Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
   4 *
   5 * Copyright (C) 2008 Atmel Corporation
   6 * Copyright (C) 2022 Microchip Technology, Inc. and its subsidiaries
   7 *
   8 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
   9 * The only Atmel DMA Controller that is not covered by this driver is the one
  10 * found on AT91SAM9263.
 
 
 
 
 
 
 
  11 */
  12
  13#include <dt-bindings/dma/at91.h>
  14#include <linux/bitfield.h>
  15#include <linux/clk.h>
  16#include <linux/dmaengine.h>
  17#include <linux/dmapool.h>
  18#include <linux/dma-mapping.h>
 
  19#include <linux/interrupt.h>
  20#include <linux/module.h>
  21#include <linux/of.h>
  22#include <linux/overflow.h>
  23#include <linux/of_platform.h>
  24#include <linux/of_dma.h>
  25#include <linux/platform_device.h>
  26#include <linux/slab.h>
 
 
  27
 
  28#include "dmaengine.h"
  29#include "virt-dma.h"
  30
  31/*
  32 * Glossary
  33 * --------
  34 *
  35 * at_hdmac		: Name of the ATmel AHB DMA Controller
  36 * at_dma_ / atdma	: ATmel DMA controller entity related
  37 * atc_	/ atchan	: ATmel DMA Channel entity related
  38 */
  39
  40#define	AT_DMA_MAX_NR_CHANNELS	8
  41
  42/* Global Configuration Register */
  43#define AT_DMA_GCFG		0x00
  44#define AT_DMA_IF_BIGEND(i)	BIT((i))	/* AHB-Lite Interface i in Big-endian mode */
  45#define AT_DMA_ARB_CFG		BIT(4)		/* Arbiter mode. */
  46
  47/* Controller Enable Register */
  48#define AT_DMA_EN		0x04
  49#define AT_DMA_ENABLE		BIT(0)
  50
  51/* Software Single Request Register */
  52#define AT_DMA_SREQ		0x08
  53#define AT_DMA_SSREQ(x)		BIT((x) << 1)		/* Request a source single transfer on channel x */
  54#define AT_DMA_DSREQ(x)		BIT(1 + ((x) << 1))	/* Request a destination single transfer on channel x */
  55
  56/* Software Chunk Transfer Request Register */
  57#define AT_DMA_CREQ		0x0c
  58#define AT_DMA_SCREQ(x)		BIT((x) << 1)		/* Request a source chunk transfer on channel x */
  59#define AT_DMA_DCREQ(x)		BIT(1 + ((x) << 1))	/* Request a destination chunk transfer on channel x */
  60
  61/* Software Last Transfer Flag Register */
  62#define AT_DMA_LAST		0x10
  63#define AT_DMA_SLAST(x)		BIT((x) << 1)		/* This src rq is last tx of buffer on channel x */
  64#define AT_DMA_DLAST(x)		BIT(1 + ((x) << 1))	/* This dst rq is last tx of buffer on channel x */
  65
  66/* Request Synchronization Register */
  67#define AT_DMA_SYNC		0x14
  68#define AT_DMA_SYR(h)		BIT((h))		/* Synchronize handshake line h */
  69
  70/* Error, Chained Buffer transfer completed and Buffer transfer completed Interrupt registers */
  71#define AT_DMA_EBCIER		0x18			/* Enable register */
  72#define AT_DMA_EBCIDR		0x1c			/* Disable register */
  73#define AT_DMA_EBCIMR		0x20			/* Mask Register */
  74#define AT_DMA_EBCISR		0x24			/* Status Register */
  75#define AT_DMA_CBTC_OFFSET	8
  76#define AT_DMA_ERR_OFFSET	16
  77#define AT_DMA_BTC(x)		BIT((x))
  78#define AT_DMA_CBTC(x)		BIT(AT_DMA_CBTC_OFFSET + (x))
  79#define AT_DMA_ERR(x)		BIT(AT_DMA_ERR_OFFSET + (x))
  80
  81/* Channel Handler Enable Register */
  82#define AT_DMA_CHER		0x28
  83#define AT_DMA_ENA(x)		BIT((x))
  84#define AT_DMA_SUSP(x)		BIT(8 + (x))
  85#define AT_DMA_KEEP(x)		BIT(24 + (x))
  86
  87/* Channel Handler Disable Register */
  88#define AT_DMA_CHDR		0x2c
  89#define AT_DMA_DIS(x)		BIT(x)
  90#define AT_DMA_RES(x)		BIT(8 + (x))
  91
  92/* Channel Handler Status Register */
  93#define AT_DMA_CHSR		0x30
  94#define AT_DMA_EMPT(x)		BIT(16 + (x))
  95#define AT_DMA_STAL(x)		BIT(24 + (x))
  96
  97/* Channel registers base address */
  98#define AT_DMA_CH_REGS_BASE	0x3c
  99#define ch_regs(x)		(AT_DMA_CH_REGS_BASE + (x) * 0x28) /* Channel x base addr */
 100
 101/* Hardware register offset for each channel */
 102#define ATC_SADDR_OFFSET	0x00	/* Source Address Register */
 103#define ATC_DADDR_OFFSET	0x04	/* Destination Address Register */
 104#define ATC_DSCR_OFFSET		0x08	/* Descriptor Address Register */
 105#define ATC_CTRLA_OFFSET	0x0c	/* Control A Register */
 106#define ATC_CTRLB_OFFSET	0x10	/* Control B Register */
 107#define ATC_CFG_OFFSET		0x14	/* Configuration Register */
 108#define ATC_SPIP_OFFSET		0x18	/* Src PIP Configuration Register */
 109#define ATC_DPIP_OFFSET		0x1c	/* Dst PIP Configuration Register */
 110
 111
 112/* Bitfield definitions */
 113
 114/* Bitfields in DSCR */
 115#define ATC_DSCR_IF		GENMASK(1, 0)	/* Dsc feched via AHB-Lite Interface */
 116
 117/* Bitfields in CTRLA */
 118#define ATC_BTSIZE_MAX		GENMASK(15, 0)	/* Maximum Buffer Transfer Size */
 119#define ATC_BTSIZE		GENMASK(15, 0)	/* Buffer Transfer Size */
 120#define ATC_SCSIZE		GENMASK(18, 16)	/* Source Chunk Transfer Size */
 121#define ATC_DCSIZE		GENMASK(22, 20)	/* Destination Chunk Transfer Size */
 122#define ATC_SRC_WIDTH		GENMASK(25, 24)	/* Source Single Transfer Size */
 123#define ATC_DST_WIDTH		GENMASK(29, 28)	/* Destination Single Transfer Size */
 124#define ATC_DONE		BIT(31)	/* Tx Done (only written back in descriptor) */
 125
 126/* Bitfields in CTRLB */
 127#define ATC_SIF			GENMASK(1, 0)	/* Src tx done via AHB-Lite Interface i */
 128#define ATC_DIF			GENMASK(5, 4)	/* Dst tx done via AHB-Lite Interface i */
 129#define AT_DMA_MEM_IF		0x0		/* interface 0 as memory interface */
 130#define AT_DMA_PER_IF		0x1		/* interface 1 as peripheral interface */
 131#define ATC_SRC_PIP		BIT(8)		/* Source Picture-in-Picture enabled */
 132#define ATC_DST_PIP		BIT(12)		/* Destination Picture-in-Picture enabled */
 133#define ATC_SRC_DSCR_DIS	BIT(16)		/* Src Descriptor fetch disable */
 134#define ATC_DST_DSCR_DIS	BIT(20)		/* Dst Descriptor fetch disable */
 135#define ATC_FC			GENMASK(23, 21)	/* Choose Flow Controller */
 136#define ATC_FC_MEM2MEM		0x0		/* Mem-to-Mem (DMA) */
 137#define ATC_FC_MEM2PER		0x1		/* Mem-to-Periph (DMA) */
 138#define ATC_FC_PER2MEM		0x2		/* Periph-to-Mem (DMA) */
 139#define ATC_FC_PER2PER		0x3		/* Periph-to-Periph (DMA) */
 140#define ATC_FC_PER2MEM_PER	0x4		/* Periph-to-Mem (Peripheral) */
 141#define ATC_FC_MEM2PER_PER	0x5		/* Mem-to-Periph (Peripheral) */
 142#define ATC_FC_PER2PER_SRCPER	0x6		/* Periph-to-Periph (Src Peripheral) */
 143#define ATC_FC_PER2PER_DSTPER	0x7		/* Periph-to-Periph (Dst Peripheral) */
 144#define ATC_SRC_ADDR_MODE	GENMASK(25, 24)
 145#define ATC_SRC_ADDR_MODE_INCR	0x0		/* Incrementing Mode */
 146#define ATC_SRC_ADDR_MODE_DECR	0x1		/* Decrementing Mode */
 147#define ATC_SRC_ADDR_MODE_FIXED	0x2		/* Fixed Mode */
 148#define ATC_DST_ADDR_MODE	GENMASK(29, 28)
 149#define ATC_DST_ADDR_MODE_INCR	0x0		/* Incrementing Mode */
 150#define ATC_DST_ADDR_MODE_DECR	0x1		/* Decrementing Mode */
 151#define ATC_DST_ADDR_MODE_FIXED	0x2		/* Fixed Mode */
 152#define ATC_IEN			BIT(30)		/* BTC interrupt enable (active low) */
 153#define ATC_AUTO		BIT(31)		/* Auto multiple buffer tx enable */
 154
 155/* Bitfields in CFG */
 156#define ATC_SRC_PER		GENMASK(3, 0)	/* Channel src rq associated with periph handshaking ifc h */
 157#define ATC_DST_PER		GENMASK(7, 4)	/* Channel dst rq associated with periph handshaking ifc h */
 158#define ATC_SRC_REP		BIT(8)		/* Source Replay Mod */
 159#define ATC_SRC_H2SEL		BIT(9)		/* Source Handshaking Mod */
 160#define ATC_SRC_PER_MSB		GENMASK(11, 10)	/* Channel src rq (most significant bits) */
 161#define ATC_DST_REP		BIT(12)		/* Destination Replay Mod */
 162#define ATC_DST_H2SEL		BIT(13)		/* Destination Handshaking Mod */
 163#define ATC_DST_PER_MSB		GENMASK(15, 14)	/* Channel dst rq (most significant bits) */
 164#define ATC_SOD			BIT(16)		/* Stop On Done */
 165#define ATC_LOCK_IF		BIT(20)		/* Interface Lock */
 166#define ATC_LOCK_B		BIT(21)		/* AHB Bus Lock */
 167#define ATC_LOCK_IF_L		BIT(22)		/* Master Interface Arbiter Lock */
 168#define ATC_AHB_PROT		GENMASK(26, 24)	/* AHB Protection */
 169#define ATC_FIFOCFG		GENMASK(29, 28)	/* FIFO Request Configuration */
 170#define ATC_FIFOCFG_LARGESTBURST	0x0
 171#define ATC_FIFOCFG_HALFFIFO		0x1
 172#define ATC_FIFOCFG_ENOUGHSPACE		0x2
 173
 174/* Bitfields in SPIP */
 175#define ATC_SPIP_HOLE		GENMASK(15, 0)
 176#define ATC_SPIP_BOUNDARY	GENMASK(25, 16)
 177
 178/* Bitfields in DPIP */
 179#define ATC_DPIP_HOLE		GENMASK(15, 0)
 180#define ATC_DPIP_BOUNDARY	GENMASK(25, 16)
 181
 182#define ATC_PER_MSB		GENMASK(5, 4)	/* Extract MSBs of a handshaking identifier */
 183#define ATC_SRC_PER_ID(id)					       \
 184	({ typeof(id) _id = (id);				       \
 185	   FIELD_PREP(ATC_SRC_PER_MSB, FIELD_GET(ATC_PER_MSB, _id)) |  \
 186	   FIELD_PREP(ATC_SRC_PER, _id); })
 187#define ATC_DST_PER_ID(id)					       \
 188	({ typeof(id) _id = (id);				       \
 189	   FIELD_PREP(ATC_DST_PER_MSB, FIELD_GET(ATC_PER_MSB, _id)) |  \
 190	   FIELD_PREP(ATC_DST_PER, _id); })
 191
 192
 193
 194/*--  descriptors  -----------------------------------------------------*/
 195
 196/* LLI == Linked List Item; aka DMA buffer descriptor */
 197struct at_lli {
 198	/* values that are not changed by hardware */
 199	u32 saddr;
 200	u32 daddr;
 201	/* value that may get written back: */
 202	u32 ctrla;
 203	/* more values that are not changed by hardware */
 204	u32 ctrlb;
 205	u32 dscr;	/* chain to next lli */
 206};
 207
 208/**
 209 * struct atdma_sg - atdma scatter gather entry
 210 * @len: length of the current Linked List Item.
 211 * @lli: linked list item that is passed to the DMA controller
 212 * @lli_phys: physical address of the LLI.
 213 */
 214struct atdma_sg {
 215	unsigned int len;
 216	struct at_lli *lli;
 217	dma_addr_t lli_phys;
 218};
 219
 220/**
 221 * struct at_desc - software descriptor
 222 * @vd: pointer to the virtual dma descriptor.
 223 * @atchan: pointer to the atmel dma channel.
 224 * @total_len: total transaction byte count
 225 * @sglen: number of sg entries.
 226 * @sg: array of sgs.
 227 * @boundary: number of transfers to perform before the automatic address increment operation
 228 * @dst_hole: value to add to the destination address when the boundary has been reached
 229 * @src_hole: value to add to the source address when the boundary has been reached
 230 * @memset_buffer: buffer used for the memset operation
 231 * @memset_paddr: physical address of the buffer used for the memset operation
 232 * @memset_vaddr: virtual address of the buffer used for the memset operation
 233 */
 234struct at_desc {
 235	struct				virt_dma_desc vd;
 236	struct				at_dma_chan *atchan;
 237	size_t				total_len;
 238	unsigned int			sglen;
 239	/* Interleaved data */
 240	size_t				boundary;
 241	size_t				dst_hole;
 242	size_t				src_hole;
 243
 244	/* Memset temporary buffer */
 245	bool				memset_buffer;
 246	dma_addr_t			memset_paddr;
 247	int				*memset_vaddr;
 248	struct atdma_sg			sg[] __counted_by(sglen);
 249};
 250
 251/*--  Channels  --------------------------------------------------------*/
 252
 253/**
 254 * enum atc_status - information bits stored in channel status flag
 255 *
 256 * @ATC_IS_PAUSED: If channel is pauses
 257 * @ATC_IS_CYCLIC: If channel is cyclic
 258 *
 259 * Manipulated with atomic operations.
 260 */
 261enum atc_status {
 262	ATC_IS_PAUSED = 1,
 263	ATC_IS_CYCLIC = 24,
 264};
 265
 266/**
 267 * struct at_dma_chan - internal representation of an Atmel HDMAC channel
 268 * @vc: virtual dma channel entry.
 269 * @atdma: pointer to the driver data.
 270 * @ch_regs: memory mapped register base
 271 * @mask: channel index in a mask
 272 * @per_if: peripheral interface
 273 * @mem_if: memory interface
 274 * @status: transmit status information from irq/prep* functions
 275 *                to tasklet (use atomic operations)
 276 * @save_cfg: configuration register that is saved on suspend/resume cycle
 277 * @save_dscr: for cyclic operations, preserve next descriptor address in
 278 *             the cyclic list on suspend/resume cycle
 279 * @dma_sconfig: configuration for slave transfers, passed via
 280 * .device_config
 281 * @desc: pointer to the atmel dma descriptor.
 282 */
 283struct at_dma_chan {
 284	struct virt_dma_chan	vc;
 285	struct at_dma		*atdma;
 286	void __iomem		*ch_regs;
 287	u8			mask;
 288	u8			per_if;
 289	u8			mem_if;
 290	unsigned long		status;
 291	u32			save_cfg;
 292	u32			save_dscr;
 293	struct dma_slave_config	dma_sconfig;
 294	struct at_desc		*desc;
 295};
 296
 297#define	channel_readl(atchan, name) \
 298	__raw_readl((atchan)->ch_regs + ATC_##name##_OFFSET)
 299
 300#define	channel_writel(atchan, name, val) \
 301	__raw_writel((val), (atchan)->ch_regs + ATC_##name##_OFFSET)
 302
 303/*
 304 * Fix sconfig's burst size according to at_hdmac. We need to convert them as:
 305 * 1 -> 0, 4 -> 1, 8 -> 2, 16 -> 3, 32 -> 4, 64 -> 5, 128 -> 6, 256 -> 7.
 306 *
 307 * This can be done by finding most significant bit set.
 308 */
 309static inline void convert_burst(u32 *maxburst)
 310{
 311	if (*maxburst > 1)
 312		*maxburst = fls(*maxburst) - 2;
 313	else
 314		*maxburst = 0;
 315}
 316
 317/*
 318 * Fix sconfig's bus width according to at_hdmac.
 319 * 1 byte -> 0, 2 bytes -> 1, 4 bytes -> 2.
 320 */
 321static inline u8 convert_buswidth(enum dma_slave_buswidth addr_width)
 322{
 323	switch (addr_width) {
 324	case DMA_SLAVE_BUSWIDTH_2_BYTES:
 325		return 1;
 326	case DMA_SLAVE_BUSWIDTH_4_BYTES:
 327		return 2;
 328	default:
 329		/* For 1 byte width or fallback */
 330		return 0;
 331	}
 332}
 333
 334/*--  Controller  ------------------------------------------------------*/
 335
 336/**
 337 * struct at_dma - internal representation of an Atmel HDMA Controller
 338 * @dma_device: dmaengine dma_device object members
 339 * @regs: memory mapped register base
 340 * @clk: dma controller clock
 341 * @save_imr: interrupt mask register that is saved on suspend/resume cycle
 342 * @all_chan_mask: all channels availlable in a mask
 343 * @lli_pool: hw lli table
 344 * @memset_pool: hw memset pool
 345 * @chan: channels table to store at_dma_chan structures
 346 */
 347struct at_dma {
 348	struct dma_device	dma_device;
 349	void __iomem		*regs;
 350	struct clk		*clk;
 351	u32			save_imr;
 352
 353	u8			all_chan_mask;
 354
 355	struct dma_pool		*lli_pool;
 356	struct dma_pool		*memset_pool;
 357	/* AT THE END channels table */
 358	struct at_dma_chan	chan[];
 359};
 360
 361#define	dma_readl(atdma, name) \
 362	__raw_readl((atdma)->regs + AT_DMA_##name)
 363#define	dma_writel(atdma, name, val) \
 364	__raw_writel((val), (atdma)->regs + AT_DMA_##name)
 365
 366static inline struct at_desc *to_atdma_desc(struct dma_async_tx_descriptor *t)
 367{
 368	return container_of(t, struct at_desc, vd.tx);
 369}
 370
 371static inline struct at_dma_chan *to_at_dma_chan(struct dma_chan *chan)
 372{
 373	return container_of(chan, struct at_dma_chan, vc.chan);
 374}
 375
 376static inline struct at_dma *to_at_dma(struct dma_device *ddev)
 377{
 378	return container_of(ddev, struct at_dma, dma_device);
 379}
 380
 
 
 381
 382/*--  Helper functions  ------------------------------------------------*/
 383
 384static struct device *chan2dev(struct dma_chan *chan)
 385{
 386	return &chan->dev->device;
 387}
 388
 389#if defined(VERBOSE_DEBUG)
 390static void vdbg_dump_regs(struct at_dma_chan *atchan)
 391{
 392	struct at_dma	*atdma = to_at_dma(atchan->vc.chan.device);
 393
 394	dev_err(chan2dev(&atchan->vc.chan),
 395		"  channel %d : imr = 0x%x, chsr = 0x%x\n",
 396		atchan->vc.chan.chan_id,
 397		dma_readl(atdma, EBCIMR),
 398		dma_readl(atdma, CHSR));
 399
 400	dev_err(chan2dev(&atchan->vc.chan),
 401		"  channel: s0x%x d0x%x ctrl0x%x:0x%x cfg0x%x l0x%x\n",
 402		channel_readl(atchan, SADDR),
 403		channel_readl(atchan, DADDR),
 404		channel_readl(atchan, CTRLA),
 405		channel_readl(atchan, CTRLB),
 406		channel_readl(atchan, CFG),
 407		channel_readl(atchan, DSCR));
 408}
 409#else
 410static void vdbg_dump_regs(struct at_dma_chan *atchan) {}
 411#endif
 412
 413static void atc_dump_lli(struct at_dma_chan *atchan, struct at_lli *lli)
 414{
 415	dev_crit(chan2dev(&atchan->vc.chan),
 416		 "desc: s%pad d%pad ctrl0x%x:0x%x l%pad\n",
 417		 &lli->saddr, &lli->daddr,
 418		 lli->ctrla, lli->ctrlb, &lli->dscr);
 419}
 420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 421
 422static void atc_setup_irq(struct at_dma *atdma, int chan_id, int on)
 423{
 424	u32 ebci;
 425
 426	/* enable interrupts on buffer transfer completion & error */
 427	ebci =    AT_DMA_BTC(chan_id)
 428		| AT_DMA_ERR(chan_id);
 429	if (on)
 430		dma_writel(atdma, EBCIER, ebci);
 431	else
 432		dma_writel(atdma, EBCIDR, ebci);
 433}
 434
 435static void atc_enable_chan_irq(struct at_dma *atdma, int chan_id)
 436{
 437	atc_setup_irq(atdma, chan_id, 1);
 438}
 439
 440static void atc_disable_chan_irq(struct at_dma *atdma, int chan_id)
 441{
 442	atc_setup_irq(atdma, chan_id, 0);
 443}
 444
 445
 446/**
 447 * atc_chan_is_enabled - test if given channel is enabled
 448 * @atchan: channel we want to test status
 449 */
 450static inline int atc_chan_is_enabled(struct at_dma_chan *atchan)
 451{
 452	struct at_dma *atdma = to_at_dma(atchan->vc.chan.device);
 453
 454	return !!(dma_readl(atdma, CHSR) & atchan->mask);
 455}
 
 456
 457/**
 458 * atc_chan_is_paused - test channel pause/resume status
 459 * @atchan: channel we want to test status
 460 */
 461static inline int atc_chan_is_paused(struct at_dma_chan *atchan)
 462{
 463	return test_bit(ATC_IS_PAUSED, &atchan->status);
 464}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 465
 466/**
 467 * atc_chan_is_cyclic - test if given channel has cyclic property set
 468 * @atchan: channel we want to test status
 469 */
 470static inline int atc_chan_is_cyclic(struct at_dma_chan *atchan)
 471{
 472	return test_bit(ATC_IS_CYCLIC, &atchan->status);
 473}
 474
 475/**
 476 * set_lli_eol - set end-of-link to descriptor so it will end transfer
 477 * @desc: descriptor, signle or at the end of a chain, to end chain on
 478 * @i: index of the atmel scatter gather entry that is at the end of the chain.
 479 */
 480static void set_lli_eol(struct at_desc *desc, unsigned int i)
 481{
 482	u32 ctrlb = desc->sg[i].lli->ctrlb;
 483
 484	ctrlb &= ~ATC_IEN;
 485	ctrlb |= ATC_SRC_DSCR_DIS | ATC_DST_DSCR_DIS;
 486
 487	desc->sg[i].lli->ctrlb = ctrlb;
 488	desc->sg[i].lli->dscr = 0;
 
 
 
 
 
 
 
 
 
 489}
 490
 491#define	ATC_DEFAULT_CFG		FIELD_PREP(ATC_FIFOCFG, ATC_FIFOCFG_HALFFIFO)
 492#define	ATC_DEFAULT_CTRLB	(FIELD_PREP(ATC_SIF, AT_DMA_MEM_IF) | \
 493				 FIELD_PREP(ATC_DIF, AT_DMA_MEM_IF))
 494#define ATC_DMA_BUSWIDTHS\
 495	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
 496	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
 497	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
 498	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
 499
 500#define ATC_MAX_DSCR_TRIALS	10
 501
 502/*
 503 * Initial number of descriptors to allocate for each channel. This could
 504 * be increased during dma usage.
 505 */
 506static unsigned int init_nr_desc_per_channel = 64;
 507module_param(init_nr_desc_per_channel, uint, 0644);
 508MODULE_PARM_DESC(init_nr_desc_per_channel,
 509		 "initial descriptors per channel (default: 64)");
 510
 511/**
 512 * struct at_dma_platform_data - Controller configuration parameters
 513 * @nr_channels: Number of channels supported by hardware (max 8)
 514 * @cap_mask: dma_capability flags supported by the platform
 515 */
 516struct at_dma_platform_data {
 517	unsigned int	nr_channels;
 518	dma_cap_mask_t  cap_mask;
 519};
 520
 521/**
 522 * struct at_dma_slave - Controller-specific information about a slave
 523 * @dma_dev: required DMA master device
 524 * @cfg: Platform-specific initializer for the CFG register
 
 
 
 525 */
 526struct at_dma_slave {
 527	struct device		*dma_dev;
 528	u32			cfg;
 529};
 530
 531static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
 532						size_t len)
 533{
 534	unsigned int width;
 535
 536	if (!((src | dst  | len) & 3))
 537		width = 2;
 538	else if (!((src | dst | len) & 1))
 539		width = 1;
 540	else
 541		width = 0;
 542
 543	return width;
 544}
 545
 546static void atdma_lli_chain(struct at_desc *desc, unsigned int i)
 547{
 548	struct atdma_sg *atdma_sg = &desc->sg[i];
 549
 550	if (i)
 551		desc->sg[i - 1].lli->dscr = atdma_sg->lli_phys;
 
 
 
 
 
 
 552}
 553
 554/**
 555 * atc_dostart - starts the DMA engine for real
 556 * @atchan: the channel we want to start
 
 
 
 557 */
 558static void atc_dostart(struct at_dma_chan *atchan)
 559{
 560	struct virt_dma_desc *vd = vchan_next_desc(&atchan->vc);
 561	struct at_desc *desc;
 562
 563	if (!vd) {
 564		atchan->desc = NULL;
 
 
 
 
 
 
 
 
 
 
 
 565		return;
 566	}
 567
 568	vdbg_dump_regs(atchan);
 569
 570	list_del(&vd->node);
 571	atchan->desc = desc = to_atdma_desc(&vd->tx);
 572
 573	channel_writel(atchan, SADDR, 0);
 574	channel_writel(atchan, DADDR, 0);
 575	channel_writel(atchan, CTRLA, 0);
 576	channel_writel(atchan, CTRLB, 0);
 577	channel_writel(atchan, DSCR, desc->sg[0].lli_phys);
 578	channel_writel(atchan, SPIP,
 579		       FIELD_PREP(ATC_SPIP_HOLE, desc->src_hole) |
 580		       FIELD_PREP(ATC_SPIP_BOUNDARY, desc->boundary));
 581	channel_writel(atchan, DPIP,
 582		       FIELD_PREP(ATC_DPIP_HOLE, desc->dst_hole) |
 583		       FIELD_PREP(ATC_DPIP_BOUNDARY, desc->boundary));
 584
 585	/* Don't allow CPU to reorder channel enable. */
 586	wmb();
 587	dma_writel(atchan->atdma, CHER, atchan->mask);
 588
 589	vdbg_dump_regs(atchan);
 590}
 591
 592static void atdma_desc_free(struct virt_dma_desc *vd)
 593{
 594	struct at_dma *atdma = to_at_dma(vd->tx.chan->device);
 595	struct at_desc *desc = to_atdma_desc(&vd->tx);
 596	unsigned int i;
 597
 598	for (i = 0; i < desc->sglen; i++) {
 599		if (desc->sg[i].lli)
 600			dma_pool_free(atdma->lli_pool, desc->sg[i].lli,
 601				      desc->sg[i].lli_phys);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 602	}
 603
 604	/* If the transfer was a memset, free our temporary buffer */
 605	if (desc->memset_buffer) {
 606		dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
 607			      desc->memset_paddr);
 608		desc->memset_buffer = false;
 
 
 
 
 
 
 
 609	}
 610
 611	kfree(desc);
 612}
 613
 614/**
 615 * atc_calc_bytes_left - calculates the number of bytes left according to the
 616 * value read from CTRLA.
 617 *
 618 * @current_len: the number of bytes left before reading CTRLA
 619 * @ctrla: the value of CTRLA
 
 
 620 */
 621static inline u32 atc_calc_bytes_left(u32 current_len, u32 ctrla)
 622{
 623	u32 btsize = FIELD_GET(ATC_BTSIZE, ctrla);
 624	u32 src_width = FIELD_GET(ATC_SRC_WIDTH, ctrla);
 
 
 
 
 625
 626	/*
 627	 * According to the datasheet, when reading the Control A Register
 628	 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
 629	 * number of transfers completed on the Source Interface.
 630	 * So btsize is always a number of source width transfers.
 631	 */
 632	return current_len - (btsize << src_width);
 
 
 
 
 
 
 
 
 633}
 634
 635/**
 636 * atc_get_llis_residue - Get residue for a hardware linked list transfer
 637 * @atchan: pointer to an atmel hdmac channel.
 638 * @desc: pointer to the descriptor for which the residue is calculated.
 639 * @residue: residue to be set to dma_tx_state.
 640 *
 641 * Calculate the residue by removing the length of the Linked List Item (LLI)
 642 * already transferred from the total length. To get the current LLI we can use
 643 * the value of the channel's DSCR register and compare it against the DSCR
 644 * value of each LLI.
 645 *
 646 * The CTRLA register provides us with the amount of data already read from the
 647 * source for the LLI. So we can compute a more accurate residue by also
 648 * removing the number of bytes corresponding to this amount of data.
 649 *
 650 * However, the DSCR and CTRLA registers cannot be read both atomically. Hence a
 651 * race condition may occur: the first read register may refer to one LLI
 652 * whereas the second read may refer to a later LLI in the list because of the
 653 * DMA transfer progression inbetween the two reads.
 654 *
 655 * One solution could have been to pause the DMA transfer, read the DSCR and
 656 * CTRLA then resume the DMA transfer. Nonetheless, this approach presents some
 657 * drawbacks:
 658 * - If the DMA transfer is paused, RX overruns or TX underruns are more likey
 659 *   to occur depending on the system latency. Taking the USART driver as an
 660 *   example, it uses a cyclic DMA transfer to read data from the Receive
 661 *   Holding Register (RHR) to avoid RX overruns since the RHR is not protected
 662 *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer to compute the
 663 *   residue would break the USART driver design.
 664 * - The atc_pause() function masks interrupts but we'd rather avoid to do so
 665 * for system latency purpose.
 666 *
 667 * Then we'd rather use another solution: the DSCR is read a first time, the
 668 * CTRLA is read in turn, next the DSCR is read a second time. If the two
 669 * consecutive read values of the DSCR are the same then we assume both refers
 670 * to the very same LLI as well as the CTRLA value read inbetween does. For
 671 * cyclic tranfers, the assumption is that a full loop is "not so fast". If the
 672 * two DSCR values are different, we read again the CTRLA then the DSCR till two
 673 * consecutive read values from DSCR are equal or till the maximum trials is
 674 * reach. This algorithm is very unlikely not to find a stable value for DSCR.
 675 *
 676 * Returns: %0 on success, -errno otherwise.
 677 */
 678static int atc_get_llis_residue(struct at_dma_chan *atchan,
 679				struct at_desc *desc, u32 *residue)
 680{
 681	u32 len, ctrla, dscr;
 682	unsigned int i;
 683
 684	len = desc->total_len;
 685	dscr = channel_readl(atchan, DSCR);
 686	rmb(); /* ensure DSCR is read before CTRLA */
 687	ctrla = channel_readl(atchan, CTRLA);
 688	for (i = 0; i < ATC_MAX_DSCR_TRIALS; ++i) {
 689		u32 new_dscr;
 690
 691		rmb(); /* ensure DSCR is read after CTRLA */
 692		new_dscr = channel_readl(atchan, DSCR);
 
 
 693
 694		/*
 695		 * If the DSCR register value has not changed inside the DMA
 696		 * controller since the previous read, we assume that both the
 697		 * dscr and ctrla values refers to the very same descriptor.
 698		 */
 699		if (likely(new_dscr == dscr))
 700			break;
 701
 702		/*
 703		 * DSCR has changed inside the DMA controller, so the previouly
 704		 * read value of CTRLA may refer to an already processed
 705		 * descriptor hence could be outdated. We need to update ctrla
 706		 * to match the current descriptor.
 707		 */
 708		dscr = new_dscr;
 709		rmb(); /* ensure DSCR is read before CTRLA */
 710		ctrla = channel_readl(atchan, CTRLA);
 711	}
 712	if (unlikely(i == ATC_MAX_DSCR_TRIALS))
 713		return -ETIMEDOUT;
 714
 715	/* For the first descriptor we can be more accurate. */
 716	if (desc->sg[0].lli->dscr == dscr) {
 717		*residue = atc_calc_bytes_left(len, ctrla);
 718		return 0;
 719	}
 720	len -= desc->sg[0].len;
 721
 722	for (i = 1; i < desc->sglen; i++) {
 723		if (desc->sg[i].lli && desc->sg[i].lli->dscr == dscr)
 724			break;
 725		len -= desc->sg[i].len;
 726	}
 727
 728	/*
 729	 * For the current LLI in the chain we can calculate the remaining bytes
 730	 * using the channel's CTRLA register.
 731	 */
 732	*residue = atc_calc_bytes_left(len, ctrla);
 733	return 0;
 734
 735}
 736
 737/**
 738 * atc_get_residue - get the number of bytes residue for a cookie.
 739 * The residue is passed by address and updated on success.
 740 * @chan: DMA channel
 741 * @cookie: transaction identifier to check status of
 742 * @residue: residue to be updated.
 743 *
 744 * Return: %0 on success, -errno otherwise.
 745 */
 746static int atc_get_residue(struct dma_chan *chan, dma_cookie_t cookie,
 747			   u32 *residue)
 748{
 749	struct at_dma_chan *atchan = to_at_dma_chan(chan);
 750	struct virt_dma_desc *vd;
 751	struct at_desc *desc = NULL;
 752	u32 len, ctrla;
 753
 754	vd = vchan_find_desc(&atchan->vc, cookie);
 755	if (vd)
 756		desc = to_atdma_desc(&vd->tx);
 757	else if (atchan->desc && atchan->desc->vd.tx.cookie == cookie)
 758		desc = atchan->desc;
 759
 760	if (!desc)
 761		return -EINVAL;
 762
 763	if (desc->sg[0].lli->dscr)
 764		/* hardware linked list transfer */
 765		return atc_get_llis_residue(atchan, desc, residue);
 766
 767	/* single transfer */
 768	len = desc->total_len;
 769	ctrla = channel_readl(atchan, CTRLA);
 770	*residue = atc_calc_bytes_left(len, ctrla);
 771	return 0;
 772}
 773
 
 774/**
 775 * atc_handle_error - handle errors reported by DMA controller
 776 * @atchan: channel where error occurs.
 777 * @i: channel index
 
 778 */
 779static void atc_handle_error(struct at_dma_chan *atchan, unsigned int i)
 780{
 781	struct at_desc *desc = atchan->desc;
 
 
 
 
 
 
 
 
 
 782
 783	/* Disable channel on AHB error */
 784	dma_writel(atchan->atdma, CHDR, AT_DMA_RES(i) | atchan->mask);
 
 
 
 
 
 785
 786	/*
 787	 * KERN_CRITICAL may seem harsh, but since this only happens
 788	 * when someone submits a bad physical address in a
 789	 * descriptor, we should consider ourselves lucky that the
 790	 * controller flagged an error instead of scribbling over
 791	 * random memory locations.
 792	 */
 793	dev_crit(chan2dev(&atchan->vc.chan), "Bad descriptor submitted for DMA!\n");
 794	dev_crit(chan2dev(&atchan->vc.chan), "cookie: %d\n",
 795		 desc->vd.tx.cookie);
 796	for (i = 0; i < desc->sglen; i++)
 797		atc_dump_lli(atchan, desc->sg[i].lli);
 
 
 
 
 
 798}
 799
 800static void atdma_handle_chan_done(struct at_dma_chan *atchan, u32 pending,
 801				   unsigned int i)
 
 
 
 
 
 802{
 803	struct at_desc *desc;
 
 
 
 804
 805	spin_lock(&atchan->vc.lock);
 806	desc = atchan->desc;
 
 807
 808	if (desc) {
 809		if (pending & AT_DMA_ERR(i)) {
 810			atc_handle_error(atchan, i);
 811			/* Pretend the descriptor completed successfully */
 812		}
 813
 814		if (atc_chan_is_cyclic(atchan)) {
 815			vchan_cyclic_callback(&desc->vd);
 816		} else {
 817			vchan_cookie_complete(&desc->vd);
 818			atchan->desc = NULL;
 819			if (!(atc_chan_is_enabled(atchan)))
 820				atc_dostart(atchan);
 821		}
 822	}
 823	spin_unlock(&atchan->vc.lock);
 
 
 
 
 
 
 824}
 825
 826static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
 827{
 828	struct at_dma		*atdma = dev_id;
 829	struct at_dma_chan	*atchan;
 830	int			i;
 831	u32			status, pending, imr;
 832	int			ret = IRQ_NONE;
 833
 834	do {
 835		imr = dma_readl(atdma, EBCIMR);
 836		status = dma_readl(atdma, EBCISR);
 837		pending = status & imr;
 838
 839		if (!pending)
 840			break;
 841
 842		dev_vdbg(atdma->dma_device.dev,
 843			"interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
 844			 status, imr, pending);
 845
 846		for (i = 0; i < atdma->dma_device.chancnt; i++) {
 847			atchan = &atdma->chan[i];
 848			if (!(pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))))
 849				continue;
 850			atdma_handle_chan_done(atchan, pending, i);
 851			ret = IRQ_HANDLED;
 
 
 
 
 
 
 
 852		}
 853
 854	} while (pending);
 855
 856	return ret;
 857}
 858
 
 859/*--  DMA Engine API  --------------------------------------------------*/
 
 860/**
 861 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
 862 * @chan: the channel to prepare operation on
 863 * @xt: Interleaved transfer template
 864 * @flags: tx descriptor status flags
 
 
 865 */
 866static struct dma_async_tx_descriptor *
 867atc_prep_dma_interleaved(struct dma_chan *chan,
 868			 struct dma_interleaved_template *xt,
 869			 unsigned long flags)
 870{
 871	struct at_dma		*atdma = to_at_dma(chan->device);
 872	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
 873	struct data_chunk	*first;
 874	struct atdma_sg		*atdma_sg;
 875	struct at_desc		*desc;
 876	struct at_lli		*lli;
 877	size_t			xfer_count;
 878	unsigned int		dwidth;
 879	u32			ctrla;
 880	u32			ctrlb;
 881	size_t			len = 0;
 882	int			i;
 883
 884	if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
 885		return NULL;
 886
 887	first = xt->sgl;
 888
 889	dev_info(chan2dev(chan),
 890		 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
 891		__func__, &xt->src_start, &xt->dst_start, xt->numf,
 892		xt->frame_size, flags);
 893
 894	/*
 895	 * The controller can only "skip" X bytes every Y bytes, so we
 896	 * need to make sure we are given a template that fit that
 897	 * description, ie a template with chunks that always have the
 898	 * same size, with the same ICGs.
 899	 */
 900	for (i = 0; i < xt->frame_size; i++) {
 901		struct data_chunk *chunk = xt->sgl + i;
 902
 903		if ((chunk->size != xt->sgl->size) ||
 904		    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
 905		    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
 906			dev_err(chan2dev(chan),
 907				"%s: the controller can transfer only identical chunks\n",
 908				__func__);
 909			return NULL;
 910		}
 911
 912		len += chunk->size;
 913	}
 914
 915	dwidth = atc_get_xfer_width(xt->src_start, xt->dst_start, len);
 916
 917	xfer_count = len >> dwidth;
 918	if (xfer_count > ATC_BTSIZE_MAX) {
 919		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
 920		return NULL;
 921	}
 922
 923	ctrla = FIELD_PREP(ATC_SRC_WIDTH, dwidth) |
 924		FIELD_PREP(ATC_DST_WIDTH, dwidth);
 925
 926	ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
 927		FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
 928		FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
 929		ATC_SRC_PIP | ATC_DST_PIP |
 930		FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
 931
 932	desc = kzalloc(struct_size(desc, sg, 1), GFP_ATOMIC);
 933	if (!desc)
 934		return NULL;
 935	desc->sglen = 1;
 936
 937	atdma_sg = desc->sg;
 938	atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
 939				       &atdma_sg->lli_phys);
 940	if (!atdma_sg->lli) {
 941		kfree(desc);
 942		return NULL;
 
 
 
 943	}
 944	lli = atdma_sg->lli;
 945
 946	lli->saddr = xt->src_start;
 947	lli->daddr = xt->dst_start;
 948	lli->ctrla = ctrla | xfer_count;
 949	lli->ctrlb = ctrlb;
 950
 951	desc->boundary = first->size >> dwidth;
 952	desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
 953	desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
 954
 955	atdma_sg->len = len;
 956	desc->total_len = len;
 957
 958	set_lli_eol(desc, 0);
 959	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
 960}
 961
 962/**
 963 * atc_prep_dma_memcpy - prepare a memcpy operation
 964 * @chan: the channel to prepare operation on
 965 * @dest: operation virtual destination address
 966 * @src: operation virtual source address
 967 * @len: operation length
 968 * @flags: tx descriptor status flags
 969 */
 970static struct dma_async_tx_descriptor *
 971atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
 972		size_t len, unsigned long flags)
 973{
 974	struct at_dma		*atdma = to_at_dma(chan->device);
 975	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
 976	struct at_desc		*desc = NULL;
 
 
 977	size_t			xfer_count;
 978	size_t			offset;
 979	size_t			sg_len;
 980	unsigned int		src_width;
 981	unsigned int		dst_width;
 982	unsigned int		i;
 983	u32			ctrla;
 984	u32			ctrlb;
 985
 986	dev_dbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
 987		&dest, &src, len, flags);
 988
 989	if (unlikely(!len)) {
 990		dev_err(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
 991		return NULL;
 992	}
 993
 994	sg_len = DIV_ROUND_UP(len, ATC_BTSIZE_MAX);
 995	desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
 996	if (!desc)
 997		return NULL;
 998	desc->sglen = sg_len;
 999
1000	ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
1001		FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
1002		FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
1003		FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
1004
1005	/*
1006	 * We can be a lot more clever here, but this should take care
1007	 * of the most common optimization.
1008	 */
1009	src_width = dst_width = atc_get_xfer_width(src, dest, len);
 
 
 
 
 
 
 
 
 
1010
1011	ctrla = FIELD_PREP(ATC_SRC_WIDTH, src_width) |
1012		FIELD_PREP(ATC_DST_WIDTH, dst_width);
 
1013
1014	for (offset = 0, i = 0; offset < len;
1015	     offset += xfer_count << src_width, i++) {
1016		struct atdma_sg *atdma_sg = &desc->sg[i];
1017		struct at_lli *lli;
1018
1019		atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
1020					       &atdma_sg->lli_phys);
1021		if (!atdma_sg->lli)
1022			goto err_desc_get;
1023		lli = atdma_sg->lli;
1024
1025		xfer_count = min_t(size_t, (len - offset) >> src_width,
1026				   ATC_BTSIZE_MAX);
1027
1028		lli->saddr = src + offset;
1029		lli->daddr = dest + offset;
1030		lli->ctrla = ctrla | xfer_count;
1031		lli->ctrlb = ctrlb;
1032
1033		desc->sg[i].len = xfer_count << src_width;
1034
1035		atdma_lli_chain(desc, i);
1036	}
1037
1038	desc->total_len = len;
 
 
1039
1040	/* set end-of-link to the last link descriptor of list*/
1041	set_lli_eol(desc, i - 1);
1042
1043	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1044
1045err_desc_get:
1046	atdma_desc_free(&desc->vd);
1047	return NULL;
1048}
1049
1050static int atdma_create_memset_lli(struct dma_chan *chan,
1051				   struct atdma_sg *atdma_sg,
1052				   dma_addr_t psrc, dma_addr_t pdst, size_t len)
1053{
1054	struct at_dma *atdma = to_at_dma(chan->device);
1055	struct at_lli *lli;
1056	size_t xfer_count;
1057	u32 ctrla = FIELD_PREP(ATC_SRC_WIDTH, 2) | FIELD_PREP(ATC_DST_WIDTH, 2);
1058	u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
1059		    FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_FIXED) |
1060		    FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
1061		    FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
1062
1063	xfer_count = len >> 2;
1064	if (xfer_count > ATC_BTSIZE_MAX) {
1065		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
1066		return -EINVAL;
1067	}
1068
1069	atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
1070				       &atdma_sg->lli_phys);
1071	if (!atdma_sg->lli)
1072		return -ENOMEM;
1073	lli = atdma_sg->lli;
1074
1075	lli->saddr = psrc;
1076	lli->daddr = pdst;
1077	lli->ctrla = ctrla | xfer_count;
1078	lli->ctrlb = ctrlb;
1079
1080	atdma_sg->len = len;
1081
1082	return 0;
1083}
1084
1085/**
1086 * atc_prep_dma_memset - prepare a memcpy operation
1087 * @chan: the channel to prepare operation on
1088 * @dest: operation virtual destination address
1089 * @value: value to set memory buffer to
1090 * @len: operation length
1091 * @flags: tx descriptor status flags
1092 */
1093static struct dma_async_tx_descriptor *
1094atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1095		    size_t len, unsigned long flags)
1096{
1097	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1098	struct at_dma		*atdma = to_at_dma(chan->device);
1099	struct at_desc		*desc;
1100	void __iomem		*vaddr;
1101	dma_addr_t		paddr;
1102	char			fill_pattern;
1103	int			ret;
1104
1105	dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
1106		&dest, value, len, flags);
1107
1108	if (unlikely(!len)) {
1109		dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
1110		return NULL;
1111	}
1112
1113	if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1114		dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
1115			__func__);
1116		return NULL;
1117	}
1118
1119	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
1120	if (!vaddr) {
1121		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1122			__func__);
1123		return NULL;
1124	}
1125
1126	/* Only the first byte of value is to be used according to dmaengine */
1127	fill_pattern = (char)value;
1128
1129	*(u32*)vaddr = (fill_pattern << 24) |
1130		       (fill_pattern << 16) |
1131		       (fill_pattern << 8) |
1132		       fill_pattern;
1133
1134	desc = kzalloc(struct_size(desc, sg, 1), GFP_ATOMIC);
1135	if (!desc)
1136		goto err_free_buffer;
1137	desc->sglen = 1;
1138
1139	ret = atdma_create_memset_lli(chan, desc->sg, paddr, dest, len);
1140	if (ret)
1141		goto err_free_desc;
1142
1143	desc->memset_paddr = paddr;
1144	desc->memset_vaddr = vaddr;
1145	desc->memset_buffer = true;
1146
1147	desc->total_len = len;
1148
1149	/* set end-of-link on the descriptor */
1150	set_lli_eol(desc, 0);
1151
1152	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1153
1154err_free_desc:
1155	kfree(desc);
1156err_free_buffer:
1157	dma_pool_free(atdma->memset_pool, vaddr, paddr);
1158	return NULL;
1159}
1160
1161static struct dma_async_tx_descriptor *
1162atc_prep_dma_memset_sg(struct dma_chan *chan,
1163		       struct scatterlist *sgl,
1164		       unsigned int sg_len, int value,
1165		       unsigned long flags)
1166{
1167	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1168	struct at_dma		*atdma = to_at_dma(chan->device);
1169	struct at_desc		*desc;
1170	struct scatterlist	*sg;
1171	void __iomem		*vaddr;
1172	dma_addr_t		paddr;
1173	size_t			total_len = 0;
1174	int			i;
1175	int			ret;
1176
1177	dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
1178		 value, sg_len, flags);
1179
1180	if (unlikely(!sgl || !sg_len)) {
1181		dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
1182			__func__);
1183		return NULL;
1184	}
1185
1186	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
1187	if (!vaddr) {
1188		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1189			__func__);
1190		return NULL;
1191	}
1192	*(u32*)vaddr = value;
1193
1194	desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
1195	if (!desc)
1196		goto err_free_dma_buf;
1197	desc->sglen = sg_len;
1198
1199	for_each_sg(sgl, sg, sg_len, i) {
1200		dma_addr_t dest = sg_dma_address(sg);
1201		size_t len = sg_dma_len(sg);
1202
1203		dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1204			 __func__, &dest, len);
1205
1206		if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1207			dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1208				__func__);
1209			goto err_free_desc;
1210		}
1211
1212		ret = atdma_create_memset_lli(chan, &desc->sg[i], paddr, dest,
1213					      len);
1214		if (ret)
1215			goto err_free_desc;
1216
1217		atdma_lli_chain(desc, i);
1218		total_len += len;
1219	}
1220
1221	desc->memset_paddr = paddr;
1222	desc->memset_vaddr = vaddr;
1223	desc->memset_buffer = true;
1224
1225	desc->total_len = total_len;
1226
1227	/* set end-of-link on the descriptor */
1228	set_lli_eol(desc, i - 1);
1229
1230	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1231
1232err_free_desc:
1233	atdma_desc_free(&desc->vd);
1234err_free_dma_buf:
1235	dma_pool_free(atdma->memset_pool, vaddr, paddr);
1236	return NULL;
1237}
1238
1239/**
1240 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1241 * @chan: DMA channel
1242 * @sgl: scatterlist to transfer to/from
1243 * @sg_len: number of entries in @scatterlist
1244 * @direction: DMA direction
1245 * @flags: tx descriptor status flags
1246 * @context: transaction context (ignored)
1247 */
1248static struct dma_async_tx_descriptor *
1249atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1250		unsigned int sg_len, enum dma_transfer_direction direction,
1251		unsigned long flags, void *context)
1252{
1253	struct at_dma		*atdma = to_at_dma(chan->device);
1254	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1255	struct at_dma_slave	*atslave = chan->private;
1256	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1257	struct at_desc		*desc;
 
1258	u32			ctrla;
1259	u32			ctrlb;
1260	dma_addr_t		reg;
1261	unsigned int		reg_width;
1262	unsigned int		mem_width;
1263	unsigned int		i;
1264	struct scatterlist	*sg;
1265	size_t			total_len = 0;
1266
1267	dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1268			sg_len,
1269			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1270			flags);
1271
1272	if (unlikely(!atslave || !sg_len)) {
1273		dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1274		return NULL;
1275	}
1276
1277	desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
1278	if (!desc)
1279		return NULL;
1280	desc->sglen = sg_len;
1281
1282	ctrla = FIELD_PREP(ATC_SCSIZE, sconfig->src_maxburst) |
1283		FIELD_PREP(ATC_DCSIZE, sconfig->dst_maxburst);
1284	ctrlb = ATC_IEN;
1285
1286	switch (direction) {
1287	case DMA_MEM_TO_DEV:
1288		reg_width = convert_buswidth(sconfig->dst_addr_width);
1289		ctrla |= FIELD_PREP(ATC_DST_WIDTH, reg_width);
1290		ctrlb |= FIELD_PREP(ATC_DST_ADDR_MODE,
1291				    ATC_DST_ADDR_MODE_FIXED) |
1292			 FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
1293			 FIELD_PREP(ATC_FC, ATC_FC_MEM2PER) |
1294			 FIELD_PREP(ATC_SIF, atchan->mem_if) |
1295			 FIELD_PREP(ATC_DIF, atchan->per_if);
1296		reg = sconfig->dst_addr;
1297		for_each_sg(sgl, sg, sg_len, i) {
1298			struct atdma_sg *atdma_sg = &desc->sg[i];
1299			struct at_lli *lli;
1300			u32		len;
1301			u32		mem;
1302
1303			atdma_sg->lli = dma_pool_alloc(atdma->lli_pool,
1304						       GFP_NOWAIT,
1305						       &atdma_sg->lli_phys);
1306			if (!atdma_sg->lli)
1307				goto err_desc_get;
1308			lli = atdma_sg->lli;
1309
1310			mem = sg_dma_address(sg);
1311			len = sg_dma_len(sg);
1312			if (unlikely(!len)) {
1313				dev_dbg(chan2dev(chan),
1314					"prep_slave_sg: sg(%d) data length is zero\n", i);
1315				goto err;
1316			}
1317			mem_width = 2;
1318			if (unlikely(mem & 3 || len & 3))
1319				mem_width = 0;
1320
1321			lli->saddr = mem;
1322			lli->daddr = reg;
1323			lli->ctrla = ctrla |
1324				     FIELD_PREP(ATC_SRC_WIDTH, mem_width) |
1325				     len >> mem_width;
1326			lli->ctrlb = ctrlb;
1327
1328			atdma_sg->len = len;
1329			total_len += len;
1330
1331			desc->sg[i].len = len;
1332			atdma_lli_chain(desc, i);
1333		}
1334		break;
1335	case DMA_DEV_TO_MEM:
1336		reg_width = convert_buswidth(sconfig->src_addr_width);
1337		ctrla |= FIELD_PREP(ATC_SRC_WIDTH, reg_width);
1338		ctrlb |= FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
1339			 FIELD_PREP(ATC_SRC_ADDR_MODE,
1340				    ATC_SRC_ADDR_MODE_FIXED) |
1341			 FIELD_PREP(ATC_FC, ATC_FC_PER2MEM) |
1342			 FIELD_PREP(ATC_SIF, atchan->per_if) |
1343			 FIELD_PREP(ATC_DIF, atchan->mem_if);
1344
1345		reg = sconfig->src_addr;
1346		for_each_sg(sgl, sg, sg_len, i) {
1347			struct atdma_sg *atdma_sg = &desc->sg[i];
1348			struct at_lli *lli;
1349			u32		len;
1350			u32		mem;
1351
1352			atdma_sg->lli = dma_pool_alloc(atdma->lli_pool,
1353						       GFP_NOWAIT,
1354						       &atdma_sg->lli_phys);
1355			if (!atdma_sg->lli)
1356				goto err_desc_get;
1357			lli = atdma_sg->lli;
1358
1359			mem = sg_dma_address(sg);
1360			len = sg_dma_len(sg);
1361			if (unlikely(!len)) {
1362				dev_dbg(chan2dev(chan),
1363					"prep_slave_sg: sg(%d) data length is zero\n", i);
1364				goto err;
1365			}
1366			mem_width = 2;
1367			if (unlikely(mem & 3 || len & 3))
1368				mem_width = 0;
1369
1370			lli->saddr = reg;
1371			lli->daddr = mem;
1372			lli->ctrla = ctrla |
1373				     FIELD_PREP(ATC_DST_WIDTH, mem_width) |
1374				     len >> reg_width;
1375			lli->ctrlb = ctrlb;
1376
1377			desc->sg[i].len = len;
1378			total_len += len;
1379
1380			atdma_lli_chain(desc, i);
1381		}
1382		break;
1383	default:
1384		return NULL;
1385	}
1386
1387	/* set end-of-link to the last link descriptor of list*/
1388	set_lli_eol(desc, i - 1);
 
 
 
 
1389
1390	desc->total_len = total_len;
 
1391
1392	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1393
1394err_desc_get:
1395	dev_err(chan2dev(chan), "not enough descriptors available\n");
1396err:
1397	atdma_desc_free(&desc->vd);
1398	return NULL;
1399}
1400
1401/*
1402 * atc_dma_cyclic_check_values
1403 * Check for too big/unaligned periods and unaligned DMA buffer
1404 */
1405static int
1406atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1407		size_t period_len)
1408{
1409	if (period_len > (ATC_BTSIZE_MAX << reg_width))
1410		goto err_out;
1411	if (unlikely(period_len & ((1 << reg_width) - 1)))
1412		goto err_out;
1413	if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1414		goto err_out;
 
 
1415
1416	return 0;
1417
1418err_out:
1419	return -EINVAL;
1420}
1421
1422/*
1423 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1424 */
1425static int
1426atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1427		unsigned int i, dma_addr_t buf_addr,
1428		unsigned int reg_width, size_t period_len,
1429		enum dma_transfer_direction direction)
1430{
1431	struct at_dma		*atdma = to_at_dma(chan->device);
1432	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1433	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1434	struct atdma_sg		*atdma_sg = &desc->sg[i];
1435	struct at_lli		*lli;
1436
1437	atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_ATOMIC,
1438				       &atdma_sg->lli_phys);
1439	if (!atdma_sg->lli)
1440		return -ENOMEM;
1441	lli = atdma_sg->lli;
 
1442
1443	switch (direction) {
1444	case DMA_MEM_TO_DEV:
1445		lli->saddr = buf_addr + (period_len * i);
1446		lli->daddr = sconfig->dst_addr;
1447		lli->ctrlb = FIELD_PREP(ATC_DST_ADDR_MODE,
1448					ATC_DST_ADDR_MODE_FIXED) |
1449			     FIELD_PREP(ATC_SRC_ADDR_MODE,
1450					ATC_SRC_ADDR_MODE_INCR) |
1451			     FIELD_PREP(ATC_FC, ATC_FC_MEM2PER) |
1452			     FIELD_PREP(ATC_SIF, atchan->mem_if) |
1453			     FIELD_PREP(ATC_DIF, atchan->per_if);
1454
1455		break;
1456
1457	case DMA_DEV_TO_MEM:
1458		lli->saddr = sconfig->src_addr;
1459		lli->daddr = buf_addr + (period_len * i);
1460		lli->ctrlb = FIELD_PREP(ATC_DST_ADDR_MODE,
1461					ATC_DST_ADDR_MODE_INCR) |
1462			     FIELD_PREP(ATC_SRC_ADDR_MODE,
1463					ATC_SRC_ADDR_MODE_FIXED) |
1464			     FIELD_PREP(ATC_FC, ATC_FC_PER2MEM) |
1465			     FIELD_PREP(ATC_SIF, atchan->per_if) |
1466			     FIELD_PREP(ATC_DIF, atchan->mem_if);
1467		break;
1468
1469	default:
1470		return -EINVAL;
1471	}
1472
1473	lli->ctrla = FIELD_PREP(ATC_SCSIZE, sconfig->src_maxburst) |
1474		     FIELD_PREP(ATC_DCSIZE, sconfig->dst_maxburst) |
1475		     FIELD_PREP(ATC_DST_WIDTH, reg_width) |
1476		     FIELD_PREP(ATC_SRC_WIDTH, reg_width) |
1477		     period_len >> reg_width;
1478	desc->sg[i].len = period_len;
1479
1480	return 0;
1481}
1482
1483/**
1484 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1485 * @chan: the DMA channel to prepare
1486 * @buf_addr: physical DMA address where the buffer starts
1487 * @buf_len: total number of bytes for the entire buffer
1488 * @period_len: number of bytes for each period
1489 * @direction: transfer direction, to or from device
1490 * @flags: tx descriptor status flags
1491 */
1492static struct dma_async_tx_descriptor *
1493atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1494		size_t period_len, enum dma_transfer_direction direction,
1495		unsigned long flags)
1496{
1497	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1498	struct at_dma_slave	*atslave = chan->private;
1499	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1500	struct at_desc		*desc;
 
1501	unsigned long		was_cyclic;
1502	unsigned int		reg_width;
1503	unsigned int		periods = buf_len / period_len;
1504	unsigned int		i;
1505
1506	dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1507			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1508			&buf_addr,
1509			periods, buf_len, period_len);
1510
1511	if (unlikely(!atslave || !buf_len || !period_len)) {
1512		dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1513		return NULL;
1514	}
1515
1516	was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1517	if (was_cyclic) {
1518		dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1519		return NULL;
1520	}
1521
1522	if (unlikely(!is_slave_direction(direction)))
1523		goto err_out;
1524
1525	if (direction == DMA_MEM_TO_DEV)
1526		reg_width = convert_buswidth(sconfig->dst_addr_width);
1527	else
1528		reg_width = convert_buswidth(sconfig->src_addr_width);
1529
1530	/* Check for too big/unaligned periods and unaligned DMA buffer */
1531	if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1532		goto err_out;
1533
1534	desc = kzalloc(struct_size(desc, sg, periods), GFP_ATOMIC);
1535	if (!desc)
1536		goto err_out;
1537	desc->sglen = periods;
1538
1539	/* build cyclic linked list */
1540	for (i = 0; i < periods; i++) {
 
 
 
 
 
 
1541		if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1542					     reg_width, period_len, direction))
1543			goto err_fill_desc;
1544		atdma_lli_chain(desc, i);
 
1545	}
1546	desc->total_len = buf_len;
1547	/* lets make a cyclic list */
1548	desc->sg[i - 1].lli->dscr = desc->sg[0].lli_phys;
 
 
 
 
1549
1550	return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1551
1552err_fill_desc:
1553	atdma_desc_free(&desc->vd);
 
1554err_out:
1555	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1556	return NULL;
1557}
1558
1559static int atc_config(struct dma_chan *chan,
1560		      struct dma_slave_config *sconfig)
1561{
1562	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1563
1564	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1565
1566	/* Check if it is chan is configured for slave transfers */
1567	if (!chan->private)
1568		return -EINVAL;
1569
1570	memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1571
1572	convert_burst(&atchan->dma_sconfig.src_maxburst);
1573	convert_burst(&atchan->dma_sconfig.dst_maxburst);
1574
1575	return 0;
1576}
1577
1578static int atc_pause(struct dma_chan *chan)
1579{
1580	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1581	struct at_dma		*atdma = to_at_dma(chan->device);
1582	int			chan_id = atchan->vc.chan.chan_id;
1583	unsigned long		flags;
1584
1585	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1586
1587	spin_lock_irqsave(&atchan->vc.lock, flags);
1588
1589	dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1590	set_bit(ATC_IS_PAUSED, &atchan->status);
1591
1592	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1593
1594	return 0;
1595}
1596
1597static int atc_resume(struct dma_chan *chan)
1598{
1599	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1600	struct at_dma		*atdma = to_at_dma(chan->device);
1601	int			chan_id = atchan->vc.chan.chan_id;
1602	unsigned long		flags;
1603
1604	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1605
1606	if (!atc_chan_is_paused(atchan))
1607		return 0;
1608
1609	spin_lock_irqsave(&atchan->vc.lock, flags);
1610
1611	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1612	clear_bit(ATC_IS_PAUSED, &atchan->status);
1613
1614	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1615
1616	return 0;
1617}
1618
1619static int atc_terminate_all(struct dma_chan *chan)
 
1620{
1621	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1622	struct at_dma		*atdma = to_at_dma(chan->device);
1623	int			chan_id = atchan->vc.chan.chan_id;
1624	unsigned long		flags;
1625
1626	LIST_HEAD(list);
1627
1628	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1629
1630	/*
1631	 * This is only called when something went wrong elsewhere, so
1632	 * we don't really care about the data. Just disable the
1633	 * channel. We still have to poll the channel enable bit due
1634	 * to AHB/HSB limitations.
1635	 */
1636	spin_lock_irqsave(&atchan->vc.lock, flags);
1637
1638	/* disabling channel: must also remove suspend state */
1639	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1640
1641	/* confirm that this channel is disabled */
1642	while (dma_readl(atdma, CHSR) & atchan->mask)
1643		cpu_relax();
 
1644
1645	if (atchan->desc) {
1646		vchan_terminate_vdesc(&atchan->desc->vd);
1647		atchan->desc = NULL;
1648	}
1649
1650	vchan_get_all_descriptors(&atchan->vc, &list);
 
1651
1652	clear_bit(ATC_IS_PAUSED, &atchan->status);
1653	/* if channel dedicated to cyclic operations, free it */
1654	clear_bit(ATC_IS_CYCLIC, &atchan->status);
 
 
 
 
 
 
 
1655
1656	spin_unlock_irqrestore(&atchan->vc.lock, flags);
 
1657
1658	vchan_dma_desc_free_list(&atchan->vc, &list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1659
1660	return 0;
1661}
1662
1663/**
1664 * atc_tx_status - poll for transaction completion
1665 * @chan: DMA channel
1666 * @cookie: transaction identifier to check status of
1667 * @txstate: if not %NULL updated with transaction state
1668 *
1669 * If @txstate is passed in, upon return it reflect the driver
1670 * internal state and can be used with dma_async_is_complete() to check
1671 * the status of multiple cookies without re-checking hardware state.
1672 */
1673static enum dma_status
1674atc_tx_status(struct dma_chan *chan,
1675		dma_cookie_t cookie,
1676		struct dma_tx_state *txstate)
1677{
1678	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
 
 
1679	unsigned long		flags;
1680	enum dma_status		dma_status;
1681	u32 residue;
1682	int ret;
1683
1684	dma_status = dma_cookie_status(chan, cookie, txstate);
1685	if (dma_status == DMA_COMPLETE || !txstate)
1686		return dma_status;
1687
1688	spin_lock_irqsave(&atchan->vc.lock, flags);
1689	/*  Get number of bytes left in the active transactions */
1690	ret = atc_get_residue(chan, cookie, &residue);
1691	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1692
1693	if (unlikely(ret < 0)) {
1694		dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1695		return DMA_ERROR;
1696	} else {
1697		dma_set_residue(txstate, residue);
1698	}
1699
1700	dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %u\n",
1701		 dma_status, cookie, residue);
 
 
 
 
 
1702
1703	return dma_status;
 
 
 
 
 
 
 
1704}
1705
 
 
 
 
1706static void atc_issue_pending(struct dma_chan *chan)
1707{
1708	struct at_dma_chan *atchan = to_at_dma_chan(chan);
1709	unsigned long flags;
 
 
 
 
 
 
1710
1711	spin_lock_irqsave(&atchan->vc.lock, flags);
1712	if (vchan_issue_pending(&atchan->vc) && !atchan->desc) {
1713		if (!(atc_chan_is_enabled(atchan)))
1714			atc_dostart(atchan);
1715	}
1716	spin_unlock_irqrestore(&atchan->vc.lock, flags);
1717}
1718
1719/**
1720 * atc_alloc_chan_resources - allocate resources for DMA channel
1721 * @chan: allocate descriptor resources for this channel
 
1722 *
1723 * Return: the number of allocated descriptors
1724 */
1725static int atc_alloc_chan_resources(struct dma_chan *chan)
1726{
1727	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1728	struct at_dma		*atdma = to_at_dma(chan->device);
 
1729	struct at_dma_slave	*atslave;
 
 
1730	u32			cfg;
 
1731
1732	dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1733
1734	/* ASSERT:  channel is idle */
1735	if (atc_chan_is_enabled(atchan)) {
1736		dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1737		return -EIO;
1738	}
1739
1740	cfg = ATC_DEFAULT_CFG;
1741
1742	atslave = chan->private;
1743	if (atslave) {
1744		/*
1745		 * We need controller-specific data to set up slave
1746		 * transfers.
1747		 */
1748		BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_device.dev);
1749
1750		/* if cfg configuration specified take it instead of default */
1751		if (atslave->cfg)
1752			cfg = atslave->cfg;
1753	}
1754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1755	/* channel parameters */
1756	channel_writel(atchan, CFG, cfg);
1757
1758	return 0;
 
 
 
 
1759}
1760
1761/**
1762 * atc_free_chan_resources - free all channel resources
1763 * @chan: DMA channel
1764 */
1765static void atc_free_chan_resources(struct dma_chan *chan)
1766{
1767	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
 
 
 
 
 
 
1768
 
 
 
1769	BUG_ON(atc_chan_is_enabled(atchan));
1770
1771	vchan_free_chan_resources(to_virt_chan(chan));
 
 
 
 
 
 
 
1772	atchan->status = 0;
1773
1774	/*
1775	 * Free atslave allocated in at_dma_xlate()
1776	 */
1777	kfree(chan->private);
1778	chan->private = NULL;
1779
1780	dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1781}
1782
1783#ifdef CONFIG_OF
1784static bool at_dma_filter(struct dma_chan *chan, void *slave)
1785{
1786	struct at_dma_slave *atslave = slave;
1787
1788	if (atslave->dma_dev == chan->device->dev) {
1789		chan->private = atslave;
1790		return true;
1791	} else {
1792		return false;
1793	}
1794}
1795
1796static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1797				     struct of_dma *of_dma)
1798{
1799	struct dma_chan *chan;
1800	struct at_dma_chan *atchan;
1801	struct at_dma_slave *atslave;
1802	dma_cap_mask_t mask;
1803	unsigned int per_id;
1804	struct platform_device *dmac_pdev;
1805
1806	if (dma_spec->args_count != 2)
1807		return NULL;
1808
1809	dmac_pdev = of_find_device_by_node(dma_spec->np);
1810	if (!dmac_pdev)
1811		return NULL;
1812
1813	dma_cap_zero(mask);
1814	dma_cap_set(DMA_SLAVE, mask);
1815
1816	atslave = kmalloc(sizeof(*atslave), GFP_KERNEL);
1817	if (!atslave) {
1818		put_device(&dmac_pdev->dev);
1819		return NULL;
1820	}
1821
1822	atslave->cfg = ATC_DST_H2SEL | ATC_SRC_H2SEL;
1823	/*
1824	 * We can fill both SRC_PER and DST_PER, one of these fields will be
1825	 * ignored depending on DMA transfer direction.
1826	 */
1827	per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1828	atslave->cfg |= ATC_DST_PER_ID(per_id) |  ATC_SRC_PER_ID(per_id);
1829	/*
1830	 * We have to translate the value we get from the device tree since
1831	 * the half FIFO configuration value had to be 0 to keep backward
1832	 * compatibility.
1833	 */
1834	switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1835	case AT91_DMA_CFG_FIFOCFG_ALAP:
1836		atslave->cfg |= FIELD_PREP(ATC_FIFOCFG,
1837					   ATC_FIFOCFG_LARGESTBURST);
1838		break;
1839	case AT91_DMA_CFG_FIFOCFG_ASAP:
1840		atslave->cfg |= FIELD_PREP(ATC_FIFOCFG,
1841					   ATC_FIFOCFG_ENOUGHSPACE);
1842		break;
1843	case AT91_DMA_CFG_FIFOCFG_HALF:
1844	default:
1845		atslave->cfg |= FIELD_PREP(ATC_FIFOCFG, ATC_FIFOCFG_HALFFIFO);
1846	}
1847	atslave->dma_dev = &dmac_pdev->dev;
1848
1849	chan = dma_request_channel(mask, at_dma_filter, atslave);
1850	if (!chan) {
1851		put_device(&dmac_pdev->dev);
1852		kfree(atslave);
1853		return NULL;
1854	}
1855
1856	atchan = to_at_dma_chan(chan);
1857	atchan->per_if = dma_spec->args[0] & 0xff;
1858	atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1859
1860	return chan;
1861}
1862#else
1863static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1864				     struct of_dma *of_dma)
1865{
1866	return NULL;
1867}
1868#endif
1869
1870/*--  Module Management  -----------------------------------------------*/
1871
1872/* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1873static struct at_dma_platform_data at91sam9rl_config = {
1874	.nr_channels = 2,
1875};
1876static struct at_dma_platform_data at91sam9g45_config = {
1877	.nr_channels = 8,
1878};
1879
1880#if defined(CONFIG_OF)
1881static const struct of_device_id atmel_dma_dt_ids[] = {
1882	{
1883		.compatible = "atmel,at91sam9rl-dma",
1884		.data = &at91sam9rl_config,
1885	}, {
1886		.compatible = "atmel,at91sam9g45-dma",
1887		.data = &at91sam9g45_config,
1888	}, {
1889		/* sentinel */
1890	}
1891};
1892
1893MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1894#endif
1895
1896static const struct platform_device_id atdma_devtypes[] = {
1897	{
1898		.name = "at91sam9rl_dma",
1899		.driver_data = (unsigned long) &at91sam9rl_config,
1900	}, {
1901		.name = "at91sam9g45_dma",
1902		.driver_data = (unsigned long) &at91sam9g45_config,
1903	}, {
1904		/* sentinel */
1905	}
1906};
1907
1908static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1909						struct platform_device *pdev)
1910{
1911	if (pdev->dev.of_node) {
1912		const struct of_device_id *match;
1913		match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1914		if (match == NULL)
1915			return NULL;
1916		return match->data;
1917	}
1918	return (struct at_dma_platform_data *)
1919			platform_get_device_id(pdev)->driver_data;
1920}
1921
1922/**
1923 * at_dma_off - disable DMA controller
1924 * @atdma: the Atmel HDAMC device
1925 */
1926static void at_dma_off(struct at_dma *atdma)
1927{
1928	dma_writel(atdma, EN, 0);
1929
1930	/* disable all interrupts */
1931	dma_writel(atdma, EBCIDR, -1L);
1932
1933	/* confirm that all channels are disabled */
1934	while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1935		cpu_relax();
1936}
1937
1938static int __init at_dma_probe(struct platform_device *pdev)
1939{
 
1940	struct at_dma		*atdma;
 
1941	int			irq;
1942	int			err;
1943	int			i;
1944	const struct at_dma_platform_data *plat_dat;
1945
1946	/* setup platform data for each SoC */
1947	dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1948	dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1949	dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1950	dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1951	dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1952	dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1953	dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1954
1955	/* get DMA parameters from controller type */
1956	plat_dat = at_dma_get_driver_data(pdev);
1957	if (!plat_dat)
1958		return -ENODEV;
1959
1960	atdma = devm_kzalloc(&pdev->dev,
1961			     struct_size(atdma, chan, plat_dat->nr_channels),
1962			     GFP_KERNEL);
1963	if (!atdma)
1964		return -ENOMEM;
1965
1966	atdma->regs = devm_platform_ioremap_resource(pdev, 0);
1967	if (IS_ERR(atdma->regs))
1968		return PTR_ERR(atdma->regs);
1969
1970	irq = platform_get_irq(pdev, 0);
1971	if (irq < 0)
1972		return irq;
1973
 
 
 
 
 
 
1974	/* discover transaction capabilities */
1975	atdma->dma_device.cap_mask = plat_dat->cap_mask;
1976	atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1977
1978	atdma->clk = devm_clk_get(&pdev->dev, "dma_clk");
1979	if (IS_ERR(atdma->clk))
1980		return PTR_ERR(atdma->clk);
 
 
1981
1982	err = clk_prepare_enable(atdma->clk);
1983	if (err)
1984		return err;
 
 
 
 
 
 
 
 
 
1985
1986	/* force dma off, just in case */
1987	at_dma_off(atdma);
1988
1989	err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1990	if (err)
1991		goto err_irq;
1992
1993	platform_set_drvdata(pdev, atdma);
1994
1995	/* create a pool of consistent memory blocks for hardware descriptors */
1996	atdma->lli_pool = dma_pool_create("at_hdmac_lli_pool",
1997					  &pdev->dev, sizeof(struct at_lli),
1998					  4 /* word alignment */, 0);
1999	if (!atdma->lli_pool) {
2000		dev_err(&pdev->dev, "Unable to allocate DMA LLI descriptor pool\n");
2001		err = -ENOMEM;
2002		goto err_desc_pool_create;
2003	}
2004
2005	/* create a pool of consistent memory blocks for memset blocks */
2006	atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
2007					     &pdev->dev, sizeof(int), 4, 0);
2008	if (!atdma->memset_pool) {
2009		dev_err(&pdev->dev, "No memory for memset dma pool\n");
2010		err = -ENOMEM;
2011		goto err_memset_pool_create;
2012	}
2013
2014	/* clear any pending interrupt */
2015	while (dma_readl(atdma, EBCISR))
2016		cpu_relax();
2017
2018	/* initialize channels related values */
2019	INIT_LIST_HEAD(&atdma->dma_device.channels);
2020	for (i = 0; i < plat_dat->nr_channels; i++) {
2021		struct at_dma_chan	*atchan = &atdma->chan[i];
2022
2023		atchan->mem_if = AT_DMA_MEM_IF;
2024		atchan->per_if = AT_DMA_PER_IF;
 
 
2025
2026		atchan->ch_regs = atdma->regs + ch_regs(i);
 
2027		atchan->mask = 1 << i;
2028
2029		atchan->atdma = atdma;
2030		atchan->vc.desc_free = atdma_desc_free;
2031		vchan_init(&atchan->vc, &atdma->dma_device);
 
 
 
2032		atc_enable_chan_irq(atdma, i);
2033	}
2034
2035	/* set base routines */
2036	atdma->dma_device.device_alloc_chan_resources = atc_alloc_chan_resources;
2037	atdma->dma_device.device_free_chan_resources = atc_free_chan_resources;
2038	atdma->dma_device.device_tx_status = atc_tx_status;
2039	atdma->dma_device.device_issue_pending = atc_issue_pending;
2040	atdma->dma_device.dev = &pdev->dev;
2041
2042	/* set prep routines based on capability */
2043	if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_device.cap_mask))
2044		atdma->dma_device.device_prep_interleaved_dma = atc_prep_dma_interleaved;
2045
2046	if (dma_has_cap(DMA_MEMCPY, atdma->dma_device.cap_mask))
2047		atdma->dma_device.device_prep_dma_memcpy = atc_prep_dma_memcpy;
2048
2049	if (dma_has_cap(DMA_MEMSET, atdma->dma_device.cap_mask)) {
2050		atdma->dma_device.device_prep_dma_memset = atc_prep_dma_memset;
2051		atdma->dma_device.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
2052		atdma->dma_device.fill_align = DMAENGINE_ALIGN_4_BYTES;
2053	}
2054
2055	if (dma_has_cap(DMA_SLAVE, atdma->dma_device.cap_mask)) {
2056		atdma->dma_device.device_prep_slave_sg = atc_prep_slave_sg;
2057		/* controller can do slave DMA: can trigger cyclic transfers */
2058		dma_cap_set(DMA_CYCLIC, atdma->dma_device.cap_mask);
2059		atdma->dma_device.device_prep_dma_cyclic = atc_prep_dma_cyclic;
2060		atdma->dma_device.device_config = atc_config;
2061		atdma->dma_device.device_pause = atc_pause;
2062		atdma->dma_device.device_resume = atc_resume;
2063		atdma->dma_device.device_terminate_all = atc_terminate_all;
2064		atdma->dma_device.src_addr_widths = ATC_DMA_BUSWIDTHS;
2065		atdma->dma_device.dst_addr_widths = ATC_DMA_BUSWIDTHS;
2066		atdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2067		atdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2068	}
2069
2070	dma_writel(atdma, EN, AT_DMA_ENABLE);
2071
2072	dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
2073	  dma_has_cap(DMA_MEMCPY, atdma->dma_device.cap_mask) ? "cpy " : "",
2074	  dma_has_cap(DMA_MEMSET, atdma->dma_device.cap_mask) ? "set " : "",
2075	  dma_has_cap(DMA_SLAVE, atdma->dma_device.cap_mask)  ? "slave " : "",
2076	  plat_dat->nr_channels);
2077
2078	err = dma_async_device_register(&atdma->dma_device);
2079	if (err) {
2080		dev_err(&pdev->dev, "Unable to register: %d.\n", err);
2081		goto err_dma_async_device_register;
2082	}
2083
2084	/*
2085	 * Do not return an error if the dmac node is not present in order to
2086	 * not break the existing way of requesting channel with
2087	 * dma_request_channel().
2088	 */
2089	if (pdev->dev.of_node) {
2090		err = of_dma_controller_register(pdev->dev.of_node,
2091						 at_dma_xlate, atdma);
2092		if (err) {
2093			dev_err(&pdev->dev, "could not register of_dma_controller\n");
2094			goto err_of_dma_controller_register;
2095		}
2096	}
2097
2098	return 0;
2099
2100err_of_dma_controller_register:
2101	dma_async_device_unregister(&atdma->dma_device);
2102err_dma_async_device_register:
2103	dma_pool_destroy(atdma->memset_pool);
2104err_memset_pool_create:
2105	dma_pool_destroy(atdma->lli_pool);
2106err_desc_pool_create:
2107	free_irq(platform_get_irq(pdev, 0), atdma);
2108err_irq:
2109	clk_disable_unprepare(atdma->clk);
 
 
 
 
 
 
 
 
2110	return err;
2111}
2112
2113static void at_dma_remove(struct platform_device *pdev)
2114{
2115	struct at_dma		*atdma = platform_get_drvdata(pdev);
2116	struct dma_chan		*chan, *_chan;
 
2117
2118	at_dma_off(atdma);
2119	if (pdev->dev.of_node)
2120		of_dma_controller_free(pdev->dev.of_node);
2121	dma_async_device_unregister(&atdma->dma_device);
2122
2123	dma_pool_destroy(atdma->memset_pool);
2124	dma_pool_destroy(atdma->lli_pool);
2125	free_irq(platform_get_irq(pdev, 0), atdma);
2126
2127	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2128			device_node) {
 
 
2129		/* Disable interrupts */
2130		atc_disable_chan_irq(atdma, chan->chan_id);
 
 
 
2131		list_del(&chan->device_node);
2132	}
2133
2134	clk_disable_unprepare(atdma->clk);
 
 
 
 
 
 
 
 
 
 
 
2135}
2136
2137static void at_dma_shutdown(struct platform_device *pdev)
2138{
2139	struct at_dma	*atdma = platform_get_drvdata(pdev);
2140
2141	at_dma_off(platform_get_drvdata(pdev));
2142	clk_disable_unprepare(atdma->clk);
2143}
2144
2145static int at_dma_prepare(struct device *dev)
2146{
2147	struct at_dma *atdma = dev_get_drvdata(dev);
 
2148	struct dma_chan *chan, *_chan;
2149
2150	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2151			device_node) {
2152		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2153		/* wait for transaction completion (except in cyclic case) */
2154		if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2155			return -EAGAIN;
2156	}
2157	return 0;
2158}
2159
2160static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2161{
2162	struct dma_chan	*chan = &atchan->vc.chan;
2163
2164	/* Channel should be paused by user
2165	 * do it anyway even if it is not done already */
2166	if (!atc_chan_is_paused(atchan)) {
2167		dev_warn(chan2dev(chan),
2168		"cyclic channel not paused, should be done by channel user\n");
2169		atc_pause(chan);
2170	}
2171
2172	/* now preserve additional data for cyclic operations */
2173	/* next descriptor address in the cyclic list */
2174	atchan->save_dscr = channel_readl(atchan, DSCR);
2175
2176	vdbg_dump_regs(atchan);
2177}
2178
2179static int at_dma_suspend_noirq(struct device *dev)
2180{
2181	struct at_dma *atdma = dev_get_drvdata(dev);
 
2182	struct dma_chan *chan, *_chan;
2183
2184	/* preserve data */
2185	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2186			device_node) {
2187		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2188
2189		if (atc_chan_is_cyclic(atchan))
2190			atc_suspend_cyclic(atchan);
2191		atchan->save_cfg = channel_readl(atchan, CFG);
2192	}
2193	atdma->save_imr = dma_readl(atdma, EBCIMR);
2194
2195	/* disable DMA controller */
2196	at_dma_off(atdma);
2197	clk_disable_unprepare(atdma->clk);
2198	return 0;
2199}
2200
2201static void atc_resume_cyclic(struct at_dma_chan *atchan)
2202{
2203	struct at_dma	*atdma = to_at_dma(atchan->vc.chan.device);
2204
2205	/* restore channel status for cyclic descriptors list:
2206	 * next descriptor in the cyclic list at the time of suspend */
2207	channel_writel(atchan, SADDR, 0);
2208	channel_writel(atchan, DADDR, 0);
2209	channel_writel(atchan, CTRLA, 0);
2210	channel_writel(atchan, CTRLB, 0);
2211	channel_writel(atchan, DSCR, atchan->save_dscr);
2212	dma_writel(atdma, CHER, atchan->mask);
2213
2214	/* channel pause status should be removed by channel user
2215	 * We cannot take the initiative to do it here */
2216
2217	vdbg_dump_regs(atchan);
2218}
2219
2220static int at_dma_resume_noirq(struct device *dev)
2221{
2222	struct at_dma *atdma = dev_get_drvdata(dev);
 
2223	struct dma_chan *chan, *_chan;
2224
2225	/* bring back DMA controller */
2226	clk_prepare_enable(atdma->clk);
2227	dma_writel(atdma, EN, AT_DMA_ENABLE);
2228
2229	/* clear any pending interrupt */
2230	while (dma_readl(atdma, EBCISR))
2231		cpu_relax();
2232
2233	/* restore saved data */
2234	dma_writel(atdma, EBCIER, atdma->save_imr);
2235	list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2236			device_node) {
2237		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2238
2239		channel_writel(atchan, CFG, atchan->save_cfg);
2240		if (atc_chan_is_cyclic(atchan))
2241			atc_resume_cyclic(atchan);
2242	}
2243	return 0;
2244}
2245
2246static const struct dev_pm_ops __maybe_unused at_dma_dev_pm_ops = {
2247	.prepare = at_dma_prepare,
2248	.suspend_noirq = at_dma_suspend_noirq,
2249	.resume_noirq = at_dma_resume_noirq,
2250};
2251
2252static struct platform_driver at_dma_driver = {
2253	.remove_new	= at_dma_remove,
2254	.shutdown	= at_dma_shutdown,
2255	.id_table	= atdma_devtypes,
2256	.driver = {
2257		.name	= "at_hdmac",
2258		.pm	= pm_ptr(&at_dma_dev_pm_ops),
2259		.of_match_table	= of_match_ptr(atmel_dma_dt_ids),
2260	},
2261};
2262
2263static int __init at_dma_init(void)
2264{
2265	return platform_driver_probe(&at_dma_driver, at_dma_probe);
2266}
2267subsys_initcall(at_dma_init);
2268
2269static void __exit at_dma_exit(void)
2270{
2271	platform_driver_unregister(&at_dma_driver);
2272}
2273module_exit(at_dma_exit);
2274
2275MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2276MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2277MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>");
2278MODULE_LICENSE("GPL");
2279MODULE_ALIAS("platform:at_hdmac");
v3.5.6
 
   1/*
   2 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
   3 *
   4 * Copyright (C) 2008 Atmel Corporation
 
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 *
  12 * This supports the Atmel AHB DMA Controller,
  13 *
  14 * The driver has currently been tested with the Atmel AT91SAM9RL
  15 * and AT91SAM9G45 series.
  16 */
  17
 
 
  18#include <linux/clk.h>
  19#include <linux/dmaengine.h>
 
  20#include <linux/dma-mapping.h>
  21#include <linux/dmapool.h>
  22#include <linux/interrupt.h>
  23#include <linux/module.h>
 
 
 
 
  24#include <linux/platform_device.h>
  25#include <linux/slab.h>
  26#include <linux/of.h>
  27#include <linux/of_device.h>
  28
  29#include "at_hdmac_regs.h"
  30#include "dmaengine.h"
 
  31
  32/*
  33 * Glossary
  34 * --------
  35 *
  36 * at_hdmac		: Name of the ATmel AHB DMA Controller
  37 * at_dma_ / atdma	: ATmel DMA controller entity related
  38 * atc_	/ atchan	: ATmel DMA Channel entity related
  39 */
  40
  41#define	ATC_DEFAULT_CFG		(ATC_FIFOCFG_HALFFIFO)
  42#define	ATC_DEFAULT_CTRLB	(ATC_SIF(AT_DMA_MEM_IF) \
  43				|ATC_DIF(AT_DMA_MEM_IF))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  44
  45/*
  46 * Initial number of descriptors to allocate for each channel. This could
  47 * be increased during dma usage.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48 */
  49static unsigned int init_nr_desc_per_channel = 64;
  50module_param(init_nr_desc_per_channel, uint, 0644);
  51MODULE_PARM_DESC(init_nr_desc_per_channel,
  52		 "initial descriptors per channel (default: 64)");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  53
 
 
 
 
  54
  55/* prototypes */
  56static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
  57
 
  58
  59/*----------------------------------------------------------------------*/
 
 
 
  60
  61static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
 
  62{
  63	return list_first_entry(&atchan->active_list,
  64				struct at_desc, desc_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  65}
 
 
 
  66
  67static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
  68{
  69	return list_first_entry(&atchan->queue,
  70				struct at_desc, desc_node);
 
 
  71}
  72
  73/**
  74 * atc_alloc_descriptor - allocate and return an initialized descriptor
  75 * @chan: the channel to allocate descriptors for
  76 * @gfp_flags: GFP allocation flags
  77 *
  78 * Note: The ack-bit is positioned in the descriptor flag at creation time
  79 *       to make initial allocation more convenient. This bit will be cleared
  80 *       and control will be given to client at usage time (during
  81 *       preparation functions).
  82 */
  83static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
  84					    gfp_t gfp_flags)
  85{
  86	struct at_desc	*desc = NULL;
  87	struct at_dma	*atdma = to_at_dma(chan->device);
  88	dma_addr_t phys;
  89
  90	desc = dma_pool_alloc(atdma->dma_desc_pool, gfp_flags, &phys);
  91	if (desc) {
  92		memset(desc, 0, sizeof(struct at_desc));
  93		INIT_LIST_HEAD(&desc->tx_list);
  94		dma_async_tx_descriptor_init(&desc->txd, chan);
  95		/* txd.flags will be overwritten in prep functions */
  96		desc->txd.flags = DMA_CTRL_ACK;
  97		desc->txd.tx_submit = atc_tx_submit;
  98		desc->txd.phys = phys;
  99	}
 
 
 
 
 
 
 
 100
 101	return desc;
 
 
 102}
 103
 
 104/**
 105 * atc_desc_get - get an unused descriptor from free_list
 106 * @atchan: channel we want a new descriptor for
 107 */
 108static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
 109{
 110	struct at_desc *desc, *_desc;
 111	struct at_desc *ret = NULL;
 112	unsigned long flags;
 113	unsigned int i = 0;
 114	LIST_HEAD(tmp_list);
 115
 116	spin_lock_irqsave(&atchan->lock, flags);
 117	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
 118		i++;
 119		if (async_tx_test_ack(&desc->txd)) {
 120			list_del(&desc->desc_node);
 121			ret = desc;
 122			break;
 123		}
 124		dev_dbg(chan2dev(&atchan->chan_common),
 125				"desc %p not ACKed\n", desc);
 126	}
 127	spin_unlock_irqrestore(&atchan->lock, flags);
 128	dev_vdbg(chan2dev(&atchan->chan_common),
 129		"scanned %u descriptors on freelist\n", i);
 130
 131	/* no more descriptor available in initial pool: create one more */
 132	if (!ret) {
 133		ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
 134		if (ret) {
 135			spin_lock_irqsave(&atchan->lock, flags);
 136			atchan->descs_allocated++;
 137			spin_unlock_irqrestore(&atchan->lock, flags);
 138		} else {
 139			dev_err(chan2dev(&atchan->chan_common),
 140					"not enough descriptors available\n");
 141		}
 142	}
 143
 144	return ret;
 
 
 
 
 
 
 145}
 146
 147/**
 148 * atc_desc_put - move a descriptor, including any children, to the free list
 149 * @atchan: channel we work on
 150 * @desc: descriptor, at the head of a chain, to move to free list
 151 */
 152static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
 153{
 154	if (desc) {
 155		struct at_desc *child;
 156		unsigned long flags;
 
 157
 158		spin_lock_irqsave(&atchan->lock, flags);
 159		list_for_each_entry(child, &desc->tx_list, desc_node)
 160			dev_vdbg(chan2dev(&atchan->chan_common),
 161					"moving child desc %p to freelist\n",
 162					child);
 163		list_splice_init(&desc->tx_list, &atchan->free_list);
 164		dev_vdbg(chan2dev(&atchan->chan_common),
 165			 "moving desc %p to freelist\n", desc);
 166		list_add(&desc->desc_node, &atchan->free_list);
 167		spin_unlock_irqrestore(&atchan->lock, flags);
 168	}
 169}
 170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 171/**
 172 * atc_desc_chain - build chain adding a descripor
 173 * @first: address of first descripor of the chain
 174 * @prev: address of previous descripor of the chain
 175 * @desc: descriptor to queue
 176 *
 177 * Called from prep_* functions
 178 */
 179static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
 180			   struct at_desc *desc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181{
 182	if (!(*first)) {
 183		*first = desc;
 184	} else {
 185		/* inform the HW lli about chaining */
 186		(*prev)->lli.dscr = desc->txd.phys;
 187		/* insert the link descriptor to the LD ring */
 188		list_add_tail(&desc->desc_node,
 189				&(*first)->tx_list);
 190	}
 191	*prev = desc;
 192}
 193
 194/**
 195 * atc_dostart - starts the DMA engine for real
 196 * @atchan: the channel we want to start
 197 * @first: first descriptor in the list we want to begin with
 198 *
 199 * Called with atchan->lock held and bh disabled
 200 */
 201static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
 202{
 203	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
 
 204
 205	/* ASSERT:  channel is idle */
 206	if (atc_chan_is_enabled(atchan)) {
 207		dev_err(chan2dev(&atchan->chan_common),
 208			"BUG: Attempted to start non-idle channel\n");
 209		dev_err(chan2dev(&atchan->chan_common),
 210			"  channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
 211			channel_readl(atchan, SADDR),
 212			channel_readl(atchan, DADDR),
 213			channel_readl(atchan, CTRLA),
 214			channel_readl(atchan, CTRLB),
 215			channel_readl(atchan, DSCR));
 216
 217		/* The tasklet will hopefully advance the queue... */
 218		return;
 219	}
 220
 221	vdbg_dump_regs(atchan);
 222
 
 
 
 223	channel_writel(atchan, SADDR, 0);
 224	channel_writel(atchan, DADDR, 0);
 225	channel_writel(atchan, CTRLA, 0);
 226	channel_writel(atchan, CTRLB, 0);
 227	channel_writel(atchan, DSCR, first->txd.phys);
 228	dma_writel(atdma, CHER, atchan->mask);
 
 
 
 
 
 
 
 
 
 229
 230	vdbg_dump_regs(atchan);
 231}
 232
 233/**
 234 * atc_chain_complete - finish work for one transaction chain
 235 * @atchan: channel we work on
 236 * @desc: descriptor at the head of the chain we want do complete
 237 *
 238 * Called with atchan->lock held and bh disabled */
 239static void
 240atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
 241{
 242	struct dma_async_tx_descriptor	*txd = &desc->txd;
 243
 244	dev_vdbg(chan2dev(&atchan->chan_common),
 245		"descriptor %u complete\n", txd->cookie);
 246
 247	/* mark the descriptor as complete for non cyclic cases only */
 248	if (!atc_chan_is_cyclic(atchan))
 249		dma_cookie_complete(txd);
 250
 251	/* move children to free_list */
 252	list_splice_init(&desc->tx_list, &atchan->free_list);
 253	/* move myself to free_list */
 254	list_move(&desc->desc_node, &atchan->free_list);
 255
 256	/* unmap dma addresses (not on slave channels) */
 257	if (!atchan->chan_common.private) {
 258		struct device *parent = chan2parent(&atchan->chan_common);
 259		if (!(txd->flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
 260			if (txd->flags & DMA_COMPL_DEST_UNMAP_SINGLE)
 261				dma_unmap_single(parent,
 262						desc->lli.daddr,
 263						desc->len, DMA_FROM_DEVICE);
 264			else
 265				dma_unmap_page(parent,
 266						desc->lli.daddr,
 267						desc->len, DMA_FROM_DEVICE);
 268		}
 269		if (!(txd->flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
 270			if (txd->flags & DMA_COMPL_SRC_UNMAP_SINGLE)
 271				dma_unmap_single(parent,
 272						desc->lli.saddr,
 273						desc->len, DMA_TO_DEVICE);
 274			else
 275				dma_unmap_page(parent,
 276						desc->lli.saddr,
 277						desc->len, DMA_TO_DEVICE);
 278		}
 279	}
 280
 281	/* for cyclic transfers,
 282	 * no need to replay callback function while stopping */
 283	if (!atc_chan_is_cyclic(atchan)) {
 284		dma_async_tx_callback	callback = txd->callback;
 285		void			*param = txd->callback_param;
 286
 287		/*
 288		 * The API requires that no submissions are done from a
 289		 * callback, so we don't need to drop the lock here
 290		 */
 291		if (callback)
 292			callback(param);
 293	}
 294
 295	dma_run_dependencies(txd);
 296}
 297
 298/**
 299 * atc_complete_all - finish work for all transactions
 300 * @atchan: channel to complete transactions for
 301 *
 302 * Eventually submit queued descriptors if any
 303 *
 304 * Assume channel is idle while calling this function
 305 * Called with atchan->lock held and bh disabled
 306 */
 307static void atc_complete_all(struct at_dma_chan *atchan)
 308{
 309	struct at_desc *desc, *_desc;
 310	LIST_HEAD(list);
 311
 312	dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
 313
 314	BUG_ON(atc_chan_is_enabled(atchan));
 315
 316	/*
 317	 * Submit queued descriptors ASAP, i.e. before we go through
 318	 * the completed ones.
 
 
 319	 */
 320	if (!list_empty(&atchan->queue))
 321		atc_dostart(atchan, atc_first_queued(atchan));
 322	/* empty active_list now it is completed */
 323	list_splice_init(&atchan->active_list, &list);
 324	/* empty queue list by moving descriptors (if any) to active_list */
 325	list_splice_init(&atchan->queue, &atchan->active_list);
 326
 327	list_for_each_entry_safe(desc, _desc, &list, desc_node)
 328		atc_chain_complete(atchan, desc);
 329}
 330
 331/**
 332 * atc_cleanup_descriptors - cleanup up finished descriptors in active_list
 333 * @atchan: channel to be cleaned up
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 334 *
 335 * Called with atchan->lock held and bh disabled
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 336 */
 337static void atc_cleanup_descriptors(struct at_dma_chan *atchan)
 
 338{
 339	struct at_desc	*desc, *_desc;
 340	struct at_desc	*child;
 341
 342	dev_vdbg(chan2dev(&atchan->chan_common), "cleanup descriptors\n");
 
 
 
 
 
 343
 344	list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
 345		if (!(desc->lli.ctrla & ATC_DONE))
 346			/* This one is currently in progress */
 347			return;
 348
 349		list_for_each_entry(child, &desc->tx_list, desc_node)
 350			if (!(child->lli.ctrla & ATC_DONE))
 351				/* Currently in progress */
 352				return;
 
 
 
 353
 354		/*
 355		 * No descriptors so far seem to be in progress, i.e.
 356		 * this chain must be done.
 
 
 357		 */
 358		atc_chain_complete(atchan, desc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 359	}
 
 
 
 
 
 
 
 
 360}
 361
 362/**
 363 * atc_advance_work - at the end of a transaction, move forward
 364 * @atchan: channel where the transaction ended
 
 
 
 365 *
 366 * Called with atchan->lock held and bh disabled
 367 */
 368static void atc_advance_work(struct at_dma_chan *atchan)
 
 369{
 370	dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
 
 
 
 
 
 
 
 
 
 371
 372	if (list_empty(&atchan->active_list) ||
 373	    list_is_singular(&atchan->active_list)) {
 374		atc_complete_all(atchan);
 375	} else {
 376		atc_chain_complete(atchan, atc_first_active(atchan));
 377		/* advance work */
 378		atc_dostart(atchan, atc_first_active(atchan));
 379	}
 
 
 
 
 380}
 381
 382
 383/**
 384 * atc_handle_error - handle errors reported by DMA controller
 385 * @atchan: channel where error occurs
 386 *
 387 * Called with atchan->lock held and bh disabled
 388 */
 389static void atc_handle_error(struct at_dma_chan *atchan)
 390{
 391	struct at_desc *bad_desc;
 392	struct at_desc *child;
 393
 394	/*
 395	 * The descriptor currently at the head of the active list is
 396	 * broked. Since we don't have any way to report errors, we'll
 397	 * just have to scream loudly and try to carry on.
 398	 */
 399	bad_desc = atc_first_active(atchan);
 400	list_del_init(&bad_desc->desc_node);
 401
 402	/* As we are stopped, take advantage to push queued descriptors
 403	 * in active_list */
 404	list_splice_init(&atchan->queue, atchan->active_list.prev);
 405
 406	/* Try to restart the controller */
 407	if (!list_empty(&atchan->active_list))
 408		atc_dostart(atchan, atc_first_active(atchan));
 409
 410	/*
 411	 * KERN_CRITICAL may seem harsh, but since this only happens
 412	 * when someone submits a bad physical address in a
 413	 * descriptor, we should consider ourselves lucky that the
 414	 * controller flagged an error instead of scribbling over
 415	 * random memory locations.
 416	 */
 417	dev_crit(chan2dev(&atchan->chan_common),
 418			"Bad descriptor submitted for DMA!\n");
 419	dev_crit(chan2dev(&atchan->chan_common),
 420			"  cookie: %d\n", bad_desc->txd.cookie);
 421	atc_dump_lli(atchan, &bad_desc->lli);
 422	list_for_each_entry(child, &bad_desc->tx_list, desc_node)
 423		atc_dump_lli(atchan, &child->lli);
 424
 425	/* Pretend the descriptor completed successfully */
 426	atc_chain_complete(atchan, bad_desc);
 427}
 428
 429/**
 430 * atc_handle_cyclic - at the end of a period, run callback function
 431 * @atchan: channel used for cyclic operations
 432 *
 433 * Called with atchan->lock held and bh disabled
 434 */
 435static void atc_handle_cyclic(struct at_dma_chan *atchan)
 436{
 437	struct at_desc			*first = atc_first_active(atchan);
 438	struct dma_async_tx_descriptor	*txd = &first->txd;
 439	dma_async_tx_callback		callback = txd->callback;
 440	void				*param = txd->callback_param;
 441
 442	dev_vdbg(chan2dev(&atchan->chan_common),
 443			"new cyclic period llp 0x%08x\n",
 444			channel_readl(atchan, DSCR));
 445
 446	if (callback)
 447		callback(param);
 448}
 
 
 449
 450/*--  IRQ & Tasklet  ---------------------------------------------------*/
 451
 452static void atc_tasklet(unsigned long data)
 453{
 454	struct at_dma_chan *atchan = (struct at_dma_chan *)data;
 455	unsigned long flags;
 456
 457	spin_lock_irqsave(&atchan->lock, flags);
 458	if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
 459		atc_handle_error(atchan);
 460	else if (atc_chan_is_cyclic(atchan))
 461		atc_handle_cyclic(atchan);
 462	else
 463		atc_advance_work(atchan);
 464
 465	spin_unlock_irqrestore(&atchan->lock, flags);
 466}
 467
 468static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
 469{
 470	struct at_dma		*atdma = (struct at_dma *)dev_id;
 471	struct at_dma_chan	*atchan;
 472	int			i;
 473	u32			status, pending, imr;
 474	int			ret = IRQ_NONE;
 475
 476	do {
 477		imr = dma_readl(atdma, EBCIMR);
 478		status = dma_readl(atdma, EBCISR);
 479		pending = status & imr;
 480
 481		if (!pending)
 482			break;
 483
 484		dev_vdbg(atdma->dma_common.dev,
 485			"interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
 486			 status, imr, pending);
 487
 488		for (i = 0; i < atdma->dma_common.chancnt; i++) {
 489			atchan = &atdma->chan[i];
 490			if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
 491				if (pending & AT_DMA_ERR(i)) {
 492					/* Disable channel on AHB error */
 493					dma_writel(atdma, CHDR,
 494						AT_DMA_RES(i) | atchan->mask);
 495					/* Give information to tasklet */
 496					set_bit(ATC_IS_ERROR, &atchan->status);
 497				}
 498				tasklet_schedule(&atchan->tasklet);
 499				ret = IRQ_HANDLED;
 500			}
 501		}
 502
 503	} while (pending);
 504
 505	return ret;
 506}
 507
 508
 509/*--  DMA Engine API  --------------------------------------------------*/
 510
 511/**
 512 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
 513 * @desc: descriptor at the head of the transaction chain
 514 *
 515 * Queue chain if DMA engine is working already
 516 *
 517 * Cookie increment and adding to active_list or queue must be atomic
 518 */
 519static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
 
 
 
 520{
 521	struct at_desc		*desc = txd_to_at_desc(tx);
 522	struct at_dma_chan	*atchan = to_at_dma_chan(tx->chan);
 523	dma_cookie_t		cookie;
 524	unsigned long		flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 525
 526	spin_lock_irqsave(&atchan->lock, flags);
 527	cookie = dma_cookie_assign(tx);
 
 
 528
 529	if (list_empty(&atchan->active_list)) {
 530		dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
 531				desc->txd.cookie);
 532		atc_dostart(atchan, desc);
 533		list_add_tail(&desc->desc_node, &atchan->active_list);
 534	} else {
 535		dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
 536				desc->txd.cookie);
 537		list_add_tail(&desc->desc_node, &atchan->queue);
 538	}
 
 
 
 
 
 
 
 
 
 
 539
 540	spin_unlock_irqrestore(&atchan->lock, flags);
 
 541
 542	return cookie;
 
 543}
 544
 545/**
 546 * atc_prep_dma_memcpy - prepare a memcpy operation
 547 * @chan: the channel to prepare operation on
 548 * @dest: operation virtual destination address
 549 * @src: operation virtual source address
 550 * @len: operation length
 551 * @flags: tx descriptor status flags
 552 */
 553static struct dma_async_tx_descriptor *
 554atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
 555		size_t len, unsigned long flags)
 556{
 
 557	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
 558	struct at_desc		*desc = NULL;
 559	struct at_desc		*first = NULL;
 560	struct at_desc		*prev = NULL;
 561	size_t			xfer_count;
 562	size_t			offset;
 
 563	unsigned int		src_width;
 564	unsigned int		dst_width;
 
 565	u32			ctrla;
 566	u32			ctrlb;
 567
 568	dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d0x%x s0x%x l0x%zx f0x%lx\n",
 569			dest, src, len, flags);
 570
 571	if (unlikely(!len)) {
 572		dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
 573		return NULL;
 574	}
 575
 576	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
 577		| ATC_SRC_ADDR_MODE_INCR
 578		| ATC_DST_ADDR_MODE_INCR
 579		| ATC_FC_MEM2MEM;
 
 
 
 
 
 
 580
 581	/*
 582	 * We can be a lot more clever here, but this should take care
 583	 * of the most common optimization.
 584	 */
 585	if (!((src | dest  | len) & 3)) {
 586		ctrla = ATC_SRC_WIDTH_WORD | ATC_DST_WIDTH_WORD;
 587		src_width = dst_width = 2;
 588	} else if (!((src | dest | len) & 1)) {
 589		ctrla = ATC_SRC_WIDTH_HALFWORD | ATC_DST_WIDTH_HALFWORD;
 590		src_width = dst_width = 1;
 591	} else {
 592		ctrla = ATC_SRC_WIDTH_BYTE | ATC_DST_WIDTH_BYTE;
 593		src_width = dst_width = 0;
 594	}
 595
 596	for (offset = 0; offset < len; offset += xfer_count << src_width) {
 597		xfer_count = min_t(size_t, (len - offset) >> src_width,
 598				ATC_BTSIZE_MAX);
 599
 600		desc = atc_desc_get(atchan);
 601		if (!desc)
 
 
 
 
 
 
 602			goto err_desc_get;
 
 
 
 
 603
 604		desc->lli.saddr = src + offset;
 605		desc->lli.daddr = dest + offset;
 606		desc->lli.ctrla = ctrla | xfer_count;
 607		desc->lli.ctrlb = ctrlb;
 608
 609		desc->txd.cookie = 0;
 610
 611		atc_desc_chain(&first, &prev, desc);
 612	}
 613
 614	/* First descriptor of the chain embedds additional information */
 615	first->txd.cookie = -EBUSY;
 616	first->len = len;
 617
 618	/* set end-of-link to the last link descriptor of list*/
 619	set_desc_eol(desc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 620
 621	first->txd.flags = flags; /* client is in control of this ack */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 622
 623	return &first->txd;
 
 624
 625err_desc_get:
 626	atc_desc_put(atchan, first);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 627	return NULL;
 628}
 629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 630
 631/**
 632 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
 633 * @chan: DMA channel
 634 * @sgl: scatterlist to transfer to/from
 635 * @sg_len: number of entries in @scatterlist
 636 * @direction: DMA direction
 637 * @flags: tx descriptor status flags
 638 * @context: transaction context (ignored)
 639 */
 640static struct dma_async_tx_descriptor *
 641atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
 642		unsigned int sg_len, enum dma_transfer_direction direction,
 643		unsigned long flags, void *context)
 644{
 
 645	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
 646	struct at_dma_slave	*atslave = chan->private;
 647	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
 648	struct at_desc		*first = NULL;
 649	struct at_desc		*prev = NULL;
 650	u32			ctrla;
 651	u32			ctrlb;
 652	dma_addr_t		reg;
 653	unsigned int		reg_width;
 654	unsigned int		mem_width;
 655	unsigned int		i;
 656	struct scatterlist	*sg;
 657	size_t			total_len = 0;
 658
 659	dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
 660			sg_len,
 661			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
 662			flags);
 663
 664	if (unlikely(!atslave || !sg_len)) {
 665		dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
 666		return NULL;
 667	}
 668
 669	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
 670		| ATC_DCSIZE(sconfig->dst_maxburst);
 
 
 
 
 
 671	ctrlb = ATC_IEN;
 672
 673	switch (direction) {
 674	case DMA_MEM_TO_DEV:
 675		reg_width = convert_buswidth(sconfig->dst_addr_width);
 676		ctrla |=  ATC_DST_WIDTH(reg_width);
 677		ctrlb |=  ATC_DST_ADDR_MODE_FIXED
 678			| ATC_SRC_ADDR_MODE_INCR
 679			| ATC_FC_MEM2PER
 680			| ATC_SIF(AT_DMA_MEM_IF) | ATC_DIF(AT_DMA_PER_IF);
 
 
 681		reg = sconfig->dst_addr;
 682		for_each_sg(sgl, sg, sg_len, i) {
 683			struct at_desc	*desc;
 
 684			u32		len;
 685			u32		mem;
 686
 687			desc = atc_desc_get(atchan);
 688			if (!desc)
 
 
 689				goto err_desc_get;
 
 690
 691			mem = sg_dma_address(sg);
 692			len = sg_dma_len(sg);
 693			if (unlikely(!len)) {
 694				dev_dbg(chan2dev(chan),
 695					"prep_slave_sg: sg(%d) data length is zero\n", i);
 696				goto err;
 697			}
 698			mem_width = 2;
 699			if (unlikely(mem & 3 || len & 3))
 700				mem_width = 0;
 701
 702			desc->lli.saddr = mem;
 703			desc->lli.daddr = reg;
 704			desc->lli.ctrla = ctrla
 705					| ATC_SRC_WIDTH(mem_width)
 706					| len >> mem_width;
 707			desc->lli.ctrlb = ctrlb;
 708
 709			atc_desc_chain(&first, &prev, desc);
 710			total_len += len;
 
 
 
 711		}
 712		break;
 713	case DMA_DEV_TO_MEM:
 714		reg_width = convert_buswidth(sconfig->src_addr_width);
 715		ctrla |=  ATC_SRC_WIDTH(reg_width);
 716		ctrlb |=  ATC_DST_ADDR_MODE_INCR
 717			| ATC_SRC_ADDR_MODE_FIXED
 718			| ATC_FC_PER2MEM
 719			| ATC_SIF(AT_DMA_PER_IF) | ATC_DIF(AT_DMA_MEM_IF);
 
 
 720
 721		reg = sconfig->src_addr;
 722		for_each_sg(sgl, sg, sg_len, i) {
 723			struct at_desc	*desc;
 
 724			u32		len;
 725			u32		mem;
 726
 727			desc = atc_desc_get(atchan);
 728			if (!desc)
 
 
 729				goto err_desc_get;
 
 730
 731			mem = sg_dma_address(sg);
 732			len = sg_dma_len(sg);
 733			if (unlikely(!len)) {
 734				dev_dbg(chan2dev(chan),
 735					"prep_slave_sg: sg(%d) data length is zero\n", i);
 736				goto err;
 737			}
 738			mem_width = 2;
 739			if (unlikely(mem & 3 || len & 3))
 740				mem_width = 0;
 741
 742			desc->lli.saddr = reg;
 743			desc->lli.daddr = mem;
 744			desc->lli.ctrla = ctrla
 745					| ATC_DST_WIDTH(mem_width)
 746					| len >> reg_width;
 747			desc->lli.ctrlb = ctrlb;
 748
 749			atc_desc_chain(&first, &prev, desc);
 750			total_len += len;
 
 
 751		}
 752		break;
 753	default:
 754		return NULL;
 755	}
 756
 757	/* set end-of-link to the last link descriptor of list*/
 758	set_desc_eol(prev);
 759
 760	/* First descriptor of the chain embedds additional information */
 761	first->txd.cookie = -EBUSY;
 762	first->len = total_len;
 763
 764	/* first link descriptor of list is responsible of flags */
 765	first->txd.flags = flags; /* client is in control of this ack */
 766
 767	return &first->txd;
 768
 769err_desc_get:
 770	dev_err(chan2dev(chan), "not enough descriptors available\n");
 771err:
 772	atc_desc_put(atchan, first);
 773	return NULL;
 774}
 775
 776/**
 777 * atc_dma_cyclic_check_values
 778 * Check for too big/unaligned periods and unaligned DMA buffer
 779 */
 780static int
 781atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
 782		size_t period_len, enum dma_transfer_direction direction)
 783{
 784	if (period_len > (ATC_BTSIZE_MAX << reg_width))
 785		goto err_out;
 786	if (unlikely(period_len & ((1 << reg_width) - 1)))
 787		goto err_out;
 788	if (unlikely(buf_addr & ((1 << reg_width) - 1)))
 789		goto err_out;
 790	if (unlikely(!(direction & (DMA_DEV_TO_MEM | DMA_MEM_TO_DEV))))
 791		goto err_out;
 792
 793	return 0;
 794
 795err_out:
 796	return -EINVAL;
 797}
 798
 799/**
 800 * atc_dma_cyclic_fill_desc - Fill one period decriptor
 801 */
 802static int
 803atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
 804		unsigned int period_index, dma_addr_t buf_addr,
 805		unsigned int reg_width, size_t period_len,
 806		enum dma_transfer_direction direction)
 807{
 
 808	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
 809	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
 810	u32			ctrla;
 
 811
 812	/* prepare common CRTLA value */
 813	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
 814		| ATC_DCSIZE(sconfig->dst_maxburst)
 815		| ATC_DST_WIDTH(reg_width)
 816		| ATC_SRC_WIDTH(reg_width)
 817		| period_len >> reg_width;
 818
 819	switch (direction) {
 820	case DMA_MEM_TO_DEV:
 821		desc->lli.saddr = buf_addr + (period_len * period_index);
 822		desc->lli.daddr = sconfig->dst_addr;
 823		desc->lli.ctrla = ctrla;
 824		desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
 825				| ATC_SRC_ADDR_MODE_INCR
 826				| ATC_FC_MEM2PER
 827				| ATC_SIF(AT_DMA_MEM_IF)
 828				| ATC_DIF(AT_DMA_PER_IF);
 
 
 829		break;
 830
 831	case DMA_DEV_TO_MEM:
 832		desc->lli.saddr = sconfig->src_addr;
 833		desc->lli.daddr = buf_addr + (period_len * period_index);
 834		desc->lli.ctrla = ctrla;
 835		desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
 836				| ATC_SRC_ADDR_MODE_FIXED
 837				| ATC_FC_PER2MEM
 838				| ATC_SIF(AT_DMA_PER_IF)
 839				| ATC_DIF(AT_DMA_MEM_IF);
 
 840		break;
 841
 842	default:
 843		return -EINVAL;
 844	}
 845
 
 
 
 
 
 
 
 846	return 0;
 847}
 848
 849/**
 850 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
 851 * @chan: the DMA channel to prepare
 852 * @buf_addr: physical DMA address where the buffer starts
 853 * @buf_len: total number of bytes for the entire buffer
 854 * @period_len: number of bytes for each period
 855 * @direction: transfer direction, to or from device
 856 * @context: transfer context (ignored)
 857 */
 858static struct dma_async_tx_descriptor *
 859atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
 860		size_t period_len, enum dma_transfer_direction direction,
 861		void *context)
 862{
 863	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
 864	struct at_dma_slave	*atslave = chan->private;
 865	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
 866	struct at_desc		*first = NULL;
 867	struct at_desc		*prev = NULL;
 868	unsigned long		was_cyclic;
 869	unsigned int		reg_width;
 870	unsigned int		periods = buf_len / period_len;
 871	unsigned int		i;
 872
 873	dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@0x%08x - %d (%d/%d)\n",
 874			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
 875			buf_addr,
 876			periods, buf_len, period_len);
 877
 878	if (unlikely(!atslave || !buf_len || !period_len)) {
 879		dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
 880		return NULL;
 881	}
 882
 883	was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
 884	if (was_cyclic) {
 885		dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
 886		return NULL;
 887	}
 888
 889	if (sconfig->direction == DMA_MEM_TO_DEV)
 
 
 
 890		reg_width = convert_buswidth(sconfig->dst_addr_width);
 891	else
 892		reg_width = convert_buswidth(sconfig->src_addr_width);
 893
 894	/* Check for too big/unaligned periods and unaligned DMA buffer */
 895	if (atc_dma_cyclic_check_values(reg_width, buf_addr,
 896					period_len, direction))
 
 
 
 897		goto err_out;
 
 898
 899	/* build cyclic linked list */
 900	for (i = 0; i < periods; i++) {
 901		struct at_desc	*desc;
 902
 903		desc = atc_desc_get(atchan);
 904		if (!desc)
 905			goto err_desc_get;
 906
 907		if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
 908					     reg_width, period_len, direction))
 909			goto err_desc_get;
 910
 911		atc_desc_chain(&first, &prev, desc);
 912	}
 913
 914	/* lets make a cyclic list */
 915	prev->lli.dscr = first->txd.phys;
 916
 917	/* First descriptor of the chain embedds additional information */
 918	first->txd.cookie = -EBUSY;
 919	first->len = buf_len;
 920
 921	return &first->txd;
 922
 923err_desc_get:
 924	dev_err(chan2dev(chan), "not enough descriptors available\n");
 925	atc_desc_put(atchan, first);
 926err_out:
 927	clear_bit(ATC_IS_CYCLIC, &atchan->status);
 928	return NULL;
 929}
 930
 931static int set_runtime_config(struct dma_chan *chan,
 932			      struct dma_slave_config *sconfig)
 933{
 934	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
 935
 
 
 936	/* Check if it is chan is configured for slave transfers */
 937	if (!chan->private)
 938		return -EINVAL;
 939
 940	memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
 941
 942	convert_burst(&atchan->dma_sconfig.src_maxburst);
 943	convert_burst(&atchan->dma_sconfig.dst_maxburst);
 944
 945	return 0;
 946}
 947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 948
 949static int atc_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
 950		       unsigned long arg)
 951{
 952	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
 953	struct at_dma		*atdma = to_at_dma(chan->device);
 954	int			chan_id = atchan->chan_common.chan_id;
 955	unsigned long		flags;
 956
 957	LIST_HEAD(list);
 958
 959	dev_vdbg(chan2dev(chan), "atc_control (%d)\n", cmd);
 960
 961	if (cmd == DMA_PAUSE) {
 962		spin_lock_irqsave(&atchan->lock, flags);
 
 
 
 
 
 963
 964		dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
 965		set_bit(ATC_IS_PAUSED, &atchan->status);
 966
 967		spin_unlock_irqrestore(&atchan->lock, flags);
 968	} else if (cmd == DMA_RESUME) {
 969		if (!atc_chan_is_paused(atchan))
 970			return 0;
 971
 972		spin_lock_irqsave(&atchan->lock, flags);
 
 
 
 973
 974		dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
 975		clear_bit(ATC_IS_PAUSED, &atchan->status);
 976
 977		spin_unlock_irqrestore(&atchan->lock, flags);
 978	} else if (cmd == DMA_TERMINATE_ALL) {
 979		struct at_desc	*desc, *_desc;
 980		/*
 981		 * This is only called when something went wrong elsewhere, so
 982		 * we don't really care about the data. Just disable the
 983		 * channel. We still have to poll the channel enable bit due
 984		 * to AHB/HSB limitations.
 985		 */
 986		spin_lock_irqsave(&atchan->lock, flags);
 987
 988		/* disabling channel: must also remove suspend state */
 989		dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
 990
 991		/* confirm that this channel is disabled */
 992		while (dma_readl(atdma, CHSR) & atchan->mask)
 993			cpu_relax();
 994
 995		/* active_list entries will end up before queued entries */
 996		list_splice_init(&atchan->queue, &list);
 997		list_splice_init(&atchan->active_list, &list);
 998
 999		/* Flush all pending and queued descriptors */
1000		list_for_each_entry_safe(desc, _desc, &list, desc_node)
1001			atc_chain_complete(atchan, desc);
1002
1003		clear_bit(ATC_IS_PAUSED, &atchan->status);
1004		/* if channel dedicated to cyclic operations, free it */
1005		clear_bit(ATC_IS_CYCLIC, &atchan->status);
1006
1007		spin_unlock_irqrestore(&atchan->lock, flags);
1008	} else if (cmd == DMA_SLAVE_CONFIG) {
1009		return set_runtime_config(chan, (struct dma_slave_config *)arg);
1010	} else {
1011		return -ENXIO;
1012	}
1013
1014	return 0;
1015}
1016
1017/**
1018 * atc_tx_status - poll for transaction completion
1019 * @chan: DMA channel
1020 * @cookie: transaction identifier to check status of
1021 * @txstate: if not %NULL updated with transaction state
1022 *
1023 * If @txstate is passed in, upon return it reflect the driver
1024 * internal state and can be used with dma_async_is_complete() to check
1025 * the status of multiple cookies without re-checking hardware state.
1026 */
1027static enum dma_status
1028atc_tx_status(struct dma_chan *chan,
1029		dma_cookie_t cookie,
1030		struct dma_tx_state *txstate)
1031{
1032	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1033	dma_cookie_t		last_used;
1034	dma_cookie_t		last_complete;
1035	unsigned long		flags;
1036	enum dma_status		ret;
1037
1038	spin_lock_irqsave(&atchan->lock, flags);
1039
1040	ret = dma_cookie_status(chan, cookie, txstate);
1041	if (ret != DMA_SUCCESS) {
1042		atc_cleanup_descriptors(atchan);
1043
1044		ret = dma_cookie_status(chan, cookie, txstate);
 
 
 
 
 
 
 
 
 
1045	}
1046
1047	last_complete = chan->completed_cookie;
1048	last_used = chan->cookie;
1049
1050	spin_unlock_irqrestore(&atchan->lock, flags);
1051
1052	if (ret != DMA_SUCCESS)
1053		dma_set_residue(txstate, atc_first_active(atchan)->len);
1054
1055	if (atc_chan_is_paused(atchan))
1056		ret = DMA_PAUSED;
1057
1058	dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d (d%d, u%d)\n",
1059		 ret, cookie, last_complete ? last_complete : 0,
1060		 last_used ? last_used : 0);
1061
1062	return ret;
1063}
1064
1065/**
1066 * atc_issue_pending - try to finish work
1067 * @chan: target DMA channel
1068 */
1069static void atc_issue_pending(struct dma_chan *chan)
1070{
1071	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1072	unsigned long		flags;
1073
1074	dev_vdbg(chan2dev(chan), "issue_pending\n");
1075
1076	/* Not needed for cyclic transfers */
1077	if (atc_chan_is_cyclic(atchan))
1078		return;
1079
1080	spin_lock_irqsave(&atchan->lock, flags);
1081	if (!atc_chan_is_enabled(atchan)) {
1082		atc_advance_work(atchan);
 
1083	}
1084	spin_unlock_irqrestore(&atchan->lock, flags);
1085}
1086
1087/**
1088 * atc_alloc_chan_resources - allocate resources for DMA channel
1089 * @chan: allocate descriptor resources for this channel
1090 * @client: current client requesting the channel be ready for requests
1091 *
1092 * return - the number of allocated descriptors
1093 */
1094static int atc_alloc_chan_resources(struct dma_chan *chan)
1095{
1096	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1097	struct at_dma		*atdma = to_at_dma(chan->device);
1098	struct at_desc		*desc;
1099	struct at_dma_slave	*atslave;
1100	unsigned long		flags;
1101	int			i;
1102	u32			cfg;
1103	LIST_HEAD(tmp_list);
1104
1105	dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1106
1107	/* ASSERT:  channel is idle */
1108	if (atc_chan_is_enabled(atchan)) {
1109		dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1110		return -EIO;
1111	}
1112
1113	cfg = ATC_DEFAULT_CFG;
1114
1115	atslave = chan->private;
1116	if (atslave) {
1117		/*
1118		 * We need controller-specific data to set up slave
1119		 * transfers.
1120		 */
1121		BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1122
1123		/* if cfg configuration specified take it instad of default */
1124		if (atslave->cfg)
1125			cfg = atslave->cfg;
1126	}
1127
1128	/* have we already been set up?
1129	 * reconfigure channel but no need to reallocate descriptors */
1130	if (!list_empty(&atchan->free_list))
1131		return atchan->descs_allocated;
1132
1133	/* Allocate initial pool of descriptors */
1134	for (i = 0; i < init_nr_desc_per_channel; i++) {
1135		desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1136		if (!desc) {
1137			dev_err(atdma->dma_common.dev,
1138				"Only %d initial descriptors\n", i);
1139			break;
1140		}
1141		list_add_tail(&desc->desc_node, &tmp_list);
1142	}
1143
1144	spin_lock_irqsave(&atchan->lock, flags);
1145	atchan->descs_allocated = i;
1146	list_splice(&tmp_list, &atchan->free_list);
1147	dma_cookie_init(chan);
1148	spin_unlock_irqrestore(&atchan->lock, flags);
1149
1150	/* channel parameters */
1151	channel_writel(atchan, CFG, cfg);
1152
1153	dev_dbg(chan2dev(chan),
1154		"alloc_chan_resources: allocated %d descriptors\n",
1155		atchan->descs_allocated);
1156
1157	return atchan->descs_allocated;
1158}
1159
1160/**
1161 * atc_free_chan_resources - free all channel resources
1162 * @chan: DMA channel
1163 */
1164static void atc_free_chan_resources(struct dma_chan *chan)
1165{
1166	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1167	struct at_dma		*atdma = to_at_dma(chan->device);
1168	struct at_desc		*desc, *_desc;
1169	LIST_HEAD(list);
1170
1171	dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1172		atchan->descs_allocated);
1173
1174	/* ASSERT:  channel is idle */
1175	BUG_ON(!list_empty(&atchan->active_list));
1176	BUG_ON(!list_empty(&atchan->queue));
1177	BUG_ON(atc_chan_is_enabled(atchan));
1178
1179	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1180		dev_vdbg(chan2dev(chan), "  freeing descriptor %p\n", desc);
1181		list_del(&desc->desc_node);
1182		/* free link descriptor */
1183		dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1184	}
1185	list_splice_init(&atchan->free_list, &list);
1186	atchan->descs_allocated = 0;
1187	atchan->status = 0;
1188
 
 
 
 
 
 
1189	dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1190}
1191
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1192
1193/*--  Module Management  -----------------------------------------------*/
1194
1195/* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1196static struct at_dma_platform_data at91sam9rl_config = {
1197	.nr_channels = 2,
1198};
1199static struct at_dma_platform_data at91sam9g45_config = {
1200	.nr_channels = 8,
1201};
1202
1203#if defined(CONFIG_OF)
1204static const struct of_device_id atmel_dma_dt_ids[] = {
1205	{
1206		.compatible = "atmel,at91sam9rl-dma",
1207		.data = &at91sam9rl_config,
1208	}, {
1209		.compatible = "atmel,at91sam9g45-dma",
1210		.data = &at91sam9g45_config,
1211	}, {
1212		/* sentinel */
1213	}
1214};
1215
1216MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1217#endif
1218
1219static const struct platform_device_id atdma_devtypes[] = {
1220	{
1221		.name = "at91sam9rl_dma",
1222		.driver_data = (unsigned long) &at91sam9rl_config,
1223	}, {
1224		.name = "at91sam9g45_dma",
1225		.driver_data = (unsigned long) &at91sam9g45_config,
1226	}, {
1227		/* sentinel */
1228	}
1229};
1230
1231static inline struct at_dma_platform_data * __init at_dma_get_driver_data(
1232						struct platform_device *pdev)
1233{
1234	if (pdev->dev.of_node) {
1235		const struct of_device_id *match;
1236		match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1237		if (match == NULL)
1238			return NULL;
1239		return match->data;
1240	}
1241	return (struct at_dma_platform_data *)
1242			platform_get_device_id(pdev)->driver_data;
1243}
1244
1245/**
1246 * at_dma_off - disable DMA controller
1247 * @atdma: the Atmel HDAMC device
1248 */
1249static void at_dma_off(struct at_dma *atdma)
1250{
1251	dma_writel(atdma, EN, 0);
1252
1253	/* disable all interrupts */
1254	dma_writel(atdma, EBCIDR, -1L);
1255
1256	/* confirm that all channels are disabled */
1257	while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1258		cpu_relax();
1259}
1260
1261static int __init at_dma_probe(struct platform_device *pdev)
1262{
1263	struct resource		*io;
1264	struct at_dma		*atdma;
1265	size_t			size;
1266	int			irq;
1267	int			err;
1268	int			i;
1269	struct at_dma_platform_data *plat_dat;
1270
1271	/* setup platform data for each SoC */
1272	dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
 
1273	dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
 
 
 
1274	dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1275
1276	/* get DMA parameters from controller type */
1277	plat_dat = at_dma_get_driver_data(pdev);
1278	if (!plat_dat)
1279		return -ENODEV;
1280
1281	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1282	if (!io)
1283		return -EINVAL;
 
 
 
 
 
 
1284
1285	irq = platform_get_irq(pdev, 0);
1286	if (irq < 0)
1287		return irq;
1288
1289	size = sizeof(struct at_dma);
1290	size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1291	atdma = kzalloc(size, GFP_KERNEL);
1292	if (!atdma)
1293		return -ENOMEM;
1294
1295	/* discover transaction capabilities */
1296	atdma->dma_common.cap_mask = plat_dat->cap_mask;
1297	atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1298
1299	size = resource_size(io);
1300	if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1301		err = -EBUSY;
1302		goto err_kfree;
1303	}
1304
1305	atdma->regs = ioremap(io->start, size);
1306	if (!atdma->regs) {
1307		err = -ENOMEM;
1308		goto err_release_r;
1309	}
1310
1311	atdma->clk = clk_get(&pdev->dev, "dma_clk");
1312	if (IS_ERR(atdma->clk)) {
1313		err = PTR_ERR(atdma->clk);
1314		goto err_clk;
1315	}
1316	clk_enable(atdma->clk);
1317
1318	/* force dma off, just in case */
1319	at_dma_off(atdma);
1320
1321	err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1322	if (err)
1323		goto err_irq;
1324
1325	platform_set_drvdata(pdev, atdma);
1326
1327	/* create a pool of consistent memory blocks for hardware descriptors */
1328	atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
1329			&pdev->dev, sizeof(struct at_desc),
1330			4 /* word alignment */, 0);
1331	if (!atdma->dma_desc_pool) {
1332		dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
1333		err = -ENOMEM;
1334		goto err_pool_create;
 
 
 
 
 
 
 
 
 
1335	}
1336
1337	/* clear any pending interrupt */
1338	while (dma_readl(atdma, EBCISR))
1339		cpu_relax();
1340
1341	/* initialize channels related values */
1342	INIT_LIST_HEAD(&atdma->dma_common.channels);
1343	for (i = 0; i < plat_dat->nr_channels; i++) {
1344		struct at_dma_chan	*atchan = &atdma->chan[i];
1345
1346		atchan->chan_common.device = &atdma->dma_common;
1347		dma_cookie_init(&atchan->chan_common);
1348		list_add_tail(&atchan->chan_common.device_node,
1349				&atdma->dma_common.channels);
1350
1351		atchan->ch_regs = atdma->regs + ch_regs(i);
1352		spin_lock_init(&atchan->lock);
1353		atchan->mask = 1 << i;
1354
1355		INIT_LIST_HEAD(&atchan->active_list);
1356		INIT_LIST_HEAD(&atchan->queue);
1357		INIT_LIST_HEAD(&atchan->free_list);
1358
1359		tasklet_init(&atchan->tasklet, atc_tasklet,
1360				(unsigned long)atchan);
1361		atc_enable_chan_irq(atdma, i);
1362	}
1363
1364	/* set base routines */
1365	atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
1366	atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
1367	atdma->dma_common.device_tx_status = atc_tx_status;
1368	atdma->dma_common.device_issue_pending = atc_issue_pending;
1369	atdma->dma_common.dev = &pdev->dev;
1370
1371	/* set prep routines based on capability */
1372	if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
1373		atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
 
 
 
 
 
 
 
 
 
1374
1375	if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
1376		atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
1377		/* controller can do slave DMA: can trigger cyclic transfers */
1378		dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
1379		atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
1380		atdma->dma_common.device_control = atc_control;
 
 
 
 
 
 
 
1381	}
1382
1383	dma_writel(atdma, EN, AT_DMA_ENABLE);
1384
1385	dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s), %d channels\n",
1386	  dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
1387	  dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)  ? "slave " : "",
 
1388	  plat_dat->nr_channels);
1389
1390	dma_async_device_register(&atdma->dma_common);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1391
1392	return 0;
1393
1394err_pool_create:
1395	platform_set_drvdata(pdev, NULL);
 
 
 
 
 
1396	free_irq(platform_get_irq(pdev, 0), atdma);
1397err_irq:
1398	clk_disable(atdma->clk);
1399	clk_put(atdma->clk);
1400err_clk:
1401	iounmap(atdma->regs);
1402	atdma->regs = NULL;
1403err_release_r:
1404	release_mem_region(io->start, size);
1405err_kfree:
1406	kfree(atdma);
1407	return err;
1408}
1409
1410static int __exit at_dma_remove(struct platform_device *pdev)
1411{
1412	struct at_dma		*atdma = platform_get_drvdata(pdev);
1413	struct dma_chan		*chan, *_chan;
1414	struct resource		*io;
1415
1416	at_dma_off(atdma);
1417	dma_async_device_unregister(&atdma->dma_common);
 
 
1418
1419	dma_pool_destroy(atdma->dma_desc_pool);
1420	platform_set_drvdata(pdev, NULL);
1421	free_irq(platform_get_irq(pdev, 0), atdma);
1422
1423	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
1424			device_node) {
1425		struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1426
1427		/* Disable interrupts */
1428		atc_disable_chan_irq(atdma, chan->chan_id);
1429		tasklet_disable(&atchan->tasklet);
1430
1431		tasklet_kill(&atchan->tasklet);
1432		list_del(&chan->device_node);
1433	}
1434
1435	clk_disable(atdma->clk);
1436	clk_put(atdma->clk);
1437
1438	iounmap(atdma->regs);
1439	atdma->regs = NULL;
1440
1441	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1442	release_mem_region(io->start, resource_size(io));
1443
1444	kfree(atdma);
1445
1446	return 0;
1447}
1448
1449static void at_dma_shutdown(struct platform_device *pdev)
1450{
1451	struct at_dma	*atdma = platform_get_drvdata(pdev);
1452
1453	at_dma_off(platform_get_drvdata(pdev));
1454	clk_disable(atdma->clk);
1455}
1456
1457static int at_dma_prepare(struct device *dev)
1458{
1459	struct platform_device *pdev = to_platform_device(dev);
1460	struct at_dma *atdma = platform_get_drvdata(pdev);
1461	struct dma_chan *chan, *_chan;
1462
1463	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
1464			device_node) {
1465		struct at_dma_chan *atchan = to_at_dma_chan(chan);
1466		/* wait for transaction completion (except in cyclic case) */
1467		if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
1468			return -EAGAIN;
1469	}
1470	return 0;
1471}
1472
1473static void atc_suspend_cyclic(struct at_dma_chan *atchan)
1474{
1475	struct dma_chan	*chan = &atchan->chan_common;
1476
1477	/* Channel should be paused by user
1478	 * do it anyway even if it is not done already */
1479	if (!atc_chan_is_paused(atchan)) {
1480		dev_warn(chan2dev(chan),
1481		"cyclic channel not paused, should be done by channel user\n");
1482		atc_control(chan, DMA_PAUSE, 0);
1483	}
1484
1485	/* now preserve additional data for cyclic operations */
1486	/* next descriptor address in the cyclic list */
1487	atchan->save_dscr = channel_readl(atchan, DSCR);
1488
1489	vdbg_dump_regs(atchan);
1490}
1491
1492static int at_dma_suspend_noirq(struct device *dev)
1493{
1494	struct platform_device *pdev = to_platform_device(dev);
1495	struct at_dma *atdma = platform_get_drvdata(pdev);
1496	struct dma_chan *chan, *_chan;
1497
1498	/* preserve data */
1499	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
1500			device_node) {
1501		struct at_dma_chan *atchan = to_at_dma_chan(chan);
1502
1503		if (atc_chan_is_cyclic(atchan))
1504			atc_suspend_cyclic(atchan);
1505		atchan->save_cfg = channel_readl(atchan, CFG);
1506	}
1507	atdma->save_imr = dma_readl(atdma, EBCIMR);
1508
1509	/* disable DMA controller */
1510	at_dma_off(atdma);
1511	clk_disable(atdma->clk);
1512	return 0;
1513}
1514
1515static void atc_resume_cyclic(struct at_dma_chan *atchan)
1516{
1517	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
1518
1519	/* restore channel status for cyclic descriptors list:
1520	 * next descriptor in the cyclic list at the time of suspend */
1521	channel_writel(atchan, SADDR, 0);
1522	channel_writel(atchan, DADDR, 0);
1523	channel_writel(atchan, CTRLA, 0);
1524	channel_writel(atchan, CTRLB, 0);
1525	channel_writel(atchan, DSCR, atchan->save_dscr);
1526	dma_writel(atdma, CHER, atchan->mask);
1527
1528	/* channel pause status should be removed by channel user
1529	 * We cannot take the initiative to do it here */
1530
1531	vdbg_dump_regs(atchan);
1532}
1533
1534static int at_dma_resume_noirq(struct device *dev)
1535{
1536	struct platform_device *pdev = to_platform_device(dev);
1537	struct at_dma *atdma = platform_get_drvdata(pdev);
1538	struct dma_chan *chan, *_chan;
1539
1540	/* bring back DMA controller */
1541	clk_enable(atdma->clk);
1542	dma_writel(atdma, EN, AT_DMA_ENABLE);
1543
1544	/* clear any pending interrupt */
1545	while (dma_readl(atdma, EBCISR))
1546		cpu_relax();
1547
1548	/* restore saved data */
1549	dma_writel(atdma, EBCIER, atdma->save_imr);
1550	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
1551			device_node) {
1552		struct at_dma_chan *atchan = to_at_dma_chan(chan);
1553
1554		channel_writel(atchan, CFG, atchan->save_cfg);
1555		if (atc_chan_is_cyclic(atchan))
1556			atc_resume_cyclic(atchan);
1557	}
1558	return 0;
1559}
1560
1561static const struct dev_pm_ops at_dma_dev_pm_ops = {
1562	.prepare = at_dma_prepare,
1563	.suspend_noirq = at_dma_suspend_noirq,
1564	.resume_noirq = at_dma_resume_noirq,
1565};
1566
1567static struct platform_driver at_dma_driver = {
1568	.remove		= __exit_p(at_dma_remove),
1569	.shutdown	= at_dma_shutdown,
1570	.id_table	= atdma_devtypes,
1571	.driver = {
1572		.name	= "at_hdmac",
1573		.pm	= &at_dma_dev_pm_ops,
1574		.of_match_table	= of_match_ptr(atmel_dma_dt_ids),
1575	},
1576};
1577
1578static int __init at_dma_init(void)
1579{
1580	return platform_driver_probe(&at_dma_driver, at_dma_probe);
1581}
1582subsys_initcall(at_dma_init);
1583
1584static void __exit at_dma_exit(void)
1585{
1586	platform_driver_unregister(&at_dma_driver);
1587}
1588module_exit(at_dma_exit);
1589
1590MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
1591MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
 
1592MODULE_LICENSE("GPL");
1593MODULE_ALIAS("platform:at_hdmac");