Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
   4 *
   5 * Copyright (C) 2008 Atmel Corporation
   6 * Copyright (C) 2022 Microchip Technology, Inc. and its subsidiaries
   7 *
   8 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
   9 * The only Atmel DMA Controller that is not covered by this driver is the one
  10 * found on AT91SAM9263.
  11 */
  12
  13#include <dt-bindings/dma/at91.h>
  14#include <linux/bitfield.h>
  15#include <linux/clk.h>
  16#include <linux/dmaengine.h>
  17#include <linux/dmapool.h>
  18#include <linux/dma-mapping.h>
 
  19#include <linux/interrupt.h>
  20#include <linux/module.h>
  21#include <linux/of.h>
  22#include <linux/overflow.h>
  23#include <linux/of_platform.h>
  24#include <linux/of_dma.h>
  25#include <linux/platform_device.h>
  26#include <linux/slab.h>
 
 
 
  27
 
  28#include "dmaengine.h"
  29#include "virt-dma.h"
  30
  31/*
  32 * Glossary
  33 * --------
  34 *
  35 * at_hdmac		: Name of the ATmel AHB DMA Controller
  36 * at_dma_ / atdma	: ATmel DMA controller entity related
  37 * atc_	/ atchan	: ATmel DMA Channel entity related
  38 */
  39
  40#define	AT_DMA_MAX_NR_CHANNELS	8
  41
  42/* Global Configuration Register */
  43#define AT_DMA_GCFG		0x00
  44#define AT_DMA_IF_BIGEND(i)	BIT((i))	/* AHB-Lite Interface i in Big-endian mode */
  45#define AT_DMA_ARB_CFG		BIT(4)		/* Arbiter mode. */
  46
  47/* Controller Enable Register */
  48#define AT_DMA_EN		0x04
  49#define AT_DMA_ENABLE		BIT(0)
  50
  51/* Software Single Request Register */
  52#define AT_DMA_SREQ		0x08
  53#define AT_DMA_SSREQ(x)		BIT((x) << 1)		/* Request a source single transfer on channel x */
  54#define AT_DMA_DSREQ(x)		BIT(1 + ((x) << 1))	/* Request a destination single transfer on channel x */
  55
  56/* Software Chunk Transfer Request Register */
  57#define AT_DMA_CREQ		0x0c
  58#define AT_DMA_SCREQ(x)		BIT((x) << 1)		/* Request a source chunk transfer on channel x */
  59#define AT_DMA_DCREQ(x)		BIT(1 + ((x) << 1))	/* Request a destination chunk transfer on channel x */
  60
  61/* Software Last Transfer Flag Register */
  62#define AT_DMA_LAST		0x10
  63#define AT_DMA_SLAST(x)		BIT((x) << 1)		/* This src rq is last tx of buffer on channel x */
  64#define AT_DMA_DLAST(x)		BIT(1 + ((x) << 1))	/* This dst rq is last tx of buffer on channel x */
  65
  66/* Request Synchronization Register */
  67#define AT_DMA_SYNC		0x14
  68#define AT_DMA_SYR(h)		BIT((h))		/* Synchronize handshake line h */
  69
  70/* Error, Chained Buffer transfer completed and Buffer transfer completed Interrupt registers */
  71#define AT_DMA_EBCIER		0x18			/* Enable register */
  72#define AT_DMA_EBCIDR		0x1c			/* Disable register */
  73#define AT_DMA_EBCIMR		0x20			/* Mask Register */
  74#define AT_DMA_EBCISR		0x24			/* Status Register */
  75#define AT_DMA_CBTC_OFFSET	8
  76#define AT_DMA_ERR_OFFSET	16
  77#define AT_DMA_BTC(x)		BIT((x))
  78#define AT_DMA_CBTC(x)		BIT(AT_DMA_CBTC_OFFSET + (x))
  79#define AT_DMA_ERR(x)		BIT(AT_DMA_ERR_OFFSET + (x))
  80
  81/* Channel Handler Enable Register */
  82#define AT_DMA_CHER		0x28
  83#define AT_DMA_ENA(x)		BIT((x))
  84#define AT_DMA_SUSP(x)		BIT(8 + (x))
  85#define AT_DMA_KEEP(x)		BIT(24 + (x))
  86
  87/* Channel Handler Disable Register */
  88#define AT_DMA_CHDR		0x2c
  89#define AT_DMA_DIS(x)		BIT(x)
  90#define AT_DMA_RES(x)		BIT(8 + (x))
  91
  92/* Channel Handler Status Register */
  93#define AT_DMA_CHSR		0x30
  94#define AT_DMA_EMPT(x)		BIT(16 + (x))
  95#define AT_DMA_STAL(x)		BIT(24 + (x))
  96
  97/* Channel registers base address */
  98#define AT_DMA_CH_REGS_BASE	0x3c
  99#define ch_regs(x)		(AT_DMA_CH_REGS_BASE + (x) * 0x28) /* Channel x base addr */
 100
 101/* Hardware register offset for each channel */
 102#define ATC_SADDR_OFFSET	0x00	/* Source Address Register */
 103#define ATC_DADDR_OFFSET	0x04	/* Destination Address Register */
 104#define ATC_DSCR_OFFSET		0x08	/* Descriptor Address Register */
 105#define ATC_CTRLA_OFFSET	0x0c	/* Control A Register */
 106#define ATC_CTRLB_OFFSET	0x10	/* Control B Register */
 107#define ATC_CFG_OFFSET		0x14	/* Configuration Register */
 108#define ATC_SPIP_OFFSET		0x18	/* Src PIP Configuration Register */
 109#define ATC_DPIP_OFFSET		0x1c	/* Dst PIP Configuration Register */
 110
 111
 112/* Bitfield definitions */
 113
 114/* Bitfields in DSCR */
 115#define ATC_DSCR_IF		GENMASK(1, 0)	/* Dsc feched via AHB-Lite Interface */
 116
 117/* Bitfields in CTRLA */
 118#define ATC_BTSIZE_MAX		GENMASK(15, 0)	/* Maximum Buffer Transfer Size */
 119#define ATC_BTSIZE		GENMASK(15, 0)	/* Buffer Transfer Size */
 120#define ATC_SCSIZE		GENMASK(18, 16)	/* Source Chunk Transfer Size */
 121#define ATC_DCSIZE		GENMASK(22, 20)	/* Destination Chunk Transfer Size */
 122#define ATC_SRC_WIDTH		GENMASK(25, 24)	/* Source Single Transfer Size */
 123#define ATC_DST_WIDTH		GENMASK(29, 28)	/* Destination Single Transfer Size */
 124#define ATC_DONE		BIT(31)	/* Tx Done (only written back in descriptor) */
 125
 126/* Bitfields in CTRLB */
 127#define ATC_SIF			GENMASK(1, 0)	/* Src tx done via AHB-Lite Interface i */
 128#define ATC_DIF			GENMASK(5, 4)	/* Dst tx done via AHB-Lite Interface i */
 129#define AT_DMA_MEM_IF		0x0		/* interface 0 as memory interface */
 130#define AT_DMA_PER_IF		0x1		/* interface 1 as peripheral interface */
 131#define ATC_SRC_PIP		BIT(8)		/* Source Picture-in-Picture enabled */
 132#define ATC_DST_PIP		BIT(12)		/* Destination Picture-in-Picture enabled */
 133#define ATC_SRC_DSCR_DIS	BIT(16)		/* Src Descriptor fetch disable */
 134#define ATC_DST_DSCR_DIS	BIT(20)		/* Dst Descriptor fetch disable */
 135#define ATC_FC			GENMASK(23, 21)	/* Choose Flow Controller */
 136#define ATC_FC_MEM2MEM		0x0		/* Mem-to-Mem (DMA) */
 137#define ATC_FC_MEM2PER		0x1		/* Mem-to-Periph (DMA) */
 138#define ATC_FC_PER2MEM		0x2		/* Periph-to-Mem (DMA) */
 139#define ATC_FC_PER2PER		0x3		/* Periph-to-Periph (DMA) */
 140#define ATC_FC_PER2MEM_PER	0x4		/* Periph-to-Mem (Peripheral) */
 141#define ATC_FC_MEM2PER_PER	0x5		/* Mem-to-Periph (Peripheral) */
 142#define ATC_FC_PER2PER_SRCPER	0x6		/* Periph-to-Periph (Src Peripheral) */
 143#define ATC_FC_PER2PER_DSTPER	0x7		/* Periph-to-Periph (Dst Peripheral) */
 144#define ATC_SRC_ADDR_MODE	GENMASK(25, 24)
 145#define ATC_SRC_ADDR_MODE_INCR	0x0		/* Incrementing Mode */
 146#define ATC_SRC_ADDR_MODE_DECR	0x1		/* Decrementing Mode */
 147#define ATC_SRC_ADDR_MODE_FIXED	0x2		/* Fixed Mode */
 148#define ATC_DST_ADDR_MODE	GENMASK(29, 28)
 149#define ATC_DST_ADDR_MODE_INCR	0x0		/* Incrementing Mode */
 150#define ATC_DST_ADDR_MODE_DECR	0x1		/* Decrementing Mode */
 151#define ATC_DST_ADDR_MODE_FIXED	0x2		/* Fixed Mode */
 152#define ATC_IEN			BIT(30)		/* BTC interrupt enable (active low) */
 153#define ATC_AUTO		BIT(31)		/* Auto multiple buffer tx enable */
 154
 155/* Bitfields in CFG */
 156#define ATC_SRC_PER		GENMASK(3, 0)	/* Channel src rq associated with periph handshaking ifc h */
 157#define ATC_DST_PER		GENMASK(7, 4)	/* Channel dst rq associated with periph handshaking ifc h */
 158#define ATC_SRC_REP		BIT(8)		/* Source Replay Mod */
 159#define ATC_SRC_H2SEL		BIT(9)		/* Source Handshaking Mod */
 160#define ATC_SRC_PER_MSB		GENMASK(11, 10)	/* Channel src rq (most significant bits) */
 161#define ATC_DST_REP		BIT(12)		/* Destination Replay Mod */
 162#define ATC_DST_H2SEL		BIT(13)		/* Destination Handshaking Mod */
 163#define ATC_DST_PER_MSB		GENMASK(15, 14)	/* Channel dst rq (most significant bits) */
 164#define ATC_SOD			BIT(16)		/* Stop On Done */
 165#define ATC_LOCK_IF		BIT(20)		/* Interface Lock */
 166#define ATC_LOCK_B		BIT(21)		/* AHB Bus Lock */
 167#define ATC_LOCK_IF_L		BIT(22)		/* Master Interface Arbiter Lock */
 168#define ATC_AHB_PROT		GENMASK(26, 24)	/* AHB Protection */
 169#define ATC_FIFOCFG		GENMASK(29, 28)	/* FIFO Request Configuration */
 170#define ATC_FIFOCFG_LARGESTBURST	0x0
 171#define ATC_FIFOCFG_HALFFIFO		0x1
 172#define ATC_FIFOCFG_ENOUGHSPACE		0x2
 173
 174/* Bitfields in SPIP */
 175#define ATC_SPIP_HOLE		GENMASK(15, 0)
 176#define ATC_SPIP_BOUNDARY	GENMASK(25, 16)
 177
 178/* Bitfields in DPIP */
 179#define ATC_DPIP_HOLE		GENMASK(15, 0)
 180#define ATC_DPIP_BOUNDARY	GENMASK(25, 16)
 181
 182#define ATC_PER_MSB		GENMASK(5, 4)	/* Extract MSBs of a handshaking identifier */
 183#define ATC_SRC_PER_ID(id)					       \
 184	({ typeof(id) _id = (id);				       \
 185	   FIELD_PREP(ATC_SRC_PER_MSB, FIELD_GET(ATC_PER_MSB, _id)) |  \
 186	   FIELD_PREP(ATC_SRC_PER, _id); })
 187#define ATC_DST_PER_ID(id)					       \
 188	({ typeof(id) _id = (id);				       \
 189	   FIELD_PREP(ATC_DST_PER_MSB, FIELD_GET(ATC_PER_MSB, _id)) |  \
 190	   FIELD_PREP(ATC_DST_PER, _id); })
 191
 192
 193
 194/*--  descriptors  -----------------------------------------------------*/
 195
 196/* LLI == Linked List Item; aka DMA buffer descriptor */
 197struct at_lli {
 198	/* values that are not changed by hardware */
 199	u32 saddr;
 200	u32 daddr;
 201	/* value that may get written back: */
 202	u32 ctrla;
 203	/* more values that are not changed by hardware */
 204	u32 ctrlb;
 205	u32 dscr;	/* chain to next lli */
 206};
 207
 208/**
 209 * struct atdma_sg - atdma scatter gather entry
 210 * @len: length of the current Linked List Item.
 211 * @lli: linked list item that is passed to the DMA controller
 212 * @lli_phys: physical address of the LLI.
 213 */
 214struct atdma_sg {
 215	unsigned int len;
 216	struct at_lli *lli;
 217	dma_addr_t lli_phys;
 218};
 219
 220/**
 221 * struct at_desc - software descriptor
 222 * @vd: pointer to the virtual dma descriptor.
 223 * @atchan: pointer to the atmel dma channel.
 224 * @total_len: total transaction byte count
 225 * @sglen: number of sg entries.
 226 * @sg: array of sgs.
 227 * @boundary: number of transfers to perform before the automatic address increment operation
 228 * @dst_hole: value to add to the destination address when the boundary has been reached
 229 * @src_hole: value to add to the source address when the boundary has been reached
 230 * @memset_buffer: buffer used for the memset operation
 231 * @memset_paddr: physical address of the buffer used for the memset operation
 232 * @memset_vaddr: virtual address of the buffer used for the memset operation
 233 */
 234struct at_desc {
 235	struct				virt_dma_desc vd;
 236	struct				at_dma_chan *atchan;
 237	size_t				total_len;
 238	unsigned int			sglen;
 239	/* Interleaved data */
 240	size_t				boundary;
 241	size_t				dst_hole;
 242	size_t				src_hole;
 243
 244	/* Memset temporary buffer */
 245	bool				memset_buffer;
 246	dma_addr_t			memset_paddr;
 247	int				*memset_vaddr;
 248	struct atdma_sg			sg[] __counted_by(sglen);
 249};
 250
 251/*--  Channels  --------------------------------------------------------*/
 252
 253/**
 254 * enum atc_status - information bits stored in channel status flag
 255 *
 256 * @ATC_IS_PAUSED: If channel is pauses
 257 * @ATC_IS_CYCLIC: If channel is cyclic
 258 *
 259 * Manipulated with atomic operations.
 260 */
 261enum atc_status {
 262	ATC_IS_PAUSED = 1,
 263	ATC_IS_CYCLIC = 24,
 264};
 265
 266/**
 267 * struct at_dma_chan - internal representation of an Atmel HDMAC channel
 268 * @vc: virtual dma channel entry.
 269 * @atdma: pointer to the driver data.
 270 * @ch_regs: memory mapped register base
 271 * @mask: channel index in a mask
 272 * @per_if: peripheral interface
 273 * @mem_if: memory interface
 274 * @status: transmit status information from irq/prep* functions
 275 *                to tasklet (use atomic operations)
 276 * @save_cfg: configuration register that is saved on suspend/resume cycle
 277 * @save_dscr: for cyclic operations, preserve next descriptor address in
 278 *             the cyclic list on suspend/resume cycle
 279 * @dma_sconfig: configuration for slave transfers, passed via
 280 * .device_config
 281 * @desc: pointer to the atmel dma descriptor.
 282 */
 283struct at_dma_chan {
 284	struct virt_dma_chan	vc;
 285	struct at_dma		*atdma;
 286	void __iomem		*ch_regs;
 287	u8			mask;
 288	u8			per_if;
 289	u8			mem_if;
 290	unsigned long		status;
 291	u32			save_cfg;
 292	u32			save_dscr;
 293	struct dma_slave_config	dma_sconfig;
 294	struct at_desc		*desc;
 295};
 296
 297#define	channel_readl(atchan, name) \
 298	__raw_readl((atchan)->ch_regs + ATC_##name##_OFFSET)
 299
 300#define	channel_writel(atchan, name, val) \
 301	__raw_writel((val), (atchan)->ch_regs + ATC_##name##_OFFSET)
 302
 303/*
 304 * Fix sconfig's burst size according to at_hdmac. We need to convert them as:
 305 * 1 -> 0, 4 -> 1, 8 -> 2, 16 -> 3, 32 -> 4, 64 -> 5, 128 -> 6, 256 -> 7.
 306 *
 307 * This can be done by finding most significant bit set.
 308 */
 309static inline void convert_burst(u32 *maxburst)
 310{
 311	if (*maxburst > 1)
 312		*maxburst = fls(*maxburst) - 2;
 313	else
 314		*maxburst = 0;
 315}
 316
 317/*
 318 * Fix sconfig's bus width according to at_hdmac.
 319 * 1 byte -> 0, 2 bytes -> 1, 4 bytes -> 2.
 320 */
 321static inline u8 convert_buswidth(enum dma_slave_buswidth addr_width)
 322{
 323	switch (addr_width) {
 324	case DMA_SLAVE_BUSWIDTH_2_BYTES:
 325		return 1;
 326	case DMA_SLAVE_BUSWIDTH_4_BYTES:
 327		return 2;
 328	default:
 329		/* For 1 byte width or fallback */
 330		return 0;
 331	}
 332}
 333
 334/*--  Controller  ------------------------------------------------------*/
 335
 336/**
 337 * struct at_dma - internal representation of an Atmel HDMA Controller
 338 * @dma_device: dmaengine dma_device object members
 339 * @regs: memory mapped register base
 340 * @clk: dma controller clock
 341 * @save_imr: interrupt mask register that is saved on suspend/resume cycle
 342 * @all_chan_mask: all channels availlable in a mask
 343 * @lli_pool: hw lli table
 344 * @memset_pool: hw memset pool
 345 * @chan: channels table to store at_dma_chan structures
 346 */
 347struct at_dma {
 348	struct dma_device	dma_device;
 349	void __iomem		*regs;
 350	struct clk		*clk;
 351	u32			save_imr;
 352
 353	u8			all_chan_mask;
 354
 355	struct dma_pool		*lli_pool;
 356	struct dma_pool		*memset_pool;
 357	/* AT THE END channels table */
 358	struct at_dma_chan	chan[];
 359};
 360
 361#define	dma_readl(atdma, name) \
 362	__raw_readl((atdma)->regs + AT_DMA_##name)
 363#define	dma_writel(atdma, name, val) \
 364	__raw_writel((val), (atdma)->regs + AT_DMA_##name)
 365
 366static inline struct at_desc *to_atdma_desc(struct dma_async_tx_descriptor *t)
 367{
 368	return container_of(t, struct at_desc, vd.tx);
 369}
 370
 371static inline struct at_dma_chan *to_at_dma_chan(struct dma_chan *chan)
 372{
 373	return container_of(chan, struct at_dma_chan, vc.chan);
 374}
 375
 376static inline struct at_dma *to_at_dma(struct dma_device *ddev)
 
 377{
 378	return container_of(ddev, struct at_dma, dma_device);
 379}
 380
 381
 382/*--  Helper functions  ------------------------------------------------*/
 
 
 
 
 
 383
 384static struct device *chan2dev(struct dma_chan *chan)
 385{
 386	return &chan->dev->device;
 387}
 388
 389#if defined(VERBOSE_DEBUG)
 390static void vdbg_dump_regs(struct at_dma_chan *atchan)
 391{
 392	struct at_dma	*atdma = to_at_dma(atchan->vc.chan.device);
 393
 394	dev_err(chan2dev(&atchan->vc.chan),
 395		"  channel %d : imr = 0x%x, chsr = 0x%x\n",
 396		atchan->vc.chan.chan_id,
 397		dma_readl(atdma, EBCIMR),
 398		dma_readl(atdma, CHSR));
 399
 400	dev_err(chan2dev(&atchan->vc.chan),
 401		"  channel: s0x%x d0x%x ctrl0x%x:0x%x cfg0x%x l0x%x\n",
 402		channel_readl(atchan, SADDR),
 403		channel_readl(atchan, DADDR),
 404		channel_readl(atchan, CTRLA),
 405		channel_readl(atchan, CTRLB),
 406		channel_readl(atchan, CFG),
 407		channel_readl(atchan, DSCR));
 408}
 409#else
 410static void vdbg_dump_regs(struct at_dma_chan *atchan) {}
 411#endif
 412
 413static void atc_dump_lli(struct at_dma_chan *atchan, struct at_lli *lli)
 414{
 415	dev_crit(chan2dev(&atchan->vc.chan),
 416		 "desc: s%pad d%pad ctrl0x%x:0x%x l%pad\n",
 417		 &lli->saddr, &lli->daddr,
 418		 lli->ctrla, lli->ctrlb, &lli->dscr);
 419}
 420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 421
 422static void atc_setup_irq(struct at_dma *atdma, int chan_id, int on)
 423{
 424	u32 ebci;
 425
 426	/* enable interrupts on buffer transfer completion & error */
 427	ebci =    AT_DMA_BTC(chan_id)
 428		| AT_DMA_ERR(chan_id);
 429	if (on)
 430		dma_writel(atdma, EBCIER, ebci);
 431	else
 432		dma_writel(atdma, EBCIDR, ebci);
 433}
 434
 435static void atc_enable_chan_irq(struct at_dma *atdma, int chan_id)
 436{
 437	atc_setup_irq(atdma, chan_id, 1);
 438}
 439
 440static void atc_disable_chan_irq(struct at_dma *atdma, int chan_id)
 441{
 442	atc_setup_irq(atdma, chan_id, 0);
 443}
 444
 445
 446/**
 447 * atc_chan_is_enabled - test if given channel is enabled
 448 * @atchan: channel we want to test status
 449 */
 450static inline int atc_chan_is_enabled(struct at_dma_chan *atchan)
 451{
 452	struct at_dma *atdma = to_at_dma(atchan->vc.chan.device);
 453
 454	return !!(dma_readl(atdma, CHSR) & atchan->mask);
 455}
 456
 457/**
 458 * atc_chan_is_paused - test channel pause/resume status
 459 * @atchan: channel we want to test status
 460 */
 461static inline int atc_chan_is_paused(struct at_dma_chan *atchan)
 462{
 463	return test_bit(ATC_IS_PAUSED, &atchan->status);
 464}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 465
 466/**
 467 * atc_chan_is_cyclic - test if given channel has cyclic property set
 468 * @atchan: channel we want to test status
 469 */
 470static inline int atc_chan_is_cyclic(struct at_dma_chan *atchan)
 471{
 472	return test_bit(ATC_IS_CYCLIC, &atchan->status);
 473}
 474
 475/**
 476 * set_lli_eol - set end-of-link to descriptor so it will end transfer
 477 * @desc: descriptor, signle or at the end of a chain, to end chain on
 478 * @i: index of the atmel scatter gather entry that is at the end of the chain.
 479 */
 480static void set_lli_eol(struct at_desc *desc, unsigned int i)
 481{
 482	u32 ctrlb = desc->sg[i].lli->ctrlb;
 483
 484	ctrlb &= ~ATC_IEN;
 485	ctrlb |= ATC_SRC_DSCR_DIS | ATC_DST_DSCR_DIS;
 486
 487	desc->sg[i].lli->ctrlb = ctrlb;
 488	desc->sg[i].lli->dscr = 0;
 
 
 
 
 
 
 
 
 
 489}
 490
 491#define	ATC_DEFAULT_CFG		FIELD_PREP(ATC_FIFOCFG, ATC_FIFOCFG_HALFFIFO)
 492#define	ATC_DEFAULT_CTRLB	(FIELD_PREP(ATC_SIF, AT_DMA_MEM_IF) | \
 493				 FIELD_PREP(ATC_DIF, AT_DMA_MEM_IF))
 494#define ATC_DMA_BUSWIDTHS\
 495	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
 496	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
 497	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
 498	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
 499
 500#define ATC_MAX_DSCR_TRIALS	10
 501
 502/*
 503 * Initial number of descriptors to allocate for each channel. This could
 504 * be increased during dma usage.
 505 */
 506static unsigned int init_nr_desc_per_channel = 64;
 507module_param(init_nr_desc_per_channel, uint, 0644);
 508MODULE_PARM_DESC(init_nr_desc_per_channel,
 509		 "initial descriptors per channel (default: 64)");
 510
 511/**
 512 * struct at_dma_platform_data - Controller configuration parameters
 513 * @nr_channels: Number of channels supported by hardware (max 8)
 514 * @cap_mask: dma_capability flags supported by the platform
 515 */
 516struct at_dma_platform_data {
 517	unsigned int	nr_channels;
 518	dma_cap_mask_t  cap_mask;
 519};
 520
 521/**
 522 * struct at_dma_slave - Controller-specific information about a slave
 523 * @dma_dev: required DMA master device
 524 * @cfg: Platform-specific initializer for the CFG register
 525 */
 526struct at_dma_slave {
 527	struct device		*dma_dev;
 528	u32			cfg;
 529};
 530
 531static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
 532						size_t len)
 533{
 534	unsigned int width;
 535
 536	if (!((src | dst  | len) & 3))
 537		width = 2;
 538	else if (!((src | dst | len) & 1))
 539		width = 1;
 540	else
 541		width = 0;
 542
 543	return width;
 544}
 545
 546static void atdma_lli_chain(struct at_desc *desc, unsigned int i)
 547{
 548	struct atdma_sg *atdma_sg = &desc->sg[i];
 549
 550	if (i)
 551		desc->sg[i - 1].lli->dscr = atdma_sg->lli_phys;
 552}
 553
 554/**
 555 * atc_dostart - starts the DMA engine for real
 556 * @atchan: the channel we want to start
 
 
 
 557 */
 558static void atc_dostart(struct at_dma_chan *atchan)
 559{
 560	struct virt_dma_desc *vd = vchan_next_desc(&atchan->vc);
 561	struct at_desc *desc;
 
 
 
 
 
 
 
 
 
 
 
 562
 563	if (!vd) {
 564		atchan->desc = NULL;
 565		return;
 566	}
 567
 568	vdbg_dump_regs(atchan);
 569
 570	list_del(&vd->node);
 571	atchan->desc = desc = to_atdma_desc(&vd->tx);
 572
 573	channel_writel(atchan, SADDR, 0);
 574	channel_writel(atchan, DADDR, 0);
 575	channel_writel(atchan, CTRLA, 0);
 576	channel_writel(atchan, CTRLB, 0);
 577	channel_writel(atchan, DSCR, desc->sg[0].lli_phys);
 578	channel_writel(atchan, SPIP,
 579		       FIELD_PREP(ATC_SPIP_HOLE, desc->src_hole) |
 580		       FIELD_PREP(ATC_SPIP_BOUNDARY, desc->boundary));
 581	channel_writel(atchan, DPIP,
 582		       FIELD_PREP(ATC_DPIP_HOLE, desc->dst_hole) |
 583		       FIELD_PREP(ATC_DPIP_BOUNDARY, desc->boundary));
 584
 585	/* Don't allow CPU to reorder channel enable. */
 586	wmb();
 587	dma_writel(atchan->atdma, CHER, atchan->mask);
 588
 589	vdbg_dump_regs(atchan);
 590}
 591
 592static void atdma_desc_free(struct virt_dma_desc *vd)
 
 
 
 
 
 
 593{
 594	struct at_dma *atdma = to_at_dma(vd->tx.chan->device);
 595	struct at_desc *desc = to_atdma_desc(&vd->tx);
 596	unsigned int i;
 597
 598	for (i = 0; i < desc->sglen; i++) {
 599		if (desc->sg[i].lli)
 600			dma_pool_free(atdma->lli_pool, desc->sg[i].lli,
 601				      desc->sg[i].lli_phys);
 602	}
 603
 604	/* If the transfer was a memset, free our temporary buffer */
 605	if (desc->memset_buffer) {
 606		dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
 607			      desc->memset_paddr);
 608		desc->memset_buffer = false;
 609	}
 610
 611	kfree(desc);
 612}
 613
 614/**
 615 * atc_calc_bytes_left - calculates the number of bytes left according to the
 616 * value read from CTRLA.
 617 *
 618 * @current_len: the number of bytes left before reading CTRLA
 619 * @ctrla: the value of CTRLA
 620 */
 621static inline u32 atc_calc_bytes_left(u32 current_len, u32 ctrla)
 622{
 623	u32 btsize = FIELD_GET(ATC_BTSIZE, ctrla);
 624	u32 src_width = FIELD_GET(ATC_SRC_WIDTH, ctrla);
 625
 626	/*
 627	 * According to the datasheet, when reading the Control A Register
 628	 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
 629	 * number of transfers completed on the Source Interface.
 630	 * So btsize is always a number of source width transfers.
 631	 */
 632	return current_len - (btsize << src_width);
 633}
 634
 635/**
 636 * atc_get_llis_residue - Get residue for a hardware linked list transfer
 637 * @atchan: pointer to an atmel hdmac channel.
 638 * @desc: pointer to the descriptor for which the residue is calculated.
 639 * @residue: residue to be set to dma_tx_state.
 640 *
 641 * Calculate the residue by removing the length of the Linked List Item (LLI)
 642 * already transferred from the total length. To get the current LLI we can use
 643 * the value of the channel's DSCR register and compare it against the DSCR
 644 * value of each LLI.
 645 *
 646 * The CTRLA register provides us with the amount of data already read from the
 647 * source for the LLI. So we can compute a more accurate residue by also
 648 * removing the number of bytes corresponding to this amount of data.
 649 *
 650 * However, the DSCR and CTRLA registers cannot be read both atomically. Hence a
 651 * race condition may occur: the first read register may refer to one LLI
 652 * whereas the second read may refer to a later LLI in the list because of the
 653 * DMA transfer progression inbetween the two reads.
 654 *
 655 * One solution could have been to pause the DMA transfer, read the DSCR and
 656 * CTRLA then resume the DMA transfer. Nonetheless, this approach presents some
 657 * drawbacks:
 658 * - If the DMA transfer is paused, RX overruns or TX underruns are more likey
 659 *   to occur depending on the system latency. Taking the USART driver as an
 660 *   example, it uses a cyclic DMA transfer to read data from the Receive
 661 *   Holding Register (RHR) to avoid RX overruns since the RHR is not protected
 662 *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer to compute the
 663 *   residue would break the USART driver design.
 664 * - The atc_pause() function masks interrupts but we'd rather avoid to do so
 665 * for system latency purpose.
 666 *
 667 * Then we'd rather use another solution: the DSCR is read a first time, the
 668 * CTRLA is read in turn, next the DSCR is read a second time. If the two
 669 * consecutive read values of the DSCR are the same then we assume both refers
 670 * to the very same LLI as well as the CTRLA value read inbetween does. For
 671 * cyclic tranfers, the assumption is that a full loop is "not so fast". If the
 672 * two DSCR values are different, we read again the CTRLA then the DSCR till two
 673 * consecutive read values from DSCR are equal or till the maximum trials is
 674 * reach. This algorithm is very unlikely not to find a stable value for DSCR.
 675 *
 676 * Returns: %0 on success, -errno otherwise.
 677 */
 678static int atc_get_llis_residue(struct at_dma_chan *atchan,
 679				struct at_desc *desc, u32 *residue)
 680{
 681	u32 len, ctrla, dscr;
 682	unsigned int i;
 
 
 
 683
 684	len = desc->total_len;
 685	dscr = channel_readl(atchan, DSCR);
 686	rmb(); /* ensure DSCR is read before CTRLA */
 687	ctrla = channel_readl(atchan, CTRLA);
 688	for (i = 0; i < ATC_MAX_DSCR_TRIALS; ++i) {
 689		u32 new_dscr;
 
 
 
 
 690
 691		rmb(); /* ensure DSCR is read after CTRLA */
 692		new_dscr = channel_readl(atchan, DSCR);
 
 
 
 693
 694		/*
 695		 * If the DSCR register value has not changed inside the DMA
 696		 * controller since the previous read, we assume that both the
 697		 * dscr and ctrla values refers to the very same descriptor.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698		 */
 699		if (likely(new_dscr == dscr))
 700			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 701
 702		/*
 703		 * DSCR has changed inside the DMA controller, so the previouly
 704		 * read value of CTRLA may refer to an already processed
 705		 * descriptor hence could be outdated. We need to update ctrla
 706		 * to match the current descriptor.
 707		 */
 708		dscr = new_dscr;
 709		rmb(); /* ensure DSCR is read before CTRLA */
 
 710		ctrla = channel_readl(atchan, CTRLA);
 
 711	}
 712	if (unlikely(i == ATC_MAX_DSCR_TRIALS))
 713		return -ETIMEDOUT;
 714
 715	/* For the first descriptor we can be more accurate. */
 716	if (desc->sg[0].lli->dscr == dscr) {
 717		*residue = atc_calc_bytes_left(len, ctrla);
 718		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719	}
 720	len -= desc->sg[0].len;
 721
 722	for (i = 1; i < desc->sglen; i++) {
 723		if (desc->sg[i].lli && desc->sg[i].lli->dscr == dscr)
 724			break;
 725		len -= desc->sg[i].len;
 
 
 
 
 
 
 
 
 
 
 726	}
 727
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 728	/*
 729	 * For the current LLI in the chain we can calculate the remaining bytes
 730	 * using the channel's CTRLA register.
 731	 */
 732	*residue = atc_calc_bytes_left(len, ctrla);
 733	return 0;
 
 
 
 
 734
 
 
 735}
 736
 737/**
 738 * atc_get_residue - get the number of bytes residue for a cookie.
 739 * The residue is passed by address and updated on success.
 740 * @chan: DMA channel
 741 * @cookie: transaction identifier to check status of
 742 * @residue: residue to be updated.
 743 *
 744 * Return: %0 on success, -errno otherwise.
 745 */
 746static int atc_get_residue(struct dma_chan *chan, dma_cookie_t cookie,
 747			   u32 *residue)
 748{
 749	struct at_dma_chan *atchan = to_at_dma_chan(chan);
 750	struct virt_dma_desc *vd;
 751	struct at_desc *desc = NULL;
 752	u32 len, ctrla;
 753
 754	vd = vchan_find_desc(&atchan->vc, cookie);
 755	if (vd)
 756		desc = to_atdma_desc(&vd->tx);
 757	else if (atchan->desc && atchan->desc->vd.tx.cookie == cookie)
 758		desc = atchan->desc;
 759
 760	if (!desc)
 761		return -EINVAL;
 762
 763	if (desc->sg[0].lli->dscr)
 764		/* hardware linked list transfer */
 765		return atc_get_llis_residue(atchan, desc, residue);
 766
 767	/* single transfer */
 768	len = desc->total_len;
 769	ctrla = channel_readl(atchan, CTRLA);
 770	*residue = atc_calc_bytes_left(len, ctrla);
 771	return 0;
 
 
 
 772}
 773
 
 774/**
 775 * atc_handle_error - handle errors reported by DMA controller
 776 * @atchan: channel where error occurs.
 777 * @i: channel index
 
 778 */
 779static void atc_handle_error(struct at_dma_chan *atchan, unsigned int i)
 780{
 781	struct at_desc *desc = atchan->desc;
 
 
 
 
 
 
 
 
 
 782
 783	/* Disable channel on AHB error */
 784	dma_writel(atchan->atdma, CHDR, AT_DMA_RES(i) | atchan->mask);
 
 
 
 
 
 785
 786	/*
 787	 * KERN_CRITICAL may seem harsh, but since this only happens
 788	 * when someone submits a bad physical address in a
 789	 * descriptor, we should consider ourselves lucky that the
 790	 * controller flagged an error instead of scribbling over
 791	 * random memory locations.
 792	 */
 793	dev_crit(chan2dev(&atchan->vc.chan), "Bad descriptor submitted for DMA!\n");
 794	dev_crit(chan2dev(&atchan->vc.chan), "cookie: %d\n",
 795		 desc->vd.tx.cookie);
 796	for (i = 0; i < desc->sglen; i++)
 797		atc_dump_lli(atchan, desc->sg[i].lli);
 
 
 
 
 
 798}
 799
 800static void atdma_handle_chan_done(struct at_dma_chan *atchan, u32 pending,
 801				   unsigned int i)
 
 
 
 
 
 802{
 803	struct at_desc *desc;
 
 804
 805	spin_lock(&atchan->vc.lock);
 806	desc = atchan->desc;
 
 807
 808	if (desc) {
 809		if (pending & AT_DMA_ERR(i)) {
 810			atc_handle_error(atchan, i);
 811			/* Pretend the descriptor completed successfully */
 812		}
 813
 814		if (atc_chan_is_cyclic(atchan)) {
 815			vchan_cyclic_callback(&desc->vd);
 816		} else {
 817			vchan_cookie_complete(&desc->vd);
 818			atchan->desc = NULL;
 819			if (!(atc_chan_is_enabled(atchan)))
 820				atc_dostart(atchan);
 821		}
 822	}
 823	spin_unlock(&atchan->vc.lock);
 
 
 
 
 
 
 824}
 825
 826static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
 827{
 828	struct at_dma		*atdma = dev_id;
 829	struct at_dma_chan	*atchan;
 830	int			i;
 831	u32			status, pending, imr;
 832	int			ret = IRQ_NONE;
 833
 834	do {
 835		imr = dma_readl(atdma, EBCIMR);
 836		status = dma_readl(atdma, EBCISR);
 837		pending = status & imr;
 838
 839		if (!pending)
 840			break;
 841
 842		dev_vdbg(atdma->dma_device.dev,
 843			"interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
 844			 status, imr, pending);
 845
 846		for (i = 0; i < atdma->dma_device.chancnt; i++) {
 847			atchan = &atdma->chan[i];
 848			if (!(pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))))
 849				continue;
 850			atdma_handle_chan_done(atchan, pending, i);
 851			ret = IRQ_HANDLED;
 
 
 
 
 
 
 
 852		}
 853
 854	} while (pending);
 855
 856	return ret;
 857}
 858
 
 859/*--  DMA Engine API  --------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 860/**
 861 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
 862 * @chan: the channel to prepare operation on
 863 * @xt: Interleaved transfer template
 864 * @flags: tx descriptor status flags
 865 */
 866static struct dma_async_tx_descriptor *
 867atc_prep_dma_interleaved(struct dma_chan *chan,
 868			 struct dma_interleaved_template *xt,
 869			 unsigned long flags)
 870{
 871	struct at_dma		*atdma = to_at_dma(chan->device);
 872	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
 873	struct data_chunk	*first;
 874	struct atdma_sg		*atdma_sg;
 875	struct at_desc		*desc;
 876	struct at_lli		*lli;
 877	size_t			xfer_count;
 878	unsigned int		dwidth;
 879	u32			ctrla;
 880	u32			ctrlb;
 881	size_t			len = 0;
 882	int			i;
 883
 884	if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
 885		return NULL;
 886
 887	first = xt->sgl;
 888
 889	dev_info(chan2dev(chan),
 890		 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
 891		__func__, &xt->src_start, &xt->dst_start, xt->numf,
 892		xt->frame_size, flags);
 893
 894	/*
 895	 * The controller can only "skip" X bytes every Y bytes, so we
 896	 * need to make sure we are given a template that fit that
 897	 * description, ie a template with chunks that always have the
 898	 * same size, with the same ICGs.
 899	 */
 900	for (i = 0; i < xt->frame_size; i++) {
 901		struct data_chunk *chunk = xt->sgl + i;
 902
 903		if ((chunk->size != xt->sgl->size) ||
 904		    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
 905		    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
 906			dev_err(chan2dev(chan),
 907				"%s: the controller can transfer only identical chunks\n",
 908				__func__);
 909			return NULL;
 910		}
 911
 912		len += chunk->size;
 913	}
 914
 915	dwidth = atc_get_xfer_width(xt->src_start, xt->dst_start, len);
 
 916
 917	xfer_count = len >> dwidth;
 918	if (xfer_count > ATC_BTSIZE_MAX) {
 919		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
 920		return NULL;
 921	}
 922
 923	ctrla = FIELD_PREP(ATC_SRC_WIDTH, dwidth) |
 924		FIELD_PREP(ATC_DST_WIDTH, dwidth);
 925
 926	ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
 927		FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
 928		FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
 929		ATC_SRC_PIP | ATC_DST_PIP |
 930		FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
 931
 932	desc = kzalloc(struct_size(desc, sg, 1), GFP_ATOMIC);
 933	if (!desc)
 934		return NULL;
 935	desc->sglen = 1;
 936
 937	atdma_sg = desc->sg;
 938	atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
 939				       &atdma_sg->lli_phys);
 940	if (!atdma_sg->lli) {
 941		kfree(desc);
 942		return NULL;
 943	}
 944	lli = atdma_sg->lli;
 945
 946	lli->saddr = xt->src_start;
 947	lli->daddr = xt->dst_start;
 948	lli->ctrla = ctrla | xfer_count;
 949	lli->ctrlb = ctrlb;
 950
 951	desc->boundary = first->size >> dwidth;
 952	desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
 953	desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
 954
 955	atdma_sg->len = len;
 956	desc->total_len = len;
 
 
 
 957
 958	set_lli_eol(desc, 0);
 959	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
 
 960}
 961
 962/**
 963 * atc_prep_dma_memcpy - prepare a memcpy operation
 964 * @chan: the channel to prepare operation on
 965 * @dest: operation virtual destination address
 966 * @src: operation virtual source address
 967 * @len: operation length
 968 * @flags: tx descriptor status flags
 969 */
 970static struct dma_async_tx_descriptor *
 971atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
 972		size_t len, unsigned long flags)
 973{
 974	struct at_dma		*atdma = to_at_dma(chan->device);
 975	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
 976	struct at_desc		*desc = NULL;
 
 
 977	size_t			xfer_count;
 978	size_t			offset;
 979	size_t			sg_len;
 980	unsigned int		src_width;
 981	unsigned int		dst_width;
 982	unsigned int		i;
 983	u32			ctrla;
 984	u32			ctrlb;
 985
 986	dev_dbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
 987		&dest, &src, len, flags);
 988
 989	if (unlikely(!len)) {
 990		dev_err(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
 991		return NULL;
 992	}
 993
 994	sg_len = DIV_ROUND_UP(len, ATC_BTSIZE_MAX);
 995	desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
 996	if (!desc)
 997		return NULL;
 998	desc->sglen = sg_len;
 999
1000	ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
1001		FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
1002		FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
1003		FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
1004
1005	/*
1006	 * We can be a lot more clever here, but this should take care
1007	 * of the most common optimization.
1008	 */
1009	src_width = dst_width = atc_get_xfer_width(src, dest, len);
1010
1011	ctrla = FIELD_PREP(ATC_SRC_WIDTH, src_width) |
1012		FIELD_PREP(ATC_DST_WIDTH, dst_width);
1013
1014	for (offset = 0, i = 0; offset < len;
1015	     offset += xfer_count << src_width, i++) {
1016		struct atdma_sg *atdma_sg = &desc->sg[i];
1017		struct at_lli *lli;
1018
1019		atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
1020					       &atdma_sg->lli_phys);
1021		if (!atdma_sg->lli)
1022			goto err_desc_get;
1023		lli = atdma_sg->lli;
1024
 
1025		xfer_count = min_t(size_t, (len - offset) >> src_width,
1026				   ATC_BTSIZE_MAX);
1027
1028		lli->saddr = src + offset;
1029		lli->daddr = dest + offset;
1030		lli->ctrla = ctrla | xfer_count;
1031		lli->ctrlb = ctrlb;
 
 
 
 
1032
1033		desc->sg[i].len = xfer_count << src_width;
 
1034
1035		atdma_lli_chain(desc, i);
1036	}
1037
1038	desc->total_len = len;
 
 
1039
1040	/* set end-of-link to the last link descriptor of list*/
1041	set_lli_eol(desc, i - 1);
1042
1043	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
 
 
1044
1045err_desc_get:
1046	atdma_desc_free(&desc->vd);
1047	return NULL;
1048}
1049
1050static int atdma_create_memset_lli(struct dma_chan *chan,
1051				   struct atdma_sg *atdma_sg,
1052				   dma_addr_t psrc, dma_addr_t pdst, size_t len)
 
1053{
1054	struct at_dma *atdma = to_at_dma(chan->device);
1055	struct at_lli *lli;
1056	size_t xfer_count;
1057	u32 ctrla = FIELD_PREP(ATC_SRC_WIDTH, 2) | FIELD_PREP(ATC_DST_WIDTH, 2);
 
1058	u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
1059		    FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_FIXED) |
1060		    FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
1061		    FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
1062
1063	xfer_count = len >> 2;
1064	if (xfer_count > ATC_BTSIZE_MAX) {
1065		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
1066		return -EINVAL;
 
1067	}
1068
1069	atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
1070				       &atdma_sg->lli_phys);
1071	if (!atdma_sg->lli)
1072		return -ENOMEM;
1073	lli = atdma_sg->lli;
 
1074
1075	lli->saddr = psrc;
1076	lli->daddr = pdst;
1077	lli->ctrla = ctrla | xfer_count;
1078	lli->ctrlb = ctrlb;
1079
1080	atdma_sg->len = len;
 
1081
1082	return 0;
1083}
1084
1085/**
1086 * atc_prep_dma_memset - prepare a memcpy operation
1087 * @chan: the channel to prepare operation on
1088 * @dest: operation virtual destination address
1089 * @value: value to set memory buffer to
1090 * @len: operation length
1091 * @flags: tx descriptor status flags
1092 */
1093static struct dma_async_tx_descriptor *
1094atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1095		    size_t len, unsigned long flags)
1096{
1097	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1098	struct at_dma		*atdma = to_at_dma(chan->device);
1099	struct at_desc		*desc;
1100	void __iomem		*vaddr;
1101	dma_addr_t		paddr;
1102	char			fill_pattern;
1103	int			ret;
1104
1105	dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
1106		&dest, value, len, flags);
1107
1108	if (unlikely(!len)) {
1109		dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
1110		return NULL;
1111	}
1112
1113	if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1114		dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
1115			__func__);
1116		return NULL;
1117	}
1118
1119	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
1120	if (!vaddr) {
1121		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1122			__func__);
1123		return NULL;
1124	}
 
1125
1126	/* Only the first byte of value is to be used according to dmaengine */
1127	fill_pattern = (char)value;
1128
1129	*(u32*)vaddr = (fill_pattern << 24) |
1130		       (fill_pattern << 16) |
1131		       (fill_pattern << 8) |
1132		       fill_pattern;
1133
1134	desc = kzalloc(struct_size(desc, sg, 1), GFP_ATOMIC);
1135	if (!desc)
1136		goto err_free_buffer;
1137	desc->sglen = 1;
1138
1139	ret = atdma_create_memset_lli(chan, desc->sg, paddr, dest, len);
1140	if (ret)
1141		goto err_free_desc;
1142
1143	desc->memset_paddr = paddr;
1144	desc->memset_vaddr = vaddr;
1145	desc->memset_buffer = true;
1146
 
1147	desc->total_len = len;
1148
1149	/* set end-of-link on the descriptor */
1150	set_lli_eol(desc, 0);
 
 
1151
1152	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1153
1154err_free_desc:
1155	kfree(desc);
1156err_free_buffer:
1157	dma_pool_free(atdma->memset_pool, vaddr, paddr);
1158	return NULL;
1159}
1160
1161static struct dma_async_tx_descriptor *
1162atc_prep_dma_memset_sg(struct dma_chan *chan,
1163		       struct scatterlist *sgl,
1164		       unsigned int sg_len, int value,
1165		       unsigned long flags)
1166{
1167	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1168	struct at_dma		*atdma = to_at_dma(chan->device);
1169	struct at_desc		*desc;
1170	struct scatterlist	*sg;
1171	void __iomem		*vaddr;
1172	dma_addr_t		paddr;
1173	size_t			total_len = 0;
1174	int			i;
1175	int			ret;
1176
1177	dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
1178		 value, sg_len, flags);
1179
1180	if (unlikely(!sgl || !sg_len)) {
1181		dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
1182			__func__);
1183		return NULL;
1184	}
1185
1186	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
1187	if (!vaddr) {
1188		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1189			__func__);
1190		return NULL;
1191	}
1192	*(u32*)vaddr = value;
1193
1194	desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
1195	if (!desc)
1196		goto err_free_dma_buf;
1197	desc->sglen = sg_len;
1198
1199	for_each_sg(sgl, sg, sg_len, i) {
1200		dma_addr_t dest = sg_dma_address(sg);
1201		size_t len = sg_dma_len(sg);
1202
1203		dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1204			 __func__, &dest, len);
1205
1206		if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1207			dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1208				__func__);
1209			goto err_free_desc;
1210		}
1211
1212		ret = atdma_create_memset_lli(chan, &desc->sg[i], paddr, dest,
1213					      len);
1214		if (ret)
1215			goto err_free_desc;
 
1216
1217		atdma_lli_chain(desc, i);
1218		total_len += len;
1219	}
1220
 
 
 
 
1221	desc->memset_paddr = paddr;
1222	desc->memset_vaddr = vaddr;
1223	desc->memset_buffer = true;
1224
1225	desc->total_len = total_len;
 
1226
1227	/* set end-of-link on the descriptor */
1228	set_lli_eol(desc, i - 1);
1229
1230	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1231
1232err_free_desc:
1233	atdma_desc_free(&desc->vd);
1234err_free_dma_buf:
1235	dma_pool_free(atdma->memset_pool, vaddr, paddr);
1236	return NULL;
1237}
1238
1239/**
1240 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1241 * @chan: DMA channel
1242 * @sgl: scatterlist to transfer to/from
1243 * @sg_len: number of entries in @scatterlist
1244 * @direction: DMA direction
1245 * @flags: tx descriptor status flags
1246 * @context: transaction context (ignored)
1247 */
1248static struct dma_async_tx_descriptor *
1249atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1250		unsigned int sg_len, enum dma_transfer_direction direction,
1251		unsigned long flags, void *context)
1252{
1253	struct at_dma		*atdma = to_at_dma(chan->device);
1254	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1255	struct at_dma_slave	*atslave = chan->private;
1256	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1257	struct at_desc		*desc;
 
1258	u32			ctrla;
1259	u32			ctrlb;
1260	dma_addr_t		reg;
1261	unsigned int		reg_width;
1262	unsigned int		mem_width;
1263	unsigned int		i;
1264	struct scatterlist	*sg;
1265	size_t			total_len = 0;
1266
1267	dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1268			sg_len,
1269			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1270			flags);
1271
1272	if (unlikely(!atslave || !sg_len)) {
1273		dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1274		return NULL;
1275	}
1276
1277	desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
1278	if (!desc)
1279		return NULL;
1280	desc->sglen = sg_len;
1281
1282	ctrla = FIELD_PREP(ATC_SCSIZE, sconfig->src_maxburst) |
1283		FIELD_PREP(ATC_DCSIZE, sconfig->dst_maxburst);
1284	ctrlb = ATC_IEN;
1285
1286	switch (direction) {
1287	case DMA_MEM_TO_DEV:
1288		reg_width = convert_buswidth(sconfig->dst_addr_width);
1289		ctrla |= FIELD_PREP(ATC_DST_WIDTH, reg_width);
1290		ctrlb |= FIELD_PREP(ATC_DST_ADDR_MODE,
1291				    ATC_DST_ADDR_MODE_FIXED) |
1292			 FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
1293			 FIELD_PREP(ATC_FC, ATC_FC_MEM2PER) |
1294			 FIELD_PREP(ATC_SIF, atchan->mem_if) |
1295			 FIELD_PREP(ATC_DIF, atchan->per_if);
1296		reg = sconfig->dst_addr;
1297		for_each_sg(sgl, sg, sg_len, i) {
1298			struct atdma_sg *atdma_sg = &desc->sg[i];
1299			struct at_lli *lli;
1300			u32		len;
1301			u32		mem;
1302
1303			atdma_sg->lli = dma_pool_alloc(atdma->lli_pool,
1304						       GFP_NOWAIT,
1305						       &atdma_sg->lli_phys);
1306			if (!atdma_sg->lli)
1307				goto err_desc_get;
1308			lli = atdma_sg->lli;
1309
1310			mem = sg_dma_address(sg);
1311			len = sg_dma_len(sg);
1312			if (unlikely(!len)) {
1313				dev_dbg(chan2dev(chan),
1314					"prep_slave_sg: sg(%d) data length is zero\n", i);
1315				goto err;
1316			}
1317			mem_width = 2;
1318			if (unlikely(mem & 3 || len & 3))
1319				mem_width = 0;
1320
1321			lli->saddr = mem;
1322			lli->daddr = reg;
1323			lli->ctrla = ctrla |
1324				     FIELD_PREP(ATC_SRC_WIDTH, mem_width) |
1325				     len >> mem_width;
1326			lli->ctrlb = ctrlb;
 
1327
1328			atdma_sg->len = len;
1329			total_len += len;
1330
1331			desc->sg[i].len = len;
1332			atdma_lli_chain(desc, i);
1333		}
1334		break;
1335	case DMA_DEV_TO_MEM:
1336		reg_width = convert_buswidth(sconfig->src_addr_width);
1337		ctrla |= FIELD_PREP(ATC_SRC_WIDTH, reg_width);
1338		ctrlb |= FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
1339			 FIELD_PREP(ATC_SRC_ADDR_MODE,
1340				    ATC_SRC_ADDR_MODE_FIXED) |
1341			 FIELD_PREP(ATC_FC, ATC_FC_PER2MEM) |
1342			 FIELD_PREP(ATC_SIF, atchan->per_if) |
1343			 FIELD_PREP(ATC_DIF, atchan->mem_if);
1344
1345		reg = sconfig->src_addr;
1346		for_each_sg(sgl, sg, sg_len, i) {
1347			struct atdma_sg *atdma_sg = &desc->sg[i];
1348			struct at_lli *lli;
1349			u32		len;
1350			u32		mem;
1351
1352			atdma_sg->lli = dma_pool_alloc(atdma->lli_pool,
1353						       GFP_NOWAIT,
1354						       &atdma_sg->lli_phys);
1355			if (!atdma_sg->lli)
1356				goto err_desc_get;
1357			lli = atdma_sg->lli;
1358
1359			mem = sg_dma_address(sg);
1360			len = sg_dma_len(sg);
1361			if (unlikely(!len)) {
1362				dev_dbg(chan2dev(chan),
1363					"prep_slave_sg: sg(%d) data length is zero\n", i);
1364				goto err;
1365			}
1366			mem_width = 2;
1367			if (unlikely(mem & 3 || len & 3))
1368				mem_width = 0;
1369
1370			lli->saddr = reg;
1371			lli->daddr = mem;
1372			lli->ctrla = ctrla |
1373				     FIELD_PREP(ATC_DST_WIDTH, mem_width) |
1374				     len >> reg_width;
1375			lli->ctrlb = ctrlb;
 
1376
1377			desc->sg[i].len = len;
1378			total_len += len;
1379
1380			atdma_lli_chain(desc, i);
1381		}
1382		break;
1383	default:
1384		return NULL;
1385	}
1386
1387	/* set end-of-link to the last link descriptor of list*/
1388	set_lli_eol(desc, i - 1);
1389
1390	desc->total_len = total_len;
 
 
1391
1392	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
 
 
 
1393
1394err_desc_get:
1395	dev_err(chan2dev(chan), "not enough descriptors available\n");
1396err:
1397	atdma_desc_free(&desc->vd);
1398	return NULL;
1399}
1400
1401/*
1402 * atc_dma_cyclic_check_values
1403 * Check for too big/unaligned periods and unaligned DMA buffer
1404 */
1405static int
1406atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1407		size_t period_len)
1408{
1409	if (period_len > (ATC_BTSIZE_MAX << reg_width))
1410		goto err_out;
1411	if (unlikely(period_len & ((1 << reg_width) - 1)))
1412		goto err_out;
1413	if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1414		goto err_out;
1415
1416	return 0;
1417
1418err_out:
1419	return -EINVAL;
1420}
1421
1422/*
1423 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1424 */
1425static int
1426atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1427		unsigned int i, dma_addr_t buf_addr,
1428		unsigned int reg_width, size_t period_len,
1429		enum dma_transfer_direction direction)
1430{
1431	struct at_dma		*atdma = to_at_dma(chan->device);
1432	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1433	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1434	struct atdma_sg		*atdma_sg = &desc->sg[i];
1435	struct at_lli		*lli;
1436
1437	atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_ATOMIC,
1438				       &atdma_sg->lli_phys);
1439	if (!atdma_sg->lli)
1440		return -ENOMEM;
1441	lli = atdma_sg->lli;
 
1442
1443	switch (direction) {
1444	case DMA_MEM_TO_DEV:
1445		lli->saddr = buf_addr + (period_len * i);
1446		lli->daddr = sconfig->dst_addr;
1447		lli->ctrlb = FIELD_PREP(ATC_DST_ADDR_MODE,
1448					ATC_DST_ADDR_MODE_FIXED) |
1449			     FIELD_PREP(ATC_SRC_ADDR_MODE,
1450					ATC_SRC_ADDR_MODE_INCR) |
1451			     FIELD_PREP(ATC_FC, ATC_FC_MEM2PER) |
1452			     FIELD_PREP(ATC_SIF, atchan->mem_if) |
1453			     FIELD_PREP(ATC_DIF, atchan->per_if);
1454
1455		break;
1456
1457	case DMA_DEV_TO_MEM:
1458		lli->saddr = sconfig->src_addr;
1459		lli->daddr = buf_addr + (period_len * i);
1460		lli->ctrlb = FIELD_PREP(ATC_DST_ADDR_MODE,
1461					ATC_DST_ADDR_MODE_INCR) |
1462			     FIELD_PREP(ATC_SRC_ADDR_MODE,
1463					ATC_SRC_ADDR_MODE_FIXED) |
1464			     FIELD_PREP(ATC_FC, ATC_FC_PER2MEM) |
1465			     FIELD_PREP(ATC_SIF, atchan->per_if) |
1466			     FIELD_PREP(ATC_DIF, atchan->mem_if);
1467		break;
1468
1469	default:
1470		return -EINVAL;
1471	}
1472
1473	lli->ctrla = FIELD_PREP(ATC_SCSIZE, sconfig->src_maxburst) |
1474		     FIELD_PREP(ATC_DCSIZE, sconfig->dst_maxburst) |
1475		     FIELD_PREP(ATC_DST_WIDTH, reg_width) |
1476		     FIELD_PREP(ATC_SRC_WIDTH, reg_width) |
1477		     period_len >> reg_width;
1478	desc->sg[i].len = period_len;
1479
1480	return 0;
1481}
1482
1483/**
1484 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1485 * @chan: the DMA channel to prepare
1486 * @buf_addr: physical DMA address where the buffer starts
1487 * @buf_len: total number of bytes for the entire buffer
1488 * @period_len: number of bytes for each period
1489 * @direction: transfer direction, to or from device
1490 * @flags: tx descriptor status flags
1491 */
1492static struct dma_async_tx_descriptor *
1493atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1494		size_t period_len, enum dma_transfer_direction direction,
1495		unsigned long flags)
1496{
1497	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1498	struct at_dma_slave	*atslave = chan->private;
1499	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1500	struct at_desc		*desc;
 
1501	unsigned long		was_cyclic;
1502	unsigned int		reg_width;
1503	unsigned int		periods = buf_len / period_len;
1504	unsigned int		i;
1505
1506	dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1507			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1508			&buf_addr,
1509			periods, buf_len, period_len);
1510
1511	if (unlikely(!atslave || !buf_len || !period_len)) {
1512		dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1513		return NULL;
1514	}
1515
1516	was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1517	if (was_cyclic) {
1518		dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1519		return NULL;
1520	}
1521
1522	if (unlikely(!is_slave_direction(direction)))
1523		goto err_out;
1524
1525	if (direction == DMA_MEM_TO_DEV)
1526		reg_width = convert_buswidth(sconfig->dst_addr_width);
1527	else
1528		reg_width = convert_buswidth(sconfig->src_addr_width);
1529
1530	/* Check for too big/unaligned periods and unaligned DMA buffer */
1531	if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1532		goto err_out;
1533
1534	desc = kzalloc(struct_size(desc, sg, periods), GFP_ATOMIC);
1535	if (!desc)
1536		goto err_out;
1537	desc->sglen = periods;
1538
1539	/* build cyclic linked list */
1540	for (i = 0; i < periods; i++) {
 
 
 
 
 
 
1541		if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1542					     reg_width, period_len, direction))
1543			goto err_fill_desc;
1544		atdma_lli_chain(desc, i);
 
1545	}
1546	desc->total_len = buf_len;
1547	/* lets make a cyclic list */
1548	desc->sg[i - 1].lli->dscr = desc->sg[0].lli_phys;
1549
1550	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
 
 
1551
1552err_fill_desc:
1553	atdma_desc_free(&desc->vd);
 
 
 
1554err_out:
1555	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1556	return NULL;
1557}
1558
1559static int atc_config(struct dma_chan *chan,
1560		      struct dma_slave_config *sconfig)
1561{
1562	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1563
1564	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1565
1566	/* Check if it is chan is configured for slave transfers */
1567	if (!chan->private)
1568		return -EINVAL;
1569
1570	memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1571
1572	convert_burst(&atchan->dma_sconfig.src_maxburst);
1573	convert_burst(&atchan->dma_sconfig.dst_maxburst);
1574
1575	return 0;
1576}
1577
1578static int atc_pause(struct dma_chan *chan)
1579{
1580	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1581	struct at_dma		*atdma = to_at_dma(chan->device);
1582	int			chan_id = atchan->vc.chan.chan_id;
1583	unsigned long		flags;
1584
1585	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1586
1587	spin_lock_irqsave(&atchan->vc.lock, flags);
1588
1589	dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1590	set_bit(ATC_IS_PAUSED, &atchan->status);
1591
1592	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1593
1594	return 0;
1595}
1596
1597static int atc_resume(struct dma_chan *chan)
1598{
1599	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1600	struct at_dma		*atdma = to_at_dma(chan->device);
1601	int			chan_id = atchan->vc.chan.chan_id;
1602	unsigned long		flags;
1603
1604	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1605
1606	if (!atc_chan_is_paused(atchan))
1607		return 0;
1608
1609	spin_lock_irqsave(&atchan->vc.lock, flags);
1610
1611	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1612	clear_bit(ATC_IS_PAUSED, &atchan->status);
1613
1614	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1615
1616	return 0;
1617}
1618
1619static int atc_terminate_all(struct dma_chan *chan)
1620{
1621	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1622	struct at_dma		*atdma = to_at_dma(chan->device);
1623	int			chan_id = atchan->vc.chan.chan_id;
 
1624	unsigned long		flags;
1625
1626	LIST_HEAD(list);
1627
1628	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1629
1630	/*
1631	 * This is only called when something went wrong elsewhere, so
1632	 * we don't really care about the data. Just disable the
1633	 * channel. We still have to poll the channel enable bit due
1634	 * to AHB/HSB limitations.
1635	 */
1636	spin_lock_irqsave(&atchan->vc.lock, flags);
1637
1638	/* disabling channel: must also remove suspend state */
1639	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1640
1641	/* confirm that this channel is disabled */
1642	while (dma_readl(atdma, CHSR) & atchan->mask)
1643		cpu_relax();
1644
1645	if (atchan->desc) {
1646		vchan_terminate_vdesc(&atchan->desc->vd);
1647		atchan->desc = NULL;
1648	}
1649
1650	vchan_get_all_descriptors(&atchan->vc, &list);
 
1651
1652	clear_bit(ATC_IS_PAUSED, &atchan->status);
1653	/* if channel dedicated to cyclic operations, free it */
1654	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1655
1656	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1657
1658	vchan_dma_desc_free_list(&atchan->vc, &list);
1659
1660	return 0;
1661}
1662
1663/**
1664 * atc_tx_status - poll for transaction completion
1665 * @chan: DMA channel
1666 * @cookie: transaction identifier to check status of
1667 * @txstate: if not %NULL updated with transaction state
1668 *
1669 * If @txstate is passed in, upon return it reflect the driver
1670 * internal state and can be used with dma_async_is_complete() to check
1671 * the status of multiple cookies without re-checking hardware state.
1672 */
1673static enum dma_status
1674atc_tx_status(struct dma_chan *chan,
1675		dma_cookie_t cookie,
1676		struct dma_tx_state *txstate)
1677{
1678	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1679	unsigned long		flags;
1680	enum dma_status		dma_status;
1681	u32 residue;
1682	int ret;
 
 
 
 
 
 
 
 
 
1683
1684	dma_status = dma_cookie_status(chan, cookie, txstate);
1685	if (dma_status == DMA_COMPLETE || !txstate)
1686		return dma_status;
1687
1688	spin_lock_irqsave(&atchan->vc.lock, flags);
1689	/*  Get number of bytes left in the active transactions */
1690	ret = atc_get_residue(chan, cookie, &residue);
1691	spin_unlock_irqrestore(&atchan->vc.lock, flags);
 
1692
1693	if (unlikely(ret < 0)) {
1694		dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1695		return DMA_ERROR;
1696	} else {
1697		dma_set_residue(txstate, residue);
1698	}
1699
1700	dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %u\n",
1701		 dma_status, cookie, residue);
1702
1703	return dma_status;
1704}
1705
 
 
 
 
1706static void atc_issue_pending(struct dma_chan *chan)
1707{
1708	struct at_dma_chan *atchan = to_at_dma_chan(chan);
1709	unsigned long flags;
1710
1711	spin_lock_irqsave(&atchan->vc.lock, flags);
1712	if (vchan_issue_pending(&atchan->vc) && !atchan->desc) {
1713		if (!(atc_chan_is_enabled(atchan)))
1714			atc_dostart(atchan);
1715	}
1716	spin_unlock_irqrestore(&atchan->vc.lock, flags);
 
 
 
1717}
1718
1719/**
1720 * atc_alloc_chan_resources - allocate resources for DMA channel
1721 * @chan: allocate descriptor resources for this channel
 
1722 *
1723 * Return: the number of allocated descriptors
1724 */
1725static int atc_alloc_chan_resources(struct dma_chan *chan)
1726{
1727	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1728	struct at_dma		*atdma = to_at_dma(chan->device);
 
1729	struct at_dma_slave	*atslave;
 
 
1730	u32			cfg;
 
1731
1732	dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1733
1734	/* ASSERT:  channel is idle */
1735	if (atc_chan_is_enabled(atchan)) {
1736		dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1737		return -EIO;
1738	}
1739
1740	cfg = ATC_DEFAULT_CFG;
1741
1742	atslave = chan->private;
1743	if (atslave) {
1744		/*
1745		 * We need controller-specific data to set up slave
1746		 * transfers.
1747		 */
1748		BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_device.dev);
1749
1750		/* if cfg configuration specified take it instead of default */
1751		if (atslave->cfg)
1752			cfg = atslave->cfg;
1753	}
1754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1755	/* channel parameters */
1756	channel_writel(atchan, CFG, cfg);
1757
1758	return 0;
 
 
 
 
1759}
1760
1761/**
1762 * atc_free_chan_resources - free all channel resources
1763 * @chan: DMA channel
1764 */
1765static void atc_free_chan_resources(struct dma_chan *chan)
1766{
1767	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
 
 
 
 
 
 
1768
 
 
 
1769	BUG_ON(atc_chan_is_enabled(atchan));
1770
1771	vchan_free_chan_resources(to_virt_chan(chan));
 
 
 
 
 
 
 
1772	atchan->status = 0;
1773
1774	/*
1775	 * Free atslave allocated in at_dma_xlate()
1776	 */
1777	kfree(chan->private);
1778	chan->private = NULL;
1779
1780	dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1781}
1782
1783#ifdef CONFIG_OF
1784static bool at_dma_filter(struct dma_chan *chan, void *slave)
1785{
1786	struct at_dma_slave *atslave = slave;
1787
1788	if (atslave->dma_dev == chan->device->dev) {
1789		chan->private = atslave;
1790		return true;
1791	} else {
1792		return false;
1793	}
1794}
1795
1796static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1797				     struct of_dma *of_dma)
1798{
1799	struct dma_chan *chan;
1800	struct at_dma_chan *atchan;
1801	struct at_dma_slave *atslave;
1802	dma_cap_mask_t mask;
1803	unsigned int per_id;
1804	struct platform_device *dmac_pdev;
1805
1806	if (dma_spec->args_count != 2)
1807		return NULL;
1808
1809	dmac_pdev = of_find_device_by_node(dma_spec->np);
1810	if (!dmac_pdev)
1811		return NULL;
1812
1813	dma_cap_zero(mask);
1814	dma_cap_set(DMA_SLAVE, mask);
1815
1816	atslave = kmalloc(sizeof(*atslave), GFP_KERNEL);
1817	if (!atslave) {
1818		put_device(&dmac_pdev->dev);
1819		return NULL;
1820	}
1821
1822	atslave->cfg = ATC_DST_H2SEL | ATC_SRC_H2SEL;
1823	/*
1824	 * We can fill both SRC_PER and DST_PER, one of these fields will be
1825	 * ignored depending on DMA transfer direction.
1826	 */
1827	per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1828	atslave->cfg |= ATC_DST_PER_ID(per_id) |  ATC_SRC_PER_ID(per_id);
 
1829	/*
1830	 * We have to translate the value we get from the device tree since
1831	 * the half FIFO configuration value had to be 0 to keep backward
1832	 * compatibility.
1833	 */
1834	switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1835	case AT91_DMA_CFG_FIFOCFG_ALAP:
1836		atslave->cfg |= FIELD_PREP(ATC_FIFOCFG,
1837					   ATC_FIFOCFG_LARGESTBURST);
1838		break;
1839	case AT91_DMA_CFG_FIFOCFG_ASAP:
1840		atslave->cfg |= FIELD_PREP(ATC_FIFOCFG,
1841					   ATC_FIFOCFG_ENOUGHSPACE);
1842		break;
1843	case AT91_DMA_CFG_FIFOCFG_HALF:
1844	default:
1845		atslave->cfg |= FIELD_PREP(ATC_FIFOCFG, ATC_FIFOCFG_HALFFIFO);
1846	}
1847	atslave->dma_dev = &dmac_pdev->dev;
1848
1849	chan = dma_request_channel(mask, at_dma_filter, atslave);
1850	if (!chan) {
1851		put_device(&dmac_pdev->dev);
1852		kfree(atslave);
1853		return NULL;
1854	}
1855
1856	atchan = to_at_dma_chan(chan);
1857	atchan->per_if = dma_spec->args[0] & 0xff;
1858	atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1859
1860	return chan;
1861}
1862#else
1863static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1864				     struct of_dma *of_dma)
1865{
1866	return NULL;
1867}
1868#endif
1869
1870/*--  Module Management  -----------------------------------------------*/
1871
1872/* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1873static struct at_dma_platform_data at91sam9rl_config = {
1874	.nr_channels = 2,
1875};
1876static struct at_dma_platform_data at91sam9g45_config = {
1877	.nr_channels = 8,
1878};
1879
1880#if defined(CONFIG_OF)
1881static const struct of_device_id atmel_dma_dt_ids[] = {
1882	{
1883		.compatible = "atmel,at91sam9rl-dma",
1884		.data = &at91sam9rl_config,
1885	}, {
1886		.compatible = "atmel,at91sam9g45-dma",
1887		.data = &at91sam9g45_config,
1888	}, {
1889		/* sentinel */
1890	}
1891};
1892
1893MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1894#endif
1895
1896static const struct platform_device_id atdma_devtypes[] = {
1897	{
1898		.name = "at91sam9rl_dma",
1899		.driver_data = (unsigned long) &at91sam9rl_config,
1900	}, {
1901		.name = "at91sam9g45_dma",
1902		.driver_data = (unsigned long) &at91sam9g45_config,
1903	}, {
1904		/* sentinel */
1905	}
1906};
1907
1908static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1909						struct platform_device *pdev)
1910{
1911	if (pdev->dev.of_node) {
1912		const struct of_device_id *match;
1913		match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1914		if (match == NULL)
1915			return NULL;
1916		return match->data;
1917	}
1918	return (struct at_dma_platform_data *)
1919			platform_get_device_id(pdev)->driver_data;
1920}
1921
1922/**
1923 * at_dma_off - disable DMA controller
1924 * @atdma: the Atmel HDAMC device
1925 */
1926static void at_dma_off(struct at_dma *atdma)
1927{
1928	dma_writel(atdma, EN, 0);
1929
1930	/* disable all interrupts */
1931	dma_writel(atdma, EBCIDR, -1L);
1932
1933	/* confirm that all channels are disabled */
1934	while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1935		cpu_relax();
1936}
1937
1938static int __init at_dma_probe(struct platform_device *pdev)
1939{
 
1940	struct at_dma		*atdma;
 
1941	int			irq;
1942	int			err;
1943	int			i;
1944	const struct at_dma_platform_data *plat_dat;
1945
1946	/* setup platform data for each SoC */
1947	dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1948	dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1949	dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1950	dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1951	dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1952	dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1953	dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1954
1955	/* get DMA parameters from controller type */
1956	plat_dat = at_dma_get_driver_data(pdev);
1957	if (!plat_dat)
1958		return -ENODEV;
1959
1960	atdma = devm_kzalloc(&pdev->dev,
1961			     struct_size(atdma, chan, plat_dat->nr_channels),
1962			     GFP_KERNEL);
1963	if (!atdma)
1964		return -ENOMEM;
1965
1966	atdma->regs = devm_platform_ioremap_resource(pdev, 0);
1967	if (IS_ERR(atdma->regs))
1968		return PTR_ERR(atdma->regs);
1969
1970	irq = platform_get_irq(pdev, 0);
1971	if (irq < 0)
1972		return irq;
1973
 
 
 
 
 
 
1974	/* discover transaction capabilities */
1975	atdma->dma_device.cap_mask = plat_dat->cap_mask;
1976	atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1977
1978	atdma->clk = devm_clk_get(&pdev->dev, "dma_clk");
1979	if (IS_ERR(atdma->clk))
1980		return PTR_ERR(atdma->clk);
 
 
1981
 
 
 
 
 
 
 
 
 
 
 
1982	err = clk_prepare_enable(atdma->clk);
1983	if (err)
1984		return err;
1985
1986	/* force dma off, just in case */
1987	at_dma_off(atdma);
1988
1989	err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1990	if (err)
1991		goto err_irq;
1992
1993	platform_set_drvdata(pdev, atdma);
1994
1995	/* create a pool of consistent memory blocks for hardware descriptors */
1996	atdma->lli_pool = dma_pool_create("at_hdmac_lli_pool",
1997					  &pdev->dev, sizeof(struct at_lli),
1998					  4 /* word alignment */, 0);
1999	if (!atdma->lli_pool) {
2000		dev_err(&pdev->dev, "Unable to allocate DMA LLI descriptor pool\n");
2001		err = -ENOMEM;
2002		goto err_desc_pool_create;
2003	}
2004
2005	/* create a pool of consistent memory blocks for memset blocks */
2006	atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
2007					     &pdev->dev, sizeof(int), 4, 0);
2008	if (!atdma->memset_pool) {
2009		dev_err(&pdev->dev, "No memory for memset dma pool\n");
2010		err = -ENOMEM;
2011		goto err_memset_pool_create;
2012	}
2013
2014	/* clear any pending interrupt */
2015	while (dma_readl(atdma, EBCISR))
2016		cpu_relax();
2017
2018	/* initialize channels related values */
2019	INIT_LIST_HEAD(&atdma->dma_device.channels);
2020	for (i = 0; i < plat_dat->nr_channels; i++) {
2021		struct at_dma_chan	*atchan = &atdma->chan[i];
2022
2023		atchan->mem_if = AT_DMA_MEM_IF;
2024		atchan->per_if = AT_DMA_PER_IF;
 
 
 
 
2025
2026		atchan->ch_regs = atdma->regs + ch_regs(i);
 
2027		atchan->mask = 1 << i;
2028
2029		atchan->atdma = atdma;
2030		atchan->vc.desc_free = atdma_desc_free;
2031		vchan_init(&atchan->vc, &atdma->dma_device);
 
 
 
2032		atc_enable_chan_irq(atdma, i);
2033	}
2034
2035	/* set base routines */
2036	atdma->dma_device.device_alloc_chan_resources = atc_alloc_chan_resources;
2037	atdma->dma_device.device_free_chan_resources = atc_free_chan_resources;
2038	atdma->dma_device.device_tx_status = atc_tx_status;
2039	atdma->dma_device.device_issue_pending = atc_issue_pending;
2040	atdma->dma_device.dev = &pdev->dev;
2041
2042	/* set prep routines based on capability */
2043	if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_device.cap_mask))
2044		atdma->dma_device.device_prep_interleaved_dma = atc_prep_dma_interleaved;
2045
2046	if (dma_has_cap(DMA_MEMCPY, atdma->dma_device.cap_mask))
2047		atdma->dma_device.device_prep_dma_memcpy = atc_prep_dma_memcpy;
2048
2049	if (dma_has_cap(DMA_MEMSET, atdma->dma_device.cap_mask)) {
2050		atdma->dma_device.device_prep_dma_memset = atc_prep_dma_memset;
2051		atdma->dma_device.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
2052		atdma->dma_device.fill_align = DMAENGINE_ALIGN_4_BYTES;
2053	}
2054
2055	if (dma_has_cap(DMA_SLAVE, atdma->dma_device.cap_mask)) {
2056		atdma->dma_device.device_prep_slave_sg = atc_prep_slave_sg;
2057		/* controller can do slave DMA: can trigger cyclic transfers */
2058		dma_cap_set(DMA_CYCLIC, atdma->dma_device.cap_mask);
2059		atdma->dma_device.device_prep_dma_cyclic = atc_prep_dma_cyclic;
2060		atdma->dma_device.device_config = atc_config;
2061		atdma->dma_device.device_pause = atc_pause;
2062		atdma->dma_device.device_resume = atc_resume;
2063		atdma->dma_device.device_terminate_all = atc_terminate_all;
2064		atdma->dma_device.src_addr_widths = ATC_DMA_BUSWIDTHS;
2065		atdma->dma_device.dst_addr_widths = ATC_DMA_BUSWIDTHS;
2066		atdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2067		atdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2068	}
2069
2070	dma_writel(atdma, EN, AT_DMA_ENABLE);
2071
2072	dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
2073	  dma_has_cap(DMA_MEMCPY, atdma->dma_device.cap_mask) ? "cpy " : "",
2074	  dma_has_cap(DMA_MEMSET, atdma->dma_device.cap_mask) ? "set " : "",
2075	  dma_has_cap(DMA_SLAVE, atdma->dma_device.cap_mask)  ? "slave " : "",
2076	  plat_dat->nr_channels);
2077
2078	err = dma_async_device_register(&atdma->dma_device);
2079	if (err) {
2080		dev_err(&pdev->dev, "Unable to register: %d.\n", err);
2081		goto err_dma_async_device_register;
2082	}
2083
2084	/*
2085	 * Do not return an error if the dmac node is not present in order to
2086	 * not break the existing way of requesting channel with
2087	 * dma_request_channel().
2088	 */
2089	if (pdev->dev.of_node) {
2090		err = of_dma_controller_register(pdev->dev.of_node,
2091						 at_dma_xlate, atdma);
2092		if (err) {
2093			dev_err(&pdev->dev, "could not register of_dma_controller\n");
2094			goto err_of_dma_controller_register;
2095		}
2096	}
2097
2098	return 0;
2099
2100err_of_dma_controller_register:
2101	dma_async_device_unregister(&atdma->dma_device);
2102err_dma_async_device_register:
2103	dma_pool_destroy(atdma->memset_pool);
2104err_memset_pool_create:
2105	dma_pool_destroy(atdma->lli_pool);
2106err_desc_pool_create:
2107	free_irq(platform_get_irq(pdev, 0), atdma);
2108err_irq:
2109	clk_disable_unprepare(atdma->clk);
 
 
 
 
 
 
 
 
 
2110	return err;
2111}
2112
2113static void at_dma_remove(struct platform_device *pdev)
2114{
2115	struct at_dma		*atdma = platform_get_drvdata(pdev);
2116	struct dma_chan		*chan, *_chan;
 
2117
2118	at_dma_off(atdma);
2119	if (pdev->dev.of_node)
2120		of_dma_controller_free(pdev->dev.of_node);
2121	dma_async_device_unregister(&atdma->dma_device);
2122
2123	dma_pool_destroy(atdma->memset_pool);
2124	dma_pool_destroy(atdma->lli_pool);
2125	free_irq(platform_get_irq(pdev, 0), atdma);
2126
2127	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2128			device_node) {
 
 
2129		/* Disable interrupts */
2130		atc_disable_chan_irq(atdma, chan->chan_id);
 
 
2131		list_del(&chan->device_node);
2132	}
2133
2134	clk_disable_unprepare(atdma->clk);
 
 
 
 
 
 
 
 
 
 
 
2135}
2136
2137static void at_dma_shutdown(struct platform_device *pdev)
2138{
2139	struct at_dma	*atdma = platform_get_drvdata(pdev);
2140
2141	at_dma_off(platform_get_drvdata(pdev));
2142	clk_disable_unprepare(atdma->clk);
2143}
2144
2145static int at_dma_prepare(struct device *dev)
2146{
2147	struct at_dma *atdma = dev_get_drvdata(dev);
2148	struct dma_chan *chan, *_chan;
2149
2150	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2151			device_node) {
2152		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2153		/* wait for transaction completion (except in cyclic case) */
2154		if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2155			return -EAGAIN;
2156	}
2157	return 0;
2158}
2159
2160static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2161{
2162	struct dma_chan	*chan = &atchan->vc.chan;
2163
2164	/* Channel should be paused by user
2165	 * do it anyway even if it is not done already */
2166	if (!atc_chan_is_paused(atchan)) {
2167		dev_warn(chan2dev(chan),
2168		"cyclic channel not paused, should be done by channel user\n");
2169		atc_pause(chan);
2170	}
2171
2172	/* now preserve additional data for cyclic operations */
2173	/* next descriptor address in the cyclic list */
2174	atchan->save_dscr = channel_readl(atchan, DSCR);
2175
2176	vdbg_dump_regs(atchan);
2177}
2178
2179static int at_dma_suspend_noirq(struct device *dev)
2180{
2181	struct at_dma *atdma = dev_get_drvdata(dev);
2182	struct dma_chan *chan, *_chan;
2183
2184	/* preserve data */
2185	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2186			device_node) {
2187		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2188
2189		if (atc_chan_is_cyclic(atchan))
2190			atc_suspend_cyclic(atchan);
2191		atchan->save_cfg = channel_readl(atchan, CFG);
2192	}
2193	atdma->save_imr = dma_readl(atdma, EBCIMR);
2194
2195	/* disable DMA controller */
2196	at_dma_off(atdma);
2197	clk_disable_unprepare(atdma->clk);
2198	return 0;
2199}
2200
2201static void atc_resume_cyclic(struct at_dma_chan *atchan)
2202{
2203	struct at_dma	*atdma = to_at_dma(atchan->vc.chan.device);
2204
2205	/* restore channel status for cyclic descriptors list:
2206	 * next descriptor in the cyclic list at the time of suspend */
2207	channel_writel(atchan, SADDR, 0);
2208	channel_writel(atchan, DADDR, 0);
2209	channel_writel(atchan, CTRLA, 0);
2210	channel_writel(atchan, CTRLB, 0);
2211	channel_writel(atchan, DSCR, atchan->save_dscr);
2212	dma_writel(atdma, CHER, atchan->mask);
2213
2214	/* channel pause status should be removed by channel user
2215	 * We cannot take the initiative to do it here */
2216
2217	vdbg_dump_regs(atchan);
2218}
2219
2220static int at_dma_resume_noirq(struct device *dev)
2221{
2222	struct at_dma *atdma = dev_get_drvdata(dev);
2223	struct dma_chan *chan, *_chan;
2224
2225	/* bring back DMA controller */
2226	clk_prepare_enable(atdma->clk);
2227	dma_writel(atdma, EN, AT_DMA_ENABLE);
2228
2229	/* clear any pending interrupt */
2230	while (dma_readl(atdma, EBCISR))
2231		cpu_relax();
2232
2233	/* restore saved data */
2234	dma_writel(atdma, EBCIER, atdma->save_imr);
2235	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2236			device_node) {
2237		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2238
2239		channel_writel(atchan, CFG, atchan->save_cfg);
2240		if (atc_chan_is_cyclic(atchan))
2241			atc_resume_cyclic(atchan);
2242	}
2243	return 0;
2244}
2245
2246static const struct dev_pm_ops __maybe_unused at_dma_dev_pm_ops = {
2247	.prepare = at_dma_prepare,
2248	.suspend_noirq = at_dma_suspend_noirq,
2249	.resume_noirq = at_dma_resume_noirq,
2250};
2251
2252static struct platform_driver at_dma_driver = {
2253	.remove_new	= at_dma_remove,
2254	.shutdown	= at_dma_shutdown,
2255	.id_table	= atdma_devtypes,
2256	.driver = {
2257		.name	= "at_hdmac",
2258		.pm	= pm_ptr(&at_dma_dev_pm_ops),
2259		.of_match_table	= of_match_ptr(atmel_dma_dt_ids),
2260	},
2261};
2262
2263static int __init at_dma_init(void)
2264{
2265	return platform_driver_probe(&at_dma_driver, at_dma_probe);
2266}
2267subsys_initcall(at_dma_init);
2268
2269static void __exit at_dma_exit(void)
2270{
2271	platform_driver_unregister(&at_dma_driver);
2272}
2273module_exit(at_dma_exit);
2274
2275MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2276MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2277MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>");
2278MODULE_LICENSE("GPL");
2279MODULE_ALIAS("platform:at_hdmac");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
   4 *
   5 * Copyright (C) 2008 Atmel Corporation
 
   6 *
   7 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
   8 * The only Atmel DMA Controller that is not covered by this driver is the one
   9 * found on AT91SAM9263.
  10 */
  11
  12#include <dt-bindings/dma/at91.h>
 
  13#include <linux/clk.h>
  14#include <linux/dmaengine.h>
 
  15#include <linux/dma-mapping.h>
  16#include <linux/dmapool.h>
  17#include <linux/interrupt.h>
  18#include <linux/module.h>
 
 
 
 
  19#include <linux/platform_device.h>
  20#include <linux/slab.h>
  21#include <linux/of.h>
  22#include <linux/of_device.h>
  23#include <linux/of_dma.h>
  24
  25#include "at_hdmac_regs.h"
  26#include "dmaengine.h"
 
  27
  28/*
  29 * Glossary
  30 * --------
  31 *
  32 * at_hdmac		: Name of the ATmel AHB DMA Controller
  33 * at_dma_ / atdma	: ATmel DMA controller entity related
  34 * atc_	/ atchan	: ATmel DMA Channel entity related
  35 */
  36
  37#define	ATC_DEFAULT_CFG		(ATC_FIFOCFG_HALFFIFO)
  38#define	ATC_DEFAULT_CTRLB	(ATC_SIF(AT_DMA_MEM_IF) \
  39				|ATC_DIF(AT_DMA_MEM_IF))
  40#define ATC_DMA_BUSWIDTHS\
  41	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
  42	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
  43	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
  44	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  45
  46#define ATC_MAX_DSCR_TRIALS	10
 
 
 
 
 
 
 
 
 
 
 
 
  47
  48/*
  49 * Initial number of descriptors to allocate for each channel. This could
  50 * be increased during dma usage.
  51 */
  52static unsigned int init_nr_desc_per_channel = 64;
  53module_param(init_nr_desc_per_channel, uint, 0644);
  54MODULE_PARM_DESC(init_nr_desc_per_channel,
  55		 "initial descriptors per channel (default: 64)");
 
 
 
 
 
 
 
 
 
 
  56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  57
  58/* prototypes */
  59static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
  60static void atc_issue_pending(struct dma_chan *chan);
 
  61
 
 
 
 
  62
  63/*----------------------------------------------------------------------*/
 
 
 
  64
  65static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
  66						size_t len)
  67{
  68	unsigned int width;
 
 
  69
  70	if (!((src | dst  | len) & 3))
  71		width = 2;
  72	else if (!((src | dst | len) & 1))
  73		width = 1;
  74	else
  75		width = 0;
  76
  77	return width;
 
 
  78}
  79
  80static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
 
  81{
  82	return list_first_entry(&atchan->active_list,
  83				struct at_desc, desc_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  84}
 
 
 
  85
  86static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
  87{
  88	return list_first_entry(&atchan->queue,
  89				struct at_desc, desc_node);
 
 
  90}
  91
  92/**
  93 * atc_alloc_descriptor - allocate and return an initialized descriptor
  94 * @chan: the channel to allocate descriptors for
  95 * @gfp_flags: GFP allocation flags
  96 *
  97 * Note: The ack-bit is positioned in the descriptor flag at creation time
  98 *       to make initial allocation more convenient. This bit will be cleared
  99 *       and control will be given to client at usage time (during
 100 *       preparation functions).
 101 */
 102static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
 103					    gfp_t gfp_flags)
 104{
 105	struct at_desc	*desc = NULL;
 106	struct at_dma	*atdma = to_at_dma(chan->device);
 107	dma_addr_t phys;
 108
 109	desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys);
 110	if (desc) {
 111		INIT_LIST_HEAD(&desc->tx_list);
 112		dma_async_tx_descriptor_init(&desc->txd, chan);
 113		/* txd.flags will be overwritten in prep functions */
 114		desc->txd.flags = DMA_CTRL_ACK;
 115		desc->txd.tx_submit = atc_tx_submit;
 116		desc->txd.phys = phys;
 117	}
 
 
 
 
 
 
 
 
 118
 119	return desc;
 
 
 120}
 121
 
 122/**
 123 * atc_desc_get - get an unused descriptor from free_list
 124 * @atchan: channel we want a new descriptor for
 125 */
 126static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
 127{
 128	struct at_desc *desc, *_desc;
 129	struct at_desc *ret = NULL;
 130	unsigned long flags;
 131	unsigned int i = 0;
 132
 133	spin_lock_irqsave(&atchan->lock, flags);
 134	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
 135		i++;
 136		if (async_tx_test_ack(&desc->txd)) {
 137			list_del(&desc->desc_node);
 138			ret = desc;
 139			break;
 140		}
 141		dev_dbg(chan2dev(&atchan->chan_common),
 142				"desc %p not ACKed\n", desc);
 143	}
 144	spin_unlock_irqrestore(&atchan->lock, flags);
 145	dev_vdbg(chan2dev(&atchan->chan_common),
 146		"scanned %u descriptors on freelist\n", i);
 147
 148	/* no more descriptor available in initial pool: create one more */
 149	if (!ret) {
 150		ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
 151		if (ret) {
 152			spin_lock_irqsave(&atchan->lock, flags);
 153			atchan->descs_allocated++;
 154			spin_unlock_irqrestore(&atchan->lock, flags);
 155		} else {
 156			dev_err(chan2dev(&atchan->chan_common),
 157					"not enough descriptors available\n");
 158		}
 159	}
 160
 161	return ret;
 
 
 
 
 
 
 162}
 163
 164/**
 165 * atc_desc_put - move a descriptor, including any children, to the free list
 166 * @atchan: channel we work on
 167 * @desc: descriptor, at the head of a chain, to move to free list
 168 */
 169static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
 170{
 171	if (desc) {
 172		struct at_desc *child;
 173		unsigned long flags;
 
 174
 175		spin_lock_irqsave(&atchan->lock, flags);
 176		list_for_each_entry(child, &desc->tx_list, desc_node)
 177			dev_vdbg(chan2dev(&atchan->chan_common),
 178					"moving child desc %p to freelist\n",
 179					child);
 180		list_splice_init(&desc->tx_list, &atchan->free_list);
 181		dev_vdbg(chan2dev(&atchan->chan_common),
 182			 "moving desc %p to freelist\n", desc);
 183		list_add(&desc->desc_node, &atchan->free_list);
 184		spin_unlock_irqrestore(&atchan->lock, flags);
 185	}
 186}
 187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188/**
 189 * atc_desc_chain - build chain adding a descriptor
 190 * @first: address of first descriptor of the chain
 191 * @prev: address of previous descriptor of the chain
 192 * @desc: descriptor to queue
 193 *
 194 * Called from prep_* functions
 
 
 
 
 
 
 
 195 */
 196static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
 197			   struct at_desc *desc)
 
 
 
 
 
 198{
 199	if (!(*first)) {
 200		*first = desc;
 201	} else {
 202		/* inform the HW lli about chaining */
 203		(*prev)->lli.dscr = desc->txd.phys;
 204		/* insert the link descriptor to the LD ring */
 205		list_add_tail(&desc->desc_node,
 206				&(*first)->tx_list);
 207	}
 208	*prev = desc;
 
 
 
 
 
 
 
 
 209}
 210
 211/**
 212 * atc_dostart - starts the DMA engine for real
 213 * @atchan: the channel we want to start
 214 * @first: first descriptor in the list we want to begin with
 215 *
 216 * Called with atchan->lock held and bh disabled
 217 */
 218static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
 219{
 220	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
 221
 222	/* ASSERT:  channel is idle */
 223	if (atc_chan_is_enabled(atchan)) {
 224		dev_err(chan2dev(&atchan->chan_common),
 225			"BUG: Attempted to start non-idle channel\n");
 226		dev_err(chan2dev(&atchan->chan_common),
 227			"  channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
 228			channel_readl(atchan, SADDR),
 229			channel_readl(atchan, DADDR),
 230			channel_readl(atchan, CTRLA),
 231			channel_readl(atchan, CTRLB),
 232			channel_readl(atchan, DSCR));
 233
 234		/* The tasklet will hopefully advance the queue... */
 
 235		return;
 236	}
 237
 238	vdbg_dump_regs(atchan);
 239
 
 
 
 240	channel_writel(atchan, SADDR, 0);
 241	channel_writel(atchan, DADDR, 0);
 242	channel_writel(atchan, CTRLA, 0);
 243	channel_writel(atchan, CTRLB, 0);
 244	channel_writel(atchan, DSCR, first->txd.phys);
 245	channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
 246		       ATC_SPIP_BOUNDARY(first->boundary));
 247	channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
 248		       ATC_DPIP_BOUNDARY(first->boundary));
 249	dma_writel(atdma, CHER, atchan->mask);
 
 
 
 
 
 250
 251	vdbg_dump_regs(atchan);
 252}
 253
 254/*
 255 * atc_get_desc_by_cookie - get the descriptor of a cookie
 256 * @atchan: the DMA channel
 257 * @cookie: the cookie to get the descriptor for
 258 */
 259static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
 260						dma_cookie_t cookie)
 261{
 262	struct at_desc *desc, *_desc;
 263
 264	list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
 265		if (desc->txd.cookie == cookie)
 266			return desc;
 
 
 
 267	}
 268
 269	list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
 270		if (desc->txd.cookie == cookie)
 271			return desc;
 
 
 272	}
 273
 274	return NULL;
 275}
 276
 277/**
 278 * atc_calc_bytes_left - calculates the number of bytes left according to the
 279 * value read from CTRLA.
 280 *
 281 * @current_len: the number of bytes left before reading CTRLA
 282 * @ctrla: the value of CTRLA
 283 */
 284static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
 285{
 286	u32 btsize = (ctrla & ATC_BTSIZE_MAX);
 287	u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
 288
 289	/*
 290	 * According to the datasheet, when reading the Control A Register
 291	 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
 292	 * number of transfers completed on the Source Interface.
 293	 * So btsize is always a number of source width transfers.
 294	 */
 295	return current_len - (btsize << src_width);
 296}
 297
 298/**
 299 * atc_get_bytes_left - get the number of bytes residue for a cookie
 300 * @chan: DMA channel
 301 * @cookie: transaction identifier to check status of
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 302 */
 303static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
 
 304{
 305	struct at_dma_chan      *atchan = to_at_dma_chan(chan);
 306	struct at_desc *desc_first = atc_first_active(atchan);
 307	struct at_desc *desc;
 308	int ret;
 309	u32 ctrla, dscr, trials;
 310
 311	/*
 312	 * If the cookie doesn't match to the currently running transfer then
 313	 * we can return the total length of the associated DMA transfer,
 314	 * because it is still queued.
 315	 */
 316	desc = atc_get_desc_by_cookie(atchan, cookie);
 317	if (desc == NULL)
 318		return -EINVAL;
 319	else if (desc != desc_first)
 320		return desc->total_len;
 321
 322	/* cookie matches to the currently running transfer */
 323	ret = desc_first->total_len;
 324
 325	if (desc_first->lli.dscr) {
 326		/* hardware linked list transfer */
 327
 328		/*
 329		 * Calculate the residue by removing the length of the child
 330		 * descriptors already transferred from the total length.
 331		 * To get the current child descriptor we can use the value of
 332		 * the channel's DSCR register and compare it against the value
 333		 * of the hardware linked list structure of each child
 334		 * descriptor.
 335		 *
 336		 * The CTRLA register provides us with the amount of data
 337		 * already read from the source for the current child
 338		 * descriptor. So we can compute a more accurate residue by also
 339		 * removing the number of bytes corresponding to this amount of
 340		 * data.
 341		 *
 342		 * However, the DSCR and CTRLA registers cannot be read both
 343		 * atomically. Hence a race condition may occur: the first read
 344		 * register may refer to one child descriptor whereas the second
 345		 * read may refer to a later child descriptor in the list
 346		 * because of the DMA transfer progression inbetween the two
 347		 * reads.
 348		 *
 349		 * One solution could have been to pause the DMA transfer, read
 350		 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
 351		 * this approach presents some drawbacks:
 352		 * - If the DMA transfer is paused, RX overruns or TX underruns
 353		 *   are more likey to occur depending on the system latency.
 354		 *   Taking the USART driver as an example, it uses a cyclic DMA
 355		 *   transfer to read data from the Receive Holding Register
 356		 *   (RHR) to avoid RX overruns since the RHR is not protected
 357		 *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer
 358		 *   to compute the residue would break the USART driver design.
 359		 * - The atc_pause() function masks interrupts but we'd rather
 360		 *   avoid to do so for system latency purpose.
 361		 *
 362		 * Then we'd rather use another solution: the DSCR is read a
 363		 * first time, the CTRLA is read in turn, next the DSCR is read
 364		 * a second time. If the two consecutive read values of the DSCR
 365		 * are the same then we assume both refers to the very same
 366		 * child descriptor as well as the CTRLA value read inbetween
 367		 * does. For cyclic tranfers, the assumption is that a full loop
 368		 * is "not so fast".
 369		 * If the two DSCR values are different, we read again the CTRLA
 370		 * then the DSCR till two consecutive read values from DSCR are
 371		 * equal or till the maxium trials is reach.
 372		 * This algorithm is very unlikely not to find a stable value for
 373		 * DSCR.
 374		 */
 375
 376		dscr = channel_readl(atchan, DSCR);
 377		rmb(); /* ensure DSCR is read before CTRLA */
 378		ctrla = channel_readl(atchan, CTRLA);
 379		for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
 380			u32 new_dscr;
 381
 382			rmb(); /* ensure DSCR is read after CTRLA */
 383			new_dscr = channel_readl(atchan, DSCR);
 384
 385			/*
 386			 * If the DSCR register value has not changed inside the
 387			 * DMA controller since the previous read, we assume
 388			 * that both the dscr and ctrla values refers to the
 389			 * very same descriptor.
 390			 */
 391			if (likely(new_dscr == dscr))
 392				break;
 393
 394			/*
 395			 * DSCR has changed inside the DMA controller, so the
 396			 * previouly read value of CTRLA may refer to an already
 397			 * processed descriptor hence could be outdated.
 398			 * We need to update ctrla to match the current
 399			 * descriptor.
 400			 */
 401			dscr = new_dscr;
 402			rmb(); /* ensure DSCR is read before CTRLA */
 403			ctrla = channel_readl(atchan, CTRLA);
 404		}
 405		if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
 406			return -ETIMEDOUT;
 407
 408		/* for the first descriptor we can be more accurate */
 409		if (desc_first->lli.dscr == dscr)
 410			return atc_calc_bytes_left(ret, ctrla);
 411
 412		ret -= desc_first->len;
 413		list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
 414			if (desc->lli.dscr == dscr)
 415				break;
 416
 417			ret -= desc->len;
 418		}
 419
 420		/*
 421		 * For the current descriptor in the chain we can calculate
 422		 * the remaining bytes using the channel's register.
 
 
 423		 */
 424		ret = atc_calc_bytes_left(ret, ctrla);
 425	} else {
 426		/* single transfer */
 427		ctrla = channel_readl(atchan, CTRLA);
 428		ret = atc_calc_bytes_left(ret, ctrla);
 429	}
 
 
 430
 431	return ret;
 432}
 433
 434/**
 435 * atc_chain_complete - finish work for one transaction chain
 436 * @atchan: channel we work on
 437 * @desc: descriptor at the head of the chain we want do complete
 438 *
 439 * Called with atchan->lock held and bh disabled */
 440static void
 441atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
 442{
 443	struct dma_async_tx_descriptor	*txd = &desc->txd;
 444	struct at_dma			*atdma = to_at_dma(atchan->chan_common.device);
 445
 446	dev_vdbg(chan2dev(&atchan->chan_common),
 447		"descriptor %u complete\n", txd->cookie);
 448
 449	/* mark the descriptor as complete for non cyclic cases only */
 450	if (!atc_chan_is_cyclic(atchan))
 451		dma_cookie_complete(txd);
 452
 453	/* If the transfer was a memset, free our temporary buffer */
 454	if (desc->memset_buffer) {
 455		dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
 456			      desc->memset_paddr);
 457		desc->memset_buffer = false;
 458	}
 
 459
 460	/* move children to free_list */
 461	list_splice_init(&desc->tx_list, &atchan->free_list);
 462	/* move myself to free_list */
 463	list_move(&desc->desc_node, &atchan->free_list);
 464
 465	dma_descriptor_unmap(txd);
 466	/* for cyclic transfers,
 467	 * no need to replay callback function while stopping */
 468	if (!atc_chan_is_cyclic(atchan)) {
 469		/*
 470		 * The API requires that no submissions are done from a
 471		 * callback, so we don't need to drop the lock here
 472		 */
 473		dmaengine_desc_get_callback_invoke(txd, NULL);
 474	}
 475
 476	dma_run_dependencies(txd);
 477}
 478
 479/**
 480 * atc_complete_all - finish work for all transactions
 481 * @atchan: channel to complete transactions for
 482 *
 483 * Eventually submit queued descriptors if any
 484 *
 485 * Assume channel is idle while calling this function
 486 * Called with atchan->lock held and bh disabled
 487 */
 488static void atc_complete_all(struct at_dma_chan *atchan)
 489{
 490	struct at_desc *desc, *_desc;
 491	LIST_HEAD(list);
 492
 493	dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
 494
 495	/*
 496	 * Submit queued descriptors ASAP, i.e. before we go through
 497	 * the completed ones.
 498	 */
 499	if (!list_empty(&atchan->queue))
 500		atc_dostart(atchan, atc_first_queued(atchan));
 501	/* empty active_list now it is completed */
 502	list_splice_init(&atchan->active_list, &list);
 503	/* empty queue list by moving descriptors (if any) to active_list */
 504	list_splice_init(&atchan->queue, &atchan->active_list);
 505
 506	list_for_each_entry_safe(desc, _desc, &list, desc_node)
 507		atc_chain_complete(atchan, desc);
 508}
 509
 510/**
 511 * atc_advance_work - at the end of a transaction, move forward
 512 * @atchan: channel where the transaction ended
 
 
 
 513 *
 514 * Called with atchan->lock held and bh disabled
 515 */
 516static void atc_advance_work(struct at_dma_chan *atchan)
 
 517{
 518	dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
 
 
 
 
 
 
 
 
 
 
 
 
 519
 520	if (atc_chan_is_enabled(atchan))
 521		return;
 
 522
 523	if (list_empty(&atchan->active_list) ||
 524	    list_is_singular(&atchan->active_list)) {
 525		atc_complete_all(atchan);
 526	} else {
 527		atc_chain_complete(atchan, atc_first_active(atchan));
 528		/* advance work */
 529		atc_dostart(atchan, atc_first_active(atchan));
 530	}
 531}
 532
 533
 534/**
 535 * atc_handle_error - handle errors reported by DMA controller
 536 * @atchan: channel where error occurs
 537 *
 538 * Called with atchan->lock held and bh disabled
 539 */
 540static void atc_handle_error(struct at_dma_chan *atchan)
 541{
 542	struct at_desc *bad_desc;
 543	struct at_desc *child;
 544
 545	/*
 546	 * The descriptor currently at the head of the active list is
 547	 * broked. Since we don't have any way to report errors, we'll
 548	 * just have to scream loudly and try to carry on.
 549	 */
 550	bad_desc = atc_first_active(atchan);
 551	list_del_init(&bad_desc->desc_node);
 552
 553	/* As we are stopped, take advantage to push queued descriptors
 554	 * in active_list */
 555	list_splice_init(&atchan->queue, atchan->active_list.prev);
 556
 557	/* Try to restart the controller */
 558	if (!list_empty(&atchan->active_list))
 559		atc_dostart(atchan, atc_first_active(atchan));
 560
 561	/*
 562	 * KERN_CRITICAL may seem harsh, but since this only happens
 563	 * when someone submits a bad physical address in a
 564	 * descriptor, we should consider ourselves lucky that the
 565	 * controller flagged an error instead of scribbling over
 566	 * random memory locations.
 567	 */
 568	dev_crit(chan2dev(&atchan->chan_common),
 569			"Bad descriptor submitted for DMA!\n");
 570	dev_crit(chan2dev(&atchan->chan_common),
 571			"  cookie: %d\n", bad_desc->txd.cookie);
 572	atc_dump_lli(atchan, &bad_desc->lli);
 573	list_for_each_entry(child, &bad_desc->tx_list, desc_node)
 574		atc_dump_lli(atchan, &child->lli);
 575
 576	/* Pretend the descriptor completed successfully */
 577	atc_chain_complete(atchan, bad_desc);
 578}
 579
 580/**
 581 * atc_handle_cyclic - at the end of a period, run callback function
 582 * @atchan: channel used for cyclic operations
 583 *
 584 * Called with atchan->lock held and bh disabled
 585 */
 586static void atc_handle_cyclic(struct at_dma_chan *atchan)
 587{
 588	struct at_desc			*first = atc_first_active(atchan);
 589	struct dma_async_tx_descriptor	*txd = &first->txd;
 590
 591	dev_vdbg(chan2dev(&atchan->chan_common),
 592			"new cyclic period llp 0x%08x\n",
 593			channel_readl(atchan, DSCR));
 594
 595	dmaengine_desc_get_callback_invoke(txd, NULL);
 596}
 
 
 
 597
 598/*--  IRQ & Tasklet  ---------------------------------------------------*/
 599
 600static void atc_tasklet(unsigned long data)
 601{
 602	struct at_dma_chan *atchan = (struct at_dma_chan *)data;
 603	unsigned long flags;
 604
 605	spin_lock_irqsave(&atchan->lock, flags);
 606	if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
 607		atc_handle_error(atchan);
 608	else if (atc_chan_is_cyclic(atchan))
 609		atc_handle_cyclic(atchan);
 610	else
 611		atc_advance_work(atchan);
 612
 613	spin_unlock_irqrestore(&atchan->lock, flags);
 614}
 615
 616static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
 617{
 618	struct at_dma		*atdma = (struct at_dma *)dev_id;
 619	struct at_dma_chan	*atchan;
 620	int			i;
 621	u32			status, pending, imr;
 622	int			ret = IRQ_NONE;
 623
 624	do {
 625		imr = dma_readl(atdma, EBCIMR);
 626		status = dma_readl(atdma, EBCISR);
 627		pending = status & imr;
 628
 629		if (!pending)
 630			break;
 631
 632		dev_vdbg(atdma->dma_common.dev,
 633			"interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
 634			 status, imr, pending);
 635
 636		for (i = 0; i < atdma->dma_common.chancnt; i++) {
 637			atchan = &atdma->chan[i];
 638			if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
 639				if (pending & AT_DMA_ERR(i)) {
 640					/* Disable channel on AHB error */
 641					dma_writel(atdma, CHDR,
 642						AT_DMA_RES(i) | atchan->mask);
 643					/* Give information to tasklet */
 644					set_bit(ATC_IS_ERROR, &atchan->status);
 645				}
 646				tasklet_schedule(&atchan->tasklet);
 647				ret = IRQ_HANDLED;
 648			}
 649		}
 650
 651	} while (pending);
 652
 653	return ret;
 654}
 655
 656
 657/*--  DMA Engine API  --------------------------------------------------*/
 658
 659/**
 660 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
 661 * @desc: descriptor at the head of the transaction chain
 662 *
 663 * Queue chain if DMA engine is working already
 664 *
 665 * Cookie increment and adding to active_list or queue must be atomic
 666 */
 667static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
 668{
 669	struct at_desc		*desc = txd_to_at_desc(tx);
 670	struct at_dma_chan	*atchan = to_at_dma_chan(tx->chan);
 671	dma_cookie_t		cookie;
 672	unsigned long		flags;
 673
 674	spin_lock_irqsave(&atchan->lock, flags);
 675	cookie = dma_cookie_assign(tx);
 676
 677	if (list_empty(&atchan->active_list)) {
 678		dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
 679				desc->txd.cookie);
 680		atc_dostart(atchan, desc);
 681		list_add_tail(&desc->desc_node, &atchan->active_list);
 682	} else {
 683		dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
 684				desc->txd.cookie);
 685		list_add_tail(&desc->desc_node, &atchan->queue);
 686	}
 687
 688	spin_unlock_irqrestore(&atchan->lock, flags);
 689
 690	return cookie;
 691}
 692
 693/**
 694 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
 695 * @chan: the channel to prepare operation on
 696 * @xt: Interleaved transfer template
 697 * @flags: tx descriptor status flags
 698 */
 699static struct dma_async_tx_descriptor *
 700atc_prep_dma_interleaved(struct dma_chan *chan,
 701			 struct dma_interleaved_template *xt,
 702			 unsigned long flags)
 703{
 
 704	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
 705	struct data_chunk	*first;
 706	struct at_desc		*desc = NULL;
 
 
 707	size_t			xfer_count;
 708	unsigned int		dwidth;
 709	u32			ctrla;
 710	u32			ctrlb;
 711	size_t			len = 0;
 712	int			i;
 713
 714	if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
 715		return NULL;
 716
 717	first = xt->sgl;
 718
 719	dev_info(chan2dev(chan),
 720		 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
 721		__func__, &xt->src_start, &xt->dst_start, xt->numf,
 722		xt->frame_size, flags);
 723
 724	/*
 725	 * The controller can only "skip" X bytes every Y bytes, so we
 726	 * need to make sure we are given a template that fit that
 727	 * description, ie a template with chunks that always have the
 728	 * same size, with the same ICGs.
 729	 */
 730	for (i = 0; i < xt->frame_size; i++) {
 731		struct data_chunk *chunk = xt->sgl + i;
 732
 733		if ((chunk->size != xt->sgl->size) ||
 734		    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
 735		    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
 736			dev_err(chan2dev(chan),
 737				"%s: the controller can transfer only identical chunks\n",
 738				__func__);
 739			return NULL;
 740		}
 741
 742		len += chunk->size;
 743	}
 744
 745	dwidth = atc_get_xfer_width(xt->src_start,
 746				    xt->dst_start, len);
 747
 748	xfer_count = len >> dwidth;
 749	if (xfer_count > ATC_BTSIZE_MAX) {
 750		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
 751		return NULL;
 752	}
 753
 754	ctrla = ATC_SRC_WIDTH(dwidth) |
 755		ATC_DST_WIDTH(dwidth);
 756
 757	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
 758		| ATC_SRC_ADDR_MODE_INCR
 759		| ATC_DST_ADDR_MODE_INCR
 760		| ATC_SRC_PIP
 761		| ATC_DST_PIP
 762		| ATC_FC_MEM2MEM;
 763
 764	/* create the transfer */
 765	desc = atc_desc_get(atchan);
 766	if (!desc) {
 767		dev_err(chan2dev(chan),
 768			"%s: couldn't allocate our descriptor\n", __func__);
 
 
 
 
 769		return NULL;
 770	}
 
 771
 772	desc->lli.saddr = xt->src_start;
 773	desc->lli.daddr = xt->dst_start;
 774	desc->lli.ctrla = ctrla | xfer_count;
 775	desc->lli.ctrlb = ctrlb;
 776
 777	desc->boundary = first->size >> dwidth;
 778	desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
 779	desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
 780
 781	desc->txd.cookie = -EBUSY;
 782	desc->total_len = desc->len = len;
 783
 784	/* set end-of-link to the last link descriptor of list*/
 785	set_desc_eol(desc);
 786
 787	desc->txd.flags = flags; /* client is in control of this ack */
 788
 789	return &desc->txd;
 790}
 791
 792/**
 793 * atc_prep_dma_memcpy - prepare a memcpy operation
 794 * @chan: the channel to prepare operation on
 795 * @dest: operation virtual destination address
 796 * @src: operation virtual source address
 797 * @len: operation length
 798 * @flags: tx descriptor status flags
 799 */
 800static struct dma_async_tx_descriptor *
 801atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
 802		size_t len, unsigned long flags)
 803{
 
 804	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
 805	struct at_desc		*desc = NULL;
 806	struct at_desc		*first = NULL;
 807	struct at_desc		*prev = NULL;
 808	size_t			xfer_count;
 809	size_t			offset;
 
 810	unsigned int		src_width;
 811	unsigned int		dst_width;
 
 812	u32			ctrla;
 813	u32			ctrlb;
 814
 815	dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
 816			&dest, &src, len, flags);
 817
 818	if (unlikely(!len)) {
 819		dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
 820		return NULL;
 821	}
 822
 823	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
 824		| ATC_SRC_ADDR_MODE_INCR
 825		| ATC_DST_ADDR_MODE_INCR
 826		| ATC_FC_MEM2MEM;
 
 
 
 
 
 
 827
 828	/*
 829	 * We can be a lot more clever here, but this should take care
 830	 * of the most common optimization.
 831	 */
 832	src_width = dst_width = atc_get_xfer_width(src, dest, len);
 833
 834	ctrla = ATC_SRC_WIDTH(src_width) |
 835		ATC_DST_WIDTH(dst_width);
 
 
 
 
 
 
 
 
 
 
 
 836
 837	for (offset = 0; offset < len; offset += xfer_count << src_width) {
 838		xfer_count = min_t(size_t, (len - offset) >> src_width,
 839				ATC_BTSIZE_MAX);
 840
 841		desc = atc_desc_get(atchan);
 842		if (!desc)
 843			goto err_desc_get;
 844
 845		desc->lli.saddr = src + offset;
 846		desc->lli.daddr = dest + offset;
 847		desc->lli.ctrla = ctrla | xfer_count;
 848		desc->lli.ctrlb = ctrlb;
 849
 850		desc->txd.cookie = 0;
 851		desc->len = xfer_count << src_width;
 852
 853		atc_desc_chain(&first, &prev, desc);
 854	}
 855
 856	/* First descriptor of the chain embedds additional information */
 857	first->txd.cookie = -EBUSY;
 858	first->total_len = len;
 859
 860	/* set end-of-link to the last link descriptor of list*/
 861	set_desc_eol(desc);
 862
 863	first->txd.flags = flags; /* client is in control of this ack */
 864
 865	return &first->txd;
 866
 867err_desc_get:
 868	atc_desc_put(atchan, first);
 869	return NULL;
 870}
 871
 872static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
 873					      dma_addr_t psrc,
 874					      dma_addr_t pdst,
 875					      size_t len)
 876{
 877	struct at_dma_chan *atchan = to_at_dma_chan(chan);
 878	struct at_desc *desc;
 879	size_t xfer_count;
 880
 881	u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
 882	u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
 883		ATC_SRC_ADDR_MODE_FIXED |
 884		ATC_DST_ADDR_MODE_INCR |
 885		ATC_FC_MEM2MEM;
 886
 887	xfer_count = len >> 2;
 888	if (xfer_count > ATC_BTSIZE_MAX) {
 889		dev_err(chan2dev(chan), "%s: buffer is too big\n",
 890			__func__);
 891		return NULL;
 892	}
 893
 894	desc = atc_desc_get(atchan);
 895	if (!desc) {
 896		dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
 897			__func__);
 898		return NULL;
 899	}
 900
 901	desc->lli.saddr = psrc;
 902	desc->lli.daddr = pdst;
 903	desc->lli.ctrla = ctrla | xfer_count;
 904	desc->lli.ctrlb = ctrlb;
 905
 906	desc->txd.cookie = 0;
 907	desc->len = len;
 908
 909	return desc;
 910}
 911
 912/**
 913 * atc_prep_dma_memset - prepare a memcpy operation
 914 * @chan: the channel to prepare operation on
 915 * @dest: operation virtual destination address
 916 * @value: value to set memory buffer to
 917 * @len: operation length
 918 * @flags: tx descriptor status flags
 919 */
 920static struct dma_async_tx_descriptor *
 921atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
 922		    size_t len, unsigned long flags)
 923{
 
 924	struct at_dma		*atdma = to_at_dma(chan->device);
 925	struct at_desc		*desc;
 926	void __iomem		*vaddr;
 927	dma_addr_t		paddr;
 
 
 928
 929	dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
 930		&dest, value, len, flags);
 931
 932	if (unlikely(!len)) {
 933		dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
 934		return NULL;
 935	}
 936
 937	if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
 938		dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
 939			__func__);
 940		return NULL;
 941	}
 942
 943	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
 944	if (!vaddr) {
 945		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
 946			__func__);
 947		return NULL;
 948	}
 949	*(u32*)vaddr = value;
 950
 951	desc = atc_create_memset_desc(chan, paddr, dest, len);
 952	if (!desc) {
 953		dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
 954			__func__);
 
 
 
 
 
 
 955		goto err_free_buffer;
 956	}
 
 
 
 
 957
 958	desc->memset_paddr = paddr;
 959	desc->memset_vaddr = vaddr;
 960	desc->memset_buffer = true;
 961
 962	desc->txd.cookie = -EBUSY;
 963	desc->total_len = len;
 964
 965	/* set end-of-link on the descriptor */
 966	set_desc_eol(desc);
 967
 968	desc->txd.flags = flags;
 969
 970	return &desc->txd;
 971
 
 
 972err_free_buffer:
 973	dma_pool_free(atdma->memset_pool, vaddr, paddr);
 974	return NULL;
 975}
 976
 977static struct dma_async_tx_descriptor *
 978atc_prep_dma_memset_sg(struct dma_chan *chan,
 979		       struct scatterlist *sgl,
 980		       unsigned int sg_len, int value,
 981		       unsigned long flags)
 982{
 983	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
 984	struct at_dma		*atdma = to_at_dma(chan->device);
 985	struct at_desc		*desc = NULL, *first = NULL, *prev = NULL;
 986	struct scatterlist	*sg;
 987	void __iomem		*vaddr;
 988	dma_addr_t		paddr;
 989	size_t			total_len = 0;
 990	int			i;
 
 991
 992	dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
 993		 value, sg_len, flags);
 994
 995	if (unlikely(!sgl || !sg_len)) {
 996		dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
 997			__func__);
 998		return NULL;
 999	}
1000
1001	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
1002	if (!vaddr) {
1003		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1004			__func__);
1005		return NULL;
1006	}
1007	*(u32*)vaddr = value;
1008
 
 
 
 
 
1009	for_each_sg(sgl, sg, sg_len, i) {
1010		dma_addr_t dest = sg_dma_address(sg);
1011		size_t len = sg_dma_len(sg);
1012
1013		dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1014			 __func__, &dest, len);
1015
1016		if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1017			dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1018				__func__);
1019			goto err_put_desc;
1020		}
1021
1022		desc = atc_create_memset_desc(chan, paddr, dest, len);
1023		if (!desc)
1024			goto err_put_desc;
1025
1026		atc_desc_chain(&first, &prev, desc);
1027
 
1028		total_len += len;
1029	}
1030
1031	/*
1032	 * Only set the buffer pointers on the last descriptor to
1033	 * avoid free'ing while we have our transfer still going
1034	 */
1035	desc->memset_paddr = paddr;
1036	desc->memset_vaddr = vaddr;
1037	desc->memset_buffer = true;
1038
1039	first->txd.cookie = -EBUSY;
1040	first->total_len = total_len;
1041
1042	/* set end-of-link on the descriptor */
1043	set_desc_eol(desc);
1044
1045	first->txd.flags = flags;
1046
1047	return &first->txd;
1048
1049err_put_desc:
1050	atc_desc_put(atchan, first);
1051	return NULL;
1052}
1053
1054/**
1055 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1056 * @chan: DMA channel
1057 * @sgl: scatterlist to transfer to/from
1058 * @sg_len: number of entries in @scatterlist
1059 * @direction: DMA direction
1060 * @flags: tx descriptor status flags
1061 * @context: transaction context (ignored)
1062 */
1063static struct dma_async_tx_descriptor *
1064atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1065		unsigned int sg_len, enum dma_transfer_direction direction,
1066		unsigned long flags, void *context)
1067{
 
1068	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1069	struct at_dma_slave	*atslave = chan->private;
1070	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1071	struct at_desc		*first = NULL;
1072	struct at_desc		*prev = NULL;
1073	u32			ctrla;
1074	u32			ctrlb;
1075	dma_addr_t		reg;
1076	unsigned int		reg_width;
1077	unsigned int		mem_width;
1078	unsigned int		i;
1079	struct scatterlist	*sg;
1080	size_t			total_len = 0;
1081
1082	dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1083			sg_len,
1084			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1085			flags);
1086
1087	if (unlikely(!atslave || !sg_len)) {
1088		dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1089		return NULL;
1090	}
1091
1092	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1093		| ATC_DCSIZE(sconfig->dst_maxburst);
 
 
 
 
 
1094	ctrlb = ATC_IEN;
1095
1096	switch (direction) {
1097	case DMA_MEM_TO_DEV:
1098		reg_width = convert_buswidth(sconfig->dst_addr_width);
1099		ctrla |=  ATC_DST_WIDTH(reg_width);
1100		ctrlb |=  ATC_DST_ADDR_MODE_FIXED
1101			| ATC_SRC_ADDR_MODE_INCR
1102			| ATC_FC_MEM2PER
1103			| ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
 
 
1104		reg = sconfig->dst_addr;
1105		for_each_sg(sgl, sg, sg_len, i) {
1106			struct at_desc	*desc;
 
1107			u32		len;
1108			u32		mem;
1109
1110			desc = atc_desc_get(atchan);
1111			if (!desc)
 
 
1112				goto err_desc_get;
 
1113
1114			mem = sg_dma_address(sg);
1115			len = sg_dma_len(sg);
1116			if (unlikely(!len)) {
1117				dev_dbg(chan2dev(chan),
1118					"prep_slave_sg: sg(%d) data length is zero\n", i);
1119				goto err;
1120			}
1121			mem_width = 2;
1122			if (unlikely(mem & 3 || len & 3))
1123				mem_width = 0;
1124
1125			desc->lli.saddr = mem;
1126			desc->lli.daddr = reg;
1127			desc->lli.ctrla = ctrla
1128					| ATC_SRC_WIDTH(mem_width)
1129					| len >> mem_width;
1130			desc->lli.ctrlb = ctrlb;
1131			desc->len = len;
1132
1133			atc_desc_chain(&first, &prev, desc);
1134			total_len += len;
 
 
 
1135		}
1136		break;
1137	case DMA_DEV_TO_MEM:
1138		reg_width = convert_buswidth(sconfig->src_addr_width);
1139		ctrla |=  ATC_SRC_WIDTH(reg_width);
1140		ctrlb |=  ATC_DST_ADDR_MODE_INCR
1141			| ATC_SRC_ADDR_MODE_FIXED
1142			| ATC_FC_PER2MEM
1143			| ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
 
 
1144
1145		reg = sconfig->src_addr;
1146		for_each_sg(sgl, sg, sg_len, i) {
1147			struct at_desc	*desc;
 
1148			u32		len;
1149			u32		mem;
1150
1151			desc = atc_desc_get(atchan);
1152			if (!desc)
 
 
1153				goto err_desc_get;
 
1154
1155			mem = sg_dma_address(sg);
1156			len = sg_dma_len(sg);
1157			if (unlikely(!len)) {
1158				dev_dbg(chan2dev(chan),
1159					"prep_slave_sg: sg(%d) data length is zero\n", i);
1160				goto err;
1161			}
1162			mem_width = 2;
1163			if (unlikely(mem & 3 || len & 3))
1164				mem_width = 0;
1165
1166			desc->lli.saddr = reg;
1167			desc->lli.daddr = mem;
1168			desc->lli.ctrla = ctrla
1169					| ATC_DST_WIDTH(mem_width)
1170					| len >> reg_width;
1171			desc->lli.ctrlb = ctrlb;
1172			desc->len = len;
1173
1174			atc_desc_chain(&first, &prev, desc);
1175			total_len += len;
 
 
1176		}
1177		break;
1178	default:
1179		return NULL;
1180	}
1181
1182	/* set end-of-link to the last link descriptor of list*/
1183	set_desc_eol(prev);
1184
1185	/* First descriptor of the chain embedds additional information */
1186	first->txd.cookie = -EBUSY;
1187	first->total_len = total_len;
1188
1189	/* first link descriptor of list is responsible of flags */
1190	first->txd.flags = flags; /* client is in control of this ack */
1191
1192	return &first->txd;
1193
1194err_desc_get:
1195	dev_err(chan2dev(chan), "not enough descriptors available\n");
1196err:
1197	atc_desc_put(atchan, first);
1198	return NULL;
1199}
1200
1201/**
1202 * atc_dma_cyclic_check_values
1203 * Check for too big/unaligned periods and unaligned DMA buffer
1204 */
1205static int
1206atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1207		size_t period_len)
1208{
1209	if (period_len > (ATC_BTSIZE_MAX << reg_width))
1210		goto err_out;
1211	if (unlikely(period_len & ((1 << reg_width) - 1)))
1212		goto err_out;
1213	if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1214		goto err_out;
1215
1216	return 0;
1217
1218err_out:
1219	return -EINVAL;
1220}
1221
1222/**
1223 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1224 */
1225static int
1226atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1227		unsigned int period_index, dma_addr_t buf_addr,
1228		unsigned int reg_width, size_t period_len,
1229		enum dma_transfer_direction direction)
1230{
 
1231	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1232	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1233	u32			ctrla;
 
1234
1235	/* prepare common CRTLA value */
1236	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1237		| ATC_DCSIZE(sconfig->dst_maxburst)
1238		| ATC_DST_WIDTH(reg_width)
1239		| ATC_SRC_WIDTH(reg_width)
1240		| period_len >> reg_width;
1241
1242	switch (direction) {
1243	case DMA_MEM_TO_DEV:
1244		desc->lli.saddr = buf_addr + (period_len * period_index);
1245		desc->lli.daddr = sconfig->dst_addr;
1246		desc->lli.ctrla = ctrla;
1247		desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1248				| ATC_SRC_ADDR_MODE_INCR
1249				| ATC_FC_MEM2PER
1250				| ATC_SIF(atchan->mem_if)
1251				| ATC_DIF(atchan->per_if);
1252		desc->len = period_len;
 
1253		break;
1254
1255	case DMA_DEV_TO_MEM:
1256		desc->lli.saddr = sconfig->src_addr;
1257		desc->lli.daddr = buf_addr + (period_len * period_index);
1258		desc->lli.ctrla = ctrla;
1259		desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1260				| ATC_SRC_ADDR_MODE_FIXED
1261				| ATC_FC_PER2MEM
1262				| ATC_SIF(atchan->per_if)
1263				| ATC_DIF(atchan->mem_if);
1264		desc->len = period_len;
1265		break;
1266
1267	default:
1268		return -EINVAL;
1269	}
1270
 
 
 
 
 
 
 
1271	return 0;
1272}
1273
1274/**
1275 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1276 * @chan: the DMA channel to prepare
1277 * @buf_addr: physical DMA address where the buffer starts
1278 * @buf_len: total number of bytes for the entire buffer
1279 * @period_len: number of bytes for each period
1280 * @direction: transfer direction, to or from device
1281 * @flags: tx descriptor status flags
1282 */
1283static struct dma_async_tx_descriptor *
1284atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1285		size_t period_len, enum dma_transfer_direction direction,
1286		unsigned long flags)
1287{
1288	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1289	struct at_dma_slave	*atslave = chan->private;
1290	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1291	struct at_desc		*first = NULL;
1292	struct at_desc		*prev = NULL;
1293	unsigned long		was_cyclic;
1294	unsigned int		reg_width;
1295	unsigned int		periods = buf_len / period_len;
1296	unsigned int		i;
1297
1298	dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1299			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1300			&buf_addr,
1301			periods, buf_len, period_len);
1302
1303	if (unlikely(!atslave || !buf_len || !period_len)) {
1304		dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1305		return NULL;
1306	}
1307
1308	was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1309	if (was_cyclic) {
1310		dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1311		return NULL;
1312	}
1313
1314	if (unlikely(!is_slave_direction(direction)))
1315		goto err_out;
1316
1317	if (direction == DMA_MEM_TO_DEV)
1318		reg_width = convert_buswidth(sconfig->dst_addr_width);
1319	else
1320		reg_width = convert_buswidth(sconfig->src_addr_width);
1321
1322	/* Check for too big/unaligned periods and unaligned DMA buffer */
1323	if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1324		goto err_out;
1325
 
 
 
 
 
1326	/* build cyclic linked list */
1327	for (i = 0; i < periods; i++) {
1328		struct at_desc	*desc;
1329
1330		desc = atc_desc_get(atchan);
1331		if (!desc)
1332			goto err_desc_get;
1333
1334		if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1335					     reg_width, period_len, direction))
1336			goto err_desc_get;
1337
1338		atc_desc_chain(&first, &prev, desc);
1339	}
1340
1341	/* lets make a cyclic list */
1342	prev->lli.dscr = first->txd.phys;
1343
1344	/* First descriptor of the chain embedds additional information */
1345	first->txd.cookie = -EBUSY;
1346	first->total_len = buf_len;
1347
1348	return &first->txd;
1349
1350err_desc_get:
1351	dev_err(chan2dev(chan), "not enough descriptors available\n");
1352	atc_desc_put(atchan, first);
1353err_out:
1354	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1355	return NULL;
1356}
1357
1358static int atc_config(struct dma_chan *chan,
1359		      struct dma_slave_config *sconfig)
1360{
1361	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1362
1363	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1364
1365	/* Check if it is chan is configured for slave transfers */
1366	if (!chan->private)
1367		return -EINVAL;
1368
1369	memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1370
1371	convert_burst(&atchan->dma_sconfig.src_maxburst);
1372	convert_burst(&atchan->dma_sconfig.dst_maxburst);
1373
1374	return 0;
1375}
1376
1377static int atc_pause(struct dma_chan *chan)
1378{
1379	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1380	struct at_dma		*atdma = to_at_dma(chan->device);
1381	int			chan_id = atchan->chan_common.chan_id;
1382	unsigned long		flags;
1383
1384	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1385
1386	spin_lock_irqsave(&atchan->lock, flags);
1387
1388	dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1389	set_bit(ATC_IS_PAUSED, &atchan->status);
1390
1391	spin_unlock_irqrestore(&atchan->lock, flags);
1392
1393	return 0;
1394}
1395
1396static int atc_resume(struct dma_chan *chan)
1397{
1398	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1399	struct at_dma		*atdma = to_at_dma(chan->device);
1400	int			chan_id = atchan->chan_common.chan_id;
1401	unsigned long		flags;
1402
1403	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1404
1405	if (!atc_chan_is_paused(atchan))
1406		return 0;
1407
1408	spin_lock_irqsave(&atchan->lock, flags);
1409
1410	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1411	clear_bit(ATC_IS_PAUSED, &atchan->status);
1412
1413	spin_unlock_irqrestore(&atchan->lock, flags);
1414
1415	return 0;
1416}
1417
1418static int atc_terminate_all(struct dma_chan *chan)
1419{
1420	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1421	struct at_dma		*atdma = to_at_dma(chan->device);
1422	int			chan_id = atchan->chan_common.chan_id;
1423	struct at_desc		*desc, *_desc;
1424	unsigned long		flags;
1425
1426	LIST_HEAD(list);
1427
1428	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1429
1430	/*
1431	 * This is only called when something went wrong elsewhere, so
1432	 * we don't really care about the data. Just disable the
1433	 * channel. We still have to poll the channel enable bit due
1434	 * to AHB/HSB limitations.
1435	 */
1436	spin_lock_irqsave(&atchan->lock, flags);
1437
1438	/* disabling channel: must also remove suspend state */
1439	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1440
1441	/* confirm that this channel is disabled */
1442	while (dma_readl(atdma, CHSR) & atchan->mask)
1443		cpu_relax();
1444
1445	/* active_list entries will end up before queued entries */
1446	list_splice_init(&atchan->queue, &list);
1447	list_splice_init(&atchan->active_list, &list);
1448
1449	/* Flush all pending and queued descriptors */
1450	list_for_each_entry_safe(desc, _desc, &list, desc_node)
1451		atc_chain_complete(atchan, desc);
1452
1453	clear_bit(ATC_IS_PAUSED, &atchan->status);
1454	/* if channel dedicated to cyclic operations, free it */
1455	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1456
1457	spin_unlock_irqrestore(&atchan->lock, flags);
 
 
1458
1459	return 0;
1460}
1461
1462/**
1463 * atc_tx_status - poll for transaction completion
1464 * @chan: DMA channel
1465 * @cookie: transaction identifier to check status of
1466 * @txstate: if not %NULL updated with transaction state
1467 *
1468 * If @txstate is passed in, upon return it reflect the driver
1469 * internal state and can be used with dma_async_is_complete() to check
1470 * the status of multiple cookies without re-checking hardware state.
1471 */
1472static enum dma_status
1473atc_tx_status(struct dma_chan *chan,
1474		dma_cookie_t cookie,
1475		struct dma_tx_state *txstate)
1476{
1477	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1478	unsigned long		flags;
1479	enum dma_status		ret;
1480	int bytes = 0;
1481
1482	ret = dma_cookie_status(chan, cookie, txstate);
1483	if (ret == DMA_COMPLETE)
1484		return ret;
1485	/*
1486	 * There's no point calculating the residue if there's
1487	 * no txstate to store the value.
1488	 */
1489	if (!txstate)
1490		return DMA_ERROR;
1491
1492	spin_lock_irqsave(&atchan->lock, flags);
 
 
1493
 
1494	/*  Get number of bytes left in the active transactions */
1495	bytes = atc_get_bytes_left(chan, cookie);
1496
1497	spin_unlock_irqrestore(&atchan->lock, flags);
1498
1499	if (unlikely(bytes < 0)) {
1500		dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1501		return DMA_ERROR;
1502	} else {
1503		dma_set_residue(txstate, bytes);
1504	}
1505
1506	dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1507		 ret, cookie, bytes);
1508
1509	return ret;
1510}
1511
1512/**
1513 * atc_issue_pending - try to finish work
1514 * @chan: target DMA channel
1515 */
1516static void atc_issue_pending(struct dma_chan *chan)
1517{
1518	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1519	unsigned long		flags;
1520
1521	dev_vdbg(chan2dev(chan), "issue_pending\n");
1522
1523	/* Not needed for cyclic transfers */
1524	if (atc_chan_is_cyclic(atchan))
1525		return;
1526
1527	spin_lock_irqsave(&atchan->lock, flags);
1528	atc_advance_work(atchan);
1529	spin_unlock_irqrestore(&atchan->lock, flags);
1530}
1531
1532/**
1533 * atc_alloc_chan_resources - allocate resources for DMA channel
1534 * @chan: allocate descriptor resources for this channel
1535 * @client: current client requesting the channel be ready for requests
1536 *
1537 * return - the number of allocated descriptors
1538 */
1539static int atc_alloc_chan_resources(struct dma_chan *chan)
1540{
1541	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1542	struct at_dma		*atdma = to_at_dma(chan->device);
1543	struct at_desc		*desc;
1544	struct at_dma_slave	*atslave;
1545	unsigned long		flags;
1546	int			i;
1547	u32			cfg;
1548	LIST_HEAD(tmp_list);
1549
1550	dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1551
1552	/* ASSERT:  channel is idle */
1553	if (atc_chan_is_enabled(atchan)) {
1554		dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1555		return -EIO;
1556	}
1557
1558	cfg = ATC_DEFAULT_CFG;
1559
1560	atslave = chan->private;
1561	if (atslave) {
1562		/*
1563		 * We need controller-specific data to set up slave
1564		 * transfers.
1565		 */
1566		BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1567
1568		/* if cfg configuration specified take it instead of default */
1569		if (atslave->cfg)
1570			cfg = atslave->cfg;
1571	}
1572
1573	/* have we already been set up?
1574	 * reconfigure channel but no need to reallocate descriptors */
1575	if (!list_empty(&atchan->free_list))
1576		return atchan->descs_allocated;
1577
1578	/* Allocate initial pool of descriptors */
1579	for (i = 0; i < init_nr_desc_per_channel; i++) {
1580		desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1581		if (!desc) {
1582			dev_err(atdma->dma_common.dev,
1583				"Only %d initial descriptors\n", i);
1584			break;
1585		}
1586		list_add_tail(&desc->desc_node, &tmp_list);
1587	}
1588
1589	spin_lock_irqsave(&atchan->lock, flags);
1590	atchan->descs_allocated = i;
1591	list_splice(&tmp_list, &atchan->free_list);
1592	dma_cookie_init(chan);
1593	spin_unlock_irqrestore(&atchan->lock, flags);
1594
1595	/* channel parameters */
1596	channel_writel(atchan, CFG, cfg);
1597
1598	dev_dbg(chan2dev(chan),
1599		"alloc_chan_resources: allocated %d descriptors\n",
1600		atchan->descs_allocated);
1601
1602	return atchan->descs_allocated;
1603}
1604
1605/**
1606 * atc_free_chan_resources - free all channel resources
1607 * @chan: DMA channel
1608 */
1609static void atc_free_chan_resources(struct dma_chan *chan)
1610{
1611	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1612	struct at_dma		*atdma = to_at_dma(chan->device);
1613	struct at_desc		*desc, *_desc;
1614	LIST_HEAD(list);
1615
1616	dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1617		atchan->descs_allocated);
1618
1619	/* ASSERT:  channel is idle */
1620	BUG_ON(!list_empty(&atchan->active_list));
1621	BUG_ON(!list_empty(&atchan->queue));
1622	BUG_ON(atc_chan_is_enabled(atchan));
1623
1624	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1625		dev_vdbg(chan2dev(chan), "  freeing descriptor %p\n", desc);
1626		list_del(&desc->desc_node);
1627		/* free link descriptor */
1628		dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1629	}
1630	list_splice_init(&atchan->free_list, &list);
1631	atchan->descs_allocated = 0;
1632	atchan->status = 0;
1633
1634	/*
1635	 * Free atslave allocated in at_dma_xlate()
1636	 */
1637	kfree(chan->private);
1638	chan->private = NULL;
1639
1640	dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1641}
1642
1643#ifdef CONFIG_OF
1644static bool at_dma_filter(struct dma_chan *chan, void *slave)
1645{
1646	struct at_dma_slave *atslave = slave;
1647
1648	if (atslave->dma_dev == chan->device->dev) {
1649		chan->private = atslave;
1650		return true;
1651	} else {
1652		return false;
1653	}
1654}
1655
1656static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1657				     struct of_dma *of_dma)
1658{
1659	struct dma_chan *chan;
1660	struct at_dma_chan *atchan;
1661	struct at_dma_slave *atslave;
1662	dma_cap_mask_t mask;
1663	unsigned int per_id;
1664	struct platform_device *dmac_pdev;
1665
1666	if (dma_spec->args_count != 2)
1667		return NULL;
1668
1669	dmac_pdev = of_find_device_by_node(dma_spec->np);
 
 
1670
1671	dma_cap_zero(mask);
1672	dma_cap_set(DMA_SLAVE, mask);
1673
1674	atslave = kzalloc(sizeof(*atslave), GFP_KERNEL);
1675	if (!atslave)
 
1676		return NULL;
 
1677
1678	atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1679	/*
1680	 * We can fill both SRC_PER and DST_PER, one of these fields will be
1681	 * ignored depending on DMA transfer direction.
1682	 */
1683	per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1684	atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1685		     | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1686	/*
1687	 * We have to translate the value we get from the device tree since
1688	 * the half FIFO configuration value had to be 0 to keep backward
1689	 * compatibility.
1690	 */
1691	switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1692	case AT91_DMA_CFG_FIFOCFG_ALAP:
1693		atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
 
1694		break;
1695	case AT91_DMA_CFG_FIFOCFG_ASAP:
1696		atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
 
1697		break;
1698	case AT91_DMA_CFG_FIFOCFG_HALF:
1699	default:
1700		atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1701	}
1702	atslave->dma_dev = &dmac_pdev->dev;
1703
1704	chan = dma_request_channel(mask, at_dma_filter, atslave);
1705	if (!chan)
 
 
1706		return NULL;
 
1707
1708	atchan = to_at_dma_chan(chan);
1709	atchan->per_if = dma_spec->args[0] & 0xff;
1710	atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1711
1712	return chan;
1713}
1714#else
1715static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1716				     struct of_dma *of_dma)
1717{
1718	return NULL;
1719}
1720#endif
1721
1722/*--  Module Management  -----------------------------------------------*/
1723
1724/* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1725static struct at_dma_platform_data at91sam9rl_config = {
1726	.nr_channels = 2,
1727};
1728static struct at_dma_platform_data at91sam9g45_config = {
1729	.nr_channels = 8,
1730};
1731
1732#if defined(CONFIG_OF)
1733static const struct of_device_id atmel_dma_dt_ids[] = {
1734	{
1735		.compatible = "atmel,at91sam9rl-dma",
1736		.data = &at91sam9rl_config,
1737	}, {
1738		.compatible = "atmel,at91sam9g45-dma",
1739		.data = &at91sam9g45_config,
1740	}, {
1741		/* sentinel */
1742	}
1743};
1744
1745MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1746#endif
1747
1748static const struct platform_device_id atdma_devtypes[] = {
1749	{
1750		.name = "at91sam9rl_dma",
1751		.driver_data = (unsigned long) &at91sam9rl_config,
1752	}, {
1753		.name = "at91sam9g45_dma",
1754		.driver_data = (unsigned long) &at91sam9g45_config,
1755	}, {
1756		/* sentinel */
1757	}
1758};
1759
1760static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1761						struct platform_device *pdev)
1762{
1763	if (pdev->dev.of_node) {
1764		const struct of_device_id *match;
1765		match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1766		if (match == NULL)
1767			return NULL;
1768		return match->data;
1769	}
1770	return (struct at_dma_platform_data *)
1771			platform_get_device_id(pdev)->driver_data;
1772}
1773
1774/**
1775 * at_dma_off - disable DMA controller
1776 * @atdma: the Atmel HDAMC device
1777 */
1778static void at_dma_off(struct at_dma *atdma)
1779{
1780	dma_writel(atdma, EN, 0);
1781
1782	/* disable all interrupts */
1783	dma_writel(atdma, EBCIDR, -1L);
1784
1785	/* confirm that all channels are disabled */
1786	while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1787		cpu_relax();
1788}
1789
1790static int __init at_dma_probe(struct platform_device *pdev)
1791{
1792	struct resource		*io;
1793	struct at_dma		*atdma;
1794	size_t			size;
1795	int			irq;
1796	int			err;
1797	int			i;
1798	const struct at_dma_platform_data *plat_dat;
1799
1800	/* setup platform data for each SoC */
1801	dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1802	dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1803	dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1804	dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1805	dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1806	dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1807	dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1808
1809	/* get DMA parameters from controller type */
1810	plat_dat = at_dma_get_driver_data(pdev);
1811	if (!plat_dat)
1812		return -ENODEV;
1813
1814	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1815	if (!io)
1816		return -EINVAL;
 
 
 
 
 
 
1817
1818	irq = platform_get_irq(pdev, 0);
1819	if (irq < 0)
1820		return irq;
1821
1822	size = sizeof(struct at_dma);
1823	size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1824	atdma = kzalloc(size, GFP_KERNEL);
1825	if (!atdma)
1826		return -ENOMEM;
1827
1828	/* discover transaction capabilities */
1829	atdma->dma_common.cap_mask = plat_dat->cap_mask;
1830	atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1831
1832	size = resource_size(io);
1833	if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1834		err = -EBUSY;
1835		goto err_kfree;
1836	}
1837
1838	atdma->regs = ioremap(io->start, size);
1839	if (!atdma->regs) {
1840		err = -ENOMEM;
1841		goto err_release_r;
1842	}
1843
1844	atdma->clk = clk_get(&pdev->dev, "dma_clk");
1845	if (IS_ERR(atdma->clk)) {
1846		err = PTR_ERR(atdma->clk);
1847		goto err_clk;
1848	}
1849	err = clk_prepare_enable(atdma->clk);
1850	if (err)
1851		goto err_clk_prepare;
1852
1853	/* force dma off, just in case */
1854	at_dma_off(atdma);
1855
1856	err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1857	if (err)
1858		goto err_irq;
1859
1860	platform_set_drvdata(pdev, atdma);
1861
1862	/* create a pool of consistent memory blocks for hardware descriptors */
1863	atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
1864			&pdev->dev, sizeof(struct at_desc),
1865			4 /* word alignment */, 0);
1866	if (!atdma->dma_desc_pool) {
1867		dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
1868		err = -ENOMEM;
1869		goto err_desc_pool_create;
1870	}
1871
1872	/* create a pool of consistent memory blocks for memset blocks */
1873	atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
1874					     &pdev->dev, sizeof(int), 4, 0);
1875	if (!atdma->memset_pool) {
1876		dev_err(&pdev->dev, "No memory for memset dma pool\n");
1877		err = -ENOMEM;
1878		goto err_memset_pool_create;
1879	}
1880
1881	/* clear any pending interrupt */
1882	while (dma_readl(atdma, EBCISR))
1883		cpu_relax();
1884
1885	/* initialize channels related values */
1886	INIT_LIST_HEAD(&atdma->dma_common.channels);
1887	for (i = 0; i < plat_dat->nr_channels; i++) {
1888		struct at_dma_chan	*atchan = &atdma->chan[i];
1889
1890		atchan->mem_if = AT_DMA_MEM_IF;
1891		atchan->per_if = AT_DMA_PER_IF;
1892		atchan->chan_common.device = &atdma->dma_common;
1893		dma_cookie_init(&atchan->chan_common);
1894		list_add_tail(&atchan->chan_common.device_node,
1895				&atdma->dma_common.channels);
1896
1897		atchan->ch_regs = atdma->regs + ch_regs(i);
1898		spin_lock_init(&atchan->lock);
1899		atchan->mask = 1 << i;
1900
1901		INIT_LIST_HEAD(&atchan->active_list);
1902		INIT_LIST_HEAD(&atchan->queue);
1903		INIT_LIST_HEAD(&atchan->free_list);
1904
1905		tasklet_init(&atchan->tasklet, atc_tasklet,
1906				(unsigned long)atchan);
1907		atc_enable_chan_irq(atdma, i);
1908	}
1909
1910	/* set base routines */
1911	atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
1912	atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
1913	atdma->dma_common.device_tx_status = atc_tx_status;
1914	atdma->dma_common.device_issue_pending = atc_issue_pending;
1915	atdma->dma_common.dev = &pdev->dev;
1916
1917	/* set prep routines based on capability */
1918	if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
1919		atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
1920
1921	if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
1922		atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
1923
1924	if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
1925		atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
1926		atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
1927		atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
1928	}
1929
1930	if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
1931		atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
1932		/* controller can do slave DMA: can trigger cyclic transfers */
1933		dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
1934		atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
1935		atdma->dma_common.device_config = atc_config;
1936		atdma->dma_common.device_pause = atc_pause;
1937		atdma->dma_common.device_resume = atc_resume;
1938		atdma->dma_common.device_terminate_all = atc_terminate_all;
1939		atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
1940		atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
1941		atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1942		atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1943	}
1944
1945	dma_writel(atdma, EN, AT_DMA_ENABLE);
1946
1947	dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
1948	  dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
1949	  dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
1950	  dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)  ? "slave " : "",
1951	  plat_dat->nr_channels);
1952
1953	dma_async_device_register(&atdma->dma_common);
 
 
 
 
1954
1955	/*
1956	 * Do not return an error if the dmac node is not present in order to
1957	 * not break the existing way of requesting channel with
1958	 * dma_request_channel().
1959	 */
1960	if (pdev->dev.of_node) {
1961		err = of_dma_controller_register(pdev->dev.of_node,
1962						 at_dma_xlate, atdma);
1963		if (err) {
1964			dev_err(&pdev->dev, "could not register of_dma_controller\n");
1965			goto err_of_dma_controller_register;
1966		}
1967	}
1968
1969	return 0;
1970
1971err_of_dma_controller_register:
1972	dma_async_device_unregister(&atdma->dma_common);
 
1973	dma_pool_destroy(atdma->memset_pool);
1974err_memset_pool_create:
1975	dma_pool_destroy(atdma->dma_desc_pool);
1976err_desc_pool_create:
1977	free_irq(platform_get_irq(pdev, 0), atdma);
1978err_irq:
1979	clk_disable_unprepare(atdma->clk);
1980err_clk_prepare:
1981	clk_put(atdma->clk);
1982err_clk:
1983	iounmap(atdma->regs);
1984	atdma->regs = NULL;
1985err_release_r:
1986	release_mem_region(io->start, size);
1987err_kfree:
1988	kfree(atdma);
1989	return err;
1990}
1991
1992static int at_dma_remove(struct platform_device *pdev)
1993{
1994	struct at_dma		*atdma = platform_get_drvdata(pdev);
1995	struct dma_chan		*chan, *_chan;
1996	struct resource		*io;
1997
1998	at_dma_off(atdma);
1999	if (pdev->dev.of_node)
2000		of_dma_controller_free(pdev->dev.of_node);
2001	dma_async_device_unregister(&atdma->dma_common);
2002
2003	dma_pool_destroy(atdma->memset_pool);
2004	dma_pool_destroy(atdma->dma_desc_pool);
2005	free_irq(platform_get_irq(pdev, 0), atdma);
2006
2007	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2008			device_node) {
2009		struct at_dma_chan	*atchan = to_at_dma_chan(chan);
2010
2011		/* Disable interrupts */
2012		atc_disable_chan_irq(atdma, chan->chan_id);
2013
2014		tasklet_kill(&atchan->tasklet);
2015		list_del(&chan->device_node);
2016	}
2017
2018	clk_disable_unprepare(atdma->clk);
2019	clk_put(atdma->clk);
2020
2021	iounmap(atdma->regs);
2022	atdma->regs = NULL;
2023
2024	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2025	release_mem_region(io->start, resource_size(io));
2026
2027	kfree(atdma);
2028
2029	return 0;
2030}
2031
2032static void at_dma_shutdown(struct platform_device *pdev)
2033{
2034	struct at_dma	*atdma = platform_get_drvdata(pdev);
2035
2036	at_dma_off(platform_get_drvdata(pdev));
2037	clk_disable_unprepare(atdma->clk);
2038}
2039
2040static int at_dma_prepare(struct device *dev)
2041{
2042	struct at_dma *atdma = dev_get_drvdata(dev);
2043	struct dma_chan *chan, *_chan;
2044
2045	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2046			device_node) {
2047		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2048		/* wait for transaction completion (except in cyclic case) */
2049		if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2050			return -EAGAIN;
2051	}
2052	return 0;
2053}
2054
2055static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2056{
2057	struct dma_chan	*chan = &atchan->chan_common;
2058
2059	/* Channel should be paused by user
2060	 * do it anyway even if it is not done already */
2061	if (!atc_chan_is_paused(atchan)) {
2062		dev_warn(chan2dev(chan),
2063		"cyclic channel not paused, should be done by channel user\n");
2064		atc_pause(chan);
2065	}
2066
2067	/* now preserve additional data for cyclic operations */
2068	/* next descriptor address in the cyclic list */
2069	atchan->save_dscr = channel_readl(atchan, DSCR);
2070
2071	vdbg_dump_regs(atchan);
2072}
2073
2074static int at_dma_suspend_noirq(struct device *dev)
2075{
2076	struct at_dma *atdma = dev_get_drvdata(dev);
2077	struct dma_chan *chan, *_chan;
2078
2079	/* preserve data */
2080	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2081			device_node) {
2082		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2083
2084		if (atc_chan_is_cyclic(atchan))
2085			atc_suspend_cyclic(atchan);
2086		atchan->save_cfg = channel_readl(atchan, CFG);
2087	}
2088	atdma->save_imr = dma_readl(atdma, EBCIMR);
2089
2090	/* disable DMA controller */
2091	at_dma_off(atdma);
2092	clk_disable_unprepare(atdma->clk);
2093	return 0;
2094}
2095
2096static void atc_resume_cyclic(struct at_dma_chan *atchan)
2097{
2098	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
2099
2100	/* restore channel status for cyclic descriptors list:
2101	 * next descriptor in the cyclic list at the time of suspend */
2102	channel_writel(atchan, SADDR, 0);
2103	channel_writel(atchan, DADDR, 0);
2104	channel_writel(atchan, CTRLA, 0);
2105	channel_writel(atchan, CTRLB, 0);
2106	channel_writel(atchan, DSCR, atchan->save_dscr);
2107	dma_writel(atdma, CHER, atchan->mask);
2108
2109	/* channel pause status should be removed by channel user
2110	 * We cannot take the initiative to do it here */
2111
2112	vdbg_dump_regs(atchan);
2113}
2114
2115static int at_dma_resume_noirq(struct device *dev)
2116{
2117	struct at_dma *atdma = dev_get_drvdata(dev);
2118	struct dma_chan *chan, *_chan;
2119
2120	/* bring back DMA controller */
2121	clk_prepare_enable(atdma->clk);
2122	dma_writel(atdma, EN, AT_DMA_ENABLE);
2123
2124	/* clear any pending interrupt */
2125	while (dma_readl(atdma, EBCISR))
2126		cpu_relax();
2127
2128	/* restore saved data */
2129	dma_writel(atdma, EBCIER, atdma->save_imr);
2130	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2131			device_node) {
2132		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2133
2134		channel_writel(atchan, CFG, atchan->save_cfg);
2135		if (atc_chan_is_cyclic(atchan))
2136			atc_resume_cyclic(atchan);
2137	}
2138	return 0;
2139}
2140
2141static const struct dev_pm_ops at_dma_dev_pm_ops = {
2142	.prepare = at_dma_prepare,
2143	.suspend_noirq = at_dma_suspend_noirq,
2144	.resume_noirq = at_dma_resume_noirq,
2145};
2146
2147static struct platform_driver at_dma_driver = {
2148	.remove		= at_dma_remove,
2149	.shutdown	= at_dma_shutdown,
2150	.id_table	= atdma_devtypes,
2151	.driver = {
2152		.name	= "at_hdmac",
2153		.pm	= &at_dma_dev_pm_ops,
2154		.of_match_table	= of_match_ptr(atmel_dma_dt_ids),
2155	},
2156};
2157
2158static int __init at_dma_init(void)
2159{
2160	return platform_driver_probe(&at_dma_driver, at_dma_probe);
2161}
2162subsys_initcall(at_dma_init);
2163
2164static void __exit at_dma_exit(void)
2165{
2166	platform_driver_unregister(&at_dma_driver);
2167}
2168module_exit(at_dma_exit);
2169
2170MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2171MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
 
2172MODULE_LICENSE("GPL");
2173MODULE_ALIAS("platform:at_hdmac");