Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Cryptographic API.
   4 *
   5 * Support for ATMEL AES HW acceleration.
   6 *
   7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
   8 * Author: Nicolas Royer <nicolas@eukrea.com>
   9 *
  10 * Some ideas are from omap-aes.c driver.
  11 */
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/err.h>
  18#include <linux/clk.h>
  19#include <linux/io.h>
  20#include <linux/hw_random.h>
  21#include <linux/platform_device.h>
  22
  23#include <linux/device.h>
  24#include <linux/dmaengine.h>
  25#include <linux/init.h>
  26#include <linux/errno.h>
  27#include <linux/interrupt.h>
  28#include <linux/irq.h>
  29#include <linux/scatterlist.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/mod_devicetable.h>
  32#include <linux/delay.h>
  33#include <linux/crypto.h>
  34#include <crypto/scatterwalk.h>
  35#include <crypto/algapi.h>
  36#include <crypto/aes.h>
  37#include <crypto/gcm.h>
  38#include <crypto/xts.h>
  39#include <crypto/internal/aead.h>
  40#include <crypto/internal/skcipher.h>
  41#include "atmel-aes-regs.h"
  42#include "atmel-authenc.h"
  43
  44#define ATMEL_AES_PRIORITY	300
  45
  46#define ATMEL_AES_BUFFER_ORDER	2
  47#define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
  48
 
 
 
 
 
  49#define SIZE_IN_WORDS(x)	((x) >> 2)
  50
  51/* AES flags */
  52/* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
  53#define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
  54#define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
  55#define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
  56#define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
  57#define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
 
 
 
 
 
 
  58#define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
  59#define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
  60#define AES_FLAGS_XTS		AES_MR_OPMOD_XTS
  61
  62#define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
  63				 AES_FLAGS_ENCRYPT |		\
  64				 AES_FLAGS_GTAGEN)
  65
  66#define AES_FLAGS_BUSY		BIT(3)
  67#define AES_FLAGS_DUMP_REG	BIT(4)
  68#define AES_FLAGS_OWN_SHA	BIT(5)
  69
  70#define AES_FLAGS_PERSISTENT	AES_FLAGS_BUSY
  71
  72#define ATMEL_AES_QUEUE_LENGTH	50
  73
  74#define ATMEL_AES_DMA_THRESHOLD		256
  75
  76
  77struct atmel_aes_caps {
  78	bool			has_dualbuff;
 
  79	bool			has_gcm;
  80	bool			has_xts;
  81	bool			has_authenc;
  82	u32			max_burst_size;
  83};
  84
  85struct atmel_aes_dev;
  86
  87
  88typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
  89
  90
  91struct atmel_aes_base_ctx {
  92	struct atmel_aes_dev	*dd;
  93	atmel_aes_fn_t		start;
  94	int			keylen;
  95	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
  96	u16			block_size;
  97	bool			is_aead;
  98};
  99
 100struct atmel_aes_ctx {
 101	struct atmel_aes_base_ctx	base;
 102};
 103
 104struct atmel_aes_ctr_ctx {
 105	struct atmel_aes_base_ctx	base;
 106
 107	__be32			iv[AES_BLOCK_SIZE / sizeof(u32)];
 108	size_t			offset;
 109	struct scatterlist	src[2];
 110	struct scatterlist	dst[2];
 111	u32			blocks;
 112};
 113
 114struct atmel_aes_gcm_ctx {
 115	struct atmel_aes_base_ctx	base;
 116
 117	struct scatterlist	src[2];
 118	struct scatterlist	dst[2];
 119
 120	__be32			j0[AES_BLOCK_SIZE / sizeof(u32)];
 121	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
 122	__be32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
 123	size_t			textlen;
 124
 125	const __be32		*ghash_in;
 126	__be32			*ghash_out;
 127	atmel_aes_fn_t		ghash_resume;
 128};
 129
 130struct atmel_aes_xts_ctx {
 131	struct atmel_aes_base_ctx	base;
 132
 133	u32			key2[AES_KEYSIZE_256 / sizeof(u32)];
 134	struct crypto_skcipher *fallback_tfm;
 135};
 136
 137#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 138struct atmel_aes_authenc_ctx {
 139	struct atmel_aes_base_ctx	base;
 140	struct atmel_sha_authenc_ctx	*auth;
 141};
 142#endif
 143
 144struct atmel_aes_reqctx {
 145	unsigned long		mode;
 146	u8			lastc[AES_BLOCK_SIZE];
 147	struct skcipher_request fallback_req;
 148};
 149
 150#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 151struct atmel_aes_authenc_reqctx {
 152	struct atmel_aes_reqctx	base;
 153
 154	struct scatterlist	src[2];
 155	struct scatterlist	dst[2];
 156	size_t			textlen;
 157	u32			digest[SHA512_DIGEST_SIZE / sizeof(u32)];
 158
 159	/* auth_req MUST be place last. */
 160	struct ahash_request	auth_req;
 161};
 162#endif
 163
 164struct atmel_aes_dma {
 165	struct dma_chan		*chan;
 166	struct scatterlist	*sg;
 167	int			nents;
 168	unsigned int		remainder;
 169	unsigned int		sg_len;
 170};
 171
 172struct atmel_aes_dev {
 173	struct list_head	list;
 174	unsigned long		phys_base;
 175	void __iomem		*io_base;
 176
 177	struct crypto_async_request	*areq;
 178	struct atmel_aes_base_ctx	*ctx;
 179
 180	bool			is_async;
 181	atmel_aes_fn_t		resume;
 182	atmel_aes_fn_t		cpu_transfer_complete;
 183
 184	struct device		*dev;
 185	struct clk		*iclk;
 186	int			irq;
 187
 188	unsigned long		flags;
 189
 190	spinlock_t		lock;
 191	struct crypto_queue	queue;
 192
 193	struct tasklet_struct	done_task;
 194	struct tasklet_struct	queue_task;
 195
 196	size_t			total;
 197	size_t			datalen;
 198	u32			*data;
 199
 200	struct atmel_aes_dma	src;
 201	struct atmel_aes_dma	dst;
 202
 203	size_t			buflen;
 204	void			*buf;
 205	struct scatterlist	aligned_sg;
 206	struct scatterlist	*real_dst;
 207
 208	struct atmel_aes_caps	caps;
 209
 210	u32			hw_version;
 211};
 212
 213struct atmel_aes_drv {
 214	struct list_head	dev_list;
 215	spinlock_t		lock;
 216};
 217
 218static struct atmel_aes_drv atmel_aes = {
 219	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
 220	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
 221};
 222
 223#ifdef VERBOSE_DEBUG
 224static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
 225{
 226	switch (offset) {
 227	case AES_CR:
 228		return "CR";
 229
 230	case AES_MR:
 231		return "MR";
 232
 233	case AES_ISR:
 234		return "ISR";
 235
 236	case AES_IMR:
 237		return "IMR";
 238
 239	case AES_IER:
 240		return "IER";
 241
 242	case AES_IDR:
 243		return "IDR";
 244
 245	case AES_KEYWR(0):
 246	case AES_KEYWR(1):
 247	case AES_KEYWR(2):
 248	case AES_KEYWR(3):
 249	case AES_KEYWR(4):
 250	case AES_KEYWR(5):
 251	case AES_KEYWR(6):
 252	case AES_KEYWR(7):
 253		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
 254		break;
 255
 256	case AES_IDATAR(0):
 257	case AES_IDATAR(1):
 258	case AES_IDATAR(2):
 259	case AES_IDATAR(3):
 260		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
 261		break;
 262
 263	case AES_ODATAR(0):
 264	case AES_ODATAR(1):
 265	case AES_ODATAR(2):
 266	case AES_ODATAR(3):
 267		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
 268		break;
 269
 270	case AES_IVR(0):
 271	case AES_IVR(1):
 272	case AES_IVR(2):
 273	case AES_IVR(3):
 274		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
 275		break;
 276
 277	case AES_AADLENR:
 278		return "AADLENR";
 279
 280	case AES_CLENR:
 281		return "CLENR";
 282
 283	case AES_GHASHR(0):
 284	case AES_GHASHR(1):
 285	case AES_GHASHR(2):
 286	case AES_GHASHR(3):
 287		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
 288		break;
 289
 290	case AES_TAGR(0):
 291	case AES_TAGR(1):
 292	case AES_TAGR(2):
 293	case AES_TAGR(3):
 294		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
 295		break;
 296
 297	case AES_CTRR:
 298		return "CTRR";
 299
 300	case AES_GCMHR(0):
 301	case AES_GCMHR(1):
 302	case AES_GCMHR(2):
 303	case AES_GCMHR(3):
 304		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
 305		break;
 306
 307	case AES_EMR:
 308		return "EMR";
 309
 310	case AES_TWR(0):
 311	case AES_TWR(1):
 312	case AES_TWR(2):
 313	case AES_TWR(3):
 314		snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
 315		break;
 316
 317	case AES_ALPHAR(0):
 318	case AES_ALPHAR(1):
 319	case AES_ALPHAR(2):
 320	case AES_ALPHAR(3):
 321		snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
 322		break;
 323
 324	default:
 325		snprintf(tmp, sz, "0x%02x", offset);
 326		break;
 327	}
 328
 329	return tmp;
 330}
 331#endif /* VERBOSE_DEBUG */
 332
 333/* Shared functions */
 334
 335static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
 336{
 337	u32 value = readl_relaxed(dd->io_base + offset);
 338
 339#ifdef VERBOSE_DEBUG
 340	if (dd->flags & AES_FLAGS_DUMP_REG) {
 341		char tmp[16];
 342
 343		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
 344			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 345	}
 346#endif /* VERBOSE_DEBUG */
 347
 348	return value;
 349}
 350
 351static inline void atmel_aes_write(struct atmel_aes_dev *dd,
 352					u32 offset, u32 value)
 353{
 354#ifdef VERBOSE_DEBUG
 355	if (dd->flags & AES_FLAGS_DUMP_REG) {
 356		char tmp[16];
 357
 358		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
 359			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 360	}
 361#endif /* VERBOSE_DEBUG */
 362
 363	writel_relaxed(value, dd->io_base + offset);
 364}
 365
 366static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
 367					u32 *value, int count)
 368{
 369	for (; count--; value++, offset += 4)
 370		*value = atmel_aes_read(dd, offset);
 371}
 372
 373static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
 374			      const u32 *value, int count)
 375{
 376	for (; count--; value++, offset += 4)
 377		atmel_aes_write(dd, offset, *value);
 378}
 379
 380static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
 381					void *value)
 382{
 383	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 384}
 385
 386static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
 387					 const void *value)
 388{
 389	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 390}
 391
 392static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
 393						atmel_aes_fn_t resume)
 394{
 395	u32 isr = atmel_aes_read(dd, AES_ISR);
 396
 397	if (unlikely(isr & AES_INT_DATARDY))
 398		return resume(dd);
 399
 400	dd->resume = resume;
 401	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 402	return -EINPROGRESS;
 403}
 404
 405static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
 406{
 407	len &= block_size - 1;
 408	return len ? block_size - len : 0;
 409}
 410
 411static struct atmel_aes_dev *atmel_aes_dev_alloc(struct atmel_aes_base_ctx *ctx)
 412{
 413	struct atmel_aes_dev *aes_dd;
 
 414
 415	spin_lock_bh(&atmel_aes.lock);
 416	/* One AES IP per SoC. */
 417	aes_dd = list_first_entry_or_null(&atmel_aes.dev_list,
 418					  struct atmel_aes_dev, list);
 
 
 
 
 
 
 
 419	spin_unlock_bh(&atmel_aes.lock);
 
 420	return aes_dd;
 421}
 422
 423static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
 424{
 425	int err;
 426
 427	err = clk_enable(dd->iclk);
 428	if (err)
 429		return err;
 430
 431	atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
 432	atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
 433
 434	return 0;
 435}
 436
 437static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
 438{
 439	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
 440}
 441
 442static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
 443{
 444	int err;
 445
 446	err = atmel_aes_hw_init(dd);
 447	if (err)
 448		return err;
 449
 450	dd->hw_version = atmel_aes_get_version(dd);
 451
 452	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
 453
 454	clk_disable(dd->iclk);
 455	return 0;
 456}
 457
 458static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
 459				      const struct atmel_aes_reqctx *rctx)
 460{
 461	/* Clear all but persistent flags and set request flags. */
 462	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
 463}
 464
 465static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
 466{
 467	return (dd->flags & AES_FLAGS_ENCRYPT);
 468}
 469
 470#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 471static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
 472#endif
 473
 474static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
 475{
 476	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 477	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 478	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 479	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
 480
 481	if (req->cryptlen < ivsize)
 482		return;
 483
 484	if (rctx->mode & AES_FLAGS_ENCRYPT)
 485		scatterwalk_map_and_copy(req->iv, req->dst,
 486					 req->cryptlen - ivsize, ivsize, 0);
 487	else
 488		memcpy(req->iv, rctx->lastc, ivsize);
 
 
 
 
 
 
 489}
 490
 491static inline struct atmel_aes_ctr_ctx *
 492atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
 493{
 494	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
 495}
 496
 497static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
 498{
 499	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
 500	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 501	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 502	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
 503	int i;
 504
 505	/*
 506	 * The CTR transfer works in fragments of data of maximum 1 MByte
 507	 * because of the 16 bit CTR counter embedded in the IP. When reaching
 508	 * here, ctx->blocks contains the number of blocks of the last fragment
 509	 * processed, there is no need to explicit cast it to u16.
 510	 */
 511	for (i = 0; i < ctx->blocks; i++)
 512		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
 513
 514	memcpy(req->iv, ctx->iv, ivsize);
 515}
 516
 517static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
 518{
 519	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 520	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 521
 522#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 523	if (dd->ctx->is_aead)
 524		atmel_aes_authenc_complete(dd, err);
 525#endif
 526
 527	clk_disable(dd->iclk);
 528	dd->flags &= ~AES_FLAGS_BUSY;
 529
 530	if (!err && !dd->ctx->is_aead &&
 531	    (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
 532		if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
 533			atmel_aes_set_iv_as_last_ciphertext_block(dd);
 534		else
 535			atmel_aes_ctr_update_req_iv(dd);
 536	}
 537
 538	if (dd->is_async)
 539		crypto_request_complete(dd->areq, err);
 540
 541	tasklet_schedule(&dd->queue_task);
 542
 543	return err;
 544}
 545
 546static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
 547				     const __be32 *iv, const u32 *key, int keylen)
 548{
 549	u32 valmr = 0;
 550
 551	/* MR register must be set before IV registers */
 552	if (keylen == AES_KEYSIZE_128)
 553		valmr |= AES_MR_KEYSIZE_128;
 554	else if (keylen == AES_KEYSIZE_192)
 555		valmr |= AES_MR_KEYSIZE_192;
 556	else
 557		valmr |= AES_MR_KEYSIZE_256;
 558
 559	valmr |= dd->flags & AES_FLAGS_MODE_MASK;
 560
 561	if (use_dma) {
 562		valmr |= AES_MR_SMOD_IDATAR0;
 563		if (dd->caps.has_dualbuff)
 564			valmr |= AES_MR_DUALBUFF;
 565	} else {
 566		valmr |= AES_MR_SMOD_AUTO;
 567	}
 568
 569	atmel_aes_write(dd, AES_MR, valmr);
 570
 571	atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
 572
 573	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
 574		atmel_aes_write_block(dd, AES_IVR(0), iv);
 575}
 576
 577static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
 578					const __be32 *iv)
 579
 580{
 581	atmel_aes_write_ctrl_key(dd, use_dma, iv,
 582				 dd->ctx->key, dd->ctx->keylen);
 583}
 584
 585/* CPU transfer */
 586
 587static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
 588{
 589	int err = 0;
 590	u32 isr;
 591
 592	for (;;) {
 593		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
 594		dd->data += 4;
 595		dd->datalen -= AES_BLOCK_SIZE;
 596
 597		if (dd->datalen < AES_BLOCK_SIZE)
 598			break;
 599
 600		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 601
 602		isr = atmel_aes_read(dd, AES_ISR);
 603		if (!(isr & AES_INT_DATARDY)) {
 604			dd->resume = atmel_aes_cpu_transfer;
 605			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 606			return -EINPROGRESS;
 607		}
 608	}
 609
 610	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 611				 dd->buf, dd->total))
 612		err = -EINVAL;
 613
 614	if (err)
 615		return atmel_aes_complete(dd, err);
 616
 617	return dd->cpu_transfer_complete(dd);
 618}
 619
 620static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
 621			       struct scatterlist *src,
 622			       struct scatterlist *dst,
 623			       size_t len,
 624			       atmel_aes_fn_t resume)
 625{
 626	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
 627
 628	if (unlikely(len == 0))
 629		return -EINVAL;
 630
 631	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 632
 633	dd->total = len;
 634	dd->real_dst = dst;
 635	dd->cpu_transfer_complete = resume;
 636	dd->datalen = len + padlen;
 637	dd->data = (u32 *)dd->buf;
 638	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 639	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
 640}
 641
 642
 643/* DMA transfer */
 644
 645static void atmel_aes_dma_callback(void *data);
 646
 647static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
 648				    struct scatterlist *sg,
 649				    size_t len,
 650				    struct atmel_aes_dma *dma)
 651{
 652	int nents;
 653
 654	if (!IS_ALIGNED(len, dd->ctx->block_size))
 655		return false;
 656
 657	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
 658		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 659			return false;
 660
 661		if (len <= sg->length) {
 662			if (!IS_ALIGNED(len, dd->ctx->block_size))
 663				return false;
 664
 665			dma->nents = nents+1;
 666			dma->remainder = sg->length - len;
 667			sg->length = len;
 668			return true;
 669		}
 670
 671		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
 672			return false;
 673
 674		len -= sg->length;
 675	}
 676
 677	return false;
 678}
 679
 680static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
 681{
 682	struct scatterlist *sg = dma->sg;
 683	int nents = dma->nents;
 684
 685	if (!dma->remainder)
 686		return;
 687
 688	while (--nents > 0 && sg)
 689		sg = sg_next(sg);
 690
 691	if (!sg)
 692		return;
 693
 694	sg->length += dma->remainder;
 695}
 696
 697static int atmel_aes_map(struct atmel_aes_dev *dd,
 698			 struct scatterlist *src,
 699			 struct scatterlist *dst,
 700			 size_t len)
 701{
 702	bool src_aligned, dst_aligned;
 703	size_t padlen;
 704
 705	dd->total = len;
 706	dd->src.sg = src;
 707	dd->dst.sg = dst;
 708	dd->real_dst = dst;
 709
 710	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
 711	if (src == dst)
 712		dst_aligned = src_aligned;
 713	else
 714		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
 715	if (!src_aligned || !dst_aligned) {
 716		padlen = atmel_aes_padlen(len, dd->ctx->block_size);
 717
 718		if (dd->buflen < len + padlen)
 719			return -ENOMEM;
 720
 721		if (!src_aligned) {
 722			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 723			dd->src.sg = &dd->aligned_sg;
 724			dd->src.nents = 1;
 725			dd->src.remainder = 0;
 726		}
 727
 728		if (!dst_aligned) {
 729			dd->dst.sg = &dd->aligned_sg;
 730			dd->dst.nents = 1;
 731			dd->dst.remainder = 0;
 732		}
 733
 734		sg_init_table(&dd->aligned_sg, 1);
 735		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
 736	}
 737
 738	if (dd->src.sg == dd->dst.sg) {
 739		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 740					    DMA_BIDIRECTIONAL);
 741		dd->dst.sg_len = dd->src.sg_len;
 742		if (!dd->src.sg_len)
 743			return -EFAULT;
 744	} else {
 745		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 746					    DMA_TO_DEVICE);
 747		if (!dd->src.sg_len)
 748			return -EFAULT;
 749
 750		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 751					    DMA_FROM_DEVICE);
 752		if (!dd->dst.sg_len) {
 753			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 754				     DMA_TO_DEVICE);
 755			return -EFAULT;
 756		}
 757	}
 758
 759	return 0;
 760}
 761
 762static void atmel_aes_unmap(struct atmel_aes_dev *dd)
 763{
 764	if (dd->src.sg == dd->dst.sg) {
 765		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 766			     DMA_BIDIRECTIONAL);
 767
 768		if (dd->src.sg != &dd->aligned_sg)
 769			atmel_aes_restore_sg(&dd->src);
 770	} else {
 771		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 772			     DMA_FROM_DEVICE);
 773
 774		if (dd->dst.sg != &dd->aligned_sg)
 775			atmel_aes_restore_sg(&dd->dst);
 776
 777		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 778			     DMA_TO_DEVICE);
 779
 780		if (dd->src.sg != &dd->aligned_sg)
 781			atmel_aes_restore_sg(&dd->src);
 782	}
 783
 784	if (dd->dst.sg == &dd->aligned_sg)
 785		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 786				    dd->buf, dd->total);
 787}
 788
 789static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
 790					enum dma_slave_buswidth addr_width,
 791					enum dma_transfer_direction dir,
 792					u32 maxburst)
 793{
 794	struct dma_async_tx_descriptor *desc;
 795	struct dma_slave_config config;
 796	dma_async_tx_callback callback;
 797	struct atmel_aes_dma *dma;
 798	int err;
 799
 800	memset(&config, 0, sizeof(config));
 801	config.src_addr_width = addr_width;
 802	config.dst_addr_width = addr_width;
 803	config.src_maxburst = maxburst;
 804	config.dst_maxburst = maxburst;
 805
 806	switch (dir) {
 807	case DMA_MEM_TO_DEV:
 808		dma = &dd->src;
 809		callback = NULL;
 810		config.dst_addr = dd->phys_base + AES_IDATAR(0);
 811		break;
 812
 813	case DMA_DEV_TO_MEM:
 814		dma = &dd->dst;
 815		callback = atmel_aes_dma_callback;
 816		config.src_addr = dd->phys_base + AES_ODATAR(0);
 817		break;
 818
 819	default:
 820		return -EINVAL;
 821	}
 822
 823	err = dmaengine_slave_config(dma->chan, &config);
 824	if (err)
 825		return err;
 826
 827	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
 828				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 829	if (!desc)
 830		return -ENOMEM;
 831
 832	desc->callback = callback;
 833	desc->callback_param = dd;
 834	dmaengine_submit(desc);
 835	dma_async_issue_pending(dma->chan);
 836
 837	return 0;
 838}
 839
 840static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
 841			       struct scatterlist *src,
 842			       struct scatterlist *dst,
 843			       size_t len,
 844			       atmel_aes_fn_t resume)
 845{
 846	enum dma_slave_buswidth addr_width;
 847	u32 maxburst;
 848	int err;
 849
 850	switch (dd->ctx->block_size) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 851	case AES_BLOCK_SIZE:
 852		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 853		maxburst = dd->caps.max_burst_size;
 854		break;
 855
 856	default:
 857		err = -EINVAL;
 858		goto exit;
 859	}
 860
 861	err = atmel_aes_map(dd, src, dst, len);
 862	if (err)
 863		goto exit;
 864
 865	dd->resume = resume;
 866
 867	/* Set output DMA transfer first */
 868	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
 869					   maxburst);
 870	if (err)
 871		goto unmap;
 872
 873	/* Then set input DMA transfer */
 874	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
 875					   maxburst);
 876	if (err)
 877		goto output_transfer_stop;
 878
 879	return -EINPROGRESS;
 880
 881output_transfer_stop:
 882	dmaengine_terminate_sync(dd->dst.chan);
 883unmap:
 884	atmel_aes_unmap(dd);
 885exit:
 886	return atmel_aes_complete(dd, err);
 887}
 888
 889static void atmel_aes_dma_callback(void *data)
 890{
 891	struct atmel_aes_dev *dd = data;
 892
 893	atmel_aes_unmap(dd);
 894	dd->is_async = true;
 895	(void)dd->resume(dd);
 896}
 897
 898static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
 899				  struct crypto_async_request *new_areq)
 900{
 901	struct crypto_async_request *areq, *backlog;
 902	struct atmel_aes_base_ctx *ctx;
 903	unsigned long flags;
 904	bool start_async;
 905	int err, ret = 0;
 906
 907	spin_lock_irqsave(&dd->lock, flags);
 908	if (new_areq)
 909		ret = crypto_enqueue_request(&dd->queue, new_areq);
 910	if (dd->flags & AES_FLAGS_BUSY) {
 911		spin_unlock_irqrestore(&dd->lock, flags);
 912		return ret;
 913	}
 914	backlog = crypto_get_backlog(&dd->queue);
 915	areq = crypto_dequeue_request(&dd->queue);
 916	if (areq)
 917		dd->flags |= AES_FLAGS_BUSY;
 918	spin_unlock_irqrestore(&dd->lock, flags);
 919
 920	if (!areq)
 921		return ret;
 922
 923	if (backlog)
 924		crypto_request_complete(backlog, -EINPROGRESS);
 925
 926	ctx = crypto_tfm_ctx(areq->tfm);
 927
 928	dd->areq = areq;
 929	dd->ctx = ctx;
 930	start_async = (areq != new_areq);
 931	dd->is_async = start_async;
 932
 933	/* WARNING: ctx->start() MAY change dd->is_async. */
 934	err = ctx->start(dd);
 935	return (start_async) ? ret : err;
 936}
 937
 938
 939/* AES async block ciphers */
 940
 941static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
 942{
 943	return atmel_aes_complete(dd, 0);
 944}
 945
 946static int atmel_aes_start(struct atmel_aes_dev *dd)
 947{
 948	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 949	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 950	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
 951			dd->ctx->block_size != AES_BLOCK_SIZE);
 952	int err;
 953
 954	atmel_aes_set_mode(dd, rctx);
 955
 956	err = atmel_aes_hw_init(dd);
 957	if (err)
 958		return atmel_aes_complete(dd, err);
 959
 960	atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
 961	if (use_dma)
 962		return atmel_aes_dma_start(dd, req->src, req->dst,
 963					   req->cryptlen,
 964					   atmel_aes_transfer_complete);
 965
 966	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
 967				   atmel_aes_transfer_complete);
 968}
 969
 970static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
 971{
 972	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
 973	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 974	struct scatterlist *src, *dst;
 975	size_t datalen;
 976	u32 ctr;
 977	u16 start, end;
 978	bool use_dma, fragmented = false;
 979
 980	/* Check for transfer completion. */
 981	ctx->offset += dd->total;
 982	if (ctx->offset >= req->cryptlen)
 983		return atmel_aes_transfer_complete(dd);
 984
 985	/* Compute data length. */
 986	datalen = req->cryptlen - ctx->offset;
 987	ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
 988	ctr = be32_to_cpu(ctx->iv[3]);
 989
 990	/* Check 16bit counter overflow. */
 991	start = ctr & 0xffff;
 992	end = start + ctx->blocks - 1;
 993
 994	if (ctx->blocks >> 16 || end < start) {
 995		ctr |= 0xffff;
 996		datalen = AES_BLOCK_SIZE * (0x10000 - start);
 997		fragmented = true;
 998	}
 999
1000	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1001
1002	/* Jump to offset. */
1003	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1004	dst = ((req->src == req->dst) ? src :
1005	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1006
1007	/* Configure hardware. */
1008	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1009	if (unlikely(fragmented)) {
1010		/*
1011		 * Increment the counter manually to cope with the hardware
1012		 * counter overflow.
1013		 */
1014		ctx->iv[3] = cpu_to_be32(ctr);
1015		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1016	}
1017
1018	if (use_dma)
1019		return atmel_aes_dma_start(dd, src, dst, datalen,
1020					   atmel_aes_ctr_transfer);
1021
1022	return atmel_aes_cpu_start(dd, src, dst, datalen,
1023				   atmel_aes_ctr_transfer);
1024}
1025
1026static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1027{
1028	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1029	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1030	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1031	int err;
1032
1033	atmel_aes_set_mode(dd, rctx);
1034
1035	err = atmel_aes_hw_init(dd);
1036	if (err)
1037		return atmel_aes_complete(dd, err);
1038
1039	memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1040	ctx->offset = 0;
1041	dd->total = 0;
1042	return atmel_aes_ctr_transfer(dd);
1043}
1044
1045static int atmel_aes_xts_fallback(struct skcipher_request *req, bool enc)
1046{
1047	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1048	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(
1049			crypto_skcipher_reqtfm(req));
1050
1051	skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
1052	skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
1053				      req->base.complete, req->base.data);
1054	skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
1055				   req->cryptlen, req->iv);
1056
1057	return enc ? crypto_skcipher_encrypt(&rctx->fallback_req) :
1058		     crypto_skcipher_decrypt(&rctx->fallback_req);
1059}
1060
1061static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1062{
1063	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1064	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1065	struct atmel_aes_reqctx *rctx;
1066	u32 opmode = mode & AES_FLAGS_OPMODE_MASK;
1067
1068	if (opmode == AES_FLAGS_XTS) {
1069		if (req->cryptlen < XTS_BLOCK_SIZE)
1070			return -EINVAL;
1071
1072		if (!IS_ALIGNED(req->cryptlen, XTS_BLOCK_SIZE))
1073			return atmel_aes_xts_fallback(req,
1074						      mode & AES_FLAGS_ENCRYPT);
1075	}
1076
1077	/*
1078	 * ECB, CBC or CTR mode require the plaintext and ciphertext
1079	 * to have a positve integer length.
1080	 */
1081	if (!req->cryptlen && opmode != AES_FLAGS_XTS)
1082		return 0;
1083
1084	if ((opmode == AES_FLAGS_ECB || opmode == AES_FLAGS_CBC) &&
1085	    !IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(skcipher)))
1086		return -EINVAL;
1087
1088	ctx->block_size = AES_BLOCK_SIZE;
 
 
 
 
 
 
 
1089	ctx->is_aead = false;
1090
 
 
 
 
1091	rctx = skcipher_request_ctx(req);
1092	rctx->mode = mode;
1093
1094	if (opmode != AES_FLAGS_ECB &&
1095	    !(mode & AES_FLAGS_ENCRYPT)) {
1096		unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1097
1098		if (req->cryptlen >= ivsize)
1099			scatterwalk_map_and_copy(rctx->lastc, req->src,
1100						 req->cryptlen - ivsize,
1101						 ivsize, 0);
1102	}
1103
1104	return atmel_aes_handle_queue(ctx->dd, &req->base);
1105}
1106
1107static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1108			   unsigned int keylen)
1109{
1110	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1111
1112	if (keylen != AES_KEYSIZE_128 &&
1113	    keylen != AES_KEYSIZE_192 &&
1114	    keylen != AES_KEYSIZE_256)
1115		return -EINVAL;
1116
1117	memcpy(ctx->key, key, keylen);
1118	ctx->keylen = keylen;
1119
1120	return 0;
1121}
1122
1123static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1124{
1125	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1126}
1127
1128static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1129{
1130	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1131}
1132
1133static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1134{
1135	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1136}
1137
1138static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1139{
1140	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1141}
1142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1143static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1144{
1145	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1146}
1147
1148static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1149{
1150	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1151}
1152
1153static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1154{
1155	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1156	struct atmel_aes_dev *dd;
1157
1158	dd = atmel_aes_dev_alloc(&ctx->base);
1159	if (!dd)
1160		return -ENODEV;
1161
1162	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1163	ctx->base.dd = dd;
1164	ctx->base.start = atmel_aes_start;
1165
1166	return 0;
1167}
1168
1169static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1170{
1171	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1172	struct atmel_aes_dev *dd;
1173
1174	dd = atmel_aes_dev_alloc(&ctx->base);
1175	if (!dd)
1176		return -ENODEV;
1177
1178	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1179	ctx->base.dd = dd;
1180	ctx->base.start = atmel_aes_ctr_start;
1181
1182	return 0;
1183}
1184
1185static struct skcipher_alg aes_algs[] = {
1186{
1187	.base.cra_name		= "ecb(aes)",
1188	.base.cra_driver_name	= "atmel-ecb-aes",
1189	.base.cra_blocksize	= AES_BLOCK_SIZE,
1190	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1191
1192	.init			= atmel_aes_init_tfm,
1193	.min_keysize		= AES_MIN_KEY_SIZE,
1194	.max_keysize		= AES_MAX_KEY_SIZE,
1195	.setkey			= atmel_aes_setkey,
1196	.encrypt		= atmel_aes_ecb_encrypt,
1197	.decrypt		= atmel_aes_ecb_decrypt,
1198},
1199{
1200	.base.cra_name		= "cbc(aes)",
1201	.base.cra_driver_name	= "atmel-cbc-aes",
1202	.base.cra_blocksize	= AES_BLOCK_SIZE,
1203	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1204
1205	.init			= atmel_aes_init_tfm,
1206	.min_keysize		= AES_MIN_KEY_SIZE,
1207	.max_keysize		= AES_MAX_KEY_SIZE,
1208	.setkey			= atmel_aes_setkey,
1209	.encrypt		= atmel_aes_cbc_encrypt,
1210	.decrypt		= atmel_aes_cbc_decrypt,
1211	.ivsize			= AES_BLOCK_SIZE,
1212},
1213{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1214	.base.cra_name		= "ctr(aes)",
1215	.base.cra_driver_name	= "atmel-ctr-aes",
1216	.base.cra_blocksize	= 1,
1217	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctr_ctx),
1218
1219	.init			= atmel_aes_ctr_init_tfm,
1220	.min_keysize		= AES_MIN_KEY_SIZE,
1221	.max_keysize		= AES_MAX_KEY_SIZE,
1222	.setkey			= atmel_aes_setkey,
1223	.encrypt		= atmel_aes_ctr_encrypt,
1224	.decrypt		= atmel_aes_ctr_decrypt,
1225	.ivsize			= AES_BLOCK_SIZE,
1226},
1227};
1228
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1229
1230/* gcm aead functions */
1231
1232static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1233			       const u32 *data, size_t datalen,
1234			       const __be32 *ghash_in, __be32 *ghash_out,
1235			       atmel_aes_fn_t resume);
1236static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1237static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1238
1239static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1240static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1241static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1242static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1243static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1244static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1245static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1246
1247static inline struct atmel_aes_gcm_ctx *
1248atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1249{
1250	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1251}
1252
1253static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1254			       const u32 *data, size_t datalen,
1255			       const __be32 *ghash_in, __be32 *ghash_out,
1256			       atmel_aes_fn_t resume)
1257{
1258	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1259
1260	dd->data = (u32 *)data;
1261	dd->datalen = datalen;
1262	ctx->ghash_in = ghash_in;
1263	ctx->ghash_out = ghash_out;
1264	ctx->ghash_resume = resume;
1265
1266	atmel_aes_write_ctrl(dd, false, NULL);
1267	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1268}
1269
1270static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1271{
1272	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1273
1274	/* Set the data length. */
1275	atmel_aes_write(dd, AES_AADLENR, dd->total);
1276	atmel_aes_write(dd, AES_CLENR, 0);
1277
1278	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
1279	if (ctx->ghash_in)
1280		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1281
1282	return atmel_aes_gcm_ghash_finalize(dd);
1283}
1284
1285static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1286{
1287	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1288	u32 isr;
1289
1290	/* Write data into the Input Data Registers. */
1291	while (dd->datalen > 0) {
1292		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1293		dd->data += 4;
1294		dd->datalen -= AES_BLOCK_SIZE;
1295
1296		isr = atmel_aes_read(dd, AES_ISR);
1297		if (!(isr & AES_INT_DATARDY)) {
1298			dd->resume = atmel_aes_gcm_ghash_finalize;
1299			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1300			return -EINPROGRESS;
1301		}
1302	}
1303
1304	/* Read the computed hash from GHASHRx. */
1305	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1306
1307	return ctx->ghash_resume(dd);
1308}
1309
1310
1311static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1312{
1313	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1314	struct aead_request *req = aead_request_cast(dd->areq);
1315	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1316	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1317	size_t ivsize = crypto_aead_ivsize(tfm);
1318	size_t datalen, padlen;
1319	const void *iv = req->iv;
1320	u8 *data = dd->buf;
1321	int err;
1322
1323	atmel_aes_set_mode(dd, rctx);
1324
1325	err = atmel_aes_hw_init(dd);
1326	if (err)
1327		return atmel_aes_complete(dd, err);
1328
1329	if (likely(ivsize == GCM_AES_IV_SIZE)) {
1330		memcpy(ctx->j0, iv, ivsize);
1331		ctx->j0[3] = cpu_to_be32(1);
1332		return atmel_aes_gcm_process(dd);
1333	}
1334
1335	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1336	datalen = ivsize + padlen + AES_BLOCK_SIZE;
1337	if (datalen > dd->buflen)
1338		return atmel_aes_complete(dd, -EINVAL);
1339
1340	memcpy(data, iv, ivsize);
1341	memset(data + ivsize, 0, padlen + sizeof(u64));
1342	((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1343
1344	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1345				   NULL, ctx->j0, atmel_aes_gcm_process);
1346}
1347
1348static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1349{
1350	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1351	struct aead_request *req = aead_request_cast(dd->areq);
1352	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1353	bool enc = atmel_aes_is_encrypt(dd);
1354	u32 authsize;
1355
1356	/* Compute text length. */
1357	authsize = crypto_aead_authsize(tfm);
1358	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1359
1360	/*
1361	 * According to tcrypt test suite, the GCM Automatic Tag Generation
1362	 * fails when both the message and its associated data are empty.
1363	 */
1364	if (likely(req->assoclen != 0 || ctx->textlen != 0))
1365		dd->flags |= AES_FLAGS_GTAGEN;
1366
1367	atmel_aes_write_ctrl(dd, false, NULL);
1368	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1369}
1370
1371static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1372{
1373	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1374	struct aead_request *req = aead_request_cast(dd->areq);
1375	__be32 j0_lsw, *j0 = ctx->j0;
1376	size_t padlen;
1377
1378	/* Write incr32(J0) into IV. */
1379	j0_lsw = j0[3];
1380	be32_add_cpu(&j0[3], 1);
1381	atmel_aes_write_block(dd, AES_IVR(0), j0);
1382	j0[3] = j0_lsw;
1383
1384	/* Set aad and text lengths. */
1385	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1386	atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1387
1388	/* Check whether AAD are present. */
1389	if (unlikely(req->assoclen == 0)) {
1390		dd->datalen = 0;
1391		return atmel_aes_gcm_data(dd);
1392	}
1393
1394	/* Copy assoc data and add padding. */
1395	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1396	if (unlikely(req->assoclen + padlen > dd->buflen))
1397		return atmel_aes_complete(dd, -EINVAL);
1398	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1399
1400	/* Write assoc data into the Input Data register. */
1401	dd->data = (u32 *)dd->buf;
1402	dd->datalen = req->assoclen + padlen;
1403	return atmel_aes_gcm_data(dd);
1404}
1405
1406static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1407{
1408	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1409	struct aead_request *req = aead_request_cast(dd->areq);
1410	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1411	struct scatterlist *src, *dst;
1412	u32 isr, mr;
1413
1414	/* Write AAD first. */
1415	while (dd->datalen > 0) {
1416		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1417		dd->data += 4;
1418		dd->datalen -= AES_BLOCK_SIZE;
1419
1420		isr = atmel_aes_read(dd, AES_ISR);
1421		if (!(isr & AES_INT_DATARDY)) {
1422			dd->resume = atmel_aes_gcm_data;
1423			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1424			return -EINPROGRESS;
1425		}
1426	}
1427
1428	/* GMAC only. */
1429	if (unlikely(ctx->textlen == 0))
1430		return atmel_aes_gcm_tag_init(dd);
1431
1432	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
1433	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1434	dst = ((req->src == req->dst) ? src :
1435	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1436
1437	if (use_dma) {
1438		/* Update the Mode Register for DMA transfers. */
1439		mr = atmel_aes_read(dd, AES_MR);
1440		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1441		mr |= AES_MR_SMOD_IDATAR0;
1442		if (dd->caps.has_dualbuff)
1443			mr |= AES_MR_DUALBUFF;
1444		atmel_aes_write(dd, AES_MR, mr);
1445
1446		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1447					   atmel_aes_gcm_tag_init);
1448	}
1449
1450	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1451				   atmel_aes_gcm_tag_init);
1452}
1453
1454static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1455{
1456	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1457	struct aead_request *req = aead_request_cast(dd->areq);
1458	__be64 *data = dd->buf;
1459
1460	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1461		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1462			dd->resume = atmel_aes_gcm_tag_init;
1463			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1464			return -EINPROGRESS;
1465		}
1466
1467		return atmel_aes_gcm_finalize(dd);
1468	}
1469
1470	/* Read the GCM Intermediate Hash Word Registers. */
1471	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1472
1473	data[0] = cpu_to_be64(req->assoclen * 8);
1474	data[1] = cpu_to_be64(ctx->textlen * 8);
1475
1476	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1477				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1478}
1479
1480static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1481{
1482	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1483	unsigned long flags;
1484
1485	/*
1486	 * Change mode to CTR to complete the tag generation.
1487	 * Use J0 as Initialization Vector.
1488	 */
1489	flags = dd->flags;
1490	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1491	dd->flags |= AES_FLAGS_CTR;
1492	atmel_aes_write_ctrl(dd, false, ctx->j0);
1493	dd->flags = flags;
1494
1495	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1496	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1497}
1498
1499static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1500{
1501	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1502	struct aead_request *req = aead_request_cast(dd->areq);
1503	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1504	bool enc = atmel_aes_is_encrypt(dd);
1505	u32 offset, authsize, itag[4], *otag = ctx->tag;
1506	int err;
1507
1508	/* Read the computed tag. */
1509	if (likely(dd->flags & AES_FLAGS_GTAGEN))
1510		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1511	else
1512		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1513
1514	offset = req->assoclen + ctx->textlen;
1515	authsize = crypto_aead_authsize(tfm);
1516	if (enc) {
1517		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1518		err = 0;
1519	} else {
1520		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1521		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1522	}
1523
1524	return atmel_aes_complete(dd, err);
1525}
1526
1527static int atmel_aes_gcm_crypt(struct aead_request *req,
1528			       unsigned long mode)
1529{
1530	struct atmel_aes_base_ctx *ctx;
1531	struct atmel_aes_reqctx *rctx;
 
1532
1533	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1534	ctx->block_size = AES_BLOCK_SIZE;
1535	ctx->is_aead = true;
1536
 
 
 
 
1537	rctx = aead_request_ctx(req);
1538	rctx->mode = AES_FLAGS_GCM | mode;
1539
1540	return atmel_aes_handle_queue(ctx->dd, &req->base);
1541}
1542
1543static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1544				unsigned int keylen)
1545{
1546	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1547
1548	if (keylen != AES_KEYSIZE_256 &&
1549	    keylen != AES_KEYSIZE_192 &&
1550	    keylen != AES_KEYSIZE_128)
1551		return -EINVAL;
1552
1553	memcpy(ctx->key, key, keylen);
1554	ctx->keylen = keylen;
1555
1556	return 0;
1557}
1558
1559static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1560				     unsigned int authsize)
1561{
1562	return crypto_gcm_check_authsize(authsize);
1563}
1564
1565static int atmel_aes_gcm_encrypt(struct aead_request *req)
1566{
1567	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1568}
1569
1570static int atmel_aes_gcm_decrypt(struct aead_request *req)
1571{
1572	return atmel_aes_gcm_crypt(req, 0);
1573}
1574
1575static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1576{
1577	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1578	struct atmel_aes_dev *dd;
1579
1580	dd = atmel_aes_dev_alloc(&ctx->base);
1581	if (!dd)
1582		return -ENODEV;
1583
1584	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1585	ctx->base.dd = dd;
1586	ctx->base.start = atmel_aes_gcm_start;
1587
1588	return 0;
1589}
1590
1591static struct aead_alg aes_gcm_alg = {
1592	.setkey		= atmel_aes_gcm_setkey,
1593	.setauthsize	= atmel_aes_gcm_setauthsize,
1594	.encrypt	= atmel_aes_gcm_encrypt,
1595	.decrypt	= atmel_aes_gcm_decrypt,
1596	.init		= atmel_aes_gcm_init,
1597	.ivsize		= GCM_AES_IV_SIZE,
1598	.maxauthsize	= AES_BLOCK_SIZE,
1599
1600	.base = {
1601		.cra_name		= "gcm(aes)",
1602		.cra_driver_name	= "atmel-gcm-aes",
1603		.cra_blocksize		= 1,
1604		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
1605	},
1606};
1607
1608
1609/* xts functions */
1610
1611static inline struct atmel_aes_xts_ctx *
1612atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1613{
1614	return container_of(ctx, struct atmel_aes_xts_ctx, base);
1615}
1616
1617static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1618
1619static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1620{
1621	struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1622	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1623	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1624	unsigned long flags;
1625	int err;
1626
1627	atmel_aes_set_mode(dd, rctx);
1628
1629	err = atmel_aes_hw_init(dd);
1630	if (err)
1631		return atmel_aes_complete(dd, err);
1632
1633	/* Compute the tweak value from req->iv with ecb(aes). */
1634	flags = dd->flags;
1635	dd->flags &= ~AES_FLAGS_MODE_MASK;
1636	dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1637	atmel_aes_write_ctrl_key(dd, false, NULL,
1638				 ctx->key2, ctx->base.keylen);
1639	dd->flags = flags;
1640
1641	atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1642	return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1643}
1644
1645static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1646{
1647	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1648	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1649	u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1650	static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1651	u8 *tweak_bytes = (u8 *)tweak;
1652	int i;
1653
1654	/* Read the computed ciphered tweak value. */
1655	atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1656	/*
1657	 * Hardware quirk:
1658	 * the order of the ciphered tweak bytes need to be reversed before
1659	 * writing them into the ODATARx registers.
1660	 */
1661	for (i = 0; i < AES_BLOCK_SIZE/2; ++i)
1662		swap(tweak_bytes[i], tweak_bytes[AES_BLOCK_SIZE - 1 - i]);
 
 
 
 
1663
1664	/* Process the data. */
1665	atmel_aes_write_ctrl(dd, use_dma, NULL);
1666	atmel_aes_write_block(dd, AES_TWR(0), tweak);
1667	atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1668	if (use_dma)
1669		return atmel_aes_dma_start(dd, req->src, req->dst,
1670					   req->cryptlen,
1671					   atmel_aes_transfer_complete);
1672
1673	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1674				   atmel_aes_transfer_complete);
1675}
1676
1677static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1678				unsigned int keylen)
1679{
1680	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1681	int err;
1682
1683	err = xts_verify_key(tfm, key, keylen);
1684	if (err)
1685		return err;
1686
1687	crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
1688	crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags &
1689				  CRYPTO_TFM_REQ_MASK);
1690	err = crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen);
1691	if (err)
1692		return err;
1693
1694	memcpy(ctx->base.key, key, keylen/2);
1695	memcpy(ctx->key2, key + keylen/2, keylen/2);
1696	ctx->base.keylen = keylen/2;
1697
1698	return 0;
1699}
1700
1701static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1702{
1703	return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1704}
1705
1706static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1707{
1708	return atmel_aes_crypt(req, AES_FLAGS_XTS);
1709}
1710
1711static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1712{
1713	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1714	struct atmel_aes_dev *dd;
1715	const char *tfm_name = crypto_tfm_alg_name(&tfm->base);
1716
1717	dd = atmel_aes_dev_alloc(&ctx->base);
1718	if (!dd)
1719		return -ENODEV;
1720
1721	ctx->fallback_tfm = crypto_alloc_skcipher(tfm_name, 0,
1722						  CRYPTO_ALG_NEED_FALLBACK);
1723	if (IS_ERR(ctx->fallback_tfm))
1724		return PTR_ERR(ctx->fallback_tfm);
1725
1726	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx) +
1727				    crypto_skcipher_reqsize(ctx->fallback_tfm));
1728	ctx->base.dd = dd;
1729	ctx->base.start = atmel_aes_xts_start;
1730
1731	return 0;
1732}
1733
1734static void atmel_aes_xts_exit_tfm(struct crypto_skcipher *tfm)
1735{
1736	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1737
1738	crypto_free_skcipher(ctx->fallback_tfm);
1739}
1740
1741static struct skcipher_alg aes_xts_alg = {
1742	.base.cra_name		= "xts(aes)",
1743	.base.cra_driver_name	= "atmel-xts-aes",
1744	.base.cra_blocksize	= AES_BLOCK_SIZE,
1745	.base.cra_ctxsize	= sizeof(struct atmel_aes_xts_ctx),
1746	.base.cra_flags		= CRYPTO_ALG_NEED_FALLBACK,
1747
1748	.min_keysize		= 2 * AES_MIN_KEY_SIZE,
1749	.max_keysize		= 2 * AES_MAX_KEY_SIZE,
1750	.ivsize			= AES_BLOCK_SIZE,
1751	.setkey			= atmel_aes_xts_setkey,
1752	.encrypt		= atmel_aes_xts_encrypt,
1753	.decrypt		= atmel_aes_xts_decrypt,
1754	.init			= atmel_aes_xts_init_tfm,
1755	.exit			= atmel_aes_xts_exit_tfm,
1756};
1757
1758#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1759/* authenc aead functions */
1760
1761static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1762static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1763				  bool is_async);
1764static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1765				      bool is_async);
1766static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1767static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1768				   bool is_async);
1769
1770static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1771{
1772	struct aead_request *req = aead_request_cast(dd->areq);
1773	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1774
1775	if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1776		atmel_sha_authenc_abort(&rctx->auth_req);
1777	dd->flags &= ~AES_FLAGS_OWN_SHA;
1778}
1779
1780static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1781{
1782	struct aead_request *req = aead_request_cast(dd->areq);
1783	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1784	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1785	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1786	int err;
1787
1788	atmel_aes_set_mode(dd, &rctx->base);
1789
1790	err = atmel_aes_hw_init(dd);
1791	if (err)
1792		return atmel_aes_complete(dd, err);
1793
1794	return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1795					  atmel_aes_authenc_init, dd);
1796}
1797
1798static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1799				  bool is_async)
1800{
1801	struct aead_request *req = aead_request_cast(dd->areq);
1802	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1803
1804	if (is_async)
1805		dd->is_async = true;
1806	if (err)
1807		return atmel_aes_complete(dd, err);
1808
1809	/* If here, we've got the ownership of the SHA device. */
1810	dd->flags |= AES_FLAGS_OWN_SHA;
1811
1812	/* Configure the SHA device. */
1813	return atmel_sha_authenc_init(&rctx->auth_req,
1814				      req->src, req->assoclen,
1815				      rctx->textlen,
1816				      atmel_aes_authenc_transfer, dd);
1817}
1818
1819static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1820				      bool is_async)
1821{
1822	struct aead_request *req = aead_request_cast(dd->areq);
1823	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1824	bool enc = atmel_aes_is_encrypt(dd);
1825	struct scatterlist *src, *dst;
1826	__be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
1827	u32 emr;
1828
1829	if (is_async)
1830		dd->is_async = true;
1831	if (err)
1832		return atmel_aes_complete(dd, err);
1833
1834	/* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
1835	src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
1836	dst = src;
1837
1838	if (req->src != req->dst)
1839		dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
1840
1841	/* Configure the AES device. */
1842	memcpy(iv, req->iv, sizeof(iv));
1843
1844	/*
1845	 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
1846	 * 'true' even if the data transfer is actually performed by the CPU (so
1847	 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
1848	 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
1849	 * must be set to *_MR_SMOD_IDATAR0.
1850	 */
1851	atmel_aes_write_ctrl(dd, true, iv);
1852	emr = AES_EMR_PLIPEN;
1853	if (!enc)
1854		emr |= AES_EMR_PLIPD;
1855	atmel_aes_write(dd, AES_EMR, emr);
1856
1857	/* Transfer data. */
1858	return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
1859				   atmel_aes_authenc_digest);
1860}
1861
1862static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
1863{
1864	struct aead_request *req = aead_request_cast(dd->areq);
1865	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1866
1867	/* atmel_sha_authenc_final() releases the SHA device. */
1868	dd->flags &= ~AES_FLAGS_OWN_SHA;
1869	return atmel_sha_authenc_final(&rctx->auth_req,
1870				       rctx->digest, sizeof(rctx->digest),
1871				       atmel_aes_authenc_final, dd);
1872}
1873
1874static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1875				   bool is_async)
1876{
1877	struct aead_request *req = aead_request_cast(dd->areq);
1878	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1879	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1880	bool enc = atmel_aes_is_encrypt(dd);
1881	u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
1882	u32 offs, authsize;
1883
1884	if (is_async)
1885		dd->is_async = true;
1886	if (err)
1887		goto complete;
1888
1889	offs = req->assoclen + rctx->textlen;
1890	authsize = crypto_aead_authsize(tfm);
1891	if (enc) {
1892		scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
1893	} else {
1894		scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
1895		if (crypto_memneq(idigest, odigest, authsize))
1896			err = -EBADMSG;
1897	}
1898
1899complete:
1900	return atmel_aes_complete(dd, err);
1901}
1902
1903static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
1904				    unsigned int keylen)
1905{
1906	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1907	struct crypto_authenc_keys keys;
1908	int err;
1909
1910	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1911		goto badkey;
1912
1913	if (keys.enckeylen > sizeof(ctx->base.key))
1914		goto badkey;
1915
1916	/* Save auth key. */
1917	err = atmel_sha_authenc_setkey(ctx->auth,
1918				       keys.authkey, keys.authkeylen,
1919				       crypto_aead_get_flags(tfm));
1920	if (err) {
1921		memzero_explicit(&keys, sizeof(keys));
1922		return err;
1923	}
1924
1925	/* Save enc key. */
1926	ctx->base.keylen = keys.enckeylen;
1927	memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
1928
1929	memzero_explicit(&keys, sizeof(keys));
1930	return 0;
1931
1932badkey:
1933	memzero_explicit(&keys, sizeof(keys));
1934	return -EINVAL;
1935}
1936
1937static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
1938				      unsigned long auth_mode)
1939{
1940	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1941	unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
1942	struct atmel_aes_dev *dd;
1943
1944	dd = atmel_aes_dev_alloc(&ctx->base);
1945	if (!dd)
1946		return -ENODEV;
1947
1948	ctx->auth = atmel_sha_authenc_spawn(auth_mode);
1949	if (IS_ERR(ctx->auth))
1950		return PTR_ERR(ctx->auth);
1951
1952	crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
1953				      auth_reqsize));
1954	ctx->base.dd = dd;
1955	ctx->base.start = atmel_aes_authenc_start;
1956
1957	return 0;
1958}
1959
1960static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
1961{
1962	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
1963}
1964
1965static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
1966{
1967	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
1968}
1969
1970static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
1971{
1972	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
1973}
1974
1975static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
1976{
1977	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
1978}
1979
1980static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
1981{
1982	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
1983}
1984
1985static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
1986{
1987	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1988
1989	atmel_sha_authenc_free(ctx->auth);
1990}
1991
1992static int atmel_aes_authenc_crypt(struct aead_request *req,
1993				   unsigned long mode)
1994{
1995	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1996	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1997	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1998	u32 authsize = crypto_aead_authsize(tfm);
1999	bool enc = (mode & AES_FLAGS_ENCRYPT);
 
2000
2001	/* Compute text length. */
2002	if (!enc && req->cryptlen < authsize)
2003		return -EINVAL;
2004	rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2005
2006	/*
2007	 * Currently, empty messages are not supported yet:
2008	 * the SHA auto-padding can be used only on non-empty messages.
2009	 * Hence a special case needs to be implemented for empty message.
2010	 */
2011	if (!rctx->textlen && !req->assoclen)
2012		return -EINVAL;
2013
2014	rctx->base.mode = mode;
2015	ctx->block_size = AES_BLOCK_SIZE;
2016	ctx->is_aead = true;
2017
2018	return atmel_aes_handle_queue(ctx->dd, &req->base);
 
 
 
 
2019}
2020
2021static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2022{
2023	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2024}
2025
2026static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2027{
2028	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2029}
2030
2031static struct aead_alg aes_authenc_algs[] = {
2032{
2033	.setkey		= atmel_aes_authenc_setkey,
2034	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2035	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2036	.init		= atmel_aes_authenc_hmac_sha1_init_tfm,
2037	.exit		= atmel_aes_authenc_exit_tfm,
2038	.ivsize		= AES_BLOCK_SIZE,
2039	.maxauthsize	= SHA1_DIGEST_SIZE,
2040
2041	.base = {
2042		.cra_name		= "authenc(hmac(sha1),cbc(aes))",
2043		.cra_driver_name	= "atmel-authenc-hmac-sha1-cbc-aes",
2044		.cra_blocksize		= AES_BLOCK_SIZE,
2045		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2046	},
2047},
2048{
2049	.setkey		= atmel_aes_authenc_setkey,
2050	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2051	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2052	.init		= atmel_aes_authenc_hmac_sha224_init_tfm,
2053	.exit		= atmel_aes_authenc_exit_tfm,
2054	.ivsize		= AES_BLOCK_SIZE,
2055	.maxauthsize	= SHA224_DIGEST_SIZE,
2056
2057	.base = {
2058		.cra_name		= "authenc(hmac(sha224),cbc(aes))",
2059		.cra_driver_name	= "atmel-authenc-hmac-sha224-cbc-aes",
2060		.cra_blocksize		= AES_BLOCK_SIZE,
2061		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2062	},
2063},
2064{
2065	.setkey		= atmel_aes_authenc_setkey,
2066	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2067	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2068	.init		= atmel_aes_authenc_hmac_sha256_init_tfm,
2069	.exit		= atmel_aes_authenc_exit_tfm,
2070	.ivsize		= AES_BLOCK_SIZE,
2071	.maxauthsize	= SHA256_DIGEST_SIZE,
2072
2073	.base = {
2074		.cra_name		= "authenc(hmac(sha256),cbc(aes))",
2075		.cra_driver_name	= "atmel-authenc-hmac-sha256-cbc-aes",
2076		.cra_blocksize		= AES_BLOCK_SIZE,
2077		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2078	},
2079},
2080{
2081	.setkey		= atmel_aes_authenc_setkey,
2082	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2083	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2084	.init		= atmel_aes_authenc_hmac_sha384_init_tfm,
2085	.exit		= atmel_aes_authenc_exit_tfm,
2086	.ivsize		= AES_BLOCK_SIZE,
2087	.maxauthsize	= SHA384_DIGEST_SIZE,
2088
2089	.base = {
2090		.cra_name		= "authenc(hmac(sha384),cbc(aes))",
2091		.cra_driver_name	= "atmel-authenc-hmac-sha384-cbc-aes",
2092		.cra_blocksize		= AES_BLOCK_SIZE,
2093		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2094	},
2095},
2096{
2097	.setkey		= atmel_aes_authenc_setkey,
2098	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2099	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2100	.init		= atmel_aes_authenc_hmac_sha512_init_tfm,
2101	.exit		= atmel_aes_authenc_exit_tfm,
2102	.ivsize		= AES_BLOCK_SIZE,
2103	.maxauthsize	= SHA512_DIGEST_SIZE,
2104
2105	.base = {
2106		.cra_name		= "authenc(hmac(sha512),cbc(aes))",
2107		.cra_driver_name	= "atmel-authenc-hmac-sha512-cbc-aes",
2108		.cra_blocksize		= AES_BLOCK_SIZE,
2109		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2110	},
2111},
2112};
2113#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2114
2115/* Probe functions */
2116
2117static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2118{
2119	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2120	dd->buflen = ATMEL_AES_BUFFER_SIZE;
2121	dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2122
2123	if (!dd->buf) {
2124		dev_err(dd->dev, "unable to alloc pages.\n");
2125		return -ENOMEM;
2126	}
2127
2128	return 0;
2129}
2130
2131static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2132{
2133	free_page((unsigned long)dd->buf);
2134}
2135
2136static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
2137{
2138	int ret;
2139
2140	/* Try to grab 2 DMA channels */
2141	dd->src.chan = dma_request_chan(dd->dev, "tx");
2142	if (IS_ERR(dd->src.chan)) {
2143		ret = PTR_ERR(dd->src.chan);
2144		goto err_dma_in;
2145	}
2146
2147	dd->dst.chan = dma_request_chan(dd->dev, "rx");
2148	if (IS_ERR(dd->dst.chan)) {
2149		ret = PTR_ERR(dd->dst.chan);
2150		goto err_dma_out;
2151	}
2152
2153	return 0;
2154
2155err_dma_out:
2156	dma_release_channel(dd->src.chan);
2157err_dma_in:
2158	dev_err(dd->dev, "no DMA channel available\n");
2159	return ret;
2160}
2161
2162static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2163{
2164	dma_release_channel(dd->dst.chan);
2165	dma_release_channel(dd->src.chan);
2166}
2167
2168static void atmel_aes_queue_task(unsigned long data)
2169{
2170	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2171
2172	atmel_aes_handle_queue(dd, NULL);
2173}
2174
2175static void atmel_aes_done_task(unsigned long data)
2176{
2177	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2178
2179	dd->is_async = true;
2180	(void)dd->resume(dd);
2181}
2182
2183static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2184{
2185	struct atmel_aes_dev *aes_dd = dev_id;
2186	u32 reg;
2187
2188	reg = atmel_aes_read(aes_dd, AES_ISR);
2189	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2190		atmel_aes_write(aes_dd, AES_IDR, reg);
2191		if (AES_FLAGS_BUSY & aes_dd->flags)
2192			tasklet_schedule(&aes_dd->done_task);
2193		else
2194			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2195		return IRQ_HANDLED;
2196	}
2197
2198	return IRQ_NONE;
2199}
2200
2201static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2202{
2203	int i;
2204
2205#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2206	if (dd->caps.has_authenc)
2207		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2208			crypto_unregister_aead(&aes_authenc_algs[i]);
2209#endif
2210
2211	if (dd->caps.has_xts)
2212		crypto_unregister_skcipher(&aes_xts_alg);
2213
2214	if (dd->caps.has_gcm)
2215		crypto_unregister_aead(&aes_gcm_alg);
2216
 
 
 
2217	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2218		crypto_unregister_skcipher(&aes_algs[i]);
2219}
2220
2221static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
2222{
2223	alg->cra_flags |= CRYPTO_ALG_ASYNC;
2224	alg->cra_alignmask = 0xf;
2225	alg->cra_priority = ATMEL_AES_PRIORITY;
2226	alg->cra_module = THIS_MODULE;
2227}
2228
2229static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2230{
2231	int err, i, j;
2232
2233	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2234		atmel_aes_crypto_alg_init(&aes_algs[i].base);
2235
2236		err = crypto_register_skcipher(&aes_algs[i]);
2237		if (err)
2238			goto err_aes_algs;
2239	}
2240
 
 
 
 
 
 
 
 
2241	if (dd->caps.has_gcm) {
2242		atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
2243
2244		err = crypto_register_aead(&aes_gcm_alg);
2245		if (err)
2246			goto err_aes_gcm_alg;
2247	}
2248
2249	if (dd->caps.has_xts) {
2250		atmel_aes_crypto_alg_init(&aes_xts_alg.base);
2251
2252		err = crypto_register_skcipher(&aes_xts_alg);
2253		if (err)
2254			goto err_aes_xts_alg;
2255	}
2256
2257#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2258	if (dd->caps.has_authenc) {
2259		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2260			atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
2261
2262			err = crypto_register_aead(&aes_authenc_algs[i]);
2263			if (err)
2264				goto err_aes_authenc_alg;
2265		}
2266	}
2267#endif
2268
2269	return 0;
2270
2271#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2272	/* i = ARRAY_SIZE(aes_authenc_algs); */
2273err_aes_authenc_alg:
2274	for (j = 0; j < i; j++)
2275		crypto_unregister_aead(&aes_authenc_algs[j]);
2276	crypto_unregister_skcipher(&aes_xts_alg);
2277#endif
2278err_aes_xts_alg:
2279	crypto_unregister_aead(&aes_gcm_alg);
2280err_aes_gcm_alg:
 
 
2281	i = ARRAY_SIZE(aes_algs);
2282err_aes_algs:
2283	for (j = 0; j < i; j++)
2284		crypto_unregister_skcipher(&aes_algs[j]);
2285
2286	return err;
2287}
2288
2289static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2290{
2291	dd->caps.has_dualbuff = 0;
 
2292	dd->caps.has_gcm = 0;
2293	dd->caps.has_xts = 0;
2294	dd->caps.has_authenc = 0;
2295	dd->caps.max_burst_size = 1;
2296
2297	/* keep only major version number */
2298	switch (dd->hw_version & 0xff0) {
2299	case 0x700:
2300	case 0x600:
2301	case 0x500:
2302		dd->caps.has_dualbuff = 1;
 
2303		dd->caps.has_gcm = 1;
2304		dd->caps.has_xts = 1;
2305		dd->caps.has_authenc = 1;
2306		dd->caps.max_burst_size = 4;
2307		break;
2308	case 0x200:
2309		dd->caps.has_dualbuff = 1;
 
2310		dd->caps.has_gcm = 1;
2311		dd->caps.max_burst_size = 4;
2312		break;
2313	case 0x130:
2314		dd->caps.has_dualbuff = 1;
 
2315		dd->caps.max_burst_size = 4;
2316		break;
2317	case 0x120:
2318		break;
2319	default:
2320		dev_warn(dd->dev,
2321				"Unmanaged aes version, set minimum capabilities\n");
2322		break;
2323	}
2324}
2325
 
2326static const struct of_device_id atmel_aes_dt_ids[] = {
2327	{ .compatible = "atmel,at91sam9g46-aes" },
2328	{ /* sentinel */ }
2329};
2330MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
 
2331
2332static int atmel_aes_probe(struct platform_device *pdev)
2333{
2334	struct atmel_aes_dev *aes_dd;
2335	struct device *dev = &pdev->dev;
2336	struct resource *aes_res;
2337	int err;
2338
2339	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2340	if (!aes_dd)
2341		return -ENOMEM;
2342
2343	aes_dd->dev = dev;
2344
2345	platform_set_drvdata(pdev, aes_dd);
2346
2347	INIT_LIST_HEAD(&aes_dd->list);
2348	spin_lock_init(&aes_dd->lock);
2349
2350	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2351					(unsigned long)aes_dd);
2352	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2353					(unsigned long)aes_dd);
2354
2355	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2356
2357	aes_dd->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &aes_res);
2358	if (IS_ERR(aes_dd->io_base)) {
2359		err = PTR_ERR(aes_dd->io_base);
 
 
2360		goto err_tasklet_kill;
2361	}
2362	aes_dd->phys_base = aes_res->start;
2363
2364	/* Get the IRQ */
2365	aes_dd->irq = platform_get_irq(pdev,  0);
2366	if (aes_dd->irq < 0) {
2367		err = aes_dd->irq;
2368		goto err_tasklet_kill;
2369	}
2370
2371	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2372			       IRQF_SHARED, "atmel-aes", aes_dd);
2373	if (err) {
2374		dev_err(dev, "unable to request aes irq.\n");
2375		goto err_tasklet_kill;
2376	}
2377
2378	/* Initializing the clock */
2379	aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2380	if (IS_ERR(aes_dd->iclk)) {
2381		dev_err(dev, "clock initialization failed.\n");
2382		err = PTR_ERR(aes_dd->iclk);
2383		goto err_tasklet_kill;
2384	}
2385
 
 
 
 
 
 
 
2386	err = clk_prepare(aes_dd->iclk);
2387	if (err)
2388		goto err_tasklet_kill;
2389
2390	err = atmel_aes_hw_version_init(aes_dd);
2391	if (err)
2392		goto err_iclk_unprepare;
2393
2394	atmel_aes_get_cap(aes_dd);
2395
2396#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2397	if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2398		err = -EPROBE_DEFER;
2399		goto err_iclk_unprepare;
2400	}
2401#endif
2402
2403	err = atmel_aes_buff_init(aes_dd);
2404	if (err)
2405		goto err_iclk_unprepare;
2406
2407	err = atmel_aes_dma_init(aes_dd);
2408	if (err)
2409		goto err_buff_cleanup;
2410
2411	spin_lock(&atmel_aes.lock);
2412	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2413	spin_unlock(&atmel_aes.lock);
2414
2415	err = atmel_aes_register_algs(aes_dd);
2416	if (err)
2417		goto err_algs;
2418
2419	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2420			dma_chan_name(aes_dd->src.chan),
2421			dma_chan_name(aes_dd->dst.chan));
2422
2423	return 0;
2424
2425err_algs:
2426	spin_lock(&atmel_aes.lock);
2427	list_del(&aes_dd->list);
2428	spin_unlock(&atmel_aes.lock);
2429	atmel_aes_dma_cleanup(aes_dd);
2430err_buff_cleanup:
2431	atmel_aes_buff_cleanup(aes_dd);
2432err_iclk_unprepare:
2433	clk_unprepare(aes_dd->iclk);
2434err_tasklet_kill:
2435	tasklet_kill(&aes_dd->done_task);
2436	tasklet_kill(&aes_dd->queue_task);
2437
2438	return err;
2439}
2440
2441static void atmel_aes_remove(struct platform_device *pdev)
2442{
2443	struct atmel_aes_dev *aes_dd;
2444
2445	aes_dd = platform_get_drvdata(pdev);
2446
 
2447	spin_lock(&atmel_aes.lock);
2448	list_del(&aes_dd->list);
2449	spin_unlock(&atmel_aes.lock);
2450
2451	atmel_aes_unregister_algs(aes_dd);
2452
2453	tasklet_kill(&aes_dd->done_task);
2454	tasklet_kill(&aes_dd->queue_task);
2455
2456	atmel_aes_dma_cleanup(aes_dd);
2457	atmel_aes_buff_cleanup(aes_dd);
2458
2459	clk_unprepare(aes_dd->iclk);
 
 
2460}
2461
2462static struct platform_driver atmel_aes_driver = {
2463	.probe		= atmel_aes_probe,
2464	.remove_new	= atmel_aes_remove,
2465	.driver		= {
2466		.name	= "atmel_aes",
2467		.of_match_table = atmel_aes_dt_ids,
2468	},
2469};
2470
2471module_platform_driver(atmel_aes_driver);
2472
2473MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2474MODULE_LICENSE("GPL v2");
2475MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Cryptographic API.
   4 *
   5 * Support for ATMEL AES HW acceleration.
   6 *
   7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
   8 * Author: Nicolas Royer <nicolas@eukrea.com>
   9 *
  10 * Some ideas are from omap-aes.c driver.
  11 */
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/err.h>
  18#include <linux/clk.h>
  19#include <linux/io.h>
  20#include <linux/hw_random.h>
  21#include <linux/platform_device.h>
  22
  23#include <linux/device.h>
  24#include <linux/dmaengine.h>
  25#include <linux/init.h>
  26#include <linux/errno.h>
  27#include <linux/interrupt.h>
  28#include <linux/irq.h>
  29#include <linux/scatterlist.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/of_device.h>
  32#include <linux/delay.h>
  33#include <linux/crypto.h>
  34#include <crypto/scatterwalk.h>
  35#include <crypto/algapi.h>
  36#include <crypto/aes.h>
  37#include <crypto/gcm.h>
  38#include <crypto/xts.h>
  39#include <crypto/internal/aead.h>
  40#include <crypto/internal/skcipher.h>
  41#include "atmel-aes-regs.h"
  42#include "atmel-authenc.h"
  43
  44#define ATMEL_AES_PRIORITY	300
  45
  46#define ATMEL_AES_BUFFER_ORDER	2
  47#define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
  48
  49#define CFB8_BLOCK_SIZE		1
  50#define CFB16_BLOCK_SIZE	2
  51#define CFB32_BLOCK_SIZE	4
  52#define CFB64_BLOCK_SIZE	8
  53
  54#define SIZE_IN_WORDS(x)	((x) >> 2)
  55
  56/* AES flags */
  57/* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
  58#define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
  59#define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
  60#define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
  61#define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
  62#define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
  63#define AES_FLAGS_OFB		AES_MR_OPMOD_OFB
  64#define AES_FLAGS_CFB128	(AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
  65#define AES_FLAGS_CFB64		(AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
  66#define AES_FLAGS_CFB32		(AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
  67#define AES_FLAGS_CFB16		(AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
  68#define AES_FLAGS_CFB8		(AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
  69#define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
  70#define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
  71#define AES_FLAGS_XTS		AES_MR_OPMOD_XTS
  72
  73#define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
  74				 AES_FLAGS_ENCRYPT |		\
  75				 AES_FLAGS_GTAGEN)
  76
  77#define AES_FLAGS_BUSY		BIT(3)
  78#define AES_FLAGS_DUMP_REG	BIT(4)
  79#define AES_FLAGS_OWN_SHA	BIT(5)
  80
  81#define AES_FLAGS_PERSISTENT	AES_FLAGS_BUSY
  82
  83#define ATMEL_AES_QUEUE_LENGTH	50
  84
  85#define ATMEL_AES_DMA_THRESHOLD		256
  86
  87
  88struct atmel_aes_caps {
  89	bool			has_dualbuff;
  90	bool			has_cfb64;
  91	bool			has_gcm;
  92	bool			has_xts;
  93	bool			has_authenc;
  94	u32			max_burst_size;
  95};
  96
  97struct atmel_aes_dev;
  98
  99
 100typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
 101
 102
 103struct atmel_aes_base_ctx {
 104	struct atmel_aes_dev	*dd;
 105	atmel_aes_fn_t		start;
 106	int			keylen;
 107	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
 108	u16			block_size;
 109	bool			is_aead;
 110};
 111
 112struct atmel_aes_ctx {
 113	struct atmel_aes_base_ctx	base;
 114};
 115
 116struct atmel_aes_ctr_ctx {
 117	struct atmel_aes_base_ctx	base;
 118
 119	__be32			iv[AES_BLOCK_SIZE / sizeof(u32)];
 120	size_t			offset;
 121	struct scatterlist	src[2];
 122	struct scatterlist	dst[2];
 123	u32			blocks;
 124};
 125
 126struct atmel_aes_gcm_ctx {
 127	struct atmel_aes_base_ctx	base;
 128
 129	struct scatterlist	src[2];
 130	struct scatterlist	dst[2];
 131
 132	__be32			j0[AES_BLOCK_SIZE / sizeof(u32)];
 133	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
 134	__be32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
 135	size_t			textlen;
 136
 137	const __be32		*ghash_in;
 138	__be32			*ghash_out;
 139	atmel_aes_fn_t		ghash_resume;
 140};
 141
 142struct atmel_aes_xts_ctx {
 143	struct atmel_aes_base_ctx	base;
 144
 145	u32			key2[AES_KEYSIZE_256 / sizeof(u32)];
 
 146};
 147
 148#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 149struct atmel_aes_authenc_ctx {
 150	struct atmel_aes_base_ctx	base;
 151	struct atmel_sha_authenc_ctx	*auth;
 152};
 153#endif
 154
 155struct atmel_aes_reqctx {
 156	unsigned long		mode;
 157	u8			lastc[AES_BLOCK_SIZE];
 
 158};
 159
 160#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 161struct atmel_aes_authenc_reqctx {
 162	struct atmel_aes_reqctx	base;
 163
 164	struct scatterlist	src[2];
 165	struct scatterlist	dst[2];
 166	size_t			textlen;
 167	u32			digest[SHA512_DIGEST_SIZE / sizeof(u32)];
 168
 169	/* auth_req MUST be place last. */
 170	struct ahash_request	auth_req;
 171};
 172#endif
 173
 174struct atmel_aes_dma {
 175	struct dma_chan		*chan;
 176	struct scatterlist	*sg;
 177	int			nents;
 178	unsigned int		remainder;
 179	unsigned int		sg_len;
 180};
 181
 182struct atmel_aes_dev {
 183	struct list_head	list;
 184	unsigned long		phys_base;
 185	void __iomem		*io_base;
 186
 187	struct crypto_async_request	*areq;
 188	struct atmel_aes_base_ctx	*ctx;
 189
 190	bool			is_async;
 191	atmel_aes_fn_t		resume;
 192	atmel_aes_fn_t		cpu_transfer_complete;
 193
 194	struct device		*dev;
 195	struct clk		*iclk;
 196	int			irq;
 197
 198	unsigned long		flags;
 199
 200	spinlock_t		lock;
 201	struct crypto_queue	queue;
 202
 203	struct tasklet_struct	done_task;
 204	struct tasklet_struct	queue_task;
 205
 206	size_t			total;
 207	size_t			datalen;
 208	u32			*data;
 209
 210	struct atmel_aes_dma	src;
 211	struct atmel_aes_dma	dst;
 212
 213	size_t			buflen;
 214	void			*buf;
 215	struct scatterlist	aligned_sg;
 216	struct scatterlist	*real_dst;
 217
 218	struct atmel_aes_caps	caps;
 219
 220	u32			hw_version;
 221};
 222
 223struct atmel_aes_drv {
 224	struct list_head	dev_list;
 225	spinlock_t		lock;
 226};
 227
 228static struct atmel_aes_drv atmel_aes = {
 229	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
 230	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
 231};
 232
 233#ifdef VERBOSE_DEBUG
 234static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
 235{
 236	switch (offset) {
 237	case AES_CR:
 238		return "CR";
 239
 240	case AES_MR:
 241		return "MR";
 242
 243	case AES_ISR:
 244		return "ISR";
 245
 246	case AES_IMR:
 247		return "IMR";
 248
 249	case AES_IER:
 250		return "IER";
 251
 252	case AES_IDR:
 253		return "IDR";
 254
 255	case AES_KEYWR(0):
 256	case AES_KEYWR(1):
 257	case AES_KEYWR(2):
 258	case AES_KEYWR(3):
 259	case AES_KEYWR(4):
 260	case AES_KEYWR(5):
 261	case AES_KEYWR(6):
 262	case AES_KEYWR(7):
 263		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
 264		break;
 265
 266	case AES_IDATAR(0):
 267	case AES_IDATAR(1):
 268	case AES_IDATAR(2):
 269	case AES_IDATAR(3):
 270		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
 271		break;
 272
 273	case AES_ODATAR(0):
 274	case AES_ODATAR(1):
 275	case AES_ODATAR(2):
 276	case AES_ODATAR(3):
 277		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
 278		break;
 279
 280	case AES_IVR(0):
 281	case AES_IVR(1):
 282	case AES_IVR(2):
 283	case AES_IVR(3):
 284		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
 285		break;
 286
 287	case AES_AADLENR:
 288		return "AADLENR";
 289
 290	case AES_CLENR:
 291		return "CLENR";
 292
 293	case AES_GHASHR(0):
 294	case AES_GHASHR(1):
 295	case AES_GHASHR(2):
 296	case AES_GHASHR(3):
 297		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
 298		break;
 299
 300	case AES_TAGR(0):
 301	case AES_TAGR(1):
 302	case AES_TAGR(2):
 303	case AES_TAGR(3):
 304		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
 305		break;
 306
 307	case AES_CTRR:
 308		return "CTRR";
 309
 310	case AES_GCMHR(0):
 311	case AES_GCMHR(1):
 312	case AES_GCMHR(2):
 313	case AES_GCMHR(3):
 314		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
 315		break;
 316
 317	case AES_EMR:
 318		return "EMR";
 319
 320	case AES_TWR(0):
 321	case AES_TWR(1):
 322	case AES_TWR(2):
 323	case AES_TWR(3):
 324		snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
 325		break;
 326
 327	case AES_ALPHAR(0):
 328	case AES_ALPHAR(1):
 329	case AES_ALPHAR(2):
 330	case AES_ALPHAR(3):
 331		snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
 332		break;
 333
 334	default:
 335		snprintf(tmp, sz, "0x%02x", offset);
 336		break;
 337	}
 338
 339	return tmp;
 340}
 341#endif /* VERBOSE_DEBUG */
 342
 343/* Shared functions */
 344
 345static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
 346{
 347	u32 value = readl_relaxed(dd->io_base + offset);
 348
 349#ifdef VERBOSE_DEBUG
 350	if (dd->flags & AES_FLAGS_DUMP_REG) {
 351		char tmp[16];
 352
 353		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
 354			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 355	}
 356#endif /* VERBOSE_DEBUG */
 357
 358	return value;
 359}
 360
 361static inline void atmel_aes_write(struct atmel_aes_dev *dd,
 362					u32 offset, u32 value)
 363{
 364#ifdef VERBOSE_DEBUG
 365	if (dd->flags & AES_FLAGS_DUMP_REG) {
 366		char tmp[16];
 367
 368		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
 369			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
 370	}
 371#endif /* VERBOSE_DEBUG */
 372
 373	writel_relaxed(value, dd->io_base + offset);
 374}
 375
 376static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
 377					u32 *value, int count)
 378{
 379	for (; count--; value++, offset += 4)
 380		*value = atmel_aes_read(dd, offset);
 381}
 382
 383static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
 384			      const u32 *value, int count)
 385{
 386	for (; count--; value++, offset += 4)
 387		atmel_aes_write(dd, offset, *value);
 388}
 389
 390static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
 391					void *value)
 392{
 393	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 394}
 395
 396static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
 397					 const void *value)
 398{
 399	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
 400}
 401
 402static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
 403						atmel_aes_fn_t resume)
 404{
 405	u32 isr = atmel_aes_read(dd, AES_ISR);
 406
 407	if (unlikely(isr & AES_INT_DATARDY))
 408		return resume(dd);
 409
 410	dd->resume = resume;
 411	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 412	return -EINPROGRESS;
 413}
 414
 415static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
 416{
 417	len &= block_size - 1;
 418	return len ? block_size - len : 0;
 419}
 420
 421static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
 422{
 423	struct atmel_aes_dev *aes_dd = NULL;
 424	struct atmel_aes_dev *tmp;
 425
 426	spin_lock_bh(&atmel_aes.lock);
 427	if (!ctx->dd) {
 428		list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
 429			aes_dd = tmp;
 430			break;
 431		}
 432		ctx->dd = aes_dd;
 433	} else {
 434		aes_dd = ctx->dd;
 435	}
 436
 437	spin_unlock_bh(&atmel_aes.lock);
 438
 439	return aes_dd;
 440}
 441
 442static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
 443{
 444	int err;
 445
 446	err = clk_enable(dd->iclk);
 447	if (err)
 448		return err;
 449
 450	atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
 451	atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
 452
 453	return 0;
 454}
 455
 456static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
 457{
 458	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
 459}
 460
 461static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
 462{
 463	int err;
 464
 465	err = atmel_aes_hw_init(dd);
 466	if (err)
 467		return err;
 468
 469	dd->hw_version = atmel_aes_get_version(dd);
 470
 471	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
 472
 473	clk_disable(dd->iclk);
 474	return 0;
 475}
 476
 477static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
 478				      const struct atmel_aes_reqctx *rctx)
 479{
 480	/* Clear all but persistent flags and set request flags. */
 481	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
 482}
 483
 484static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
 485{
 486	return (dd->flags & AES_FLAGS_ENCRYPT);
 487}
 488
 489#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 490static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
 491#endif
 492
 493static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
 494{
 495	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 496	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 497	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 498	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
 499
 500	if (req->cryptlen < ivsize)
 501		return;
 502
 503	if (rctx->mode & AES_FLAGS_ENCRYPT) {
 504		scatterwalk_map_and_copy(req->iv, req->dst,
 505					 req->cryptlen - ivsize, ivsize, 0);
 506	} else {
 507		if (req->src == req->dst)
 508			memcpy(req->iv, rctx->lastc, ivsize);
 509		else
 510			scatterwalk_map_and_copy(req->iv, req->src,
 511						 req->cryptlen - ivsize,
 512						 ivsize, 0);
 513	}
 514}
 515
 516static inline struct atmel_aes_ctr_ctx *
 517atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
 518{
 519	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
 520}
 521
 522static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
 523{
 524	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
 525	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 526	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
 527	unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
 528	int i;
 529
 530	/*
 531	 * The CTR transfer works in fragments of data of maximum 1 MByte
 532	 * because of the 16 bit CTR counter embedded in the IP. When reaching
 533	 * here, ctx->blocks contains the number of blocks of the last fragment
 534	 * processed, there is no need to explicit cast it to u16.
 535	 */
 536	for (i = 0; i < ctx->blocks; i++)
 537		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
 538
 539	memcpy(req->iv, ctx->iv, ivsize);
 540}
 541
 542static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
 543{
 544	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 545	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 546
 547#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
 548	if (dd->ctx->is_aead)
 549		atmel_aes_authenc_complete(dd, err);
 550#endif
 551
 552	clk_disable(dd->iclk);
 553	dd->flags &= ~AES_FLAGS_BUSY;
 554
 555	if (!err && !dd->ctx->is_aead &&
 556	    (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
 557		if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
 558			atmel_aes_set_iv_as_last_ciphertext_block(dd);
 559		else
 560			atmel_aes_ctr_update_req_iv(dd);
 561	}
 562
 563	if (dd->is_async)
 564		dd->areq->complete(dd->areq, err);
 565
 566	tasklet_schedule(&dd->queue_task);
 567
 568	return err;
 569}
 570
 571static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
 572				     const __be32 *iv, const u32 *key, int keylen)
 573{
 574	u32 valmr = 0;
 575
 576	/* MR register must be set before IV registers */
 577	if (keylen == AES_KEYSIZE_128)
 578		valmr |= AES_MR_KEYSIZE_128;
 579	else if (keylen == AES_KEYSIZE_192)
 580		valmr |= AES_MR_KEYSIZE_192;
 581	else
 582		valmr |= AES_MR_KEYSIZE_256;
 583
 584	valmr |= dd->flags & AES_FLAGS_MODE_MASK;
 585
 586	if (use_dma) {
 587		valmr |= AES_MR_SMOD_IDATAR0;
 588		if (dd->caps.has_dualbuff)
 589			valmr |= AES_MR_DUALBUFF;
 590	} else {
 591		valmr |= AES_MR_SMOD_AUTO;
 592	}
 593
 594	atmel_aes_write(dd, AES_MR, valmr);
 595
 596	atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
 597
 598	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
 599		atmel_aes_write_block(dd, AES_IVR(0), iv);
 600}
 601
 602static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
 603					const __be32 *iv)
 604
 605{
 606	atmel_aes_write_ctrl_key(dd, use_dma, iv,
 607				 dd->ctx->key, dd->ctx->keylen);
 608}
 609
 610/* CPU transfer */
 611
 612static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
 613{
 614	int err = 0;
 615	u32 isr;
 616
 617	for (;;) {
 618		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
 619		dd->data += 4;
 620		dd->datalen -= AES_BLOCK_SIZE;
 621
 622		if (dd->datalen < AES_BLOCK_SIZE)
 623			break;
 624
 625		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 626
 627		isr = atmel_aes_read(dd, AES_ISR);
 628		if (!(isr & AES_INT_DATARDY)) {
 629			dd->resume = atmel_aes_cpu_transfer;
 630			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
 631			return -EINPROGRESS;
 632		}
 633	}
 634
 635	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 636				 dd->buf, dd->total))
 637		err = -EINVAL;
 638
 639	if (err)
 640		return atmel_aes_complete(dd, err);
 641
 642	return dd->cpu_transfer_complete(dd);
 643}
 644
 645static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
 646			       struct scatterlist *src,
 647			       struct scatterlist *dst,
 648			       size_t len,
 649			       atmel_aes_fn_t resume)
 650{
 651	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
 652
 653	if (unlikely(len == 0))
 654		return -EINVAL;
 655
 656	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 657
 658	dd->total = len;
 659	dd->real_dst = dst;
 660	dd->cpu_transfer_complete = resume;
 661	dd->datalen = len + padlen;
 662	dd->data = (u32 *)dd->buf;
 663	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
 664	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
 665}
 666
 667
 668/* DMA transfer */
 669
 670static void atmel_aes_dma_callback(void *data);
 671
 672static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
 673				    struct scatterlist *sg,
 674				    size_t len,
 675				    struct atmel_aes_dma *dma)
 676{
 677	int nents;
 678
 679	if (!IS_ALIGNED(len, dd->ctx->block_size))
 680		return false;
 681
 682	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
 683		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 684			return false;
 685
 686		if (len <= sg->length) {
 687			if (!IS_ALIGNED(len, dd->ctx->block_size))
 688				return false;
 689
 690			dma->nents = nents+1;
 691			dma->remainder = sg->length - len;
 692			sg->length = len;
 693			return true;
 694		}
 695
 696		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
 697			return false;
 698
 699		len -= sg->length;
 700	}
 701
 702	return false;
 703}
 704
 705static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
 706{
 707	struct scatterlist *sg = dma->sg;
 708	int nents = dma->nents;
 709
 710	if (!dma->remainder)
 711		return;
 712
 713	while (--nents > 0 && sg)
 714		sg = sg_next(sg);
 715
 716	if (!sg)
 717		return;
 718
 719	sg->length += dma->remainder;
 720}
 721
 722static int atmel_aes_map(struct atmel_aes_dev *dd,
 723			 struct scatterlist *src,
 724			 struct scatterlist *dst,
 725			 size_t len)
 726{
 727	bool src_aligned, dst_aligned;
 728	size_t padlen;
 729
 730	dd->total = len;
 731	dd->src.sg = src;
 732	dd->dst.sg = dst;
 733	dd->real_dst = dst;
 734
 735	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
 736	if (src == dst)
 737		dst_aligned = src_aligned;
 738	else
 739		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
 740	if (!src_aligned || !dst_aligned) {
 741		padlen = atmel_aes_padlen(len, dd->ctx->block_size);
 742
 743		if (dd->buflen < len + padlen)
 744			return -ENOMEM;
 745
 746		if (!src_aligned) {
 747			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
 748			dd->src.sg = &dd->aligned_sg;
 749			dd->src.nents = 1;
 750			dd->src.remainder = 0;
 751		}
 752
 753		if (!dst_aligned) {
 754			dd->dst.sg = &dd->aligned_sg;
 755			dd->dst.nents = 1;
 756			dd->dst.remainder = 0;
 757		}
 758
 759		sg_init_table(&dd->aligned_sg, 1);
 760		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
 761	}
 762
 763	if (dd->src.sg == dd->dst.sg) {
 764		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 765					    DMA_BIDIRECTIONAL);
 766		dd->dst.sg_len = dd->src.sg_len;
 767		if (!dd->src.sg_len)
 768			return -EFAULT;
 769	} else {
 770		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
 771					    DMA_TO_DEVICE);
 772		if (!dd->src.sg_len)
 773			return -EFAULT;
 774
 775		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 776					    DMA_FROM_DEVICE);
 777		if (!dd->dst.sg_len) {
 778			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 779				     DMA_TO_DEVICE);
 780			return -EFAULT;
 781		}
 782	}
 783
 784	return 0;
 785}
 786
 787static void atmel_aes_unmap(struct atmel_aes_dev *dd)
 788{
 789	if (dd->src.sg == dd->dst.sg) {
 790		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 791			     DMA_BIDIRECTIONAL);
 792
 793		if (dd->src.sg != &dd->aligned_sg)
 794			atmel_aes_restore_sg(&dd->src);
 795	} else {
 796		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
 797			     DMA_FROM_DEVICE);
 798
 799		if (dd->dst.sg != &dd->aligned_sg)
 800			atmel_aes_restore_sg(&dd->dst);
 801
 802		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
 803			     DMA_TO_DEVICE);
 804
 805		if (dd->src.sg != &dd->aligned_sg)
 806			atmel_aes_restore_sg(&dd->src);
 807	}
 808
 809	if (dd->dst.sg == &dd->aligned_sg)
 810		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
 811				    dd->buf, dd->total);
 812}
 813
 814static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
 815					enum dma_slave_buswidth addr_width,
 816					enum dma_transfer_direction dir,
 817					u32 maxburst)
 818{
 819	struct dma_async_tx_descriptor *desc;
 820	struct dma_slave_config config;
 821	dma_async_tx_callback callback;
 822	struct atmel_aes_dma *dma;
 823	int err;
 824
 825	memset(&config, 0, sizeof(config));
 826	config.src_addr_width = addr_width;
 827	config.dst_addr_width = addr_width;
 828	config.src_maxburst = maxburst;
 829	config.dst_maxburst = maxburst;
 830
 831	switch (dir) {
 832	case DMA_MEM_TO_DEV:
 833		dma = &dd->src;
 834		callback = NULL;
 835		config.dst_addr = dd->phys_base + AES_IDATAR(0);
 836		break;
 837
 838	case DMA_DEV_TO_MEM:
 839		dma = &dd->dst;
 840		callback = atmel_aes_dma_callback;
 841		config.src_addr = dd->phys_base + AES_ODATAR(0);
 842		break;
 843
 844	default:
 845		return -EINVAL;
 846	}
 847
 848	err = dmaengine_slave_config(dma->chan, &config);
 849	if (err)
 850		return err;
 851
 852	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
 853				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 854	if (!desc)
 855		return -ENOMEM;
 856
 857	desc->callback = callback;
 858	desc->callback_param = dd;
 859	dmaengine_submit(desc);
 860	dma_async_issue_pending(dma->chan);
 861
 862	return 0;
 863}
 864
 865static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
 866			       struct scatterlist *src,
 867			       struct scatterlist *dst,
 868			       size_t len,
 869			       atmel_aes_fn_t resume)
 870{
 871	enum dma_slave_buswidth addr_width;
 872	u32 maxburst;
 873	int err;
 874
 875	switch (dd->ctx->block_size) {
 876	case CFB8_BLOCK_SIZE:
 877		addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 878		maxburst = 1;
 879		break;
 880
 881	case CFB16_BLOCK_SIZE:
 882		addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 883		maxburst = 1;
 884		break;
 885
 886	case CFB32_BLOCK_SIZE:
 887	case CFB64_BLOCK_SIZE:
 888		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 889		maxburst = 1;
 890		break;
 891
 892	case AES_BLOCK_SIZE:
 893		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 894		maxburst = dd->caps.max_burst_size;
 895		break;
 896
 897	default:
 898		err = -EINVAL;
 899		goto exit;
 900	}
 901
 902	err = atmel_aes_map(dd, src, dst, len);
 903	if (err)
 904		goto exit;
 905
 906	dd->resume = resume;
 907
 908	/* Set output DMA transfer first */
 909	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
 910					   maxburst);
 911	if (err)
 912		goto unmap;
 913
 914	/* Then set input DMA transfer */
 915	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
 916					   maxburst);
 917	if (err)
 918		goto output_transfer_stop;
 919
 920	return -EINPROGRESS;
 921
 922output_transfer_stop:
 923	dmaengine_terminate_sync(dd->dst.chan);
 924unmap:
 925	atmel_aes_unmap(dd);
 926exit:
 927	return atmel_aes_complete(dd, err);
 928}
 929
 930static void atmel_aes_dma_callback(void *data)
 931{
 932	struct atmel_aes_dev *dd = data;
 933
 934	atmel_aes_unmap(dd);
 935	dd->is_async = true;
 936	(void)dd->resume(dd);
 937}
 938
 939static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
 940				  struct crypto_async_request *new_areq)
 941{
 942	struct crypto_async_request *areq, *backlog;
 943	struct atmel_aes_base_ctx *ctx;
 944	unsigned long flags;
 945	bool start_async;
 946	int err, ret = 0;
 947
 948	spin_lock_irqsave(&dd->lock, flags);
 949	if (new_areq)
 950		ret = crypto_enqueue_request(&dd->queue, new_areq);
 951	if (dd->flags & AES_FLAGS_BUSY) {
 952		spin_unlock_irqrestore(&dd->lock, flags);
 953		return ret;
 954	}
 955	backlog = crypto_get_backlog(&dd->queue);
 956	areq = crypto_dequeue_request(&dd->queue);
 957	if (areq)
 958		dd->flags |= AES_FLAGS_BUSY;
 959	spin_unlock_irqrestore(&dd->lock, flags);
 960
 961	if (!areq)
 962		return ret;
 963
 964	if (backlog)
 965		backlog->complete(backlog, -EINPROGRESS);
 966
 967	ctx = crypto_tfm_ctx(areq->tfm);
 968
 969	dd->areq = areq;
 970	dd->ctx = ctx;
 971	start_async = (areq != new_areq);
 972	dd->is_async = start_async;
 973
 974	/* WARNING: ctx->start() MAY change dd->is_async. */
 975	err = ctx->start(dd);
 976	return (start_async) ? ret : err;
 977}
 978
 979
 980/* AES async block ciphers */
 981
 982static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
 983{
 984	return atmel_aes_complete(dd, 0);
 985}
 986
 987static int atmel_aes_start(struct atmel_aes_dev *dd)
 988{
 989	struct skcipher_request *req = skcipher_request_cast(dd->areq);
 990	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
 991	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
 992			dd->ctx->block_size != AES_BLOCK_SIZE);
 993	int err;
 994
 995	atmel_aes_set_mode(dd, rctx);
 996
 997	err = atmel_aes_hw_init(dd);
 998	if (err)
 999		return atmel_aes_complete(dd, err);
1000
1001	atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
1002	if (use_dma)
1003		return atmel_aes_dma_start(dd, req->src, req->dst,
1004					   req->cryptlen,
1005					   atmel_aes_transfer_complete);
1006
1007	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1008				   atmel_aes_transfer_complete);
1009}
1010
1011static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
1012{
1013	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1014	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1015	struct scatterlist *src, *dst;
1016	size_t datalen;
1017	u32 ctr;
1018	u16 start, end;
1019	bool use_dma, fragmented = false;
1020
1021	/* Check for transfer completion. */
1022	ctx->offset += dd->total;
1023	if (ctx->offset >= req->cryptlen)
1024		return atmel_aes_transfer_complete(dd);
1025
1026	/* Compute data length. */
1027	datalen = req->cryptlen - ctx->offset;
1028	ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1029	ctr = be32_to_cpu(ctx->iv[3]);
1030
1031	/* Check 16bit counter overflow. */
1032	start = ctr & 0xffff;
1033	end = start + ctx->blocks - 1;
1034
1035	if (ctx->blocks >> 16 || end < start) {
1036		ctr |= 0xffff;
1037		datalen = AES_BLOCK_SIZE * (0x10000 - start);
1038		fragmented = true;
1039	}
1040
1041	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1042
1043	/* Jump to offset. */
1044	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1045	dst = ((req->src == req->dst) ? src :
1046	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1047
1048	/* Configure hardware. */
1049	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1050	if (unlikely(fragmented)) {
1051		/*
1052		 * Increment the counter manually to cope with the hardware
1053		 * counter overflow.
1054		 */
1055		ctx->iv[3] = cpu_to_be32(ctr);
1056		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1057	}
1058
1059	if (use_dma)
1060		return atmel_aes_dma_start(dd, src, dst, datalen,
1061					   atmel_aes_ctr_transfer);
1062
1063	return atmel_aes_cpu_start(dd, src, dst, datalen,
1064				   atmel_aes_ctr_transfer);
1065}
1066
1067static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1068{
1069	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1070	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1071	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1072	int err;
1073
1074	atmel_aes_set_mode(dd, rctx);
1075
1076	err = atmel_aes_hw_init(dd);
1077	if (err)
1078		return atmel_aes_complete(dd, err);
1079
1080	memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1081	ctx->offset = 0;
1082	dd->total = 0;
1083	return atmel_aes_ctr_transfer(dd);
1084}
1085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1087{
1088	struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1089	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1090	struct atmel_aes_reqctx *rctx;
1091	struct atmel_aes_dev *dd;
1092
1093	switch (mode & AES_FLAGS_OPMODE_MASK) {
1094	case AES_FLAGS_CFB8:
1095		ctx->block_size = CFB8_BLOCK_SIZE;
1096		break;
 
 
 
 
1097
1098	case AES_FLAGS_CFB16:
1099		ctx->block_size = CFB16_BLOCK_SIZE;
1100		break;
 
 
 
1101
1102	case AES_FLAGS_CFB32:
1103		ctx->block_size = CFB32_BLOCK_SIZE;
1104		break;
1105
1106	case AES_FLAGS_CFB64:
1107		ctx->block_size = CFB64_BLOCK_SIZE;
1108		break;
1109
1110	default:
1111		ctx->block_size = AES_BLOCK_SIZE;
1112		break;
1113	}
1114	ctx->is_aead = false;
1115
1116	dd = atmel_aes_find_dev(ctx);
1117	if (!dd)
1118		return -ENODEV;
1119
1120	rctx = skcipher_request_ctx(req);
1121	rctx->mode = mode;
1122
1123	if ((mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB &&
1124	    !(mode & AES_FLAGS_ENCRYPT) && req->src == req->dst) {
1125		unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1126
1127		if (req->cryptlen >= ivsize)
1128			scatterwalk_map_and_copy(rctx->lastc, req->src,
1129						 req->cryptlen - ivsize,
1130						 ivsize, 0);
1131	}
1132
1133	return atmel_aes_handle_queue(dd, &req->base);
1134}
1135
1136static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1137			   unsigned int keylen)
1138{
1139	struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1140
1141	if (keylen != AES_KEYSIZE_128 &&
1142	    keylen != AES_KEYSIZE_192 &&
1143	    keylen != AES_KEYSIZE_256)
1144		return -EINVAL;
1145
1146	memcpy(ctx->key, key, keylen);
1147	ctx->keylen = keylen;
1148
1149	return 0;
1150}
1151
1152static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1153{
1154	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1155}
1156
1157static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1158{
1159	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1160}
1161
1162static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1163{
1164	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1165}
1166
1167static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1168{
1169	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1170}
1171
1172static int atmel_aes_ofb_encrypt(struct skcipher_request *req)
1173{
1174	return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1175}
1176
1177static int atmel_aes_ofb_decrypt(struct skcipher_request *req)
1178{
1179	return atmel_aes_crypt(req, AES_FLAGS_OFB);
1180}
1181
1182static int atmel_aes_cfb_encrypt(struct skcipher_request *req)
1183{
1184	return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1185}
1186
1187static int atmel_aes_cfb_decrypt(struct skcipher_request *req)
1188{
1189	return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1190}
1191
1192static int atmel_aes_cfb64_encrypt(struct skcipher_request *req)
1193{
1194	return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1195}
1196
1197static int atmel_aes_cfb64_decrypt(struct skcipher_request *req)
1198{
1199	return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1200}
1201
1202static int atmel_aes_cfb32_encrypt(struct skcipher_request *req)
1203{
1204	return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1205}
1206
1207static int atmel_aes_cfb32_decrypt(struct skcipher_request *req)
1208{
1209	return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1210}
1211
1212static int atmel_aes_cfb16_encrypt(struct skcipher_request *req)
1213{
1214	return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1215}
1216
1217static int atmel_aes_cfb16_decrypt(struct skcipher_request *req)
1218{
1219	return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1220}
1221
1222static int atmel_aes_cfb8_encrypt(struct skcipher_request *req)
1223{
1224	return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1225}
1226
1227static int atmel_aes_cfb8_decrypt(struct skcipher_request *req)
1228{
1229	return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1230}
1231
1232static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1233{
1234	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1235}
1236
1237static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1238{
1239	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1240}
1241
1242static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1243{
1244	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
 
 
 
 
 
1245
1246	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
 
1247	ctx->base.start = atmel_aes_start;
1248
1249	return 0;
1250}
1251
1252static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1253{
1254	struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
 
 
 
 
 
1255
1256	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
 
1257	ctx->base.start = atmel_aes_ctr_start;
1258
1259	return 0;
1260}
1261
1262static struct skcipher_alg aes_algs[] = {
1263{
1264	.base.cra_name		= "ecb(aes)",
1265	.base.cra_driver_name	= "atmel-ecb-aes",
1266	.base.cra_blocksize	= AES_BLOCK_SIZE,
1267	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1268
1269	.init			= atmel_aes_init_tfm,
1270	.min_keysize		= AES_MIN_KEY_SIZE,
1271	.max_keysize		= AES_MAX_KEY_SIZE,
1272	.setkey			= atmel_aes_setkey,
1273	.encrypt		= atmel_aes_ecb_encrypt,
1274	.decrypt		= atmel_aes_ecb_decrypt,
1275},
1276{
1277	.base.cra_name		= "cbc(aes)",
1278	.base.cra_driver_name	= "atmel-cbc-aes",
1279	.base.cra_blocksize	= AES_BLOCK_SIZE,
1280	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1281
1282	.init			= atmel_aes_init_tfm,
1283	.min_keysize		= AES_MIN_KEY_SIZE,
1284	.max_keysize		= AES_MAX_KEY_SIZE,
1285	.setkey			= atmel_aes_setkey,
1286	.encrypt		= atmel_aes_cbc_encrypt,
1287	.decrypt		= atmel_aes_cbc_decrypt,
1288	.ivsize			= AES_BLOCK_SIZE,
1289},
1290{
1291	.base.cra_name		= "ofb(aes)",
1292	.base.cra_driver_name	= "atmel-ofb-aes",
1293	.base.cra_blocksize	= AES_BLOCK_SIZE,
1294	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1295
1296	.init			= atmel_aes_init_tfm,
1297	.min_keysize		= AES_MIN_KEY_SIZE,
1298	.max_keysize		= AES_MAX_KEY_SIZE,
1299	.setkey			= atmel_aes_setkey,
1300	.encrypt		= atmel_aes_ofb_encrypt,
1301	.decrypt		= atmel_aes_ofb_decrypt,
1302	.ivsize			= AES_BLOCK_SIZE,
1303},
1304{
1305	.base.cra_name		= "cfb(aes)",
1306	.base.cra_driver_name	= "atmel-cfb-aes",
1307	.base.cra_blocksize	= AES_BLOCK_SIZE,
1308	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1309
1310	.init			= atmel_aes_init_tfm,
1311	.min_keysize		= AES_MIN_KEY_SIZE,
1312	.max_keysize		= AES_MAX_KEY_SIZE,
1313	.setkey			= atmel_aes_setkey,
1314	.encrypt		= atmel_aes_cfb_encrypt,
1315	.decrypt		= atmel_aes_cfb_decrypt,
1316	.ivsize			= AES_BLOCK_SIZE,
1317},
1318{
1319	.base.cra_name		= "cfb32(aes)",
1320	.base.cra_driver_name	= "atmel-cfb32-aes",
1321	.base.cra_blocksize	= CFB32_BLOCK_SIZE,
1322	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1323
1324	.init			= atmel_aes_init_tfm,
1325	.min_keysize		= AES_MIN_KEY_SIZE,
1326	.max_keysize		= AES_MAX_KEY_SIZE,
1327	.setkey			= atmel_aes_setkey,
1328	.encrypt		= atmel_aes_cfb32_encrypt,
1329	.decrypt		= atmel_aes_cfb32_decrypt,
1330	.ivsize			= AES_BLOCK_SIZE,
1331},
1332{
1333	.base.cra_name		= "cfb16(aes)",
1334	.base.cra_driver_name	= "atmel-cfb16-aes",
1335	.base.cra_blocksize	= CFB16_BLOCK_SIZE,
1336	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1337
1338	.init			= atmel_aes_init_tfm,
1339	.min_keysize		= AES_MIN_KEY_SIZE,
1340	.max_keysize		= AES_MAX_KEY_SIZE,
1341	.setkey			= atmel_aes_setkey,
1342	.encrypt		= atmel_aes_cfb16_encrypt,
1343	.decrypt		= atmel_aes_cfb16_decrypt,
1344	.ivsize			= AES_BLOCK_SIZE,
1345},
1346{
1347	.base.cra_name		= "cfb8(aes)",
1348	.base.cra_driver_name	= "atmel-cfb8-aes",
1349	.base.cra_blocksize	= CFB8_BLOCK_SIZE,
1350	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1351
1352	.init			= atmel_aes_init_tfm,
1353	.min_keysize		= AES_MIN_KEY_SIZE,
1354	.max_keysize		= AES_MAX_KEY_SIZE,
1355	.setkey			= atmel_aes_setkey,
1356	.encrypt		= atmel_aes_cfb8_encrypt,
1357	.decrypt		= atmel_aes_cfb8_decrypt,
1358	.ivsize			= AES_BLOCK_SIZE,
1359},
1360{
1361	.base.cra_name		= "ctr(aes)",
1362	.base.cra_driver_name	= "atmel-ctr-aes",
1363	.base.cra_blocksize	= 1,
1364	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctr_ctx),
1365
1366	.init			= atmel_aes_ctr_init_tfm,
1367	.min_keysize		= AES_MIN_KEY_SIZE,
1368	.max_keysize		= AES_MAX_KEY_SIZE,
1369	.setkey			= atmel_aes_setkey,
1370	.encrypt		= atmel_aes_ctr_encrypt,
1371	.decrypt		= atmel_aes_ctr_decrypt,
1372	.ivsize			= AES_BLOCK_SIZE,
1373},
1374};
1375
1376static struct skcipher_alg aes_cfb64_alg = {
1377	.base.cra_name		= "cfb64(aes)",
1378	.base.cra_driver_name	= "atmel-cfb64-aes",
1379	.base.cra_blocksize	= CFB64_BLOCK_SIZE,
1380	.base.cra_ctxsize	= sizeof(struct atmel_aes_ctx),
1381
1382	.init			= atmel_aes_init_tfm,
1383	.min_keysize		= AES_MIN_KEY_SIZE,
1384	.max_keysize		= AES_MAX_KEY_SIZE,
1385	.setkey			= atmel_aes_setkey,
1386	.encrypt		= atmel_aes_cfb64_encrypt,
1387	.decrypt		= atmel_aes_cfb64_decrypt,
1388	.ivsize			= AES_BLOCK_SIZE,
1389};
1390
1391
1392/* gcm aead functions */
1393
1394static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1395			       const u32 *data, size_t datalen,
1396			       const __be32 *ghash_in, __be32 *ghash_out,
1397			       atmel_aes_fn_t resume);
1398static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1399static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1400
1401static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1402static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1403static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1404static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1405static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1406static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1407static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1408
1409static inline struct atmel_aes_gcm_ctx *
1410atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1411{
1412	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1413}
1414
1415static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1416			       const u32 *data, size_t datalen,
1417			       const __be32 *ghash_in, __be32 *ghash_out,
1418			       atmel_aes_fn_t resume)
1419{
1420	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1421
1422	dd->data = (u32 *)data;
1423	dd->datalen = datalen;
1424	ctx->ghash_in = ghash_in;
1425	ctx->ghash_out = ghash_out;
1426	ctx->ghash_resume = resume;
1427
1428	atmel_aes_write_ctrl(dd, false, NULL);
1429	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1430}
1431
1432static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1433{
1434	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1435
1436	/* Set the data length. */
1437	atmel_aes_write(dd, AES_AADLENR, dd->total);
1438	atmel_aes_write(dd, AES_CLENR, 0);
1439
1440	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
1441	if (ctx->ghash_in)
1442		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1443
1444	return atmel_aes_gcm_ghash_finalize(dd);
1445}
1446
1447static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1448{
1449	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1450	u32 isr;
1451
1452	/* Write data into the Input Data Registers. */
1453	while (dd->datalen > 0) {
1454		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1455		dd->data += 4;
1456		dd->datalen -= AES_BLOCK_SIZE;
1457
1458		isr = atmel_aes_read(dd, AES_ISR);
1459		if (!(isr & AES_INT_DATARDY)) {
1460			dd->resume = atmel_aes_gcm_ghash_finalize;
1461			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1462			return -EINPROGRESS;
1463		}
1464	}
1465
1466	/* Read the computed hash from GHASHRx. */
1467	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1468
1469	return ctx->ghash_resume(dd);
1470}
1471
1472
1473static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1474{
1475	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1476	struct aead_request *req = aead_request_cast(dd->areq);
1477	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1478	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1479	size_t ivsize = crypto_aead_ivsize(tfm);
1480	size_t datalen, padlen;
1481	const void *iv = req->iv;
1482	u8 *data = dd->buf;
1483	int err;
1484
1485	atmel_aes_set_mode(dd, rctx);
1486
1487	err = atmel_aes_hw_init(dd);
1488	if (err)
1489		return atmel_aes_complete(dd, err);
1490
1491	if (likely(ivsize == GCM_AES_IV_SIZE)) {
1492		memcpy(ctx->j0, iv, ivsize);
1493		ctx->j0[3] = cpu_to_be32(1);
1494		return atmel_aes_gcm_process(dd);
1495	}
1496
1497	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1498	datalen = ivsize + padlen + AES_BLOCK_SIZE;
1499	if (datalen > dd->buflen)
1500		return atmel_aes_complete(dd, -EINVAL);
1501
1502	memcpy(data, iv, ivsize);
1503	memset(data + ivsize, 0, padlen + sizeof(u64));
1504	((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1505
1506	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1507				   NULL, ctx->j0, atmel_aes_gcm_process);
1508}
1509
1510static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1511{
1512	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1513	struct aead_request *req = aead_request_cast(dd->areq);
1514	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1515	bool enc = atmel_aes_is_encrypt(dd);
1516	u32 authsize;
1517
1518	/* Compute text length. */
1519	authsize = crypto_aead_authsize(tfm);
1520	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1521
1522	/*
1523	 * According to tcrypt test suite, the GCM Automatic Tag Generation
1524	 * fails when both the message and its associated data are empty.
1525	 */
1526	if (likely(req->assoclen != 0 || ctx->textlen != 0))
1527		dd->flags |= AES_FLAGS_GTAGEN;
1528
1529	atmel_aes_write_ctrl(dd, false, NULL);
1530	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1531}
1532
1533static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1534{
1535	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1536	struct aead_request *req = aead_request_cast(dd->areq);
1537	__be32 j0_lsw, *j0 = ctx->j0;
1538	size_t padlen;
1539
1540	/* Write incr32(J0) into IV. */
1541	j0_lsw = j0[3];
1542	j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
1543	atmel_aes_write_block(dd, AES_IVR(0), j0);
1544	j0[3] = j0_lsw;
1545
1546	/* Set aad and text lengths. */
1547	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1548	atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1549
1550	/* Check whether AAD are present. */
1551	if (unlikely(req->assoclen == 0)) {
1552		dd->datalen = 0;
1553		return atmel_aes_gcm_data(dd);
1554	}
1555
1556	/* Copy assoc data and add padding. */
1557	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1558	if (unlikely(req->assoclen + padlen > dd->buflen))
1559		return atmel_aes_complete(dd, -EINVAL);
1560	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1561
1562	/* Write assoc data into the Input Data register. */
1563	dd->data = (u32 *)dd->buf;
1564	dd->datalen = req->assoclen + padlen;
1565	return atmel_aes_gcm_data(dd);
1566}
1567
1568static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1569{
1570	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1571	struct aead_request *req = aead_request_cast(dd->areq);
1572	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1573	struct scatterlist *src, *dst;
1574	u32 isr, mr;
1575
1576	/* Write AAD first. */
1577	while (dd->datalen > 0) {
1578		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1579		dd->data += 4;
1580		dd->datalen -= AES_BLOCK_SIZE;
1581
1582		isr = atmel_aes_read(dd, AES_ISR);
1583		if (!(isr & AES_INT_DATARDY)) {
1584			dd->resume = atmel_aes_gcm_data;
1585			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1586			return -EINPROGRESS;
1587		}
1588	}
1589
1590	/* GMAC only. */
1591	if (unlikely(ctx->textlen == 0))
1592		return atmel_aes_gcm_tag_init(dd);
1593
1594	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
1595	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1596	dst = ((req->src == req->dst) ? src :
1597	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1598
1599	if (use_dma) {
1600		/* Update the Mode Register for DMA transfers. */
1601		mr = atmel_aes_read(dd, AES_MR);
1602		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1603		mr |= AES_MR_SMOD_IDATAR0;
1604		if (dd->caps.has_dualbuff)
1605			mr |= AES_MR_DUALBUFF;
1606		atmel_aes_write(dd, AES_MR, mr);
1607
1608		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1609					   atmel_aes_gcm_tag_init);
1610	}
1611
1612	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1613				   atmel_aes_gcm_tag_init);
1614}
1615
1616static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1617{
1618	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1619	struct aead_request *req = aead_request_cast(dd->areq);
1620	__be64 *data = dd->buf;
1621
1622	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1623		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1624			dd->resume = atmel_aes_gcm_tag_init;
1625			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1626			return -EINPROGRESS;
1627		}
1628
1629		return atmel_aes_gcm_finalize(dd);
1630	}
1631
1632	/* Read the GCM Intermediate Hash Word Registers. */
1633	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1634
1635	data[0] = cpu_to_be64(req->assoclen * 8);
1636	data[1] = cpu_to_be64(ctx->textlen * 8);
1637
1638	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1639				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1640}
1641
1642static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1643{
1644	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1645	unsigned long flags;
1646
1647	/*
1648	 * Change mode to CTR to complete the tag generation.
1649	 * Use J0 as Initialization Vector.
1650	 */
1651	flags = dd->flags;
1652	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1653	dd->flags |= AES_FLAGS_CTR;
1654	atmel_aes_write_ctrl(dd, false, ctx->j0);
1655	dd->flags = flags;
1656
1657	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1658	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1659}
1660
1661static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1662{
1663	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1664	struct aead_request *req = aead_request_cast(dd->areq);
1665	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1666	bool enc = atmel_aes_is_encrypt(dd);
1667	u32 offset, authsize, itag[4], *otag = ctx->tag;
1668	int err;
1669
1670	/* Read the computed tag. */
1671	if (likely(dd->flags & AES_FLAGS_GTAGEN))
1672		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1673	else
1674		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1675
1676	offset = req->assoclen + ctx->textlen;
1677	authsize = crypto_aead_authsize(tfm);
1678	if (enc) {
1679		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1680		err = 0;
1681	} else {
1682		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1683		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1684	}
1685
1686	return atmel_aes_complete(dd, err);
1687}
1688
1689static int atmel_aes_gcm_crypt(struct aead_request *req,
1690			       unsigned long mode)
1691{
1692	struct atmel_aes_base_ctx *ctx;
1693	struct atmel_aes_reqctx *rctx;
1694	struct atmel_aes_dev *dd;
1695
1696	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1697	ctx->block_size = AES_BLOCK_SIZE;
1698	ctx->is_aead = true;
1699
1700	dd = atmel_aes_find_dev(ctx);
1701	if (!dd)
1702		return -ENODEV;
1703
1704	rctx = aead_request_ctx(req);
1705	rctx->mode = AES_FLAGS_GCM | mode;
1706
1707	return atmel_aes_handle_queue(dd, &req->base);
1708}
1709
1710static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1711				unsigned int keylen)
1712{
1713	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1714
1715	if (keylen != AES_KEYSIZE_256 &&
1716	    keylen != AES_KEYSIZE_192 &&
1717	    keylen != AES_KEYSIZE_128)
1718		return -EINVAL;
1719
1720	memcpy(ctx->key, key, keylen);
1721	ctx->keylen = keylen;
1722
1723	return 0;
1724}
1725
1726static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1727				     unsigned int authsize)
1728{
1729	return crypto_gcm_check_authsize(authsize);
1730}
1731
1732static int atmel_aes_gcm_encrypt(struct aead_request *req)
1733{
1734	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1735}
1736
1737static int atmel_aes_gcm_decrypt(struct aead_request *req)
1738{
1739	return atmel_aes_gcm_crypt(req, 0);
1740}
1741
1742static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1743{
1744	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
 
 
 
 
 
1745
1746	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
 
1747	ctx->base.start = atmel_aes_gcm_start;
1748
1749	return 0;
1750}
1751
1752static struct aead_alg aes_gcm_alg = {
1753	.setkey		= atmel_aes_gcm_setkey,
1754	.setauthsize	= atmel_aes_gcm_setauthsize,
1755	.encrypt	= atmel_aes_gcm_encrypt,
1756	.decrypt	= atmel_aes_gcm_decrypt,
1757	.init		= atmel_aes_gcm_init,
1758	.ivsize		= GCM_AES_IV_SIZE,
1759	.maxauthsize	= AES_BLOCK_SIZE,
1760
1761	.base = {
1762		.cra_name		= "gcm(aes)",
1763		.cra_driver_name	= "atmel-gcm-aes",
1764		.cra_blocksize		= 1,
1765		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
1766	},
1767};
1768
1769
1770/* xts functions */
1771
1772static inline struct atmel_aes_xts_ctx *
1773atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1774{
1775	return container_of(ctx, struct atmel_aes_xts_ctx, base);
1776}
1777
1778static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1779
1780static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1781{
1782	struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1783	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1784	struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1785	unsigned long flags;
1786	int err;
1787
1788	atmel_aes_set_mode(dd, rctx);
1789
1790	err = atmel_aes_hw_init(dd);
1791	if (err)
1792		return atmel_aes_complete(dd, err);
1793
1794	/* Compute the tweak value from req->iv with ecb(aes). */
1795	flags = dd->flags;
1796	dd->flags &= ~AES_FLAGS_MODE_MASK;
1797	dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1798	atmel_aes_write_ctrl_key(dd, false, NULL,
1799				 ctx->key2, ctx->base.keylen);
1800	dd->flags = flags;
1801
1802	atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1803	return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1804}
1805
1806static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1807{
1808	struct skcipher_request *req = skcipher_request_cast(dd->areq);
1809	bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1810	u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1811	static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1812	u8 *tweak_bytes = (u8 *)tweak;
1813	int i;
1814
1815	/* Read the computed ciphered tweak value. */
1816	atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1817	/*
1818	 * Hardware quirk:
1819	 * the order of the ciphered tweak bytes need to be reversed before
1820	 * writing them into the ODATARx registers.
1821	 */
1822	for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
1823		u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
1824
1825		tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
1826		tweak_bytes[i] = tmp;
1827	}
1828
1829	/* Process the data. */
1830	atmel_aes_write_ctrl(dd, use_dma, NULL);
1831	atmel_aes_write_block(dd, AES_TWR(0), tweak);
1832	atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1833	if (use_dma)
1834		return atmel_aes_dma_start(dd, req->src, req->dst,
1835					   req->cryptlen,
1836					   atmel_aes_transfer_complete);
1837
1838	return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1839				   atmel_aes_transfer_complete);
1840}
1841
1842static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1843				unsigned int keylen)
1844{
1845	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1846	int err;
1847
1848	err = xts_check_key(crypto_skcipher_tfm(tfm), key, keylen);
 
 
 
 
 
 
 
1849	if (err)
1850		return err;
1851
1852	memcpy(ctx->base.key, key, keylen/2);
1853	memcpy(ctx->key2, key + keylen/2, keylen/2);
1854	ctx->base.keylen = keylen/2;
1855
1856	return 0;
1857}
1858
1859static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1860{
1861	return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1862}
1863
1864static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1865{
1866	return atmel_aes_crypt(req, AES_FLAGS_XTS);
1867}
1868
1869static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1870{
1871	struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
 
 
 
 
 
 
1872
1873	crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
 
 
 
 
 
 
 
1874	ctx->base.start = atmel_aes_xts_start;
1875
1876	return 0;
1877}
1878
 
 
 
 
 
 
 
1879static struct skcipher_alg aes_xts_alg = {
1880	.base.cra_name		= "xts(aes)",
1881	.base.cra_driver_name	= "atmel-xts-aes",
1882	.base.cra_blocksize	= AES_BLOCK_SIZE,
1883	.base.cra_ctxsize	= sizeof(struct atmel_aes_xts_ctx),
 
1884
1885	.min_keysize		= 2 * AES_MIN_KEY_SIZE,
1886	.max_keysize		= 2 * AES_MAX_KEY_SIZE,
1887	.ivsize			= AES_BLOCK_SIZE,
1888	.setkey			= atmel_aes_xts_setkey,
1889	.encrypt		= atmel_aes_xts_encrypt,
1890	.decrypt		= atmel_aes_xts_decrypt,
1891	.init			= atmel_aes_xts_init_tfm,
 
1892};
1893
1894#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1895/* authenc aead functions */
1896
1897static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1898static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1899				  bool is_async);
1900static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1901				      bool is_async);
1902static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1903static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1904				   bool is_async);
1905
1906static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1907{
1908	struct aead_request *req = aead_request_cast(dd->areq);
1909	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1910
1911	if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1912		atmel_sha_authenc_abort(&rctx->auth_req);
1913	dd->flags &= ~AES_FLAGS_OWN_SHA;
1914}
1915
1916static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1917{
1918	struct aead_request *req = aead_request_cast(dd->areq);
1919	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1920	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1921	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1922	int err;
1923
1924	atmel_aes_set_mode(dd, &rctx->base);
1925
1926	err = atmel_aes_hw_init(dd);
1927	if (err)
1928		return atmel_aes_complete(dd, err);
1929
1930	return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1931					  atmel_aes_authenc_init, dd);
1932}
1933
1934static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1935				  bool is_async)
1936{
1937	struct aead_request *req = aead_request_cast(dd->areq);
1938	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1939
1940	if (is_async)
1941		dd->is_async = true;
1942	if (err)
1943		return atmel_aes_complete(dd, err);
1944
1945	/* If here, we've got the ownership of the SHA device. */
1946	dd->flags |= AES_FLAGS_OWN_SHA;
1947
1948	/* Configure the SHA device. */
1949	return atmel_sha_authenc_init(&rctx->auth_req,
1950				      req->src, req->assoclen,
1951				      rctx->textlen,
1952				      atmel_aes_authenc_transfer, dd);
1953}
1954
1955static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1956				      bool is_async)
1957{
1958	struct aead_request *req = aead_request_cast(dd->areq);
1959	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1960	bool enc = atmel_aes_is_encrypt(dd);
1961	struct scatterlist *src, *dst;
1962	__be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
1963	u32 emr;
1964
1965	if (is_async)
1966		dd->is_async = true;
1967	if (err)
1968		return atmel_aes_complete(dd, err);
1969
1970	/* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
1971	src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
1972	dst = src;
1973
1974	if (req->src != req->dst)
1975		dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
1976
1977	/* Configure the AES device. */
1978	memcpy(iv, req->iv, sizeof(iv));
1979
1980	/*
1981	 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
1982	 * 'true' even if the data transfer is actually performed by the CPU (so
1983	 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
1984	 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
1985	 * must be set to *_MR_SMOD_IDATAR0.
1986	 */
1987	atmel_aes_write_ctrl(dd, true, iv);
1988	emr = AES_EMR_PLIPEN;
1989	if (!enc)
1990		emr |= AES_EMR_PLIPD;
1991	atmel_aes_write(dd, AES_EMR, emr);
1992
1993	/* Transfer data. */
1994	return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
1995				   atmel_aes_authenc_digest);
1996}
1997
1998static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
1999{
2000	struct aead_request *req = aead_request_cast(dd->areq);
2001	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2002
2003	/* atmel_sha_authenc_final() releases the SHA device. */
2004	dd->flags &= ~AES_FLAGS_OWN_SHA;
2005	return atmel_sha_authenc_final(&rctx->auth_req,
2006				       rctx->digest, sizeof(rctx->digest),
2007				       atmel_aes_authenc_final, dd);
2008}
2009
2010static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2011				   bool is_async)
2012{
2013	struct aead_request *req = aead_request_cast(dd->areq);
2014	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2015	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2016	bool enc = atmel_aes_is_encrypt(dd);
2017	u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2018	u32 offs, authsize;
2019
2020	if (is_async)
2021		dd->is_async = true;
2022	if (err)
2023		goto complete;
2024
2025	offs = req->assoclen + rctx->textlen;
2026	authsize = crypto_aead_authsize(tfm);
2027	if (enc) {
2028		scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2029	} else {
2030		scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2031		if (crypto_memneq(idigest, odigest, authsize))
2032			err = -EBADMSG;
2033	}
2034
2035complete:
2036	return atmel_aes_complete(dd, err);
2037}
2038
2039static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2040				    unsigned int keylen)
2041{
2042	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2043	struct crypto_authenc_keys keys;
2044	int err;
2045
2046	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2047		goto badkey;
2048
2049	if (keys.enckeylen > sizeof(ctx->base.key))
2050		goto badkey;
2051
2052	/* Save auth key. */
2053	err = atmel_sha_authenc_setkey(ctx->auth,
2054				       keys.authkey, keys.authkeylen,
2055				       crypto_aead_get_flags(tfm));
2056	if (err) {
2057		memzero_explicit(&keys, sizeof(keys));
2058		return err;
2059	}
2060
2061	/* Save enc key. */
2062	ctx->base.keylen = keys.enckeylen;
2063	memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2064
2065	memzero_explicit(&keys, sizeof(keys));
2066	return 0;
2067
2068badkey:
2069	memzero_explicit(&keys, sizeof(keys));
2070	return -EINVAL;
2071}
2072
2073static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2074				      unsigned long auth_mode)
2075{
2076	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2077	unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
 
 
 
 
 
2078
2079	ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2080	if (IS_ERR(ctx->auth))
2081		return PTR_ERR(ctx->auth);
2082
2083	crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2084				      auth_reqsize));
 
2085	ctx->base.start = atmel_aes_authenc_start;
2086
2087	return 0;
2088}
2089
2090static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2091{
2092	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2093}
2094
2095static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2096{
2097	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2098}
2099
2100static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2101{
2102	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2103}
2104
2105static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2106{
2107	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2108}
2109
2110static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2111{
2112	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2113}
2114
2115static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2116{
2117	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2118
2119	atmel_sha_authenc_free(ctx->auth);
2120}
2121
2122static int atmel_aes_authenc_crypt(struct aead_request *req,
2123				   unsigned long mode)
2124{
2125	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2126	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2127	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2128	u32 authsize = crypto_aead_authsize(tfm);
2129	bool enc = (mode & AES_FLAGS_ENCRYPT);
2130	struct atmel_aes_dev *dd;
2131
2132	/* Compute text length. */
2133	if (!enc && req->cryptlen < authsize)
2134		return -EINVAL;
2135	rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2136
2137	/*
2138	 * Currently, empty messages are not supported yet:
2139	 * the SHA auto-padding can be used only on non-empty messages.
2140	 * Hence a special case needs to be implemented for empty message.
2141	 */
2142	if (!rctx->textlen && !req->assoclen)
2143		return -EINVAL;
2144
2145	rctx->base.mode = mode;
2146	ctx->block_size = AES_BLOCK_SIZE;
2147	ctx->is_aead = true;
2148
2149	dd = atmel_aes_find_dev(ctx);
2150	if (!dd)
2151		return -ENODEV;
2152
2153	return atmel_aes_handle_queue(dd, &req->base);
2154}
2155
2156static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2157{
2158	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2159}
2160
2161static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2162{
2163	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2164}
2165
2166static struct aead_alg aes_authenc_algs[] = {
2167{
2168	.setkey		= atmel_aes_authenc_setkey,
2169	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2170	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2171	.init		= atmel_aes_authenc_hmac_sha1_init_tfm,
2172	.exit		= atmel_aes_authenc_exit_tfm,
2173	.ivsize		= AES_BLOCK_SIZE,
2174	.maxauthsize	= SHA1_DIGEST_SIZE,
2175
2176	.base = {
2177		.cra_name		= "authenc(hmac(sha1),cbc(aes))",
2178		.cra_driver_name	= "atmel-authenc-hmac-sha1-cbc-aes",
2179		.cra_blocksize		= AES_BLOCK_SIZE,
2180		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2181	},
2182},
2183{
2184	.setkey		= atmel_aes_authenc_setkey,
2185	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2186	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2187	.init		= atmel_aes_authenc_hmac_sha224_init_tfm,
2188	.exit		= atmel_aes_authenc_exit_tfm,
2189	.ivsize		= AES_BLOCK_SIZE,
2190	.maxauthsize	= SHA224_DIGEST_SIZE,
2191
2192	.base = {
2193		.cra_name		= "authenc(hmac(sha224),cbc(aes))",
2194		.cra_driver_name	= "atmel-authenc-hmac-sha224-cbc-aes",
2195		.cra_blocksize		= AES_BLOCK_SIZE,
2196		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2197	},
2198},
2199{
2200	.setkey		= atmel_aes_authenc_setkey,
2201	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2202	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2203	.init		= atmel_aes_authenc_hmac_sha256_init_tfm,
2204	.exit		= atmel_aes_authenc_exit_tfm,
2205	.ivsize		= AES_BLOCK_SIZE,
2206	.maxauthsize	= SHA256_DIGEST_SIZE,
2207
2208	.base = {
2209		.cra_name		= "authenc(hmac(sha256),cbc(aes))",
2210		.cra_driver_name	= "atmel-authenc-hmac-sha256-cbc-aes",
2211		.cra_blocksize		= AES_BLOCK_SIZE,
2212		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2213	},
2214},
2215{
2216	.setkey		= atmel_aes_authenc_setkey,
2217	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2218	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2219	.init		= atmel_aes_authenc_hmac_sha384_init_tfm,
2220	.exit		= atmel_aes_authenc_exit_tfm,
2221	.ivsize		= AES_BLOCK_SIZE,
2222	.maxauthsize	= SHA384_DIGEST_SIZE,
2223
2224	.base = {
2225		.cra_name		= "authenc(hmac(sha384),cbc(aes))",
2226		.cra_driver_name	= "atmel-authenc-hmac-sha384-cbc-aes",
2227		.cra_blocksize		= AES_BLOCK_SIZE,
2228		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2229	},
2230},
2231{
2232	.setkey		= atmel_aes_authenc_setkey,
2233	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2234	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2235	.init		= atmel_aes_authenc_hmac_sha512_init_tfm,
2236	.exit		= atmel_aes_authenc_exit_tfm,
2237	.ivsize		= AES_BLOCK_SIZE,
2238	.maxauthsize	= SHA512_DIGEST_SIZE,
2239
2240	.base = {
2241		.cra_name		= "authenc(hmac(sha512),cbc(aes))",
2242		.cra_driver_name	= "atmel-authenc-hmac-sha512-cbc-aes",
2243		.cra_blocksize		= AES_BLOCK_SIZE,
2244		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2245	},
2246},
2247};
2248#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2249
2250/* Probe functions */
2251
2252static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2253{
2254	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2255	dd->buflen = ATMEL_AES_BUFFER_SIZE;
2256	dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2257
2258	if (!dd->buf) {
2259		dev_err(dd->dev, "unable to alloc pages.\n");
2260		return -ENOMEM;
2261	}
2262
2263	return 0;
2264}
2265
2266static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2267{
2268	free_page((unsigned long)dd->buf);
2269}
2270
2271static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
2272{
2273	int ret;
2274
2275	/* Try to grab 2 DMA channels */
2276	dd->src.chan = dma_request_chan(dd->dev, "tx");
2277	if (IS_ERR(dd->src.chan)) {
2278		ret = PTR_ERR(dd->src.chan);
2279		goto err_dma_in;
2280	}
2281
2282	dd->dst.chan = dma_request_chan(dd->dev, "rx");
2283	if (IS_ERR(dd->dst.chan)) {
2284		ret = PTR_ERR(dd->dst.chan);
2285		goto err_dma_out;
2286	}
2287
2288	return 0;
2289
2290err_dma_out:
2291	dma_release_channel(dd->src.chan);
2292err_dma_in:
2293	dev_err(dd->dev, "no DMA channel available\n");
2294	return ret;
2295}
2296
2297static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2298{
2299	dma_release_channel(dd->dst.chan);
2300	dma_release_channel(dd->src.chan);
2301}
2302
2303static void atmel_aes_queue_task(unsigned long data)
2304{
2305	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2306
2307	atmel_aes_handle_queue(dd, NULL);
2308}
2309
2310static void atmel_aes_done_task(unsigned long data)
2311{
2312	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2313
2314	dd->is_async = true;
2315	(void)dd->resume(dd);
2316}
2317
2318static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2319{
2320	struct atmel_aes_dev *aes_dd = dev_id;
2321	u32 reg;
2322
2323	reg = atmel_aes_read(aes_dd, AES_ISR);
2324	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2325		atmel_aes_write(aes_dd, AES_IDR, reg);
2326		if (AES_FLAGS_BUSY & aes_dd->flags)
2327			tasklet_schedule(&aes_dd->done_task);
2328		else
2329			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2330		return IRQ_HANDLED;
2331	}
2332
2333	return IRQ_NONE;
2334}
2335
2336static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2337{
2338	int i;
2339
2340#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2341	if (dd->caps.has_authenc)
2342		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2343			crypto_unregister_aead(&aes_authenc_algs[i]);
2344#endif
2345
2346	if (dd->caps.has_xts)
2347		crypto_unregister_skcipher(&aes_xts_alg);
2348
2349	if (dd->caps.has_gcm)
2350		crypto_unregister_aead(&aes_gcm_alg);
2351
2352	if (dd->caps.has_cfb64)
2353		crypto_unregister_skcipher(&aes_cfb64_alg);
2354
2355	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2356		crypto_unregister_skcipher(&aes_algs[i]);
2357}
2358
2359static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
2360{
2361	alg->cra_flags = CRYPTO_ALG_ASYNC;
2362	alg->cra_alignmask = 0xf;
2363	alg->cra_priority = ATMEL_AES_PRIORITY;
2364	alg->cra_module = THIS_MODULE;
2365}
2366
2367static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2368{
2369	int err, i, j;
2370
2371	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2372		atmel_aes_crypto_alg_init(&aes_algs[i].base);
2373
2374		err = crypto_register_skcipher(&aes_algs[i]);
2375		if (err)
2376			goto err_aes_algs;
2377	}
2378
2379	if (dd->caps.has_cfb64) {
2380		atmel_aes_crypto_alg_init(&aes_cfb64_alg.base);
2381
2382		err = crypto_register_skcipher(&aes_cfb64_alg);
2383		if (err)
2384			goto err_aes_cfb64_alg;
2385	}
2386
2387	if (dd->caps.has_gcm) {
2388		atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
2389
2390		err = crypto_register_aead(&aes_gcm_alg);
2391		if (err)
2392			goto err_aes_gcm_alg;
2393	}
2394
2395	if (dd->caps.has_xts) {
2396		atmel_aes_crypto_alg_init(&aes_xts_alg.base);
2397
2398		err = crypto_register_skcipher(&aes_xts_alg);
2399		if (err)
2400			goto err_aes_xts_alg;
2401	}
2402
2403#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2404	if (dd->caps.has_authenc) {
2405		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2406			atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
2407
2408			err = crypto_register_aead(&aes_authenc_algs[i]);
2409			if (err)
2410				goto err_aes_authenc_alg;
2411		}
2412	}
2413#endif
2414
2415	return 0;
2416
2417#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2418	/* i = ARRAY_SIZE(aes_authenc_algs); */
2419err_aes_authenc_alg:
2420	for (j = 0; j < i; j++)
2421		crypto_unregister_aead(&aes_authenc_algs[j]);
2422	crypto_unregister_skcipher(&aes_xts_alg);
2423#endif
2424err_aes_xts_alg:
2425	crypto_unregister_aead(&aes_gcm_alg);
2426err_aes_gcm_alg:
2427	crypto_unregister_skcipher(&aes_cfb64_alg);
2428err_aes_cfb64_alg:
2429	i = ARRAY_SIZE(aes_algs);
2430err_aes_algs:
2431	for (j = 0; j < i; j++)
2432		crypto_unregister_skcipher(&aes_algs[j]);
2433
2434	return err;
2435}
2436
2437static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2438{
2439	dd->caps.has_dualbuff = 0;
2440	dd->caps.has_cfb64 = 0;
2441	dd->caps.has_gcm = 0;
2442	dd->caps.has_xts = 0;
2443	dd->caps.has_authenc = 0;
2444	dd->caps.max_burst_size = 1;
2445
2446	/* keep only major version number */
2447	switch (dd->hw_version & 0xff0) {
 
 
2448	case 0x500:
2449		dd->caps.has_dualbuff = 1;
2450		dd->caps.has_cfb64 = 1;
2451		dd->caps.has_gcm = 1;
2452		dd->caps.has_xts = 1;
2453		dd->caps.has_authenc = 1;
2454		dd->caps.max_burst_size = 4;
2455		break;
2456	case 0x200:
2457		dd->caps.has_dualbuff = 1;
2458		dd->caps.has_cfb64 = 1;
2459		dd->caps.has_gcm = 1;
2460		dd->caps.max_burst_size = 4;
2461		break;
2462	case 0x130:
2463		dd->caps.has_dualbuff = 1;
2464		dd->caps.has_cfb64 = 1;
2465		dd->caps.max_burst_size = 4;
2466		break;
2467	case 0x120:
2468		break;
2469	default:
2470		dev_warn(dd->dev,
2471				"Unmanaged aes version, set minimum capabilities\n");
2472		break;
2473	}
2474}
2475
2476#if defined(CONFIG_OF)
2477static const struct of_device_id atmel_aes_dt_ids[] = {
2478	{ .compatible = "atmel,at91sam9g46-aes" },
2479	{ /* sentinel */ }
2480};
2481MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2482#endif
2483
2484static int atmel_aes_probe(struct platform_device *pdev)
2485{
2486	struct atmel_aes_dev *aes_dd;
2487	struct device *dev = &pdev->dev;
2488	struct resource *aes_res;
2489	int err;
2490
2491	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2492	if (!aes_dd)
2493		return -ENOMEM;
2494
2495	aes_dd->dev = dev;
2496
2497	platform_set_drvdata(pdev, aes_dd);
2498
2499	INIT_LIST_HEAD(&aes_dd->list);
2500	spin_lock_init(&aes_dd->lock);
2501
2502	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2503					(unsigned long)aes_dd);
2504	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2505					(unsigned long)aes_dd);
2506
2507	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2508
2509	/* Get the base address */
2510	aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2511	if (!aes_res) {
2512		dev_err(dev, "no MEM resource info\n");
2513		err = -ENODEV;
2514		goto err_tasklet_kill;
2515	}
2516	aes_dd->phys_base = aes_res->start;
2517
2518	/* Get the IRQ */
2519	aes_dd->irq = platform_get_irq(pdev,  0);
2520	if (aes_dd->irq < 0) {
2521		err = aes_dd->irq;
2522		goto err_tasklet_kill;
2523	}
2524
2525	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2526			       IRQF_SHARED, "atmel-aes", aes_dd);
2527	if (err) {
2528		dev_err(dev, "unable to request aes irq.\n");
2529		goto err_tasklet_kill;
2530	}
2531
2532	/* Initializing the clock */
2533	aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2534	if (IS_ERR(aes_dd->iclk)) {
2535		dev_err(dev, "clock initialization failed.\n");
2536		err = PTR_ERR(aes_dd->iclk);
2537		goto err_tasklet_kill;
2538	}
2539
2540	aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2541	if (IS_ERR(aes_dd->io_base)) {
2542		dev_err(dev, "can't ioremap\n");
2543		err = PTR_ERR(aes_dd->io_base);
2544		goto err_tasklet_kill;
2545	}
2546
2547	err = clk_prepare(aes_dd->iclk);
2548	if (err)
2549		goto err_tasklet_kill;
2550
2551	err = atmel_aes_hw_version_init(aes_dd);
2552	if (err)
2553		goto err_iclk_unprepare;
2554
2555	atmel_aes_get_cap(aes_dd);
2556
2557#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2558	if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2559		err = -EPROBE_DEFER;
2560		goto err_iclk_unprepare;
2561	}
2562#endif
2563
2564	err = atmel_aes_buff_init(aes_dd);
2565	if (err)
2566		goto err_iclk_unprepare;
2567
2568	err = atmel_aes_dma_init(aes_dd);
2569	if (err)
2570		goto err_buff_cleanup;
2571
2572	spin_lock(&atmel_aes.lock);
2573	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2574	spin_unlock(&atmel_aes.lock);
2575
2576	err = atmel_aes_register_algs(aes_dd);
2577	if (err)
2578		goto err_algs;
2579
2580	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2581			dma_chan_name(aes_dd->src.chan),
2582			dma_chan_name(aes_dd->dst.chan));
2583
2584	return 0;
2585
2586err_algs:
2587	spin_lock(&atmel_aes.lock);
2588	list_del(&aes_dd->list);
2589	spin_unlock(&atmel_aes.lock);
2590	atmel_aes_dma_cleanup(aes_dd);
2591err_buff_cleanup:
2592	atmel_aes_buff_cleanup(aes_dd);
2593err_iclk_unprepare:
2594	clk_unprepare(aes_dd->iclk);
2595err_tasklet_kill:
2596	tasklet_kill(&aes_dd->done_task);
2597	tasklet_kill(&aes_dd->queue_task);
2598
2599	return err;
2600}
2601
2602static int atmel_aes_remove(struct platform_device *pdev)
2603{
2604	struct atmel_aes_dev *aes_dd;
2605
2606	aes_dd = platform_get_drvdata(pdev);
2607	if (!aes_dd)
2608		return -ENODEV;
2609	spin_lock(&atmel_aes.lock);
2610	list_del(&aes_dd->list);
2611	spin_unlock(&atmel_aes.lock);
2612
2613	atmel_aes_unregister_algs(aes_dd);
2614
2615	tasklet_kill(&aes_dd->done_task);
2616	tasklet_kill(&aes_dd->queue_task);
2617
2618	atmel_aes_dma_cleanup(aes_dd);
2619	atmel_aes_buff_cleanup(aes_dd);
2620
2621	clk_unprepare(aes_dd->iclk);
2622
2623	return 0;
2624}
2625
2626static struct platform_driver atmel_aes_driver = {
2627	.probe		= atmel_aes_probe,
2628	.remove		= atmel_aes_remove,
2629	.driver		= {
2630		.name	= "atmel_aes",
2631		.of_match_table = of_match_ptr(atmel_aes_dt_ids),
2632	},
2633};
2634
2635module_platform_driver(atmel_aes_driver);
2636
2637MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2638MODULE_LICENSE("GPL v2");
2639MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");