0xfff) >> 7 :
1147		   ((res.start - 0x200) & 0xfff) >> 7;
1148	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1149		dev_err(fdev->dev, "too many channels for device\n");
1150		err = -EINVAL;
1151		goto out_iounmap_regs;
1152	}
1153
1154	fdev->chan[chan->id] = chan;
1155	tasklet_setup(&chan->tasklet, dma_do_tasklet);
1156	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1157
1158	/* Initialize the channel */
1159	dma_init(chan);
1160
1161	/* Clear cdar registers */
1162	set_cdar(chan, 0);
1163
1164	switch (chan->feature & FSL_DMA_IP_MASK) {
1165	case FSL_DMA_IP_85XX:
1166		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1167		fallthrough;
1168	case FSL_DMA_IP_83XX:
1169		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1170		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1171		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1172		chan->set_request_count = fsl_chan_set_request_count;
1173	}
1174
1175	spin_lock_init(&chan->desc_lock);
1176	INIT_LIST_HEAD(&chan->ld_pending);
1177	INIT_LIST_HEAD(&chan->ld_running);
1178	INIT_LIST_HEAD(&chan->ld_completed);
1179	chan->idle = true;
1180#ifdef CONFIG_PM
1181	chan->pm_state = RUNNING;
1182#endif
1183
1184	chan->common.device = &fdev->common;
1185	dma_cookie_init(&chan->common);
1186
1187	/* find the IRQ line, if it exists in the device tree */
1188	chan->irq = irq_of_parse_and_map(node, 0);
1189
1190	/* Add the channel to DMA device channel list */
1191	list_add_tail(&chan->common.device_node, &fdev->common.channels);
 
1192
1193	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1194		 chan->irq ? chan->irq : fdev->irq);
1195
1196	return 0;
1197
1198out_iounmap_regs:
1199	iounmap(chan->regs);
1200out_free_chan:
1201	kfree(chan);
1202out_return:
1203	return err;
1204}
1205
1206static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1207{
1208	irq_dispose_mapping(chan->irq);
1209	list_del(&chan->common.device_node);
1210	iounmap(chan->regs);
1211	kfree(chan);
1212}
1213
1214static int fsldma_of_probe(struct platform_device *op)
1215{
1216	struct fsldma_device *fdev;
1217	struct device_node *child;
1218	unsigned int i;
1219	int err;
1220
1221	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1222	if (!fdev) {
 
1223		err = -ENOMEM;
1224		goto out_return;
1225	}
1226
1227	fdev->dev = &op->dev;
1228	INIT_LIST_HEAD(&fdev->common.channels);
1229
1230	/* ioremap the registers for use */
1231	fdev->regs = of_iomap(op->dev.of_node, 0);
1232	if (!fdev->regs) {
1233		dev_err(&op->dev, "unable to ioremap registers\n");
1234		err = -ENOMEM;
1235		goto out_free;
1236	}
1237
1238	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1239	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1240
1241	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
 
 
1242	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1243	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1244	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
 
1245	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
 
1246	fdev->common.device_tx_status = fsl_tx_status;
1247	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1248	fdev->common.device_config = fsl_dma_device_config;
1249	fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1250	fdev->common.dev = &op->dev;
1251
1252	fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS;
1253	fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS;
1254	fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1255	fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1256
1257	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1258
1259	platform_set_drvdata(op, fdev);
1260
1261	/*
1262	 * We cannot use of_platform_bus_probe() because there is no
1263	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1264	 * channel object.
1265	 */
1266	for_each_child_of_node(op->dev.of_node, child) {
1267		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1268			fsl_dma_chan_probe(fdev, child,
1269				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1270				"fsl,eloplus-dma-channel");
1271		}
1272
1273		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1274			fsl_dma_chan_probe(fdev, child,
1275				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1276				"fsl,elo-dma-channel");
1277		}
1278	}
1279
1280	/*
1281	 * Hookup the IRQ handler(s)
1282	 *
1283	 * If we have a per-controller interrupt, we prefer that to the
1284	 * per-channel interrupts to reduce the number of shared interrupt
1285	 * handlers on the same IRQ line
1286	 */
1287	err = fsldma_request_irqs(fdev);
1288	if (err) {
1289		dev_err(fdev->dev, "unable to request IRQs\n");
1290		goto out_free_fdev;
1291	}
1292
1293	dma_async_device_register(&fdev->common);
1294	return 0;
1295
1296out_free_fdev:
1297	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1298		if (fdev->chan[i])
1299			fsl_dma_chan_remove(fdev->chan[i]);
1300	}
1301	irq_dispose_mapping(fdev->irq);
1302	iounmap(fdev->regs);
1303out_free:
1304	kfree(fdev);
1305out_return:
1306	return err;
1307}
1308
1309static void fsldma_of_remove(struct platform_device *op)
1310{
1311	struct fsldma_device *fdev;
1312	unsigned int i;
1313
1314	fdev = platform_get_drvdata(op);
1315	dma_async_device_unregister(&fdev->common);
1316
1317	fsldma_free_irqs(fdev);
1318
1319	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1320		if (fdev->chan[i])
1321			fsl_dma_chan_remove(fdev->chan[i]);
1322	}
1323	irq_dispose_mapping(fdev->irq);
1324
1325	iounmap(fdev->regs);
 
1326	kfree(fdev);
1327}
1328
1329#ifdef CONFIG_PM
1330static int fsldma_suspend_late(struct device *dev)
1331{
1332	struct fsldma_device *fdev = dev_get_drvdata(dev);
1333	struct fsldma_chan *chan;
1334	int i;
1335
1336	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1337		chan = fdev->chan[i];
1338		if (!chan)
1339			continue;
1340
1341		spin_lock_bh(&chan->desc_lock);
1342		if (unlikely(!chan->idle))
1343			goto out;
1344		chan->regs_save.mr = get_mr(chan);
1345		chan->pm_state = SUSPENDED;
1346		spin_unlock_bh(&chan->desc_lock);
1347	}
1348	return 0;
1349
1350out:
1351	for (; i >= 0; i--) {
1352		chan = fdev->chan[i];
1353		if (!chan)
1354			continue;
1355		chan->pm_state = RUNNING;
1356		spin_unlock_bh(&chan->desc_lock);
1357	}
1358	return -EBUSY;
1359}
1360
1361static int fsldma_resume_early(struct device *dev)
1362{
1363	struct fsldma_device *fdev = dev_get_drvdata(dev);
1364	struct fsldma_chan *chan;
1365	u32 mode;
1366	int i;
1367
1368	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1369		chan = fdev->chan[i];
1370		if (!chan)
1371			continue;
1372
1373		spin_lock_bh(&chan->desc_lock);
1374		mode = chan->regs_save.mr
1375			& ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1376		set_mr(chan, mode);
1377		chan->pm_state = RUNNING;
1378		spin_unlock_bh(&chan->desc_lock);
1379	}
1380
1381	return 0;
1382}
1383
1384static const struct dev_pm_ops fsldma_pm_ops = {
1385	.suspend_late	= fsldma_suspend_late,
1386	.resume_early	= fsldma_resume_early,
1387};
1388#endif
1389
1390static const struct of_device_id fsldma_of_ids[] = {
1391	{ .compatible = "fsl,elo3-dma", },
1392	{ .compatible = "fsl,eloplus-dma", },
1393	{ .compatible = "fsl,elo-dma", },
1394	{}
1395};
1396MODULE_DEVICE_TABLE(of, fsldma_of_ids);
1397
1398static struct platform_driver fsldma_of_driver = {
1399	.driver = {
1400		.name = "fsl-elo-dma",
 
1401		.of_match_table = fsldma_of_ids,
1402#ifdef CONFIG_PM
1403		.pm = &fsldma_pm_ops,
1404#endif
1405	},
1406	.probe = fsldma_of_probe,
1407	.remove_new = fsldma_of_remove,
1408};
1409
1410/*----------------------------------------------------------------------------*/
1411/* Module Init / Exit                                                         */
1412/*----------------------------------------------------------------------------*/
1413
1414static __init int fsldma_init(void)
1415{
1416	pr_info("Freescale Elo series DMA driver\n");
1417	return platform_driver_register(&fsldma_of_driver);
1418}
1419
1420static void __exit fsldma_exit(void)
1421{
1422	platform_driver_unregister(&fsldma_of_driver);
1423}
1424
1425subsys_initcall(fsldma_init);
1426module_exit(fsldma_exit);
1427
1428MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1429MODULE_LICENSE("GPL");
v3.5.6
 
   1/*
   2 * Freescale MPC85xx, MPC83xx DMA Engine support
   3 *
   4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
   5 *
   6 * Author:
   7 *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
   8 *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
   9 *
  10 * Description:
  11 *   DMA engine driver for Freescale MPC8540 DMA controller, which is
  12 *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
  13 *   The support for MPC8349 DMA controller is also added.
  14 *
  15 * This driver instructs the DMA controller to issue the PCI Read Multiple
  16 * command for PCI read operations, instead of using the default PCI Read Line
  17 * command. Please be aware that this setting may result in read pre-fetching
  18 * on some platforms.
  19 *
  20 * This is free software; you can redistribute it and/or modify
  21 * it under the terms of the GNU General Public License as published by
  22 * the Free Software Foundation; either version 2 of the License, or
  23 * (at your option) any later version.
  24 *
  25 */
  26
  27#include <linux/init.h>
  28#include <linux/module.h>
  29#include <linux/pci.h>
  30#include <linux/slab.h>
  31#include <linux/interrupt.h>
  32#include <linux/dmaengine.h>
  33#include <linux/delay.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/dmapool.h>
  36#include <linux/of_platform.h>
  37
 
 
 
  38#include "dmaengine.h"
  39#include "fsldma.h"
  40
  41#define chan_dbg(chan, fmt, arg...)					\
  42	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
  43#define chan_err(chan, fmt, arg...)					\
  44	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
  45
  46static const char msg_ld_oom[] = "No free memory for link descriptor";
  47
  48/*
  49 * Register Helpers
  50 */
  51
  52static void set_sr(struct fsldma_chan *chan, u32 val)
  53{
  54	DMA_OUT(chan, &chan->regs->sr, val, 32);
  55}
  56
  57static u32 get_sr(struct fsldma_chan *chan)
  58{
  59	return DMA_IN(chan, &chan->regs->sr, 32);
 
 
 
 
 
 
 
 
 
 
  60}
  61
  62static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
  63{
  64	DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
  65}
  66
  67static dma_addr_t get_cdar(struct fsldma_chan *chan)
  68{
  69	return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
 
 
 
 
 
  70}
  71
  72static u32 get_bcr(struct fsldma_chan *chan)
  73{
  74	return DMA_IN(chan, &chan->regs->bcr, 32);
  75}
  76
  77/*
  78 * Descriptor Helpers
  79 */
  80
  81static void set_desc_cnt(struct fsldma_chan *chan,
  82				struct fsl_dma_ld_hw *hw, u32 count)
  83{
  84	hw->count = CPU_TO_DMA(chan, count, 32);
  85}
  86
  87static u32 get_desc_cnt(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
  88{
  89	return DMA_TO_CPU(chan, desc->hw.count, 32);
  90}
  91
  92static void set_desc_src(struct fsldma_chan *chan,
  93			 struct fsl_dma_ld_hw *hw, dma_addr_t src)
  94{
  95	u64 snoop_bits;
  96
  97	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
  98		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
  99	hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
 100}
 101
 102static dma_addr_t get_desc_src(struct fsldma_chan *chan,
 103			       struct fsl_desc_sw *desc)
 104{
 105	u64 snoop_bits;
 106
 107	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 108		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
 109	return DMA_TO_CPU(chan, desc->hw.src_addr, 64) & ~snoop_bits;
 110}
 111
 112static void set_desc_dst(struct fsldma_chan *chan,
 113			 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
 114{
 115	u64 snoop_bits;
 116
 117	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 118		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
 119	hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
 120}
 121
 122static dma_addr_t get_desc_dst(struct fsldma_chan *chan,
 123			       struct fsl_desc_sw *desc)
 124{
 125	u64 snoop_bits;
 126
 127	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
 128		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
 129	return DMA_TO_CPU(chan, desc->hw.dst_addr, 64) & ~snoop_bits;
 130}
 131
 132static void set_desc_next(struct fsldma_chan *chan,
 133			  struct fsl_dma_ld_hw *hw, dma_addr_t next)
 134{
 135	u64 snoop_bits;
 136
 137	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
 138		? FSL_DMA_SNEN : 0;
 139	hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
 140}
 141
 142static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
 143{
 144	u64 snoop_bits;
 145
 146	snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
 147		? FSL_DMA_SNEN : 0;
 148
 149	desc->hw.next_ln_addr = CPU_TO_DMA(chan,
 150		DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
 151			| snoop_bits, 64);
 152}
 153
 154/*
 155 * DMA Engine Hardware Control Helpers
 156 */
 157
 158static void dma_init(struct fsldma_chan *chan)
 159{
 160	/* Reset the channel */
 161	DMA_OUT(chan, &chan->regs->mr, 0, 32);
 162
 163	switch (chan->feature & FSL_DMA_IP_MASK) {
 164	case FSL_DMA_IP_85XX:
 165		/* Set the channel to below modes:
 166		 * EIE - Error interrupt enable
 167		 * EOLNIE - End of links interrupt enable
 168		 * BWC - Bandwidth sharing among channels
 169		 */
 170		DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_BWC
 171				| FSL_DMA_MR_EIE | FSL_DMA_MR_EOLNIE, 32);
 172		break;
 173	case FSL_DMA_IP_83XX:
 174		/* Set the channel to below modes:
 175		 * EOTIE - End-of-transfer interrupt enable
 176		 * PRC_RM - PCI read multiple
 177		 */
 178		DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
 179				| FSL_DMA_MR_PRC_RM, 32);
 180		break;
 181	}
 182}
 183
 184static int dma_is_idle(struct fsldma_chan *chan)
 185{
 186	u32 sr = get_sr(chan);
 187	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
 188}
 189
 190/*
 191 * Start the DMA controller
 192 *
 193 * Preconditions:
 194 * - the CDAR register must point to the start descriptor
 195 * - the MRn[CS] bit must be cleared
 196 */
 197static void dma_start(struct fsldma_chan *chan)
 198{
 199	u32 mode;
 200
 201	mode = DMA_IN(chan, &chan->regs->mr, 32);
 202
 203	if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
 204		DMA_OUT(chan, &chan->regs->bcr, 0, 32);
 205		mode |= FSL_DMA_MR_EMP_EN;
 206	} else {
 207		mode &= ~FSL_DMA_MR_EMP_EN;
 208	}
 209
 210	if (chan->feature & FSL_DMA_CHAN_START_EXT) {
 211		mode |= FSL_DMA_MR_EMS_EN;
 212	} else {
 213		mode &= ~FSL_DMA_MR_EMS_EN;
 214		mode |= FSL_DMA_MR_CS;
 215	}
 216
 217	DMA_OUT(chan, &chan->regs->mr, mode, 32);
 218}
 219
 220static void dma_halt(struct fsldma_chan *chan)
 221{
 222	u32 mode;
 223	int i;
 224
 225	/* read the mode register */
 226	mode = DMA_IN(chan, &chan->regs->mr, 32);
 227
 228	/*
 229	 * The 85xx controller supports channel abort, which will stop
 230	 * the current transfer. On 83xx, this bit is the transfer error
 231	 * mask bit, which should not be changed.
 232	 */
 233	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
 234		mode |= FSL_DMA_MR_CA;
 235		DMA_OUT(chan, &chan->regs->mr, mode, 32);
 236
 237		mode &= ~FSL_DMA_MR_CA;
 238	}
 239
 240	/* stop the DMA controller */
 241	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
 242	DMA_OUT(chan, &chan->regs->mr, mode, 32);
 243
 244	/* wait for the DMA controller to become idle */
 245	for (i = 0; i < 100; i++) {
 246		if (dma_is_idle(chan))
 247			return;
 248
 249		udelay(10);
 250	}
 251
 252	if (!dma_is_idle(chan))
 253		chan_err(chan, "DMA halt timeout!\n");
 254}
 255
 256/**
 257 * fsl_chan_set_src_loop_size - Set source address hold transfer size
 258 * @chan : Freescale DMA channel
 259 * @size     : Address loop size, 0 for disable loop
 260 *
 261 * The set source address hold transfer size. The source
 262 * address hold or loop transfer size is when the DMA transfer
 263 * data from source address (SA), if the loop size is 4, the DMA will
 264 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
 265 * SA + 1 ... and so on.
 266 */
 267static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
 268{
 269	u32 mode;
 270
 271	mode = DMA_IN(chan, &chan->regs->mr, 32);
 272
 273	switch (size) {
 274	case 0:
 275		mode &= ~FSL_DMA_MR_SAHE;
 276		break;
 277	case 1:
 278	case 2:
 279	case 4:
 280	case 8:
 
 281		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
 282		break;
 283	}
 284
 285	DMA_OUT(chan, &chan->regs->mr, mode, 32);
 286}
 287
 288/**
 289 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
 290 * @chan : Freescale DMA channel
 291 * @size     : Address loop size, 0 for disable loop
 292 *
 293 * The set destination address hold transfer size. The destination
 294 * address hold or loop transfer size is when the DMA transfer
 295 * data to destination address (TA), if the loop size is 4, the DMA will
 296 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
 297 * TA + 1 ... and so on.
 298 */
 299static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
 300{
 301	u32 mode;
 302
 303	mode = DMA_IN(chan, &chan->regs->mr, 32);
 304
 305	switch (size) {
 306	case 0:
 307		mode &= ~FSL_DMA_MR_DAHE;
 308		break;
 309	case 1:
 310	case 2:
 311	case 4:
 312	case 8:
 
 313		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
 314		break;
 315	}
 316
 317	DMA_OUT(chan, &chan->regs->mr, mode, 32);
 318}
 319
 320/**
 321 * fsl_chan_set_request_count - Set DMA Request Count for external control
 322 * @chan : Freescale DMA channel
 323 * @size     : Number of bytes to transfer in a single request
 324 *
 325 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 326 * The DMA request count is how many bytes are allowed to transfer before
 327 * pausing the channel, after which a new assertion of DREQ# resumes channel
 328 * operation.
 329 *
 330 * A size of 0 disables external pause control. The maximum size is 1024.
 331 */
 332static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
 333{
 334	u32 mode;
 335
 336	BUG_ON(size > 1024);
 337
 338	mode = DMA_IN(chan, &chan->regs->mr, 32);
 339	mode |= (__ilog2(size) << 24) & 0x0f000000;
 
 340
 341	DMA_OUT(chan, &chan->regs->mr, mode, 32);
 342}
 343
 344/**
 345 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
 346 * @chan : Freescale DMA channel
 347 * @enable   : 0 is disabled, 1 is enabled.
 348 *
 349 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 350 * The DMA Request Count feature should be used in addition to this feature
 351 * to set the number of bytes to transfer before pausing the channel.
 352 */
 353static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
 354{
 355	if (enable)
 356		chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
 357	else
 358		chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
 359}
 360
 361/**
 362 * fsl_chan_toggle_ext_start - Toggle channel external start status
 363 * @chan : Freescale DMA channel
 364 * @enable   : 0 is disabled, 1 is enabled.
 365 *
 366 * If enable the external start, the channel can be started by an
 367 * external DMA start pin. So the dma_start() does not start the
 368 * transfer immediately. The DMA channel will wait for the
 369 * control pin asserted.
 370 */
 371static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
 372{
 373	if (enable)
 374		chan->feature |= FSL_DMA_CHAN_START_EXT;
 375	else
 376		chan->feature &= ~FSL_DMA_CHAN_START_EXT;
 377}
 378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 379static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
 380{
 381	struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
 382
 383	if (list_empty(&chan->ld_pending))
 384		goto out_splice;
 385
 386	/*
 387	 * Add the hardware descriptor to the chain of hardware descriptors
 388	 * that already exists in memory.
 389	 *
 390	 * This will un-set the EOL bit of the existing transaction, and the
 391	 * last link in this transaction will become the EOL descriptor.
 392	 */
 393	set_desc_next(chan, &tail->hw, desc->async_tx.phys);
 394
 395	/*
 396	 * Add the software descriptor and all children to the list
 397	 * of pending transactions
 398	 */
 399out_splice:
 400	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
 401}
 402
 403static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
 404{
 405	struct fsldma_chan *chan = to_fsl_chan(tx->chan);
 406	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
 407	struct fsl_desc_sw *child;
 408	unsigned long flags;
 409	dma_cookie_t cookie;
 
 410
 411	spin_lock_irqsave(&chan->desc_lock, flags);
 
 
 
 
 
 
 412
 413	/*
 414	 * assign cookies to all of the software descriptors
 415	 * that make up this transaction
 416	 */
 417	list_for_each_entry(child, &desc->tx_list, node) {
 418		cookie = dma_cookie_assign(&child->async_tx);
 419	}
 420
 421	/* put this transaction onto the tail of the pending queue */
 422	append_ld_queue(chan, desc);
 423
 424	spin_unlock_irqrestore(&chan->desc_lock, flags);
 425
 426	return cookie;
 427}
 428
 429/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 430 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
 431 * @chan : Freescale DMA channel
 432 *
 433 * Return - The descriptor allocated. NULL for failed.
 434 */
 435static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
 436{
 437	struct fsl_desc_sw *desc;
 438	dma_addr_t pdesc;
 439
 440	desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
 441	if (!desc) {
 442		chan_dbg(chan, "out of memory for link descriptor\n");
 443		return NULL;
 444	}
 445
 446	memset(desc, 0, sizeof(*desc));
 447	INIT_LIST_HEAD(&desc->tx_list);
 448	dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
 449	desc->async_tx.tx_submit = fsl_dma_tx_submit;
 450	desc->async_tx.phys = pdesc;
 451
 452#ifdef FSL_DMA_LD_DEBUG
 453	chan_dbg(chan, "LD %p allocated\n", desc);
 454#endif
 455
 456	return desc;
 457}
 458
 459/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 460 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
 461 * @chan : Freescale DMA channel
 462 *
 463 * This function will create a dma pool for descriptor allocation.
 464 *
 465 * Return - The number of descriptors allocated.
 466 */
 467static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
 468{
 469	struct fsldma_chan *chan = to_fsl_chan(dchan);
 470
 471	/* Has this channel already been allocated? */
 472	if (chan->desc_pool)
 473		return 1;
 474
 475	/*
 476	 * We need the descriptor to be aligned to 32bytes
 477	 * for meeting FSL DMA specification requirement.
 478	 */
 479	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
 480					  sizeof(struct fsl_desc_sw),
 481					  __alignof__(struct fsl_desc_sw), 0);
 482	if (!chan->desc_pool) {
 483		chan_err(chan, "unable to allocate descriptor pool\n");
 484		return -ENOMEM;
 485	}
 486
 487	/* there is at least one descriptor free to be allocated */
 488	return 1;
 489}
 490
 491/**
 492 * fsldma_free_desc_list - Free all descriptors in a queue
 493 * @chan: Freescae DMA channel
 494 * @list: the list to free
 495 *
 496 * LOCKING: must hold chan->desc_lock
 497 */
 498static void fsldma_free_desc_list(struct fsldma_chan *chan,
 499				  struct list_head *list)
 500{
 501	struct fsl_desc_sw *desc, *_desc;
 502
 503	list_for_each_entry_safe(desc, _desc, list, node) {
 504		list_del(&desc->node);
 505#ifdef FSL_DMA_LD_DEBUG
 506		chan_dbg(chan, "LD %p free\n", desc);
 507#endif
 508		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
 509	}
 510}
 511
 512static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
 513					  struct list_head *list)
 514{
 515	struct fsl_desc_sw *desc, *_desc;
 516
 517	list_for_each_entry_safe_reverse(desc, _desc, list, node) {
 518		list_del(&desc->node);
 519#ifdef FSL_DMA_LD_DEBUG
 520		chan_dbg(chan, "LD %p free\n", desc);
 521#endif
 522		dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
 523	}
 524}
 525
 526/**
 527 * fsl_dma_free_chan_resources - Free all resources of the channel.
 528 * @chan : Freescale DMA channel
 529 */
 530static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
 531{
 532	struct fsldma_chan *chan = to_fsl_chan(dchan);
 533	unsigned long flags;
 534
 535	chan_dbg(chan, "free all channel resources\n");
 536	spin_lock_irqsave(&chan->desc_lock, flags);
 
 537	fsldma_free_desc_list(chan, &chan->ld_pending);
 538	fsldma_free_desc_list(chan, &chan->ld_running);
 539	spin_unlock_irqrestore(&chan->desc_lock, flags);
 
 540
 541	dma_pool_destroy(chan->desc_pool);
 542	chan->desc_pool = NULL;
 543}
 544
 545static struct dma_async_tx_descriptor *
 546fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
 547{
 548	struct fsldma_chan *chan;
 549	struct fsl_desc_sw *new;
 550
 551	if (!dchan)
 552		return NULL;
 553
 554	chan = to_fsl_chan(dchan);
 555
 556	new = fsl_dma_alloc_descriptor(chan);
 557	if (!new) {
 558		chan_err(chan, "%s\n", msg_ld_oom);
 559		return NULL;
 560	}
 561
 562	new->async_tx.cookie = -EBUSY;
 563	new->async_tx.flags = flags;
 564
 565	/* Insert the link descriptor to the LD ring */
 566	list_add_tail(&new->node, &new->tx_list);
 567
 568	/* Set End-of-link to the last link descriptor of new list */
 569	set_ld_eol(chan, new);
 570
 571	return &new->async_tx;
 572}
 573
 574static struct dma_async_tx_descriptor *
 575fsl_dma_prep_memcpy(struct dma_chan *dchan,
 576	dma_addr_t dma_dst, dma_addr_t dma_src,
 577	size_t len, unsigned long flags)
 578{
 579	struct fsldma_chan *chan;
 580	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
 581	size_t copy;
 582
 583	if (!dchan)
 584		return NULL;
 585
 586	if (!len)
 587		return NULL;
 588
 589	chan = to_fsl_chan(dchan);
 590
 591	do {
 592
 593		/* Allocate the link descriptor from DMA pool */
 594		new = fsl_dma_alloc_descriptor(chan);
 595		if (!new) {
 596			chan_err(chan, "%s\n", msg_ld_oom);
 597			goto fail;
 598		}
 599
 600		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
 601
 602		set_desc_cnt(chan, &new->hw, copy);
 603		set_desc_src(chan, &new->hw, dma_src);
 604		set_desc_dst(chan, &new->hw, dma_dst);
 605
 606		if (!first)
 607			first = new;
 608		else
 609			set_desc_next(chan, &prev->hw, new->async_tx.phys);
 610
 611		new->async_tx.cookie = 0;
 612		async_tx_ack(&new->async_tx);
 613
 614		prev = new;
 615		len -= copy;
 616		dma_src += copy;
 617		dma_dst += copy;
 618
 619		/* Insert the link descriptor to the LD ring */
 620		list_add_tail(&new->node, &first->tx_list);
 621	} while (len);
 622
 623	new->async_tx.flags = flags; /* client is in control of this ack */
 624	new->async_tx.cookie = -EBUSY;
 625
 626	/* Set End-of-link to the last link descriptor of new list */
 627	set_ld_eol(chan, new);
 628
 629	return &first->async_tx;
 630
 631fail:
 632	if (!first)
 633		return NULL;
 634
 635	fsldma_free_desc_list_reverse(chan, &first->tx_list);
 636	return NULL;
 637}
 638
 639static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
 640	struct scatterlist *dst_sg, unsigned int dst_nents,
 641	struct scatterlist *src_sg, unsigned int src_nents,
 642	unsigned long flags)
 643{
 644	struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
 645	struct fsldma_chan *chan = to_fsl_chan(dchan);
 646	size_t dst_avail, src_avail;
 647	dma_addr_t dst, src;
 648	size_t len;
 649
 650	/* basic sanity checks */
 651	if (dst_nents == 0 || src_nents == 0)
 652		return NULL;
 653
 654	if (dst_sg == NULL || src_sg == NULL)
 655		return NULL;
 656
 657	/*
 658	 * TODO: should we check that both scatterlists have the same
 659	 * TODO: number of bytes in total? Is that really an error?
 660	 */
 661
 662	/* get prepared for the loop */
 663	dst_avail = sg_dma_len(dst_sg);
 664	src_avail = sg_dma_len(src_sg);
 665
 666	/* run until we are out of scatterlist entries */
 667	while (true) {
 668
 669		/* create the largest transaction possible */
 670		len = min_t(size_t, src_avail, dst_avail);
 671		len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
 672		if (len == 0)
 673			goto fetch;
 674
 675		dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
 676		src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
 
 
 
 677
 678		/* allocate and populate the descriptor */
 679		new = fsl_dma_alloc_descriptor(chan);
 680		if (!new) {
 681			chan_err(chan, "%s\n", msg_ld_oom);
 682			goto fail;
 683		}
 684
 685		set_desc_cnt(chan, &new->hw, len);
 686		set_desc_src(chan, &new->hw, src);
 687		set_desc_dst(chan, &new->hw, dst);
 688
 689		if (!first)
 690			first = new;
 691		else
 692			set_desc_next(chan, &prev->hw, new->async_tx.phys);
 693
 694		new->async_tx.cookie = 0;
 695		async_tx_ack(&new->async_tx);
 696		prev = new;
 697
 698		/* Insert the link descriptor to the LD ring */
 699		list_add_tail(&new->node, &first->tx_list);
 700
 701		/* update metadata */
 702		dst_avail -= len;
 703		src_avail -= len;
 704
 705fetch:
 706		/* fetch the next dst scatterlist entry */
 707		if (dst_avail == 0) {
 708
 709			/* no more entries: we're done */
 710			if (dst_nents == 0)
 711				break;
 712
 713			/* fetch the next entry: if there are no more: done */
 714			dst_sg = sg_next(dst_sg);
 715			if (dst_sg == NULL)
 716				break;
 717
 718			dst_nents--;
 719			dst_avail = sg_dma_len(dst_sg);
 720		}
 721
 722		/* fetch the next src scatterlist entry */
 723		if (src_avail == 0) {
 724
 725			/* no more entries: we're done */
 726			if (src_nents == 0)
 727				break;
 728
 729			/* fetch the next entry: if there are no more: done */
 730			src_sg = sg_next(src_sg);
 731			if (src_sg == NULL)
 732				break;
 733
 734			src_nents--;
 735			src_avail = sg_dma_len(src_sg);
 736		}
 737	}
 738
 739	new->async_tx.flags = flags; /* client is in control of this ack */
 740	new->async_tx.cookie = -EBUSY;
 741
 742	/* Set End-of-link to the last link descriptor of new list */
 743	set_ld_eol(chan, new);
 744
 745	return &first->async_tx;
 746
 747fail:
 748	if (!first)
 749		return NULL;
 750
 751	fsldma_free_desc_list_reverse(chan, &first->tx_list);
 752	return NULL;
 753}
 754
 755/**
 756 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
 757 * @chan: DMA channel
 758 * @sgl: scatterlist to transfer to/from
 759 * @sg_len: number of entries in @scatterlist
 760 * @direction: DMA direction
 761 * @flags: DMAEngine flags
 762 * @context: transaction context (ignored)
 763 *
 764 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
 765 * DMA_SLAVE API, this gets the device-specific information from the
 766 * chan->private variable.
 767 */
 768static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
 769	struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
 770	enum dma_transfer_direction direction, unsigned long flags,
 771	void *context)
 772{
 773	/*
 774	 * This operation is not supported on the Freescale DMA controller
 775	 *
 776	 * However, we need to provide the function pointer to allow the
 777	 * device_control() method to work.
 778	 */
 779	return NULL;
 780}
 781
 782static int fsl_dma_device_control(struct dma_chan *dchan,
 783				  enum dma_ctrl_cmd cmd, unsigned long arg)
 784{
 785	struct dma_slave_config *config;
 786	struct fsldma_chan *chan;
 787	unsigned long flags;
 788	int size;
 789
 790	if (!dchan)
 791		return -EINVAL;
 792
 793	chan = to_fsl_chan(dchan);
 794
 795	switch (cmd) {
 796	case DMA_TERMINATE_ALL:
 797		spin_lock_irqsave(&chan->desc_lock, flags);
 798
 799		/* Halt the DMA engine */
 800		dma_halt(chan);
 801
 802		/* Remove and free all of the descriptors in the LD queue */
 803		fsldma_free_desc_list(chan, &chan->ld_pending);
 804		fsldma_free_desc_list(chan, &chan->ld_running);
 805		chan->idle = true;
 806
 807		spin_unlock_irqrestore(&chan->desc_lock, flags);
 808		return 0;
 809
 810	case DMA_SLAVE_CONFIG:
 811		config = (struct dma_slave_config *)arg;
 812
 813		/* make sure the channel supports setting burst size */
 814		if (!chan->set_request_count)
 815			return -ENXIO;
 816
 817		/* we set the controller burst size depending on direction */
 818		if (config->direction == DMA_MEM_TO_DEV)
 819			size = config->dst_addr_width * config->dst_maxburst;
 820		else
 821			size = config->src_addr_width * config->src_maxburst;
 822
 823		chan->set_request_count(chan, size);
 824		return 0;
 825
 826	case FSLDMA_EXTERNAL_START:
 827
 828		/* make sure the channel supports external start */
 829		if (!chan->toggle_ext_start)
 830			return -ENXIO;
 831
 832		chan->toggle_ext_start(chan, arg);
 833		return 0;
 834
 835	default:
 836		return -ENXIO;
 837	}
 838
 
 839	return 0;
 840}
 841
 842/**
 843 * fsldma_cleanup_descriptor - cleanup and free a single link descriptor
 844 * @chan: Freescale DMA channel
 845 * @desc: descriptor to cleanup and free
 846 *
 847 * This function is used on a descriptor which has been executed by the DMA
 848 * controller. It will run any callbacks, submit any dependencies, and then
 849 * free the descriptor.
 850 */
 851static void fsldma_cleanup_descriptor(struct fsldma_chan *chan,
 852				      struct fsl_desc_sw *desc)
 853{
 854	struct dma_async_tx_descriptor *txd = &desc->async_tx;
 855	struct device *dev = chan->common.device->dev;
 856	dma_addr_t src = get_desc_src(chan, desc);
 857	dma_addr_t dst = get_desc_dst(chan, desc);
 858	u32 len = get_desc_cnt(chan, desc);
 859
 860	/* Run the link descriptor callback function */
 861	if (txd->callback) {
 862#ifdef FSL_DMA_LD_DEBUG
 863		chan_dbg(chan, "LD %p callback\n", desc);
 864#endif
 865		txd->callback(txd->callback_param);
 866	}
 867
 868	/* Run any dependencies */
 869	dma_run_dependencies(txd);
 870
 871	/* Unmap the dst buffer, if requested */
 872	if (!(txd->flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
 873		if (txd->flags & DMA_COMPL_DEST_UNMAP_SINGLE)
 874			dma_unmap_single(dev, dst, len, DMA_FROM_DEVICE);
 875		else
 876			dma_unmap_page(dev, dst, len, DMA_FROM_DEVICE);
 877	}
 878
 879	/* Unmap the src buffer, if requested */
 880	if (!(txd->flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
 881		if (txd->flags & DMA_COMPL_SRC_UNMAP_SINGLE)
 882			dma_unmap_single(dev, src, len, DMA_TO_DEVICE);
 883		else
 884			dma_unmap_page(dev, src, len, DMA_TO_DEVICE);
 885	}
 886
 887#ifdef FSL_DMA_LD_DEBUG
 888	chan_dbg(chan, "LD %p free\n", desc);
 889#endif
 890	dma_pool_free(chan->desc_pool, desc, txd->phys);
 891}
 892
 893/**
 894 * fsl_chan_xfer_ld_queue - transfer any pending transactions
 895 * @chan : Freescale DMA channel
 896 *
 897 * HARDWARE STATE: idle
 898 * LOCKING: must hold chan->desc_lock
 899 */
 900static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
 901{
 902	struct fsl_desc_sw *desc;
 903
 904	/*
 905	 * If the list of pending descriptors is empty, then we
 906	 * don't need to do any work at all
 907	 */
 908	if (list_empty(&chan->ld_pending)) {
 909		chan_dbg(chan, "no pending LDs\n");
 910		return;
 911	}
 912
 913	/*
 914	 * The DMA controller is not idle, which means that the interrupt
 915	 * handler will start any queued transactions when it runs after
 916	 * this transaction finishes
 917	 */
 918	if (!chan->idle) {
 919		chan_dbg(chan, "DMA controller still busy\n");
 920		return;
 921	}
 922
 923	/*
 924	 * If there are some link descriptors which have not been
 925	 * transferred, we need to start the controller
 926	 */
 927
 928	/*
 929	 * Move all elements from the queue of pending transactions
 930	 * onto the list of running transactions
 931	 */
 932	chan_dbg(chan, "idle, starting controller\n");
 933	desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
 934	list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
 935
 936	/*
 937	 * The 85xx DMA controller doesn't clear the channel start bit
 938	 * automatically at the end of a transfer. Therefore we must clear
 939	 * it in software before starting the transfer.
 940	 */
 941	if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
 942		u32 mode;
 943
 944		mode = DMA_IN(chan, &chan->regs->mr, 32);
 945		mode &= ~FSL_DMA_MR_CS;
 946		DMA_OUT(chan, &chan->regs->mr, mode, 32);
 947	}
 948
 949	/*
 950	 * Program the descriptor's address into the DMA controller,
 951	 * then start the DMA transaction
 952	 */
 953	set_cdar(chan, desc->async_tx.phys);
 954	get_cdar(chan);
 955
 956	dma_start(chan);
 957	chan->idle = false;
 958}
 959
 960/**
 961 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
 962 * @chan : Freescale DMA channel
 963 */
 964static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
 965{
 966	struct fsldma_chan *chan = to_fsl_chan(dchan);
 967	unsigned long flags;
 968
 969	spin_lock_irqsave(&chan->desc_lock, flags);
 970	fsl_chan_xfer_ld_queue(chan);
 971	spin_unlock_irqrestore(&chan->desc_lock, flags);
 972}
 973
 974/**
 975 * fsl_tx_status - Determine the DMA status
 976 * @chan : Freescale DMA channel
 977 */
 978static enum dma_status fsl_tx_status(struct dma_chan *dchan,
 979					dma_cookie_t cookie,
 980					struct dma_tx_state *txstate)
 981{
 982	struct fsldma_chan *chan = to_fsl_chan(dchan);
 983	enum dma_status ret;
 984	unsigned long flags;
 985
 986	spin_lock_irqsave(&chan->desc_lock, flags);
 987	ret = dma_cookie_status(dchan, cookie, txstate);
 988	spin_unlock_irqrestore(&chan->desc_lock, flags);
 
 
 
 
 
 989
 990	return ret;
 991}
 992
 993/*----------------------------------------------------------------------------*/
 994/* Interrupt Handling                                                         */
 995/*----------------------------------------------------------------------------*/
 996
 997static irqreturn_t fsldma_chan_irq(int irq, void *data)
 998{
 999	struct fsldma_chan *chan = data;
1000	u32 stat;
1001
1002	/* save and clear the status register */
1003	stat = get_sr(chan);
1004	set_sr(chan, stat);
1005	chan_dbg(chan, "irq: stat = 0x%x\n", stat);
1006
1007	/* check that this was really our device */
1008	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1009	if (!stat)
1010		return IRQ_NONE;
1011
1012	if (stat & FSL_DMA_SR_TE)
1013		chan_err(chan, "Transfer Error!\n");
1014
1015	/*
1016	 * Programming Error
1017	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1018	 * triger a PE interrupt.
1019	 */
1020	if (stat & FSL_DMA_SR_PE) {
1021		chan_dbg(chan, "irq: Programming Error INT\n");
1022		stat &= ~FSL_DMA_SR_PE;
1023		if (get_bcr(chan) != 0)
1024			chan_err(chan, "Programming Error!\n");
1025	}
1026
1027	/*
1028	 * For MPC8349, EOCDI event need to update cookie
1029	 * and start the next transfer if it exist.
1030	 */
1031	if (stat & FSL_DMA_SR_EOCDI) {
1032		chan_dbg(chan, "irq: End-of-Chain link INT\n");
1033		stat &= ~FSL_DMA_SR_EOCDI;
1034	}
1035
1036	/*
1037	 * If it current transfer is the end-of-transfer,
1038	 * we should clear the Channel Start bit for
1039	 * prepare next transfer.
1040	 */
1041	if (stat & FSL_DMA_SR_EOLNI) {
1042		chan_dbg(chan, "irq: End-of-link INT\n");
1043		stat &= ~FSL_DMA_SR_EOLNI;
1044	}
1045
1046	/* check that the DMA controller is really idle */
1047	if (!dma_is_idle(chan))
1048		chan_err(chan, "irq: controller not idle!\n");
1049
1050	/* check that we handled all of the bits */
1051	if (stat)
1052		chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1053
1054	/*
1055	 * Schedule the tasklet to handle all cleanup of the current
1056	 * transaction. It will start a new transaction if there is
1057	 * one pending.
1058	 */
1059	tasklet_schedule(&chan->tasklet);
1060	chan_dbg(chan, "irq: Exit\n");
1061	return IRQ_HANDLED;
1062}
1063
1064static void dma_do_tasklet(unsigned long data)
1065{
1066	struct fsldma_chan *chan = (struct fsldma_chan *)data;
1067	struct fsl_desc_sw *desc, *_desc;
1068	LIST_HEAD(ld_cleanup);
1069	unsigned long flags;
1070
1071	chan_dbg(chan, "tasklet entry\n");
1072
1073	spin_lock_irqsave(&chan->desc_lock, flags);
1074
1075	/* update the cookie if we have some descriptors to cleanup */
1076	if (!list_empty(&chan->ld_running)) {
1077		dma_cookie_t cookie;
1078
1079		desc = to_fsl_desc(chan->ld_running.prev);
1080		cookie = desc->async_tx.cookie;
1081		dma_cookie_complete(&desc->async_tx);
1082
1083		chan_dbg(chan, "completed_cookie=%d\n", cookie);
1084	}
1085
1086	/*
1087	 * move the descriptors to a temporary list so we can drop the lock
1088	 * during the entire cleanup operation
1089	 */
1090	list_splice_tail_init(&chan->ld_running, &ld_cleanup);
1091
1092	/* the hardware is now idle and ready for more */
1093	chan->idle = true;
1094
1095	/*
1096	 * Start any pending transactions automatically
1097	 *
1098	 * In the ideal case, we keep the DMA controller busy while we go
1099	 * ahead and free the descriptors below.
1100	 */
1101	fsl_chan_xfer_ld_queue(chan);
1102	spin_unlock_irqrestore(&chan->desc_lock, flags);
1103
1104	/* Run the callback for each descriptor, in order */
1105	list_for_each_entry_safe(desc, _desc, &ld_cleanup, node) {
1106
1107		/* Remove from the list of transactions */
1108		list_del(&desc->node);
1109
1110		/* Run all cleanup for this descriptor */
1111		fsldma_cleanup_descriptor(chan, desc);
1112	}
1113
1114	chan_dbg(chan, "tasklet exit\n");
1115}
1116
1117static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1118{
1119	struct fsldma_device *fdev = data;
1120	struct fsldma_chan *chan;
1121	unsigned int handled = 0;
1122	u32 gsr, mask;
1123	int i;
1124
1125	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1126						   : in_le32(fdev->regs);
1127	mask = 0xff000000;
1128	dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1129
1130	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1131		chan = fdev->chan[i];
1132		if (!chan)
1133			continue;
1134
1135		if (gsr & mask) {
1136			dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1137			fsldma_chan_irq(irq, chan);
1138			handled++;
1139		}
1140
1141		gsr &= ~mask;
1142		mask >>= 8;
1143	}
1144
1145	return IRQ_RETVAL(handled);
1146}
1147
1148static void fsldma_free_irqs(struct fsldma_device *fdev)
1149{
1150	struct fsldma_chan *chan;
1151	int i;
1152
1153	if (fdev->irq != NO_IRQ) {
1154		dev_dbg(fdev->dev, "free per-controller IRQ\n");
1155		free_irq(fdev->irq, fdev);
1156		return;
1157	}
1158
1159	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1160		chan = fdev->chan[i];
1161		if (chan && chan->irq != NO_IRQ) {
1162			chan_dbg(chan, "free per-channel IRQ\n");
1163			free_irq(chan->irq, chan);
1164		}
1165	}
1166}
1167
1168static int fsldma_request_irqs(struct fsldma_device *fdev)
1169{
1170	struct fsldma_chan *chan;
1171	int ret;
1172	int i;
1173
1174	/* if we have a per-controller IRQ, use that */
1175	if (fdev->irq != NO_IRQ) {
1176		dev_dbg(fdev->dev, "request per-controller IRQ\n");
1177		ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1178				  "fsldma-controller", fdev);
1179		return ret;
1180	}
1181
1182	/* no per-controller IRQ, use the per-channel IRQs */
1183	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1184		chan = fdev->chan[i];
1185		if (!chan)
1186			continue;
1187
1188		if (chan->irq == NO_IRQ) {
1189			chan_err(chan, "interrupts property missing in device tree\n");
1190			ret = -ENODEV;
1191			goto out_unwind;
1192		}
1193
1194		chan_dbg(chan, "request per-channel IRQ\n");
1195		ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1196				  "fsldma-chan", chan);
1197		if (ret) {
1198			chan_err(chan, "unable to request per-channel IRQ\n");
1199			goto out_unwind;
1200		}
1201	}
1202
1203	return 0;
1204
1205out_unwind:
1206	for (/* none */; i >= 0; i--) {
1207		chan = fdev->chan[i];
1208		if (!chan)
1209			continue;
1210
1211		if (chan->irq == NO_IRQ)
1212			continue;
1213
1214		free_irq(chan->irq, chan);
1215	}
1216
1217	return ret;
1218}
1219
1220/*----------------------------------------------------------------------------*/
1221/* OpenFirmware Subsystem                                                     */
1222/*----------------------------------------------------------------------------*/
1223
1224static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev,
1225	struct device_node *node, u32 feature, const char *compatible)
1226{
1227	struct fsldma_chan *chan;
1228	struct resource res;
1229	int err;
1230
1231	/* alloc channel */
1232	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1233	if (!chan) {
1234		dev_err(fdev->dev, "no free memory for DMA channels!\n");
1235		err = -ENOMEM;
1236		goto out_return;
1237	}
1238
1239	/* ioremap registers for use */
1240	chan->regs = of_iomap(node, 0);
1241	if (!chan->regs) {
1242		dev_err(fdev->dev, "unable to ioremap registers\n");
1243		err = -ENOMEM;
1244		goto out_free_chan;
1245	}
1246
1247	err = of_address_to_resource(node, 0, &res);
1248	if (err) {
1249		dev_err(fdev->dev, "unable to find 'reg' property\n");
1250		goto out_iounmap_regs;
1251	}
1252
1253	chan->feature = feature;
1254	if (!fdev->feature)
1255		fdev->feature = chan->feature;
1256
1257	/*
1258	 * If the DMA device's feature is different than the feature
1259	 * of its channels, report the bug
1260	 */
1261	WARN_ON(fdev->feature != chan->feature);
1262
1263	chan->dev = fdev->dev;
1264	chan->id = ((res.start - 0x100) & 0xfff) >> 7;
 
 
1265	if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1266		dev_err(fdev->dev, "too many channels for device\n");
1267		err = -EINVAL;
1268		goto out_iounmap_regs;
1269	}
1270
1271	fdev->chan[chan->id] = chan;
1272	tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1273	snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1274
1275	/* Initialize the channel */
1276	dma_init(chan);
1277
1278	/* Clear cdar registers */
1279	set_cdar(chan, 0);
1280
1281	switch (chan->feature & FSL_DMA_IP_MASK) {
1282	case FSL_DMA_IP_85XX:
1283		chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
 
1284	case FSL_DMA_IP_83XX:
1285		chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1286		chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1287		chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1288		chan->set_request_count = fsl_chan_set_request_count;
1289	}
1290
1291	spin_lock_init(&chan->desc_lock);
1292	INIT_LIST_HEAD(&chan->ld_pending);
1293	INIT_LIST_HEAD(&chan->ld_running);
 
1294	chan->idle = true;
 
 
 
1295
1296	chan->common.device = &fdev->common;
1297	dma_cookie_init(&chan->common);
1298
1299	/* find the IRQ line, if it exists in the device tree */
1300	chan->irq = irq_of_parse_and_map(node, 0);
1301
1302	/* Add the channel to DMA device channel list */
1303	list_add_tail(&chan->common.device_node, &fdev->common.channels);
1304	fdev->common.chancnt++;
1305
1306	dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1307		 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1308
1309	return 0;
1310
1311out_iounmap_regs:
1312	iounmap(chan->regs);
1313out_free_chan:
1314	kfree(chan);
1315out_return:
1316	return err;
1317}
1318
1319static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1320{
1321	irq_dispose_mapping(chan->irq);
1322	list_del(&chan->common.device_node);
1323	iounmap(chan->regs);
1324	kfree(chan);
1325}
1326
1327static int __devinit fsldma_of_probe(struct platform_device *op)
1328{
1329	struct fsldma_device *fdev;
1330	struct device_node *child;
 
1331	int err;
1332
1333	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1334	if (!fdev) {
1335		dev_err(&op->dev, "No enough memory for 'priv'\n");
1336		err = -ENOMEM;
1337		goto out_return;
1338	}
1339
1340	fdev->dev = &op->dev;
1341	INIT_LIST_HEAD(&fdev->common.channels);
1342
1343	/* ioremap the registers for use */
1344	fdev->regs = of_iomap(op->dev.of_node, 0);
1345	if (!fdev->regs) {
1346		dev_err(&op->dev, "unable to ioremap registers\n");
1347		err = -ENOMEM;
1348		goto out_free_fdev;
1349	}
1350
1351	/* map the channel IRQ if it exists, but don't hookup the handler yet */
1352	fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1353
1354	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1355	dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1356	dma_cap_set(DMA_SG, fdev->common.cap_mask);
1357	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1358	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1359	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1360	fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1361	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1362	fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1363	fdev->common.device_tx_status = fsl_tx_status;
1364	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1365	fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1366	fdev->common.device_control = fsl_dma_device_control;
1367	fdev->common.dev = &op->dev;
1368
 
 
 
 
 
1369	dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1370
1371	dev_set_drvdata(&op->dev, fdev);
1372
1373	/*
1374	 * We cannot use of_platform_bus_probe() because there is no
1375	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1376	 * channel object.
1377	 */
1378	for_each_child_of_node(op->dev.of_node, child) {
1379		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1380			fsl_dma_chan_probe(fdev, child,
1381				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1382				"fsl,eloplus-dma-channel");
1383		}
1384
1385		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1386			fsl_dma_chan_probe(fdev, child,
1387				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1388				"fsl,elo-dma-channel");
1389		}
1390	}
1391
1392	/*
1393	 * Hookup the IRQ handler(s)
1394	 *
1395	 * If we have a per-controller interrupt, we prefer that to the
1396	 * per-channel interrupts to reduce the number of shared interrupt
1397	 * handlers on the same IRQ line
1398	 */
1399	err = fsldma_request_irqs(fdev);
1400	if (err) {
1401		dev_err(fdev->dev, "unable to request IRQs\n");
1402		goto out_free_fdev;
1403	}
1404
1405	dma_async_device_register(&fdev->common);
1406	return 0;
1407
1408out_free_fdev:
 
 
 
 
1409	irq_dispose_mapping(fdev->irq);
 
 
1410	kfree(fdev);
1411out_return:
1412	return err;
1413}
1414
1415static int fsldma_of_remove(struct platform_device *op)
1416{
1417	struct fsldma_device *fdev;
1418	unsigned int i;
1419
1420	fdev = dev_get_drvdata(&op->dev);
1421	dma_async_device_unregister(&fdev->common);
1422
1423	fsldma_free_irqs(fdev);
1424
1425	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1426		if (fdev->chan[i])
1427			fsl_dma_chan_remove(fdev->chan[i]);
1428	}
 
1429
1430	iounmap(fdev->regs);
1431	dev_set_drvdata(&op->dev, NULL);
1432	kfree(fdev);
 
1433
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1434	return 0;
 
 
 
 
 
 
 
 
 
 
1435}
1436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1437static const struct of_device_id fsldma_of_ids[] = {
 
1438	{ .compatible = "fsl,eloplus-dma", },
1439	{ .compatible = "fsl,elo-dma", },
1440	{}
1441};
 
1442
1443static struct platform_driver fsldma_of_driver = {
1444	.driver = {
1445		.name = "fsl-elo-dma",
1446		.owner = THIS_MODULE,
1447		.of_match_table = fsldma_of_ids,
 
 
 
1448	},
1449	.probe = fsldma_of_probe,
1450	.remove = fsldma_of_remove,
1451};
1452
1453/*----------------------------------------------------------------------------*/
1454/* Module Init / Exit                                                         */
1455/*----------------------------------------------------------------------------*/
1456
1457static __init int fsldma_init(void)
1458{
1459	pr_info("Freescale Elo / Elo Plus DMA driver\n");
1460	return platform_driver_register(&fsldma_of_driver);
1461}
1462
1463static void __exit fsldma_exit(void)
1464{
1465	platform_driver_unregister(&fsldma_of_driver);
1466}
1467
1468subsys_initcall(fsldma_init);
1469module_exit(fsldma_exit);
1470
1471MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1472MODULE_LICENSE("GPL");