Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Cryptographic API.
   4 *
   5 * Support for ATMEL AES HW acceleration.
   6 *
   7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
   8 * Author: Nicolas Royer <nicolas@eukrea.com>
   9 *
  10 * Some ideas are from omap-aes.c driver.
  11 */
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/err.h>
  18#include <linux/clk.h>
  19#include <linux/io.h>
  20#include <linux/hw_random.h>
  21#include <linux/platform_device.h>
  22
  23#include <linux/device.h>
  24#include <linux/dmaengine.h>
  25#include <linux/init.h>
  26#include <linux/errno.h>
  27#include <linux/interrupt.h>
  28#include <linux/irq.h>
  29#include <linux/scatterlist.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/mod_devicetable.h>
  32#include <linux/delay.h>
  33#include <linux/crypto.h>
  34#include <crypto/scatterwalk.h>
  35#include <crypto/algapi.h>
  36#include <crypto/aes.h>
  37#include <crypto/gcm.h>
  38#include <crypto/xts.h>
  39#include <crypto/internal/aead.h>
  40#include <crypto/internal/skcipher.h>
 
  41#include "atmel-aes-regs.h"
  42#include "atmel-authenc.h"
  43
  44#define ATMEL_AES_PRIORITY	300
  45
  46#define ATMEL_AES_BUFFER_ORDER	2
  47#define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
  48
 
 
 
 
 
  49#define SIZE_IN_WORDS(x)	((x) >> 2)
  50
  51/* AES flags */
  52/* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
  53#define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
  54#define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
  55#define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
  56#define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
  57#define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
 
 
 
 
 
 
  58#define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
  59#define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
  60#define AES_FLAGS_XTS		AES_MR_OPMOD_XTS
  61
  62#define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
  63				 AES_FLAGS_ENCRYPT |		\
  64				 AES_FLAGS_GTAGEN)
  65
  66#define AES_FLAGS_BUSY		BIT(3)
  67#define AES_FLAGS_DUMP_REG	BIT(4)
  68#define AES_FLAGS_OWN_SHA	BIT(5)
  69
  70#define AES_FLAGS_PERSISTENT	AES_FLAGS_BUSY
  71
  72#define ATMEL_AES_QUEUE_LENGTH	50
  73
  74#define ATMEL_AES_DMA_THRESHOLD		256
  75
  76
  77struct atmel_aes_caps {
  78	bool			has_dualbuff;
 
 
  79	bool			has_gcm;
  80	bool			has_xts;
  81	bool			has_authenc;
  82	u32			max_burst_size;
  83};
  84
  85struct atmel_aes_dev;
  86
  87
  88typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
  89
  90
  91struct atmel_aes_base_ctx {
  92	struct atmel_aes_dev	*dd;
  93	atmel_aes_fn_t		start;
  94	int			keylen;
  95	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
  96	u16			block_size;
  97	bool			is_aead;
  98};
  99
 100struct atmel_aes_ctx {
 101	struct atmel_aes_base_ctx	base;
 102};
 103
 104struct atmel_aes_ctr_ctx {
 105	struct atmel_aes_base_ctx	base;
 106
 107	__be32			iv[AES_BLOCK_SIZE / sizeof(u32)];
 108	size_t			offset;
 109	struct scatterlist	src[2];
 110	struct scatterlist	dst[2];
 111	u32			blocks;
 112};
 113
 114struct atmel_aes_gcm_ctx {
 115	struct atmel_aes_base_ctx	base;
 116
 117	struct scatterlist	src[2];
 118	struct scatterlist	dst[2];
 119
 120	__be32			j0[AES_BLOCK_SIZE / sizeof(u32)];
 121	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
 122	__be32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
 123	size_t			textlen;
 124
 125	const __be32		*ghash_in;
 126	__be32			*ghash_out;
 127	atmel_aes_fn_t		ghash_resume;
 128};
 129
 130struct atmel_aes_xts_ctx {
 131	struct atmel_aes_base_ctx	base;
 132
 133	u32			key2[AES_KEYSIZE_256 / sizeof(u32)];
 134	struct crypto_skcipher *fallback_tfm;
 135};
 136
 137#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 138struct atmel_aes_authenc_ctx {
 139	struct atmel_aes_base_ctx	base;
 140	struct atmel_sha_authenc_ctx	*auth;
 141};
 142#endif
 143
 144struct atmel_aes_reqctx {
 145	unsigned long		mode;
 146	u8			lastc[AES_BLOCK_SIZE];
 147	struct skcipher_request fallback_req;
 148};
 149
 150#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 151struct atmel_aes_authenc_reqctx {
 152	struct atmel_aes_reqctx	base;
 153
 154	struct scatterlist	src[2];
 155	struct scatterlist	dst[2];
 156	size_t			textlen;
 157	u32			digest[SHA512_DIGEST_SIZE / sizeof(u32)];
 158
 159	/* auth_req MUST be place last. */
 160	struct ahash_request	auth_req;
 161};
 162#endif
 163
 164struct atmel_aes_dma {
 165	struct dma_chan		*chan;
 166	struct scatterlist	*sg;
 167	int			nents;
 168	unsigned int		remainder;
 169	unsigned int		sg_len;
 170};
 171
 172struct atmel_aes_dev {
 173	struct list_head	list;
 174	unsigned long		phys_base;
 175	void __iomem		*io_base;
 176
 177	struct crypto_async_request	*areq;
 178	struct atmel_aes_base_ctx	*ctx;
 179
 180	bool			is_async;
 181	atmel_aes_fn_t		resume;
 182	atmel_aes_fn_t		cpu_transfer_complete;
 183
 184	struct device		*dev;
 185	struct clk		*iclk;
 186	int			irq;
 187
 188	unsigned long		flags;
 189
 190	spinlock_t		lock;
 191	struct crypto_queue	queue;
 192
 193	struct tasklet_struct	done_task;
 194	struct tasklet_struct	queue_task;
 195
 196	size_t			total;
 197	size_t			datalen;
 198	u32			*data;
 199
 200	struct atmel_aes_dma	src;
 201	struct atmel_aes_dma	dst;
 202
 203	size_t			buflen;
 204	void			*buf;
 205	struct scatterlist	aligned_sg;
 206	struct scatterlist	*real_dst;
 207
 208	struct atmel_aes_caps	caps;
 209
 210	u32			hw_version;
 211};
 212
 213struct atmel_aes_drv {
 214	struct list_head	dev_list;
 215	spinlock_t		lock;
 216};
 217
 218static struct atmel_aes_drv atmel_aes = {
 219	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
 220	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
 221};
 222
 223#ifdef VERBOSE_DEBUG
 224static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
 225{
 226	switch (offset) {
 227	case AES_CR:
 228		return "CR";
 229
 230	case AES_MR:
 231		return "MR";
 232
 233	case AES_ISR:
 234		return "ISR";
 235
 236	case AES_IMR:
 237		return "IMR";
 238
 239	case AES_IER:
 240		return "IER";
 241
 242	case AES_IDR:
 243		return "IDR";
 244
 245	case AES_KEYWR(0):
 246	case AES_KEYWR(1):
 247	case AES_KEYWR(2):
 248	case AES_KEYWR(3):
 249	case AES_KEYWR(4):
 250	case AES_KEYWR(5):
 251	case AES_KEYWR(6):
 252	case AES_KEYWR(7):
 253		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
 254		break;
 255
 256	case AES_IDATAR(0):
 257	case AES_IDATAR(1):
 258	case AES_IDATAR(2):
 259	case AES_IDATAR(3):
 260		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
 261		break;
 262
 263	case AES_ODATAR(0):
 264	case AES_ODATAR(1):
 265	case AES_ODATAR(2):
 266	case AES_ODATAR(3):
 267		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
 268		break;
 269
 270	case AES_IVR(0):
 271	case AES_IVR(1):
 272	case AES_IVR(2):
 273	case AES_IVR(3):
 274		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
 275		break;
 276
 277	case AES_AADLENR:
 278		return "AADLENR";
 279
 280	case AES_CLENR:
 281		return "CLENR";
 282
 283	case AES_GHASHR(0):
 284	case AES_GHASHR(1):
 285	case AES_GHASHR(2):
 286	case AES_GHASHR(3):
 287		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
 288		break;
 289
 290	case AES_TAGR(0):
 291	case AES_TAGR(1):
 292	case AES_TAGR(2):
 293	case AES_TAGR(3):
 294		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
 295		break;
 296
 297	case AES_CTRR:
 298		return "CTRR";
 299
 300	case AES_GCMHR(0):
 301	case AES_GCMHR(1):
 302	case AES_GCMHR(2):
 303	case AES_GCMHR(3):
 304		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
 305		break;
 306
 307	case AES_EMR:
 308		return "EMR";
 309
 310	case AES_TWR(0):
 311	case AES_TWR(1):
 312	case AES_TWR(2):
 313	case AES_TWR(3):
 314		snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
 315		break;
 316
 317	case AES_ALPHAR(0):
 318	case AES_ALPHAR(1):
 319	case AES_ALPHAR(2):
 320	case AES_ALPHAR(3):
 321		snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
 322		break;
 323
 324	default:
 325		snprintf(tmp, sz, "0x%02x", offset);
 326		break;
 327	}
 328
 329	return tmp;
 330}
 331#endif /* VERBOSE_DEBUG */
 332
 333/* Shared functions */
 334
 335static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
 336{
 337	u32 value = readl_relaxed(dd->io_base + offset);
 338
 339#ifdef VERBOSE_DEBUG
 340	if (dd->flags & AES_FLAGS_DUMP_REG) {
 341		char tmp[16];
 342
 343		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
 344			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 345	}
 346#endif /* VERBOSE_DEBUG */
 347
 348	return value;
 349}
 350
 351static inline void atmel_aes_write(struct atmel_aes_dev *dd,
 352					u32 offset, u32 value)
 353{
 354#ifdef VERBOSE_DEBUG
 355	if (dd->flags & AES_FLAGS_DUMP_REG) {
 356		char tmp[16];
 357
 358		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
 359			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 360	}
 361#endif /* VERBOSE_DEBUG */
 362
 363	writel_relaxed(value, dd->io_base + offset);
 364}
 365
 366static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
 367					u32 *value, int count)
 368{
 369	for (; count--; value++, offset += 4)
 370		*value = atmel_aes_read(dd, offset);
 371}
 372
 373static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
 374			      const u32 *value, int count)
 375{
 376	for (; count--; value++, offset += 4)
 377		atmel_aes_write(dd, offset, *value);
 378}
 379
 380static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
 381					void *value)
 382{
 383	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 384}
 385
 386static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
 387					 const void *value)
 388{
 389	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 390}
 391
 392static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
 393						atmel_aes_fn_t resume)
 394{
 395	u32 isr = atmel_aes_read(dd, AES_ISR);
 396
 397	if (unlikely(isr & AES_INT_DATARDY))
 398		return resume(dd);
 399
 400	dd->resume = resume;
 401	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 402	return -EINPROGRESS;
 403}
 404
 405static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
 406{
 407	len &= block_size - 1;
 408	return len ? block_size - len : 0;
 409}
 410
 411static struct atmel_aes_dev *atmel_aes_dev_alloc(struct atmel_aes_base_ctx *ctx)
 412{
 413	struct atmel_aes_dev *aes_dd;
 
 414
 415	spin_lock_bh(&atmel_aes.lock);
 416	/* One AES IP per SoC. */
 417	aes_dd = list_first_entry_or_null(&atmel_aes.dev_list,
 418					  struct atmel_aes_dev, list);
 
 
 
 
 
 
 
 419	spin_unlock_bh(&atmel_aes.lock);
 
 420	return aes_dd;
 421}
 422
 423static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
 424{
 425	int err;
 426
 427	err = clk_enable(dd->iclk);
 428	if (err)
 429		return err;
 430
 431	atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
 432	atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
 433
 434	return 0;
 435}
 436
 437static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
 438{
 439	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
 440}
 441
 442static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
 443{
 444	int err;
 445
 446	err = atmel_aes_hw_init(dd);
 447	if (err)
 448		return err;
 449
 450	dd->hw_version = atmel_aes_get_version(dd);
 451
 452	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
 453
 454	clk_disable(dd->iclk);
 455	return 0;
 456}
 457
 458static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
 459				      const struct atmel_aes_reqctx *rctx)
 460{
 461	/* Clear all but persistent flags and set request flags. */
 462	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
 463}
 464
 465static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
 466{
 467	return (dd->flags & AES_FLAGS_ENCRYPT);
 468}
 469
 470#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 471static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
 472#endif
 473
 474static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
 475{
 476	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 477	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 478	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 479	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
 480
 481	if (req->cryptlen < ivsize)
 482		return;
 483
 484	if (rctx->mode & AES_FLAGS_ENCRYPT)
 485		scatterwalk_map_and_copy(req->iv, req->dst,
 486					 req->cryptlen - ivsize, ivsize, 0);
 487	else
 488		memcpy(req->iv, rctx->lastc, ivsize);
 489}
 490
 491static inline struct atmel_aes_ctr_ctx *
 492atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
 493{
 494	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
 495}
 496
 497static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
 498{
 499	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
 500	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 501	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 502	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
 503	int i;
 504
 505	/*
 506	 * The CTR transfer works in fragments of data of maximum 1 MByte
 507	 * because of the 16 bit CTR counter embedded in the IP. When reaching
 508	 * here, ctx->blocks contains the number of blocks of the last fragment
 509	 * processed, there is no need to explicit cast it to u16.
 510	 */
 511	for (i = 0; i < ctx->blocks; i++)
 512		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
 513
 514	memcpy(req->iv, ctx->iv, ivsize);
 515}
 516
 517static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
 518{
 519	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 520	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 521
 522#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 523	if (dd->ctx->is_aead)
 524		atmel_aes_authenc_complete(dd, err);
 525#endif
 526
 527	clk_disable(dd->iclk);
 528	dd->flags &= ~AES_FLAGS_BUSY;
 529
 530	if (!err && !dd->ctx->is_aead &&
 531	    (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
 532		if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
 533			atmel_aes_set_iv_as_last_ciphertext_block(dd);
 534		else
 535			atmel_aes_ctr_update_req_iv(dd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 536	}
 537
 538	if (dd->is_async)
 539		crypto_request_complete(dd->areq, err);
 540
 541	tasklet_schedule(&dd->queue_task);
 542
 543	return err;
 544}
 545
 546static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
 547				     const __be32 *iv, const u32 *key, int keylen)
 548{
 549	u32 valmr = 0;
 550
 551	/* MR register must be set before IV registers */
 552	if (keylen == AES_KEYSIZE_128)
 553		valmr |= AES_MR_KEYSIZE_128;
 554	else if (keylen == AES_KEYSIZE_192)
 555		valmr |= AES_MR_KEYSIZE_192;
 556	else
 557		valmr |= AES_MR_KEYSIZE_256;
 558
 559	valmr |= dd->flags & AES_FLAGS_MODE_MASK;
 560
 561	if (use_dma) {
 562		valmr |= AES_MR_SMOD_IDATAR0;
 563		if (dd->caps.has_dualbuff)
 564			valmr |= AES_MR_DUALBUFF;
 565	} else {
 566		valmr |= AES_MR_SMOD_AUTO;
 567	}
 568
 569	atmel_aes_write(dd, AES_MR, valmr);
 570
 571	atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
 572
 573	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
 574		atmel_aes_write_block(dd, AES_IVR(0), iv);
 575}
 576
 577static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
 578					const __be32 *iv)
 579
 580{
 581	atmel_aes_write_ctrl_key(dd, use_dma, iv,
 582				 dd->ctx->key, dd->ctx->keylen);
 583}
 584
 585/* CPU transfer */
 586
 587static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
 588{
 589	int err = 0;
 590	u32 isr;
 591
 592	for (;;) {
 593		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
 594		dd->data += 4;
 595		dd->datalen -= AES_BLOCK_SIZE;
 596
 597		if (dd->datalen < AES_BLOCK_SIZE)
 598			break;
 599
 600		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 601
 602		isr = atmel_aes_read(dd, AES_ISR);
 603		if (!(isr & AES_INT_DATARDY)) {
 604			dd->resume = atmel_aes_cpu_transfer;
 605			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 606			return -EINPROGRESS;
 607		}
 608	}
 609
 610	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 611				 dd->buf, dd->total))
 612		err = -EINVAL;
 613
 614	if (err)
 615		return atmel_aes_complete(dd, err);
 616
 617	return dd->cpu_transfer_complete(dd);
 618}
 619
 620static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
 621			       struct scatterlist *src,
 622			       struct scatterlist *dst,
 623			       size_t len,
 624			       atmel_aes_fn_t resume)
 625{
 626	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
 627
 628	if (unlikely(len == 0))
 629		return -EINVAL;
 630
 631	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 632
 633	dd->total = len;
 634	dd->real_dst = dst;
 635	dd->cpu_transfer_complete = resume;
 636	dd->datalen = len + padlen;
 637	dd->data = (u32 *)dd->buf;
 638	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 639	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
 640}
 641
 642
 643/* DMA transfer */
 644
 645static void atmel_aes_dma_callback(void *data);
 646
 647static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
 648				    struct scatterlist *sg,
 649				    size_t len,
 650				    struct atmel_aes_dma *dma)
 651{
 652	int nents;
 653
 654	if (!IS_ALIGNED(len, dd->ctx->block_size))
 655		return false;
 656
 657	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
 658		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 659			return false;
 660
 661		if (len <= sg->length) {
 662			if (!IS_ALIGNED(len, dd->ctx->block_size))
 663				return false;
 664
 665			dma->nents = nents+1;
 666			dma->remainder = sg->length - len;
 667			sg->length = len;
 668			return true;
 669		}
 670
 671		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
 672			return false;
 673
 674		len -= sg->length;
 675	}
 676
 677	return false;
 678}
 679
 680static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
 681{
 682	struct scatterlist *sg = dma->sg;
 683	int nents = dma->nents;
 684
 685	if (!dma->remainder)
 686		return;
 687
 688	while (--nents > 0 && sg)
 689		sg = sg_next(sg);
 690
 691	if (!sg)
 692		return;
 693
 694	sg->length += dma->remainder;
 695}
 696
 697static int atmel_aes_map(struct atmel_aes_dev *dd,
 698			 struct scatterlist *src,
 699			 struct scatterlist *dst,
 700			 size_t len)
 701{
 702	bool src_aligned, dst_aligned;
 703	size_t padlen;
 704
 705	dd->total = len;
 706	dd->src.sg = src;
 707	dd->dst.sg = dst;
 708	dd->real_dst = dst;
 709
 710	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
 711	if (src == dst)
 712		dst_aligned = src_aligned;
 713	else
 714		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
 715	if (!src_aligned || !dst_aligned) {
 716		padlen = atmel_aes_padlen(len, dd->ctx->block_size);
 717
 718		if (dd->buflen < len + padlen)
 719			return -ENOMEM;
 720
 721		if (!src_aligned) {
 722			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 723			dd->src.sg = &dd->aligned_sg;
 724			dd->src.nents = 1;
 725			dd->src.remainder = 0;
 726		}
 727
 728		if (!dst_aligned) {
 729			dd->dst.sg = &dd->aligned_sg;
 730			dd->dst.nents = 1;
 731			dd->dst.remainder = 0;
 732		}
 733
 734		sg_init_table(&dd->aligned_sg, 1);
 735		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
 736	}
 737
 738	if (dd->src.sg == dd->dst.sg) {
 739		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 740					    DMA_BIDIRECTIONAL);
 741		dd->dst.sg_len = dd->src.sg_len;
 742		if (!dd->src.sg_len)
 743			return -EFAULT;
 744	} else {
 745		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 746					    DMA_TO_DEVICE);
 747		if (!dd->src.sg_len)
 748			return -EFAULT;
 749
 750		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 751					    DMA_FROM_DEVICE);
 752		if (!dd->dst.sg_len) {
 753			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 754				     DMA_TO_DEVICE);
 755			return -EFAULT;
 756		}
 757	}
 758
 759	return 0;
 760}
 761
 762static void atmel_aes_unmap(struct atmel_aes_dev *dd)
 763{
 764	if (dd->src.sg == dd->dst.sg) {
 765		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 766			     DMA_BIDIRECTIONAL);
 767
 768		if (dd->src.sg != &dd->aligned_sg)
 769			atmel_aes_restore_sg(&dd->src);
 770	} else {
 771		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 772			     DMA_FROM_DEVICE);
 773
 774		if (dd->dst.sg != &dd->aligned_sg)
 775			atmel_aes_restore_sg(&dd->dst);
 776
 777		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 778			     DMA_TO_DEVICE);
 779
 780		if (dd->src.sg != &dd->aligned_sg)
 781			atmel_aes_restore_sg(&dd->src);
 782	}
 783
 784	if (dd->dst.sg == &dd->aligned_sg)
 785		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 786				    dd->buf, dd->total);
 787}
 788
 789static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
 790					enum dma_slave_buswidth addr_width,
 791					enum dma_transfer_direction dir,
 792					u32 maxburst)
 793{
 794	struct dma_async_tx_descriptor *desc;
 795	struct dma_slave_config config;
 796	dma_async_tx_callback callback;
 797	struct atmel_aes_dma *dma;
 798	int err;
 799
 800	memset(&config, 0, sizeof(config));
 
 801	config.src_addr_width = addr_width;
 802	config.dst_addr_width = addr_width;
 803	config.src_maxburst = maxburst;
 804	config.dst_maxburst = maxburst;
 805
 806	switch (dir) {
 807	case DMA_MEM_TO_DEV:
 808		dma = &dd->src;
 809		callback = NULL;
 810		config.dst_addr = dd->phys_base + AES_IDATAR(0);
 811		break;
 812
 813	case DMA_DEV_TO_MEM:
 814		dma = &dd->dst;
 815		callback = atmel_aes_dma_callback;
 816		config.src_addr = dd->phys_base + AES_ODATAR(0);
 817		break;
 818
 819	default:
 820		return -EINVAL;
 821	}
 822
 823	err = dmaengine_slave_config(dma->chan, &config);
 824	if (err)
 825		return err;
 826
 827	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
 828				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 829	if (!desc)
 830		return -ENOMEM;
 831
 832	desc->callback = callback;
 833	desc->callback_param = dd;
 834	dmaengine_submit(desc);
 835	dma_async_issue_pending(dma->chan);
 836
 837	return 0;
 838}
 839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 840static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
 841			       struct scatterlist *src,
 842			       struct scatterlist *dst,
 843			       size_t len,
 844			       atmel_aes_fn_t resume)
 845{
 846	enum dma_slave_buswidth addr_width;
 847	u32 maxburst;
 848	int err;
 849
 850	switch (dd->ctx->block_size) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 851	case AES_BLOCK_SIZE:
 852		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 853		maxburst = dd->caps.max_burst_size;
 854		break;
 855
 856	default:
 857		err = -EINVAL;
 858		goto exit;
 859	}
 860
 861	err = atmel_aes_map(dd, src, dst, len);
 862	if (err)
 863		goto exit;
 864
 865	dd->resume = resume;
 866
 867	/* Set output DMA transfer first */
 868	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
 869					   maxburst);
 870	if (err)
 871		goto unmap;
 872
 873	/* Then set input DMA transfer */
 874	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
 875					   maxburst);
 876	if (err)
 877		goto output_transfer_stop;
 878
 879	return -EINPROGRESS;
 880
 881output_transfer_stop:
 882	dmaengine_terminate_sync(dd->dst.chan);
 883unmap:
 884	atmel_aes_unmap(dd);
 885exit:
 886	return atmel_aes_complete(dd, err);
 887}
 888
 
 
 
 
 
 
 
 889static void atmel_aes_dma_callback(void *data)
 890{
 891	struct atmel_aes_dev *dd = data;
 892
 893	atmel_aes_unmap(dd);
 894	dd->is_async = true;
 895	(void)dd->resume(dd);
 896}
 897
 898static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
 899				  struct crypto_async_request *new_areq)
 900{
 901	struct crypto_async_request *areq, *backlog;
 902	struct atmel_aes_base_ctx *ctx;
 903	unsigned long flags;
 904	bool start_async;
 905	int err, ret = 0;
 906
 907	spin_lock_irqsave(&dd->lock, flags);
 908	if (new_areq)
 909		ret = crypto_enqueue_request(&dd->queue, new_areq);
 910	if (dd->flags & AES_FLAGS_BUSY) {
 911		spin_unlock_irqrestore(&dd->lock, flags);
 912		return ret;
 913	}
 914	backlog = crypto_get_backlog(&dd->queue);
 915	areq = crypto_dequeue_request(&dd->queue);
 916	if (areq)
 917		dd->flags |= AES_FLAGS_BUSY;
 918	spin_unlock_irqrestore(&dd->lock, flags);
 919
 920	if (!areq)
 921		return ret;
 922
 923	if (backlog)
 924		crypto_request_complete(backlog, -EINPROGRESS);
 925
 926	ctx = crypto_tfm_ctx(areq->tfm);
 927
 928	dd->areq = areq;
 929	dd->ctx = ctx;
 930	start_async = (areq != new_areq);
 931	dd->is_async = start_async;
 932
 933	/* WARNING: ctx->start() MAY change dd->is_async. */
 934	err = ctx->start(dd);
 935	return (start_async) ? ret : err;
 936}
 937
 938
 939/* AES async block ciphers */
 940
 941static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
 942{
 943	return atmel_aes_complete(dd, 0);
 944}
 945
 946static int atmel_aes_start(struct atmel_aes_dev *dd)
 947{
 948	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 949	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 950	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
 951			dd->ctx->block_size != AES_BLOCK_SIZE);
 952	int err;
 953
 954	atmel_aes_set_mode(dd, rctx);
 955
 956	err = atmel_aes_hw_init(dd);
 957	if (err)
 958		return atmel_aes_complete(dd, err);
 959
 960	atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
 961	if (use_dma)
 962		return atmel_aes_dma_start(dd, req->src, req->dst,
 963					   req->cryptlen,
 964					   atmel_aes_transfer_complete);
 965
 966	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
 967				   atmel_aes_transfer_complete);
 968}
 969
 
 
 
 
 
 
 970static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
 971{
 972	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
 973	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 974	struct scatterlist *src, *dst;
 
 975	size_t datalen;
 976	u32 ctr;
 977	u16 start, end;
 978	bool use_dma, fragmented = false;
 979
 980	/* Check for transfer completion. */
 981	ctx->offset += dd->total;
 982	if (ctx->offset >= req->cryptlen)
 983		return atmel_aes_transfer_complete(dd);
 984
 985	/* Compute data length. */
 986	datalen = req->cryptlen - ctx->offset;
 987	ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
 988	ctr = be32_to_cpu(ctx->iv[3]);
 989
 990	/* Check 16bit counter overflow. */
 991	start = ctr & 0xffff;
 992	end = start + ctx->blocks - 1;
 993
 994	if (ctx->blocks >> 16 || end < start) {
 995		ctr |= 0xffff;
 996		datalen = AES_BLOCK_SIZE * (0x10000 - start);
 997		fragmented = true;
 
 
 
 
 
 
 
 
 
 
 
 998	}
 999
1000	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1001
1002	/* Jump to offset. */
1003	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1004	dst = ((req->src == req->dst) ? src :
1005	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1006
1007	/* Configure hardware. */
1008	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1009	if (unlikely(fragmented)) {
1010		/*
1011		 * Increment the counter manually to cope with the hardware
1012		 * counter overflow.
1013		 */
1014		ctx->iv[3] = cpu_to_be32(ctr);
1015		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1016	}
1017
1018	if (use_dma)
1019		return atmel_aes_dma_start(dd, src, dst, datalen,
1020					   atmel_aes_ctr_transfer);
1021
1022	return atmel_aes_cpu_start(dd, src, dst, datalen,
1023				   atmel_aes_ctr_transfer);
1024}
1025
1026static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1027{
1028	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1029	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1030	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1031	int err;
1032
1033	atmel_aes_set_mode(dd, rctx);
1034
1035	err = atmel_aes_hw_init(dd);
1036	if (err)
1037		return atmel_aes_complete(dd, err);
1038
1039	memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1040	ctx->offset = 0;
1041	dd->total = 0;
1042	return atmel_aes_ctr_transfer(dd);
1043}
1044
1045static int atmel_aes_xts_fallback(struct skcipher_request *req, bool enc)
1046{
1047	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1048	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(
1049			crypto_skcipher_reqtfm(req));
1050
1051	skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
1052	skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
1053				      req->base.complete, req->base.data);
1054	skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
1055				   req->cryptlen, req->iv);
1056
1057	return enc ? crypto_skcipher_encrypt(&rctx->fallback_req) :
1058		     crypto_skcipher_decrypt(&rctx->fallback_req);
1059}
1060
1061static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1062{
1063	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1064	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1065	struct atmel_aes_reqctx *rctx;
1066	u32 opmode = mode & AES_FLAGS_OPMODE_MASK;
1067
1068	if (opmode == AES_FLAGS_XTS) {
1069		if (req->cryptlen < XTS_BLOCK_SIZE)
1070			return -EINVAL;
1071
1072		if (!IS_ALIGNED(req->cryptlen, XTS_BLOCK_SIZE))
1073			return atmel_aes_xts_fallback(req,
1074						      mode & AES_FLAGS_ENCRYPT);
1075	}
1076
1077	/*
1078	 * ECB, CBC or CTR mode require the plaintext and ciphertext
1079	 * to have a positve integer length.
1080	 */
1081	if (!req->cryptlen && opmode != AES_FLAGS_XTS)
1082		return 0;
1083
1084	if ((opmode == AES_FLAGS_ECB || opmode == AES_FLAGS_CBC) &&
1085	    !IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(skcipher)))
1086		return -EINVAL;
1087
1088	ctx->block_size = AES_BLOCK_SIZE;
 
 
 
 
 
 
 
1089	ctx->is_aead = false;
1090
1091	rctx = skcipher_request_ctx(req);
 
 
 
 
1092	rctx->mode = mode;
1093
1094	if (opmode != AES_FLAGS_ECB &&
1095	    !(mode & AES_FLAGS_ENCRYPT)) {
1096		unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1097
1098		if (req->cryptlen >= ivsize)
1099			scatterwalk_map_and_copy(rctx->lastc, req->src,
1100						 req->cryptlen - ivsize,
1101						 ivsize, 0);
1102	}
1103
1104	return atmel_aes_handle_queue(ctx->dd, &req->base);
1105}
1106
1107static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1108			   unsigned int keylen)
1109{
1110	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1111
1112	if (keylen != AES_KEYSIZE_128 &&
1113	    keylen != AES_KEYSIZE_192 &&
1114	    keylen != AES_KEYSIZE_256)
 
1115		return -EINVAL;
 
1116
1117	memcpy(ctx->key, key, keylen);
1118	ctx->keylen = keylen;
1119
1120	return 0;
1121}
1122
1123static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1124{
1125	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1126}
1127
1128static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1129{
1130	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1131}
1132
1133static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1134{
1135	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1136}
1137
1138static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1139{
1140	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1141}
1142
1143static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1144{
1145	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1146}
1147
1148static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1149{
1150	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1151}
1152
1153static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1154{
1155	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1156	struct atmel_aes_dev *dd;
1157
1158	dd = atmel_aes_dev_alloc(&ctx->base);
1159	if (!dd)
1160		return -ENODEV;
1161
1162	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1163	ctx->base.dd = dd;
1164	ctx->base.start = atmel_aes_start;
1165
1166	return 0;
1167}
1168
1169static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1170{
1171	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1172	struct atmel_aes_dev *dd;
1173
1174	dd = atmel_aes_dev_alloc(&ctx->base);
1175	if (!dd)
1176		return -ENODEV;
1177
1178	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1179	ctx->base.dd = dd;
1180	ctx->base.start = atmel_aes_ctr_start;
1181
1182	return 0;
1183}
1184
1185static struct skcipher_alg aes_algs[] = {
1186{
1187	.base.cra_name		= "ecb(aes)",
1188	.base.cra_driver_name	= "atmel-ecb-aes",
1189	.base.cra_blocksize	= AES_BLOCK_SIZE,
1190	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1191
1192	.init			= atmel_aes_init_tfm,
1193	.min_keysize		= AES_MIN_KEY_SIZE,
1194	.max_keysize		= AES_MAX_KEY_SIZE,
1195	.setkey			= atmel_aes_setkey,
1196	.encrypt		= atmel_aes_ecb_encrypt,
1197	.decrypt		= atmel_aes_ecb_decrypt,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1198},
1199{
1200	.base.cra_name		= "cbc(aes)",
1201	.base.cra_driver_name	= "atmel-cbc-aes",
1202	.base.cra_blocksize	= AES_BLOCK_SIZE,
1203	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1204
1205	.init			= atmel_aes_init_tfm,
1206	.min_keysize		= AES_MIN_KEY_SIZE,
1207	.max_keysize		= AES_MAX_KEY_SIZE,
1208	.setkey			= atmel_aes_setkey,
1209	.encrypt		= atmel_aes_cbc_encrypt,
1210	.decrypt		= atmel_aes_cbc_decrypt,
1211	.ivsize			= AES_BLOCK_SIZE,
 
 
 
 
 
 
1212},
1213{
1214	.base.cra_name		= "ctr(aes)",
1215	.base.cra_driver_name	= "atmel-ctr-aes",
1216	.base.cra_blocksize	= 1,
1217	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctr_ctx),
1218
1219	.init			= atmel_aes_ctr_init_tfm,
1220	.min_keysize		= AES_MIN_KEY_SIZE,
1221	.max_keysize		= AES_MAX_KEY_SIZE,
1222	.setkey			= atmel_aes_setkey,
1223	.encrypt		= atmel_aes_ctr_encrypt,
1224	.decrypt		= atmel_aes_ctr_decrypt,
1225	.ivsize			= AES_BLOCK_SIZE,
 
 
 
 
 
 
1226},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1227};
1228
1229
1230/* gcm aead functions */
1231
1232static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1233			       const u32 *data, size_t datalen,
1234			       const __be32 *ghash_in, __be32 *ghash_out,
1235			       atmel_aes_fn_t resume);
1236static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1237static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1238
1239static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1240static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1241static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1242static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1243static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1244static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1245static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1246
1247static inline struct atmel_aes_gcm_ctx *
1248atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1249{
1250	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1251}
1252
1253static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1254			       const u32 *data, size_t datalen,
1255			       const __be32 *ghash_in, __be32 *ghash_out,
1256			       atmel_aes_fn_t resume)
1257{
1258	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1259
1260	dd->data = (u32 *)data;
1261	dd->datalen = datalen;
1262	ctx->ghash_in = ghash_in;
1263	ctx->ghash_out = ghash_out;
1264	ctx->ghash_resume = resume;
1265
1266	atmel_aes_write_ctrl(dd, false, NULL);
1267	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1268}
1269
1270static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1271{
1272	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1273
1274	/* Set the data length. */
1275	atmel_aes_write(dd, AES_AADLENR, dd->total);
1276	atmel_aes_write(dd, AES_CLENR, 0);
1277
1278	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
1279	if (ctx->ghash_in)
1280		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1281
1282	return atmel_aes_gcm_ghash_finalize(dd);
1283}
1284
1285static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1286{
1287	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1288	u32 isr;
1289
1290	/* Write data into the Input Data Registers. */
1291	while (dd->datalen > 0) {
1292		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1293		dd->data += 4;
1294		dd->datalen -= AES_BLOCK_SIZE;
1295
1296		isr = atmel_aes_read(dd, AES_ISR);
1297		if (!(isr & AES_INT_DATARDY)) {
1298			dd->resume = atmel_aes_gcm_ghash_finalize;
1299			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1300			return -EINPROGRESS;
1301		}
1302	}
1303
1304	/* Read the computed hash from GHASHRx. */
1305	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1306
1307	return ctx->ghash_resume(dd);
1308}
1309
1310
1311static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1312{
1313	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1314	struct aead_request *req = aead_request_cast(dd->areq);
1315	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1316	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1317	size_t ivsize = crypto_aead_ivsize(tfm);
1318	size_t datalen, padlen;
1319	const void *iv = req->iv;
1320	u8 *data = dd->buf;
1321	int err;
1322
1323	atmel_aes_set_mode(dd, rctx);
1324
1325	err = atmel_aes_hw_init(dd);
1326	if (err)
1327		return atmel_aes_complete(dd, err);
1328
1329	if (likely(ivsize == GCM_AES_IV_SIZE)) {
1330		memcpy(ctx->j0, iv, ivsize);
1331		ctx->j0[3] = cpu_to_be32(1);
1332		return atmel_aes_gcm_process(dd);
1333	}
1334
1335	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1336	datalen = ivsize + padlen + AES_BLOCK_SIZE;
1337	if (datalen > dd->buflen)
1338		return atmel_aes_complete(dd, -EINVAL);
1339
1340	memcpy(data, iv, ivsize);
1341	memset(data + ivsize, 0, padlen + sizeof(u64));
1342	((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1343
1344	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1345				   NULL, ctx->j0, atmel_aes_gcm_process);
1346}
1347
1348static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1349{
1350	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1351	struct aead_request *req = aead_request_cast(dd->areq);
1352	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1353	bool enc = atmel_aes_is_encrypt(dd);
1354	u32 authsize;
1355
1356	/* Compute text length. */
1357	authsize = crypto_aead_authsize(tfm);
1358	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1359
1360	/*
1361	 * According to tcrypt test suite, the GCM Automatic Tag Generation
1362	 * fails when both the message and its associated data are empty.
1363	 */
1364	if (likely(req->assoclen != 0 || ctx->textlen != 0))
1365		dd->flags |= AES_FLAGS_GTAGEN;
1366
1367	atmel_aes_write_ctrl(dd, false, NULL);
1368	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1369}
1370
1371static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1372{
1373	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1374	struct aead_request *req = aead_request_cast(dd->areq);
1375	__be32 j0_lsw, *j0 = ctx->j0;
1376	size_t padlen;
1377
1378	/* Write incr32(J0) into IV. */
1379	j0_lsw = j0[3];
1380	be32_add_cpu(&j0[3], 1);
1381	atmel_aes_write_block(dd, AES_IVR(0), j0);
1382	j0[3] = j0_lsw;
1383
1384	/* Set aad and text lengths. */
1385	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1386	atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1387
1388	/* Check whether AAD are present. */
1389	if (unlikely(req->assoclen == 0)) {
1390		dd->datalen = 0;
1391		return atmel_aes_gcm_data(dd);
1392	}
1393
1394	/* Copy assoc data and add padding. */
1395	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1396	if (unlikely(req->assoclen + padlen > dd->buflen))
1397		return atmel_aes_complete(dd, -EINVAL);
1398	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1399
1400	/* Write assoc data into the Input Data register. */
1401	dd->data = (u32 *)dd->buf;
1402	dd->datalen = req->assoclen + padlen;
1403	return atmel_aes_gcm_data(dd);
1404}
1405
1406static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1407{
1408	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1409	struct aead_request *req = aead_request_cast(dd->areq);
1410	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1411	struct scatterlist *src, *dst;
1412	u32 isr, mr;
1413
1414	/* Write AAD first. */
1415	while (dd->datalen > 0) {
1416		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1417		dd->data += 4;
1418		dd->datalen -= AES_BLOCK_SIZE;
1419
1420		isr = atmel_aes_read(dd, AES_ISR);
1421		if (!(isr & AES_INT_DATARDY)) {
1422			dd->resume = atmel_aes_gcm_data;
1423			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1424			return -EINPROGRESS;
1425		}
1426	}
1427
1428	/* GMAC only. */
1429	if (unlikely(ctx->textlen == 0))
1430		return atmel_aes_gcm_tag_init(dd);
1431
1432	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
1433	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1434	dst = ((req->src == req->dst) ? src :
1435	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1436
1437	if (use_dma) {
1438		/* Update the Mode Register for DMA transfers. */
1439		mr = atmel_aes_read(dd, AES_MR);
1440		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1441		mr |= AES_MR_SMOD_IDATAR0;
1442		if (dd->caps.has_dualbuff)
1443			mr |= AES_MR_DUALBUFF;
1444		atmel_aes_write(dd, AES_MR, mr);
1445
1446		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1447					   atmel_aes_gcm_tag_init);
1448	}
1449
1450	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1451				   atmel_aes_gcm_tag_init);
1452}
1453
1454static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1455{
1456	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1457	struct aead_request *req = aead_request_cast(dd->areq);
1458	__be64 *data = dd->buf;
1459
1460	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1461		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1462			dd->resume = atmel_aes_gcm_tag_init;
1463			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1464			return -EINPROGRESS;
1465		}
1466
1467		return atmel_aes_gcm_finalize(dd);
1468	}
1469
1470	/* Read the GCM Intermediate Hash Word Registers. */
1471	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1472
1473	data[0] = cpu_to_be64(req->assoclen * 8);
1474	data[1] = cpu_to_be64(ctx->textlen * 8);
1475
1476	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1477				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1478}
1479
1480static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1481{
1482	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1483	unsigned long flags;
1484
1485	/*
1486	 * Change mode to CTR to complete the tag generation.
1487	 * Use J0 as Initialization Vector.
1488	 */
1489	flags = dd->flags;
1490	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1491	dd->flags |= AES_FLAGS_CTR;
1492	atmel_aes_write_ctrl(dd, false, ctx->j0);
1493	dd->flags = flags;
1494
1495	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1496	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1497}
1498
1499static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1500{
1501	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1502	struct aead_request *req = aead_request_cast(dd->areq);
1503	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1504	bool enc = atmel_aes_is_encrypt(dd);
1505	u32 offset, authsize, itag[4], *otag = ctx->tag;
1506	int err;
1507
1508	/* Read the computed tag. */
1509	if (likely(dd->flags & AES_FLAGS_GTAGEN))
1510		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1511	else
1512		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1513
1514	offset = req->assoclen + ctx->textlen;
1515	authsize = crypto_aead_authsize(tfm);
1516	if (enc) {
1517		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1518		err = 0;
1519	} else {
1520		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1521		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1522	}
1523
1524	return atmel_aes_complete(dd, err);
1525}
1526
1527static int atmel_aes_gcm_crypt(struct aead_request *req,
1528			       unsigned long mode)
1529{
1530	struct atmel_aes_base_ctx *ctx;
1531	struct atmel_aes_reqctx *rctx;
 
1532
1533	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1534	ctx->block_size = AES_BLOCK_SIZE;
1535	ctx->is_aead = true;
1536
 
 
 
 
1537	rctx = aead_request_ctx(req);
1538	rctx->mode = AES_FLAGS_GCM | mode;
1539
1540	return atmel_aes_handle_queue(ctx->dd, &req->base);
1541}
1542
1543static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1544				unsigned int keylen)
1545{
1546	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1547
1548	if (keylen != AES_KEYSIZE_256 &&
1549	    keylen != AES_KEYSIZE_192 &&
1550	    keylen != AES_KEYSIZE_128)
 
1551		return -EINVAL;
 
1552
1553	memcpy(ctx->key, key, keylen);
1554	ctx->keylen = keylen;
1555
1556	return 0;
1557}
1558
1559static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1560				     unsigned int authsize)
1561{
1562	return crypto_gcm_check_authsize(authsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1563}
1564
1565static int atmel_aes_gcm_encrypt(struct aead_request *req)
1566{
1567	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1568}
1569
1570static int atmel_aes_gcm_decrypt(struct aead_request *req)
1571{
1572	return atmel_aes_gcm_crypt(req, 0);
1573}
1574
1575static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1576{
1577	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1578	struct atmel_aes_dev *dd;
1579
1580	dd = atmel_aes_dev_alloc(&ctx->base);
1581	if (!dd)
1582		return -ENODEV;
1583
1584	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1585	ctx->base.dd = dd;
1586	ctx->base.start = atmel_aes_gcm_start;
1587
1588	return 0;
1589}
1590
1591static struct aead_alg aes_gcm_alg = {
1592	.setkey		= atmel_aes_gcm_setkey,
1593	.setauthsize	= atmel_aes_gcm_setauthsize,
1594	.encrypt	= atmel_aes_gcm_encrypt,
1595	.decrypt	= atmel_aes_gcm_decrypt,
1596	.init		= atmel_aes_gcm_init,
1597	.ivsize		= GCM_AES_IV_SIZE,
1598	.maxauthsize	= AES_BLOCK_SIZE,
1599
1600	.base = {
1601		.cra_name		= "gcm(aes)",
1602		.cra_driver_name	= "atmel-gcm-aes",
 
 
1603		.cra_blocksize		= 1,
1604		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
 
 
1605	},
1606};
1607
1608
1609/* xts functions */
1610
1611static inline struct atmel_aes_xts_ctx *
1612atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1613{
1614	return container_of(ctx, struct atmel_aes_xts_ctx, base);
1615}
1616
1617static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1618
1619static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1620{
1621	struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1622	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1623	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1624	unsigned long flags;
1625	int err;
1626
1627	atmel_aes_set_mode(dd, rctx);
1628
1629	err = atmel_aes_hw_init(dd);
1630	if (err)
1631		return atmel_aes_complete(dd, err);
1632
1633	/* Compute the tweak value from req->iv with ecb(aes). */
1634	flags = dd->flags;
1635	dd->flags &= ~AES_FLAGS_MODE_MASK;
1636	dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1637	atmel_aes_write_ctrl_key(dd, false, NULL,
1638				 ctx->key2, ctx->base.keylen);
1639	dd->flags = flags;
1640
1641	atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1642	return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1643}
1644
1645static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1646{
1647	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1648	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1649	u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1650	static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1651	u8 *tweak_bytes = (u8 *)tweak;
1652	int i;
1653
1654	/* Read the computed ciphered tweak value. */
1655	atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1656	/*
1657	 * Hardware quirk:
1658	 * the order of the ciphered tweak bytes need to be reversed before
1659	 * writing them into the ODATARx registers.
1660	 */
1661	for (i = 0; i < AES_BLOCK_SIZE/2; ++i)
1662		swap(tweak_bytes[i], tweak_bytes[AES_BLOCK_SIZE - 1 - i]);
 
 
 
 
1663
1664	/* Process the data. */
1665	atmel_aes_write_ctrl(dd, use_dma, NULL);
1666	atmel_aes_write_block(dd, AES_TWR(0), tweak);
1667	atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1668	if (use_dma)
1669		return atmel_aes_dma_start(dd, req->src, req->dst,
1670					   req->cryptlen,
1671					   atmel_aes_transfer_complete);
1672
1673	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1674				   atmel_aes_transfer_complete);
1675}
1676
1677static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1678				unsigned int keylen)
1679{
1680	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1681	int err;
1682
1683	err = xts_verify_key(tfm, key, keylen);
1684	if (err)
1685		return err;
1686
1687	crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
1688	crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags &
1689				  CRYPTO_TFM_REQ_MASK);
1690	err = crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen);
1691	if (err)
1692		return err;
1693
1694	memcpy(ctx->base.key, key, keylen/2);
1695	memcpy(ctx->key2, key + keylen/2, keylen/2);
1696	ctx->base.keylen = keylen/2;
1697
1698	return 0;
1699}
1700
1701static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1702{
1703	return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1704}
1705
1706static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1707{
1708	return atmel_aes_crypt(req, AES_FLAGS_XTS);
1709}
1710
1711static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1712{
1713	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1714	struct atmel_aes_dev *dd;
1715	const char *tfm_name = crypto_tfm_alg_name(&tfm->base);
1716
1717	dd = atmel_aes_dev_alloc(&ctx->base);
1718	if (!dd)
1719		return -ENODEV;
1720
1721	ctx->fallback_tfm = crypto_alloc_skcipher(tfm_name, 0,
1722						  CRYPTO_ALG_NEED_FALLBACK);
1723	if (IS_ERR(ctx->fallback_tfm))
1724		return PTR_ERR(ctx->fallback_tfm);
1725
1726	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx) +
1727				    crypto_skcipher_reqsize(ctx->fallback_tfm));
1728	ctx->base.dd = dd;
1729	ctx->base.start = atmel_aes_xts_start;
1730
1731	return 0;
1732}
1733
1734static void atmel_aes_xts_exit_tfm(struct crypto_skcipher *tfm)
1735{
1736	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1737
1738	crypto_free_skcipher(ctx->fallback_tfm);
1739}
1740
1741static struct skcipher_alg aes_xts_alg = {
1742	.base.cra_name		= "xts(aes)",
1743	.base.cra_driver_name	= "atmel-xts-aes",
1744	.base.cra_blocksize	= AES_BLOCK_SIZE,
1745	.base.cra_ctxsize	= sizeof(struct atmel_aes_xts_ctx),
1746	.base.cra_flags		= CRYPTO_ALG_NEED_FALLBACK,
1747
1748	.min_keysize		= 2 * AES_MIN_KEY_SIZE,
1749	.max_keysize		= 2 * AES_MAX_KEY_SIZE,
1750	.ivsize			= AES_BLOCK_SIZE,
1751	.setkey			= atmel_aes_xts_setkey,
1752	.encrypt		= atmel_aes_xts_encrypt,
1753	.decrypt		= atmel_aes_xts_decrypt,
1754	.init			= atmel_aes_xts_init_tfm,
1755	.exit			= atmel_aes_xts_exit_tfm,
1756};
1757
1758#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1759/* authenc aead functions */
1760
1761static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1762static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1763				  bool is_async);
1764static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1765				      bool is_async);
1766static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1767static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1768				   bool is_async);
1769
1770static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1771{
1772	struct aead_request *req = aead_request_cast(dd->areq);
1773	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1774
1775	if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1776		atmel_sha_authenc_abort(&rctx->auth_req);
1777	dd->flags &= ~AES_FLAGS_OWN_SHA;
1778}
1779
1780static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1781{
1782	struct aead_request *req = aead_request_cast(dd->areq);
1783	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1784	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1785	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1786	int err;
1787
1788	atmel_aes_set_mode(dd, &rctx->base);
1789
1790	err = atmel_aes_hw_init(dd);
1791	if (err)
1792		return atmel_aes_complete(dd, err);
1793
1794	return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1795					  atmel_aes_authenc_init, dd);
1796}
1797
1798static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1799				  bool is_async)
1800{
1801	struct aead_request *req = aead_request_cast(dd->areq);
1802	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1803
1804	if (is_async)
1805		dd->is_async = true;
1806	if (err)
1807		return atmel_aes_complete(dd, err);
1808
1809	/* If here, we've got the ownership of the SHA device. */
1810	dd->flags |= AES_FLAGS_OWN_SHA;
1811
1812	/* Configure the SHA device. */
1813	return atmel_sha_authenc_init(&rctx->auth_req,
1814				      req->src, req->assoclen,
1815				      rctx->textlen,
1816				      atmel_aes_authenc_transfer, dd);
1817}
1818
1819static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1820				      bool is_async)
1821{
1822	struct aead_request *req = aead_request_cast(dd->areq);
1823	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1824	bool enc = atmel_aes_is_encrypt(dd);
1825	struct scatterlist *src, *dst;
1826	__be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
1827	u32 emr;
1828
1829	if (is_async)
1830		dd->is_async = true;
1831	if (err)
1832		return atmel_aes_complete(dd, err);
1833
1834	/* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
1835	src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
1836	dst = src;
1837
1838	if (req->src != req->dst)
1839		dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
1840
1841	/* Configure the AES device. */
1842	memcpy(iv, req->iv, sizeof(iv));
1843
1844	/*
1845	 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
1846	 * 'true' even if the data transfer is actually performed by the CPU (so
1847	 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
1848	 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
1849	 * must be set to *_MR_SMOD_IDATAR0.
1850	 */
1851	atmel_aes_write_ctrl(dd, true, iv);
1852	emr = AES_EMR_PLIPEN;
1853	if (!enc)
1854		emr |= AES_EMR_PLIPD;
1855	atmel_aes_write(dd, AES_EMR, emr);
1856
1857	/* Transfer data. */
1858	return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
1859				   atmel_aes_authenc_digest);
1860}
1861
1862static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
1863{
1864	struct aead_request *req = aead_request_cast(dd->areq);
1865	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1866
1867	/* atmel_sha_authenc_final() releases the SHA device. */
1868	dd->flags &= ~AES_FLAGS_OWN_SHA;
1869	return atmel_sha_authenc_final(&rctx->auth_req,
1870				       rctx->digest, sizeof(rctx->digest),
1871				       atmel_aes_authenc_final, dd);
1872}
1873
1874static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1875				   bool is_async)
1876{
1877	struct aead_request *req = aead_request_cast(dd->areq);
1878	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1879	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1880	bool enc = atmel_aes_is_encrypt(dd);
1881	u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
1882	u32 offs, authsize;
1883
1884	if (is_async)
1885		dd->is_async = true;
1886	if (err)
1887		goto complete;
1888
1889	offs = req->assoclen + rctx->textlen;
1890	authsize = crypto_aead_authsize(tfm);
1891	if (enc) {
1892		scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
1893	} else {
1894		scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
1895		if (crypto_memneq(idigest, odigest, authsize))
1896			err = -EBADMSG;
1897	}
1898
1899complete:
1900	return atmel_aes_complete(dd, err);
1901}
1902
1903static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
1904				    unsigned int keylen)
1905{
1906	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1907	struct crypto_authenc_keys keys;
 
1908	int err;
1909
1910	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1911		goto badkey;
1912
1913	if (keys.enckeylen > sizeof(ctx->base.key))
1914		goto badkey;
1915
1916	/* Save auth key. */
 
1917	err = atmel_sha_authenc_setkey(ctx->auth,
1918				       keys.authkey, keys.authkeylen,
1919				       crypto_aead_get_flags(tfm));
 
1920	if (err) {
1921		memzero_explicit(&keys, sizeof(keys));
1922		return err;
1923	}
1924
1925	/* Save enc key. */
1926	ctx->base.keylen = keys.enckeylen;
1927	memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
1928
1929	memzero_explicit(&keys, sizeof(keys));
1930	return 0;
1931
1932badkey:
 
1933	memzero_explicit(&keys, sizeof(keys));
1934	return -EINVAL;
1935}
1936
1937static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
1938				      unsigned long auth_mode)
1939{
1940	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1941	unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
1942	struct atmel_aes_dev *dd;
1943
1944	dd = atmel_aes_dev_alloc(&ctx->base);
1945	if (!dd)
1946		return -ENODEV;
1947
1948	ctx->auth = atmel_sha_authenc_spawn(auth_mode);
1949	if (IS_ERR(ctx->auth))
1950		return PTR_ERR(ctx->auth);
1951
1952	crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
1953				      auth_reqsize));
1954	ctx->base.dd = dd;
1955	ctx->base.start = atmel_aes_authenc_start;
1956
1957	return 0;
1958}
1959
1960static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
1961{
1962	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
1963}
1964
1965static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
1966{
1967	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
1968}
1969
1970static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
1971{
1972	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
1973}
1974
1975static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
1976{
1977	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
1978}
1979
1980static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
1981{
1982	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
1983}
1984
1985static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
1986{
1987	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1988
1989	atmel_sha_authenc_free(ctx->auth);
1990}
1991
1992static int atmel_aes_authenc_crypt(struct aead_request *req,
1993				   unsigned long mode)
1994{
1995	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1996	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1997	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1998	u32 authsize = crypto_aead_authsize(tfm);
1999	bool enc = (mode & AES_FLAGS_ENCRYPT);
 
2000
2001	/* Compute text length. */
2002	if (!enc && req->cryptlen < authsize)
2003		return -EINVAL;
2004	rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2005
2006	/*
2007	 * Currently, empty messages are not supported yet:
2008	 * the SHA auto-padding can be used only on non-empty messages.
2009	 * Hence a special case needs to be implemented for empty message.
2010	 */
2011	if (!rctx->textlen && !req->assoclen)
2012		return -EINVAL;
2013
2014	rctx->base.mode = mode;
2015	ctx->block_size = AES_BLOCK_SIZE;
2016	ctx->is_aead = true;
2017
2018	return atmel_aes_handle_queue(ctx->dd, &req->base);
 
 
 
 
2019}
2020
2021static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2022{
2023	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2024}
2025
2026static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2027{
2028	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2029}
2030
2031static struct aead_alg aes_authenc_algs[] = {
2032{
2033	.setkey		= atmel_aes_authenc_setkey,
2034	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2035	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2036	.init		= atmel_aes_authenc_hmac_sha1_init_tfm,
2037	.exit		= atmel_aes_authenc_exit_tfm,
2038	.ivsize		= AES_BLOCK_SIZE,
2039	.maxauthsize	= SHA1_DIGEST_SIZE,
2040
2041	.base = {
2042		.cra_name		= "authenc(hmac(sha1),cbc(aes))",
2043		.cra_driver_name	= "atmel-authenc-hmac-sha1-cbc-aes",
 
 
2044		.cra_blocksize		= AES_BLOCK_SIZE,
2045		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
 
 
2046	},
2047},
2048{
2049	.setkey		= atmel_aes_authenc_setkey,
2050	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2051	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2052	.init		= atmel_aes_authenc_hmac_sha224_init_tfm,
2053	.exit		= atmel_aes_authenc_exit_tfm,
2054	.ivsize		= AES_BLOCK_SIZE,
2055	.maxauthsize	= SHA224_DIGEST_SIZE,
2056
2057	.base = {
2058		.cra_name		= "authenc(hmac(sha224),cbc(aes))",
2059		.cra_driver_name	= "atmel-authenc-hmac-sha224-cbc-aes",
 
 
2060		.cra_blocksize		= AES_BLOCK_SIZE,
2061		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
 
 
2062	},
2063},
2064{
2065	.setkey		= atmel_aes_authenc_setkey,
2066	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2067	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2068	.init		= atmel_aes_authenc_hmac_sha256_init_tfm,
2069	.exit		= atmel_aes_authenc_exit_tfm,
2070	.ivsize		= AES_BLOCK_SIZE,
2071	.maxauthsize	= SHA256_DIGEST_SIZE,
2072
2073	.base = {
2074		.cra_name		= "authenc(hmac(sha256),cbc(aes))",
2075		.cra_driver_name	= "atmel-authenc-hmac-sha256-cbc-aes",
 
 
2076		.cra_blocksize		= AES_BLOCK_SIZE,
2077		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
 
 
2078	},
2079},
2080{
2081	.setkey		= atmel_aes_authenc_setkey,
2082	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2083	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2084	.init		= atmel_aes_authenc_hmac_sha384_init_tfm,
2085	.exit		= atmel_aes_authenc_exit_tfm,
2086	.ivsize		= AES_BLOCK_SIZE,
2087	.maxauthsize	= SHA384_DIGEST_SIZE,
2088
2089	.base = {
2090		.cra_name		= "authenc(hmac(sha384),cbc(aes))",
2091		.cra_driver_name	= "atmel-authenc-hmac-sha384-cbc-aes",
 
 
2092		.cra_blocksize		= AES_BLOCK_SIZE,
2093		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
 
 
2094	},
2095},
2096{
2097	.setkey		= atmel_aes_authenc_setkey,
2098	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2099	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2100	.init		= atmel_aes_authenc_hmac_sha512_init_tfm,
2101	.exit		= atmel_aes_authenc_exit_tfm,
2102	.ivsize		= AES_BLOCK_SIZE,
2103	.maxauthsize	= SHA512_DIGEST_SIZE,
2104
2105	.base = {
2106		.cra_name		= "authenc(hmac(sha512),cbc(aes))",
2107		.cra_driver_name	= "atmel-authenc-hmac-sha512-cbc-aes",
 
 
2108		.cra_blocksize		= AES_BLOCK_SIZE,
2109		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
 
 
2110	},
2111},
2112};
2113#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2114
2115/* Probe functions */
2116
2117static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2118{
2119	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2120	dd->buflen = ATMEL_AES_BUFFER_SIZE;
2121	dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2122
2123	if (!dd->buf) {
2124		dev_err(dd->dev, "unable to alloc pages.\n");
2125		return -ENOMEM;
2126	}
2127
2128	return 0;
2129}
2130
2131static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2132{
2133	free_page((unsigned long)dd->buf);
2134}
2135
2136static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
 
 
 
 
 
 
 
 
 
 
 
 
 
2137{
2138	int ret;
 
 
 
 
2139
2140	/* Try to grab 2 DMA channels */
2141	dd->src.chan = dma_request_chan(dd->dev, "tx");
2142	if (IS_ERR(dd->src.chan)) {
2143		ret = PTR_ERR(dd->src.chan);
 
2144		goto err_dma_in;
2145	}
2146
2147	dd->dst.chan = dma_request_chan(dd->dev, "rx");
2148	if (IS_ERR(dd->dst.chan)) {
2149		ret = PTR_ERR(dd->dst.chan);
 
2150		goto err_dma_out;
2151	}
2152
2153	return 0;
2154
2155err_dma_out:
2156	dma_release_channel(dd->src.chan);
2157err_dma_in:
2158	dev_err(dd->dev, "no DMA channel available\n");
2159	return ret;
2160}
2161
2162static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2163{
2164	dma_release_channel(dd->dst.chan);
2165	dma_release_channel(dd->src.chan);
2166}
2167
2168static void atmel_aes_queue_task(unsigned long data)
2169{
2170	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2171
2172	atmel_aes_handle_queue(dd, NULL);
2173}
2174
2175static void atmel_aes_done_task(unsigned long data)
2176{
2177	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2178
2179	dd->is_async = true;
2180	(void)dd->resume(dd);
2181}
2182
2183static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2184{
2185	struct atmel_aes_dev *aes_dd = dev_id;
2186	u32 reg;
2187
2188	reg = atmel_aes_read(aes_dd, AES_ISR);
2189	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2190		atmel_aes_write(aes_dd, AES_IDR, reg);
2191		if (AES_FLAGS_BUSY & aes_dd->flags)
2192			tasklet_schedule(&aes_dd->done_task);
2193		else
2194			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2195		return IRQ_HANDLED;
2196	}
2197
2198	return IRQ_NONE;
2199}
2200
2201static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2202{
2203	int i;
2204
2205#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2206	if (dd->caps.has_authenc)
2207		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2208			crypto_unregister_aead(&aes_authenc_algs[i]);
2209#endif
2210
2211	if (dd->caps.has_xts)
2212		crypto_unregister_skcipher(&aes_xts_alg);
2213
2214	if (dd->caps.has_gcm)
2215		crypto_unregister_aead(&aes_gcm_alg);
2216
2217	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2218		crypto_unregister_skcipher(&aes_algs[i]);
2219}
2220
2221static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
2222{
2223	alg->cra_flags |= CRYPTO_ALG_ASYNC;
2224	alg->cra_alignmask = 0xf;
2225	alg->cra_priority = ATMEL_AES_PRIORITY;
2226	alg->cra_module = THIS_MODULE;
2227}
2228
2229static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2230{
2231	int err, i, j;
2232
2233	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2234		atmel_aes_crypto_alg_init(&aes_algs[i].base);
2235
2236		err = crypto_register_skcipher(&aes_algs[i]);
2237		if (err)
2238			goto err_aes_algs;
2239	}
2240
2241	if (dd->caps.has_gcm) {
2242		atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
 
 
 
2243
 
2244		err = crypto_register_aead(&aes_gcm_alg);
2245		if (err)
2246			goto err_aes_gcm_alg;
2247	}
2248
2249	if (dd->caps.has_xts) {
2250		atmel_aes_crypto_alg_init(&aes_xts_alg.base);
2251
2252		err = crypto_register_skcipher(&aes_xts_alg);
2253		if (err)
2254			goto err_aes_xts_alg;
2255	}
2256
2257#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2258	if (dd->caps.has_authenc) {
2259		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2260			atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
2261
2262			err = crypto_register_aead(&aes_authenc_algs[i]);
2263			if (err)
2264				goto err_aes_authenc_alg;
2265		}
2266	}
2267#endif
2268
2269	return 0;
2270
2271#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2272	/* i = ARRAY_SIZE(aes_authenc_algs); */
2273err_aes_authenc_alg:
2274	for (j = 0; j < i; j++)
2275		crypto_unregister_aead(&aes_authenc_algs[j]);
2276	crypto_unregister_skcipher(&aes_xts_alg);
2277#endif
2278err_aes_xts_alg:
2279	crypto_unregister_aead(&aes_gcm_alg);
2280err_aes_gcm_alg:
 
 
2281	i = ARRAY_SIZE(aes_algs);
2282err_aes_algs:
2283	for (j = 0; j < i; j++)
2284		crypto_unregister_skcipher(&aes_algs[j]);
2285
2286	return err;
2287}
2288
2289static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2290{
2291	dd->caps.has_dualbuff = 0;
 
 
2292	dd->caps.has_gcm = 0;
2293	dd->caps.has_xts = 0;
2294	dd->caps.has_authenc = 0;
2295	dd->caps.max_burst_size = 1;
2296
2297	/* keep only major version number */
2298	switch (dd->hw_version & 0xff0) {
2299	case 0x700:
2300	case 0x600:
2301	case 0x500:
2302		dd->caps.has_dualbuff = 1;
 
 
2303		dd->caps.has_gcm = 1;
2304		dd->caps.has_xts = 1;
2305		dd->caps.has_authenc = 1;
2306		dd->caps.max_burst_size = 4;
2307		break;
2308	case 0x200:
2309		dd->caps.has_dualbuff = 1;
 
 
2310		dd->caps.has_gcm = 1;
2311		dd->caps.max_burst_size = 4;
2312		break;
2313	case 0x130:
2314		dd->caps.has_dualbuff = 1;
 
2315		dd->caps.max_burst_size = 4;
2316		break;
2317	case 0x120:
2318		break;
2319	default:
2320		dev_warn(dd->dev,
2321				"Unmanaged aes version, set minimum capabilities\n");
2322		break;
2323	}
2324}
2325
 
2326static const struct of_device_id atmel_aes_dt_ids[] = {
2327	{ .compatible = "atmel,at91sam9g46-aes" },
2328	{ /* sentinel */ }
2329};
2330MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2332static int atmel_aes_probe(struct platform_device *pdev)
2333{
2334	struct atmel_aes_dev *aes_dd;
 
2335	struct device *dev = &pdev->dev;
2336	struct resource *aes_res;
2337	int err;
2338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2339	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2340	if (!aes_dd)
2341		return -ENOMEM;
 
 
2342
2343	aes_dd->dev = dev;
2344
2345	platform_set_drvdata(pdev, aes_dd);
2346
2347	INIT_LIST_HEAD(&aes_dd->list);
2348	spin_lock_init(&aes_dd->lock);
2349
2350	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2351					(unsigned long)aes_dd);
2352	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2353					(unsigned long)aes_dd);
2354
2355	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2356
2357	aes_dd->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &aes_res);
2358	if (IS_ERR(aes_dd->io_base)) {
2359		err = PTR_ERR(aes_dd->io_base);
2360		goto err_tasklet_kill;
 
 
2361	}
2362	aes_dd->phys_base = aes_res->start;
2363
2364	/* Get the IRQ */
2365	aes_dd->irq = platform_get_irq(pdev,  0);
2366	if (aes_dd->irq < 0) {
2367		err = aes_dd->irq;
2368		goto err_tasklet_kill;
2369	}
2370
2371	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2372			       IRQF_SHARED, "atmel-aes", aes_dd);
2373	if (err) {
2374		dev_err(dev, "unable to request aes irq.\n");
2375		goto err_tasklet_kill;
2376	}
2377
2378	/* Initializing the clock */
2379	aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2380	if (IS_ERR(aes_dd->iclk)) {
2381		dev_err(dev, "clock initialization failed.\n");
2382		err = PTR_ERR(aes_dd->iclk);
2383		goto err_tasklet_kill;
 
 
 
 
 
 
 
2384	}
2385
2386	err = clk_prepare(aes_dd->iclk);
2387	if (err)
2388		goto err_tasklet_kill;
2389
2390	err = atmel_aes_hw_version_init(aes_dd);
2391	if (err)
2392		goto err_iclk_unprepare;
2393
2394	atmel_aes_get_cap(aes_dd);
2395
2396#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2397	if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2398		err = -EPROBE_DEFER;
2399		goto err_iclk_unprepare;
2400	}
2401#endif
2402
2403	err = atmel_aes_buff_init(aes_dd);
2404	if (err)
2405		goto err_iclk_unprepare;
2406
2407	err = atmel_aes_dma_init(aes_dd);
2408	if (err)
2409		goto err_buff_cleanup;
2410
2411	spin_lock(&atmel_aes.lock);
2412	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2413	spin_unlock(&atmel_aes.lock);
2414
2415	err = atmel_aes_register_algs(aes_dd);
2416	if (err)
2417		goto err_algs;
2418
2419	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2420			dma_chan_name(aes_dd->src.chan),
2421			dma_chan_name(aes_dd->dst.chan));
2422
2423	return 0;
2424
2425err_algs:
2426	spin_lock(&atmel_aes.lock);
2427	list_del(&aes_dd->list);
2428	spin_unlock(&atmel_aes.lock);
2429	atmel_aes_dma_cleanup(aes_dd);
2430err_buff_cleanup:
2431	atmel_aes_buff_cleanup(aes_dd);
2432err_iclk_unprepare:
 
2433	clk_unprepare(aes_dd->iclk);
2434err_tasklet_kill:
2435	tasklet_kill(&aes_dd->done_task);
2436	tasklet_kill(&aes_dd->queue_task);
 
 
 
2437
2438	return err;
2439}
2440
2441static void atmel_aes_remove(struct platform_device *pdev)
2442{
2443	struct atmel_aes_dev *aes_dd;
2444
2445	aes_dd = platform_get_drvdata(pdev);
2446
 
2447	spin_lock(&atmel_aes.lock);
2448	list_del(&aes_dd->list);
2449	spin_unlock(&atmel_aes.lock);
2450
2451	atmel_aes_unregister_algs(aes_dd);
2452
2453	tasklet_kill(&aes_dd->done_task);
2454	tasklet_kill(&aes_dd->queue_task);
2455
2456	atmel_aes_dma_cleanup(aes_dd);
2457	atmel_aes_buff_cleanup(aes_dd);
2458
2459	clk_unprepare(aes_dd->iclk);
 
 
2460}
2461
2462static struct platform_driver atmel_aes_driver = {
2463	.probe		= atmel_aes_probe,
2464	.remove_new	= atmel_aes_remove,
2465	.driver		= {
2466		.name	= "atmel_aes",
2467		.of_match_table = atmel_aes_dt_ids,
2468	},
2469};
2470
2471module_platform_driver(atmel_aes_driver);
2472
2473MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2474MODULE_LICENSE("GPL v2");
2475MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Cryptographic API.
   4 *
   5 * Support for ATMEL AES HW acceleration.
   6 *
   7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
   8 * Author: Nicolas Royer <nicolas@eukrea.com>
   9 *
  10 * Some ideas are from omap-aes.c driver.
  11 */
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/err.h>
  18#include <linux/clk.h>
  19#include <linux/io.h>
  20#include <linux/hw_random.h>
  21#include <linux/platform_device.h>
  22
  23#include <linux/device.h>
 
  24#include <linux/init.h>
  25#include <linux/errno.h>
  26#include <linux/interrupt.h>
  27#include <linux/irq.h>
  28#include <linux/scatterlist.h>
  29#include <linux/dma-mapping.h>
  30#include <linux/of_device.h>
  31#include <linux/delay.h>
  32#include <linux/crypto.h>
  33#include <crypto/scatterwalk.h>
  34#include <crypto/algapi.h>
  35#include <crypto/aes.h>
  36#include <crypto/gcm.h>
  37#include <crypto/xts.h>
  38#include <crypto/internal/aead.h>
  39#include <linux/platform_data/crypto-atmel.h>
  40#include <dt-bindings/dma/at91.h>
  41#include "atmel-aes-regs.h"
  42#include "atmel-authenc.h"
  43
  44#define ATMEL_AES_PRIORITY	300
  45
  46#define ATMEL_AES_BUFFER_ORDER	2
  47#define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
  48
  49#define CFB8_BLOCK_SIZE		1
  50#define CFB16_BLOCK_SIZE	2
  51#define CFB32_BLOCK_SIZE	4
  52#define CFB64_BLOCK_SIZE	8
  53
  54#define SIZE_IN_WORDS(x)	((x) >> 2)
  55
  56/* AES flags */
  57/* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
  58#define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
  59#define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
  60#define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
  61#define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
  62#define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
  63#define AES_FLAGS_OFB		AES_MR_OPMOD_OFB
  64#define AES_FLAGS_CFB128	(AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
  65#define AES_FLAGS_CFB64		(AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
  66#define AES_FLAGS_CFB32		(AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
  67#define AES_FLAGS_CFB16		(AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
  68#define AES_FLAGS_CFB8		(AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
  69#define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
  70#define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
  71#define AES_FLAGS_XTS		AES_MR_OPMOD_XTS
  72
  73#define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
  74				 AES_FLAGS_ENCRYPT |		\
  75				 AES_FLAGS_GTAGEN)
  76
  77#define AES_FLAGS_BUSY		BIT(3)
  78#define AES_FLAGS_DUMP_REG	BIT(4)
  79#define AES_FLAGS_OWN_SHA	BIT(5)
  80
  81#define AES_FLAGS_PERSISTENT	AES_FLAGS_BUSY
  82
  83#define ATMEL_AES_QUEUE_LENGTH	50
  84
  85#define ATMEL_AES_DMA_THRESHOLD		256
  86
  87
  88struct atmel_aes_caps {
  89	bool			has_dualbuff;
  90	bool			has_cfb64;
  91	bool			has_ctr32;
  92	bool			has_gcm;
  93	bool			has_xts;
  94	bool			has_authenc;
  95	u32			max_burst_size;
  96};
  97
  98struct atmel_aes_dev;
  99
 100
 101typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
 102
 103
 104struct atmel_aes_base_ctx {
 105	struct atmel_aes_dev	*dd;
 106	atmel_aes_fn_t		start;
 107	int			keylen;
 108	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
 109	u16			block_size;
 110	bool			is_aead;
 111};
 112
 113struct atmel_aes_ctx {
 114	struct atmel_aes_base_ctx	base;
 115};
 116
 117struct atmel_aes_ctr_ctx {
 118	struct atmel_aes_base_ctx	base;
 119
 120	u32			iv[AES_BLOCK_SIZE / sizeof(u32)];
 121	size_t			offset;
 122	struct scatterlist	src[2];
 123	struct scatterlist	dst[2];
 
 124};
 125
 126struct atmel_aes_gcm_ctx {
 127	struct atmel_aes_base_ctx	base;
 128
 129	struct scatterlist	src[2];
 130	struct scatterlist	dst[2];
 131
 132	u32			j0[AES_BLOCK_SIZE / sizeof(u32)];
 133	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
 134	u32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
 135	size_t			textlen;
 136
 137	const u32		*ghash_in;
 138	u32			*ghash_out;
 139	atmel_aes_fn_t		ghash_resume;
 140};
 141
 142struct atmel_aes_xts_ctx {
 143	struct atmel_aes_base_ctx	base;
 144
 145	u32			key2[AES_KEYSIZE_256 / sizeof(u32)];
 
 146};
 147
 148#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
 149struct atmel_aes_authenc_ctx {
 150	struct atmel_aes_base_ctx	base;
 151	struct atmel_sha_authenc_ctx	*auth;
 152};
 153#endif
 154
 155struct atmel_aes_reqctx {
 156	unsigned long		mode;
 157	u32			lastc[AES_BLOCK_SIZE / sizeof(u32)];
 
 158};
 159
 160#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
 161struct atmel_aes_authenc_reqctx {
 162	struct atmel_aes_reqctx	base;
 163
 164	struct scatterlist	src[2];
 165	struct scatterlist	dst[2];
 166	size_t			textlen;
 167	u32			digest[SHA512_DIGEST_SIZE / sizeof(u32)];
 168
 169	/* auth_req MUST be place last. */
 170	struct ahash_request	auth_req;
 171};
 172#endif
 173
 174struct atmel_aes_dma {
 175	struct dma_chan		*chan;
 176	struct scatterlist	*sg;
 177	int			nents;
 178	unsigned int		remainder;
 179	unsigned int		sg_len;
 180};
 181
 182struct atmel_aes_dev {
 183	struct list_head	list;
 184	unsigned long		phys_base;
 185	void __iomem		*io_base;
 186
 187	struct crypto_async_request	*areq;
 188	struct atmel_aes_base_ctx	*ctx;
 189
 190	bool			is_async;
 191	atmel_aes_fn_t		resume;
 192	atmel_aes_fn_t		cpu_transfer_complete;
 193
 194	struct device		*dev;
 195	struct clk		*iclk;
 196	int			irq;
 197
 198	unsigned long		flags;
 199
 200	spinlock_t		lock;
 201	struct crypto_queue	queue;
 202
 203	struct tasklet_struct	done_task;
 204	struct tasklet_struct	queue_task;
 205
 206	size_t			total;
 207	size_t			datalen;
 208	u32			*data;
 209
 210	struct atmel_aes_dma	src;
 211	struct atmel_aes_dma	dst;
 212
 213	size_t			buflen;
 214	void			*buf;
 215	struct scatterlist	aligned_sg;
 216	struct scatterlist	*real_dst;
 217
 218	struct atmel_aes_caps	caps;
 219
 220	u32			hw_version;
 221};
 222
 223struct atmel_aes_drv {
 224	struct list_head	dev_list;
 225	spinlock_t		lock;
 226};
 227
 228static struct atmel_aes_drv atmel_aes = {
 229	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
 230	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
 231};
 232
 233#ifdef VERBOSE_DEBUG
 234static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
 235{
 236	switch (offset) {
 237	case AES_CR:
 238		return "CR";
 239
 240	case AES_MR:
 241		return "MR";
 242
 243	case AES_ISR:
 244		return "ISR";
 245
 246	case AES_IMR:
 247		return "IMR";
 248
 249	case AES_IER:
 250		return "IER";
 251
 252	case AES_IDR:
 253		return "IDR";
 254
 255	case AES_KEYWR(0):
 256	case AES_KEYWR(1):
 257	case AES_KEYWR(2):
 258	case AES_KEYWR(3):
 259	case AES_KEYWR(4):
 260	case AES_KEYWR(5):
 261	case AES_KEYWR(6):
 262	case AES_KEYWR(7):
 263		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
 264		break;
 265
 266	case AES_IDATAR(0):
 267	case AES_IDATAR(1):
 268	case AES_IDATAR(2):
 269	case AES_IDATAR(3):
 270		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
 271		break;
 272
 273	case AES_ODATAR(0):
 274	case AES_ODATAR(1):
 275	case AES_ODATAR(2):
 276	case AES_ODATAR(3):
 277		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
 278		break;
 279
 280	case AES_IVR(0):
 281	case AES_IVR(1):
 282	case AES_IVR(2):
 283	case AES_IVR(3):
 284		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
 285		break;
 286
 287	case AES_AADLENR:
 288		return "AADLENR";
 289
 290	case AES_CLENR:
 291		return "CLENR";
 292
 293	case AES_GHASHR(0):
 294	case AES_GHASHR(1):
 295	case AES_GHASHR(2):
 296	case AES_GHASHR(3):
 297		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
 298		break;
 299
 300	case AES_TAGR(0):
 301	case AES_TAGR(1):
 302	case AES_TAGR(2):
 303	case AES_TAGR(3):
 304		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
 305		break;
 306
 307	case AES_CTRR:
 308		return "CTRR";
 309
 310	case AES_GCMHR(0):
 311	case AES_GCMHR(1):
 312	case AES_GCMHR(2):
 313	case AES_GCMHR(3):
 314		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
 315		break;
 316
 317	case AES_EMR:
 318		return "EMR";
 319
 320	case AES_TWR(0):
 321	case AES_TWR(1):
 322	case AES_TWR(2):
 323	case AES_TWR(3):
 324		snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
 325		break;
 326
 327	case AES_ALPHAR(0):
 328	case AES_ALPHAR(1):
 329	case AES_ALPHAR(2):
 330	case AES_ALPHAR(3):
 331		snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
 332		break;
 333
 334	default:
 335		snprintf(tmp, sz, "0x%02x", offset);
 336		break;
 337	}
 338
 339	return tmp;
 340}
 341#endif /* VERBOSE_DEBUG */
 342
 343/* Shared functions */
 344
 345static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
 346{
 347	u32 value = readl_relaxed(dd->io_base + offset);
 348
 349#ifdef VERBOSE_DEBUG
 350	if (dd->flags & AES_FLAGS_DUMP_REG) {
 351		char tmp[16];
 352
 353		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
 354			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 355	}
 356#endif /* VERBOSE_DEBUG */
 357
 358	return value;
 359}
 360
 361static inline void atmel_aes_write(struct atmel_aes_dev *dd,
 362					u32 offset, u32 value)
 363{
 364#ifdef VERBOSE_DEBUG
 365	if (dd->flags & AES_FLAGS_DUMP_REG) {
 366		char tmp[16];
 367
 368		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
 369			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 370	}
 371#endif /* VERBOSE_DEBUG */
 372
 373	writel_relaxed(value, dd->io_base + offset);
 374}
 375
 376static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
 377					u32 *value, int count)
 378{
 379	for (; count--; value++, offset += 4)
 380		*value = atmel_aes_read(dd, offset);
 381}
 382
 383static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
 384			      const u32 *value, int count)
 385{
 386	for (; count--; value++, offset += 4)
 387		atmel_aes_write(dd, offset, *value);
 388}
 389
 390static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
 391					u32 *value)
 392{
 393	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 394}
 395
 396static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
 397					 const u32 *value)
 398{
 399	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 400}
 401
 402static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
 403						atmel_aes_fn_t resume)
 404{
 405	u32 isr = atmel_aes_read(dd, AES_ISR);
 406
 407	if (unlikely(isr & AES_INT_DATARDY))
 408		return resume(dd);
 409
 410	dd->resume = resume;
 411	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 412	return -EINPROGRESS;
 413}
 414
 415static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
 416{
 417	len &= block_size - 1;
 418	return len ? block_size - len : 0;
 419}
 420
 421static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
 422{
 423	struct atmel_aes_dev *aes_dd = NULL;
 424	struct atmel_aes_dev *tmp;
 425
 426	spin_lock_bh(&atmel_aes.lock);
 427	if (!ctx->dd) {
 428		list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
 429			aes_dd = tmp;
 430			break;
 431		}
 432		ctx->dd = aes_dd;
 433	} else {
 434		aes_dd = ctx->dd;
 435	}
 436
 437	spin_unlock_bh(&atmel_aes.lock);
 438
 439	return aes_dd;
 440}
 441
 442static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
 443{
 444	int err;
 445
 446	err = clk_enable(dd->iclk);
 447	if (err)
 448		return err;
 449
 450	atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
 451	atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
 452
 453	return 0;
 454}
 455
 456static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
 457{
 458	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
 459}
 460
 461static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
 462{
 463	int err;
 464
 465	err = atmel_aes_hw_init(dd);
 466	if (err)
 467		return err;
 468
 469	dd->hw_version = atmel_aes_get_version(dd);
 470
 471	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
 472
 473	clk_disable(dd->iclk);
 474	return 0;
 475}
 476
 477static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
 478				      const struct atmel_aes_reqctx *rctx)
 479{
 480	/* Clear all but persistent flags and set request flags. */
 481	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
 482}
 483
 484static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
 485{
 486	return (dd->flags & AES_FLAGS_ENCRYPT);
 487}
 488
 489#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
 490static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
 491#endif
 492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 493static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
 494{
 495#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
 
 
 
 496	if (dd->ctx->is_aead)
 497		atmel_aes_authenc_complete(dd, err);
 498#endif
 499
 500	clk_disable(dd->iclk);
 501	dd->flags &= ~AES_FLAGS_BUSY;
 502
 503	if (!dd->ctx->is_aead) {
 504		struct ablkcipher_request *req =
 505			ablkcipher_request_cast(dd->areq);
 506		struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
 507		struct crypto_ablkcipher *ablkcipher =
 508			crypto_ablkcipher_reqtfm(req);
 509		int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
 510
 511		if (rctx->mode & AES_FLAGS_ENCRYPT) {
 512			scatterwalk_map_and_copy(req->info, req->dst,
 513				req->nbytes - ivsize, ivsize, 0);
 514		} else {
 515			if (req->src == req->dst) {
 516				memcpy(req->info, rctx->lastc, ivsize);
 517			} else {
 518				scatterwalk_map_and_copy(req->info, req->src,
 519					req->nbytes - ivsize, ivsize, 0);
 520			}
 521		}
 522	}
 523
 524	if (dd->is_async)
 525		dd->areq->complete(dd->areq, err);
 526
 527	tasklet_schedule(&dd->queue_task);
 528
 529	return err;
 530}
 531
 532static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
 533				     const u32 *iv, const u32 *key, int keylen)
 534{
 535	u32 valmr = 0;
 536
 537	/* MR register must be set before IV registers */
 538	if (keylen == AES_KEYSIZE_128)
 539		valmr |= AES_MR_KEYSIZE_128;
 540	else if (keylen == AES_KEYSIZE_192)
 541		valmr |= AES_MR_KEYSIZE_192;
 542	else
 543		valmr |= AES_MR_KEYSIZE_256;
 544
 545	valmr |= dd->flags & AES_FLAGS_MODE_MASK;
 546
 547	if (use_dma) {
 548		valmr |= AES_MR_SMOD_IDATAR0;
 549		if (dd->caps.has_dualbuff)
 550			valmr |= AES_MR_DUALBUFF;
 551	} else {
 552		valmr |= AES_MR_SMOD_AUTO;
 553	}
 554
 555	atmel_aes_write(dd, AES_MR, valmr);
 556
 557	atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
 558
 559	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
 560		atmel_aes_write_block(dd, AES_IVR(0), iv);
 561}
 562
 563static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
 564					const u32 *iv)
 565
 566{
 567	atmel_aes_write_ctrl_key(dd, use_dma, iv,
 568				 dd->ctx->key, dd->ctx->keylen);
 569}
 570
 571/* CPU transfer */
 572
 573static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
 574{
 575	int err = 0;
 576	u32 isr;
 577
 578	for (;;) {
 579		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
 580		dd->data += 4;
 581		dd->datalen -= AES_BLOCK_SIZE;
 582
 583		if (dd->datalen < AES_BLOCK_SIZE)
 584			break;
 585
 586		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 587
 588		isr = atmel_aes_read(dd, AES_ISR);
 589		if (!(isr & AES_INT_DATARDY)) {
 590			dd->resume = atmel_aes_cpu_transfer;
 591			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 592			return -EINPROGRESS;
 593		}
 594	}
 595
 596	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 597				 dd->buf, dd->total))
 598		err = -EINVAL;
 599
 600	if (err)
 601		return atmel_aes_complete(dd, err);
 602
 603	return dd->cpu_transfer_complete(dd);
 604}
 605
 606static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
 607			       struct scatterlist *src,
 608			       struct scatterlist *dst,
 609			       size_t len,
 610			       atmel_aes_fn_t resume)
 611{
 612	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
 613
 614	if (unlikely(len == 0))
 615		return -EINVAL;
 616
 617	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 618
 619	dd->total = len;
 620	dd->real_dst = dst;
 621	dd->cpu_transfer_complete = resume;
 622	dd->datalen = len + padlen;
 623	dd->data = (u32 *)dd->buf;
 624	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 625	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
 626}
 627
 628
 629/* DMA transfer */
 630
 631static void atmel_aes_dma_callback(void *data);
 632
 633static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
 634				    struct scatterlist *sg,
 635				    size_t len,
 636				    struct atmel_aes_dma *dma)
 637{
 638	int nents;
 639
 640	if (!IS_ALIGNED(len, dd->ctx->block_size))
 641		return false;
 642
 643	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
 644		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 645			return false;
 646
 647		if (len <= sg->length) {
 648			if (!IS_ALIGNED(len, dd->ctx->block_size))
 649				return false;
 650
 651			dma->nents = nents+1;
 652			dma->remainder = sg->length - len;
 653			sg->length = len;
 654			return true;
 655		}
 656
 657		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
 658			return false;
 659
 660		len -= sg->length;
 661	}
 662
 663	return false;
 664}
 665
 666static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
 667{
 668	struct scatterlist *sg = dma->sg;
 669	int nents = dma->nents;
 670
 671	if (!dma->remainder)
 672		return;
 673
 674	while (--nents > 0 && sg)
 675		sg = sg_next(sg);
 676
 677	if (!sg)
 678		return;
 679
 680	sg->length += dma->remainder;
 681}
 682
 683static int atmel_aes_map(struct atmel_aes_dev *dd,
 684			 struct scatterlist *src,
 685			 struct scatterlist *dst,
 686			 size_t len)
 687{
 688	bool src_aligned, dst_aligned;
 689	size_t padlen;
 690
 691	dd->total = len;
 692	dd->src.sg = src;
 693	dd->dst.sg = dst;
 694	dd->real_dst = dst;
 695
 696	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
 697	if (src == dst)
 698		dst_aligned = src_aligned;
 699	else
 700		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
 701	if (!src_aligned || !dst_aligned) {
 702		padlen = atmel_aes_padlen(len, dd->ctx->block_size);
 703
 704		if (dd->buflen < len + padlen)
 705			return -ENOMEM;
 706
 707		if (!src_aligned) {
 708			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 709			dd->src.sg = &dd->aligned_sg;
 710			dd->src.nents = 1;
 711			dd->src.remainder = 0;
 712		}
 713
 714		if (!dst_aligned) {
 715			dd->dst.sg = &dd->aligned_sg;
 716			dd->dst.nents = 1;
 717			dd->dst.remainder = 0;
 718		}
 719
 720		sg_init_table(&dd->aligned_sg, 1);
 721		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
 722	}
 723
 724	if (dd->src.sg == dd->dst.sg) {
 725		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 726					    DMA_BIDIRECTIONAL);
 727		dd->dst.sg_len = dd->src.sg_len;
 728		if (!dd->src.sg_len)
 729			return -EFAULT;
 730	} else {
 731		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 732					    DMA_TO_DEVICE);
 733		if (!dd->src.sg_len)
 734			return -EFAULT;
 735
 736		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 737					    DMA_FROM_DEVICE);
 738		if (!dd->dst.sg_len) {
 739			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 740				     DMA_TO_DEVICE);
 741			return -EFAULT;
 742		}
 743	}
 744
 745	return 0;
 746}
 747
 748static void atmel_aes_unmap(struct atmel_aes_dev *dd)
 749{
 750	if (dd->src.sg == dd->dst.sg) {
 751		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 752			     DMA_BIDIRECTIONAL);
 753
 754		if (dd->src.sg != &dd->aligned_sg)
 755			atmel_aes_restore_sg(&dd->src);
 756	} else {
 757		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 758			     DMA_FROM_DEVICE);
 759
 760		if (dd->dst.sg != &dd->aligned_sg)
 761			atmel_aes_restore_sg(&dd->dst);
 762
 763		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 764			     DMA_TO_DEVICE);
 765
 766		if (dd->src.sg != &dd->aligned_sg)
 767			atmel_aes_restore_sg(&dd->src);
 768	}
 769
 770	if (dd->dst.sg == &dd->aligned_sg)
 771		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 772				    dd->buf, dd->total);
 773}
 774
 775static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
 776					enum dma_slave_buswidth addr_width,
 777					enum dma_transfer_direction dir,
 778					u32 maxburst)
 779{
 780	struct dma_async_tx_descriptor *desc;
 781	struct dma_slave_config config;
 782	dma_async_tx_callback callback;
 783	struct atmel_aes_dma *dma;
 784	int err;
 785
 786	memset(&config, 0, sizeof(config));
 787	config.direction = dir;
 788	config.src_addr_width = addr_width;
 789	config.dst_addr_width = addr_width;
 790	config.src_maxburst = maxburst;
 791	config.dst_maxburst = maxburst;
 792
 793	switch (dir) {
 794	case DMA_MEM_TO_DEV:
 795		dma = &dd->src;
 796		callback = NULL;
 797		config.dst_addr = dd->phys_base + AES_IDATAR(0);
 798		break;
 799
 800	case DMA_DEV_TO_MEM:
 801		dma = &dd->dst;
 802		callback = atmel_aes_dma_callback;
 803		config.src_addr = dd->phys_base + AES_ODATAR(0);
 804		break;
 805
 806	default:
 807		return -EINVAL;
 808	}
 809
 810	err = dmaengine_slave_config(dma->chan, &config);
 811	if (err)
 812		return err;
 813
 814	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
 815				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 816	if (!desc)
 817		return -ENOMEM;
 818
 819	desc->callback = callback;
 820	desc->callback_param = dd;
 821	dmaengine_submit(desc);
 822	dma_async_issue_pending(dma->chan);
 823
 824	return 0;
 825}
 826
 827static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
 828					enum dma_transfer_direction dir)
 829{
 830	struct atmel_aes_dma *dma;
 831
 832	switch (dir) {
 833	case DMA_MEM_TO_DEV:
 834		dma = &dd->src;
 835		break;
 836
 837	case DMA_DEV_TO_MEM:
 838		dma = &dd->dst;
 839		break;
 840
 841	default:
 842		return;
 843	}
 844
 845	dmaengine_terminate_all(dma->chan);
 846}
 847
 848static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
 849			       struct scatterlist *src,
 850			       struct scatterlist *dst,
 851			       size_t len,
 852			       atmel_aes_fn_t resume)
 853{
 854	enum dma_slave_buswidth addr_width;
 855	u32 maxburst;
 856	int err;
 857
 858	switch (dd->ctx->block_size) {
 859	case CFB8_BLOCK_SIZE:
 860		addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 861		maxburst = 1;
 862		break;
 863
 864	case CFB16_BLOCK_SIZE:
 865		addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 866		maxburst = 1;
 867		break;
 868
 869	case CFB32_BLOCK_SIZE:
 870	case CFB64_BLOCK_SIZE:
 871		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 872		maxburst = 1;
 873		break;
 874
 875	case AES_BLOCK_SIZE:
 876		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 877		maxburst = dd->caps.max_burst_size;
 878		break;
 879
 880	default:
 881		err = -EINVAL;
 882		goto exit;
 883	}
 884
 885	err = atmel_aes_map(dd, src, dst, len);
 886	if (err)
 887		goto exit;
 888
 889	dd->resume = resume;
 890
 891	/* Set output DMA transfer first */
 892	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
 893					   maxburst);
 894	if (err)
 895		goto unmap;
 896
 897	/* Then set input DMA transfer */
 898	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
 899					   maxburst);
 900	if (err)
 901		goto output_transfer_stop;
 902
 903	return -EINPROGRESS;
 904
 905output_transfer_stop:
 906	atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
 907unmap:
 908	atmel_aes_unmap(dd);
 909exit:
 910	return atmel_aes_complete(dd, err);
 911}
 912
 913static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
 914{
 915	atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
 916	atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
 917	atmel_aes_unmap(dd);
 918}
 919
 920static void atmel_aes_dma_callback(void *data)
 921{
 922	struct atmel_aes_dev *dd = data;
 923
 924	atmel_aes_dma_stop(dd);
 925	dd->is_async = true;
 926	(void)dd->resume(dd);
 927}
 928
 929static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
 930				  struct crypto_async_request *new_areq)
 931{
 932	struct crypto_async_request *areq, *backlog;
 933	struct atmel_aes_base_ctx *ctx;
 934	unsigned long flags;
 935	bool start_async;
 936	int err, ret = 0;
 937
 938	spin_lock_irqsave(&dd->lock, flags);
 939	if (new_areq)
 940		ret = crypto_enqueue_request(&dd->queue, new_areq);
 941	if (dd->flags & AES_FLAGS_BUSY) {
 942		spin_unlock_irqrestore(&dd->lock, flags);
 943		return ret;
 944	}
 945	backlog = crypto_get_backlog(&dd->queue);
 946	areq = crypto_dequeue_request(&dd->queue);
 947	if (areq)
 948		dd->flags |= AES_FLAGS_BUSY;
 949	spin_unlock_irqrestore(&dd->lock, flags);
 950
 951	if (!areq)
 952		return ret;
 953
 954	if (backlog)
 955		backlog->complete(backlog, -EINPROGRESS);
 956
 957	ctx = crypto_tfm_ctx(areq->tfm);
 958
 959	dd->areq = areq;
 960	dd->ctx = ctx;
 961	start_async = (areq != new_areq);
 962	dd->is_async = start_async;
 963
 964	/* WARNING: ctx->start() MAY change dd->is_async. */
 965	err = ctx->start(dd);
 966	return (start_async) ? ret : err;
 967}
 968
 969
 970/* AES async block ciphers */
 971
 972static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
 973{
 974	return atmel_aes_complete(dd, 0);
 975}
 976
 977static int atmel_aes_start(struct atmel_aes_dev *dd)
 978{
 979	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
 980	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
 981	bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD ||
 982			dd->ctx->block_size != AES_BLOCK_SIZE);
 983	int err;
 984
 985	atmel_aes_set_mode(dd, rctx);
 986
 987	err = atmel_aes_hw_init(dd);
 988	if (err)
 989		return atmel_aes_complete(dd, err);
 990
 991	atmel_aes_write_ctrl(dd, use_dma, req->info);
 992	if (use_dma)
 993		return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
 
 994					   atmel_aes_transfer_complete);
 995
 996	return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
 997				   atmel_aes_transfer_complete);
 998}
 999
1000static inline struct atmel_aes_ctr_ctx *
1001atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
1002{
1003	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
1004}
1005
1006static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
1007{
1008	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1009	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1010	struct scatterlist *src, *dst;
1011	u32 ctr, blocks;
1012	size_t datalen;
 
 
1013	bool use_dma, fragmented = false;
1014
1015	/* Check for transfer completion. */
1016	ctx->offset += dd->total;
1017	if (ctx->offset >= req->nbytes)
1018		return atmel_aes_transfer_complete(dd);
1019
1020	/* Compute data length. */
1021	datalen = req->nbytes - ctx->offset;
1022	blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1023	ctr = be32_to_cpu(ctx->iv[3]);
1024	if (dd->caps.has_ctr32) {
1025		/* Check 32bit counter overflow. */
1026		u32 start = ctr;
1027		u32 end = start + blocks - 1;
1028
1029		if (end < start) {
1030			ctr |= 0xffffffff;
1031			datalen = AES_BLOCK_SIZE * -start;
1032			fragmented = true;
1033		}
1034	} else {
1035		/* Check 16bit counter overflow. */
1036		u16 start = ctr & 0xffff;
1037		u16 end = start + (u16)blocks - 1;
1038
1039		if (blocks >> 16 || end < start) {
1040			ctr |= 0xffff;
1041			datalen = AES_BLOCK_SIZE * (0x10000-start);
1042			fragmented = true;
1043		}
1044	}
 
1045	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1046
1047	/* Jump to offset. */
1048	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1049	dst = ((req->src == req->dst) ? src :
1050	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1051
1052	/* Configure hardware. */
1053	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1054	if (unlikely(fragmented)) {
1055		/*
1056		 * Increment the counter manually to cope with the hardware
1057		 * counter overflow.
1058		 */
1059		ctx->iv[3] = cpu_to_be32(ctr);
1060		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1061	}
1062
1063	if (use_dma)
1064		return atmel_aes_dma_start(dd, src, dst, datalen,
1065					   atmel_aes_ctr_transfer);
1066
1067	return atmel_aes_cpu_start(dd, src, dst, datalen,
1068				   atmel_aes_ctr_transfer);
1069}
1070
1071static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1072{
1073	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1074	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1075	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
1076	int err;
1077
1078	atmel_aes_set_mode(dd, rctx);
1079
1080	err = atmel_aes_hw_init(dd);
1081	if (err)
1082		return atmel_aes_complete(dd, err);
1083
1084	memcpy(ctx->iv, req->info, AES_BLOCK_SIZE);
1085	ctx->offset = 0;
1086	dd->total = 0;
1087	return atmel_aes_ctr_transfer(dd);
1088}
1089
1090static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1091{
1092	struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
1093	struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
1094	struct atmel_aes_reqctx *rctx;
1095	struct atmel_aes_dev *dd;
1096
1097	switch (mode & AES_FLAGS_OPMODE_MASK) {
1098	case AES_FLAGS_CFB8:
1099		ctx->block_size = CFB8_BLOCK_SIZE;
1100		break;
 
 
 
 
1101
1102	case AES_FLAGS_CFB16:
1103		ctx->block_size = CFB16_BLOCK_SIZE;
1104		break;
 
 
 
1105
1106	case AES_FLAGS_CFB32:
1107		ctx->block_size = CFB32_BLOCK_SIZE;
1108		break;
1109
1110	case AES_FLAGS_CFB64:
1111		ctx->block_size = CFB64_BLOCK_SIZE;
1112		break;
1113
1114	default:
1115		ctx->block_size = AES_BLOCK_SIZE;
1116		break;
1117	}
1118	ctx->is_aead = false;
1119
1120	dd = atmel_aes_find_dev(ctx);
1121	if (!dd)
1122		return -ENODEV;
1123
1124	rctx = ablkcipher_request_ctx(req);
1125	rctx->mode = mode;
1126
1127	if (!(mode & AES_FLAGS_ENCRYPT) && (req->src == req->dst)) {
1128		int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
 
1129
1130		scatterwalk_map_and_copy(rctx->lastc, req->src,
1131			(req->nbytes - ivsize), ivsize, 0);
 
 
1132	}
1133
1134	return atmel_aes_handle_queue(dd, &req->base);
1135}
1136
1137static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1138			   unsigned int keylen)
1139{
1140	struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1141
1142	if (keylen != AES_KEYSIZE_128 &&
1143	    keylen != AES_KEYSIZE_192 &&
1144	    keylen != AES_KEYSIZE_256) {
1145		crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1146		return -EINVAL;
1147	}
1148
1149	memcpy(ctx->key, key, keylen);
1150	ctx->keylen = keylen;
1151
1152	return 0;
1153}
1154
1155static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
1156{
1157	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1158}
1159
1160static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
1161{
1162	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1163}
1164
1165static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
1166{
1167	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1168}
1169
1170static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
1171{
1172	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1173}
1174
1175static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
1176{
1177	return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1178}
1179
1180static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
1181{
1182	return atmel_aes_crypt(req, AES_FLAGS_OFB);
1183}
1184
1185static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
1186{
1187	return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1188}
1189
1190static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
1191{
1192	return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1193}
1194
1195static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
1196{
1197	return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1198}
1199
1200static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
1201{
1202	return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1203}
1204
1205static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
1206{
1207	return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1208}
1209
1210static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
1211{
1212	return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1213}
1214
1215static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
1216{
1217	return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1218}
1219
1220static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
1221{
1222	return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1223}
1224
1225static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
1226{
1227	return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1228}
1229
1230static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
1231{
1232	return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1233}
1234
1235static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
1236{
1237	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1238}
1239
1240static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
1241{
1242	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1243}
1244
1245static int atmel_aes_cra_init(struct crypto_tfm *tfm)
1246{
1247	struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
 
 
 
 
 
1248
1249	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
 
1250	ctx->base.start = atmel_aes_start;
1251
1252	return 0;
1253}
1254
1255static int atmel_aes_ctr_cra_init(struct crypto_tfm *tfm)
1256{
1257	struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
 
 
 
 
 
1258
1259	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
 
1260	ctx->base.start = atmel_aes_ctr_start;
1261
1262	return 0;
1263}
1264
1265static struct crypto_alg aes_algs[] = {
1266{
1267	.cra_name		= "ecb(aes)",
1268	.cra_driver_name	= "atmel-ecb-aes",
1269	.cra_priority		= ATMEL_AES_PRIORITY,
1270	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1271	.cra_blocksize		= AES_BLOCK_SIZE,
1272	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1273	.cra_alignmask		= 0xf,
1274	.cra_type		= &crypto_ablkcipher_type,
1275	.cra_module		= THIS_MODULE,
1276	.cra_init		= atmel_aes_cra_init,
1277	.cra_u.ablkcipher = {
1278		.min_keysize	= AES_MIN_KEY_SIZE,
1279		.max_keysize	= AES_MAX_KEY_SIZE,
1280		.setkey		= atmel_aes_setkey,
1281		.encrypt	= atmel_aes_ecb_encrypt,
1282		.decrypt	= atmel_aes_ecb_decrypt,
1283	}
1284},
1285{
1286	.cra_name		= "cbc(aes)",
1287	.cra_driver_name	= "atmel-cbc-aes",
1288	.cra_priority		= ATMEL_AES_PRIORITY,
1289	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1290	.cra_blocksize		= AES_BLOCK_SIZE,
1291	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1292	.cra_alignmask		= 0xf,
1293	.cra_type		= &crypto_ablkcipher_type,
1294	.cra_module		= THIS_MODULE,
1295	.cra_init		= atmel_aes_cra_init,
1296	.cra_u.ablkcipher = {
1297		.min_keysize	= AES_MIN_KEY_SIZE,
1298		.max_keysize	= AES_MAX_KEY_SIZE,
1299		.ivsize		= AES_BLOCK_SIZE,
1300		.setkey		= atmel_aes_setkey,
1301		.encrypt	= atmel_aes_cbc_encrypt,
1302		.decrypt	= atmel_aes_cbc_decrypt,
1303	}
1304},
1305{
1306	.cra_name		= "ofb(aes)",
1307	.cra_driver_name	= "atmel-ofb-aes",
1308	.cra_priority		= ATMEL_AES_PRIORITY,
1309	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1310	.cra_blocksize		= AES_BLOCK_SIZE,
1311	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1312	.cra_alignmask		= 0xf,
1313	.cra_type		= &crypto_ablkcipher_type,
1314	.cra_module		= THIS_MODULE,
1315	.cra_init		= atmel_aes_cra_init,
1316	.cra_u.ablkcipher = {
1317		.min_keysize	= AES_MIN_KEY_SIZE,
1318		.max_keysize	= AES_MAX_KEY_SIZE,
1319		.ivsize		= AES_BLOCK_SIZE,
1320		.setkey		= atmel_aes_setkey,
1321		.encrypt	= atmel_aes_ofb_encrypt,
1322		.decrypt	= atmel_aes_ofb_decrypt,
1323	}
1324},
1325{
1326	.cra_name		= "cfb(aes)",
1327	.cra_driver_name	= "atmel-cfb-aes",
1328	.cra_priority		= ATMEL_AES_PRIORITY,
1329	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1330	.cra_blocksize		= AES_BLOCK_SIZE,
1331	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1332	.cra_alignmask		= 0xf,
1333	.cra_type		= &crypto_ablkcipher_type,
1334	.cra_module		= THIS_MODULE,
1335	.cra_init		= atmel_aes_cra_init,
1336	.cra_u.ablkcipher = {
1337		.min_keysize	= AES_MIN_KEY_SIZE,
1338		.max_keysize	= AES_MAX_KEY_SIZE,
1339		.ivsize		= AES_BLOCK_SIZE,
1340		.setkey		= atmel_aes_setkey,
1341		.encrypt	= atmel_aes_cfb_encrypt,
1342		.decrypt	= atmel_aes_cfb_decrypt,
1343	}
1344},
1345{
1346	.cra_name		= "cfb32(aes)",
1347	.cra_driver_name	= "atmel-cfb32-aes",
1348	.cra_priority		= ATMEL_AES_PRIORITY,
1349	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1350	.cra_blocksize		= CFB32_BLOCK_SIZE,
1351	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1352	.cra_alignmask		= 0x3,
1353	.cra_type		= &crypto_ablkcipher_type,
1354	.cra_module		= THIS_MODULE,
1355	.cra_init		= atmel_aes_cra_init,
1356	.cra_u.ablkcipher = {
1357		.min_keysize	= AES_MIN_KEY_SIZE,
1358		.max_keysize	= AES_MAX_KEY_SIZE,
1359		.ivsize		= AES_BLOCK_SIZE,
1360		.setkey		= atmel_aes_setkey,
1361		.encrypt	= atmel_aes_cfb32_encrypt,
1362		.decrypt	= atmel_aes_cfb32_decrypt,
1363	}
1364},
1365{
1366	.cra_name		= "cfb16(aes)",
1367	.cra_driver_name	= "atmel-cfb16-aes",
1368	.cra_priority		= ATMEL_AES_PRIORITY,
1369	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1370	.cra_blocksize		= CFB16_BLOCK_SIZE,
1371	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1372	.cra_alignmask		= 0x1,
1373	.cra_type		= &crypto_ablkcipher_type,
1374	.cra_module		= THIS_MODULE,
1375	.cra_init		= atmel_aes_cra_init,
1376	.cra_u.ablkcipher = {
1377		.min_keysize	= AES_MIN_KEY_SIZE,
1378		.max_keysize	= AES_MAX_KEY_SIZE,
1379		.ivsize		= AES_BLOCK_SIZE,
1380		.setkey		= atmel_aes_setkey,
1381		.encrypt	= atmel_aes_cfb16_encrypt,
1382		.decrypt	= atmel_aes_cfb16_decrypt,
1383	}
1384},
1385{
1386	.cra_name		= "cfb8(aes)",
1387	.cra_driver_name	= "atmel-cfb8-aes",
1388	.cra_priority		= ATMEL_AES_PRIORITY,
1389	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1390	.cra_blocksize		= CFB8_BLOCK_SIZE,
1391	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1392	.cra_alignmask		= 0x0,
1393	.cra_type		= &crypto_ablkcipher_type,
1394	.cra_module		= THIS_MODULE,
1395	.cra_init		= atmel_aes_cra_init,
1396	.cra_u.ablkcipher = {
1397		.min_keysize	= AES_MIN_KEY_SIZE,
1398		.max_keysize	= AES_MAX_KEY_SIZE,
1399		.ivsize		= AES_BLOCK_SIZE,
1400		.setkey		= atmel_aes_setkey,
1401		.encrypt	= atmel_aes_cfb8_encrypt,
1402		.decrypt	= atmel_aes_cfb8_decrypt,
1403	}
1404},
1405{
1406	.cra_name		= "ctr(aes)",
1407	.cra_driver_name	= "atmel-ctr-aes",
1408	.cra_priority		= ATMEL_AES_PRIORITY,
1409	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1410	.cra_blocksize		= 1,
1411	.cra_ctxsize		= sizeof(struct atmel_aes_ctr_ctx),
1412	.cra_alignmask		= 0xf,
1413	.cra_type		= &crypto_ablkcipher_type,
1414	.cra_module		= THIS_MODULE,
1415	.cra_init		= atmel_aes_ctr_cra_init,
1416	.cra_u.ablkcipher = {
1417		.min_keysize	= AES_MIN_KEY_SIZE,
1418		.max_keysize	= AES_MAX_KEY_SIZE,
1419		.ivsize		= AES_BLOCK_SIZE,
1420		.setkey		= atmel_aes_setkey,
1421		.encrypt	= atmel_aes_ctr_encrypt,
1422		.decrypt	= atmel_aes_ctr_decrypt,
1423	}
1424},
1425};
1426
1427static struct crypto_alg aes_cfb64_alg = {
1428	.cra_name		= "cfb64(aes)",
1429	.cra_driver_name	= "atmel-cfb64-aes",
1430	.cra_priority		= ATMEL_AES_PRIORITY,
1431	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1432	.cra_blocksize		= CFB64_BLOCK_SIZE,
1433	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1434	.cra_alignmask		= 0x7,
1435	.cra_type		= &crypto_ablkcipher_type,
1436	.cra_module		= THIS_MODULE,
1437	.cra_init		= atmel_aes_cra_init,
1438	.cra_u.ablkcipher = {
1439		.min_keysize	= AES_MIN_KEY_SIZE,
1440		.max_keysize	= AES_MAX_KEY_SIZE,
1441		.ivsize		= AES_BLOCK_SIZE,
1442		.setkey		= atmel_aes_setkey,
1443		.encrypt	= atmel_aes_cfb64_encrypt,
1444		.decrypt	= atmel_aes_cfb64_decrypt,
1445	}
1446};
1447
1448
1449/* gcm aead functions */
1450
1451static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1452			       const u32 *data, size_t datalen,
1453			       const u32 *ghash_in, u32 *ghash_out,
1454			       atmel_aes_fn_t resume);
1455static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1456static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1457
1458static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1459static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1460static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1461static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1462static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1463static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1464static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1465
1466static inline struct atmel_aes_gcm_ctx *
1467atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1468{
1469	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1470}
1471
1472static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1473			       const u32 *data, size_t datalen,
1474			       const u32 *ghash_in, u32 *ghash_out,
1475			       atmel_aes_fn_t resume)
1476{
1477	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1478
1479	dd->data = (u32 *)data;
1480	dd->datalen = datalen;
1481	ctx->ghash_in = ghash_in;
1482	ctx->ghash_out = ghash_out;
1483	ctx->ghash_resume = resume;
1484
1485	atmel_aes_write_ctrl(dd, false, NULL);
1486	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1487}
1488
1489static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1490{
1491	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1492
1493	/* Set the data length. */
1494	atmel_aes_write(dd, AES_AADLENR, dd->total);
1495	atmel_aes_write(dd, AES_CLENR, 0);
1496
1497	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
1498	if (ctx->ghash_in)
1499		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1500
1501	return atmel_aes_gcm_ghash_finalize(dd);
1502}
1503
1504static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1505{
1506	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1507	u32 isr;
1508
1509	/* Write data into the Input Data Registers. */
1510	while (dd->datalen > 0) {
1511		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1512		dd->data += 4;
1513		dd->datalen -= AES_BLOCK_SIZE;
1514
1515		isr = atmel_aes_read(dd, AES_ISR);
1516		if (!(isr & AES_INT_DATARDY)) {
1517			dd->resume = atmel_aes_gcm_ghash_finalize;
1518			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1519			return -EINPROGRESS;
1520		}
1521	}
1522
1523	/* Read the computed hash from GHASHRx. */
1524	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1525
1526	return ctx->ghash_resume(dd);
1527}
1528
1529
1530static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1531{
1532	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1533	struct aead_request *req = aead_request_cast(dd->areq);
1534	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1535	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1536	size_t ivsize = crypto_aead_ivsize(tfm);
1537	size_t datalen, padlen;
1538	const void *iv = req->iv;
1539	u8 *data = dd->buf;
1540	int err;
1541
1542	atmel_aes_set_mode(dd, rctx);
1543
1544	err = atmel_aes_hw_init(dd);
1545	if (err)
1546		return atmel_aes_complete(dd, err);
1547
1548	if (likely(ivsize == GCM_AES_IV_SIZE)) {
1549		memcpy(ctx->j0, iv, ivsize);
1550		ctx->j0[3] = cpu_to_be32(1);
1551		return atmel_aes_gcm_process(dd);
1552	}
1553
1554	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1555	datalen = ivsize + padlen + AES_BLOCK_SIZE;
1556	if (datalen > dd->buflen)
1557		return atmel_aes_complete(dd, -EINVAL);
1558
1559	memcpy(data, iv, ivsize);
1560	memset(data + ivsize, 0, padlen + sizeof(u64));
1561	((u64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1562
1563	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1564				   NULL, ctx->j0, atmel_aes_gcm_process);
1565}
1566
1567static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1568{
1569	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1570	struct aead_request *req = aead_request_cast(dd->areq);
1571	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1572	bool enc = atmel_aes_is_encrypt(dd);
1573	u32 authsize;
1574
1575	/* Compute text length. */
1576	authsize = crypto_aead_authsize(tfm);
1577	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1578
1579	/*
1580	 * According to tcrypt test suite, the GCM Automatic Tag Generation
1581	 * fails when both the message and its associated data are empty.
1582	 */
1583	if (likely(req->assoclen != 0 || ctx->textlen != 0))
1584		dd->flags |= AES_FLAGS_GTAGEN;
1585
1586	atmel_aes_write_ctrl(dd, false, NULL);
1587	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1588}
1589
1590static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1591{
1592	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1593	struct aead_request *req = aead_request_cast(dd->areq);
1594	u32 j0_lsw, *j0 = ctx->j0;
1595	size_t padlen;
1596
1597	/* Write incr32(J0) into IV. */
1598	j0_lsw = j0[3];
1599	j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
1600	atmel_aes_write_block(dd, AES_IVR(0), j0);
1601	j0[3] = j0_lsw;
1602
1603	/* Set aad and text lengths. */
1604	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1605	atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1606
1607	/* Check whether AAD are present. */
1608	if (unlikely(req->assoclen == 0)) {
1609		dd->datalen = 0;
1610		return atmel_aes_gcm_data(dd);
1611	}
1612
1613	/* Copy assoc data and add padding. */
1614	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1615	if (unlikely(req->assoclen + padlen > dd->buflen))
1616		return atmel_aes_complete(dd, -EINVAL);
1617	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1618
1619	/* Write assoc data into the Input Data register. */
1620	dd->data = (u32 *)dd->buf;
1621	dd->datalen = req->assoclen + padlen;
1622	return atmel_aes_gcm_data(dd);
1623}
1624
1625static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1626{
1627	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1628	struct aead_request *req = aead_request_cast(dd->areq);
1629	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1630	struct scatterlist *src, *dst;
1631	u32 isr, mr;
1632
1633	/* Write AAD first. */
1634	while (dd->datalen > 0) {
1635		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1636		dd->data += 4;
1637		dd->datalen -= AES_BLOCK_SIZE;
1638
1639		isr = atmel_aes_read(dd, AES_ISR);
1640		if (!(isr & AES_INT_DATARDY)) {
1641			dd->resume = atmel_aes_gcm_data;
1642			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1643			return -EINPROGRESS;
1644		}
1645	}
1646
1647	/* GMAC only. */
1648	if (unlikely(ctx->textlen == 0))
1649		return atmel_aes_gcm_tag_init(dd);
1650
1651	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
1652	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1653	dst = ((req->src == req->dst) ? src :
1654	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1655
1656	if (use_dma) {
1657		/* Update the Mode Register for DMA transfers. */
1658		mr = atmel_aes_read(dd, AES_MR);
1659		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1660		mr |= AES_MR_SMOD_IDATAR0;
1661		if (dd->caps.has_dualbuff)
1662			mr |= AES_MR_DUALBUFF;
1663		atmel_aes_write(dd, AES_MR, mr);
1664
1665		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1666					   atmel_aes_gcm_tag_init);
1667	}
1668
1669	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1670				   atmel_aes_gcm_tag_init);
1671}
1672
1673static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1674{
1675	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1676	struct aead_request *req = aead_request_cast(dd->areq);
1677	u64 *data = dd->buf;
1678
1679	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1680		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1681			dd->resume = atmel_aes_gcm_tag_init;
1682			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1683			return -EINPROGRESS;
1684		}
1685
1686		return atmel_aes_gcm_finalize(dd);
1687	}
1688
1689	/* Read the GCM Intermediate Hash Word Registers. */
1690	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1691
1692	data[0] = cpu_to_be64(req->assoclen * 8);
1693	data[1] = cpu_to_be64(ctx->textlen * 8);
1694
1695	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1696				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1697}
1698
1699static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1700{
1701	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1702	unsigned long flags;
1703
1704	/*
1705	 * Change mode to CTR to complete the tag generation.
1706	 * Use J0 as Initialization Vector.
1707	 */
1708	flags = dd->flags;
1709	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1710	dd->flags |= AES_FLAGS_CTR;
1711	atmel_aes_write_ctrl(dd, false, ctx->j0);
1712	dd->flags = flags;
1713
1714	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1715	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1716}
1717
1718static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1719{
1720	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1721	struct aead_request *req = aead_request_cast(dd->areq);
1722	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1723	bool enc = atmel_aes_is_encrypt(dd);
1724	u32 offset, authsize, itag[4], *otag = ctx->tag;
1725	int err;
1726
1727	/* Read the computed tag. */
1728	if (likely(dd->flags & AES_FLAGS_GTAGEN))
1729		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1730	else
1731		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1732
1733	offset = req->assoclen + ctx->textlen;
1734	authsize = crypto_aead_authsize(tfm);
1735	if (enc) {
1736		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1737		err = 0;
1738	} else {
1739		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1740		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1741	}
1742
1743	return atmel_aes_complete(dd, err);
1744}
1745
1746static int atmel_aes_gcm_crypt(struct aead_request *req,
1747			       unsigned long mode)
1748{
1749	struct atmel_aes_base_ctx *ctx;
1750	struct atmel_aes_reqctx *rctx;
1751	struct atmel_aes_dev *dd;
1752
1753	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1754	ctx->block_size = AES_BLOCK_SIZE;
1755	ctx->is_aead = true;
1756
1757	dd = atmel_aes_find_dev(ctx);
1758	if (!dd)
1759		return -ENODEV;
1760
1761	rctx = aead_request_ctx(req);
1762	rctx->mode = AES_FLAGS_GCM | mode;
1763
1764	return atmel_aes_handle_queue(dd, &req->base);
1765}
1766
1767static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1768				unsigned int keylen)
1769{
1770	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1771
1772	if (keylen != AES_KEYSIZE_256 &&
1773	    keylen != AES_KEYSIZE_192 &&
1774	    keylen != AES_KEYSIZE_128) {
1775		crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1776		return -EINVAL;
1777	}
1778
1779	memcpy(ctx->key, key, keylen);
1780	ctx->keylen = keylen;
1781
1782	return 0;
1783}
1784
1785static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1786				     unsigned int authsize)
1787{
1788	/* Same as crypto_gcm_authsize() from crypto/gcm.c */
1789	switch (authsize) {
1790	case 4:
1791	case 8:
1792	case 12:
1793	case 13:
1794	case 14:
1795	case 15:
1796	case 16:
1797		break;
1798	default:
1799		return -EINVAL;
1800	}
1801
1802	return 0;
1803}
1804
1805static int atmel_aes_gcm_encrypt(struct aead_request *req)
1806{
1807	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1808}
1809
1810static int atmel_aes_gcm_decrypt(struct aead_request *req)
1811{
1812	return atmel_aes_gcm_crypt(req, 0);
1813}
1814
1815static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1816{
1817	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
 
 
 
 
 
1818
1819	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
 
1820	ctx->base.start = atmel_aes_gcm_start;
1821
1822	return 0;
1823}
1824
1825static struct aead_alg aes_gcm_alg = {
1826	.setkey		= atmel_aes_gcm_setkey,
1827	.setauthsize	= atmel_aes_gcm_setauthsize,
1828	.encrypt	= atmel_aes_gcm_encrypt,
1829	.decrypt	= atmel_aes_gcm_decrypt,
1830	.init		= atmel_aes_gcm_init,
1831	.ivsize		= GCM_AES_IV_SIZE,
1832	.maxauthsize	= AES_BLOCK_SIZE,
1833
1834	.base = {
1835		.cra_name		= "gcm(aes)",
1836		.cra_driver_name	= "atmel-gcm-aes",
1837		.cra_priority		= ATMEL_AES_PRIORITY,
1838		.cra_flags		= CRYPTO_ALG_ASYNC,
1839		.cra_blocksize		= 1,
1840		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
1841		.cra_alignmask		= 0xf,
1842		.cra_module		= THIS_MODULE,
1843	},
1844};
1845
1846
1847/* xts functions */
1848
1849static inline struct atmel_aes_xts_ctx *
1850atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1851{
1852	return container_of(ctx, struct atmel_aes_xts_ctx, base);
1853}
1854
1855static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1856
1857static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1858{
1859	struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1860	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1861	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
1862	unsigned long flags;
1863	int err;
1864
1865	atmel_aes_set_mode(dd, rctx);
1866
1867	err = atmel_aes_hw_init(dd);
1868	if (err)
1869		return atmel_aes_complete(dd, err);
1870
1871	/* Compute the tweak value from req->info with ecb(aes). */
1872	flags = dd->flags;
1873	dd->flags &= ~AES_FLAGS_MODE_MASK;
1874	dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1875	atmel_aes_write_ctrl_key(dd, false, NULL,
1876				 ctx->key2, ctx->base.keylen);
1877	dd->flags = flags;
1878
1879	atmel_aes_write_block(dd, AES_IDATAR(0), req->info);
1880	return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1881}
1882
1883static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1884{
1885	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1886	bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD);
1887	u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1888	static const u32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1889	u8 *tweak_bytes = (u8 *)tweak;
1890	int i;
1891
1892	/* Read the computed ciphered tweak value. */
1893	atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1894	/*
1895	 * Hardware quirk:
1896	 * the order of the ciphered tweak bytes need to be reversed before
1897	 * writing them into the ODATARx registers.
1898	 */
1899	for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
1900		u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
1901
1902		tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
1903		tweak_bytes[i] = tmp;
1904	}
1905
1906	/* Process the data. */
1907	atmel_aes_write_ctrl(dd, use_dma, NULL);
1908	atmel_aes_write_block(dd, AES_TWR(0), tweak);
1909	atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1910	if (use_dma)
1911		return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
 
1912					   atmel_aes_transfer_complete);
1913
1914	return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
1915				   atmel_aes_transfer_complete);
1916}
1917
1918static int atmel_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1919				unsigned int keylen)
1920{
1921	struct atmel_aes_xts_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1922	int err;
1923
1924	err = xts_check_key(crypto_ablkcipher_tfm(tfm), key, keylen);
 
 
 
 
 
 
 
1925	if (err)
1926		return err;
1927
1928	memcpy(ctx->base.key, key, keylen/2);
1929	memcpy(ctx->key2, key + keylen/2, keylen/2);
1930	ctx->base.keylen = keylen/2;
1931
1932	return 0;
1933}
1934
1935static int atmel_aes_xts_encrypt(struct ablkcipher_request *req)
1936{
1937	return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1938}
1939
1940static int atmel_aes_xts_decrypt(struct ablkcipher_request *req)
1941{
1942	return atmel_aes_crypt(req, AES_FLAGS_XTS);
1943}
1944
1945static int atmel_aes_xts_cra_init(struct crypto_tfm *tfm)
1946{
1947	struct atmel_aes_xts_ctx *ctx = crypto_tfm_ctx(tfm);
 
 
1948
1949	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
 
 
 
 
 
 
 
 
 
 
 
1950	ctx->base.start = atmel_aes_xts_start;
1951
1952	return 0;
1953}
1954
1955static struct crypto_alg aes_xts_alg = {
1956	.cra_name		= "xts(aes)",
1957	.cra_driver_name	= "atmel-xts-aes",
1958	.cra_priority		= ATMEL_AES_PRIORITY,
1959	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1960	.cra_blocksize		= AES_BLOCK_SIZE,
1961	.cra_ctxsize		= sizeof(struct atmel_aes_xts_ctx),
1962	.cra_alignmask		= 0xf,
1963	.cra_type		= &crypto_ablkcipher_type,
1964	.cra_module		= THIS_MODULE,
1965	.cra_init		= atmel_aes_xts_cra_init,
1966	.cra_u.ablkcipher = {
1967		.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1968		.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1969		.ivsize		= AES_BLOCK_SIZE,
1970		.setkey		= atmel_aes_xts_setkey,
1971		.encrypt	= atmel_aes_xts_encrypt,
1972		.decrypt	= atmel_aes_xts_decrypt,
1973	}
 
 
 
1974};
1975
1976#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
1977/* authenc aead functions */
1978
1979static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1980static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1981				  bool is_async);
1982static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1983				      bool is_async);
1984static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1985static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1986				   bool is_async);
1987
1988static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1989{
1990	struct aead_request *req = aead_request_cast(dd->areq);
1991	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1992
1993	if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1994		atmel_sha_authenc_abort(&rctx->auth_req);
1995	dd->flags &= ~AES_FLAGS_OWN_SHA;
1996}
1997
1998static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1999{
2000	struct aead_request *req = aead_request_cast(dd->areq);
2001	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2002	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2003	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2004	int err;
2005
2006	atmel_aes_set_mode(dd, &rctx->base);
2007
2008	err = atmel_aes_hw_init(dd);
2009	if (err)
2010		return atmel_aes_complete(dd, err);
2011
2012	return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
2013					  atmel_aes_authenc_init, dd);
2014}
2015
2016static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
2017				  bool is_async)
2018{
2019	struct aead_request *req = aead_request_cast(dd->areq);
2020	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2021
2022	if (is_async)
2023		dd->is_async = true;
2024	if (err)
2025		return atmel_aes_complete(dd, err);
2026
2027	/* If here, we've got the ownership of the SHA device. */
2028	dd->flags |= AES_FLAGS_OWN_SHA;
2029
2030	/* Configure the SHA device. */
2031	return atmel_sha_authenc_init(&rctx->auth_req,
2032				      req->src, req->assoclen,
2033				      rctx->textlen,
2034				      atmel_aes_authenc_transfer, dd);
2035}
2036
2037static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
2038				      bool is_async)
2039{
2040	struct aead_request *req = aead_request_cast(dd->areq);
2041	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2042	bool enc = atmel_aes_is_encrypt(dd);
2043	struct scatterlist *src, *dst;
2044	u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
2045	u32 emr;
2046
2047	if (is_async)
2048		dd->is_async = true;
2049	if (err)
2050		return atmel_aes_complete(dd, err);
2051
2052	/* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
2053	src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
2054	dst = src;
2055
2056	if (req->src != req->dst)
2057		dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
2058
2059	/* Configure the AES device. */
2060	memcpy(iv, req->iv, sizeof(iv));
2061
2062	/*
2063	 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
2064	 * 'true' even if the data transfer is actually performed by the CPU (so
2065	 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
2066	 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
2067	 * must be set to *_MR_SMOD_IDATAR0.
2068	 */
2069	atmel_aes_write_ctrl(dd, true, iv);
2070	emr = AES_EMR_PLIPEN;
2071	if (!enc)
2072		emr |= AES_EMR_PLIPD;
2073	atmel_aes_write(dd, AES_EMR, emr);
2074
2075	/* Transfer data. */
2076	return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
2077				   atmel_aes_authenc_digest);
2078}
2079
2080static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
2081{
2082	struct aead_request *req = aead_request_cast(dd->areq);
2083	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2084
2085	/* atmel_sha_authenc_final() releases the SHA device. */
2086	dd->flags &= ~AES_FLAGS_OWN_SHA;
2087	return atmel_sha_authenc_final(&rctx->auth_req,
2088				       rctx->digest, sizeof(rctx->digest),
2089				       atmel_aes_authenc_final, dd);
2090}
2091
2092static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2093				   bool is_async)
2094{
2095	struct aead_request *req = aead_request_cast(dd->areq);
2096	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2097	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2098	bool enc = atmel_aes_is_encrypt(dd);
2099	u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2100	u32 offs, authsize;
2101
2102	if (is_async)
2103		dd->is_async = true;
2104	if (err)
2105		goto complete;
2106
2107	offs = req->assoclen + rctx->textlen;
2108	authsize = crypto_aead_authsize(tfm);
2109	if (enc) {
2110		scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2111	} else {
2112		scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2113		if (crypto_memneq(idigest, odigest, authsize))
2114			err = -EBADMSG;
2115	}
2116
2117complete:
2118	return atmel_aes_complete(dd, err);
2119}
2120
2121static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2122				    unsigned int keylen)
2123{
2124	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2125	struct crypto_authenc_keys keys;
2126	u32 flags;
2127	int err;
2128
2129	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2130		goto badkey;
2131
2132	if (keys.enckeylen > sizeof(ctx->base.key))
2133		goto badkey;
2134
2135	/* Save auth key. */
2136	flags = crypto_aead_get_flags(tfm);
2137	err = atmel_sha_authenc_setkey(ctx->auth,
2138				       keys.authkey, keys.authkeylen,
2139				       &flags);
2140	crypto_aead_set_flags(tfm, flags & CRYPTO_TFM_RES_MASK);
2141	if (err) {
2142		memzero_explicit(&keys, sizeof(keys));
2143		return err;
2144	}
2145
2146	/* Save enc key. */
2147	ctx->base.keylen = keys.enckeylen;
2148	memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2149
2150	memzero_explicit(&keys, sizeof(keys));
2151	return 0;
2152
2153badkey:
2154	crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
2155	memzero_explicit(&keys, sizeof(keys));
2156	return -EINVAL;
2157}
2158
2159static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2160				      unsigned long auth_mode)
2161{
2162	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2163	unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
 
 
 
 
 
2164
2165	ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2166	if (IS_ERR(ctx->auth))
2167		return PTR_ERR(ctx->auth);
2168
2169	crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2170				      auth_reqsize));
 
2171	ctx->base.start = atmel_aes_authenc_start;
2172
2173	return 0;
2174}
2175
2176static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2177{
2178	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2179}
2180
2181static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2182{
2183	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2184}
2185
2186static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2187{
2188	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2189}
2190
2191static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2192{
2193	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2194}
2195
2196static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2197{
2198	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2199}
2200
2201static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2202{
2203	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2204
2205	atmel_sha_authenc_free(ctx->auth);
2206}
2207
2208static int atmel_aes_authenc_crypt(struct aead_request *req,
2209				   unsigned long mode)
2210{
2211	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2212	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2213	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2214	u32 authsize = crypto_aead_authsize(tfm);
2215	bool enc = (mode & AES_FLAGS_ENCRYPT);
2216	struct atmel_aes_dev *dd;
2217
2218	/* Compute text length. */
2219	if (!enc && req->cryptlen < authsize)
2220		return -EINVAL;
2221	rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2222
2223	/*
2224	 * Currently, empty messages are not supported yet:
2225	 * the SHA auto-padding can be used only on non-empty messages.
2226	 * Hence a special case needs to be implemented for empty message.
2227	 */
2228	if (!rctx->textlen && !req->assoclen)
2229		return -EINVAL;
2230
2231	rctx->base.mode = mode;
2232	ctx->block_size = AES_BLOCK_SIZE;
2233	ctx->is_aead = true;
2234
2235	dd = atmel_aes_find_dev(ctx);
2236	if (!dd)
2237		return -ENODEV;
2238
2239	return atmel_aes_handle_queue(dd, &req->base);
2240}
2241
2242static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2243{
2244	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2245}
2246
2247static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2248{
2249	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2250}
2251
2252static struct aead_alg aes_authenc_algs[] = {
2253{
2254	.setkey		= atmel_aes_authenc_setkey,
2255	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2256	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2257	.init		= atmel_aes_authenc_hmac_sha1_init_tfm,
2258	.exit		= atmel_aes_authenc_exit_tfm,
2259	.ivsize		= AES_BLOCK_SIZE,
2260	.maxauthsize	= SHA1_DIGEST_SIZE,
2261
2262	.base = {
2263		.cra_name		= "authenc(hmac(sha1),cbc(aes))",
2264		.cra_driver_name	= "atmel-authenc-hmac-sha1-cbc-aes",
2265		.cra_priority		= ATMEL_AES_PRIORITY,
2266		.cra_flags		= CRYPTO_ALG_ASYNC,
2267		.cra_blocksize		= AES_BLOCK_SIZE,
2268		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2269		.cra_alignmask		= 0xf,
2270		.cra_module		= THIS_MODULE,
2271	},
2272},
2273{
2274	.setkey		= atmel_aes_authenc_setkey,
2275	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2276	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2277	.init		= atmel_aes_authenc_hmac_sha224_init_tfm,
2278	.exit		= atmel_aes_authenc_exit_tfm,
2279	.ivsize		= AES_BLOCK_SIZE,
2280	.maxauthsize	= SHA224_DIGEST_SIZE,
2281
2282	.base = {
2283		.cra_name		= "authenc(hmac(sha224),cbc(aes))",
2284		.cra_driver_name	= "atmel-authenc-hmac-sha224-cbc-aes",
2285		.cra_priority		= ATMEL_AES_PRIORITY,
2286		.cra_flags		= CRYPTO_ALG_ASYNC,
2287		.cra_blocksize		= AES_BLOCK_SIZE,
2288		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2289		.cra_alignmask		= 0xf,
2290		.cra_module		= THIS_MODULE,
2291	},
2292},
2293{
2294	.setkey		= atmel_aes_authenc_setkey,
2295	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2296	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2297	.init		= atmel_aes_authenc_hmac_sha256_init_tfm,
2298	.exit		= atmel_aes_authenc_exit_tfm,
2299	.ivsize		= AES_BLOCK_SIZE,
2300	.maxauthsize	= SHA256_DIGEST_SIZE,
2301
2302	.base = {
2303		.cra_name		= "authenc(hmac(sha256),cbc(aes))",
2304		.cra_driver_name	= "atmel-authenc-hmac-sha256-cbc-aes",
2305		.cra_priority		= ATMEL_AES_PRIORITY,
2306		.cra_flags		= CRYPTO_ALG_ASYNC,
2307		.cra_blocksize		= AES_BLOCK_SIZE,
2308		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2309		.cra_alignmask		= 0xf,
2310		.cra_module		= THIS_MODULE,
2311	},
2312},
2313{
2314	.setkey		= atmel_aes_authenc_setkey,
2315	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2316	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2317	.init		= atmel_aes_authenc_hmac_sha384_init_tfm,
2318	.exit		= atmel_aes_authenc_exit_tfm,
2319	.ivsize		= AES_BLOCK_SIZE,
2320	.maxauthsize	= SHA384_DIGEST_SIZE,
2321
2322	.base = {
2323		.cra_name		= "authenc(hmac(sha384),cbc(aes))",
2324		.cra_driver_name	= "atmel-authenc-hmac-sha384-cbc-aes",
2325		.cra_priority		= ATMEL_AES_PRIORITY,
2326		.cra_flags		= CRYPTO_ALG_ASYNC,
2327		.cra_blocksize		= AES_BLOCK_SIZE,
2328		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2329		.cra_alignmask		= 0xf,
2330		.cra_module		= THIS_MODULE,
2331	},
2332},
2333{
2334	.setkey		= atmel_aes_authenc_setkey,
2335	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2336	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2337	.init		= atmel_aes_authenc_hmac_sha512_init_tfm,
2338	.exit		= atmel_aes_authenc_exit_tfm,
2339	.ivsize		= AES_BLOCK_SIZE,
2340	.maxauthsize	= SHA512_DIGEST_SIZE,
2341
2342	.base = {
2343		.cra_name		= "authenc(hmac(sha512),cbc(aes))",
2344		.cra_driver_name	= "atmel-authenc-hmac-sha512-cbc-aes",
2345		.cra_priority		= ATMEL_AES_PRIORITY,
2346		.cra_flags		= CRYPTO_ALG_ASYNC,
2347		.cra_blocksize		= AES_BLOCK_SIZE,
2348		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2349		.cra_alignmask		= 0xf,
2350		.cra_module		= THIS_MODULE,
2351	},
2352},
2353};
2354#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2355
2356/* Probe functions */
2357
2358static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2359{
2360	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2361	dd->buflen = ATMEL_AES_BUFFER_SIZE;
2362	dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2363
2364	if (!dd->buf) {
2365		dev_err(dd->dev, "unable to alloc pages.\n");
2366		return -ENOMEM;
2367	}
2368
2369	return 0;
2370}
2371
2372static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2373{
2374	free_page((unsigned long)dd->buf);
2375}
2376
2377static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
2378{
2379	struct at_dma_slave	*sl = slave;
2380
2381	if (sl && sl->dma_dev == chan->device->dev) {
2382		chan->private = sl;
2383		return true;
2384	} else {
2385		return false;
2386	}
2387}
2388
2389static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
2390			      struct crypto_platform_data *pdata)
2391{
2392	struct at_dma_slave *slave;
2393	dma_cap_mask_t mask;
2394
2395	dma_cap_zero(mask);
2396	dma_cap_set(DMA_SLAVE, mask);
2397
2398	/* Try to grab 2 DMA channels */
2399	slave = &pdata->dma_slave->rxdata;
2400	dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2401							slave, dd->dev, "tx");
2402	if (!dd->src.chan)
2403		goto err_dma_in;
 
2404
2405	slave = &pdata->dma_slave->txdata;
2406	dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2407							slave, dd->dev, "rx");
2408	if (!dd->dst.chan)
2409		goto err_dma_out;
 
2410
2411	return 0;
2412
2413err_dma_out:
2414	dma_release_channel(dd->src.chan);
2415err_dma_in:
2416	dev_warn(dd->dev, "no DMA channel available\n");
2417	return -ENODEV;
2418}
2419
2420static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2421{
2422	dma_release_channel(dd->dst.chan);
2423	dma_release_channel(dd->src.chan);
2424}
2425
2426static void atmel_aes_queue_task(unsigned long data)
2427{
2428	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2429
2430	atmel_aes_handle_queue(dd, NULL);
2431}
2432
2433static void atmel_aes_done_task(unsigned long data)
2434{
2435	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2436
2437	dd->is_async = true;
2438	(void)dd->resume(dd);
2439}
2440
2441static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2442{
2443	struct atmel_aes_dev *aes_dd = dev_id;
2444	u32 reg;
2445
2446	reg = atmel_aes_read(aes_dd, AES_ISR);
2447	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2448		atmel_aes_write(aes_dd, AES_IDR, reg);
2449		if (AES_FLAGS_BUSY & aes_dd->flags)
2450			tasklet_schedule(&aes_dd->done_task);
2451		else
2452			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2453		return IRQ_HANDLED;
2454	}
2455
2456	return IRQ_NONE;
2457}
2458
2459static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2460{
2461	int i;
2462
2463#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2464	if (dd->caps.has_authenc)
2465		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2466			crypto_unregister_aead(&aes_authenc_algs[i]);
2467#endif
2468
2469	if (dd->caps.has_xts)
2470		crypto_unregister_alg(&aes_xts_alg);
2471
2472	if (dd->caps.has_gcm)
2473		crypto_unregister_aead(&aes_gcm_alg);
2474
2475	if (dd->caps.has_cfb64)
2476		crypto_unregister_alg(&aes_cfb64_alg);
 
2477
2478	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2479		crypto_unregister_alg(&aes_algs[i]);
 
 
 
 
2480}
2481
2482static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2483{
2484	int err, i, j;
2485
2486	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2487		err = crypto_register_alg(&aes_algs[i]);
 
 
2488		if (err)
2489			goto err_aes_algs;
2490	}
2491
2492	if (dd->caps.has_cfb64) {
2493		err = crypto_register_alg(&aes_cfb64_alg);
2494		if (err)
2495			goto err_aes_cfb64_alg;
2496	}
2497
2498	if (dd->caps.has_gcm) {
2499		err = crypto_register_aead(&aes_gcm_alg);
2500		if (err)
2501			goto err_aes_gcm_alg;
2502	}
2503
2504	if (dd->caps.has_xts) {
2505		err = crypto_register_alg(&aes_xts_alg);
 
 
2506		if (err)
2507			goto err_aes_xts_alg;
2508	}
2509
2510#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2511	if (dd->caps.has_authenc) {
2512		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
 
 
2513			err = crypto_register_aead(&aes_authenc_algs[i]);
2514			if (err)
2515				goto err_aes_authenc_alg;
2516		}
2517	}
2518#endif
2519
2520	return 0;
2521
2522#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2523	/* i = ARRAY_SIZE(aes_authenc_algs); */
2524err_aes_authenc_alg:
2525	for (j = 0; j < i; j++)
2526		crypto_unregister_aead(&aes_authenc_algs[j]);
2527	crypto_unregister_alg(&aes_xts_alg);
2528#endif
2529err_aes_xts_alg:
2530	crypto_unregister_aead(&aes_gcm_alg);
2531err_aes_gcm_alg:
2532	crypto_unregister_alg(&aes_cfb64_alg);
2533err_aes_cfb64_alg:
2534	i = ARRAY_SIZE(aes_algs);
2535err_aes_algs:
2536	for (j = 0; j < i; j++)
2537		crypto_unregister_alg(&aes_algs[j]);
2538
2539	return err;
2540}
2541
2542static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2543{
2544	dd->caps.has_dualbuff = 0;
2545	dd->caps.has_cfb64 = 0;
2546	dd->caps.has_ctr32 = 0;
2547	dd->caps.has_gcm = 0;
2548	dd->caps.has_xts = 0;
2549	dd->caps.has_authenc = 0;
2550	dd->caps.max_burst_size = 1;
2551
2552	/* keep only major version number */
2553	switch (dd->hw_version & 0xff0) {
 
 
2554	case 0x500:
2555		dd->caps.has_dualbuff = 1;
2556		dd->caps.has_cfb64 = 1;
2557		dd->caps.has_ctr32 = 1;
2558		dd->caps.has_gcm = 1;
2559		dd->caps.has_xts = 1;
2560		dd->caps.has_authenc = 1;
2561		dd->caps.max_burst_size = 4;
2562		break;
2563	case 0x200:
2564		dd->caps.has_dualbuff = 1;
2565		dd->caps.has_cfb64 = 1;
2566		dd->caps.has_ctr32 = 1;
2567		dd->caps.has_gcm = 1;
2568		dd->caps.max_burst_size = 4;
2569		break;
2570	case 0x130:
2571		dd->caps.has_dualbuff = 1;
2572		dd->caps.has_cfb64 = 1;
2573		dd->caps.max_burst_size = 4;
2574		break;
2575	case 0x120:
2576		break;
2577	default:
2578		dev_warn(dd->dev,
2579				"Unmanaged aes version, set minimum capabilities\n");
2580		break;
2581	}
2582}
2583
2584#if defined(CONFIG_OF)
2585static const struct of_device_id atmel_aes_dt_ids[] = {
2586	{ .compatible = "atmel,at91sam9g46-aes" },
2587	{ /* sentinel */ }
2588};
2589MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2590
2591static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2592{
2593	struct device_node *np = pdev->dev.of_node;
2594	struct crypto_platform_data *pdata;
2595
2596	if (!np) {
2597		dev_err(&pdev->dev, "device node not found\n");
2598		return ERR_PTR(-EINVAL);
2599	}
2600
2601	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2602	if (!pdata)
2603		return ERR_PTR(-ENOMEM);
2604
2605	pdata->dma_slave = devm_kzalloc(&pdev->dev,
2606					sizeof(*(pdata->dma_slave)),
2607					GFP_KERNEL);
2608	if (!pdata->dma_slave) {
2609		devm_kfree(&pdev->dev, pdata);
2610		return ERR_PTR(-ENOMEM);
2611	}
2612
2613	return pdata;
2614}
2615#else
2616static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2617{
2618	return ERR_PTR(-EINVAL);
2619}
2620#endif
2621
2622static int atmel_aes_probe(struct platform_device *pdev)
2623{
2624	struct atmel_aes_dev *aes_dd;
2625	struct crypto_platform_data *pdata;
2626	struct device *dev = &pdev->dev;
2627	struct resource *aes_res;
2628	int err;
2629
2630	pdata = pdev->dev.platform_data;
2631	if (!pdata) {
2632		pdata = atmel_aes_of_init(pdev);
2633		if (IS_ERR(pdata)) {
2634			err = PTR_ERR(pdata);
2635			goto aes_dd_err;
2636		}
2637	}
2638
2639	if (!pdata->dma_slave) {
2640		err = -ENXIO;
2641		goto aes_dd_err;
2642	}
2643
2644	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2645	if (aes_dd == NULL) {
2646		err = -ENOMEM;
2647		goto aes_dd_err;
2648	}
2649
2650	aes_dd->dev = dev;
2651
2652	platform_set_drvdata(pdev, aes_dd);
2653
2654	INIT_LIST_HEAD(&aes_dd->list);
2655	spin_lock_init(&aes_dd->lock);
2656
2657	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2658					(unsigned long)aes_dd);
2659	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2660					(unsigned long)aes_dd);
2661
2662	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2663
2664	/* Get the base address */
2665	aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2666	if (!aes_res) {
2667		dev_err(dev, "no MEM resource info\n");
2668		err = -ENODEV;
2669		goto res_err;
2670	}
2671	aes_dd->phys_base = aes_res->start;
2672
2673	/* Get the IRQ */
2674	aes_dd->irq = platform_get_irq(pdev,  0);
2675	if (aes_dd->irq < 0) {
2676		err = aes_dd->irq;
2677		goto res_err;
2678	}
2679
2680	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2681			       IRQF_SHARED, "atmel-aes", aes_dd);
2682	if (err) {
2683		dev_err(dev, "unable to request aes irq.\n");
2684		goto res_err;
2685	}
2686
2687	/* Initializing the clock */
2688	aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2689	if (IS_ERR(aes_dd->iclk)) {
2690		dev_err(dev, "clock initialization failed.\n");
2691		err = PTR_ERR(aes_dd->iclk);
2692		goto res_err;
2693	}
2694
2695	aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2696	if (IS_ERR(aes_dd->io_base)) {
2697		dev_err(dev, "can't ioremap\n");
2698		err = PTR_ERR(aes_dd->io_base);
2699		goto res_err;
2700	}
2701
2702	err = clk_prepare(aes_dd->iclk);
2703	if (err)
2704		goto res_err;
2705
2706	err = atmel_aes_hw_version_init(aes_dd);
2707	if (err)
2708		goto iclk_unprepare;
2709
2710	atmel_aes_get_cap(aes_dd);
2711
2712#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2713	if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2714		err = -EPROBE_DEFER;
2715		goto iclk_unprepare;
2716	}
2717#endif
2718
2719	err = atmel_aes_buff_init(aes_dd);
2720	if (err)
2721		goto err_aes_buff;
2722
2723	err = atmel_aes_dma_init(aes_dd, pdata);
2724	if (err)
2725		goto err_aes_dma;
2726
2727	spin_lock(&atmel_aes.lock);
2728	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2729	spin_unlock(&atmel_aes.lock);
2730
2731	err = atmel_aes_register_algs(aes_dd);
2732	if (err)
2733		goto err_algs;
2734
2735	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2736			dma_chan_name(aes_dd->src.chan),
2737			dma_chan_name(aes_dd->dst.chan));
2738
2739	return 0;
2740
2741err_algs:
2742	spin_lock(&atmel_aes.lock);
2743	list_del(&aes_dd->list);
2744	spin_unlock(&atmel_aes.lock);
2745	atmel_aes_dma_cleanup(aes_dd);
2746err_aes_dma:
2747	atmel_aes_buff_cleanup(aes_dd);
2748err_aes_buff:
2749iclk_unprepare:
2750	clk_unprepare(aes_dd->iclk);
2751res_err:
2752	tasklet_kill(&aes_dd->done_task);
2753	tasklet_kill(&aes_dd->queue_task);
2754aes_dd_err:
2755	if (err != -EPROBE_DEFER)
2756		dev_err(dev, "initialization failed.\n");
2757
2758	return err;
2759}
2760
2761static int atmel_aes_remove(struct platform_device *pdev)
2762{
2763	struct atmel_aes_dev *aes_dd;
2764
2765	aes_dd = platform_get_drvdata(pdev);
2766	if (!aes_dd)
2767		return -ENODEV;
2768	spin_lock(&atmel_aes.lock);
2769	list_del(&aes_dd->list);
2770	spin_unlock(&atmel_aes.lock);
2771
2772	atmel_aes_unregister_algs(aes_dd);
2773
2774	tasklet_kill(&aes_dd->done_task);
2775	tasklet_kill(&aes_dd->queue_task);
2776
2777	atmel_aes_dma_cleanup(aes_dd);
2778	atmel_aes_buff_cleanup(aes_dd);
2779
2780	clk_unprepare(aes_dd->iclk);
2781
2782	return 0;
2783}
2784
2785static struct platform_driver atmel_aes_driver = {
2786	.probe		= atmel_aes_probe,
2787	.remove		= atmel_aes_remove,
2788	.driver		= {
2789		.name	= "atmel_aes",
2790		.of_match_table = of_match_ptr(atmel_aes_dt_ids),
2791	},
2792};
2793
2794module_platform_driver(atmel_aes_driver);
2795
2796MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2797MODULE_LICENSE("GPL v2");
2798MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");