Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Framework for buffer objects that can be shared across devices/subsystems.
   4 *
   5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
   6 * Author: Sumit Semwal <sumit.semwal@ti.com>
   7 *
   8 * Many thanks to linaro-mm-sig list, and specially
   9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
  10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
  11 * refining of this idea.
  12 */
  13
  14#include <linux/fs.h>
  15#include <linux/slab.h>
  16#include <linux/dma-buf.h>
  17#include <linux/dma-fence.h>
  18#include <linux/dma-fence-unwrap.h>
  19#include <linux/anon_inodes.h>
  20#include <linux/export.h>
  21#include <linux/debugfs.h>
  22#include <linux/module.h>
  23#include <linux/seq_file.h>
  24#include <linux/sync_file.h>
  25#include <linux/poll.h>
  26#include <linux/dma-resv.h>
  27#include <linux/mm.h>
  28#include <linux/mount.h>
  29#include <linux/pseudo_fs.h>
  30
  31#include <uapi/linux/dma-buf.h>
  32#include <uapi/linux/magic.h>
  33
  34#include "dma-buf-sysfs-stats.h"
  35
  36static inline int is_dma_buf_file(struct file *);
  37
  38struct dma_buf_list {
  39	struct list_head head;
  40	struct mutex lock;
  41};
  42
  43static struct dma_buf_list db_list;
  44
  45static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
  46{
  47	struct dma_buf *dmabuf;
  48	char name[DMA_BUF_NAME_LEN];
  49	ssize_t ret = 0;
  50
  51	dmabuf = dentry->d_fsdata;
  52	spin_lock(&dmabuf->name_lock);
  53	if (dmabuf->name)
  54		ret = strscpy(name, dmabuf->name, sizeof(name));
  55	spin_unlock(&dmabuf->name_lock);
  56
  57	return dynamic_dname(buffer, buflen, "/%s:%s",
  58			     dentry->d_name.name, ret > 0 ? name : "");
  59}
  60
  61static void dma_buf_release(struct dentry *dentry)
  62{
  63	struct dma_buf *dmabuf;
  64
  65	dmabuf = dentry->d_fsdata;
  66	if (unlikely(!dmabuf))
  67		return;
  68
  69	BUG_ON(dmabuf->vmapping_counter);
  70
  71	/*
  72	 * If you hit this BUG() it could mean:
  73	 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else
  74	 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback
 
 
 
  75	 */
  76	BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active);
  77
  78	dma_buf_stats_teardown(dmabuf);
  79	dmabuf->ops->release(dmabuf);
  80
  81	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
  82		dma_resv_fini(dmabuf->resv);
  83
  84	WARN_ON(!list_empty(&dmabuf->attachments));
  85	module_put(dmabuf->owner);
  86	kfree(dmabuf->name);
  87	kfree(dmabuf);
  88}
  89
  90static int dma_buf_file_release(struct inode *inode, struct file *file)
  91{
  92	struct dma_buf *dmabuf;
  93
  94	if (!is_dma_buf_file(file))
  95		return -EINVAL;
  96
  97	dmabuf = file->private_data;
  98	if (dmabuf) {
  99		mutex_lock(&db_list.lock);
 100		list_del(&dmabuf->list_node);
 101		mutex_unlock(&db_list.lock);
 102	}
 103
 104	return 0;
 105}
 106
 107static const struct dentry_operations dma_buf_dentry_ops = {
 108	.d_dname = dmabuffs_dname,
 109	.d_release = dma_buf_release,
 110};
 111
 112static struct vfsmount *dma_buf_mnt;
 113
 114static int dma_buf_fs_init_context(struct fs_context *fc)
 115{
 116	struct pseudo_fs_context *ctx;
 117
 118	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
 119	if (!ctx)
 120		return -ENOMEM;
 121	ctx->dops = &dma_buf_dentry_ops;
 122	return 0;
 123}
 124
 125static struct file_system_type dma_buf_fs_type = {
 126	.name = "dmabuf",
 127	.init_fs_context = dma_buf_fs_init_context,
 128	.kill_sb = kill_anon_super,
 129};
 130
 131static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
 132{
 133	struct dma_buf *dmabuf;
 134
 135	if (!is_dma_buf_file(file))
 136		return -EINVAL;
 137
 138	dmabuf = file->private_data;
 139
 140	/* check if buffer supports mmap */
 141	if (!dmabuf->ops->mmap)
 142		return -EINVAL;
 143
 144	/* check for overflowing the buffer's size */
 145	if (vma->vm_pgoff + vma_pages(vma) >
 146	    dmabuf->size >> PAGE_SHIFT)
 147		return -EINVAL;
 148
 149	return dmabuf->ops->mmap(dmabuf, vma);
 150}
 151
 152static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
 153{
 154	struct dma_buf *dmabuf;
 155	loff_t base;
 156
 157	if (!is_dma_buf_file(file))
 158		return -EBADF;
 159
 160	dmabuf = file->private_data;
 161
 162	/* only support discovering the end of the buffer,
 163	   but also allow SEEK_SET to maintain the idiomatic
 164	   SEEK_END(0), SEEK_CUR(0) pattern */
 165	if (whence == SEEK_END)
 166		base = dmabuf->size;
 167	else if (whence == SEEK_SET)
 168		base = 0;
 169	else
 170		return -EINVAL;
 171
 172	if (offset != 0)
 173		return -EINVAL;
 174
 175	return base + offset;
 176}
 177
 178/**
 179 * DOC: implicit fence polling
 180 *
 181 * To support cross-device and cross-driver synchronization of buffer access
 182 * implicit fences (represented internally in the kernel with &struct dma_fence)
 183 * can be attached to a &dma_buf. The glue for that and a few related things are
 184 * provided in the &dma_resv structure.
 185 *
 186 * Userspace can query the state of these implicitly tracked fences using poll()
 187 * and related system calls:
 188 *
 189 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
 190 *   most recent write or exclusive fence.
 191 *
 192 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
 193 *   all attached fences, shared and exclusive ones.
 194 *
 195 * Note that this only signals the completion of the respective fences, i.e. the
 196 * DMA transfers are complete. Cache flushing and any other necessary
 197 * preparations before CPU access can begin still need to happen.
 198 *
 199 * As an alternative to poll(), the set of fences on DMA buffer can be
 200 * exported as a &sync_file using &dma_buf_sync_file_export.
 201 */
 202
 203static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
 204{
 205	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
 206	struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll);
 207	unsigned long flags;
 208
 209	spin_lock_irqsave(&dcb->poll->lock, flags);
 210	wake_up_locked_poll(dcb->poll, dcb->active);
 211	dcb->active = 0;
 212	spin_unlock_irqrestore(&dcb->poll->lock, flags);
 213	dma_fence_put(fence);
 214	/* Paired with get_file in dma_buf_poll */
 215	fput(dmabuf->file);
 216}
 217
 218static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write,
 219				struct dma_buf_poll_cb_t *dcb)
 220{
 221	struct dma_resv_iter cursor;
 222	struct dma_fence *fence;
 223	int r;
 224
 225	dma_resv_for_each_fence(&cursor, resv, dma_resv_usage_rw(write),
 226				fence) {
 227		dma_fence_get(fence);
 228		r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb);
 229		if (!r)
 230			return true;
 231		dma_fence_put(fence);
 232	}
 233
 234	return false;
 235}
 236
 237static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
 238{
 239	struct dma_buf *dmabuf;
 240	struct dma_resv *resv;
 
 
 241	__poll_t events;
 
 242
 243	dmabuf = file->private_data;
 244	if (!dmabuf || !dmabuf->resv)
 245		return EPOLLERR;
 246
 247	resv = dmabuf->resv;
 248
 249	poll_wait(file, &dmabuf->poll, poll);
 250
 251	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
 252	if (!events)
 253		return 0;
 254
 255	dma_resv_lock(resv, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 256
 257	if (events & EPOLLOUT) {
 258		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out;
 
 
 
 
 259
 260		/* Check that callback isn't busy */
 261		spin_lock_irq(&dmabuf->poll.lock);
 262		if (dcb->active)
 263			events &= ~EPOLLOUT;
 264		else
 265			dcb->active = EPOLLOUT;
 
 266		spin_unlock_irq(&dmabuf->poll.lock);
 267
 268		if (events & EPOLLOUT) {
 269			/* Paired with fput in dma_buf_poll_cb */
 270			get_file(dmabuf->file);
 271
 272			if (!dma_buf_poll_add_cb(resv, true, dcb))
 273				/* No callback queued, wake up any other waiters */
 274				dma_buf_poll_cb(NULL, &dcb->cb);
 275			else
 276				events &= ~EPOLLOUT;
 
 
 
 
 
 
 
 
 
 
 277		}
 278	}
 279
 280	if (events & EPOLLIN) {
 281		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in;
 
 282
 283		/* Check that callback isn't busy */
 284		spin_lock_irq(&dmabuf->poll.lock);
 285		if (dcb->active)
 286			events &= ~EPOLLIN;
 287		else
 288			dcb->active = EPOLLIN;
 289		spin_unlock_irq(&dmabuf->poll.lock);
 290
 291		if (events & EPOLLIN) {
 292			/* Paired with fput in dma_buf_poll_cb */
 293			get_file(dmabuf->file);
 294
 295			if (!dma_buf_poll_add_cb(resv, false, dcb))
 296				/* No callback queued, wake up any other waiters */
 
 
 
 
 
 
 
 
 
 297				dma_buf_poll_cb(NULL, &dcb->cb);
 298			else
 299				events &= ~EPOLLIN;
 
 
 
 
 
 
 
 300		}
 
 
 
 
 301	}
 302
 303	dma_resv_unlock(resv);
 
 304	return events;
 305}
 306
 307/**
 308 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
 309 * It could support changing the name of the dma-buf if the same
 310 * piece of memory is used for multiple purpose between different devices.
 
 
 311 *
 312 * @dmabuf: [in]     dmabuf buffer that will be renamed.
 313 * @buf:    [in]     A piece of userspace memory that contains the name of
 314 *                   the dma-buf.
 315 *
 316 * Returns 0 on success. If the dma-buf buffer is already attached to
 317 * devices, return -EBUSY.
 318 *
 319 */
 320static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
 321{
 322	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
 
 323
 324	if (IS_ERR(name))
 325		return PTR_ERR(name);
 326
 
 
 
 
 
 
 327	spin_lock(&dmabuf->name_lock);
 328	kfree(dmabuf->name);
 329	dmabuf->name = name;
 330	spin_unlock(&dmabuf->name_lock);
 331
 332	return 0;
 333}
 334
 335#if IS_ENABLED(CONFIG_SYNC_FILE)
 336static long dma_buf_export_sync_file(struct dma_buf *dmabuf,
 337				     void __user *user_data)
 338{
 339	struct dma_buf_export_sync_file arg;
 340	enum dma_resv_usage usage;
 341	struct dma_fence *fence = NULL;
 342	struct sync_file *sync_file;
 343	int fd, ret;
 344
 345	if (copy_from_user(&arg, user_data, sizeof(arg)))
 346		return -EFAULT;
 347
 348	if (arg.flags & ~DMA_BUF_SYNC_RW)
 349		return -EINVAL;
 350
 351	if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
 352		return -EINVAL;
 353
 354	fd = get_unused_fd_flags(O_CLOEXEC);
 355	if (fd < 0)
 356		return fd;
 357
 358	usage = dma_resv_usage_rw(arg.flags & DMA_BUF_SYNC_WRITE);
 359	ret = dma_resv_get_singleton(dmabuf->resv, usage, &fence);
 360	if (ret)
 361		goto err_put_fd;
 362
 363	if (!fence)
 364		fence = dma_fence_get_stub();
 365
 366	sync_file = sync_file_create(fence);
 367
 368	dma_fence_put(fence);
 369
 370	if (!sync_file) {
 371		ret = -ENOMEM;
 372		goto err_put_fd;
 373	}
 374
 375	arg.fd = fd;
 376	if (copy_to_user(user_data, &arg, sizeof(arg))) {
 377		ret = -EFAULT;
 378		goto err_put_file;
 379	}
 380
 381	fd_install(fd, sync_file->file);
 382
 383	return 0;
 384
 385err_put_file:
 386	fput(sync_file->file);
 387err_put_fd:
 388	put_unused_fd(fd);
 389	return ret;
 390}
 391
 392static long dma_buf_import_sync_file(struct dma_buf *dmabuf,
 393				     const void __user *user_data)
 394{
 395	struct dma_buf_import_sync_file arg;
 396	struct dma_fence *fence, *f;
 397	enum dma_resv_usage usage;
 398	struct dma_fence_unwrap iter;
 399	unsigned int num_fences;
 400	int ret = 0;
 401
 402	if (copy_from_user(&arg, user_data, sizeof(arg)))
 403		return -EFAULT;
 404
 405	if (arg.flags & ~DMA_BUF_SYNC_RW)
 406		return -EINVAL;
 407
 408	if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
 409		return -EINVAL;
 410
 411	fence = sync_file_get_fence(arg.fd);
 412	if (!fence)
 413		return -EINVAL;
 414
 415	usage = (arg.flags & DMA_BUF_SYNC_WRITE) ? DMA_RESV_USAGE_WRITE :
 416						   DMA_RESV_USAGE_READ;
 417
 418	num_fences = 0;
 419	dma_fence_unwrap_for_each(f, &iter, fence)
 420		++num_fences;
 421
 422	if (num_fences > 0) {
 423		dma_resv_lock(dmabuf->resv, NULL);
 424
 425		ret = dma_resv_reserve_fences(dmabuf->resv, num_fences);
 426		if (!ret) {
 427			dma_fence_unwrap_for_each(f, &iter, fence)
 428				dma_resv_add_fence(dmabuf->resv, f, usage);
 429		}
 430
 431		dma_resv_unlock(dmabuf->resv);
 432	}
 433
 434	dma_fence_put(fence);
 435
 436	return ret;
 437}
 438#endif
 439
 440static long dma_buf_ioctl(struct file *file,
 441			  unsigned int cmd, unsigned long arg)
 442{
 443	struct dma_buf *dmabuf;
 444	struct dma_buf_sync sync;
 445	enum dma_data_direction direction;
 446	int ret;
 447
 448	dmabuf = file->private_data;
 449
 450	switch (cmd) {
 451	case DMA_BUF_IOCTL_SYNC:
 452		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
 453			return -EFAULT;
 454
 455		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
 456			return -EINVAL;
 457
 458		switch (sync.flags & DMA_BUF_SYNC_RW) {
 459		case DMA_BUF_SYNC_READ:
 460			direction = DMA_FROM_DEVICE;
 461			break;
 462		case DMA_BUF_SYNC_WRITE:
 463			direction = DMA_TO_DEVICE;
 464			break;
 465		case DMA_BUF_SYNC_RW:
 466			direction = DMA_BIDIRECTIONAL;
 467			break;
 468		default:
 469			return -EINVAL;
 470		}
 471
 472		if (sync.flags & DMA_BUF_SYNC_END)
 473			ret = dma_buf_end_cpu_access(dmabuf, direction);
 474		else
 475			ret = dma_buf_begin_cpu_access(dmabuf, direction);
 476
 477		return ret;
 478
 479	case DMA_BUF_SET_NAME_A:
 480	case DMA_BUF_SET_NAME_B:
 481		return dma_buf_set_name(dmabuf, (const char __user *)arg);
 482
 483#if IS_ENABLED(CONFIG_SYNC_FILE)
 484	case DMA_BUF_IOCTL_EXPORT_SYNC_FILE:
 485		return dma_buf_export_sync_file(dmabuf, (void __user *)arg);
 486	case DMA_BUF_IOCTL_IMPORT_SYNC_FILE:
 487		return dma_buf_import_sync_file(dmabuf, (const void __user *)arg);
 488#endif
 489
 490	default:
 491		return -ENOTTY;
 492	}
 493}
 494
 495static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
 496{
 497	struct dma_buf *dmabuf = file->private_data;
 498
 499	seq_printf(m, "size:\t%zu\n", dmabuf->size);
 500	/* Don't count the temporary reference taken inside procfs seq_show */
 501	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
 502	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
 503	spin_lock(&dmabuf->name_lock);
 504	if (dmabuf->name)
 505		seq_printf(m, "name:\t%s\n", dmabuf->name);
 506	spin_unlock(&dmabuf->name_lock);
 507}
 508
 509static const struct file_operations dma_buf_fops = {
 510	.release	= dma_buf_file_release,
 511	.mmap		= dma_buf_mmap_internal,
 512	.llseek		= dma_buf_llseek,
 513	.poll		= dma_buf_poll,
 514	.unlocked_ioctl	= dma_buf_ioctl,
 515	.compat_ioctl	= compat_ptr_ioctl,
 516	.show_fdinfo	= dma_buf_show_fdinfo,
 517};
 518
 519/*
 520 * is_dma_buf_file - Check if struct file* is associated with dma_buf
 521 */
 522static inline int is_dma_buf_file(struct file *file)
 523{
 524	return file->f_op == &dma_buf_fops;
 525}
 526
 527static struct file *dma_buf_getfile(size_t size, int flags)
 528{
 529	static atomic64_t dmabuf_inode = ATOMIC64_INIT(0);
 530	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
 531	struct file *file;
 
 532
 533	if (IS_ERR(inode))
 534		return ERR_CAST(inode);
 535
 536	inode->i_size = size;
 537	inode_set_bytes(inode, size);
 538
 539	/*
 540	 * The ->i_ino acquired from get_next_ino() is not unique thus
 541	 * not suitable for using it as dentry name by dmabuf stats.
 542	 * Override ->i_ino with the unique and dmabuffs specific
 543	 * value.
 544	 */
 545	inode->i_ino = atomic64_add_return(1, &dmabuf_inode);
 546	flags &= O_ACCMODE | O_NONBLOCK;
 547	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
 548				 flags, &dma_buf_fops);
 549	if (IS_ERR(file))
 550		goto err_alloc_file;
 
 
 
 551
 552	return file;
 553
 554err_alloc_file:
 555	iput(inode);
 556	return file;
 557}
 558
 559/**
 560 * DOC: dma buf device access
 561 *
 562 * For device DMA access to a shared DMA buffer the usual sequence of operations
 563 * is fairly simple:
 564 *
 565 * 1. The exporter defines his exporter instance using
 566 *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
 567 *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
 568 *    as a file descriptor by calling dma_buf_fd().
 569 *
 570 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
 571 *    to share with: First the file descriptor is converted to a &dma_buf using
 572 *    dma_buf_get(). Then the buffer is attached to the device using
 573 *    dma_buf_attach().
 574 *
 575 *    Up to this stage the exporter is still free to migrate or reallocate the
 576 *    backing storage.
 577 *
 578 * 3. Once the buffer is attached to all devices userspace can initiate DMA
 579 *    access to the shared buffer. In the kernel this is done by calling
 580 *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
 581 *
 582 * 4. Once a driver is done with a shared buffer it needs to call
 583 *    dma_buf_detach() (after cleaning up any mappings) and then release the
 584 *    reference acquired with dma_buf_get() by calling dma_buf_put().
 585 *
 586 * For the detailed semantics exporters are expected to implement see
 587 * &dma_buf_ops.
 588 */
 589
 590/**
 591 * dma_buf_export - Creates a new dma_buf, and associates an anon file
 592 * with this buffer, so it can be exported.
 593 * Also connect the allocator specific data and ops to the buffer.
 594 * Additionally, provide a name string for exporter; useful in debugging.
 595 *
 596 * @exp_info:	[in]	holds all the export related information provided
 597 *			by the exporter. see &struct dma_buf_export_info
 598 *			for further details.
 599 *
 600 * Returns, on success, a newly created struct dma_buf object, which wraps the
 601 * supplied private data and operations for struct dma_buf_ops. On either
 602 * missing ops, or error in allocating struct dma_buf, will return negative
 603 * error.
 604 *
 605 * For most cases the easiest way to create @exp_info is through the
 606 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
 607 */
 608struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
 609{
 610	struct dma_buf *dmabuf;
 611	struct dma_resv *resv = exp_info->resv;
 612	struct file *file;
 613	size_t alloc_size = sizeof(struct dma_buf);
 614	int ret;
 615
 616	if (WARN_ON(!exp_info->priv || !exp_info->ops
 617		    || !exp_info->ops->map_dma_buf
 618		    || !exp_info->ops->unmap_dma_buf
 619		    || !exp_info->ops->release))
 
 
 
 
 
 
 
 620		return ERR_PTR(-EINVAL);
 
 621
 622	if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
 623		    (exp_info->ops->pin || exp_info->ops->unpin)))
 624		return ERR_PTR(-EINVAL);
 625
 626	if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
 627		return ERR_PTR(-EINVAL);
 628
 629	if (!try_module_get(exp_info->owner))
 630		return ERR_PTR(-ENOENT);
 631
 632	file = dma_buf_getfile(exp_info->size, exp_info->flags);
 633	if (IS_ERR(file)) {
 634		ret = PTR_ERR(file);
 635		goto err_module;
 636	}
 637
 638	if (!exp_info->resv)
 639		alloc_size += sizeof(struct dma_resv);
 640	else
 641		/* prevent &dma_buf[1] == dma_buf->resv */
 642		alloc_size += 1;
 643	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
 644	if (!dmabuf) {
 645		ret = -ENOMEM;
 646		goto err_file;
 647	}
 648
 649	dmabuf->priv = exp_info->priv;
 650	dmabuf->ops = exp_info->ops;
 651	dmabuf->size = exp_info->size;
 652	dmabuf->exp_name = exp_info->exp_name;
 653	dmabuf->owner = exp_info->owner;
 654	spin_lock_init(&dmabuf->name_lock);
 655	init_waitqueue_head(&dmabuf->poll);
 656	dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll;
 657	dmabuf->cb_in.active = dmabuf->cb_out.active = 0;
 658	INIT_LIST_HEAD(&dmabuf->attachments);
 659
 660	if (!resv) {
 661		dmabuf->resv = (struct dma_resv *)&dmabuf[1];
 662		dma_resv_init(dmabuf->resv);
 663	} else {
 664		dmabuf->resv = resv;
 665	}
 
 666
 667	ret = dma_buf_stats_setup(dmabuf, file);
 668	if (ret)
 
 669		goto err_dmabuf;
 
 670
 671	file->private_data = dmabuf;
 672	file->f_path.dentry->d_fsdata = dmabuf;
 673	dmabuf->file = file;
 674
 
 
 
 675	mutex_lock(&db_list.lock);
 676	list_add(&dmabuf->list_node, &db_list.head);
 677	mutex_unlock(&db_list.lock);
 678
 679	return dmabuf;
 680
 681err_dmabuf:
 682	if (!resv)
 683		dma_resv_fini(dmabuf->resv);
 684	kfree(dmabuf);
 685err_file:
 686	fput(file);
 687err_module:
 688	module_put(exp_info->owner);
 689	return ERR_PTR(ret);
 690}
 691EXPORT_SYMBOL_NS_GPL(dma_buf_export, DMA_BUF);
 692
 693/**
 694 * dma_buf_fd - returns a file descriptor for the given struct dma_buf
 695 * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
 696 * @flags:      [in]    flags to give to fd
 697 *
 698 * On success, returns an associated 'fd'. Else, returns error.
 699 */
 700int dma_buf_fd(struct dma_buf *dmabuf, int flags)
 701{
 702	int fd;
 703
 704	if (!dmabuf || !dmabuf->file)
 705		return -EINVAL;
 706
 707	fd = get_unused_fd_flags(flags);
 708	if (fd < 0)
 709		return fd;
 710
 711	fd_install(fd, dmabuf->file);
 712
 713	return fd;
 714}
 715EXPORT_SYMBOL_NS_GPL(dma_buf_fd, DMA_BUF);
 716
 717/**
 718 * dma_buf_get - returns the struct dma_buf related to an fd
 719 * @fd:	[in]	fd associated with the struct dma_buf to be returned
 720 *
 721 * On success, returns the struct dma_buf associated with an fd; uses
 722 * file's refcounting done by fget to increase refcount. returns ERR_PTR
 723 * otherwise.
 724 */
 725struct dma_buf *dma_buf_get(int fd)
 726{
 727	struct file *file;
 728
 729	file = fget(fd);
 730
 731	if (!file)
 732		return ERR_PTR(-EBADF);
 733
 734	if (!is_dma_buf_file(file)) {
 735		fput(file);
 736		return ERR_PTR(-EINVAL);
 737	}
 738
 739	return file->private_data;
 740}
 741EXPORT_SYMBOL_NS_GPL(dma_buf_get, DMA_BUF);
 742
 743/**
 744 * dma_buf_put - decreases refcount of the buffer
 745 * @dmabuf:	[in]	buffer to reduce refcount of
 746 *
 747 * Uses file's refcounting done implicitly by fput().
 748 *
 749 * If, as a result of this call, the refcount becomes 0, the 'release' file
 750 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
 751 * in turn, and frees the memory allocated for dmabuf when exported.
 752 */
 753void dma_buf_put(struct dma_buf *dmabuf)
 754{
 755	if (WARN_ON(!dmabuf || !dmabuf->file))
 756		return;
 757
 758	fput(dmabuf->file);
 759}
 760EXPORT_SYMBOL_NS_GPL(dma_buf_put, DMA_BUF);
 761
 762static void mangle_sg_table(struct sg_table *sg_table)
 763{
 764#ifdef CONFIG_DMABUF_DEBUG
 765	int i;
 766	struct scatterlist *sg;
 767
 768	/* To catch abuse of the underlying struct page by importers mix
 769	 * up the bits, but take care to preserve the low SG_ bits to
 770	 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf
 771	 * before passing the sgt back to the exporter. */
 772	for_each_sgtable_sg(sg_table, sg, i)
 773		sg->page_link ^= ~0xffUL;
 774#endif
 775
 776}
 777static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach,
 778				       enum dma_data_direction direction)
 779{
 780	struct sg_table *sg_table;
 781	signed long ret;
 782
 783	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
 784	if (IS_ERR_OR_NULL(sg_table))
 785		return sg_table;
 786
 787	if (!dma_buf_attachment_is_dynamic(attach)) {
 788		ret = dma_resv_wait_timeout(attach->dmabuf->resv,
 789					    DMA_RESV_USAGE_KERNEL, true,
 790					    MAX_SCHEDULE_TIMEOUT);
 791		if (ret < 0) {
 792			attach->dmabuf->ops->unmap_dma_buf(attach, sg_table,
 793							   direction);
 794			return ERR_PTR(ret);
 795		}
 796	}
 797
 798	mangle_sg_table(sg_table);
 799	return sg_table;
 800}
 801
 802/**
 803 * DOC: locking convention
 804 *
 805 * In order to avoid deadlock situations between dma-buf exports and importers,
 806 * all dma-buf API users must follow the common dma-buf locking convention.
 807 *
 808 * Convention for importers
 809 *
 810 * 1. Importers must hold the dma-buf reservation lock when calling these
 811 *    functions:
 812 *
 813 *     - dma_buf_pin()
 814 *     - dma_buf_unpin()
 815 *     - dma_buf_map_attachment()
 816 *     - dma_buf_unmap_attachment()
 817 *     - dma_buf_vmap()
 818 *     - dma_buf_vunmap()
 819 *
 820 * 2. Importers must not hold the dma-buf reservation lock when calling these
 821 *    functions:
 822 *
 823 *     - dma_buf_attach()
 824 *     - dma_buf_dynamic_attach()
 825 *     - dma_buf_detach()
 826 *     - dma_buf_export()
 827 *     - dma_buf_fd()
 828 *     - dma_buf_get()
 829 *     - dma_buf_put()
 830 *     - dma_buf_mmap()
 831 *     - dma_buf_begin_cpu_access()
 832 *     - dma_buf_end_cpu_access()
 833 *     - dma_buf_map_attachment_unlocked()
 834 *     - dma_buf_unmap_attachment_unlocked()
 835 *     - dma_buf_vmap_unlocked()
 836 *     - dma_buf_vunmap_unlocked()
 837 *
 838 * Convention for exporters
 839 *
 840 * 1. These &dma_buf_ops callbacks are invoked with unlocked dma-buf
 841 *    reservation and exporter can take the lock:
 842 *
 843 *     - &dma_buf_ops.attach()
 844 *     - &dma_buf_ops.detach()
 845 *     - &dma_buf_ops.release()
 846 *     - &dma_buf_ops.begin_cpu_access()
 847 *     - &dma_buf_ops.end_cpu_access()
 848 *     - &dma_buf_ops.mmap()
 849 *
 850 * 2. These &dma_buf_ops callbacks are invoked with locked dma-buf
 851 *    reservation and exporter can't take the lock:
 852 *
 853 *     - &dma_buf_ops.pin()
 854 *     - &dma_buf_ops.unpin()
 855 *     - &dma_buf_ops.map_dma_buf()
 856 *     - &dma_buf_ops.unmap_dma_buf()
 857 *     - &dma_buf_ops.vmap()
 858 *     - &dma_buf_ops.vunmap()
 859 *
 860 * 3. Exporters must hold the dma-buf reservation lock when calling these
 861 *    functions:
 862 *
 863 *     - dma_buf_move_notify()
 864 */
 865
 866/**
 867 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list
 868 * @dmabuf:		[in]	buffer to attach device to.
 869 * @dev:		[in]	device to be attached.
 870 * @importer_ops:	[in]	importer operations for the attachment
 871 * @importer_priv:	[in]	importer private pointer for the attachment
 872 *
 873 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
 874 * must be cleaned up by calling dma_buf_detach().
 875 *
 876 * Optionally this calls &dma_buf_ops.attach to allow device-specific attach
 877 * functionality.
 878 *
 879 * Returns:
 880 *
 881 * A pointer to newly created &dma_buf_attachment on success, or a negative
 882 * error code wrapped into a pointer on failure.
 883 *
 884 * Note that this can fail if the backing storage of @dmabuf is in a place not
 885 * accessible to @dev, and cannot be moved to a more suitable place. This is
 886 * indicated with the error code -EBUSY.
 887 */
 888struct dma_buf_attachment *
 889dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
 890		       const struct dma_buf_attach_ops *importer_ops,
 891		       void *importer_priv)
 892{
 893	struct dma_buf_attachment *attach;
 894	int ret;
 895
 896	if (WARN_ON(!dmabuf || !dev))
 897		return ERR_PTR(-EINVAL);
 898
 899	if (WARN_ON(importer_ops && !importer_ops->move_notify))
 900		return ERR_PTR(-EINVAL);
 901
 902	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
 903	if (!attach)
 904		return ERR_PTR(-ENOMEM);
 905
 906	attach->dev = dev;
 907	attach->dmabuf = dmabuf;
 908	if (importer_ops)
 909		attach->peer2peer = importer_ops->allow_peer2peer;
 910	attach->importer_ops = importer_ops;
 911	attach->importer_priv = importer_priv;
 912
 913	if (dmabuf->ops->attach) {
 914		ret = dmabuf->ops->attach(dmabuf, attach);
 915		if (ret)
 916			goto err_attach;
 917	}
 918	dma_resv_lock(dmabuf->resv, NULL);
 919	list_add(&attach->node, &dmabuf->attachments);
 920	dma_resv_unlock(dmabuf->resv);
 921
 922	/* When either the importer or the exporter can't handle dynamic
 923	 * mappings we cache the mapping here to avoid issues with the
 924	 * reservation object lock.
 925	 */
 926	if (dma_buf_attachment_is_dynamic(attach) !=
 927	    dma_buf_is_dynamic(dmabuf)) {
 928		struct sg_table *sgt;
 929
 930		dma_resv_lock(attach->dmabuf->resv, NULL);
 931		if (dma_buf_is_dynamic(attach->dmabuf)) {
 
 932			ret = dmabuf->ops->pin(attach);
 933			if (ret)
 934				goto err_unlock;
 935		}
 936
 937		sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL);
 938		if (!sgt)
 939			sgt = ERR_PTR(-ENOMEM);
 940		if (IS_ERR(sgt)) {
 941			ret = PTR_ERR(sgt);
 942			goto err_unpin;
 943		}
 944		dma_resv_unlock(attach->dmabuf->resv);
 
 945		attach->sgt = sgt;
 946		attach->dir = DMA_BIDIRECTIONAL;
 947	}
 948
 949	return attach;
 950
 951err_attach:
 952	kfree(attach);
 953	return ERR_PTR(ret);
 954
 955err_unpin:
 956	if (dma_buf_is_dynamic(attach->dmabuf))
 957		dmabuf->ops->unpin(attach);
 958
 959err_unlock:
 960	dma_resv_unlock(attach->dmabuf->resv);
 
 961
 962	dma_buf_detach(dmabuf, attach);
 963	return ERR_PTR(ret);
 964}
 965EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, DMA_BUF);
 966
 967/**
 968 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
 969 * @dmabuf:	[in]	buffer to attach device to.
 970 * @dev:	[in]	device to be attached.
 971 *
 972 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
 973 * mapping.
 974 */
 975struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
 976					  struct device *dev)
 977{
 978	return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
 979}
 980EXPORT_SYMBOL_NS_GPL(dma_buf_attach, DMA_BUF);
 981
 982static void __unmap_dma_buf(struct dma_buf_attachment *attach,
 983			    struct sg_table *sg_table,
 984			    enum dma_data_direction direction)
 985{
 986	/* uses XOR, hence this unmangles */
 987	mangle_sg_table(sg_table);
 988
 989	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
 990}
 991
 992/**
 993 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list
 994 * @dmabuf:	[in]	buffer to detach from.
 995 * @attach:	[in]	attachment to be detached; is free'd after this call.
 996 *
 997 * Clean up a device attachment obtained by calling dma_buf_attach().
 998 *
 999 * Optionally this calls &dma_buf_ops.detach for device-specific detach.
1000 */
1001void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
1002{
1003	if (WARN_ON(!dmabuf || !attach || dmabuf != attach->dmabuf))
1004		return;
1005
1006	dma_resv_lock(dmabuf->resv, NULL);
1007
1008	if (attach->sgt) {
 
 
1009
1010		__unmap_dma_buf(attach, attach->sgt, attach->dir);
1011
1012		if (dma_buf_is_dynamic(attach->dmabuf))
1013			dmabuf->ops->unpin(attach);
 
 
1014	}
1015	list_del(&attach->node);
1016
 
 
1017	dma_resv_unlock(dmabuf->resv);
1018
1019	if (dmabuf->ops->detach)
1020		dmabuf->ops->detach(dmabuf, attach);
1021
1022	kfree(attach);
1023}
1024EXPORT_SYMBOL_NS_GPL(dma_buf_detach, DMA_BUF);
1025
1026/**
1027 * dma_buf_pin - Lock down the DMA-buf
1028 * @attach:	[in]	attachment which should be pinned
1029 *
1030 * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may
1031 * call this, and only for limited use cases like scanout and not for temporary
1032 * pin operations. It is not permitted to allow userspace to pin arbitrary
1033 * amounts of buffers through this interface.
1034 *
1035 * Buffers must be unpinned by calling dma_buf_unpin().
1036 *
1037 * Returns:
1038 * 0 on success, negative error code on failure.
1039 */
1040int dma_buf_pin(struct dma_buf_attachment *attach)
1041{
1042	struct dma_buf *dmabuf = attach->dmabuf;
1043	int ret = 0;
1044
1045	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
1046
1047	dma_resv_assert_held(dmabuf->resv);
1048
1049	if (dmabuf->ops->pin)
1050		ret = dmabuf->ops->pin(attach);
1051
1052	return ret;
1053}
1054EXPORT_SYMBOL_NS_GPL(dma_buf_pin, DMA_BUF);
1055
1056/**
1057 * dma_buf_unpin - Unpin a DMA-buf
1058 * @attach:	[in]	attachment which should be unpinned
1059 *
1060 * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move
1061 * any mapping of @attach again and inform the importer through
1062 * &dma_buf_attach_ops.move_notify.
1063 */
1064void dma_buf_unpin(struct dma_buf_attachment *attach)
1065{
1066	struct dma_buf *dmabuf = attach->dmabuf;
1067
1068	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
1069
1070	dma_resv_assert_held(dmabuf->resv);
1071
1072	if (dmabuf->ops->unpin)
1073		dmabuf->ops->unpin(attach);
1074}
1075EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, DMA_BUF);
1076
1077/**
1078 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
1079 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1080 * dma_buf_ops.
1081 * @attach:	[in]	attachment whose scatterlist is to be returned
1082 * @direction:	[in]	direction of DMA transfer
1083 *
1084 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
1085 * on error. May return -EINTR if it is interrupted by a signal.
1086 *
1087 * On success, the DMA addresses and lengths in the returned scatterlist are
1088 * PAGE_SIZE aligned.
1089 *
1090 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
1091 * the underlying backing storage is pinned for as long as a mapping exists,
1092 * therefore users/importers should not hold onto a mapping for undue amounts of
1093 * time.
1094 *
1095 * Important: Dynamic importers must wait for the exclusive fence of the struct
1096 * dma_resv attached to the DMA-BUF first.
1097 */
1098struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
1099					enum dma_data_direction direction)
1100{
1101	struct sg_table *sg_table;
1102	int r;
1103
1104	might_sleep();
1105
1106	if (WARN_ON(!attach || !attach->dmabuf))
1107		return ERR_PTR(-EINVAL);
1108
1109	dma_resv_assert_held(attach->dmabuf->resv);
 
1110
1111	if (attach->sgt) {
1112		/*
1113		 * Two mappings with different directions for the same
1114		 * attachment are not allowed.
1115		 */
1116		if (attach->dir != direction &&
1117		    attach->dir != DMA_BIDIRECTIONAL)
1118			return ERR_PTR(-EBUSY);
1119
1120		return attach->sgt;
1121	}
1122
1123	if (dma_buf_is_dynamic(attach->dmabuf)) {
 
1124		if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
1125			r = attach->dmabuf->ops->pin(attach);
1126			if (r)
1127				return ERR_PTR(r);
1128		}
1129	}
1130
1131	sg_table = __map_dma_buf(attach, direction);
1132	if (!sg_table)
1133		sg_table = ERR_PTR(-ENOMEM);
1134
1135	if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
1136	     !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1137		attach->dmabuf->ops->unpin(attach);
1138
1139	if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
1140		attach->sgt = sg_table;
1141		attach->dir = direction;
1142	}
1143
1144#ifdef CONFIG_DMA_API_DEBUG
1145	if (!IS_ERR(sg_table)) {
1146		struct scatterlist *sg;
1147		u64 addr;
1148		int len;
1149		int i;
1150
1151		for_each_sgtable_dma_sg(sg_table, sg, i) {
1152			addr = sg_dma_address(sg);
1153			len = sg_dma_len(sg);
1154			if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) {
1155				pr_debug("%s: addr %llx or len %x is not page aligned!\n",
1156					 __func__, addr, len);
1157			}
1158		}
1159	}
1160#endif /* CONFIG_DMA_API_DEBUG */
1161	return sg_table;
1162}
1163EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, DMA_BUF);
1164
1165/**
1166 * dma_buf_map_attachment_unlocked - Returns the scatterlist table of the attachment;
1167 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1168 * dma_buf_ops.
1169 * @attach:	[in]	attachment whose scatterlist is to be returned
1170 * @direction:	[in]	direction of DMA transfer
1171 *
1172 * Unlocked variant of dma_buf_map_attachment().
1173 */
1174struct sg_table *
1175dma_buf_map_attachment_unlocked(struct dma_buf_attachment *attach,
1176				enum dma_data_direction direction)
1177{
1178	struct sg_table *sg_table;
1179
1180	might_sleep();
1181
1182	if (WARN_ON(!attach || !attach->dmabuf))
1183		return ERR_PTR(-EINVAL);
1184
1185	dma_resv_lock(attach->dmabuf->resv, NULL);
1186	sg_table = dma_buf_map_attachment(attach, direction);
1187	dma_resv_unlock(attach->dmabuf->resv);
1188
1189	return sg_table;
1190}
1191EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment_unlocked, DMA_BUF);
1192
1193/**
1194 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
1195 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1196 * dma_buf_ops.
1197 * @attach:	[in]	attachment to unmap buffer from
1198 * @sg_table:	[in]	scatterlist info of the buffer to unmap
1199 * @direction:  [in]    direction of DMA transfer
1200 *
1201 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
1202 */
1203void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
1204				struct sg_table *sg_table,
1205				enum dma_data_direction direction)
1206{
1207	might_sleep();
1208
1209	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1210		return;
1211
1212	dma_resv_assert_held(attach->dmabuf->resv);
 
1213
1214	if (attach->sgt == sg_table)
1215		return;
1216
 
 
 
1217	__unmap_dma_buf(attach, sg_table, direction);
1218
1219	if (dma_buf_is_dynamic(attach->dmabuf) &&
1220	    !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1221		dma_buf_unpin(attach);
1222}
1223EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, DMA_BUF);
1224
1225/**
1226 * dma_buf_unmap_attachment_unlocked - unmaps and decreases usecount of the buffer;might
1227 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1228 * dma_buf_ops.
1229 * @attach:	[in]	attachment to unmap buffer from
1230 * @sg_table:	[in]	scatterlist info of the buffer to unmap
1231 * @direction:	[in]	direction of DMA transfer
1232 *
1233 * Unlocked variant of dma_buf_unmap_attachment().
1234 */
1235void dma_buf_unmap_attachment_unlocked(struct dma_buf_attachment *attach,
1236				       struct sg_table *sg_table,
1237				       enum dma_data_direction direction)
1238{
1239	might_sleep();
1240
1241	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1242		return;
1243
1244	dma_resv_lock(attach->dmabuf->resv, NULL);
1245	dma_buf_unmap_attachment(attach, sg_table, direction);
1246	dma_resv_unlock(attach->dmabuf->resv);
1247}
1248EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment_unlocked, DMA_BUF);
1249
1250/**
1251 * dma_buf_move_notify - notify attachments that DMA-buf is moving
1252 *
1253 * @dmabuf:	[in]	buffer which is moving
1254 *
1255 * Informs all attachments that they need to destroy and recreate all their
1256 * mappings.
1257 */
1258void dma_buf_move_notify(struct dma_buf *dmabuf)
1259{
1260	struct dma_buf_attachment *attach;
1261
1262	dma_resv_assert_held(dmabuf->resv);
1263
1264	list_for_each_entry(attach, &dmabuf->attachments, node)
1265		if (attach->importer_ops)
1266			attach->importer_ops->move_notify(attach);
1267}
1268EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, DMA_BUF);
1269
1270/**
1271 * DOC: cpu access
1272 *
1273 * There are multiple reasons for supporting CPU access to a dma buffer object:
1274 *
1275 * - Fallback operations in the kernel, for example when a device is connected
1276 *   over USB and the kernel needs to shuffle the data around first before
1277 *   sending it away. Cache coherency is handled by bracketing any transactions
1278 *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1279 *   access.
1280 *
1281 *   Since for most kernel internal dma-buf accesses need the entire buffer, a
1282 *   vmap interface is introduced. Note that on very old 32-bit architectures
1283 *   vmalloc space might be limited and result in vmap calls failing.
1284 *
1285 *   Interfaces::
1286 *
1287 *      void \*dma_buf_vmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1288 *      void dma_buf_vunmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1289 *
1290 *   The vmap call can fail if there is no vmap support in the exporter, or if
1291 *   it runs out of vmalloc space. Note that the dma-buf layer keeps a reference
1292 *   count for all vmap access and calls down into the exporter's vmap function
1293 *   only when no vmapping exists, and only unmaps it once. Protection against
1294 *   concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex.
1295 *
1296 * - For full compatibility on the importer side with existing userspace
1297 *   interfaces, which might already support mmap'ing buffers. This is needed in
1298 *   many processing pipelines (e.g. feeding a software rendered image into a
1299 *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1300 *   framework already supported this and for DMA buffer file descriptors to
1301 *   replace ION buffers mmap support was needed.
1302 *
1303 *   There is no special interfaces, userspace simply calls mmap on the dma-buf
1304 *   fd. But like for CPU access there's a need to bracket the actual access,
1305 *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1306 *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1307 *   be restarted.
1308 *
1309 *   Some systems might need some sort of cache coherency management e.g. when
1310 *   CPU and GPU domains are being accessed through dma-buf at the same time.
1311 *   To circumvent this problem there are begin/end coherency markers, that
1312 *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1313 *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1314 *   sequence would be used like following:
1315 *
1316 *     - mmap dma-buf fd
1317 *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1318 *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1319 *       want (with the new data being consumed by say the GPU or the scanout
1320 *       device)
1321 *     - munmap once you don't need the buffer any more
1322 *
1323 *    For correctness and optimal performance, it is always required to use
1324 *    SYNC_START and SYNC_END before and after, respectively, when accessing the
1325 *    mapped address. Userspace cannot rely on coherent access, even when there
1326 *    are systems where it just works without calling these ioctls.
1327 *
1328 * - And as a CPU fallback in userspace processing pipelines.
1329 *
1330 *   Similar to the motivation for kernel cpu access it is again important that
1331 *   the userspace code of a given importing subsystem can use the same
1332 *   interfaces with a imported dma-buf buffer object as with a native buffer
1333 *   object. This is especially important for drm where the userspace part of
1334 *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
1335 *   use a different way to mmap a buffer rather invasive.
1336 *
1337 *   The assumption in the current dma-buf interfaces is that redirecting the
1338 *   initial mmap is all that's needed. A survey of some of the existing
1339 *   subsystems shows that no driver seems to do any nefarious thing like
1340 *   syncing up with outstanding asynchronous processing on the device or
1341 *   allocating special resources at fault time. So hopefully this is good
1342 *   enough, since adding interfaces to intercept pagefaults and allow pte
1343 *   shootdowns would increase the complexity quite a bit.
1344 *
1345 *   Interface::
1346 *
1347 *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1348 *		       unsigned long);
1349 *
1350 *   If the importing subsystem simply provides a special-purpose mmap call to
1351 *   set up a mapping in userspace, calling do_mmap with &dma_buf.file will
1352 *   equally achieve that for a dma-buf object.
1353 */
1354
1355static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1356				      enum dma_data_direction direction)
1357{
1358	bool write = (direction == DMA_BIDIRECTIONAL ||
1359		      direction == DMA_TO_DEVICE);
1360	struct dma_resv *resv = dmabuf->resv;
1361	long ret;
1362
1363	/* Wait on any implicit rendering fences */
1364	ret = dma_resv_wait_timeout(resv, dma_resv_usage_rw(write),
1365				    true, MAX_SCHEDULE_TIMEOUT);
1366	if (ret < 0)
1367		return ret;
1368
1369	return 0;
1370}
1371
1372/**
1373 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1374 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1375 * preparations. Coherency is only guaranteed in the specified range for the
1376 * specified access direction.
1377 * @dmabuf:	[in]	buffer to prepare cpu access for.
1378 * @direction:	[in]	direction of access.
1379 *
1380 * After the cpu access is complete the caller should call
1381 * dma_buf_end_cpu_access(). Only when cpu access is bracketed by both calls is
1382 * it guaranteed to be coherent with other DMA access.
1383 *
1384 * This function will also wait for any DMA transactions tracked through
1385 * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit
1386 * synchronization this function will only ensure cache coherency, callers must
1387 * ensure synchronization with such DMA transactions on their own.
1388 *
1389 * Can return negative error values, returns 0 on success.
1390 */
1391int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1392			     enum dma_data_direction direction)
1393{
1394	int ret = 0;
1395
1396	if (WARN_ON(!dmabuf))
1397		return -EINVAL;
1398
1399	might_lock(&dmabuf->resv->lock.base);
1400
1401	if (dmabuf->ops->begin_cpu_access)
1402		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1403
1404	/* Ensure that all fences are waited upon - but we first allow
1405	 * the native handler the chance to do so more efficiently if it
1406	 * chooses. A double invocation here will be reasonably cheap no-op.
1407	 */
1408	if (ret == 0)
1409		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1410
1411	return ret;
1412}
1413EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, DMA_BUF);
1414
1415/**
1416 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1417 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1418 * actions. Coherency is only guaranteed in the specified range for the
1419 * specified access direction.
1420 * @dmabuf:	[in]	buffer to complete cpu access for.
1421 * @direction:	[in]	direction of access.
1422 *
1423 * This terminates CPU access started with dma_buf_begin_cpu_access().
1424 *
1425 * Can return negative error values, returns 0 on success.
1426 */
1427int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1428			   enum dma_data_direction direction)
1429{
1430	int ret = 0;
1431
1432	WARN_ON(!dmabuf);
1433
1434	might_lock(&dmabuf->resv->lock.base);
1435
1436	if (dmabuf->ops->end_cpu_access)
1437		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1438
1439	return ret;
1440}
1441EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, DMA_BUF);
1442
1443
1444/**
1445 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1446 * @dmabuf:	[in]	buffer that should back the vma
1447 * @vma:	[in]	vma for the mmap
1448 * @pgoff:	[in]	offset in pages where this mmap should start within the
1449 *			dma-buf buffer.
1450 *
1451 * This function adjusts the passed in vma so that it points at the file of the
1452 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1453 * checking on the size of the vma. Then it calls the exporters mmap function to
1454 * set up the mapping.
1455 *
1456 * Can return negative error values, returns 0 on success.
1457 */
1458int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1459		 unsigned long pgoff)
1460{
1461	if (WARN_ON(!dmabuf || !vma))
1462		return -EINVAL;
1463
1464	/* check if buffer supports mmap */
1465	if (!dmabuf->ops->mmap)
1466		return -EINVAL;
1467
1468	/* check for offset overflow */
1469	if (pgoff + vma_pages(vma) < pgoff)
1470		return -EOVERFLOW;
1471
1472	/* check for overflowing the buffer's size */
1473	if (pgoff + vma_pages(vma) >
1474	    dmabuf->size >> PAGE_SHIFT)
1475		return -EINVAL;
1476
1477	/* readjust the vma */
1478	vma_set_file(vma, dmabuf->file);
1479	vma->vm_pgoff = pgoff;
1480
1481	return dmabuf->ops->mmap(dmabuf, vma);
1482}
1483EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, DMA_BUF);
1484
1485/**
1486 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1487 * address space. Same restrictions as for vmap and friends apply.
1488 * @dmabuf:	[in]	buffer to vmap
1489 * @map:	[out]	returns the vmap pointer
1490 *
1491 * This call may fail due to lack of virtual mapping address space.
1492 * These calls are optional in drivers. The intended use for them
1493 * is for mapping objects linear in kernel space for high use objects.
1494 *
1495 * To ensure coherency users must call dma_buf_begin_cpu_access() and
1496 * dma_buf_end_cpu_access() around any cpu access performed through this
1497 * mapping.
1498 *
1499 * Returns 0 on success, or a negative errno code otherwise.
1500 */
1501int dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
1502{
1503	struct iosys_map ptr;
1504	int ret;
1505
1506	iosys_map_clear(map);
1507
1508	if (WARN_ON(!dmabuf))
1509		return -EINVAL;
1510
1511	dma_resv_assert_held(dmabuf->resv);
1512
1513	if (!dmabuf->ops->vmap)
1514		return -EINVAL;
1515
 
1516	if (dmabuf->vmapping_counter) {
1517		dmabuf->vmapping_counter++;
1518		BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1519		*map = dmabuf->vmap_ptr;
1520		return 0;
1521	}
1522
1523	BUG_ON(iosys_map_is_set(&dmabuf->vmap_ptr));
1524
1525	ret = dmabuf->ops->vmap(dmabuf, &ptr);
1526	if (WARN_ON_ONCE(ret))
1527		return ret;
1528
1529	dmabuf->vmap_ptr = ptr;
1530	dmabuf->vmapping_counter = 1;
1531
1532	*map = dmabuf->vmap_ptr;
1533
1534	return 0;
1535}
1536EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, DMA_BUF);
1537
1538/**
1539 * dma_buf_vmap_unlocked - Create virtual mapping for the buffer object into kernel
1540 * address space. Same restrictions as for vmap and friends apply.
1541 * @dmabuf:	[in]	buffer to vmap
1542 * @map:	[out]	returns the vmap pointer
1543 *
1544 * Unlocked version of dma_buf_vmap()
1545 *
1546 * Returns 0 on success, or a negative errno code otherwise.
1547 */
1548int dma_buf_vmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map)
1549{
1550	int ret;
1551
1552	iosys_map_clear(map);
1553
1554	if (WARN_ON(!dmabuf))
1555		return -EINVAL;
1556
1557	dma_resv_lock(dmabuf->resv, NULL);
1558	ret = dma_buf_vmap(dmabuf, map);
1559	dma_resv_unlock(dmabuf->resv);
1560
1561	return ret;
1562}
1563EXPORT_SYMBOL_NS_GPL(dma_buf_vmap_unlocked, DMA_BUF);
1564
1565/**
1566 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1567 * @dmabuf:	[in]	buffer to vunmap
1568 * @map:	[in]	vmap pointer to vunmap
1569 */
1570void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
1571{
1572	if (WARN_ON(!dmabuf))
1573		return;
1574
1575	dma_resv_assert_held(dmabuf->resv);
1576
1577	BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1578	BUG_ON(dmabuf->vmapping_counter == 0);
1579	BUG_ON(!iosys_map_is_equal(&dmabuf->vmap_ptr, map));
1580
 
1581	if (--dmabuf->vmapping_counter == 0) {
1582		if (dmabuf->ops->vunmap)
1583			dmabuf->ops->vunmap(dmabuf, map);
1584		iosys_map_clear(&dmabuf->vmap_ptr);
1585	}
 
1586}
1587EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, DMA_BUF);
1588
1589/**
1590 * dma_buf_vunmap_unlocked - Unmap a vmap obtained by dma_buf_vmap.
1591 * @dmabuf:	[in]	buffer to vunmap
1592 * @map:	[in]	vmap pointer to vunmap
1593 */
1594void dma_buf_vunmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map)
1595{
1596	if (WARN_ON(!dmabuf))
1597		return;
1598
1599	dma_resv_lock(dmabuf->resv, NULL);
1600	dma_buf_vunmap(dmabuf, map);
1601	dma_resv_unlock(dmabuf->resv);
1602}
1603EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap_unlocked, DMA_BUF);
1604
1605#ifdef CONFIG_DEBUG_FS
1606static int dma_buf_debug_show(struct seq_file *s, void *unused)
1607{
1608	struct dma_buf *buf_obj;
1609	struct dma_buf_attachment *attach_obj;
1610	int count = 0, attach_count;
 
 
 
1611	size_t size = 0;
1612	int ret;
1613
1614	ret = mutex_lock_interruptible(&db_list.lock);
1615
1616	if (ret)
1617		return ret;
1618
1619	seq_puts(s, "\nDma-buf Objects:\n");
1620	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\tname\n",
1621		   "size", "flags", "mode", "count", "ino");
1622
1623	list_for_each_entry(buf_obj, &db_list.head, list_node) {
1624
1625		ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1626		if (ret)
1627			goto error_unlock;
1628
1629
1630		spin_lock(&buf_obj->name_lock);
1631		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1632				buf_obj->size,
1633				buf_obj->file->f_flags, buf_obj->file->f_mode,
1634				file_count(buf_obj->file),
1635				buf_obj->exp_name,
1636				file_inode(buf_obj->file)->i_ino,
1637				buf_obj->name ?: "<none>");
1638		spin_unlock(&buf_obj->name_lock);
1639
1640		dma_resv_describe(buf_obj->resv, s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1641
1642		seq_puts(s, "\tAttached Devices:\n");
1643		attach_count = 0;
1644
1645		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1646			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1647			attach_count++;
1648		}
1649		dma_resv_unlock(buf_obj->resv);
1650
1651		seq_printf(s, "Total %d devices attached\n\n",
1652				attach_count);
1653
1654		count++;
1655		size += buf_obj->size;
1656	}
1657
1658	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1659
1660	mutex_unlock(&db_list.lock);
1661	return 0;
1662
1663error_unlock:
1664	mutex_unlock(&db_list.lock);
1665	return ret;
1666}
1667
1668DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1669
1670static struct dentry *dma_buf_debugfs_dir;
1671
1672static int dma_buf_init_debugfs(void)
1673{
1674	struct dentry *d;
1675	int err = 0;
1676
1677	d = debugfs_create_dir("dma_buf", NULL);
1678	if (IS_ERR(d))
1679		return PTR_ERR(d);
1680
1681	dma_buf_debugfs_dir = d;
1682
1683	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1684				NULL, &dma_buf_debug_fops);
1685	if (IS_ERR(d)) {
1686		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1687		debugfs_remove_recursive(dma_buf_debugfs_dir);
1688		dma_buf_debugfs_dir = NULL;
1689		err = PTR_ERR(d);
1690	}
1691
1692	return err;
1693}
1694
1695static void dma_buf_uninit_debugfs(void)
1696{
1697	debugfs_remove_recursive(dma_buf_debugfs_dir);
1698}
1699#else
1700static inline int dma_buf_init_debugfs(void)
1701{
1702	return 0;
1703}
1704static inline void dma_buf_uninit_debugfs(void)
1705{
1706}
1707#endif
1708
1709static int __init dma_buf_init(void)
1710{
1711	int ret;
1712
1713	ret = dma_buf_init_sysfs_statistics();
1714	if (ret)
1715		return ret;
1716
1717	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1718	if (IS_ERR(dma_buf_mnt))
1719		return PTR_ERR(dma_buf_mnt);
1720
1721	mutex_init(&db_list.lock);
1722	INIT_LIST_HEAD(&db_list.head);
1723	dma_buf_init_debugfs();
1724	return 0;
1725}
1726subsys_initcall(dma_buf_init);
1727
1728static void __exit dma_buf_deinit(void)
1729{
1730	dma_buf_uninit_debugfs();
1731	kern_unmount(dma_buf_mnt);
1732	dma_buf_uninit_sysfs_statistics();
1733}
1734__exitcall(dma_buf_deinit);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Framework for buffer objects that can be shared across devices/subsystems.
   4 *
   5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
   6 * Author: Sumit Semwal <sumit.semwal@ti.com>
   7 *
   8 * Many thanks to linaro-mm-sig list, and specially
   9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
  10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
  11 * refining of this idea.
  12 */
  13
  14#include <linux/fs.h>
  15#include <linux/slab.h>
  16#include <linux/dma-buf.h>
  17#include <linux/dma-fence.h>
 
  18#include <linux/anon_inodes.h>
  19#include <linux/export.h>
  20#include <linux/debugfs.h>
  21#include <linux/module.h>
  22#include <linux/seq_file.h>
 
  23#include <linux/poll.h>
  24#include <linux/dma-resv.h>
  25#include <linux/mm.h>
  26#include <linux/mount.h>
  27#include <linux/pseudo_fs.h>
  28
  29#include <uapi/linux/dma-buf.h>
  30#include <uapi/linux/magic.h>
  31
 
 
  32static inline int is_dma_buf_file(struct file *);
  33
  34struct dma_buf_list {
  35	struct list_head head;
  36	struct mutex lock;
  37};
  38
  39static struct dma_buf_list db_list;
  40
  41static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
  42{
  43	struct dma_buf *dmabuf;
  44	char name[DMA_BUF_NAME_LEN];
  45	size_t ret = 0;
  46
  47	dmabuf = dentry->d_fsdata;
  48	spin_lock(&dmabuf->name_lock);
  49	if (dmabuf->name)
  50		ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
  51	spin_unlock(&dmabuf->name_lock);
  52
  53	return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
  54			     dentry->d_name.name, ret > 0 ? name : "");
  55}
  56
  57static void dma_buf_release(struct dentry *dentry)
  58{
  59	struct dma_buf *dmabuf;
  60
  61	dmabuf = dentry->d_fsdata;
  62	if (unlikely(!dmabuf))
  63		return;
  64
  65	BUG_ON(dmabuf->vmapping_counter);
  66
  67	/*
  68	 * Any fences that a dma-buf poll can wait on should be signaled
  69	 * before releasing dma-buf. This is the responsibility of each
  70	 * driver that uses the reservation objects.
  71	 *
  72	 * If you hit this BUG() it means someone dropped their ref to the
  73	 * dma-buf while still having pending operation to the buffer.
  74	 */
  75	BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
  76
 
  77	dmabuf->ops->release(dmabuf);
  78
  79	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
  80		dma_resv_fini(dmabuf->resv);
  81
 
  82	module_put(dmabuf->owner);
  83	kfree(dmabuf->name);
  84	kfree(dmabuf);
  85}
  86
  87static int dma_buf_file_release(struct inode *inode, struct file *file)
  88{
  89	struct dma_buf *dmabuf;
  90
  91	if (!is_dma_buf_file(file))
  92		return -EINVAL;
  93
  94	dmabuf = file->private_data;
  95
  96	mutex_lock(&db_list.lock);
  97	list_del(&dmabuf->list_node);
  98	mutex_unlock(&db_list.lock);
 
  99
 100	return 0;
 101}
 102
 103static const struct dentry_operations dma_buf_dentry_ops = {
 104	.d_dname = dmabuffs_dname,
 105	.d_release = dma_buf_release,
 106};
 107
 108static struct vfsmount *dma_buf_mnt;
 109
 110static int dma_buf_fs_init_context(struct fs_context *fc)
 111{
 112	struct pseudo_fs_context *ctx;
 113
 114	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
 115	if (!ctx)
 116		return -ENOMEM;
 117	ctx->dops = &dma_buf_dentry_ops;
 118	return 0;
 119}
 120
 121static struct file_system_type dma_buf_fs_type = {
 122	.name = "dmabuf",
 123	.init_fs_context = dma_buf_fs_init_context,
 124	.kill_sb = kill_anon_super,
 125};
 126
 127static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
 128{
 129	struct dma_buf *dmabuf;
 130
 131	if (!is_dma_buf_file(file))
 132		return -EINVAL;
 133
 134	dmabuf = file->private_data;
 135
 136	/* check if buffer supports mmap */
 137	if (!dmabuf->ops->mmap)
 138		return -EINVAL;
 139
 140	/* check for overflowing the buffer's size */
 141	if (vma->vm_pgoff + vma_pages(vma) >
 142	    dmabuf->size >> PAGE_SHIFT)
 143		return -EINVAL;
 144
 145	return dmabuf->ops->mmap(dmabuf, vma);
 146}
 147
 148static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
 149{
 150	struct dma_buf *dmabuf;
 151	loff_t base;
 152
 153	if (!is_dma_buf_file(file))
 154		return -EBADF;
 155
 156	dmabuf = file->private_data;
 157
 158	/* only support discovering the end of the buffer,
 159	   but also allow SEEK_SET to maintain the idiomatic
 160	   SEEK_END(0), SEEK_CUR(0) pattern */
 161	if (whence == SEEK_END)
 162		base = dmabuf->size;
 163	else if (whence == SEEK_SET)
 164		base = 0;
 165	else
 166		return -EINVAL;
 167
 168	if (offset != 0)
 169		return -EINVAL;
 170
 171	return base + offset;
 172}
 173
 174/**
 175 * DOC: implicit fence polling
 176 *
 177 * To support cross-device and cross-driver synchronization of buffer access
 178 * implicit fences (represented internally in the kernel with &struct dma_fence)
 179 * can be attached to a &dma_buf. The glue for that and a few related things are
 180 * provided in the &dma_resv structure.
 181 *
 182 * Userspace can query the state of these implicitly tracked fences using poll()
 183 * and related system calls:
 184 *
 185 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
 186 *   most recent write or exclusive fence.
 187 *
 188 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
 189 *   all attached fences, shared and exclusive ones.
 190 *
 191 * Note that this only signals the completion of the respective fences, i.e. the
 192 * DMA transfers are complete. Cache flushing and any other necessary
 193 * preparations before CPU access can begin still need to happen.
 
 
 
 194 */
 195
 196static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
 197{
 198	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
 
 199	unsigned long flags;
 200
 201	spin_lock_irqsave(&dcb->poll->lock, flags);
 202	wake_up_locked_poll(dcb->poll, dcb->active);
 203	dcb->active = 0;
 204	spin_unlock_irqrestore(&dcb->poll->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 205}
 206
 207static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
 208{
 209	struct dma_buf *dmabuf;
 210	struct dma_resv *resv;
 211	struct dma_resv_list *fobj;
 212	struct dma_fence *fence_excl;
 213	__poll_t events;
 214	unsigned shared_count, seq;
 215
 216	dmabuf = file->private_data;
 217	if (!dmabuf || !dmabuf->resv)
 218		return EPOLLERR;
 219
 220	resv = dmabuf->resv;
 221
 222	poll_wait(file, &dmabuf->poll, poll);
 223
 224	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
 225	if (!events)
 226		return 0;
 227
 228retry:
 229	seq = read_seqcount_begin(&resv->seq);
 230	rcu_read_lock();
 231
 232	fobj = rcu_dereference(resv->fence);
 233	if (fobj)
 234		shared_count = fobj->shared_count;
 235	else
 236		shared_count = 0;
 237	fence_excl = dma_resv_excl_fence(resv);
 238	if (read_seqcount_retry(&resv->seq, seq)) {
 239		rcu_read_unlock();
 240		goto retry;
 241	}
 242
 243	if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
 244		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
 245		__poll_t pevents = EPOLLIN;
 246
 247		if (shared_count == 0)
 248			pevents |= EPOLLOUT;
 249
 
 250		spin_lock_irq(&dmabuf->poll.lock);
 251		if (dcb->active) {
 252			dcb->active |= pevents;
 253			events &= ~pevents;
 254		} else
 255			dcb->active = pevents;
 256		spin_unlock_irq(&dmabuf->poll.lock);
 257
 258		if (events & pevents) {
 259			if (!dma_fence_get_rcu(fence_excl)) {
 260				/* force a recheck */
 261				events &= ~pevents;
 
 
 262				dma_buf_poll_cb(NULL, &dcb->cb);
 263			} else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
 264							   dma_buf_poll_cb)) {
 265				events &= ~pevents;
 266				dma_fence_put(fence_excl);
 267			} else {
 268				/*
 269				 * No callback queued, wake up any additional
 270				 * waiters.
 271				 */
 272				dma_fence_put(fence_excl);
 273				dma_buf_poll_cb(NULL, &dcb->cb);
 274			}
 275		}
 276	}
 277
 278	if ((events & EPOLLOUT) && shared_count > 0) {
 279		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
 280		int i;
 281
 282		/* Only queue a new callback if no event has fired yet */
 283		spin_lock_irq(&dmabuf->poll.lock);
 284		if (dcb->active)
 285			events &= ~EPOLLOUT;
 286		else
 287			dcb->active = EPOLLOUT;
 288		spin_unlock_irq(&dmabuf->poll.lock);
 289
 290		if (!(events & EPOLLOUT))
 291			goto out;
 
 292
 293		for (i = 0; i < shared_count; ++i) {
 294			struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
 295
 296			if (!dma_fence_get_rcu(fence)) {
 297				/*
 298				 * fence refcount dropped to zero, this means
 299				 * that fobj has been freed
 300				 *
 301				 * call dma_buf_poll_cb and force a recheck!
 302				 */
 303				events &= ~EPOLLOUT;
 304				dma_buf_poll_cb(NULL, &dcb->cb);
 305				break;
 306			}
 307			if (!dma_fence_add_callback(fence, &dcb->cb,
 308						    dma_buf_poll_cb)) {
 309				dma_fence_put(fence);
 310				events &= ~EPOLLOUT;
 311				break;
 312			}
 313			dma_fence_put(fence);
 314		}
 315
 316		/* No callback queued, wake up any additional waiters. */
 317		if (i == shared_count)
 318			dma_buf_poll_cb(NULL, &dcb->cb);
 319	}
 320
 321out:
 322	rcu_read_unlock();
 323	return events;
 324}
 325
 326/**
 327 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
 328 * The name of the dma-buf buffer can only be set when the dma-buf is not
 329 * attached to any devices. It could theoritically support changing the
 330 * name of the dma-buf if the same piece of memory is used for multiple
 331 * purpose between different devices.
 332 *
 333 * @dmabuf: [in]     dmabuf buffer that will be renamed.
 334 * @buf:    [in]     A piece of userspace memory that contains the name of
 335 *                   the dma-buf.
 336 *
 337 * Returns 0 on success. If the dma-buf buffer is already attached to
 338 * devices, return -EBUSY.
 339 *
 340 */
 341static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
 342{
 343	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
 344	long ret = 0;
 345
 346	if (IS_ERR(name))
 347		return PTR_ERR(name);
 348
 349	dma_resv_lock(dmabuf->resv, NULL);
 350	if (!list_empty(&dmabuf->attachments)) {
 351		ret = -EBUSY;
 352		kfree(name);
 353		goto out_unlock;
 354	}
 355	spin_lock(&dmabuf->name_lock);
 356	kfree(dmabuf->name);
 357	dmabuf->name = name;
 358	spin_unlock(&dmabuf->name_lock);
 359
 360out_unlock:
 361	dma_resv_unlock(dmabuf->resv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 362	return ret;
 363}
 
 364
 365static long dma_buf_ioctl(struct file *file,
 366			  unsigned int cmd, unsigned long arg)
 367{
 368	struct dma_buf *dmabuf;
 369	struct dma_buf_sync sync;
 370	enum dma_data_direction direction;
 371	int ret;
 372
 373	dmabuf = file->private_data;
 374
 375	switch (cmd) {
 376	case DMA_BUF_IOCTL_SYNC:
 377		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
 378			return -EFAULT;
 379
 380		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
 381			return -EINVAL;
 382
 383		switch (sync.flags & DMA_BUF_SYNC_RW) {
 384		case DMA_BUF_SYNC_READ:
 385			direction = DMA_FROM_DEVICE;
 386			break;
 387		case DMA_BUF_SYNC_WRITE:
 388			direction = DMA_TO_DEVICE;
 389			break;
 390		case DMA_BUF_SYNC_RW:
 391			direction = DMA_BIDIRECTIONAL;
 392			break;
 393		default:
 394			return -EINVAL;
 395		}
 396
 397		if (sync.flags & DMA_BUF_SYNC_END)
 398			ret = dma_buf_end_cpu_access(dmabuf, direction);
 399		else
 400			ret = dma_buf_begin_cpu_access(dmabuf, direction);
 401
 402		return ret;
 403
 404	case DMA_BUF_SET_NAME_A:
 405	case DMA_BUF_SET_NAME_B:
 406		return dma_buf_set_name(dmabuf, (const char __user *)arg);
 407
 
 
 
 
 
 
 
 408	default:
 409		return -ENOTTY;
 410	}
 411}
 412
 413static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
 414{
 415	struct dma_buf *dmabuf = file->private_data;
 416
 417	seq_printf(m, "size:\t%zu\n", dmabuf->size);
 418	/* Don't count the temporary reference taken inside procfs seq_show */
 419	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
 420	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
 421	spin_lock(&dmabuf->name_lock);
 422	if (dmabuf->name)
 423		seq_printf(m, "name:\t%s\n", dmabuf->name);
 424	spin_unlock(&dmabuf->name_lock);
 425}
 426
 427static const struct file_operations dma_buf_fops = {
 428	.release	= dma_buf_file_release,
 429	.mmap		= dma_buf_mmap_internal,
 430	.llseek		= dma_buf_llseek,
 431	.poll		= dma_buf_poll,
 432	.unlocked_ioctl	= dma_buf_ioctl,
 433	.compat_ioctl	= compat_ptr_ioctl,
 434	.show_fdinfo	= dma_buf_show_fdinfo,
 435};
 436
 437/*
 438 * is_dma_buf_file - Check if struct file* is associated with dma_buf
 439 */
 440static inline int is_dma_buf_file(struct file *file)
 441{
 442	return file->f_op == &dma_buf_fops;
 443}
 444
 445static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
 446{
 
 
 447	struct file *file;
 448	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
 449
 450	if (IS_ERR(inode))
 451		return ERR_CAST(inode);
 452
 453	inode->i_size = dmabuf->size;
 454	inode_set_bytes(inode, dmabuf->size);
 455
 
 
 
 
 
 
 
 
 456	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
 457				 flags, &dma_buf_fops);
 458	if (IS_ERR(file))
 459		goto err_alloc_file;
 460	file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
 461	file->private_data = dmabuf;
 462	file->f_path.dentry->d_fsdata = dmabuf;
 463
 464	return file;
 465
 466err_alloc_file:
 467	iput(inode);
 468	return file;
 469}
 470
 471/**
 472 * DOC: dma buf device access
 473 *
 474 * For device DMA access to a shared DMA buffer the usual sequence of operations
 475 * is fairly simple:
 476 *
 477 * 1. The exporter defines his exporter instance using
 478 *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
 479 *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
 480 *    as a file descriptor by calling dma_buf_fd().
 481 *
 482 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
 483 *    to share with: First the filedescriptor is converted to a &dma_buf using
 484 *    dma_buf_get(). Then the buffer is attached to the device using
 485 *    dma_buf_attach().
 486 *
 487 *    Up to this stage the exporter is still free to migrate or reallocate the
 488 *    backing storage.
 489 *
 490 * 3. Once the buffer is attached to all devices userspace can initiate DMA
 491 *    access to the shared buffer. In the kernel this is done by calling
 492 *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
 493 *
 494 * 4. Once a driver is done with a shared buffer it needs to call
 495 *    dma_buf_detach() (after cleaning up any mappings) and then release the
 496 *    reference acquired with dma_buf_get() by calling dma_buf_put().
 497 *
 498 * For the detailed semantics exporters are expected to implement see
 499 * &dma_buf_ops.
 500 */
 501
 502/**
 503 * dma_buf_export - Creates a new dma_buf, and associates an anon file
 504 * with this buffer, so it can be exported.
 505 * Also connect the allocator specific data and ops to the buffer.
 506 * Additionally, provide a name string for exporter; useful in debugging.
 507 *
 508 * @exp_info:	[in]	holds all the export related information provided
 509 *			by the exporter. see &struct dma_buf_export_info
 510 *			for further details.
 511 *
 512 * Returns, on success, a newly created struct dma_buf object, which wraps the
 513 * supplied private data and operations for struct dma_buf_ops. On either
 514 * missing ops, or error in allocating struct dma_buf, will return negative
 515 * error.
 516 *
 517 * For most cases the easiest way to create @exp_info is through the
 518 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
 519 */
 520struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
 521{
 522	struct dma_buf *dmabuf;
 523	struct dma_resv *resv = exp_info->resv;
 524	struct file *file;
 525	size_t alloc_size = sizeof(struct dma_buf);
 526	int ret;
 527
 528	if (!exp_info->resv)
 529		alloc_size += sizeof(struct dma_resv);
 530	else
 531		/* prevent &dma_buf[1] == dma_buf->resv */
 532		alloc_size += 1;
 533
 534	if (WARN_ON(!exp_info->priv
 535			  || !exp_info->ops
 536			  || !exp_info->ops->map_dma_buf
 537			  || !exp_info->ops->unmap_dma_buf
 538			  || !exp_info->ops->release)) {
 539		return ERR_PTR(-EINVAL);
 540	}
 541
 542	if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
 543		    (exp_info->ops->pin || exp_info->ops->unpin)))
 544		return ERR_PTR(-EINVAL);
 545
 546	if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
 547		return ERR_PTR(-EINVAL);
 548
 549	if (!try_module_get(exp_info->owner))
 550		return ERR_PTR(-ENOENT);
 551
 
 
 
 
 
 
 
 
 
 
 
 552	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
 553	if (!dmabuf) {
 554		ret = -ENOMEM;
 555		goto err_module;
 556	}
 557
 558	dmabuf->priv = exp_info->priv;
 559	dmabuf->ops = exp_info->ops;
 560	dmabuf->size = exp_info->size;
 561	dmabuf->exp_name = exp_info->exp_name;
 562	dmabuf->owner = exp_info->owner;
 563	spin_lock_init(&dmabuf->name_lock);
 564	init_waitqueue_head(&dmabuf->poll);
 565	dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
 566	dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
 
 567
 568	if (!resv) {
 569		resv = (struct dma_resv *)&dmabuf[1];
 570		dma_resv_init(resv);
 
 
 571	}
 572	dmabuf->resv = resv;
 573
 574	file = dma_buf_getfile(dmabuf, exp_info->flags);
 575	if (IS_ERR(file)) {
 576		ret = PTR_ERR(file);
 577		goto err_dmabuf;
 578	}
 579
 580	file->f_mode |= FMODE_LSEEK;
 
 581	dmabuf->file = file;
 582
 583	mutex_init(&dmabuf->lock);
 584	INIT_LIST_HEAD(&dmabuf->attachments);
 585
 586	mutex_lock(&db_list.lock);
 587	list_add(&dmabuf->list_node, &db_list.head);
 588	mutex_unlock(&db_list.lock);
 589
 590	return dmabuf;
 591
 592err_dmabuf:
 
 
 593	kfree(dmabuf);
 
 
 594err_module:
 595	module_put(exp_info->owner);
 596	return ERR_PTR(ret);
 597}
 598EXPORT_SYMBOL_GPL(dma_buf_export);
 599
 600/**
 601 * dma_buf_fd - returns a file descriptor for the given struct dma_buf
 602 * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
 603 * @flags:      [in]    flags to give to fd
 604 *
 605 * On success, returns an associated 'fd'. Else, returns error.
 606 */
 607int dma_buf_fd(struct dma_buf *dmabuf, int flags)
 608{
 609	int fd;
 610
 611	if (!dmabuf || !dmabuf->file)
 612		return -EINVAL;
 613
 614	fd = get_unused_fd_flags(flags);
 615	if (fd < 0)
 616		return fd;
 617
 618	fd_install(fd, dmabuf->file);
 619
 620	return fd;
 621}
 622EXPORT_SYMBOL_GPL(dma_buf_fd);
 623
 624/**
 625 * dma_buf_get - returns the struct dma_buf related to an fd
 626 * @fd:	[in]	fd associated with the struct dma_buf to be returned
 627 *
 628 * On success, returns the struct dma_buf associated with an fd; uses
 629 * file's refcounting done by fget to increase refcount. returns ERR_PTR
 630 * otherwise.
 631 */
 632struct dma_buf *dma_buf_get(int fd)
 633{
 634	struct file *file;
 635
 636	file = fget(fd);
 637
 638	if (!file)
 639		return ERR_PTR(-EBADF);
 640
 641	if (!is_dma_buf_file(file)) {
 642		fput(file);
 643		return ERR_PTR(-EINVAL);
 644	}
 645
 646	return file->private_data;
 647}
 648EXPORT_SYMBOL_GPL(dma_buf_get);
 649
 650/**
 651 * dma_buf_put - decreases refcount of the buffer
 652 * @dmabuf:	[in]	buffer to reduce refcount of
 653 *
 654 * Uses file's refcounting done implicitly by fput().
 655 *
 656 * If, as a result of this call, the refcount becomes 0, the 'release' file
 657 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
 658 * in turn, and frees the memory allocated for dmabuf when exported.
 659 */
 660void dma_buf_put(struct dma_buf *dmabuf)
 661{
 662	if (WARN_ON(!dmabuf || !dmabuf->file))
 663		return;
 664
 665	fput(dmabuf->file);
 666}
 667EXPORT_SYMBOL_GPL(dma_buf_put);
 668
 669static void mangle_sg_table(struct sg_table *sg_table)
 670{
 671#ifdef CONFIG_DMABUF_DEBUG
 672	int i;
 673	struct scatterlist *sg;
 674
 675	/* To catch abuse of the underlying struct page by importers mix
 676	 * up the bits, but take care to preserve the low SG_ bits to
 677	 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf
 678	 * before passing the sgt back to the exporter. */
 679	for_each_sgtable_sg(sg_table, sg, i)
 680		sg->page_link ^= ~0xffUL;
 681#endif
 682
 683}
 684static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach,
 685				       enum dma_data_direction direction)
 686{
 687	struct sg_table *sg_table;
 
 688
 689	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
 
 
 690
 691	if (!IS_ERR_OR_NULL(sg_table))
 692		mangle_sg_table(sg_table);
 
 
 
 
 
 
 
 
 693
 
 694	return sg_table;
 695}
 696
 697/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list
 699 * @dmabuf:		[in]	buffer to attach device to.
 700 * @dev:		[in]	device to be attached.
 701 * @importer_ops:	[in]	importer operations for the attachment
 702 * @importer_priv:	[in]	importer private pointer for the attachment
 703 *
 704 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
 705 * must be cleaned up by calling dma_buf_detach().
 706 *
 707 * Optionally this calls &dma_buf_ops.attach to allow device-specific attach
 708 * functionality.
 709 *
 710 * Returns:
 711 *
 712 * A pointer to newly created &dma_buf_attachment on success, or a negative
 713 * error code wrapped into a pointer on failure.
 714 *
 715 * Note that this can fail if the backing storage of @dmabuf is in a place not
 716 * accessible to @dev, and cannot be moved to a more suitable place. This is
 717 * indicated with the error code -EBUSY.
 718 */
 719struct dma_buf_attachment *
 720dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
 721		       const struct dma_buf_attach_ops *importer_ops,
 722		       void *importer_priv)
 723{
 724	struct dma_buf_attachment *attach;
 725	int ret;
 726
 727	if (WARN_ON(!dmabuf || !dev))
 728		return ERR_PTR(-EINVAL);
 729
 730	if (WARN_ON(importer_ops && !importer_ops->move_notify))
 731		return ERR_PTR(-EINVAL);
 732
 733	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
 734	if (!attach)
 735		return ERR_PTR(-ENOMEM);
 736
 737	attach->dev = dev;
 738	attach->dmabuf = dmabuf;
 739	if (importer_ops)
 740		attach->peer2peer = importer_ops->allow_peer2peer;
 741	attach->importer_ops = importer_ops;
 742	attach->importer_priv = importer_priv;
 743
 744	if (dmabuf->ops->attach) {
 745		ret = dmabuf->ops->attach(dmabuf, attach);
 746		if (ret)
 747			goto err_attach;
 748	}
 749	dma_resv_lock(dmabuf->resv, NULL);
 750	list_add(&attach->node, &dmabuf->attachments);
 751	dma_resv_unlock(dmabuf->resv);
 752
 753	/* When either the importer or the exporter can't handle dynamic
 754	 * mappings we cache the mapping here to avoid issues with the
 755	 * reservation object lock.
 756	 */
 757	if (dma_buf_attachment_is_dynamic(attach) !=
 758	    dma_buf_is_dynamic(dmabuf)) {
 759		struct sg_table *sgt;
 760
 
 761		if (dma_buf_is_dynamic(attach->dmabuf)) {
 762			dma_resv_lock(attach->dmabuf->resv, NULL);
 763			ret = dmabuf->ops->pin(attach);
 764			if (ret)
 765				goto err_unlock;
 766		}
 767
 768		sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL);
 769		if (!sgt)
 770			sgt = ERR_PTR(-ENOMEM);
 771		if (IS_ERR(sgt)) {
 772			ret = PTR_ERR(sgt);
 773			goto err_unpin;
 774		}
 775		if (dma_buf_is_dynamic(attach->dmabuf))
 776			dma_resv_unlock(attach->dmabuf->resv);
 777		attach->sgt = sgt;
 778		attach->dir = DMA_BIDIRECTIONAL;
 779	}
 780
 781	return attach;
 782
 783err_attach:
 784	kfree(attach);
 785	return ERR_PTR(ret);
 786
 787err_unpin:
 788	if (dma_buf_is_dynamic(attach->dmabuf))
 789		dmabuf->ops->unpin(attach);
 790
 791err_unlock:
 792	if (dma_buf_is_dynamic(attach->dmabuf))
 793		dma_resv_unlock(attach->dmabuf->resv);
 794
 795	dma_buf_detach(dmabuf, attach);
 796	return ERR_PTR(ret);
 797}
 798EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach);
 799
 800/**
 801 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
 802 * @dmabuf:	[in]	buffer to attach device to.
 803 * @dev:	[in]	device to be attached.
 804 *
 805 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
 806 * mapping.
 807 */
 808struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
 809					  struct device *dev)
 810{
 811	return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
 812}
 813EXPORT_SYMBOL_GPL(dma_buf_attach);
 814
 815static void __unmap_dma_buf(struct dma_buf_attachment *attach,
 816			    struct sg_table *sg_table,
 817			    enum dma_data_direction direction)
 818{
 819	/* uses XOR, hence this unmangles */
 820	mangle_sg_table(sg_table);
 821
 822	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
 823}
 824
 825/**
 826 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list
 827 * @dmabuf:	[in]	buffer to detach from.
 828 * @attach:	[in]	attachment to be detached; is free'd after this call.
 829 *
 830 * Clean up a device attachment obtained by calling dma_buf_attach().
 831 *
 832 * Optionally this calls &dma_buf_ops.detach for device-specific detach.
 833 */
 834void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
 835{
 836	if (WARN_ON(!dmabuf || !attach))
 837		return;
 838
 
 
 839	if (attach->sgt) {
 840		if (dma_buf_is_dynamic(attach->dmabuf))
 841			dma_resv_lock(attach->dmabuf->resv, NULL);
 842
 843		__unmap_dma_buf(attach, attach->sgt, attach->dir);
 844
 845		if (dma_buf_is_dynamic(attach->dmabuf)) {
 846			dmabuf->ops->unpin(attach);
 847			dma_resv_unlock(attach->dmabuf->resv);
 848		}
 849	}
 
 850
 851	dma_resv_lock(dmabuf->resv, NULL);
 852	list_del(&attach->node);
 853	dma_resv_unlock(dmabuf->resv);
 
 854	if (dmabuf->ops->detach)
 855		dmabuf->ops->detach(dmabuf, attach);
 856
 857	kfree(attach);
 858}
 859EXPORT_SYMBOL_GPL(dma_buf_detach);
 860
 861/**
 862 * dma_buf_pin - Lock down the DMA-buf
 863 * @attach:	[in]	attachment which should be pinned
 864 *
 865 * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may
 866 * call this, and only for limited use cases like scanout and not for temporary
 867 * pin operations. It is not permitted to allow userspace to pin arbitrary
 868 * amounts of buffers through this interface.
 869 *
 870 * Buffers must be unpinned by calling dma_buf_unpin().
 871 *
 872 * Returns:
 873 * 0 on success, negative error code on failure.
 874 */
 875int dma_buf_pin(struct dma_buf_attachment *attach)
 876{
 877	struct dma_buf *dmabuf = attach->dmabuf;
 878	int ret = 0;
 879
 880	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
 881
 882	dma_resv_assert_held(dmabuf->resv);
 883
 884	if (dmabuf->ops->pin)
 885		ret = dmabuf->ops->pin(attach);
 886
 887	return ret;
 888}
 889EXPORT_SYMBOL_GPL(dma_buf_pin);
 890
 891/**
 892 * dma_buf_unpin - Unpin a DMA-buf
 893 * @attach:	[in]	attachment which should be unpinned
 894 *
 895 * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move
 896 * any mapping of @attach again and inform the importer through
 897 * &dma_buf_attach_ops.move_notify.
 898 */
 899void dma_buf_unpin(struct dma_buf_attachment *attach)
 900{
 901	struct dma_buf *dmabuf = attach->dmabuf;
 902
 903	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
 904
 905	dma_resv_assert_held(dmabuf->resv);
 906
 907	if (dmabuf->ops->unpin)
 908		dmabuf->ops->unpin(attach);
 909}
 910EXPORT_SYMBOL_GPL(dma_buf_unpin);
 911
 912/**
 913 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
 914 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
 915 * dma_buf_ops.
 916 * @attach:	[in]	attachment whose scatterlist is to be returned
 917 * @direction:	[in]	direction of DMA transfer
 918 *
 919 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
 920 * on error. May return -EINTR if it is interrupted by a signal.
 921 *
 922 * On success, the DMA addresses and lengths in the returned scatterlist are
 923 * PAGE_SIZE aligned.
 924 *
 925 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
 926 * the underlying backing storage is pinned for as long as a mapping exists,
 927 * therefore users/importers should not hold onto a mapping for undue amounts of
 928 * time.
 
 
 
 929 */
 930struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
 931					enum dma_data_direction direction)
 932{
 933	struct sg_table *sg_table;
 934	int r;
 935
 936	might_sleep();
 937
 938	if (WARN_ON(!attach || !attach->dmabuf))
 939		return ERR_PTR(-EINVAL);
 940
 941	if (dma_buf_attachment_is_dynamic(attach))
 942		dma_resv_assert_held(attach->dmabuf->resv);
 943
 944	if (attach->sgt) {
 945		/*
 946		 * Two mappings with different directions for the same
 947		 * attachment are not allowed.
 948		 */
 949		if (attach->dir != direction &&
 950		    attach->dir != DMA_BIDIRECTIONAL)
 951			return ERR_PTR(-EBUSY);
 952
 953		return attach->sgt;
 954	}
 955
 956	if (dma_buf_is_dynamic(attach->dmabuf)) {
 957		dma_resv_assert_held(attach->dmabuf->resv);
 958		if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
 959			r = attach->dmabuf->ops->pin(attach);
 960			if (r)
 961				return ERR_PTR(r);
 962		}
 963	}
 964
 965	sg_table = __map_dma_buf(attach, direction);
 966	if (!sg_table)
 967		sg_table = ERR_PTR(-ENOMEM);
 968
 969	if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
 970	     !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
 971		attach->dmabuf->ops->unpin(attach);
 972
 973	if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
 974		attach->sgt = sg_table;
 975		attach->dir = direction;
 976	}
 977
 978#ifdef CONFIG_DMA_API_DEBUG
 979	if (!IS_ERR(sg_table)) {
 980		struct scatterlist *sg;
 981		u64 addr;
 982		int len;
 983		int i;
 984
 985		for_each_sgtable_dma_sg(sg_table, sg, i) {
 986			addr = sg_dma_address(sg);
 987			len = sg_dma_len(sg);
 988			if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) {
 989				pr_debug("%s: addr %llx or len %x is not page aligned!\n",
 990					 __func__, addr, len);
 991			}
 992		}
 993	}
 994#endif /* CONFIG_DMA_API_DEBUG */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 995
 996	return sg_table;
 997}
 998EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
 999
1000/**
1001 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
1002 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1003 * dma_buf_ops.
1004 * @attach:	[in]	attachment to unmap buffer from
1005 * @sg_table:	[in]	scatterlist info of the buffer to unmap
1006 * @direction:  [in]    direction of DMA transfer
1007 *
1008 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
1009 */
1010void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
1011				struct sg_table *sg_table,
1012				enum dma_data_direction direction)
1013{
1014	might_sleep();
1015
1016	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1017		return;
1018
1019	if (dma_buf_attachment_is_dynamic(attach))
1020		dma_resv_assert_held(attach->dmabuf->resv);
1021
1022	if (attach->sgt == sg_table)
1023		return;
1024
1025	if (dma_buf_is_dynamic(attach->dmabuf))
1026		dma_resv_assert_held(attach->dmabuf->resv);
1027
1028	__unmap_dma_buf(attach, sg_table, direction);
1029
1030	if (dma_buf_is_dynamic(attach->dmabuf) &&
1031	    !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1032		dma_buf_unpin(attach);
1033}
1034EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1035
1036/**
1037 * dma_buf_move_notify - notify attachments that DMA-buf is moving
1038 *
1039 * @dmabuf:	[in]	buffer which is moving
1040 *
1041 * Informs all attachmenst that they need to destroy and recreated all their
1042 * mappings.
1043 */
1044void dma_buf_move_notify(struct dma_buf *dmabuf)
1045{
1046	struct dma_buf_attachment *attach;
1047
1048	dma_resv_assert_held(dmabuf->resv);
1049
1050	list_for_each_entry(attach, &dmabuf->attachments, node)
1051		if (attach->importer_ops)
1052			attach->importer_ops->move_notify(attach);
1053}
1054EXPORT_SYMBOL_GPL(dma_buf_move_notify);
1055
1056/**
1057 * DOC: cpu access
1058 *
1059 * There are mutliple reasons for supporting CPU access to a dma buffer object:
1060 *
1061 * - Fallback operations in the kernel, for example when a device is connected
1062 *   over USB and the kernel needs to shuffle the data around first before
1063 *   sending it away. Cache coherency is handled by braketing any transactions
1064 *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1065 *   access.
1066 *
1067 *   Since for most kernel internal dma-buf accesses need the entire buffer, a
1068 *   vmap interface is introduced. Note that on very old 32-bit architectures
1069 *   vmalloc space might be limited and result in vmap calls failing.
1070 *
1071 *   Interfaces::
1072 *
1073 *      void \*dma_buf_vmap(struct dma_buf \*dmabuf)
1074 *      void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
1075 *
1076 *   The vmap call can fail if there is no vmap support in the exporter, or if
1077 *   it runs out of vmalloc space. Note that the dma-buf layer keeps a reference
1078 *   count for all vmap access and calls down into the exporter's vmap function
1079 *   only when no vmapping exists, and only unmaps it once. Protection against
1080 *   concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex.
1081 *
1082 * - For full compatibility on the importer side with existing userspace
1083 *   interfaces, which might already support mmap'ing buffers. This is needed in
1084 *   many processing pipelines (e.g. feeding a software rendered image into a
1085 *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1086 *   framework already supported this and for DMA buffer file descriptors to
1087 *   replace ION buffers mmap support was needed.
1088 *
1089 *   There is no special interfaces, userspace simply calls mmap on the dma-buf
1090 *   fd. But like for CPU access there's a need to braket the actual access,
1091 *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1092 *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1093 *   be restarted.
1094 *
1095 *   Some systems might need some sort of cache coherency management e.g. when
1096 *   CPU and GPU domains are being accessed through dma-buf at the same time.
1097 *   To circumvent this problem there are begin/end coherency markers, that
1098 *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1099 *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1100 *   sequence would be used like following:
1101 *
1102 *     - mmap dma-buf fd
1103 *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1104 *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1105 *       want (with the new data being consumed by say the GPU or the scanout
1106 *       device)
1107 *     - munmap once you don't need the buffer any more
1108 *
1109 *    For correctness and optimal performance, it is always required to use
1110 *    SYNC_START and SYNC_END before and after, respectively, when accessing the
1111 *    mapped address. Userspace cannot rely on coherent access, even when there
1112 *    are systems where it just works without calling these ioctls.
1113 *
1114 * - And as a CPU fallback in userspace processing pipelines.
1115 *
1116 *   Similar to the motivation for kernel cpu access it is again important that
1117 *   the userspace code of a given importing subsystem can use the same
1118 *   interfaces with a imported dma-buf buffer object as with a native buffer
1119 *   object. This is especially important for drm where the userspace part of
1120 *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
1121 *   use a different way to mmap a buffer rather invasive.
1122 *
1123 *   The assumption in the current dma-buf interfaces is that redirecting the
1124 *   initial mmap is all that's needed. A survey of some of the existing
1125 *   subsystems shows that no driver seems to do any nefarious thing like
1126 *   syncing up with outstanding asynchronous processing on the device or
1127 *   allocating special resources at fault time. So hopefully this is good
1128 *   enough, since adding interfaces to intercept pagefaults and allow pte
1129 *   shootdowns would increase the complexity quite a bit.
1130 *
1131 *   Interface::
1132 *
1133 *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1134 *		       unsigned long);
1135 *
1136 *   If the importing subsystem simply provides a special-purpose mmap call to
1137 *   set up a mapping in userspace, calling do_mmap with &dma_buf.file will
1138 *   equally achieve that for a dma-buf object.
1139 */
1140
1141static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1142				      enum dma_data_direction direction)
1143{
1144	bool write = (direction == DMA_BIDIRECTIONAL ||
1145		      direction == DMA_TO_DEVICE);
1146	struct dma_resv *resv = dmabuf->resv;
1147	long ret;
1148
1149	/* Wait on any implicit rendering fences */
1150	ret = dma_resv_wait_timeout(resv, write, true, MAX_SCHEDULE_TIMEOUT);
 
1151	if (ret < 0)
1152		return ret;
1153
1154	return 0;
1155}
1156
1157/**
1158 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1159 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1160 * preparations. Coherency is only guaranteed in the specified range for the
1161 * specified access direction.
1162 * @dmabuf:	[in]	buffer to prepare cpu access for.
1163 * @direction:	[in]	length of range for cpu access.
1164 *
1165 * After the cpu access is complete the caller should call
1166 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1167 * it guaranteed to be coherent with other DMA access.
1168 *
1169 * This function will also wait for any DMA transactions tracked through
1170 * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit
1171 * synchronization this function will only ensure cache coherency, callers must
1172 * ensure synchronization with such DMA transactions on their own.
1173 *
1174 * Can return negative error values, returns 0 on success.
1175 */
1176int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1177			     enum dma_data_direction direction)
1178{
1179	int ret = 0;
1180
1181	if (WARN_ON(!dmabuf))
1182		return -EINVAL;
1183
1184	might_lock(&dmabuf->resv->lock.base);
1185
1186	if (dmabuf->ops->begin_cpu_access)
1187		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1188
1189	/* Ensure that all fences are waited upon - but we first allow
1190	 * the native handler the chance to do so more efficiently if it
1191	 * chooses. A double invocation here will be reasonably cheap no-op.
1192	 */
1193	if (ret == 0)
1194		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1195
1196	return ret;
1197}
1198EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
1199
1200/**
1201 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1202 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1203 * actions. Coherency is only guaranteed in the specified range for the
1204 * specified access direction.
1205 * @dmabuf:	[in]	buffer to complete cpu access for.
1206 * @direction:	[in]	length of range for cpu access.
1207 *
1208 * This terminates CPU access started with dma_buf_begin_cpu_access().
1209 *
1210 * Can return negative error values, returns 0 on success.
1211 */
1212int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1213			   enum dma_data_direction direction)
1214{
1215	int ret = 0;
1216
1217	WARN_ON(!dmabuf);
1218
1219	might_lock(&dmabuf->resv->lock.base);
1220
1221	if (dmabuf->ops->end_cpu_access)
1222		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1223
1224	return ret;
1225}
1226EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
1227
1228
1229/**
1230 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1231 * @dmabuf:	[in]	buffer that should back the vma
1232 * @vma:	[in]	vma for the mmap
1233 * @pgoff:	[in]	offset in pages where this mmap should start within the
1234 *			dma-buf buffer.
1235 *
1236 * This function adjusts the passed in vma so that it points at the file of the
1237 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1238 * checking on the size of the vma. Then it calls the exporters mmap function to
1239 * set up the mapping.
1240 *
1241 * Can return negative error values, returns 0 on success.
1242 */
1243int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1244		 unsigned long pgoff)
1245{
1246	if (WARN_ON(!dmabuf || !vma))
1247		return -EINVAL;
1248
1249	/* check if buffer supports mmap */
1250	if (!dmabuf->ops->mmap)
1251		return -EINVAL;
1252
1253	/* check for offset overflow */
1254	if (pgoff + vma_pages(vma) < pgoff)
1255		return -EOVERFLOW;
1256
1257	/* check for overflowing the buffer's size */
1258	if (pgoff + vma_pages(vma) >
1259	    dmabuf->size >> PAGE_SHIFT)
1260		return -EINVAL;
1261
1262	/* readjust the vma */
1263	vma_set_file(vma, dmabuf->file);
1264	vma->vm_pgoff = pgoff;
1265
1266	return dmabuf->ops->mmap(dmabuf, vma);
1267}
1268EXPORT_SYMBOL_GPL(dma_buf_mmap);
1269
1270/**
1271 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1272 * address space. Same restrictions as for vmap and friends apply.
1273 * @dmabuf:	[in]	buffer to vmap
1274 * @map:	[out]	returns the vmap pointer
1275 *
1276 * This call may fail due to lack of virtual mapping address space.
1277 * These calls are optional in drivers. The intended use for them
1278 * is for mapping objects linear in kernel space for high use objects.
1279 *
1280 * To ensure coherency users must call dma_buf_begin_cpu_access() and
1281 * dma_buf_end_cpu_access() around any cpu access performed through this
1282 * mapping.
1283 *
1284 * Returns 0 on success, or a negative errno code otherwise.
1285 */
1286int dma_buf_vmap(struct dma_buf *dmabuf, struct dma_buf_map *map)
1287{
1288	struct dma_buf_map ptr;
1289	int ret = 0;
1290
1291	dma_buf_map_clear(map);
1292
1293	if (WARN_ON(!dmabuf))
1294		return -EINVAL;
1295
 
 
1296	if (!dmabuf->ops->vmap)
1297		return -EINVAL;
1298
1299	mutex_lock(&dmabuf->lock);
1300	if (dmabuf->vmapping_counter) {
1301		dmabuf->vmapping_counter++;
1302		BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr));
1303		*map = dmabuf->vmap_ptr;
1304		goto out_unlock;
1305	}
1306
1307	BUG_ON(dma_buf_map_is_set(&dmabuf->vmap_ptr));
1308
1309	ret = dmabuf->ops->vmap(dmabuf, &ptr);
1310	if (WARN_ON_ONCE(ret))
1311		goto out_unlock;
1312
1313	dmabuf->vmap_ptr = ptr;
1314	dmabuf->vmapping_counter = 1;
1315
1316	*map = dmabuf->vmap_ptr;
1317
1318out_unlock:
1319	mutex_unlock(&dmabuf->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1320	return ret;
1321}
1322EXPORT_SYMBOL_GPL(dma_buf_vmap);
1323
1324/**
1325 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1326 * @dmabuf:	[in]	buffer to vunmap
1327 * @map:	[in]	vmap pointer to vunmap
1328 */
1329void dma_buf_vunmap(struct dma_buf *dmabuf, struct dma_buf_map *map)
1330{
1331	if (WARN_ON(!dmabuf))
1332		return;
1333
1334	BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr));
 
 
1335	BUG_ON(dmabuf->vmapping_counter == 0);
1336	BUG_ON(!dma_buf_map_is_equal(&dmabuf->vmap_ptr, map));
1337
1338	mutex_lock(&dmabuf->lock);
1339	if (--dmabuf->vmapping_counter == 0) {
1340		if (dmabuf->ops->vunmap)
1341			dmabuf->ops->vunmap(dmabuf, map);
1342		dma_buf_map_clear(&dmabuf->vmap_ptr);
1343	}
1344	mutex_unlock(&dmabuf->lock);
1345}
1346EXPORT_SYMBOL_GPL(dma_buf_vunmap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1347
1348#ifdef CONFIG_DEBUG_FS
1349static int dma_buf_debug_show(struct seq_file *s, void *unused)
1350{
1351	struct dma_buf *buf_obj;
1352	struct dma_buf_attachment *attach_obj;
1353	struct dma_resv *robj;
1354	struct dma_resv_list *fobj;
1355	struct dma_fence *fence;
1356	int count = 0, attach_count, shared_count, i;
1357	size_t size = 0;
1358	int ret;
1359
1360	ret = mutex_lock_interruptible(&db_list.lock);
1361
1362	if (ret)
1363		return ret;
1364
1365	seq_puts(s, "\nDma-buf Objects:\n");
1366	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1367		   "size", "flags", "mode", "count", "ino");
1368
1369	list_for_each_entry(buf_obj, &db_list.head, list_node) {
1370
1371		ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1372		if (ret)
1373			goto error_unlock;
1374
 
 
1375		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1376				buf_obj->size,
1377				buf_obj->file->f_flags, buf_obj->file->f_mode,
1378				file_count(buf_obj->file),
1379				buf_obj->exp_name,
1380				file_inode(buf_obj->file)->i_ino,
1381				buf_obj->name ?: "");
 
1382
1383		robj = buf_obj->resv;
1384		fence = dma_resv_excl_fence(robj);
1385		if (fence)
1386			seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1387				   fence->ops->get_driver_name(fence),
1388				   fence->ops->get_timeline_name(fence),
1389				   dma_fence_is_signaled(fence) ? "" : "un");
1390
1391		fobj = rcu_dereference_protected(robj->fence,
1392						 dma_resv_held(robj));
1393		shared_count = fobj ? fobj->shared_count : 0;
1394		for (i = 0; i < shared_count; i++) {
1395			fence = rcu_dereference_protected(fobj->shared[i],
1396							  dma_resv_held(robj));
1397			seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1398				   fence->ops->get_driver_name(fence),
1399				   fence->ops->get_timeline_name(fence),
1400				   dma_fence_is_signaled(fence) ? "" : "un");
1401		}
1402
1403		seq_puts(s, "\tAttached Devices:\n");
1404		attach_count = 0;
1405
1406		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1407			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1408			attach_count++;
1409		}
1410		dma_resv_unlock(buf_obj->resv);
1411
1412		seq_printf(s, "Total %d devices attached\n\n",
1413				attach_count);
1414
1415		count++;
1416		size += buf_obj->size;
1417	}
1418
1419	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1420
1421	mutex_unlock(&db_list.lock);
1422	return 0;
1423
1424error_unlock:
1425	mutex_unlock(&db_list.lock);
1426	return ret;
1427}
1428
1429DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1430
1431static struct dentry *dma_buf_debugfs_dir;
1432
1433static int dma_buf_init_debugfs(void)
1434{
1435	struct dentry *d;
1436	int err = 0;
1437
1438	d = debugfs_create_dir("dma_buf", NULL);
1439	if (IS_ERR(d))
1440		return PTR_ERR(d);
1441
1442	dma_buf_debugfs_dir = d;
1443
1444	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1445				NULL, &dma_buf_debug_fops);
1446	if (IS_ERR(d)) {
1447		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1448		debugfs_remove_recursive(dma_buf_debugfs_dir);
1449		dma_buf_debugfs_dir = NULL;
1450		err = PTR_ERR(d);
1451	}
1452
1453	return err;
1454}
1455
1456static void dma_buf_uninit_debugfs(void)
1457{
1458	debugfs_remove_recursive(dma_buf_debugfs_dir);
1459}
1460#else
1461static inline int dma_buf_init_debugfs(void)
1462{
1463	return 0;
1464}
1465static inline void dma_buf_uninit_debugfs(void)
1466{
1467}
1468#endif
1469
1470static int __init dma_buf_init(void)
1471{
 
 
 
 
 
 
1472	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1473	if (IS_ERR(dma_buf_mnt))
1474		return PTR_ERR(dma_buf_mnt);
1475
1476	mutex_init(&db_list.lock);
1477	INIT_LIST_HEAD(&db_list.head);
1478	dma_buf_init_debugfs();
1479	return 0;
1480}
1481subsys_initcall(dma_buf_init);
1482
1483static void __exit dma_buf_deinit(void)
1484{
1485	dma_buf_uninit_debugfs();
1486	kern_unmount(dma_buf_mnt);
 
1487}
1488__exitcall(dma_buf_deinit);