Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Framework for buffer objects that can be shared across devices/subsystems.
   4 *
   5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
   6 * Author: Sumit Semwal <sumit.semwal@ti.com>
   7 *
   8 * Many thanks to linaro-mm-sig list, and specially
   9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
  10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
  11 * refining of this idea.
  12 */
  13
  14#include <linux/fs.h>
  15#include <linux/slab.h>
  16#include <linux/dma-buf.h>
  17#include <linux/dma-fence.h>
  18#include <linux/dma-fence-unwrap.h>
  19#include <linux/anon_inodes.h>
  20#include <linux/export.h>
  21#include <linux/debugfs.h>
  22#include <linux/module.h>
  23#include <linux/seq_file.h>
  24#include <linux/sync_file.h>
  25#include <linux/poll.h>
  26#include <linux/dma-resv.h>
  27#include <linux/mm.h>
  28#include <linux/mount.h>
  29#include <linux/pseudo_fs.h>
  30
  31#include <uapi/linux/dma-buf.h>
  32#include <uapi/linux/magic.h>
  33
  34#include "dma-buf-sysfs-stats.h"
  35
  36static inline int is_dma_buf_file(struct file *);
  37
  38struct dma_buf_list {
  39	struct list_head head;
  40	struct mutex lock;
  41};
  42
  43static struct dma_buf_list db_list;
  44
  45static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
  46{
  47	struct dma_buf *dmabuf;
  48	char name[DMA_BUF_NAME_LEN];
  49	ssize_t ret = 0;
  50
  51	dmabuf = dentry->d_fsdata;
  52	spin_lock(&dmabuf->name_lock);
  53	if (dmabuf->name)
  54		ret = strscpy(name, dmabuf->name, sizeof(name));
  55	spin_unlock(&dmabuf->name_lock);
  56
  57	return dynamic_dname(buffer, buflen, "/%s:%s",
  58			     dentry->d_name.name, ret > 0 ? name : "");
  59}
  60
  61static void dma_buf_release(struct dentry *dentry)
  62{
  63	struct dma_buf *dmabuf;
  64
  65	dmabuf = dentry->d_fsdata;
  66	if (unlikely(!dmabuf))
  67		return;
  68
  69	BUG_ON(dmabuf->vmapping_counter);
  70
  71	/*
  72	 * If you hit this BUG() it could mean:
  73	 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else
  74	 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback
  75	 */
  76	BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active);
  77
  78	dma_buf_stats_teardown(dmabuf);
  79	dmabuf->ops->release(dmabuf);
  80
  81	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
  82		dma_resv_fini(dmabuf->resv);
  83
  84	WARN_ON(!list_empty(&dmabuf->attachments));
  85	module_put(dmabuf->owner);
  86	kfree(dmabuf->name);
  87	kfree(dmabuf);
  88}
  89
  90static int dma_buf_file_release(struct inode *inode, struct file *file)
  91{
  92	struct dma_buf *dmabuf;
  93
  94	if (!is_dma_buf_file(file))
  95		return -EINVAL;
  96
  97	dmabuf = file->private_data;
  98	if (dmabuf) {
  99		mutex_lock(&db_list.lock);
 100		list_del(&dmabuf->list_node);
 101		mutex_unlock(&db_list.lock);
 102	}
 103
 104	return 0;
 105}
 106
 107static const struct dentry_operations dma_buf_dentry_ops = {
 108	.d_dname = dmabuffs_dname,
 109	.d_release = dma_buf_release,
 110};
 111
 112static struct vfsmount *dma_buf_mnt;
 113
 114static int dma_buf_fs_init_context(struct fs_context *fc)
 115{
 116	struct pseudo_fs_context *ctx;
 117
 118	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
 119	if (!ctx)
 120		return -ENOMEM;
 121	ctx->dops = &dma_buf_dentry_ops;
 122	return 0;
 123}
 124
 125static struct file_system_type dma_buf_fs_type = {
 126	.name = "dmabuf",
 127	.init_fs_context = dma_buf_fs_init_context,
 128	.kill_sb = kill_anon_super,
 129};
 130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 131static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
 132{
 133	struct dma_buf *dmabuf;
 134
 135	if (!is_dma_buf_file(file))
 136		return -EINVAL;
 137
 138	dmabuf = file->private_data;
 139
 140	/* check if buffer supports mmap */
 141	if (!dmabuf->ops->mmap)
 142		return -EINVAL;
 143
 144	/* check for overflowing the buffer's size */
 145	if (vma->vm_pgoff + vma_pages(vma) >
 146	    dmabuf->size >> PAGE_SHIFT)
 147		return -EINVAL;
 148
 149	return dmabuf->ops->mmap(dmabuf, vma);
 150}
 151
 152static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
 153{
 154	struct dma_buf *dmabuf;
 155	loff_t base;
 156
 157	if (!is_dma_buf_file(file))
 158		return -EBADF;
 159
 160	dmabuf = file->private_data;
 161
 162	/* only support discovering the end of the buffer,
 163	   but also allow SEEK_SET to maintain the idiomatic
 164	   SEEK_END(0), SEEK_CUR(0) pattern */
 165	if (whence == SEEK_END)
 166		base = dmabuf->size;
 167	else if (whence == SEEK_SET)
 168		base = 0;
 169	else
 170		return -EINVAL;
 171
 172	if (offset != 0)
 173		return -EINVAL;
 174
 175	return base + offset;
 176}
 177
 178/**
 179 * DOC: implicit fence polling
 180 *
 181 * To support cross-device and cross-driver synchronization of buffer access
 182 * implicit fences (represented internally in the kernel with &struct dma_fence)
 183 * can be attached to a &dma_buf. The glue for that and a few related things are
 184 * provided in the &dma_resv structure.
 185 *
 186 * Userspace can query the state of these implicitly tracked fences using poll()
 187 * and related system calls:
 188 *
 189 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
 190 *   most recent write or exclusive fence.
 191 *
 192 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
 193 *   all attached fences, shared and exclusive ones.
 194 *
 195 * Note that this only signals the completion of the respective fences, i.e. the
 196 * DMA transfers are complete. Cache flushing and any other necessary
 197 * preparations before CPU access can begin still need to happen.
 198 *
 199 * As an alternative to poll(), the set of fences on DMA buffer can be
 200 * exported as a &sync_file using &dma_buf_sync_file_export.
 201 */
 202
 203static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
 204{
 205	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
 206	struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll);
 207	unsigned long flags;
 208
 209	spin_lock_irqsave(&dcb->poll->lock, flags);
 210	wake_up_locked_poll(dcb->poll, dcb->active);
 211	dcb->active = 0;
 212	spin_unlock_irqrestore(&dcb->poll->lock, flags);
 213	dma_fence_put(fence);
 214	/* Paired with get_file in dma_buf_poll */
 215	fput(dmabuf->file);
 216}
 217
 218static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write,
 219				struct dma_buf_poll_cb_t *dcb)
 220{
 221	struct dma_resv_iter cursor;
 222	struct dma_fence *fence;
 223	int r;
 224
 225	dma_resv_for_each_fence(&cursor, resv, dma_resv_usage_rw(write),
 226				fence) {
 227		dma_fence_get(fence);
 228		r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb);
 229		if (!r)
 230			return true;
 231		dma_fence_put(fence);
 232	}
 233
 234	return false;
 235}
 236
 237static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
 238{
 239	struct dma_buf *dmabuf;
 240	struct dma_resv *resv;
 
 
 241	__poll_t events;
 
 242
 243	dmabuf = file->private_data;
 244	if (!dmabuf || !dmabuf->resv)
 245		return EPOLLERR;
 246
 247	resv = dmabuf->resv;
 248
 249	poll_wait(file, &dmabuf->poll, poll);
 250
 251	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
 252	if (!events)
 253		return 0;
 254
 255	dma_resv_lock(resv, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 256
 257	if (events & EPOLLOUT) {
 258		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out;
 259
 260		/* Check that callback isn't busy */
 261		spin_lock_irq(&dmabuf->poll.lock);
 262		if (dcb->active)
 263			events &= ~EPOLLOUT;
 264		else
 265			dcb->active = EPOLLOUT;
 
 266		spin_unlock_irq(&dmabuf->poll.lock);
 267
 268		if (events & EPOLLOUT) {
 269			/* Paired with fput in dma_buf_poll_cb */
 270			get_file(dmabuf->file);
 271
 272			if (!dma_buf_poll_add_cb(resv, true, dcb))
 273				/* No callback queued, wake up any other waiters */
 274				dma_buf_poll_cb(NULL, &dcb->cb);
 275			else
 276				events &= ~EPOLLOUT;
 
 
 
 
 
 
 
 
 
 
 277		}
 278	}
 279
 280	if (events & EPOLLIN) {
 281		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in;
 
 282
 283		/* Check that callback isn't busy */
 284		spin_lock_irq(&dmabuf->poll.lock);
 285		if (dcb->active)
 286			events &= ~EPOLLIN;
 287		else
 288			dcb->active = EPOLLIN;
 289		spin_unlock_irq(&dmabuf->poll.lock);
 290
 291		if (events & EPOLLIN) {
 292			/* Paired with fput in dma_buf_poll_cb */
 293			get_file(dmabuf->file);
 
 
 294
 295			if (!dma_buf_poll_add_cb(resv, false, dcb))
 296				/* No callback queued, wake up any other waiters */
 
 
 
 
 
 
 297				dma_buf_poll_cb(NULL, &dcb->cb);
 298			else
 299				events &= ~EPOLLIN;
 
 
 
 
 
 
 
 300		}
 
 
 
 
 301	}
 302
 303	dma_resv_unlock(resv);
 
 304	return events;
 305}
 306
 307/**
 308 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
 309 * It could support changing the name of the dma-buf if the same
 310 * piece of memory is used for multiple purpose between different devices.
 311 *
 312 * @dmabuf: [in]     dmabuf buffer that will be renamed.
 313 * @buf:    [in]     A piece of userspace memory that contains the name of
 314 *                   the dma-buf.
 
 
 315 *
 316 * Returns 0 on success. If the dma-buf buffer is already attached to
 317 * devices, return -EBUSY.
 318 *
 319 */
 320static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
 321{
 322	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
 
 323
 324	if (IS_ERR(name))
 325		return PTR_ERR(name);
 326
 327	spin_lock(&dmabuf->name_lock);
 
 
 
 
 
 328	kfree(dmabuf->name);
 329	dmabuf->name = name;
 330	spin_unlock(&dmabuf->name_lock);
 331
 332	return 0;
 333}
 334
 335#if IS_ENABLED(CONFIG_SYNC_FILE)
 336static long dma_buf_export_sync_file(struct dma_buf *dmabuf,
 337				     void __user *user_data)
 338{
 339	struct dma_buf_export_sync_file arg;
 340	enum dma_resv_usage usage;
 341	struct dma_fence *fence = NULL;
 342	struct sync_file *sync_file;
 343	int fd, ret;
 344
 345	if (copy_from_user(&arg, user_data, sizeof(arg)))
 346		return -EFAULT;
 347
 348	if (arg.flags & ~DMA_BUF_SYNC_RW)
 349		return -EINVAL;
 350
 351	if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
 352		return -EINVAL;
 353
 354	fd = get_unused_fd_flags(O_CLOEXEC);
 355	if (fd < 0)
 356		return fd;
 357
 358	usage = dma_resv_usage_rw(arg.flags & DMA_BUF_SYNC_WRITE);
 359	ret = dma_resv_get_singleton(dmabuf->resv, usage, &fence);
 360	if (ret)
 361		goto err_put_fd;
 362
 363	if (!fence)
 364		fence = dma_fence_get_stub();
 365
 366	sync_file = sync_file_create(fence);
 367
 368	dma_fence_put(fence);
 369
 370	if (!sync_file) {
 371		ret = -ENOMEM;
 372		goto err_put_fd;
 373	}
 374
 375	arg.fd = fd;
 376	if (copy_to_user(user_data, &arg, sizeof(arg))) {
 377		ret = -EFAULT;
 378		goto err_put_file;
 379	}
 380
 381	fd_install(fd, sync_file->file);
 382
 383	return 0;
 384
 385err_put_file:
 386	fput(sync_file->file);
 387err_put_fd:
 388	put_unused_fd(fd);
 389	return ret;
 390}
 391
 392static long dma_buf_import_sync_file(struct dma_buf *dmabuf,
 393				     const void __user *user_data)
 394{
 395	struct dma_buf_import_sync_file arg;
 396	struct dma_fence *fence, *f;
 397	enum dma_resv_usage usage;
 398	struct dma_fence_unwrap iter;
 399	unsigned int num_fences;
 400	int ret = 0;
 401
 402	if (copy_from_user(&arg, user_data, sizeof(arg)))
 403		return -EFAULT;
 404
 405	if (arg.flags & ~DMA_BUF_SYNC_RW)
 406		return -EINVAL;
 407
 408	if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
 409		return -EINVAL;
 410
 411	fence = sync_file_get_fence(arg.fd);
 412	if (!fence)
 413		return -EINVAL;
 414
 415	usage = (arg.flags & DMA_BUF_SYNC_WRITE) ? DMA_RESV_USAGE_WRITE :
 416						   DMA_RESV_USAGE_READ;
 417
 418	num_fences = 0;
 419	dma_fence_unwrap_for_each(f, &iter, fence)
 420		++num_fences;
 421
 422	if (num_fences > 0) {
 423		dma_resv_lock(dmabuf->resv, NULL);
 424
 425		ret = dma_resv_reserve_fences(dmabuf->resv, num_fences);
 426		if (!ret) {
 427			dma_fence_unwrap_for_each(f, &iter, fence)
 428				dma_resv_add_fence(dmabuf->resv, f, usage);
 429		}
 430
 431		dma_resv_unlock(dmabuf->resv);
 432	}
 433
 434	dma_fence_put(fence);
 435
 436	return ret;
 437}
 438#endif
 439
 440static long dma_buf_ioctl(struct file *file,
 441			  unsigned int cmd, unsigned long arg)
 442{
 443	struct dma_buf *dmabuf;
 444	struct dma_buf_sync sync;
 445	enum dma_data_direction direction;
 446	int ret;
 447
 448	dmabuf = file->private_data;
 449
 450	switch (cmd) {
 451	case DMA_BUF_IOCTL_SYNC:
 452		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
 453			return -EFAULT;
 454
 455		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
 456			return -EINVAL;
 457
 458		switch (sync.flags & DMA_BUF_SYNC_RW) {
 459		case DMA_BUF_SYNC_READ:
 460			direction = DMA_FROM_DEVICE;
 461			break;
 462		case DMA_BUF_SYNC_WRITE:
 463			direction = DMA_TO_DEVICE;
 464			break;
 465		case DMA_BUF_SYNC_RW:
 466			direction = DMA_BIDIRECTIONAL;
 467			break;
 468		default:
 469			return -EINVAL;
 470		}
 471
 472		if (sync.flags & DMA_BUF_SYNC_END)
 473			ret = dma_buf_end_cpu_access(dmabuf, direction);
 474		else
 475			ret = dma_buf_begin_cpu_access(dmabuf, direction);
 476
 477		return ret;
 478
 479	case DMA_BUF_SET_NAME_A:
 480	case DMA_BUF_SET_NAME_B:
 481		return dma_buf_set_name(dmabuf, (const char __user *)arg);
 482
 483#if IS_ENABLED(CONFIG_SYNC_FILE)
 484	case DMA_BUF_IOCTL_EXPORT_SYNC_FILE:
 485		return dma_buf_export_sync_file(dmabuf, (void __user *)arg);
 486	case DMA_BUF_IOCTL_IMPORT_SYNC_FILE:
 487		return dma_buf_import_sync_file(dmabuf, (const void __user *)arg);
 488#endif
 489
 490	default:
 491		return -ENOTTY;
 492	}
 493}
 494
 495static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
 496{
 497	struct dma_buf *dmabuf = file->private_data;
 498
 499	seq_printf(m, "size:\t%zu\n", dmabuf->size);
 500	/* Don't count the temporary reference taken inside procfs seq_show */
 501	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
 502	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
 503	spin_lock(&dmabuf->name_lock);
 504	if (dmabuf->name)
 505		seq_printf(m, "name:\t%s\n", dmabuf->name);
 506	spin_unlock(&dmabuf->name_lock);
 507}
 508
 509static const struct file_operations dma_buf_fops = {
 510	.release	= dma_buf_file_release,
 511	.mmap		= dma_buf_mmap_internal,
 512	.llseek		= dma_buf_llseek,
 513	.poll		= dma_buf_poll,
 514	.unlocked_ioctl	= dma_buf_ioctl,
 515	.compat_ioctl	= compat_ptr_ioctl,
 
 
 516	.show_fdinfo	= dma_buf_show_fdinfo,
 517};
 518
 519/*
 520 * is_dma_buf_file - Check if struct file* is associated with dma_buf
 521 */
 522static inline int is_dma_buf_file(struct file *file)
 523{
 524	return file->f_op == &dma_buf_fops;
 525}
 526
 527static struct file *dma_buf_getfile(size_t size, int flags)
 528{
 529	static atomic64_t dmabuf_inode = ATOMIC64_INIT(0);
 530	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
 531	struct file *file;
 
 532
 533	if (IS_ERR(inode))
 534		return ERR_CAST(inode);
 535
 536	inode->i_size = size;
 537	inode_set_bytes(inode, size);
 538
 539	/*
 540	 * The ->i_ino acquired from get_next_ino() is not unique thus
 541	 * not suitable for using it as dentry name by dmabuf stats.
 542	 * Override ->i_ino with the unique and dmabuffs specific
 543	 * value.
 544	 */
 545	inode->i_ino = atomic64_add_return(1, &dmabuf_inode);
 546	flags &= O_ACCMODE | O_NONBLOCK;
 547	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
 548				 flags, &dma_buf_fops);
 549	if (IS_ERR(file))
 550		goto err_alloc_file;
 
 
 
 551
 552	return file;
 553
 554err_alloc_file:
 555	iput(inode);
 556	return file;
 557}
 558
 559/**
 560 * DOC: dma buf device access
 561 *
 562 * For device DMA access to a shared DMA buffer the usual sequence of operations
 563 * is fairly simple:
 564 *
 565 * 1. The exporter defines his exporter instance using
 566 *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
 567 *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
 568 *    as a file descriptor by calling dma_buf_fd().
 569 *
 570 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
 571 *    to share with: First the file descriptor is converted to a &dma_buf using
 572 *    dma_buf_get(). Then the buffer is attached to the device using
 573 *    dma_buf_attach().
 574 *
 575 *    Up to this stage the exporter is still free to migrate or reallocate the
 576 *    backing storage.
 577 *
 578 * 3. Once the buffer is attached to all devices userspace can initiate DMA
 579 *    access to the shared buffer. In the kernel this is done by calling
 580 *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
 581 *
 582 * 4. Once a driver is done with a shared buffer it needs to call
 583 *    dma_buf_detach() (after cleaning up any mappings) and then release the
 584 *    reference acquired with dma_buf_get() by calling dma_buf_put().
 585 *
 586 * For the detailed semantics exporters are expected to implement see
 587 * &dma_buf_ops.
 588 */
 589
 590/**
 591 * dma_buf_export - Creates a new dma_buf, and associates an anon file
 592 * with this buffer, so it can be exported.
 593 * Also connect the allocator specific data and ops to the buffer.
 594 * Additionally, provide a name string for exporter; useful in debugging.
 595 *
 596 * @exp_info:	[in]	holds all the export related information provided
 597 *			by the exporter. see &struct dma_buf_export_info
 598 *			for further details.
 599 *
 600 * Returns, on success, a newly created struct dma_buf object, which wraps the
 601 * supplied private data and operations for struct dma_buf_ops. On either
 602 * missing ops, or error in allocating struct dma_buf, will return negative
 603 * error.
 604 *
 605 * For most cases the easiest way to create @exp_info is through the
 606 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
 607 */
 608struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
 609{
 610	struct dma_buf *dmabuf;
 611	struct dma_resv *resv = exp_info->resv;
 612	struct file *file;
 613	size_t alloc_size = sizeof(struct dma_buf);
 614	int ret;
 615
 616	if (WARN_ON(!exp_info->priv || !exp_info->ops
 617		    || !exp_info->ops->map_dma_buf
 618		    || !exp_info->ops->unmap_dma_buf
 619		    || !exp_info->ops->release))
 620		return ERR_PTR(-EINVAL);
 621
 622	if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
 623		    (exp_info->ops->pin || exp_info->ops->unpin)))
 624		return ERR_PTR(-EINVAL);
 625
 626	if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
 
 
 
 
 627		return ERR_PTR(-EINVAL);
 
 628
 629	if (!try_module_get(exp_info->owner))
 630		return ERR_PTR(-ENOENT);
 631
 632	file = dma_buf_getfile(exp_info->size, exp_info->flags);
 633	if (IS_ERR(file)) {
 634		ret = PTR_ERR(file);
 635		goto err_module;
 636	}
 637
 638	if (!exp_info->resv)
 639		alloc_size += sizeof(struct dma_resv);
 640	else
 641		/* prevent &dma_buf[1] == dma_buf->resv */
 642		alloc_size += 1;
 643	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
 644	if (!dmabuf) {
 645		ret = -ENOMEM;
 646		goto err_file;
 647	}
 648
 649	dmabuf->priv = exp_info->priv;
 650	dmabuf->ops = exp_info->ops;
 651	dmabuf->size = exp_info->size;
 652	dmabuf->exp_name = exp_info->exp_name;
 653	dmabuf->owner = exp_info->owner;
 654	spin_lock_init(&dmabuf->name_lock);
 655	init_waitqueue_head(&dmabuf->poll);
 656	dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll;
 657	dmabuf->cb_in.active = dmabuf->cb_out.active = 0;
 658	INIT_LIST_HEAD(&dmabuf->attachments);
 659
 660	if (!resv) {
 661		dmabuf->resv = (struct dma_resv *)&dmabuf[1];
 662		dma_resv_init(dmabuf->resv);
 663	} else {
 664		dmabuf->resv = resv;
 665	}
 
 666
 667	ret = dma_buf_stats_setup(dmabuf, file);
 668	if (ret)
 
 669		goto err_dmabuf;
 
 670
 671	file->private_data = dmabuf;
 672	file->f_path.dentry->d_fsdata = dmabuf;
 673	dmabuf->file = file;
 674
 
 
 
 675	mutex_lock(&db_list.lock);
 676	list_add(&dmabuf->list_node, &db_list.head);
 677	mutex_unlock(&db_list.lock);
 678
 679	return dmabuf;
 680
 681err_dmabuf:
 682	if (!resv)
 683		dma_resv_fini(dmabuf->resv);
 684	kfree(dmabuf);
 685err_file:
 686	fput(file);
 687err_module:
 688	module_put(exp_info->owner);
 689	return ERR_PTR(ret);
 690}
 691EXPORT_SYMBOL_NS_GPL(dma_buf_export, DMA_BUF);
 692
 693/**
 694 * dma_buf_fd - returns a file descriptor for the given struct dma_buf
 695 * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
 696 * @flags:      [in]    flags to give to fd
 697 *
 698 * On success, returns an associated 'fd'. Else, returns error.
 699 */
 700int dma_buf_fd(struct dma_buf *dmabuf, int flags)
 701{
 702	int fd;
 703
 704	if (!dmabuf || !dmabuf->file)
 705		return -EINVAL;
 706
 707	fd = get_unused_fd_flags(flags);
 708	if (fd < 0)
 709		return fd;
 710
 711	fd_install(fd, dmabuf->file);
 712
 713	return fd;
 714}
 715EXPORT_SYMBOL_NS_GPL(dma_buf_fd, DMA_BUF);
 716
 717/**
 718 * dma_buf_get - returns the struct dma_buf related to an fd
 719 * @fd:	[in]	fd associated with the struct dma_buf to be returned
 720 *
 721 * On success, returns the struct dma_buf associated with an fd; uses
 722 * file's refcounting done by fget to increase refcount. returns ERR_PTR
 723 * otherwise.
 724 */
 725struct dma_buf *dma_buf_get(int fd)
 726{
 727	struct file *file;
 728
 729	file = fget(fd);
 730
 731	if (!file)
 732		return ERR_PTR(-EBADF);
 733
 734	if (!is_dma_buf_file(file)) {
 735		fput(file);
 736		return ERR_PTR(-EINVAL);
 737	}
 738
 739	return file->private_data;
 740}
 741EXPORT_SYMBOL_NS_GPL(dma_buf_get, DMA_BUF);
 742
 743/**
 744 * dma_buf_put - decreases refcount of the buffer
 745 * @dmabuf:	[in]	buffer to reduce refcount of
 746 *
 747 * Uses file's refcounting done implicitly by fput().
 748 *
 749 * If, as a result of this call, the refcount becomes 0, the 'release' file
 750 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
 751 * in turn, and frees the memory allocated for dmabuf when exported.
 752 */
 753void dma_buf_put(struct dma_buf *dmabuf)
 754{
 755	if (WARN_ON(!dmabuf || !dmabuf->file))
 756		return;
 757
 758	fput(dmabuf->file);
 759}
 760EXPORT_SYMBOL_NS_GPL(dma_buf_put, DMA_BUF);
 761
 762static void mangle_sg_table(struct sg_table *sg_table)
 763{
 764#ifdef CONFIG_DMABUF_DEBUG
 765	int i;
 766	struct scatterlist *sg;
 767
 768	/* To catch abuse of the underlying struct page by importers mix
 769	 * up the bits, but take care to preserve the low SG_ bits to
 770	 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf
 771	 * before passing the sgt back to the exporter. */
 772	for_each_sgtable_sg(sg_table, sg, i)
 773		sg->page_link ^= ~0xffUL;
 774#endif
 775
 776}
 777static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach,
 778				       enum dma_data_direction direction)
 779{
 780	struct sg_table *sg_table;
 781	signed long ret;
 782
 783	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
 784	if (IS_ERR_OR_NULL(sg_table))
 785		return sg_table;
 786
 787	if (!dma_buf_attachment_is_dynamic(attach)) {
 788		ret = dma_resv_wait_timeout(attach->dmabuf->resv,
 789					    DMA_RESV_USAGE_KERNEL, true,
 790					    MAX_SCHEDULE_TIMEOUT);
 791		if (ret < 0) {
 792			attach->dmabuf->ops->unmap_dma_buf(attach, sg_table,
 793							   direction);
 794			return ERR_PTR(ret);
 795		}
 796	}
 797
 798	mangle_sg_table(sg_table);
 799	return sg_table;
 800}
 801
 802/**
 803 * DOC: locking convention
 804 *
 805 * In order to avoid deadlock situations between dma-buf exports and importers,
 806 * all dma-buf API users must follow the common dma-buf locking convention.
 807 *
 808 * Convention for importers
 809 *
 810 * 1. Importers must hold the dma-buf reservation lock when calling these
 811 *    functions:
 812 *
 813 *     - dma_buf_pin()
 814 *     - dma_buf_unpin()
 815 *     - dma_buf_map_attachment()
 816 *     - dma_buf_unmap_attachment()
 817 *     - dma_buf_vmap()
 818 *     - dma_buf_vunmap()
 819 *
 820 * 2. Importers must not hold the dma-buf reservation lock when calling these
 821 *    functions:
 822 *
 823 *     - dma_buf_attach()
 824 *     - dma_buf_dynamic_attach()
 825 *     - dma_buf_detach()
 826 *     - dma_buf_export()
 827 *     - dma_buf_fd()
 828 *     - dma_buf_get()
 829 *     - dma_buf_put()
 830 *     - dma_buf_mmap()
 831 *     - dma_buf_begin_cpu_access()
 832 *     - dma_buf_end_cpu_access()
 833 *     - dma_buf_map_attachment_unlocked()
 834 *     - dma_buf_unmap_attachment_unlocked()
 835 *     - dma_buf_vmap_unlocked()
 836 *     - dma_buf_vunmap_unlocked()
 837 *
 838 * Convention for exporters
 839 *
 840 * 1. These &dma_buf_ops callbacks are invoked with unlocked dma-buf
 841 *    reservation and exporter can take the lock:
 842 *
 843 *     - &dma_buf_ops.attach()
 844 *     - &dma_buf_ops.detach()
 845 *     - &dma_buf_ops.release()
 846 *     - &dma_buf_ops.begin_cpu_access()
 847 *     - &dma_buf_ops.end_cpu_access()
 848 *     - &dma_buf_ops.mmap()
 849 *
 850 * 2. These &dma_buf_ops callbacks are invoked with locked dma-buf
 851 *    reservation and exporter can't take the lock:
 852 *
 853 *     - &dma_buf_ops.pin()
 854 *     - &dma_buf_ops.unpin()
 855 *     - &dma_buf_ops.map_dma_buf()
 856 *     - &dma_buf_ops.unmap_dma_buf()
 857 *     - &dma_buf_ops.vmap()
 858 *     - &dma_buf_ops.vunmap()
 859 *
 860 * 3. Exporters must hold the dma-buf reservation lock when calling these
 861 *    functions:
 862 *
 863 *     - dma_buf_move_notify()
 864 */
 865
 866/**
 867 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list
 868 * @dmabuf:		[in]	buffer to attach device to.
 869 * @dev:		[in]	device to be attached.
 870 * @importer_ops:	[in]	importer operations for the attachment
 871 * @importer_priv:	[in]	importer private pointer for the attachment
 872 *
 873 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
 874 * must be cleaned up by calling dma_buf_detach().
 875 *
 876 * Optionally this calls &dma_buf_ops.attach to allow device-specific attach
 877 * functionality.
 878 *
 879 * Returns:
 880 *
 881 * A pointer to newly created &dma_buf_attachment on success, or a negative
 882 * error code wrapped into a pointer on failure.
 883 *
 884 * Note that this can fail if the backing storage of @dmabuf is in a place not
 885 * accessible to @dev, and cannot be moved to a more suitable place. This is
 886 * indicated with the error code -EBUSY.
 887 */
 888struct dma_buf_attachment *
 889dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
 890		       const struct dma_buf_attach_ops *importer_ops,
 891		       void *importer_priv)
 892{
 893	struct dma_buf_attachment *attach;
 894	int ret;
 895
 896	if (WARN_ON(!dmabuf || !dev))
 897		return ERR_PTR(-EINVAL);
 898
 899	if (WARN_ON(importer_ops && !importer_ops->move_notify))
 900		return ERR_PTR(-EINVAL);
 901
 902	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
 903	if (!attach)
 904		return ERR_PTR(-ENOMEM);
 905
 906	attach->dev = dev;
 907	attach->dmabuf = dmabuf;
 908	if (importer_ops)
 909		attach->peer2peer = importer_ops->allow_peer2peer;
 910	attach->importer_ops = importer_ops;
 911	attach->importer_priv = importer_priv;
 912
 913	if (dmabuf->ops->attach) {
 914		ret = dmabuf->ops->attach(dmabuf, attach);
 915		if (ret)
 916			goto err_attach;
 917	}
 918	dma_resv_lock(dmabuf->resv, NULL);
 919	list_add(&attach->node, &dmabuf->attachments);
 920	dma_resv_unlock(dmabuf->resv);
 921
 922	/* When either the importer or the exporter can't handle dynamic
 923	 * mappings we cache the mapping here to avoid issues with the
 924	 * reservation object lock.
 925	 */
 926	if (dma_buf_attachment_is_dynamic(attach) !=
 927	    dma_buf_is_dynamic(dmabuf)) {
 928		struct sg_table *sgt;
 929
 930		dma_resv_lock(attach->dmabuf->resv, NULL);
 931		if (dma_buf_is_dynamic(attach->dmabuf)) {
 932			ret = dmabuf->ops->pin(attach);
 933			if (ret)
 934				goto err_unlock;
 935		}
 936
 937		sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL);
 938		if (!sgt)
 939			sgt = ERR_PTR(-ENOMEM);
 940		if (IS_ERR(sgt)) {
 941			ret = PTR_ERR(sgt);
 942			goto err_unpin;
 943		}
 944		dma_resv_unlock(attach->dmabuf->resv);
 945		attach->sgt = sgt;
 946		attach->dir = DMA_BIDIRECTIONAL;
 947	}
 948
 949	return attach;
 950
 951err_attach:
 952	kfree(attach);
 
 953	return ERR_PTR(ret);
 954
 955err_unpin:
 956	if (dma_buf_is_dynamic(attach->dmabuf))
 957		dmabuf->ops->unpin(attach);
 958
 959err_unlock:
 960	dma_resv_unlock(attach->dmabuf->resv);
 961
 962	dma_buf_detach(dmabuf, attach);
 963	return ERR_PTR(ret);
 964}
 965EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, DMA_BUF);
 966
 967/**
 968 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
 969 * @dmabuf:	[in]	buffer to attach device to.
 970 * @dev:	[in]	device to be attached.
 971 *
 972 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
 973 * mapping.
 974 */
 975struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
 976					  struct device *dev)
 977{
 978	return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
 979}
 980EXPORT_SYMBOL_NS_GPL(dma_buf_attach, DMA_BUF);
 981
 982static void __unmap_dma_buf(struct dma_buf_attachment *attach,
 983			    struct sg_table *sg_table,
 984			    enum dma_data_direction direction)
 985{
 986	/* uses XOR, hence this unmangles */
 987	mangle_sg_table(sg_table);
 988
 989	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
 990}
 
 991
 992/**
 993 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list
 
 994 * @dmabuf:	[in]	buffer to detach from.
 995 * @attach:	[in]	attachment to be detached; is free'd after this call.
 996 *
 997 * Clean up a device attachment obtained by calling dma_buf_attach().
 998 *
 999 * Optionally this calls &dma_buf_ops.detach for device-specific detach.
1000 */
1001void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
1002{
1003	if (WARN_ON(!dmabuf || !attach || dmabuf != attach->dmabuf))
1004		return;
1005
1006	dma_resv_lock(dmabuf->resv, NULL);
1007
1008	if (attach->sgt) {
1009
1010		__unmap_dma_buf(attach, attach->sgt, attach->dir);
1011
1012		if (dma_buf_is_dynamic(attach->dmabuf))
1013			dmabuf->ops->unpin(attach);
1014	}
1015	list_del(&attach->node);
1016
1017	dma_resv_unlock(dmabuf->resv);
1018
1019	if (dmabuf->ops->detach)
1020		dmabuf->ops->detach(dmabuf, attach);
1021
 
1022	kfree(attach);
1023}
1024EXPORT_SYMBOL_NS_GPL(dma_buf_detach, DMA_BUF);
1025
1026/**
1027 * dma_buf_pin - Lock down the DMA-buf
1028 * @attach:	[in]	attachment which should be pinned
1029 *
1030 * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may
1031 * call this, and only for limited use cases like scanout and not for temporary
1032 * pin operations. It is not permitted to allow userspace to pin arbitrary
1033 * amounts of buffers through this interface.
1034 *
1035 * Buffers must be unpinned by calling dma_buf_unpin().
1036 *
1037 * Returns:
1038 * 0 on success, negative error code on failure.
1039 */
1040int dma_buf_pin(struct dma_buf_attachment *attach)
1041{
1042	struct dma_buf *dmabuf = attach->dmabuf;
1043	int ret = 0;
1044
1045	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
1046
1047	dma_resv_assert_held(dmabuf->resv);
1048
1049	if (dmabuf->ops->pin)
1050		ret = dmabuf->ops->pin(attach);
1051
1052	return ret;
1053}
1054EXPORT_SYMBOL_NS_GPL(dma_buf_pin, DMA_BUF);
1055
1056/**
1057 * dma_buf_unpin - Unpin a DMA-buf
1058 * @attach:	[in]	attachment which should be unpinned
1059 *
1060 * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move
1061 * any mapping of @attach again and inform the importer through
1062 * &dma_buf_attach_ops.move_notify.
1063 */
1064void dma_buf_unpin(struct dma_buf_attachment *attach)
1065{
1066	struct dma_buf *dmabuf = attach->dmabuf;
1067
1068	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
1069
1070	dma_resv_assert_held(dmabuf->resv);
1071
1072	if (dmabuf->ops->unpin)
1073		dmabuf->ops->unpin(attach);
1074}
1075EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, DMA_BUF);
1076
1077/**
1078 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
1079 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1080 * dma_buf_ops.
1081 * @attach:	[in]	attachment whose scatterlist is to be returned
1082 * @direction:	[in]	direction of DMA transfer
1083 *
1084 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
1085 * on error. May return -EINTR if it is interrupted by a signal.
1086 *
1087 * On success, the DMA addresses and lengths in the returned scatterlist are
1088 * PAGE_SIZE aligned.
1089 *
1090 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
1091 * the underlying backing storage is pinned for as long as a mapping exists,
1092 * therefore users/importers should not hold onto a mapping for undue amounts of
1093 * time.
1094 *
1095 * Important: Dynamic importers must wait for the exclusive fence of the struct
1096 * dma_resv attached to the DMA-BUF first.
1097 */
1098struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
1099					enum dma_data_direction direction)
1100{
1101	struct sg_table *sg_table;
1102	int r;
1103
1104	might_sleep();
1105
1106	if (WARN_ON(!attach || !attach->dmabuf))
1107		return ERR_PTR(-EINVAL);
1108
1109	dma_resv_assert_held(attach->dmabuf->resv);
1110
1111	if (attach->sgt) {
1112		/*
1113		 * Two mappings with different directions for the same
1114		 * attachment are not allowed.
1115		 */
1116		if (attach->dir != direction &&
1117		    attach->dir != DMA_BIDIRECTIONAL)
1118			return ERR_PTR(-EBUSY);
1119
1120		return attach->sgt;
1121	}
1122
1123	if (dma_buf_is_dynamic(attach->dmabuf)) {
1124		if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
1125			r = attach->dmabuf->ops->pin(attach);
1126			if (r)
1127				return ERR_PTR(r);
1128		}
1129	}
1130
1131	sg_table = __map_dma_buf(attach, direction);
1132	if (!sg_table)
1133		sg_table = ERR_PTR(-ENOMEM);
1134
1135	if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
1136	     !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1137		attach->dmabuf->ops->unpin(attach);
1138
1139	if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
1140		attach->sgt = sg_table;
1141		attach->dir = direction;
1142	}
1143
1144#ifdef CONFIG_DMA_API_DEBUG
1145	if (!IS_ERR(sg_table)) {
1146		struct scatterlist *sg;
1147		u64 addr;
1148		int len;
1149		int i;
1150
1151		for_each_sgtable_dma_sg(sg_table, sg, i) {
1152			addr = sg_dma_address(sg);
1153			len = sg_dma_len(sg);
1154			if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) {
1155				pr_debug("%s: addr %llx or len %x is not page aligned!\n",
1156					 __func__, addr, len);
1157			}
1158		}
1159	}
1160#endif /* CONFIG_DMA_API_DEBUG */
1161	return sg_table;
1162}
1163EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, DMA_BUF);
1164
1165/**
1166 * dma_buf_map_attachment_unlocked - Returns the scatterlist table of the attachment;
1167 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1168 * dma_buf_ops.
1169 * @attach:	[in]	attachment whose scatterlist is to be returned
1170 * @direction:	[in]	direction of DMA transfer
1171 *
1172 * Unlocked variant of dma_buf_map_attachment().
1173 */
1174struct sg_table *
1175dma_buf_map_attachment_unlocked(struct dma_buf_attachment *attach,
1176				enum dma_data_direction direction)
1177{
1178	struct sg_table *sg_table;
1179
1180	might_sleep();
1181
1182	if (WARN_ON(!attach || !attach->dmabuf))
1183		return ERR_PTR(-EINVAL);
1184
1185	dma_resv_lock(attach->dmabuf->resv, NULL);
1186	sg_table = dma_buf_map_attachment(attach, direction);
1187	dma_resv_unlock(attach->dmabuf->resv);
1188
1189	return sg_table;
1190}
1191EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment_unlocked, DMA_BUF);
1192
1193/**
1194 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
1195 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1196 * dma_buf_ops.
1197 * @attach:	[in]	attachment to unmap buffer from
1198 * @sg_table:	[in]	scatterlist info of the buffer to unmap
1199 * @direction:  [in]    direction of DMA transfer
1200 *
1201 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
1202 */
1203void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
1204				struct sg_table *sg_table,
1205				enum dma_data_direction direction)
1206{
1207	might_sleep();
1208
1209	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1210		return;
1211
1212	dma_resv_assert_held(attach->dmabuf->resv);
1213
1214	if (attach->sgt == sg_table)
1215		return;
1216
1217	__unmap_dma_buf(attach, sg_table, direction);
1218
1219	if (dma_buf_is_dynamic(attach->dmabuf) &&
1220	    !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1221		dma_buf_unpin(attach);
1222}
1223EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, DMA_BUF);
1224
1225/**
1226 * dma_buf_unmap_attachment_unlocked - unmaps and decreases usecount of the buffer;might
1227 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1228 * dma_buf_ops.
1229 * @attach:	[in]	attachment to unmap buffer from
1230 * @sg_table:	[in]	scatterlist info of the buffer to unmap
1231 * @direction:	[in]	direction of DMA transfer
1232 *
1233 * Unlocked variant of dma_buf_unmap_attachment().
1234 */
1235void dma_buf_unmap_attachment_unlocked(struct dma_buf_attachment *attach,
1236				       struct sg_table *sg_table,
1237				       enum dma_data_direction direction)
1238{
1239	might_sleep();
1240
1241	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1242		return;
1243
1244	dma_resv_lock(attach->dmabuf->resv, NULL);
1245	dma_buf_unmap_attachment(attach, sg_table, direction);
1246	dma_resv_unlock(attach->dmabuf->resv);
1247}
1248EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment_unlocked, DMA_BUF);
1249
1250/**
1251 * dma_buf_move_notify - notify attachments that DMA-buf is moving
1252 *
1253 * @dmabuf:	[in]	buffer which is moving
1254 *
1255 * Informs all attachments that they need to destroy and recreate all their
1256 * mappings.
1257 */
1258void dma_buf_move_notify(struct dma_buf *dmabuf)
1259{
1260	struct dma_buf_attachment *attach;
1261
1262	dma_resv_assert_held(dmabuf->resv);
1263
1264	list_for_each_entry(attach, &dmabuf->attachments, node)
1265		if (attach->importer_ops)
1266			attach->importer_ops->move_notify(attach);
1267}
1268EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, DMA_BUF);
1269
1270/**
1271 * DOC: cpu access
1272 *
1273 * There are multiple reasons for supporting CPU access to a dma buffer object:
1274 *
1275 * - Fallback operations in the kernel, for example when a device is connected
1276 *   over USB and the kernel needs to shuffle the data around first before
1277 *   sending it away. Cache coherency is handled by bracketing any transactions
1278 *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1279 *   access.
1280 *
1281 *   Since for most kernel internal dma-buf accesses need the entire buffer, a
1282 *   vmap interface is introduced. Note that on very old 32-bit architectures
1283 *   vmalloc space might be limited and result in vmap calls failing.
 
 
 
 
1284 *
1285 *   Interfaces::
 
 
1286 *
1287 *      void \*dma_buf_vmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1288 *      void dma_buf_vunmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
 
 
 
 
 
 
 
 
 
 
 
 
 
1289 *
1290 *   The vmap call can fail if there is no vmap support in the exporter, or if
1291 *   it runs out of vmalloc space. Note that the dma-buf layer keeps a reference
1292 *   count for all vmap access and calls down into the exporter's vmap function
1293 *   only when no vmapping exists, and only unmaps it once. Protection against
1294 *   concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex.
 
1295 *
1296 * - For full compatibility on the importer side with existing userspace
1297 *   interfaces, which might already support mmap'ing buffers. This is needed in
1298 *   many processing pipelines (e.g. feeding a software rendered image into a
1299 *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1300 *   framework already supported this and for DMA buffer file descriptors to
1301 *   replace ION buffers mmap support was needed.
1302 *
1303 *   There is no special interfaces, userspace simply calls mmap on the dma-buf
1304 *   fd. But like for CPU access there's a need to bracket the actual access,
1305 *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1306 *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1307 *   be restarted.
1308 *
1309 *   Some systems might need some sort of cache coherency management e.g. when
1310 *   CPU and GPU domains are being accessed through dma-buf at the same time.
1311 *   To circumvent this problem there are begin/end coherency markers, that
1312 *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1313 *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1314 *   sequence would be used like following:
1315 *
1316 *     - mmap dma-buf fd
1317 *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1318 *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1319 *       want (with the new data being consumed by say the GPU or the scanout
1320 *       device)
1321 *     - munmap once you don't need the buffer any more
1322 *
1323 *    For correctness and optimal performance, it is always required to use
1324 *    SYNC_START and SYNC_END before and after, respectively, when accessing the
1325 *    mapped address. Userspace cannot rely on coherent access, even when there
1326 *    are systems where it just works without calling these ioctls.
1327 *
1328 * - And as a CPU fallback in userspace processing pipelines.
1329 *
1330 *   Similar to the motivation for kernel cpu access it is again important that
1331 *   the userspace code of a given importing subsystem can use the same
1332 *   interfaces with a imported dma-buf buffer object as with a native buffer
1333 *   object. This is especially important for drm where the userspace part of
1334 *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
1335 *   use a different way to mmap a buffer rather invasive.
1336 *
1337 *   The assumption in the current dma-buf interfaces is that redirecting the
1338 *   initial mmap is all that's needed. A survey of some of the existing
1339 *   subsystems shows that no driver seems to do any nefarious thing like
1340 *   syncing up with outstanding asynchronous processing on the device or
1341 *   allocating special resources at fault time. So hopefully this is good
1342 *   enough, since adding interfaces to intercept pagefaults and allow pte
1343 *   shootdowns would increase the complexity quite a bit.
1344 *
1345 *   Interface::
1346 *
1347 *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1348 *		       unsigned long);
1349 *
1350 *   If the importing subsystem simply provides a special-purpose mmap call to
1351 *   set up a mapping in userspace, calling do_mmap with &dma_buf.file will
1352 *   equally achieve that for a dma-buf object.
1353 */
1354
1355static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1356				      enum dma_data_direction direction)
1357{
1358	bool write = (direction == DMA_BIDIRECTIONAL ||
1359		      direction == DMA_TO_DEVICE);
1360	struct dma_resv *resv = dmabuf->resv;
1361	long ret;
1362
1363	/* Wait on any implicit rendering fences */
1364	ret = dma_resv_wait_timeout(resv, dma_resv_usage_rw(write),
1365				    true, MAX_SCHEDULE_TIMEOUT);
1366	if (ret < 0)
1367		return ret;
1368
1369	return 0;
1370}
1371
1372/**
1373 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1374 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1375 * preparations. Coherency is only guaranteed in the specified range for the
1376 * specified access direction.
1377 * @dmabuf:	[in]	buffer to prepare cpu access for.
1378 * @direction:	[in]	direction of access.
1379 *
1380 * After the cpu access is complete the caller should call
1381 * dma_buf_end_cpu_access(). Only when cpu access is bracketed by both calls is
1382 * it guaranteed to be coherent with other DMA access.
1383 *
1384 * This function will also wait for any DMA transactions tracked through
1385 * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit
1386 * synchronization this function will only ensure cache coherency, callers must
1387 * ensure synchronization with such DMA transactions on their own.
1388 *
1389 * Can return negative error values, returns 0 on success.
1390 */
1391int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1392			     enum dma_data_direction direction)
1393{
1394	int ret = 0;
1395
1396	if (WARN_ON(!dmabuf))
1397		return -EINVAL;
1398
1399	might_lock(&dmabuf->resv->lock.base);
1400
1401	if (dmabuf->ops->begin_cpu_access)
1402		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1403
1404	/* Ensure that all fences are waited upon - but we first allow
1405	 * the native handler the chance to do so more efficiently if it
1406	 * chooses. A double invocation here will be reasonably cheap no-op.
1407	 */
1408	if (ret == 0)
1409		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1410
1411	return ret;
1412}
1413EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, DMA_BUF);
1414
1415/**
1416 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1417 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1418 * actions. Coherency is only guaranteed in the specified range for the
1419 * specified access direction.
1420 * @dmabuf:	[in]	buffer to complete cpu access for.
1421 * @direction:	[in]	direction of access.
1422 *
1423 * This terminates CPU access started with dma_buf_begin_cpu_access().
1424 *
1425 * Can return negative error values, returns 0 on success.
1426 */
1427int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1428			   enum dma_data_direction direction)
1429{
1430	int ret = 0;
1431
1432	WARN_ON(!dmabuf);
1433
1434	might_lock(&dmabuf->resv->lock.base);
1435
1436	if (dmabuf->ops->end_cpu_access)
1437		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1438
1439	return ret;
1440}
1441EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, DMA_BUF);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1442
1443
1444/**
1445 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1446 * @dmabuf:	[in]	buffer that should back the vma
1447 * @vma:	[in]	vma for the mmap
1448 * @pgoff:	[in]	offset in pages where this mmap should start within the
1449 *			dma-buf buffer.
1450 *
1451 * This function adjusts the passed in vma so that it points at the file of the
1452 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1453 * checking on the size of the vma. Then it calls the exporters mmap function to
1454 * set up the mapping.
1455 *
1456 * Can return negative error values, returns 0 on success.
1457 */
1458int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1459		 unsigned long pgoff)
1460{
 
 
 
1461	if (WARN_ON(!dmabuf || !vma))
1462		return -EINVAL;
1463
1464	/* check if buffer supports mmap */
1465	if (!dmabuf->ops->mmap)
1466		return -EINVAL;
1467
1468	/* check for offset overflow */
1469	if (pgoff + vma_pages(vma) < pgoff)
1470		return -EOVERFLOW;
1471
1472	/* check for overflowing the buffer's size */
1473	if (pgoff + vma_pages(vma) >
1474	    dmabuf->size >> PAGE_SHIFT)
1475		return -EINVAL;
1476
1477	/* readjust the vma */
1478	vma_set_file(vma, dmabuf->file);
 
 
1479	vma->vm_pgoff = pgoff;
1480
1481	return dmabuf->ops->mmap(dmabuf, vma);
 
 
 
 
 
 
 
 
 
 
1482}
1483EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, DMA_BUF);
1484
1485/**
1486 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1487 * address space. Same restrictions as for vmap and friends apply.
1488 * @dmabuf:	[in]	buffer to vmap
1489 * @map:	[out]	returns the vmap pointer
1490 *
1491 * This call may fail due to lack of virtual mapping address space.
1492 * These calls are optional in drivers. The intended use for them
1493 * is for mapping objects linear in kernel space for high use objects.
 
1494 *
1495 * To ensure coherency users must call dma_buf_begin_cpu_access() and
1496 * dma_buf_end_cpu_access() around any cpu access performed through this
1497 * mapping.
1498 *
1499 * Returns 0 on success, or a negative errno code otherwise.
1500 */
1501int dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
1502{
1503	struct iosys_map ptr;
1504	int ret;
1505
1506	iosys_map_clear(map);
1507
1508	if (WARN_ON(!dmabuf))
1509		return -EINVAL;
1510
1511	dma_resv_assert_held(dmabuf->resv);
1512
1513	if (!dmabuf->ops->vmap)
1514		return -EINVAL;
1515
 
1516	if (dmabuf->vmapping_counter) {
1517		dmabuf->vmapping_counter++;
1518		BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1519		*map = dmabuf->vmap_ptr;
1520		return 0;
1521	}
1522
1523	BUG_ON(iosys_map_is_set(&dmabuf->vmap_ptr));
1524
1525	ret = dmabuf->ops->vmap(dmabuf, &ptr);
1526	if (WARN_ON_ONCE(ret))
1527		return ret;
 
 
1528
1529	dmabuf->vmap_ptr = ptr;
1530	dmabuf->vmapping_counter = 1;
1531
1532	*map = dmabuf->vmap_ptr;
1533
1534	return 0;
1535}
1536EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, DMA_BUF);
1537
1538/**
1539 * dma_buf_vmap_unlocked - Create virtual mapping for the buffer object into kernel
1540 * address space. Same restrictions as for vmap and friends apply.
1541 * @dmabuf:	[in]	buffer to vmap
1542 * @map:	[out]	returns the vmap pointer
1543 *
1544 * Unlocked version of dma_buf_vmap()
1545 *
1546 * Returns 0 on success, or a negative errno code otherwise.
1547 */
1548int dma_buf_vmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map)
1549{
1550	int ret;
1551
1552	iosys_map_clear(map);
1553
1554	if (WARN_ON(!dmabuf))
1555		return -EINVAL;
1556
1557	dma_resv_lock(dmabuf->resv, NULL);
1558	ret = dma_buf_vmap(dmabuf, map);
1559	dma_resv_unlock(dmabuf->resv);
1560
1561	return ret;
1562}
1563EXPORT_SYMBOL_NS_GPL(dma_buf_vmap_unlocked, DMA_BUF);
1564
1565/**
1566 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1567 * @dmabuf:	[in]	buffer to vunmap
1568 * @map:	[in]	vmap pointer to vunmap
1569 */
1570void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
1571{
1572	if (WARN_ON(!dmabuf))
1573		return;
1574
1575	dma_resv_assert_held(dmabuf->resv);
1576
1577	BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1578	BUG_ON(dmabuf->vmapping_counter == 0);
1579	BUG_ON(!iosys_map_is_equal(&dmabuf->vmap_ptr, map));
1580
 
1581	if (--dmabuf->vmapping_counter == 0) {
1582		if (dmabuf->ops->vunmap)
1583			dmabuf->ops->vunmap(dmabuf, map);
1584		iosys_map_clear(&dmabuf->vmap_ptr);
1585	}
 
1586}
1587EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, DMA_BUF);
1588
1589/**
1590 * dma_buf_vunmap_unlocked - Unmap a vmap obtained by dma_buf_vmap.
1591 * @dmabuf:	[in]	buffer to vunmap
1592 * @map:	[in]	vmap pointer to vunmap
1593 */
1594void dma_buf_vunmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map)
1595{
1596	if (WARN_ON(!dmabuf))
1597		return;
1598
1599	dma_resv_lock(dmabuf->resv, NULL);
1600	dma_buf_vunmap(dmabuf, map);
1601	dma_resv_unlock(dmabuf->resv);
1602}
1603EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap_unlocked, DMA_BUF);
1604
1605#ifdef CONFIG_DEBUG_FS
1606static int dma_buf_debug_show(struct seq_file *s, void *unused)
1607{
 
1608	struct dma_buf *buf_obj;
1609	struct dma_buf_attachment *attach_obj;
1610	int count = 0, attach_count;
 
 
 
 
1611	size_t size = 0;
1612	int ret;
1613
1614	ret = mutex_lock_interruptible(&db_list.lock);
1615
1616	if (ret)
1617		return ret;
1618
1619	seq_puts(s, "\nDma-buf Objects:\n");
1620	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\tname\n",
1621		   "size", "flags", "mode", "count", "ino");
1622
1623	list_for_each_entry(buf_obj, &db_list.head, list_node) {
 
1624
1625		ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1626		if (ret)
1627			goto error_unlock;
1628
 
1629
1630		spin_lock(&buf_obj->name_lock);
1631		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1632				buf_obj->size,
1633				buf_obj->file->f_flags, buf_obj->file->f_mode,
1634				file_count(buf_obj->file),
1635				buf_obj->exp_name,
1636				file_inode(buf_obj->file)->i_ino,
1637				buf_obj->name ?: "<none>");
1638		spin_unlock(&buf_obj->name_lock);
 
 
 
 
 
 
 
 
 
 
 
1639
1640		dma_resv_describe(buf_obj->resv, s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1641
1642		seq_puts(s, "\tAttached Devices:\n");
1643		attach_count = 0;
1644
1645		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1646			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1647			attach_count++;
1648		}
1649		dma_resv_unlock(buf_obj->resv);
1650
1651		seq_printf(s, "Total %d devices attached\n\n",
1652				attach_count);
1653
1654		count++;
1655		size += buf_obj->size;
 
1656	}
1657
1658	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1659
1660	mutex_unlock(&db_list.lock);
1661	return 0;
1662
1663error_unlock:
1664	mutex_unlock(&db_list.lock);
1665	return ret;
1666}
1667
1668DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1669
1670static struct dentry *dma_buf_debugfs_dir;
1671
1672static int dma_buf_init_debugfs(void)
1673{
1674	struct dentry *d;
1675	int err = 0;
1676
1677	d = debugfs_create_dir("dma_buf", NULL);
1678	if (IS_ERR(d))
1679		return PTR_ERR(d);
1680
1681	dma_buf_debugfs_dir = d;
1682
1683	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1684				NULL, &dma_buf_debug_fops);
1685	if (IS_ERR(d)) {
1686		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1687		debugfs_remove_recursive(dma_buf_debugfs_dir);
1688		dma_buf_debugfs_dir = NULL;
1689		err = PTR_ERR(d);
1690	}
1691
1692	return err;
1693}
1694
1695static void dma_buf_uninit_debugfs(void)
1696{
1697	debugfs_remove_recursive(dma_buf_debugfs_dir);
1698}
1699#else
1700static inline int dma_buf_init_debugfs(void)
1701{
1702	return 0;
1703}
1704static inline void dma_buf_uninit_debugfs(void)
1705{
1706}
1707#endif
1708
1709static int __init dma_buf_init(void)
1710{
1711	int ret;
1712
1713	ret = dma_buf_init_sysfs_statistics();
1714	if (ret)
1715		return ret;
1716
1717	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1718	if (IS_ERR(dma_buf_mnt))
1719		return PTR_ERR(dma_buf_mnt);
1720
1721	mutex_init(&db_list.lock);
1722	INIT_LIST_HEAD(&db_list.head);
1723	dma_buf_init_debugfs();
1724	return 0;
1725}
1726subsys_initcall(dma_buf_init);
1727
1728static void __exit dma_buf_deinit(void)
1729{
1730	dma_buf_uninit_debugfs();
1731	kern_unmount(dma_buf_mnt);
1732	dma_buf_uninit_sysfs_statistics();
1733}
1734__exitcall(dma_buf_deinit);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Framework for buffer objects that can be shared across devices/subsystems.
   4 *
   5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
   6 * Author: Sumit Semwal <sumit.semwal@ti.com>
   7 *
   8 * Many thanks to linaro-mm-sig list, and specially
   9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
  10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
  11 * refining of this idea.
  12 */
  13
  14#include <linux/fs.h>
  15#include <linux/slab.h>
  16#include <linux/dma-buf.h>
  17#include <linux/dma-fence.h>
 
  18#include <linux/anon_inodes.h>
  19#include <linux/export.h>
  20#include <linux/debugfs.h>
  21#include <linux/module.h>
  22#include <linux/seq_file.h>
 
  23#include <linux/poll.h>
  24#include <linux/dma-resv.h>
  25#include <linux/mm.h>
  26#include <linux/mount.h>
  27#include <linux/pseudo_fs.h>
  28
  29#include <uapi/linux/dma-buf.h>
  30#include <uapi/linux/magic.h>
  31
 
 
  32static inline int is_dma_buf_file(struct file *);
  33
  34struct dma_buf_list {
  35	struct list_head head;
  36	struct mutex lock;
  37};
  38
  39static struct dma_buf_list db_list;
  40
  41static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
  42{
  43	struct dma_buf *dmabuf;
  44	char name[DMA_BUF_NAME_LEN];
  45	size_t ret = 0;
  46
  47	dmabuf = dentry->d_fsdata;
  48	mutex_lock(&dmabuf->lock);
  49	if (dmabuf->name)
  50		ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
  51	mutex_unlock(&dmabuf->lock);
  52
  53	return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
  54			     dentry->d_name.name, ret > 0 ? name : "");
  55}
  56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  57static const struct dentry_operations dma_buf_dentry_ops = {
  58	.d_dname = dmabuffs_dname,
 
  59};
  60
  61static struct vfsmount *dma_buf_mnt;
  62
  63static int dma_buf_fs_init_context(struct fs_context *fc)
  64{
  65	struct pseudo_fs_context *ctx;
  66
  67	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
  68	if (!ctx)
  69		return -ENOMEM;
  70	ctx->dops = &dma_buf_dentry_ops;
  71	return 0;
  72}
  73
  74static struct file_system_type dma_buf_fs_type = {
  75	.name = "dmabuf",
  76	.init_fs_context = dma_buf_fs_init_context,
  77	.kill_sb = kill_anon_super,
  78};
  79
  80static int dma_buf_release(struct inode *inode, struct file *file)
  81{
  82	struct dma_buf *dmabuf;
  83
  84	if (!is_dma_buf_file(file))
  85		return -EINVAL;
  86
  87	dmabuf = file->private_data;
  88
  89	BUG_ON(dmabuf->vmapping_counter);
  90
  91	/*
  92	 * Any fences that a dma-buf poll can wait on should be signaled
  93	 * before releasing dma-buf. This is the responsibility of each
  94	 * driver that uses the reservation objects.
  95	 *
  96	 * If you hit this BUG() it means someone dropped their ref to the
  97	 * dma-buf while still having pending operation to the buffer.
  98	 */
  99	BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
 100
 101	dmabuf->ops->release(dmabuf);
 102
 103	mutex_lock(&db_list.lock);
 104	list_del(&dmabuf->list_node);
 105	mutex_unlock(&db_list.lock);
 106
 107	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
 108		dma_resv_fini(dmabuf->resv);
 109
 110	module_put(dmabuf->owner);
 111	kfree(dmabuf);
 112	return 0;
 113}
 114
 115static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
 116{
 117	struct dma_buf *dmabuf;
 118
 119	if (!is_dma_buf_file(file))
 120		return -EINVAL;
 121
 122	dmabuf = file->private_data;
 123
 124	/* check if buffer supports mmap */
 125	if (!dmabuf->ops->mmap)
 126		return -EINVAL;
 127
 128	/* check for overflowing the buffer's size */
 129	if (vma->vm_pgoff + vma_pages(vma) >
 130	    dmabuf->size >> PAGE_SHIFT)
 131		return -EINVAL;
 132
 133	return dmabuf->ops->mmap(dmabuf, vma);
 134}
 135
 136static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
 137{
 138	struct dma_buf *dmabuf;
 139	loff_t base;
 140
 141	if (!is_dma_buf_file(file))
 142		return -EBADF;
 143
 144	dmabuf = file->private_data;
 145
 146	/* only support discovering the end of the buffer,
 147	   but also allow SEEK_SET to maintain the idiomatic
 148	   SEEK_END(0), SEEK_CUR(0) pattern */
 149	if (whence == SEEK_END)
 150		base = dmabuf->size;
 151	else if (whence == SEEK_SET)
 152		base = 0;
 153	else
 154		return -EINVAL;
 155
 156	if (offset != 0)
 157		return -EINVAL;
 158
 159	return base + offset;
 160}
 161
 162/**
 163 * DOC: fence polling
 164 *
 165 * To support cross-device and cross-driver synchronization of buffer access
 166 * implicit fences (represented internally in the kernel with &struct fence) can
 167 * be attached to a &dma_buf. The glue for that and a few related things are
 168 * provided in the &dma_resv structure.
 169 *
 170 * Userspace can query the state of these implicitly tracked fences using poll()
 171 * and related system calls:
 172 *
 173 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
 174 *   most recent write or exclusive fence.
 175 *
 176 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
 177 *   all attached fences, shared and exclusive ones.
 178 *
 179 * Note that this only signals the completion of the respective fences, i.e. the
 180 * DMA transfers are complete. Cache flushing and any other necessary
 181 * preparations before CPU access can begin still need to happen.
 
 
 
 182 */
 183
 184static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
 185{
 186	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
 
 187	unsigned long flags;
 188
 189	spin_lock_irqsave(&dcb->poll->lock, flags);
 190	wake_up_locked_poll(dcb->poll, dcb->active);
 191	dcb->active = 0;
 192	spin_unlock_irqrestore(&dcb->poll->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 193}
 194
 195static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
 196{
 197	struct dma_buf *dmabuf;
 198	struct dma_resv *resv;
 199	struct dma_resv_list *fobj;
 200	struct dma_fence *fence_excl;
 201	__poll_t events;
 202	unsigned shared_count, seq;
 203
 204	dmabuf = file->private_data;
 205	if (!dmabuf || !dmabuf->resv)
 206		return EPOLLERR;
 207
 208	resv = dmabuf->resv;
 209
 210	poll_wait(file, &dmabuf->poll, poll);
 211
 212	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
 213	if (!events)
 214		return 0;
 215
 216retry:
 217	seq = read_seqcount_begin(&resv->seq);
 218	rcu_read_lock();
 219
 220	fobj = rcu_dereference(resv->fence);
 221	if (fobj)
 222		shared_count = fobj->shared_count;
 223	else
 224		shared_count = 0;
 225	fence_excl = rcu_dereference(resv->fence_excl);
 226	if (read_seqcount_retry(&resv->seq, seq)) {
 227		rcu_read_unlock();
 228		goto retry;
 229	}
 230
 231	if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
 232		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
 233		__poll_t pevents = EPOLLIN;
 234
 235		if (shared_count == 0)
 236			pevents |= EPOLLOUT;
 237
 
 238		spin_lock_irq(&dmabuf->poll.lock);
 239		if (dcb->active) {
 240			dcb->active |= pevents;
 241			events &= ~pevents;
 242		} else
 243			dcb->active = pevents;
 244		spin_unlock_irq(&dmabuf->poll.lock);
 245
 246		if (events & pevents) {
 247			if (!dma_fence_get_rcu(fence_excl)) {
 248				/* force a recheck */
 249				events &= ~pevents;
 
 
 250				dma_buf_poll_cb(NULL, &dcb->cb);
 251			} else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
 252							   dma_buf_poll_cb)) {
 253				events &= ~pevents;
 254				dma_fence_put(fence_excl);
 255			} else {
 256				/*
 257				 * No callback queued, wake up any additional
 258				 * waiters.
 259				 */
 260				dma_fence_put(fence_excl);
 261				dma_buf_poll_cb(NULL, &dcb->cb);
 262			}
 263		}
 264	}
 265
 266	if ((events & EPOLLOUT) && shared_count > 0) {
 267		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
 268		int i;
 269
 270		/* Only queue a new callback if no event has fired yet */
 271		spin_lock_irq(&dmabuf->poll.lock);
 272		if (dcb->active)
 273			events &= ~EPOLLOUT;
 274		else
 275			dcb->active = EPOLLOUT;
 276		spin_unlock_irq(&dmabuf->poll.lock);
 277
 278		if (!(events & EPOLLOUT))
 279			goto out;
 280
 281		for (i = 0; i < shared_count; ++i) {
 282			struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
 283
 284			if (!dma_fence_get_rcu(fence)) {
 285				/*
 286				 * fence refcount dropped to zero, this means
 287				 * that fobj has been freed
 288				 *
 289				 * call dma_buf_poll_cb and force a recheck!
 290				 */
 291				events &= ~EPOLLOUT;
 292				dma_buf_poll_cb(NULL, &dcb->cb);
 293				break;
 294			}
 295			if (!dma_fence_add_callback(fence, &dcb->cb,
 296						    dma_buf_poll_cb)) {
 297				dma_fence_put(fence);
 298				events &= ~EPOLLOUT;
 299				break;
 300			}
 301			dma_fence_put(fence);
 302		}
 303
 304		/* No callback queued, wake up any additional waiters. */
 305		if (i == shared_count)
 306			dma_buf_poll_cb(NULL, &dcb->cb);
 307	}
 308
 309out:
 310	rcu_read_unlock();
 311	return events;
 312}
 313
 314/**
 315 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
 316 * The name of the dma-buf buffer can only be set when the dma-buf is not
 317 * attached to any devices. It could theoritically support changing the
 318 * name of the dma-buf if the same piece of memory is used for multiple
 319 * purpose between different devices.
 320 *
 321 * @dmabuf [in]     dmabuf buffer that will be renamed.
 322 * @buf:   [in]     A piece of userspace memory that contains the name of
 323 *                  the dma-buf.
 324 *
 325 * Returns 0 on success. If the dma-buf buffer is already attached to
 326 * devices, return -EBUSY.
 327 *
 328 */
 329static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
 330{
 331	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
 332	long ret = 0;
 333
 334	if (IS_ERR(name))
 335		return PTR_ERR(name);
 336
 337	mutex_lock(&dmabuf->lock);
 338	if (!list_empty(&dmabuf->attachments)) {
 339		ret = -EBUSY;
 340		kfree(name);
 341		goto out_unlock;
 342	}
 343	kfree(dmabuf->name);
 344	dmabuf->name = name;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 345
 346out_unlock:
 347	mutex_unlock(&dmabuf->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 348	return ret;
 349}
 350
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 351static long dma_buf_ioctl(struct file *file,
 352			  unsigned int cmd, unsigned long arg)
 353{
 354	struct dma_buf *dmabuf;
 355	struct dma_buf_sync sync;
 356	enum dma_data_direction direction;
 357	int ret;
 358
 359	dmabuf = file->private_data;
 360
 361	switch (cmd) {
 362	case DMA_BUF_IOCTL_SYNC:
 363		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
 364			return -EFAULT;
 365
 366		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
 367			return -EINVAL;
 368
 369		switch (sync.flags & DMA_BUF_SYNC_RW) {
 370		case DMA_BUF_SYNC_READ:
 371			direction = DMA_FROM_DEVICE;
 372			break;
 373		case DMA_BUF_SYNC_WRITE:
 374			direction = DMA_TO_DEVICE;
 375			break;
 376		case DMA_BUF_SYNC_RW:
 377			direction = DMA_BIDIRECTIONAL;
 378			break;
 379		default:
 380			return -EINVAL;
 381		}
 382
 383		if (sync.flags & DMA_BUF_SYNC_END)
 384			ret = dma_buf_end_cpu_access(dmabuf, direction);
 385		else
 386			ret = dma_buf_begin_cpu_access(dmabuf, direction);
 387
 388		return ret;
 389
 390	case DMA_BUF_SET_NAME:
 
 391		return dma_buf_set_name(dmabuf, (const char __user *)arg);
 392
 
 
 
 
 
 
 
 393	default:
 394		return -ENOTTY;
 395	}
 396}
 397
 398static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
 399{
 400	struct dma_buf *dmabuf = file->private_data;
 401
 402	seq_printf(m, "size:\t%zu\n", dmabuf->size);
 403	/* Don't count the temporary reference taken inside procfs seq_show */
 404	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
 405	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
 406	mutex_lock(&dmabuf->lock);
 407	if (dmabuf->name)
 408		seq_printf(m, "name:\t%s\n", dmabuf->name);
 409	mutex_unlock(&dmabuf->lock);
 410}
 411
 412static const struct file_operations dma_buf_fops = {
 413	.release	= dma_buf_release,
 414	.mmap		= dma_buf_mmap_internal,
 415	.llseek		= dma_buf_llseek,
 416	.poll		= dma_buf_poll,
 417	.unlocked_ioctl	= dma_buf_ioctl,
 418#ifdef CONFIG_COMPAT
 419	.compat_ioctl	= dma_buf_ioctl,
 420#endif
 421	.show_fdinfo	= dma_buf_show_fdinfo,
 422};
 423
 424/*
 425 * is_dma_buf_file - Check if struct file* is associated with dma_buf
 426 */
 427static inline int is_dma_buf_file(struct file *file)
 428{
 429	return file->f_op == &dma_buf_fops;
 430}
 431
 432static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
 433{
 
 
 434	struct file *file;
 435	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
 436
 437	if (IS_ERR(inode))
 438		return ERR_CAST(inode);
 439
 440	inode->i_size = dmabuf->size;
 441	inode_set_bytes(inode, dmabuf->size);
 442
 
 
 
 
 
 
 
 
 443	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
 444				 flags, &dma_buf_fops);
 445	if (IS_ERR(file))
 446		goto err_alloc_file;
 447	file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
 448	file->private_data = dmabuf;
 449	file->f_path.dentry->d_fsdata = dmabuf;
 450
 451	return file;
 452
 453err_alloc_file:
 454	iput(inode);
 455	return file;
 456}
 457
 458/**
 459 * DOC: dma buf device access
 460 *
 461 * For device DMA access to a shared DMA buffer the usual sequence of operations
 462 * is fairly simple:
 463 *
 464 * 1. The exporter defines his exporter instance using
 465 *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
 466 *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
 467 *    as a file descriptor by calling dma_buf_fd().
 468 *
 469 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
 470 *    to share with: First the filedescriptor is converted to a &dma_buf using
 471 *    dma_buf_get(). Then the buffer is attached to the device using
 472 *    dma_buf_attach().
 473 *
 474 *    Up to this stage the exporter is still free to migrate or reallocate the
 475 *    backing storage.
 476 *
 477 * 3. Once the buffer is attached to all devices userspace can initiate DMA
 478 *    access to the shared buffer. In the kernel this is done by calling
 479 *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
 480 *
 481 * 4. Once a driver is done with a shared buffer it needs to call
 482 *    dma_buf_detach() (after cleaning up any mappings) and then release the
 483 *    reference acquired with dma_buf_get by calling dma_buf_put().
 484 *
 485 * For the detailed semantics exporters are expected to implement see
 486 * &dma_buf_ops.
 487 */
 488
 489/**
 490 * dma_buf_export - Creates a new dma_buf, and associates an anon file
 491 * with this buffer, so it can be exported.
 492 * Also connect the allocator specific data and ops to the buffer.
 493 * Additionally, provide a name string for exporter; useful in debugging.
 494 *
 495 * @exp_info:	[in]	holds all the export related information provided
 496 *			by the exporter. see &struct dma_buf_export_info
 497 *			for further details.
 498 *
 499 * Returns, on success, a newly created dma_buf object, which wraps the
 500 * supplied private data and operations for dma_buf_ops. On either missing
 501 * ops, or error in allocating struct dma_buf, will return negative error.
 
 502 *
 503 * For most cases the easiest way to create @exp_info is through the
 504 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
 505 */
 506struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
 507{
 508	struct dma_buf *dmabuf;
 509	struct dma_resv *resv = exp_info->resv;
 510	struct file *file;
 511	size_t alloc_size = sizeof(struct dma_buf);
 512	int ret;
 513
 514	if (!exp_info->resv)
 515		alloc_size += sizeof(struct dma_resv);
 516	else
 517		/* prevent &dma_buf[1] == dma_buf->resv */
 518		alloc_size += 1;
 
 
 
 
 519
 520	if (WARN_ON(!exp_info->priv
 521			  || !exp_info->ops
 522			  || !exp_info->ops->map_dma_buf
 523			  || !exp_info->ops->unmap_dma_buf
 524			  || !exp_info->ops->release)) {
 525		return ERR_PTR(-EINVAL);
 526	}
 527
 528	if (!try_module_get(exp_info->owner))
 529		return ERR_PTR(-ENOENT);
 530
 
 
 
 
 
 
 
 
 
 
 
 531	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
 532	if (!dmabuf) {
 533		ret = -ENOMEM;
 534		goto err_module;
 535	}
 536
 537	dmabuf->priv = exp_info->priv;
 538	dmabuf->ops = exp_info->ops;
 539	dmabuf->size = exp_info->size;
 540	dmabuf->exp_name = exp_info->exp_name;
 541	dmabuf->owner = exp_info->owner;
 
 542	init_waitqueue_head(&dmabuf->poll);
 543	dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
 544	dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
 
 545
 546	if (!resv) {
 547		resv = (struct dma_resv *)&dmabuf[1];
 548		dma_resv_init(resv);
 
 
 549	}
 550	dmabuf->resv = resv;
 551
 552	file = dma_buf_getfile(dmabuf, exp_info->flags);
 553	if (IS_ERR(file)) {
 554		ret = PTR_ERR(file);
 555		goto err_dmabuf;
 556	}
 557
 558	file->f_mode |= FMODE_LSEEK;
 
 559	dmabuf->file = file;
 560
 561	mutex_init(&dmabuf->lock);
 562	INIT_LIST_HEAD(&dmabuf->attachments);
 563
 564	mutex_lock(&db_list.lock);
 565	list_add(&dmabuf->list_node, &db_list.head);
 566	mutex_unlock(&db_list.lock);
 567
 568	return dmabuf;
 569
 570err_dmabuf:
 
 
 571	kfree(dmabuf);
 
 
 572err_module:
 573	module_put(exp_info->owner);
 574	return ERR_PTR(ret);
 575}
 576EXPORT_SYMBOL_GPL(dma_buf_export);
 577
 578/**
 579 * dma_buf_fd - returns a file descriptor for the given dma_buf
 580 * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
 581 * @flags:      [in]    flags to give to fd
 582 *
 583 * On success, returns an associated 'fd'. Else, returns error.
 584 */
 585int dma_buf_fd(struct dma_buf *dmabuf, int flags)
 586{
 587	int fd;
 588
 589	if (!dmabuf || !dmabuf->file)
 590		return -EINVAL;
 591
 592	fd = get_unused_fd_flags(flags);
 593	if (fd < 0)
 594		return fd;
 595
 596	fd_install(fd, dmabuf->file);
 597
 598	return fd;
 599}
 600EXPORT_SYMBOL_GPL(dma_buf_fd);
 601
 602/**
 603 * dma_buf_get - returns the dma_buf structure related to an fd
 604 * @fd:	[in]	fd associated with the dma_buf to be returned
 605 *
 606 * On success, returns the dma_buf structure associated with an fd; uses
 607 * file's refcounting done by fget to increase refcount. returns ERR_PTR
 608 * otherwise.
 609 */
 610struct dma_buf *dma_buf_get(int fd)
 611{
 612	struct file *file;
 613
 614	file = fget(fd);
 615
 616	if (!file)
 617		return ERR_PTR(-EBADF);
 618
 619	if (!is_dma_buf_file(file)) {
 620		fput(file);
 621		return ERR_PTR(-EINVAL);
 622	}
 623
 624	return file->private_data;
 625}
 626EXPORT_SYMBOL_GPL(dma_buf_get);
 627
 628/**
 629 * dma_buf_put - decreases refcount of the buffer
 630 * @dmabuf:	[in]	buffer to reduce refcount of
 631 *
 632 * Uses file's refcounting done implicitly by fput().
 633 *
 634 * If, as a result of this call, the refcount becomes 0, the 'release' file
 635 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
 636 * in turn, and frees the memory allocated for dmabuf when exported.
 637 */
 638void dma_buf_put(struct dma_buf *dmabuf)
 639{
 640	if (WARN_ON(!dmabuf || !dmabuf->file))
 641		return;
 642
 643	fput(dmabuf->file);
 644}
 645EXPORT_SYMBOL_GPL(dma_buf_put);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 646
 647/**
 648 * dma_buf_attach - Add the device to dma_buf's attachments list; optionally,
 649 * calls attach() of dma_buf_ops to allow device-specific attach functionality
 650 * @dmabuf:	[in]	buffer to attach device to.
 651 * @dev:	[in]	device to be attached.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 652 *
 653 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
 654 * must be cleaned up by calling dma_buf_detach().
 655 *
 
 
 
 656 * Returns:
 657 *
 658 * A pointer to newly created &dma_buf_attachment on success, or a negative
 659 * error code wrapped into a pointer on failure.
 660 *
 661 * Note that this can fail if the backing storage of @dmabuf is in a place not
 662 * accessible to @dev, and cannot be moved to a more suitable place. This is
 663 * indicated with the error code -EBUSY.
 664 */
 665struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
 666					  struct device *dev)
 
 
 667{
 668	struct dma_buf_attachment *attach;
 669	int ret;
 670
 671	if (WARN_ON(!dmabuf || !dev))
 672		return ERR_PTR(-EINVAL);
 673
 
 
 
 674	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
 675	if (!attach)
 676		return ERR_PTR(-ENOMEM);
 677
 678	attach->dev = dev;
 679	attach->dmabuf = dmabuf;
 680
 681	mutex_lock(&dmabuf->lock);
 
 
 682
 683	if (dmabuf->ops->attach) {
 684		ret = dmabuf->ops->attach(dmabuf, attach);
 685		if (ret)
 686			goto err_attach;
 687	}
 
 688	list_add(&attach->node, &dmabuf->attachments);
 
 689
 690	mutex_unlock(&dmabuf->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 691
 692	return attach;
 693
 694err_attach:
 695	kfree(attach);
 696	mutex_unlock(&dmabuf->lock);
 697	return ERR_PTR(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698}
 699EXPORT_SYMBOL_GPL(dma_buf_attach);
 700
 701/**
 702 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
 703 * optionally calls detach() of dma_buf_ops for device-specific detach
 704 * @dmabuf:	[in]	buffer to detach from.
 705 * @attach:	[in]	attachment to be detached; is free'd after this call.
 706 *
 707 * Clean up a device attachment obtained by calling dma_buf_attach().
 
 
 708 */
 709void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
 710{
 711	if (WARN_ON(!dmabuf || !attach))
 712		return;
 713
 714	if (attach->sgt)
 715		dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir);
 
 
 
 716
 717	mutex_lock(&dmabuf->lock);
 
 
 718	list_del(&attach->node);
 
 
 
 719	if (dmabuf->ops->detach)
 720		dmabuf->ops->detach(dmabuf, attach);
 721
 722	mutex_unlock(&dmabuf->lock);
 723	kfree(attach);
 724}
 725EXPORT_SYMBOL_GPL(dma_buf_detach);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 726
 727/**
 728 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
 729 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
 730 * dma_buf_ops.
 731 * @attach:	[in]	attachment whose scatterlist is to be returned
 732 * @direction:	[in]	direction of DMA transfer
 733 *
 734 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
 735 * on error. May return -EINTR if it is interrupted by a signal.
 736 *
 
 
 
 737 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
 738 * the underlying backing storage is pinned for as long as a mapping exists,
 739 * therefore users/importers should not hold onto a mapping for undue amounts of
 740 * time.
 
 
 
 741 */
 742struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
 743					enum dma_data_direction direction)
 744{
 745	struct sg_table *sg_table;
 
 746
 747	might_sleep();
 748
 749	if (WARN_ON(!attach || !attach->dmabuf))
 750		return ERR_PTR(-EINVAL);
 751
 
 
 752	if (attach->sgt) {
 753		/*
 754		 * Two mappings with different directions for the same
 755		 * attachment are not allowed.
 756		 */
 757		if (attach->dir != direction &&
 758		    attach->dir != DMA_BIDIRECTIONAL)
 759			return ERR_PTR(-EBUSY);
 760
 761		return attach->sgt;
 762	}
 763
 764	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
 
 
 
 
 
 
 
 
 765	if (!sg_table)
 766		sg_table = ERR_PTR(-ENOMEM);
 767
 
 
 
 
 768	if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
 769		attach->sgt = sg_table;
 770		attach->dir = direction;
 771	}
 772
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 773	return sg_table;
 774}
 775EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 776
 777/**
 778 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
 779 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
 780 * dma_buf_ops.
 781 * @attach:	[in]	attachment to unmap buffer from
 782 * @sg_table:	[in]	scatterlist info of the buffer to unmap
 783 * @direction:  [in]    direction of DMA transfer
 784 *
 785 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
 786 */
 787void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
 788				struct sg_table *sg_table,
 789				enum dma_data_direction direction)
 790{
 791	might_sleep();
 792
 793	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
 794		return;
 795
 
 
 796	if (attach->sgt == sg_table)
 797		return;
 798
 799	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 800}
 801EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
 802
 803/**
 804 * DOC: cpu access
 805 *
 806 * There are mutliple reasons for supporting CPU access to a dma buffer object:
 807 *
 808 * - Fallback operations in the kernel, for example when a device is connected
 809 *   over USB and the kernel needs to shuffle the data around first before
 810 *   sending it away. Cache coherency is handled by braketing any transactions
 811 *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
 812 *   access.
 813 *
 814 *   To support dma_buf objects residing in highmem cpu access is page-based
 815 *   using an api similar to kmap. Accessing a dma_buf is done in aligned chunks
 816 *   of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which
 817 *   returns a pointer in kernel virtual address space. Afterwards the chunk
 818 *   needs to be unmapped again. There is no limit on how often a given chunk
 819 *   can be mapped and unmapped, i.e. the importer does not need to call
 820 *   begin_cpu_access again before mapping the same chunk again.
 821 *
 822 *   Interfaces::
 823 *      void \*dma_buf_kmap(struct dma_buf \*, unsigned long);
 824 *      void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*);
 825 *
 826 *   Implementing the functions is optional for exporters and for importers all
 827 *   the restrictions of using kmap apply.
 828 *
 829 *   dma_buf kmap calls outside of the range specified in begin_cpu_access are
 830 *   undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on
 831 *   the partial chunks at the beginning and end but may return stale or bogus
 832 *   data outside of the range (in these partial chunks).
 833 *
 834 *   For some cases the overhead of kmap can be too high, a vmap interface
 835 *   is introduced. This interface should be used very carefully, as vmalloc
 836 *   space is a limited resources on many architectures.
 837 *
 838 *   Interfaces::
 839 *      void \*dma_buf_vmap(struct dma_buf \*dmabuf)
 840 *      void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
 841 *
 842 *   The vmap call can fail if there is no vmap support in the exporter, or if
 843 *   it runs out of vmalloc space. Fallback to kmap should be implemented. Note
 844 *   that the dma-buf layer keeps a reference count for all vmap access and
 845 *   calls down into the exporter's vmap function only when no vmapping exists,
 846 *   and only unmaps it once. Protection against concurrent vmap/vunmap calls is
 847 *   provided by taking the dma_buf->lock mutex.
 848 *
 849 * - For full compatibility on the importer side with existing userspace
 850 *   interfaces, which might already support mmap'ing buffers. This is needed in
 851 *   many processing pipelines (e.g. feeding a software rendered image into a
 852 *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
 853 *   framework already supported this and for DMA buffer file descriptors to
 854 *   replace ION buffers mmap support was needed.
 855 *
 856 *   There is no special interfaces, userspace simply calls mmap on the dma-buf
 857 *   fd. But like for CPU access there's a need to braket the actual access,
 858 *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
 859 *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
 860 *   be restarted.
 861 *
 862 *   Some systems might need some sort of cache coherency management e.g. when
 863 *   CPU and GPU domains are being accessed through dma-buf at the same time.
 864 *   To circumvent this problem there are begin/end coherency markers, that
 865 *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
 866 *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
 867 *   sequence would be used like following:
 868 *
 869 *     - mmap dma-buf fd
 870 *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
 871 *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
 872 *       want (with the new data being consumed by say the GPU or the scanout
 873 *       device)
 874 *     - munmap once you don't need the buffer any more
 875 *
 876 *    For correctness and optimal performance, it is always required to use
 877 *    SYNC_START and SYNC_END before and after, respectively, when accessing the
 878 *    mapped address. Userspace cannot rely on coherent access, even when there
 879 *    are systems where it just works without calling these ioctls.
 880 *
 881 * - And as a CPU fallback in userspace processing pipelines.
 882 *
 883 *   Similar to the motivation for kernel cpu access it is again important that
 884 *   the userspace code of a given importing subsystem can use the same
 885 *   interfaces with a imported dma-buf buffer object as with a native buffer
 886 *   object. This is especially important for drm where the userspace part of
 887 *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
 888 *   use a different way to mmap a buffer rather invasive.
 889 *
 890 *   The assumption in the current dma-buf interfaces is that redirecting the
 891 *   initial mmap is all that's needed. A survey of some of the existing
 892 *   subsystems shows that no driver seems to do any nefarious thing like
 893 *   syncing up with outstanding asynchronous processing on the device or
 894 *   allocating special resources at fault time. So hopefully this is good
 895 *   enough, since adding interfaces to intercept pagefaults and allow pte
 896 *   shootdowns would increase the complexity quite a bit.
 897 *
 898 *   Interface::
 
 899 *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
 900 *		       unsigned long);
 901 *
 902 *   If the importing subsystem simply provides a special-purpose mmap call to
 903 *   set up a mapping in userspace, calling do_mmap with dma_buf->file will
 904 *   equally achieve that for a dma-buf object.
 905 */
 906
 907static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
 908				      enum dma_data_direction direction)
 909{
 910	bool write = (direction == DMA_BIDIRECTIONAL ||
 911		      direction == DMA_TO_DEVICE);
 912	struct dma_resv *resv = dmabuf->resv;
 913	long ret;
 914
 915	/* Wait on any implicit rendering fences */
 916	ret = dma_resv_wait_timeout_rcu(resv, write, true,
 917						  MAX_SCHEDULE_TIMEOUT);
 918	if (ret < 0)
 919		return ret;
 920
 921	return 0;
 922}
 923
 924/**
 925 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
 926 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
 927 * preparations. Coherency is only guaranteed in the specified range for the
 928 * specified access direction.
 929 * @dmabuf:	[in]	buffer to prepare cpu access for.
 930 * @direction:	[in]	length of range for cpu access.
 931 *
 932 * After the cpu access is complete the caller should call
 933 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
 934 * it guaranteed to be coherent with other DMA access.
 935 *
 
 
 
 
 
 936 * Can return negative error values, returns 0 on success.
 937 */
 938int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
 939			     enum dma_data_direction direction)
 940{
 941	int ret = 0;
 942
 943	if (WARN_ON(!dmabuf))
 944		return -EINVAL;
 945
 
 
 946	if (dmabuf->ops->begin_cpu_access)
 947		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
 948
 949	/* Ensure that all fences are waited upon - but we first allow
 950	 * the native handler the chance to do so more efficiently if it
 951	 * chooses. A double invocation here will be reasonably cheap no-op.
 952	 */
 953	if (ret == 0)
 954		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
 955
 956	return ret;
 957}
 958EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
 959
 960/**
 961 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
 962 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
 963 * actions. Coherency is only guaranteed in the specified range for the
 964 * specified access direction.
 965 * @dmabuf:	[in]	buffer to complete cpu access for.
 966 * @direction:	[in]	length of range for cpu access.
 967 *
 968 * This terminates CPU access started with dma_buf_begin_cpu_access().
 969 *
 970 * Can return negative error values, returns 0 on success.
 971 */
 972int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
 973			   enum dma_data_direction direction)
 974{
 975	int ret = 0;
 976
 977	WARN_ON(!dmabuf);
 978
 
 
 979	if (dmabuf->ops->end_cpu_access)
 980		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
 981
 982	return ret;
 983}
 984EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
 985
 986/**
 987 * dma_buf_kmap - Map a page of the buffer object into kernel address space. The
 988 * same restrictions as for kmap and friends apply.
 989 * @dmabuf:	[in]	buffer to map page from.
 990 * @page_num:	[in]	page in PAGE_SIZE units to map.
 991 *
 992 * This call must always succeed, any necessary preparations that might fail
 993 * need to be done in begin_cpu_access.
 994 */
 995void *dma_buf_kmap(struct dma_buf *dmabuf, unsigned long page_num)
 996{
 997	WARN_ON(!dmabuf);
 998
 999	if (!dmabuf->ops->map)
1000		return NULL;
1001	return dmabuf->ops->map(dmabuf, page_num);
1002}
1003EXPORT_SYMBOL_GPL(dma_buf_kmap);
1004
1005/**
1006 * dma_buf_kunmap - Unmap a page obtained by dma_buf_kmap.
1007 * @dmabuf:	[in]	buffer to unmap page from.
1008 * @page_num:	[in]	page in PAGE_SIZE units to unmap.
1009 * @vaddr:	[in]	kernel space pointer obtained from dma_buf_kmap.
1010 *
1011 * This call must always succeed.
1012 */
1013void dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long page_num,
1014		    void *vaddr)
1015{
1016	WARN_ON(!dmabuf);
1017
1018	if (dmabuf->ops->unmap)
1019		dmabuf->ops->unmap(dmabuf, page_num, vaddr);
1020}
1021EXPORT_SYMBOL_GPL(dma_buf_kunmap);
1022
1023
1024/**
1025 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1026 * @dmabuf:	[in]	buffer that should back the vma
1027 * @vma:	[in]	vma for the mmap
1028 * @pgoff:	[in]	offset in pages where this mmap should start within the
1029 *			dma-buf buffer.
1030 *
1031 * This function adjusts the passed in vma so that it points at the file of the
1032 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1033 * checking on the size of the vma. Then it calls the exporters mmap function to
1034 * set up the mapping.
1035 *
1036 * Can return negative error values, returns 0 on success.
1037 */
1038int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1039		 unsigned long pgoff)
1040{
1041	struct file *oldfile;
1042	int ret;
1043
1044	if (WARN_ON(!dmabuf || !vma))
1045		return -EINVAL;
1046
1047	/* check if buffer supports mmap */
1048	if (!dmabuf->ops->mmap)
1049		return -EINVAL;
1050
1051	/* check for offset overflow */
1052	if (pgoff + vma_pages(vma) < pgoff)
1053		return -EOVERFLOW;
1054
1055	/* check for overflowing the buffer's size */
1056	if (pgoff + vma_pages(vma) >
1057	    dmabuf->size >> PAGE_SHIFT)
1058		return -EINVAL;
1059
1060	/* readjust the vma */
1061	get_file(dmabuf->file);
1062	oldfile = vma->vm_file;
1063	vma->vm_file = dmabuf->file;
1064	vma->vm_pgoff = pgoff;
1065
1066	ret = dmabuf->ops->mmap(dmabuf, vma);
1067	if (ret) {
1068		/* restore old parameters on failure */
1069		vma->vm_file = oldfile;
1070		fput(dmabuf->file);
1071	} else {
1072		if (oldfile)
1073			fput(oldfile);
1074	}
1075	return ret;
1076
1077}
1078EXPORT_SYMBOL_GPL(dma_buf_mmap);
1079
1080/**
1081 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1082 * address space. Same restrictions as for vmap and friends apply.
1083 * @dmabuf:	[in]	buffer to vmap
 
1084 *
1085 * This call may fail due to lack of virtual mapping address space.
1086 * These calls are optional in drivers. The intended use for them
1087 * is for mapping objects linear in kernel space for high use objects.
1088 * Please attempt to use kmap/kunmap before thinking about these interfaces.
1089 *
1090 * Returns NULL on error.
 
 
 
 
1091 */
1092void *dma_buf_vmap(struct dma_buf *dmabuf)
1093{
1094	void *ptr;
 
 
 
1095
1096	if (WARN_ON(!dmabuf))
1097		return NULL;
 
 
1098
1099	if (!dmabuf->ops->vmap)
1100		return NULL;
1101
1102	mutex_lock(&dmabuf->lock);
1103	if (dmabuf->vmapping_counter) {
1104		dmabuf->vmapping_counter++;
1105		BUG_ON(!dmabuf->vmap_ptr);
1106		ptr = dmabuf->vmap_ptr;
1107		goto out_unlock;
1108	}
1109
1110	BUG_ON(dmabuf->vmap_ptr);
1111
1112	ptr = dmabuf->ops->vmap(dmabuf);
1113	if (WARN_ON_ONCE(IS_ERR(ptr)))
1114		ptr = NULL;
1115	if (!ptr)
1116		goto out_unlock;
1117
1118	dmabuf->vmap_ptr = ptr;
1119	dmabuf->vmapping_counter = 1;
1120
1121out_unlock:
1122	mutex_unlock(&dmabuf->lock);
1123	return ptr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1124}
1125EXPORT_SYMBOL_GPL(dma_buf_vmap);
1126
1127/**
1128 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1129 * @dmabuf:	[in]	buffer to vunmap
1130 * @vaddr:	[in]	vmap to vunmap
1131 */
1132void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
1133{
1134	if (WARN_ON(!dmabuf))
1135		return;
1136
1137	BUG_ON(!dmabuf->vmap_ptr);
 
 
1138	BUG_ON(dmabuf->vmapping_counter == 0);
1139	BUG_ON(dmabuf->vmap_ptr != vaddr);
1140
1141	mutex_lock(&dmabuf->lock);
1142	if (--dmabuf->vmapping_counter == 0) {
1143		if (dmabuf->ops->vunmap)
1144			dmabuf->ops->vunmap(dmabuf, vaddr);
1145		dmabuf->vmap_ptr = NULL;
1146	}
1147	mutex_unlock(&dmabuf->lock);
1148}
1149EXPORT_SYMBOL_GPL(dma_buf_vunmap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1150
1151#ifdef CONFIG_DEBUG_FS
1152static int dma_buf_debug_show(struct seq_file *s, void *unused)
1153{
1154	int ret;
1155	struct dma_buf *buf_obj;
1156	struct dma_buf_attachment *attach_obj;
1157	struct dma_resv *robj;
1158	struct dma_resv_list *fobj;
1159	struct dma_fence *fence;
1160	unsigned seq;
1161	int count = 0, attach_count, shared_count, i;
1162	size_t size = 0;
 
1163
1164	ret = mutex_lock_interruptible(&db_list.lock);
1165
1166	if (ret)
1167		return ret;
1168
1169	seq_puts(s, "\nDma-buf Objects:\n");
1170	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1171		   "size", "flags", "mode", "count", "ino");
1172
1173	list_for_each_entry(buf_obj, &db_list.head, list_node) {
1174		ret = mutex_lock_interruptible(&buf_obj->lock);
1175
1176		if (ret) {
1177			seq_puts(s,
1178				 "\tERROR locking buffer object: skipping\n");
1179			continue;
1180		}
1181
 
1182		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1183				buf_obj->size,
1184				buf_obj->file->f_flags, buf_obj->file->f_mode,
1185				file_count(buf_obj->file),
1186				buf_obj->exp_name,
1187				file_inode(buf_obj->file)->i_ino,
1188				buf_obj->name ?: "");
1189
1190		robj = buf_obj->resv;
1191		while (true) {
1192			seq = read_seqcount_begin(&robj->seq);
1193			rcu_read_lock();
1194			fobj = rcu_dereference(robj->fence);
1195			shared_count = fobj ? fobj->shared_count : 0;
1196			fence = rcu_dereference(robj->fence_excl);
1197			if (!read_seqcount_retry(&robj->seq, seq))
1198				break;
1199			rcu_read_unlock();
1200		}
1201
1202		if (fence)
1203			seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1204				   fence->ops->get_driver_name(fence),
1205				   fence->ops->get_timeline_name(fence),
1206				   dma_fence_is_signaled(fence) ? "" : "un");
1207		for (i = 0; i < shared_count; i++) {
1208			fence = rcu_dereference(fobj->shared[i]);
1209			if (!dma_fence_get_rcu(fence))
1210				continue;
1211			seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1212				   fence->ops->get_driver_name(fence),
1213				   fence->ops->get_timeline_name(fence),
1214				   dma_fence_is_signaled(fence) ? "" : "un");
1215			dma_fence_put(fence);
1216		}
1217		rcu_read_unlock();
1218
1219		seq_puts(s, "\tAttached Devices:\n");
1220		attach_count = 0;
1221
1222		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1223			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1224			attach_count++;
1225		}
 
1226
1227		seq_printf(s, "Total %d devices attached\n\n",
1228				attach_count);
1229
1230		count++;
1231		size += buf_obj->size;
1232		mutex_unlock(&buf_obj->lock);
1233	}
1234
1235	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1236
1237	mutex_unlock(&db_list.lock);
1238	return 0;
 
 
 
 
1239}
1240
1241DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1242
1243static struct dentry *dma_buf_debugfs_dir;
1244
1245static int dma_buf_init_debugfs(void)
1246{
1247	struct dentry *d;
1248	int err = 0;
1249
1250	d = debugfs_create_dir("dma_buf", NULL);
1251	if (IS_ERR(d))
1252		return PTR_ERR(d);
1253
1254	dma_buf_debugfs_dir = d;
1255
1256	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1257				NULL, &dma_buf_debug_fops);
1258	if (IS_ERR(d)) {
1259		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1260		debugfs_remove_recursive(dma_buf_debugfs_dir);
1261		dma_buf_debugfs_dir = NULL;
1262		err = PTR_ERR(d);
1263	}
1264
1265	return err;
1266}
1267
1268static void dma_buf_uninit_debugfs(void)
1269{
1270	debugfs_remove_recursive(dma_buf_debugfs_dir);
1271}
1272#else
1273static inline int dma_buf_init_debugfs(void)
1274{
1275	return 0;
1276}
1277static inline void dma_buf_uninit_debugfs(void)
1278{
1279}
1280#endif
1281
1282static int __init dma_buf_init(void)
1283{
 
 
 
 
 
 
1284	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1285	if (IS_ERR(dma_buf_mnt))
1286		return PTR_ERR(dma_buf_mnt);
1287
1288	mutex_init(&db_list.lock);
1289	INIT_LIST_HEAD(&db_list.head);
1290	dma_buf_init_debugfs();
1291	return 0;
1292}
1293subsys_initcall(dma_buf_init);
1294
1295static void __exit dma_buf_deinit(void)
1296{
1297	dma_buf_uninit_debugfs();
1298	kern_unmount(dma_buf_mnt);
 
1299}
1300__exitcall(dma_buf_deinit);