Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH Timer Support - CMT
   4 *
   5 *  Copyright (C) 2008 Magnus Damm
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/clockchips.h>
  10#include <linux/clocksource.h>
  11#include <linux/delay.h>
  12#include <linux/err.h>
  13#include <linux/init.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
  16#include <linux/iopoll.h>
  17#include <linux/ioport.h>
  18#include <linux/irq.h>
  19#include <linux/module.h>
  20#include <linux/of.h>
 
  21#include <linux/platform_device.h>
  22#include <linux/pm_domain.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/sh_timer.h>
  25#include <linux/slab.h>
  26#include <linux/spinlock.h>
  27
  28#ifdef CONFIG_SUPERH
  29#include <asm/platform_early.h>
  30#endif
  31
  32struct sh_cmt_device;
  33
  34/*
  35 * The CMT comes in 5 different identified flavours, depending not only on the
  36 * SoC but also on the particular instance. The following table lists the main
  37 * characteristics of those flavours.
  38 *
  39 *			16B	32B	32B-F	48B	R-Car Gen2
  40 * -----------------------------------------------------------------------------
  41 * Channels		2	1/4	1	6	2/8
  42 * Control Width	16	16	16	16	32
  43 * Counter Width	16	32	32	32/48	32/48
  44 * Shared Start/Stop	Y	Y	Y	Y	N
  45 *
  46 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
  47 * located in the channel registers block. All other versions have a shared
  48 * start/stop register located in the global space.
  49 *
  50 * Channels are indexed from 0 to N-1 in the documentation. The channel index
  51 * infers the start/stop bit position in the control register and the channel
  52 * registers block address. Some CMT instances have a subset of channels
  53 * available, in which case the index in the documentation doesn't match the
  54 * "real" index as implemented in hardware. This is for instance the case with
  55 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
  56 * in the documentation but using start/stop bit 5 and having its registers
  57 * block at 0x60.
  58 *
  59 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
  60 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
  61 */
  62
  63enum sh_cmt_model {
  64	SH_CMT_16BIT,
  65	SH_CMT_32BIT,
  66	SH_CMT_48BIT,
  67	SH_CMT0_RCAR_GEN2,
  68	SH_CMT1_RCAR_GEN2,
  69};
  70
  71struct sh_cmt_info {
  72	enum sh_cmt_model model;
  73
  74	unsigned int channels_mask;
  75
  76	unsigned long width; /* 16 or 32 bit version of hardware block */
  77	u32 overflow_bit;
  78	u32 clear_bits;
  79
  80	/* callbacks for CMSTR and CMCSR access */
  81	u32 (*read_control)(void __iomem *base, unsigned long offs);
  82	void (*write_control)(void __iomem *base, unsigned long offs,
  83			      u32 value);
  84
  85	/* callbacks for CMCNT and CMCOR access */
  86	u32 (*read_count)(void __iomem *base, unsigned long offs);
  87	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
  88};
  89
  90struct sh_cmt_channel {
  91	struct sh_cmt_device *cmt;
  92
  93	unsigned int index;	/* Index in the documentation */
  94	unsigned int hwidx;	/* Real hardware index */
  95
  96	void __iomem *iostart;
  97	void __iomem *ioctrl;
  98
  99	unsigned int timer_bit;
 100	unsigned long flags;
 101	u32 match_value;
 102	u32 next_match_value;
 103	u32 max_match_value;
 104	raw_spinlock_t lock;
 105	struct clock_event_device ced;
 106	struct clocksource cs;
 107	u64 total_cycles;
 108	bool cs_enabled;
 109};
 110
 111struct sh_cmt_device {
 112	struct platform_device *pdev;
 113
 114	const struct sh_cmt_info *info;
 115
 116	void __iomem *mapbase;
 117	struct clk *clk;
 118	unsigned long rate;
 119	unsigned int reg_delay;
 120
 121	raw_spinlock_t lock; /* Protect the shared start/stop register */
 122
 123	struct sh_cmt_channel *channels;
 124	unsigned int num_channels;
 125	unsigned int hw_channels;
 126
 127	bool has_clockevent;
 128	bool has_clocksource;
 129};
 130
 131#define SH_CMT16_CMCSR_CMF		(1 << 7)
 132#define SH_CMT16_CMCSR_CMIE		(1 << 6)
 133#define SH_CMT16_CMCSR_CKS8		(0 << 0)
 134#define SH_CMT16_CMCSR_CKS32		(1 << 0)
 135#define SH_CMT16_CMCSR_CKS128		(2 << 0)
 136#define SH_CMT16_CMCSR_CKS512		(3 << 0)
 137#define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
 138
 139#define SH_CMT32_CMCSR_CMF		(1 << 15)
 140#define SH_CMT32_CMCSR_OVF		(1 << 14)
 141#define SH_CMT32_CMCSR_WRFLG		(1 << 13)
 142#define SH_CMT32_CMCSR_STTF		(1 << 12)
 143#define SH_CMT32_CMCSR_STPF		(1 << 11)
 144#define SH_CMT32_CMCSR_SSIE		(1 << 10)
 145#define SH_CMT32_CMCSR_CMS		(1 << 9)
 146#define SH_CMT32_CMCSR_CMM		(1 << 8)
 147#define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
 148#define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
 149#define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
 150#define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
 151#define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
 152#define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
 153#define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
 154#define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
 155#define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
 156#define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
 157#define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
 158
 159static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
 160{
 161	return ioread16(base + (offs << 1));
 162}
 163
 164static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
 165{
 166	return ioread32(base + (offs << 2));
 167}
 168
 169static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
 170{
 171	iowrite16(value, base + (offs << 1));
 172}
 173
 174static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
 175{
 176	iowrite32(value, base + (offs << 2));
 177}
 178
 179static const struct sh_cmt_info sh_cmt_info[] = {
 180	[SH_CMT_16BIT] = {
 181		.model = SH_CMT_16BIT,
 182		.width = 16,
 183		.overflow_bit = SH_CMT16_CMCSR_CMF,
 184		.clear_bits = ~SH_CMT16_CMCSR_CMF,
 185		.read_control = sh_cmt_read16,
 186		.write_control = sh_cmt_write16,
 187		.read_count = sh_cmt_read16,
 188		.write_count = sh_cmt_write16,
 189	},
 190	[SH_CMT_32BIT] = {
 191		.model = SH_CMT_32BIT,
 192		.width = 32,
 193		.overflow_bit = SH_CMT32_CMCSR_CMF,
 194		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 195		.read_control = sh_cmt_read16,
 196		.write_control = sh_cmt_write16,
 197		.read_count = sh_cmt_read32,
 198		.write_count = sh_cmt_write32,
 199	},
 200	[SH_CMT_48BIT] = {
 201		.model = SH_CMT_48BIT,
 202		.channels_mask = 0x3f,
 203		.width = 32,
 204		.overflow_bit = SH_CMT32_CMCSR_CMF,
 205		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 206		.read_control = sh_cmt_read32,
 207		.write_control = sh_cmt_write32,
 208		.read_count = sh_cmt_read32,
 209		.write_count = sh_cmt_write32,
 210	},
 211	[SH_CMT0_RCAR_GEN2] = {
 212		.model = SH_CMT0_RCAR_GEN2,
 213		.channels_mask = 0x60,
 214		.width = 32,
 215		.overflow_bit = SH_CMT32_CMCSR_CMF,
 216		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 217		.read_control = sh_cmt_read32,
 218		.write_control = sh_cmt_write32,
 219		.read_count = sh_cmt_read32,
 220		.write_count = sh_cmt_write32,
 221	},
 222	[SH_CMT1_RCAR_GEN2] = {
 223		.model = SH_CMT1_RCAR_GEN2,
 224		.channels_mask = 0xff,
 225		.width = 32,
 226		.overflow_bit = SH_CMT32_CMCSR_CMF,
 227		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 228		.read_control = sh_cmt_read32,
 229		.write_control = sh_cmt_write32,
 230		.read_count = sh_cmt_read32,
 231		.write_count = sh_cmt_write32,
 232	},
 233};
 234
 235#define CMCSR 0 /* channel register */
 236#define CMCNT 1 /* channel register */
 237#define CMCOR 2 /* channel register */
 238
 239#define CMCLKE	0x1000	/* CLK Enable Register (R-Car Gen2) */
 240
 241static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
 242{
 243	if (ch->iostart)
 244		return ch->cmt->info->read_control(ch->iostart, 0);
 245	else
 246		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
 247}
 248
 249static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
 250{
 251	u32 old_value = sh_cmt_read_cmstr(ch);
 252
 253	if (value != old_value) {
 254		if (ch->iostart) {
 255			ch->cmt->info->write_control(ch->iostart, 0, value);
 256			udelay(ch->cmt->reg_delay);
 257		} else {
 258			ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
 259			udelay(ch->cmt->reg_delay);
 260		}
 261	}
 262}
 263
 264static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
 265{
 266	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
 267}
 268
 269static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
 270{
 271	u32 old_value = sh_cmt_read_cmcsr(ch);
 272
 273	if (value != old_value) {
 274		ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
 275		udelay(ch->cmt->reg_delay);
 276	}
 277}
 278
 279static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
 280{
 281	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
 282}
 283
 284static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
 285{
 286	/* Tests showed that we need to wait 3 clocks here */
 287	unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
 288	u32 reg;
 289
 290	if (ch->cmt->info->model > SH_CMT_16BIT) {
 291		int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
 292						   !(reg & SH_CMT32_CMCSR_WRFLG),
 293						   1, cmcnt_delay, false, ch);
 294		if (ret < 0)
 295			return ret;
 296	}
 297
 298	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
 299	udelay(cmcnt_delay);
 300	return 0;
 301}
 302
 303static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
 304{
 305	u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
 306
 307	if (value != old_value) {
 308		ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
 309		udelay(ch->cmt->reg_delay);
 310	}
 311}
 312
 313static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
 314{
 315	u32 v1, v2, v3;
 316	u32 o1, o2;
 317
 318	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 319
 320	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
 321	do {
 322		o2 = o1;
 323		v1 = sh_cmt_read_cmcnt(ch);
 324		v2 = sh_cmt_read_cmcnt(ch);
 325		v3 = sh_cmt_read_cmcnt(ch);
 326		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 327	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
 328			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
 329
 330	*has_wrapped = o1;
 331	return v2;
 332}
 333
 334static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
 335{
 336	unsigned long flags;
 337	u32 value;
 338
 339	/* start stop register shared by multiple timer channels */
 340	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
 341	value = sh_cmt_read_cmstr(ch);
 342
 343	if (start)
 344		value |= 1 << ch->timer_bit;
 345	else
 346		value &= ~(1 << ch->timer_bit);
 347
 348	sh_cmt_write_cmstr(ch, value);
 349	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
 350}
 351
 352static int sh_cmt_enable(struct sh_cmt_channel *ch)
 353{
 354	int ret;
 355
 
 356	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
 357
 358	/* enable clock */
 359	ret = clk_enable(ch->cmt->clk);
 360	if (ret) {
 361		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
 362			ch->index);
 363		goto err0;
 364	}
 365
 366	/* make sure channel is disabled */
 367	sh_cmt_start_stop_ch(ch, 0);
 368
 369	/* configure channel, periodic mode and maximum timeout */
 370	if (ch->cmt->info->width == 16) {
 371		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
 372				   SH_CMT16_CMCSR_CKS512);
 373	} else {
 374		u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
 375			      SH_CMT32_CMCSR_CMTOUT_IE : 0;
 376		sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
 377				   SH_CMT32_CMCSR_CMR_IRQ |
 378				   SH_CMT32_CMCSR_CKS_RCLK8);
 379	}
 380
 381	sh_cmt_write_cmcor(ch, 0xffffffff);
 382	ret = sh_cmt_write_cmcnt(ch, 0);
 383
 384	if (ret || sh_cmt_read_cmcnt(ch)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 385		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
 386			ch->index);
 387		ret = -ETIMEDOUT;
 388		goto err1;
 389	}
 390
 391	/* enable channel */
 392	sh_cmt_start_stop_ch(ch, 1);
 393	return 0;
 394 err1:
 395	/* stop clock */
 396	clk_disable(ch->cmt->clk);
 397
 398 err0:
 399	return ret;
 400}
 401
 402static void sh_cmt_disable(struct sh_cmt_channel *ch)
 403{
 404	/* disable channel */
 405	sh_cmt_start_stop_ch(ch, 0);
 406
 407	/* disable interrupts in CMT block */
 408	sh_cmt_write_cmcsr(ch, 0);
 409
 410	/* stop clock */
 411	clk_disable(ch->cmt->clk);
 412
 413	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
 
 414}
 415
 416/* private flags */
 417#define FLAG_CLOCKEVENT (1 << 0)
 418#define FLAG_CLOCKSOURCE (1 << 1)
 419#define FLAG_REPROGRAM (1 << 2)
 420#define FLAG_SKIPEVENT (1 << 3)
 421#define FLAG_IRQCONTEXT (1 << 4)
 422
 423static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
 424					      int absolute)
 425{
 426	u32 value = ch->next_match_value;
 427	u32 new_match;
 428	u32 delay = 0;
 429	u32 now = 0;
 430	u32 has_wrapped;
 431
 432	now = sh_cmt_get_counter(ch, &has_wrapped);
 433	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
 434
 435	if (has_wrapped) {
 436		/* we're competing with the interrupt handler.
 437		 *  -> let the interrupt handler reprogram the timer.
 438		 *  -> interrupt number two handles the event.
 439		 */
 440		ch->flags |= FLAG_SKIPEVENT;
 441		return;
 442	}
 443
 444	if (absolute)
 445		now = 0;
 446
 447	do {
 448		/* reprogram the timer hardware,
 449		 * but don't save the new match value yet.
 450		 */
 451		new_match = now + value + delay;
 452		if (new_match > ch->max_match_value)
 453			new_match = ch->max_match_value;
 454
 455		sh_cmt_write_cmcor(ch, new_match);
 456
 457		now = sh_cmt_get_counter(ch, &has_wrapped);
 458		if (has_wrapped && (new_match > ch->match_value)) {
 459			/* we are changing to a greater match value,
 460			 * so this wrap must be caused by the counter
 461			 * matching the old value.
 462			 * -> first interrupt reprograms the timer.
 463			 * -> interrupt number two handles the event.
 464			 */
 465			ch->flags |= FLAG_SKIPEVENT;
 466			break;
 467		}
 468
 469		if (has_wrapped) {
 470			/* we are changing to a smaller match value,
 471			 * so the wrap must be caused by the counter
 472			 * matching the new value.
 473			 * -> save programmed match value.
 474			 * -> let isr handle the event.
 475			 */
 476			ch->match_value = new_match;
 477			break;
 478		}
 479
 480		/* be safe: verify hardware settings */
 481		if (now < new_match) {
 482			/* timer value is below match value, all good.
 483			 * this makes sure we won't miss any match events.
 484			 * -> save programmed match value.
 485			 * -> let isr handle the event.
 486			 */
 487			ch->match_value = new_match;
 488			break;
 489		}
 490
 491		/* the counter has reached a value greater
 492		 * than our new match value. and since the
 493		 * has_wrapped flag isn't set we must have
 494		 * programmed a too close event.
 495		 * -> increase delay and retry.
 496		 */
 497		if (delay)
 498			delay <<= 1;
 499		else
 500			delay = 1;
 501
 502		if (!delay)
 503			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
 504				 ch->index);
 505
 506	} while (delay);
 507}
 508
 509static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 510{
 511	if (delta > ch->max_match_value)
 512		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
 513			 ch->index);
 514
 515	ch->next_match_value = delta;
 516	sh_cmt_clock_event_program_verify(ch, 0);
 517}
 518
 519static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 520{
 521	unsigned long flags;
 522
 523	raw_spin_lock_irqsave(&ch->lock, flags);
 524	__sh_cmt_set_next(ch, delta);
 525	raw_spin_unlock_irqrestore(&ch->lock, flags);
 526}
 527
 528static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
 529{
 530	struct sh_cmt_channel *ch = dev_id;
 531
 532	/* clear flags */
 533	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
 534			   ch->cmt->info->clear_bits);
 535
 536	/* update clock source counter to begin with if enabled
 537	 * the wrap flag should be cleared by the timer specific
 538	 * isr before we end up here.
 539	 */
 540	if (ch->flags & FLAG_CLOCKSOURCE)
 541		ch->total_cycles += ch->match_value + 1;
 542
 543	if (!(ch->flags & FLAG_REPROGRAM))
 544		ch->next_match_value = ch->max_match_value;
 545
 546	ch->flags |= FLAG_IRQCONTEXT;
 547
 548	if (ch->flags & FLAG_CLOCKEVENT) {
 549		if (!(ch->flags & FLAG_SKIPEVENT)) {
 550			if (clockevent_state_oneshot(&ch->ced)) {
 551				ch->next_match_value = ch->max_match_value;
 552				ch->flags |= FLAG_REPROGRAM;
 553			}
 554
 555			ch->ced.event_handler(&ch->ced);
 556		}
 557	}
 558
 559	ch->flags &= ~FLAG_SKIPEVENT;
 560
 561	if (ch->flags & FLAG_REPROGRAM) {
 562		ch->flags &= ~FLAG_REPROGRAM;
 563		sh_cmt_clock_event_program_verify(ch, 1);
 564
 565		if (ch->flags & FLAG_CLOCKEVENT)
 566			if ((clockevent_state_shutdown(&ch->ced))
 567			    || (ch->match_value == ch->next_match_value))
 568				ch->flags &= ~FLAG_REPROGRAM;
 569	}
 570
 571	ch->flags &= ~FLAG_IRQCONTEXT;
 572
 573	return IRQ_HANDLED;
 574}
 575
 576static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
 577{
 578	int ret = 0;
 579	unsigned long flags;
 580
 581	if (flag & FLAG_CLOCKSOURCE)
 582		pm_runtime_get_sync(&ch->cmt->pdev->dev);
 583
 584	raw_spin_lock_irqsave(&ch->lock, flags);
 585
 586	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
 587		if (flag & FLAG_CLOCKEVENT)
 588			pm_runtime_get_sync(&ch->cmt->pdev->dev);
 589		ret = sh_cmt_enable(ch);
 590	}
 591
 592	if (ret)
 593		goto out;
 594	ch->flags |= flag;
 595
 596	/* setup timeout if no clockevent */
 597	if (ch->cmt->num_channels == 1 &&
 598	    flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
 599		__sh_cmt_set_next(ch, ch->max_match_value);
 600 out:
 601	raw_spin_unlock_irqrestore(&ch->lock, flags);
 602
 603	return ret;
 604}
 605
 606static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
 607{
 608	unsigned long flags;
 609	unsigned long f;
 610
 611	raw_spin_lock_irqsave(&ch->lock, flags);
 612
 613	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
 614	ch->flags &= ~flag;
 615
 616	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
 617		sh_cmt_disable(ch);
 618		if (flag & FLAG_CLOCKEVENT)
 619			pm_runtime_put(&ch->cmt->pdev->dev);
 620	}
 621
 622	/* adjust the timeout to maximum if only clocksource left */
 623	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
 624		__sh_cmt_set_next(ch, ch->max_match_value);
 625
 626	raw_spin_unlock_irqrestore(&ch->lock, flags);
 627
 628	if (flag & FLAG_CLOCKSOURCE)
 629		pm_runtime_put(&ch->cmt->pdev->dev);
 630}
 631
 632static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
 633{
 634	return container_of(cs, struct sh_cmt_channel, cs);
 635}
 636
 637static u64 sh_cmt_clocksource_read(struct clocksource *cs)
 638{
 639	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 
 640	u32 has_wrapped;
 
 
 641
 642	if (ch->cmt->num_channels == 1) {
 643		unsigned long flags;
 644		u64 value;
 645		u32 raw;
 646
 647		raw_spin_lock_irqsave(&ch->lock, flags);
 648		value = ch->total_cycles;
 649		raw = sh_cmt_get_counter(ch, &has_wrapped);
 650
 651		if (unlikely(has_wrapped))
 652			raw += ch->match_value + 1;
 653		raw_spin_unlock_irqrestore(&ch->lock, flags);
 654
 655		return value + raw;
 656	}
 
 657
 658	return sh_cmt_get_counter(ch, &has_wrapped);
 659}
 660
 661static int sh_cmt_clocksource_enable(struct clocksource *cs)
 662{
 663	int ret;
 664	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 665
 666	WARN_ON(ch->cs_enabled);
 667
 668	ch->total_cycles = 0;
 669
 670	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 671	if (!ret)
 672		ch->cs_enabled = true;
 673
 674	return ret;
 675}
 676
 677static void sh_cmt_clocksource_disable(struct clocksource *cs)
 678{
 679	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 680
 681	WARN_ON(!ch->cs_enabled);
 682
 683	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 684	ch->cs_enabled = false;
 685}
 686
 687static void sh_cmt_clocksource_suspend(struct clocksource *cs)
 688{
 689	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 690
 691	if (!ch->cs_enabled)
 692		return;
 693
 694	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 695	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
 696}
 697
 698static void sh_cmt_clocksource_resume(struct clocksource *cs)
 699{
 700	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 701
 702	if (!ch->cs_enabled)
 703		return;
 704
 705	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
 706	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 707}
 708
 709static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
 710				       const char *name)
 711{
 712	struct clocksource *cs = &ch->cs;
 713
 714	cs->name = name;
 715	cs->rating = 125;
 716	cs->read = sh_cmt_clocksource_read;
 717	cs->enable = sh_cmt_clocksource_enable;
 718	cs->disable = sh_cmt_clocksource_disable;
 719	cs->suspend = sh_cmt_clocksource_suspend;
 720	cs->resume = sh_cmt_clocksource_resume;
 721	cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
 722	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 723
 724	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
 725		 ch->index);
 726
 727	clocksource_register_hz(cs, ch->cmt->rate);
 728	return 0;
 729}
 730
 731static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
 732{
 733	return container_of(ced, struct sh_cmt_channel, ced);
 734}
 735
 736static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
 737{
 738	sh_cmt_start(ch, FLAG_CLOCKEVENT);
 739
 740	if (periodic)
 741		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
 742	else
 743		sh_cmt_set_next(ch, ch->max_match_value);
 744}
 745
 746static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
 747{
 748	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 749
 750	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 751	return 0;
 752}
 753
 754static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
 755					int periodic)
 756{
 757	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 758
 759	/* deal with old setting first */
 760	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 761		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 762
 763	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
 764		 ch->index, periodic ? "periodic" : "oneshot");
 765	sh_cmt_clock_event_start(ch, periodic);
 766	return 0;
 767}
 768
 769static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
 770{
 771	return sh_cmt_clock_event_set_state(ced, 0);
 772}
 773
 774static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
 775{
 776	return sh_cmt_clock_event_set_state(ced, 1);
 777}
 778
 779static int sh_cmt_clock_event_next(unsigned long delta,
 780				   struct clock_event_device *ced)
 781{
 782	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 783
 784	BUG_ON(!clockevent_state_oneshot(ced));
 785	if (likely(ch->flags & FLAG_IRQCONTEXT))
 786		ch->next_match_value = delta - 1;
 787	else
 788		sh_cmt_set_next(ch, delta - 1);
 789
 790	return 0;
 791}
 792
 793static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
 794{
 795	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 796
 797	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
 798	clk_unprepare(ch->cmt->clk);
 799}
 800
 801static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
 802{
 803	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 804
 805	clk_prepare(ch->cmt->clk);
 806	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
 807}
 808
 809static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
 810				      const char *name)
 811{
 812	struct clock_event_device *ced = &ch->ced;
 813	int irq;
 814	int ret;
 815
 816	irq = platform_get_irq(ch->cmt->pdev, ch->index);
 817	if (irq < 0)
 818		return irq;
 819
 820	ret = request_irq(irq, sh_cmt_interrupt,
 821			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 822			  dev_name(&ch->cmt->pdev->dev), ch);
 823	if (ret) {
 824		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
 825			ch->index, irq);
 826		return ret;
 827	}
 828
 829	ced->name = name;
 830	ced->features = CLOCK_EVT_FEAT_PERIODIC;
 831	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 832	ced->rating = 125;
 833	ced->cpumask = cpu_possible_mask;
 834	ced->set_next_event = sh_cmt_clock_event_next;
 835	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
 836	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
 837	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
 838	ced->suspend = sh_cmt_clock_event_suspend;
 839	ced->resume = sh_cmt_clock_event_resume;
 840
 841	/* TODO: calculate good shift from rate and counter bit width */
 842	ced->shift = 32;
 843	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
 844	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
 845	ced->max_delta_ticks = ch->max_match_value;
 846	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
 847	ced->min_delta_ticks = 0x1f;
 848
 849	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
 850		 ch->index);
 851	clockevents_register_device(ced);
 852
 853	return 0;
 854}
 855
 856static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
 857			   bool clockevent, bool clocksource)
 858{
 859	int ret;
 860
 861	if (clockevent) {
 862		ch->cmt->has_clockevent = true;
 863		ret = sh_cmt_register_clockevent(ch, name);
 864		if (ret < 0)
 865			return ret;
 866	}
 867
 868	if (clocksource) {
 869		ch->cmt->has_clocksource = true;
 870		sh_cmt_register_clocksource(ch, name);
 871	}
 872
 873	return 0;
 874}
 875
 876static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
 877				unsigned int hwidx, bool clockevent,
 878				bool clocksource, struct sh_cmt_device *cmt)
 879{
 880	u32 value;
 881	int ret;
 882
 883	/* Skip unused channels. */
 884	if (!clockevent && !clocksource)
 885		return 0;
 886
 887	ch->cmt = cmt;
 888	ch->index = index;
 889	ch->hwidx = hwidx;
 890	ch->timer_bit = hwidx;
 891
 892	/*
 893	 * Compute the address of the channel control register block. For the
 894	 * timers with a per-channel start/stop register, compute its address
 895	 * as well.
 896	 */
 897	switch (cmt->info->model) {
 898	case SH_CMT_16BIT:
 899		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
 900		break;
 901	case SH_CMT_32BIT:
 902	case SH_CMT_48BIT:
 903		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
 904		break;
 905	case SH_CMT0_RCAR_GEN2:
 906	case SH_CMT1_RCAR_GEN2:
 907		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
 908		ch->ioctrl = ch->iostart + 0x10;
 909		ch->timer_bit = 0;
 910
 911		/* Enable the clock supply to the channel */
 912		value = ioread32(cmt->mapbase + CMCLKE);
 913		value |= BIT(hwidx);
 914		iowrite32(value, cmt->mapbase + CMCLKE);
 915		break;
 916	}
 917
 918	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
 919		ch->max_match_value = ~0;
 920	else
 921		ch->max_match_value = (1 << cmt->info->width) - 1;
 922
 923	ch->match_value = ch->max_match_value;
 924	raw_spin_lock_init(&ch->lock);
 925
 926	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
 927			      clockevent, clocksource);
 928	if (ret) {
 929		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
 930			ch->index);
 931		return ret;
 932	}
 933	ch->cs_enabled = false;
 934
 935	return 0;
 936}
 937
 938static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
 939{
 940	struct resource *mem;
 941
 942	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 943	if (!mem) {
 944		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 945		return -ENXIO;
 946	}
 947
 948	cmt->mapbase = ioremap(mem->start, resource_size(mem));
 949	if (cmt->mapbase == NULL) {
 950		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 951		return -ENXIO;
 952	}
 953
 954	return 0;
 955}
 956
 957static const struct platform_device_id sh_cmt_id_table[] = {
 958	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
 959	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
 960	{ }
 961};
 962MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
 963
 964static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
 965	{
 966		/* deprecated, preserved for backward compatibility */
 967		.compatible = "renesas,cmt-48",
 968		.data = &sh_cmt_info[SH_CMT_48BIT]
 969	},
 970	{
 971		/* deprecated, preserved for backward compatibility */
 972		.compatible = "renesas,cmt-48-gen2",
 973		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 974	},
 975	{
 976		.compatible = "renesas,r8a7740-cmt1",
 977		.data = &sh_cmt_info[SH_CMT_48BIT]
 978	},
 979	{
 980		.compatible = "renesas,sh73a0-cmt1",
 981		.data = &sh_cmt_info[SH_CMT_48BIT]
 982	},
 983	{
 984		.compatible = "renesas,rcar-gen2-cmt0",
 985		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 986	},
 987	{
 988		.compatible = "renesas,rcar-gen2-cmt1",
 989		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 990	},
 991	{
 992		.compatible = "renesas,rcar-gen3-cmt0",
 993		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 994	},
 995	{
 996		.compatible = "renesas,rcar-gen3-cmt1",
 997		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 998	},
 999	{
1000		.compatible = "renesas,rcar-gen4-cmt0",
1001		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1002	},
1003	{
1004		.compatible = "renesas,rcar-gen4-cmt1",
1005		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1006	},
1007	{ }
1008};
1009MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
1010
1011static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
1012{
1013	unsigned int mask, i;
1014	unsigned long rate;
1015	int ret;
1016
1017	cmt->pdev = pdev;
1018	raw_spin_lock_init(&cmt->lock);
1019
1020	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1021		cmt->info = of_device_get_match_data(&pdev->dev);
1022		cmt->hw_channels = cmt->info->channels_mask;
1023	} else if (pdev->dev.platform_data) {
1024		struct sh_timer_config *cfg = pdev->dev.platform_data;
1025		const struct platform_device_id *id = pdev->id_entry;
1026
1027		cmt->info = (const struct sh_cmt_info *)id->driver_data;
1028		cmt->hw_channels = cfg->channels_mask;
1029	} else {
1030		dev_err(&cmt->pdev->dev, "missing platform data\n");
1031		return -ENXIO;
1032	}
1033
1034	/* Get hold of clock. */
1035	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1036	if (IS_ERR(cmt->clk)) {
1037		dev_err(&cmt->pdev->dev, "cannot get clock\n");
1038		return PTR_ERR(cmt->clk);
1039	}
1040
1041	ret = clk_prepare(cmt->clk);
1042	if (ret < 0)
1043		goto err_clk_put;
1044
1045	/* Determine clock rate. */
1046	ret = clk_enable(cmt->clk);
1047	if (ret < 0)
1048		goto err_clk_unprepare;
1049
1050	rate = clk_get_rate(cmt->clk);
1051	if (!rate) {
1052		ret = -EINVAL;
1053		goto err_clk_disable;
1054	}
1055
1056	/* We shall wait 2 input clks after register writes */
1057	if (cmt->info->model >= SH_CMT_48BIT)
1058		cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1059	cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
1060
1061	/* Map the memory resource(s). */
1062	ret = sh_cmt_map_memory(cmt);
1063	if (ret < 0)
1064		goto err_clk_disable;
1065
1066	/* Allocate and setup the channels. */
1067	cmt->num_channels = hweight8(cmt->hw_channels);
1068	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1069				GFP_KERNEL);
1070	if (cmt->channels == NULL) {
1071		ret = -ENOMEM;
1072		goto err_unmap;
1073	}
1074
1075	/*
1076	 * Use the first channel as a clock event device and the second channel
1077	 * as a clock source. If only one channel is available use it for both.
1078	 */
1079	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1080		unsigned int hwidx = ffs(mask) - 1;
1081		bool clocksource = i == 1 || cmt->num_channels == 1;
1082		bool clockevent = i == 0;
1083
1084		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1085					   clockevent, clocksource, cmt);
1086		if (ret < 0)
1087			goto err_unmap;
1088
1089		mask &= ~(1 << hwidx);
1090	}
1091
1092	clk_disable(cmt->clk);
1093
1094	platform_set_drvdata(pdev, cmt);
1095
1096	return 0;
1097
1098err_unmap:
1099	kfree(cmt->channels);
1100	iounmap(cmt->mapbase);
1101err_clk_disable:
1102	clk_disable(cmt->clk);
1103err_clk_unprepare:
1104	clk_unprepare(cmt->clk);
1105err_clk_put:
1106	clk_put(cmt->clk);
1107	return ret;
1108}
1109
1110static int sh_cmt_probe(struct platform_device *pdev)
1111{
1112	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1113	int ret;
1114
1115	if (!is_sh_early_platform_device(pdev)) {
1116		pm_runtime_set_active(&pdev->dev);
1117		pm_runtime_enable(&pdev->dev);
1118	}
1119
1120	if (cmt) {
1121		dev_info(&pdev->dev, "kept as earlytimer\n");
1122		goto out;
1123	}
1124
1125	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1126	if (cmt == NULL)
1127		return -ENOMEM;
1128
1129	ret = sh_cmt_setup(cmt, pdev);
1130	if (ret) {
1131		kfree(cmt);
1132		pm_runtime_idle(&pdev->dev);
1133		return ret;
1134	}
1135	if (is_sh_early_platform_device(pdev))
1136		return 0;
1137
1138 out:
1139	if (cmt->has_clockevent || cmt->has_clocksource)
1140		pm_runtime_irq_safe(&pdev->dev);
1141	else
1142		pm_runtime_idle(&pdev->dev);
1143
1144	return 0;
1145}
1146
 
 
 
 
 
1147static struct platform_driver sh_cmt_device_driver = {
1148	.probe		= sh_cmt_probe,
 
1149	.driver		= {
1150		.name	= "sh_cmt",
1151		.of_match_table = of_match_ptr(sh_cmt_of_table),
1152		.suppress_bind_attrs = true,
1153	},
1154	.id_table	= sh_cmt_id_table,
1155};
1156
1157static int __init sh_cmt_init(void)
1158{
1159	return platform_driver_register(&sh_cmt_device_driver);
1160}
1161
1162static void __exit sh_cmt_exit(void)
1163{
1164	platform_driver_unregister(&sh_cmt_device_driver);
1165}
1166
1167#ifdef CONFIG_SUPERH
1168sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1169#endif
1170
1171subsys_initcall(sh_cmt_init);
1172module_exit(sh_cmt_exit);
1173
1174MODULE_AUTHOR("Magnus Damm");
1175MODULE_DESCRIPTION("SuperH CMT Timer Driver");
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH Timer Support - CMT
   4 *
   5 *  Copyright (C) 2008 Magnus Damm
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/clockchips.h>
  10#include <linux/clocksource.h>
  11#include <linux/delay.h>
  12#include <linux/err.h>
  13#include <linux/init.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
 
  16#include <linux/ioport.h>
  17#include <linux/irq.h>
  18#include <linux/module.h>
  19#include <linux/of.h>
  20#include <linux/of_device.h>
  21#include <linux/platform_device.h>
  22#include <linux/pm_domain.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/sh_timer.h>
  25#include <linux/slab.h>
  26#include <linux/spinlock.h>
  27
 
 
 
 
  28struct sh_cmt_device;
  29
  30/*
  31 * The CMT comes in 5 different identified flavours, depending not only on the
  32 * SoC but also on the particular instance. The following table lists the main
  33 * characteristics of those flavours.
  34 *
  35 *			16B	32B	32B-F	48B	R-Car Gen2
  36 * -----------------------------------------------------------------------------
  37 * Channels		2	1/4	1	6	2/8
  38 * Control Width	16	16	16	16	32
  39 * Counter Width	16	32	32	32/48	32/48
  40 * Shared Start/Stop	Y	Y	Y	Y	N
  41 *
  42 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
  43 * located in the channel registers block. All other versions have a shared
  44 * start/stop register located in the global space.
  45 *
  46 * Channels are indexed from 0 to N-1 in the documentation. The channel index
  47 * infers the start/stop bit position in the control register and the channel
  48 * registers block address. Some CMT instances have a subset of channels
  49 * available, in which case the index in the documentation doesn't match the
  50 * "real" index as implemented in hardware. This is for instance the case with
  51 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
  52 * in the documentation but using start/stop bit 5 and having its registers
  53 * block at 0x60.
  54 *
  55 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
  56 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
  57 */
  58
  59enum sh_cmt_model {
  60	SH_CMT_16BIT,
  61	SH_CMT_32BIT,
  62	SH_CMT_48BIT,
  63	SH_CMT0_RCAR_GEN2,
  64	SH_CMT1_RCAR_GEN2,
  65};
  66
  67struct sh_cmt_info {
  68	enum sh_cmt_model model;
  69
  70	unsigned int channels_mask;
  71
  72	unsigned long width; /* 16 or 32 bit version of hardware block */
  73	u32 overflow_bit;
  74	u32 clear_bits;
  75
  76	/* callbacks for CMSTR and CMCSR access */
  77	u32 (*read_control)(void __iomem *base, unsigned long offs);
  78	void (*write_control)(void __iomem *base, unsigned long offs,
  79			      u32 value);
  80
  81	/* callbacks for CMCNT and CMCOR access */
  82	u32 (*read_count)(void __iomem *base, unsigned long offs);
  83	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
  84};
  85
  86struct sh_cmt_channel {
  87	struct sh_cmt_device *cmt;
  88
  89	unsigned int index;	/* Index in the documentation */
  90	unsigned int hwidx;	/* Real hardware index */
  91
  92	void __iomem *iostart;
  93	void __iomem *ioctrl;
  94
  95	unsigned int timer_bit;
  96	unsigned long flags;
  97	u32 match_value;
  98	u32 next_match_value;
  99	u32 max_match_value;
 100	raw_spinlock_t lock;
 101	struct clock_event_device ced;
 102	struct clocksource cs;
 103	u64 total_cycles;
 104	bool cs_enabled;
 105};
 106
 107struct sh_cmt_device {
 108	struct platform_device *pdev;
 109
 110	const struct sh_cmt_info *info;
 111
 112	void __iomem *mapbase;
 113	struct clk *clk;
 114	unsigned long rate;
 
 115
 116	raw_spinlock_t lock; /* Protect the shared start/stop register */
 117
 118	struct sh_cmt_channel *channels;
 119	unsigned int num_channels;
 120	unsigned int hw_channels;
 121
 122	bool has_clockevent;
 123	bool has_clocksource;
 124};
 125
 126#define SH_CMT16_CMCSR_CMF		(1 << 7)
 127#define SH_CMT16_CMCSR_CMIE		(1 << 6)
 128#define SH_CMT16_CMCSR_CKS8		(0 << 0)
 129#define SH_CMT16_CMCSR_CKS32		(1 << 0)
 130#define SH_CMT16_CMCSR_CKS128		(2 << 0)
 131#define SH_CMT16_CMCSR_CKS512		(3 << 0)
 132#define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
 133
 134#define SH_CMT32_CMCSR_CMF		(1 << 15)
 135#define SH_CMT32_CMCSR_OVF		(1 << 14)
 136#define SH_CMT32_CMCSR_WRFLG		(1 << 13)
 137#define SH_CMT32_CMCSR_STTF		(1 << 12)
 138#define SH_CMT32_CMCSR_STPF		(1 << 11)
 139#define SH_CMT32_CMCSR_SSIE		(1 << 10)
 140#define SH_CMT32_CMCSR_CMS		(1 << 9)
 141#define SH_CMT32_CMCSR_CMM		(1 << 8)
 142#define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
 143#define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
 144#define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
 145#define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
 146#define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
 147#define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
 148#define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
 149#define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
 150#define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
 151#define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
 152#define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
 153
 154static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
 155{
 156	return ioread16(base + (offs << 1));
 157}
 158
 159static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
 160{
 161	return ioread32(base + (offs << 2));
 162}
 163
 164static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
 165{
 166	iowrite16(value, base + (offs << 1));
 167}
 168
 169static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
 170{
 171	iowrite32(value, base + (offs << 2));
 172}
 173
 174static const struct sh_cmt_info sh_cmt_info[] = {
 175	[SH_CMT_16BIT] = {
 176		.model = SH_CMT_16BIT,
 177		.width = 16,
 178		.overflow_bit = SH_CMT16_CMCSR_CMF,
 179		.clear_bits = ~SH_CMT16_CMCSR_CMF,
 180		.read_control = sh_cmt_read16,
 181		.write_control = sh_cmt_write16,
 182		.read_count = sh_cmt_read16,
 183		.write_count = sh_cmt_write16,
 184	},
 185	[SH_CMT_32BIT] = {
 186		.model = SH_CMT_32BIT,
 187		.width = 32,
 188		.overflow_bit = SH_CMT32_CMCSR_CMF,
 189		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 190		.read_control = sh_cmt_read16,
 191		.write_control = sh_cmt_write16,
 192		.read_count = sh_cmt_read32,
 193		.write_count = sh_cmt_write32,
 194	},
 195	[SH_CMT_48BIT] = {
 196		.model = SH_CMT_48BIT,
 197		.channels_mask = 0x3f,
 198		.width = 32,
 199		.overflow_bit = SH_CMT32_CMCSR_CMF,
 200		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 201		.read_control = sh_cmt_read32,
 202		.write_control = sh_cmt_write32,
 203		.read_count = sh_cmt_read32,
 204		.write_count = sh_cmt_write32,
 205	},
 206	[SH_CMT0_RCAR_GEN2] = {
 207		.model = SH_CMT0_RCAR_GEN2,
 208		.channels_mask = 0x60,
 209		.width = 32,
 210		.overflow_bit = SH_CMT32_CMCSR_CMF,
 211		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 212		.read_control = sh_cmt_read32,
 213		.write_control = sh_cmt_write32,
 214		.read_count = sh_cmt_read32,
 215		.write_count = sh_cmt_write32,
 216	},
 217	[SH_CMT1_RCAR_GEN2] = {
 218		.model = SH_CMT1_RCAR_GEN2,
 219		.channels_mask = 0xff,
 220		.width = 32,
 221		.overflow_bit = SH_CMT32_CMCSR_CMF,
 222		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 223		.read_control = sh_cmt_read32,
 224		.write_control = sh_cmt_write32,
 225		.read_count = sh_cmt_read32,
 226		.write_count = sh_cmt_write32,
 227	},
 228};
 229
 230#define CMCSR 0 /* channel register */
 231#define CMCNT 1 /* channel register */
 232#define CMCOR 2 /* channel register */
 233
 
 
 234static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
 235{
 236	if (ch->iostart)
 237		return ch->cmt->info->read_control(ch->iostart, 0);
 238	else
 239		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
 240}
 241
 242static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
 243{
 244	if (ch->iostart)
 245		ch->cmt->info->write_control(ch->iostart, 0, value);
 246	else
 247		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
 
 
 
 
 
 
 
 248}
 249
 250static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
 251{
 252	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
 253}
 254
 255static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
 256{
 257	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
 
 
 
 
 
 258}
 259
 260static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
 261{
 262	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
 263}
 264
 265static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
 266{
 
 
 
 
 
 
 
 
 
 
 
 
 267	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
 
 
 268}
 269
 270static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
 271{
 272	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
 
 
 
 
 
 273}
 274
 275static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
 276{
 277	u32 v1, v2, v3;
 278	u32 o1, o2;
 279
 280	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 281
 282	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
 283	do {
 284		o2 = o1;
 285		v1 = sh_cmt_read_cmcnt(ch);
 286		v2 = sh_cmt_read_cmcnt(ch);
 287		v3 = sh_cmt_read_cmcnt(ch);
 288		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 289	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
 290			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
 291
 292	*has_wrapped = o1;
 293	return v2;
 294}
 295
 296static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
 297{
 298	unsigned long flags;
 299	u32 value;
 300
 301	/* start stop register shared by multiple timer channels */
 302	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
 303	value = sh_cmt_read_cmstr(ch);
 304
 305	if (start)
 306		value |= 1 << ch->timer_bit;
 307	else
 308		value &= ~(1 << ch->timer_bit);
 309
 310	sh_cmt_write_cmstr(ch, value);
 311	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
 312}
 313
 314static int sh_cmt_enable(struct sh_cmt_channel *ch)
 315{
 316	int k, ret;
 317
 318	pm_runtime_get_sync(&ch->cmt->pdev->dev);
 319	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
 320
 321	/* enable clock */
 322	ret = clk_enable(ch->cmt->clk);
 323	if (ret) {
 324		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
 325			ch->index);
 326		goto err0;
 327	}
 328
 329	/* make sure channel is disabled */
 330	sh_cmt_start_stop_ch(ch, 0);
 331
 332	/* configure channel, periodic mode and maximum timeout */
 333	if (ch->cmt->info->width == 16) {
 334		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
 335				   SH_CMT16_CMCSR_CKS512);
 336	} else {
 337		sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
 338				   SH_CMT32_CMCSR_CMTOUT_IE |
 
 339				   SH_CMT32_CMCSR_CMR_IRQ |
 340				   SH_CMT32_CMCSR_CKS_RCLK8);
 341	}
 342
 343	sh_cmt_write_cmcor(ch, 0xffffffff);
 344	sh_cmt_write_cmcnt(ch, 0);
 345
 346	/*
 347	 * According to the sh73a0 user's manual, as CMCNT can be operated
 348	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
 349	 * modifying CMCNT register; two RCLK cycles are necessary before
 350	 * this register is either read or any modification of the value
 351	 * it holds is reflected in the LSI's actual operation.
 352	 *
 353	 * While at it, we're supposed to clear out the CMCNT as of this
 354	 * moment, so make sure it's processed properly here.  This will
 355	 * take RCLKx2 at maximum.
 356	 */
 357	for (k = 0; k < 100; k++) {
 358		if (!sh_cmt_read_cmcnt(ch))
 359			break;
 360		udelay(1);
 361	}
 362
 363	if (sh_cmt_read_cmcnt(ch)) {
 364		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
 365			ch->index);
 366		ret = -ETIMEDOUT;
 367		goto err1;
 368	}
 369
 370	/* enable channel */
 371	sh_cmt_start_stop_ch(ch, 1);
 372	return 0;
 373 err1:
 374	/* stop clock */
 375	clk_disable(ch->cmt->clk);
 376
 377 err0:
 378	return ret;
 379}
 380
 381static void sh_cmt_disable(struct sh_cmt_channel *ch)
 382{
 383	/* disable channel */
 384	sh_cmt_start_stop_ch(ch, 0);
 385
 386	/* disable interrupts in CMT block */
 387	sh_cmt_write_cmcsr(ch, 0);
 388
 389	/* stop clock */
 390	clk_disable(ch->cmt->clk);
 391
 392	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
 393	pm_runtime_put(&ch->cmt->pdev->dev);
 394}
 395
 396/* private flags */
 397#define FLAG_CLOCKEVENT (1 << 0)
 398#define FLAG_CLOCKSOURCE (1 << 1)
 399#define FLAG_REPROGRAM (1 << 2)
 400#define FLAG_SKIPEVENT (1 << 3)
 401#define FLAG_IRQCONTEXT (1 << 4)
 402
 403static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
 404					      int absolute)
 405{
 406	u32 value = ch->next_match_value;
 407	u32 new_match;
 408	u32 delay = 0;
 409	u32 now = 0;
 410	u32 has_wrapped;
 411
 412	now = sh_cmt_get_counter(ch, &has_wrapped);
 413	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
 414
 415	if (has_wrapped) {
 416		/* we're competing with the interrupt handler.
 417		 *  -> let the interrupt handler reprogram the timer.
 418		 *  -> interrupt number two handles the event.
 419		 */
 420		ch->flags |= FLAG_SKIPEVENT;
 421		return;
 422	}
 423
 424	if (absolute)
 425		now = 0;
 426
 427	do {
 428		/* reprogram the timer hardware,
 429		 * but don't save the new match value yet.
 430		 */
 431		new_match = now + value + delay;
 432		if (new_match > ch->max_match_value)
 433			new_match = ch->max_match_value;
 434
 435		sh_cmt_write_cmcor(ch, new_match);
 436
 437		now = sh_cmt_get_counter(ch, &has_wrapped);
 438		if (has_wrapped && (new_match > ch->match_value)) {
 439			/* we are changing to a greater match value,
 440			 * so this wrap must be caused by the counter
 441			 * matching the old value.
 442			 * -> first interrupt reprograms the timer.
 443			 * -> interrupt number two handles the event.
 444			 */
 445			ch->flags |= FLAG_SKIPEVENT;
 446			break;
 447		}
 448
 449		if (has_wrapped) {
 450			/* we are changing to a smaller match value,
 451			 * so the wrap must be caused by the counter
 452			 * matching the new value.
 453			 * -> save programmed match value.
 454			 * -> let isr handle the event.
 455			 */
 456			ch->match_value = new_match;
 457			break;
 458		}
 459
 460		/* be safe: verify hardware settings */
 461		if (now < new_match) {
 462			/* timer value is below match value, all good.
 463			 * this makes sure we won't miss any match events.
 464			 * -> save programmed match value.
 465			 * -> let isr handle the event.
 466			 */
 467			ch->match_value = new_match;
 468			break;
 469		}
 470
 471		/* the counter has reached a value greater
 472		 * than our new match value. and since the
 473		 * has_wrapped flag isn't set we must have
 474		 * programmed a too close event.
 475		 * -> increase delay and retry.
 476		 */
 477		if (delay)
 478			delay <<= 1;
 479		else
 480			delay = 1;
 481
 482		if (!delay)
 483			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
 484				 ch->index);
 485
 486	} while (delay);
 487}
 488
 489static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 490{
 491	if (delta > ch->max_match_value)
 492		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
 493			 ch->index);
 494
 495	ch->next_match_value = delta;
 496	sh_cmt_clock_event_program_verify(ch, 0);
 497}
 498
 499static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 500{
 501	unsigned long flags;
 502
 503	raw_spin_lock_irqsave(&ch->lock, flags);
 504	__sh_cmt_set_next(ch, delta);
 505	raw_spin_unlock_irqrestore(&ch->lock, flags);
 506}
 507
 508static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
 509{
 510	struct sh_cmt_channel *ch = dev_id;
 511
 512	/* clear flags */
 513	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
 514			   ch->cmt->info->clear_bits);
 515
 516	/* update clock source counter to begin with if enabled
 517	 * the wrap flag should be cleared by the timer specific
 518	 * isr before we end up here.
 519	 */
 520	if (ch->flags & FLAG_CLOCKSOURCE)
 521		ch->total_cycles += ch->match_value + 1;
 522
 523	if (!(ch->flags & FLAG_REPROGRAM))
 524		ch->next_match_value = ch->max_match_value;
 525
 526	ch->flags |= FLAG_IRQCONTEXT;
 527
 528	if (ch->flags & FLAG_CLOCKEVENT) {
 529		if (!(ch->flags & FLAG_SKIPEVENT)) {
 530			if (clockevent_state_oneshot(&ch->ced)) {
 531				ch->next_match_value = ch->max_match_value;
 532				ch->flags |= FLAG_REPROGRAM;
 533			}
 534
 535			ch->ced.event_handler(&ch->ced);
 536		}
 537	}
 538
 539	ch->flags &= ~FLAG_SKIPEVENT;
 540
 541	if (ch->flags & FLAG_REPROGRAM) {
 542		ch->flags &= ~FLAG_REPROGRAM;
 543		sh_cmt_clock_event_program_verify(ch, 1);
 544
 545		if (ch->flags & FLAG_CLOCKEVENT)
 546			if ((clockevent_state_shutdown(&ch->ced))
 547			    || (ch->match_value == ch->next_match_value))
 548				ch->flags &= ~FLAG_REPROGRAM;
 549	}
 550
 551	ch->flags &= ~FLAG_IRQCONTEXT;
 552
 553	return IRQ_HANDLED;
 554}
 555
 556static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
 557{
 558	int ret = 0;
 559	unsigned long flags;
 560
 
 
 
 561	raw_spin_lock_irqsave(&ch->lock, flags);
 562
 563	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 
 
 564		ret = sh_cmt_enable(ch);
 
 565
 566	if (ret)
 567		goto out;
 568	ch->flags |= flag;
 569
 570	/* setup timeout if no clockevent */
 571	if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
 
 572		__sh_cmt_set_next(ch, ch->max_match_value);
 573 out:
 574	raw_spin_unlock_irqrestore(&ch->lock, flags);
 575
 576	return ret;
 577}
 578
 579static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
 580{
 581	unsigned long flags;
 582	unsigned long f;
 583
 584	raw_spin_lock_irqsave(&ch->lock, flags);
 585
 586	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
 587	ch->flags &= ~flag;
 588
 589	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 590		sh_cmt_disable(ch);
 
 
 
 591
 592	/* adjust the timeout to maximum if only clocksource left */
 593	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
 594		__sh_cmt_set_next(ch, ch->max_match_value);
 595
 596	raw_spin_unlock_irqrestore(&ch->lock, flags);
 
 
 
 597}
 598
 599static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
 600{
 601	return container_of(cs, struct sh_cmt_channel, cs);
 602}
 603
 604static u64 sh_cmt_clocksource_read(struct clocksource *cs)
 605{
 606	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 607	unsigned long flags;
 608	u32 has_wrapped;
 609	u64 value;
 610	u32 raw;
 611
 612	raw_spin_lock_irqsave(&ch->lock, flags);
 613	value = ch->total_cycles;
 614	raw = sh_cmt_get_counter(ch, &has_wrapped);
 
 
 
 
 
 
 
 
 
 615
 616	if (unlikely(has_wrapped))
 617		raw += ch->match_value + 1;
 618	raw_spin_unlock_irqrestore(&ch->lock, flags);
 619
 620	return value + raw;
 621}
 622
 623static int sh_cmt_clocksource_enable(struct clocksource *cs)
 624{
 625	int ret;
 626	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 627
 628	WARN_ON(ch->cs_enabled);
 629
 630	ch->total_cycles = 0;
 631
 632	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 633	if (!ret)
 634		ch->cs_enabled = true;
 635
 636	return ret;
 637}
 638
 639static void sh_cmt_clocksource_disable(struct clocksource *cs)
 640{
 641	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 642
 643	WARN_ON(!ch->cs_enabled);
 644
 645	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 646	ch->cs_enabled = false;
 647}
 648
 649static void sh_cmt_clocksource_suspend(struct clocksource *cs)
 650{
 651	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 652
 653	if (!ch->cs_enabled)
 654		return;
 655
 656	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 657	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 658}
 659
 660static void sh_cmt_clocksource_resume(struct clocksource *cs)
 661{
 662	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 663
 664	if (!ch->cs_enabled)
 665		return;
 666
 667	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 668	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 669}
 670
 671static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
 672				       const char *name)
 673{
 674	struct clocksource *cs = &ch->cs;
 675
 676	cs->name = name;
 677	cs->rating = 125;
 678	cs->read = sh_cmt_clocksource_read;
 679	cs->enable = sh_cmt_clocksource_enable;
 680	cs->disable = sh_cmt_clocksource_disable;
 681	cs->suspend = sh_cmt_clocksource_suspend;
 682	cs->resume = sh_cmt_clocksource_resume;
 683	cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
 684	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 685
 686	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
 687		 ch->index);
 688
 689	clocksource_register_hz(cs, ch->cmt->rate);
 690	return 0;
 691}
 692
 693static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
 694{
 695	return container_of(ced, struct sh_cmt_channel, ced);
 696}
 697
 698static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
 699{
 700	sh_cmt_start(ch, FLAG_CLOCKEVENT);
 701
 702	if (periodic)
 703		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
 704	else
 705		sh_cmt_set_next(ch, ch->max_match_value);
 706}
 707
 708static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
 709{
 710	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 711
 712	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 713	return 0;
 714}
 715
 716static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
 717					int periodic)
 718{
 719	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 720
 721	/* deal with old setting first */
 722	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 723		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 724
 725	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
 726		 ch->index, periodic ? "periodic" : "oneshot");
 727	sh_cmt_clock_event_start(ch, periodic);
 728	return 0;
 729}
 730
 731static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
 732{
 733	return sh_cmt_clock_event_set_state(ced, 0);
 734}
 735
 736static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
 737{
 738	return sh_cmt_clock_event_set_state(ced, 1);
 739}
 740
 741static int sh_cmt_clock_event_next(unsigned long delta,
 742				   struct clock_event_device *ced)
 743{
 744	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 745
 746	BUG_ON(!clockevent_state_oneshot(ced));
 747	if (likely(ch->flags & FLAG_IRQCONTEXT))
 748		ch->next_match_value = delta - 1;
 749	else
 750		sh_cmt_set_next(ch, delta - 1);
 751
 752	return 0;
 753}
 754
 755static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
 756{
 757	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 758
 759	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 760	clk_unprepare(ch->cmt->clk);
 761}
 762
 763static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
 764{
 765	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 766
 767	clk_prepare(ch->cmt->clk);
 768	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 769}
 770
 771static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
 772				      const char *name)
 773{
 774	struct clock_event_device *ced = &ch->ced;
 775	int irq;
 776	int ret;
 777
 778	irq = platform_get_irq(ch->cmt->pdev, ch->index);
 779	if (irq < 0)
 780		return irq;
 781
 782	ret = request_irq(irq, sh_cmt_interrupt,
 783			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 784			  dev_name(&ch->cmt->pdev->dev), ch);
 785	if (ret) {
 786		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
 787			ch->index, irq);
 788		return ret;
 789	}
 790
 791	ced->name = name;
 792	ced->features = CLOCK_EVT_FEAT_PERIODIC;
 793	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 794	ced->rating = 125;
 795	ced->cpumask = cpu_possible_mask;
 796	ced->set_next_event = sh_cmt_clock_event_next;
 797	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
 798	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
 799	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
 800	ced->suspend = sh_cmt_clock_event_suspend;
 801	ced->resume = sh_cmt_clock_event_resume;
 802
 803	/* TODO: calculate good shift from rate and counter bit width */
 804	ced->shift = 32;
 805	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
 806	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
 807	ced->max_delta_ticks = ch->max_match_value;
 808	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
 809	ced->min_delta_ticks = 0x1f;
 810
 811	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
 812		 ch->index);
 813	clockevents_register_device(ced);
 814
 815	return 0;
 816}
 817
 818static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
 819			   bool clockevent, bool clocksource)
 820{
 821	int ret;
 822
 823	if (clockevent) {
 824		ch->cmt->has_clockevent = true;
 825		ret = sh_cmt_register_clockevent(ch, name);
 826		if (ret < 0)
 827			return ret;
 828	}
 829
 830	if (clocksource) {
 831		ch->cmt->has_clocksource = true;
 832		sh_cmt_register_clocksource(ch, name);
 833	}
 834
 835	return 0;
 836}
 837
 838static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
 839				unsigned int hwidx, bool clockevent,
 840				bool clocksource, struct sh_cmt_device *cmt)
 841{
 
 842	int ret;
 843
 844	/* Skip unused channels. */
 845	if (!clockevent && !clocksource)
 846		return 0;
 847
 848	ch->cmt = cmt;
 849	ch->index = index;
 850	ch->hwidx = hwidx;
 851	ch->timer_bit = hwidx;
 852
 853	/*
 854	 * Compute the address of the channel control register block. For the
 855	 * timers with a per-channel start/stop register, compute its address
 856	 * as well.
 857	 */
 858	switch (cmt->info->model) {
 859	case SH_CMT_16BIT:
 860		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
 861		break;
 862	case SH_CMT_32BIT:
 863	case SH_CMT_48BIT:
 864		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
 865		break;
 866	case SH_CMT0_RCAR_GEN2:
 867	case SH_CMT1_RCAR_GEN2:
 868		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
 869		ch->ioctrl = ch->iostart + 0x10;
 870		ch->timer_bit = 0;
 
 
 
 
 
 871		break;
 872	}
 873
 874	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
 875		ch->max_match_value = ~0;
 876	else
 877		ch->max_match_value = (1 << cmt->info->width) - 1;
 878
 879	ch->match_value = ch->max_match_value;
 880	raw_spin_lock_init(&ch->lock);
 881
 882	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
 883			      clockevent, clocksource);
 884	if (ret) {
 885		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
 886			ch->index);
 887		return ret;
 888	}
 889	ch->cs_enabled = false;
 890
 891	return 0;
 892}
 893
 894static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
 895{
 896	struct resource *mem;
 897
 898	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 899	if (!mem) {
 900		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 901		return -ENXIO;
 902	}
 903
 904	cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
 905	if (cmt->mapbase == NULL) {
 906		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 907		return -ENXIO;
 908	}
 909
 910	return 0;
 911}
 912
 913static const struct platform_device_id sh_cmt_id_table[] = {
 914	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
 915	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
 916	{ }
 917};
 918MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
 919
 920static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
 921	{
 922		/* deprecated, preserved for backward compatibility */
 923		.compatible = "renesas,cmt-48",
 924		.data = &sh_cmt_info[SH_CMT_48BIT]
 925	},
 926	{
 927		/* deprecated, preserved for backward compatibility */
 928		.compatible = "renesas,cmt-48-gen2",
 929		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 930	},
 931	{
 932		.compatible = "renesas,r8a7740-cmt1",
 933		.data = &sh_cmt_info[SH_CMT_48BIT]
 934	},
 935	{
 936		.compatible = "renesas,sh73a0-cmt1",
 937		.data = &sh_cmt_info[SH_CMT_48BIT]
 938	},
 939	{
 940		.compatible = "renesas,rcar-gen2-cmt0",
 941		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 942	},
 943	{
 944		.compatible = "renesas,rcar-gen2-cmt1",
 945		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 946	},
 947	{
 948		.compatible = "renesas,rcar-gen3-cmt0",
 949		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 950	},
 951	{
 952		.compatible = "renesas,rcar-gen3-cmt1",
 953		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 954	},
 
 
 
 
 
 
 
 
 955	{ }
 956};
 957MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
 958
 959static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
 960{
 961	unsigned int mask;
 962	unsigned int i;
 963	int ret;
 964
 965	cmt->pdev = pdev;
 966	raw_spin_lock_init(&cmt->lock);
 967
 968	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
 969		cmt->info = of_device_get_match_data(&pdev->dev);
 970		cmt->hw_channels = cmt->info->channels_mask;
 971	} else if (pdev->dev.platform_data) {
 972		struct sh_timer_config *cfg = pdev->dev.platform_data;
 973		const struct platform_device_id *id = pdev->id_entry;
 974
 975		cmt->info = (const struct sh_cmt_info *)id->driver_data;
 976		cmt->hw_channels = cfg->channels_mask;
 977	} else {
 978		dev_err(&cmt->pdev->dev, "missing platform data\n");
 979		return -ENXIO;
 980	}
 981
 982	/* Get hold of clock. */
 983	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
 984	if (IS_ERR(cmt->clk)) {
 985		dev_err(&cmt->pdev->dev, "cannot get clock\n");
 986		return PTR_ERR(cmt->clk);
 987	}
 988
 989	ret = clk_prepare(cmt->clk);
 990	if (ret < 0)
 991		goto err_clk_put;
 992
 993	/* Determine clock rate. */
 994	ret = clk_enable(cmt->clk);
 995	if (ret < 0)
 996		goto err_clk_unprepare;
 997
 998	if (cmt->info->width == 16)
 999		cmt->rate = clk_get_rate(cmt->clk) / 512;
1000	else
1001		cmt->rate = clk_get_rate(cmt->clk) / 8;
 
1002
1003	clk_disable(cmt->clk);
 
 
 
1004
1005	/* Map the memory resource(s). */
1006	ret = sh_cmt_map_memory(cmt);
1007	if (ret < 0)
1008		goto err_clk_unprepare;
1009
1010	/* Allocate and setup the channels. */
1011	cmt->num_channels = hweight8(cmt->hw_channels);
1012	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1013				GFP_KERNEL);
1014	if (cmt->channels == NULL) {
1015		ret = -ENOMEM;
1016		goto err_unmap;
1017	}
1018
1019	/*
1020	 * Use the first channel as a clock event device and the second channel
1021	 * as a clock source. If only one channel is available use it for both.
1022	 */
1023	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1024		unsigned int hwidx = ffs(mask) - 1;
1025		bool clocksource = i == 1 || cmt->num_channels == 1;
1026		bool clockevent = i == 0;
1027
1028		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1029					   clockevent, clocksource, cmt);
1030		if (ret < 0)
1031			goto err_unmap;
1032
1033		mask &= ~(1 << hwidx);
1034	}
1035
 
 
1036	platform_set_drvdata(pdev, cmt);
1037
1038	return 0;
1039
1040err_unmap:
1041	kfree(cmt->channels);
1042	iounmap(cmt->mapbase);
 
 
1043err_clk_unprepare:
1044	clk_unprepare(cmt->clk);
1045err_clk_put:
1046	clk_put(cmt->clk);
1047	return ret;
1048}
1049
1050static int sh_cmt_probe(struct platform_device *pdev)
1051{
1052	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1053	int ret;
1054
1055	if (!is_early_platform_device(pdev)) {
1056		pm_runtime_set_active(&pdev->dev);
1057		pm_runtime_enable(&pdev->dev);
1058	}
1059
1060	if (cmt) {
1061		dev_info(&pdev->dev, "kept as earlytimer\n");
1062		goto out;
1063	}
1064
1065	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1066	if (cmt == NULL)
1067		return -ENOMEM;
1068
1069	ret = sh_cmt_setup(cmt, pdev);
1070	if (ret) {
1071		kfree(cmt);
1072		pm_runtime_idle(&pdev->dev);
1073		return ret;
1074	}
1075	if (is_early_platform_device(pdev))
1076		return 0;
1077
1078 out:
1079	if (cmt->has_clockevent || cmt->has_clocksource)
1080		pm_runtime_irq_safe(&pdev->dev);
1081	else
1082		pm_runtime_idle(&pdev->dev);
1083
1084	return 0;
1085}
1086
1087static int sh_cmt_remove(struct platform_device *pdev)
1088{
1089	return -EBUSY; /* cannot unregister clockevent and clocksource */
1090}
1091
1092static struct platform_driver sh_cmt_device_driver = {
1093	.probe		= sh_cmt_probe,
1094	.remove		= sh_cmt_remove,
1095	.driver		= {
1096		.name	= "sh_cmt",
1097		.of_match_table = of_match_ptr(sh_cmt_of_table),
 
1098	},
1099	.id_table	= sh_cmt_id_table,
1100};
1101
1102static int __init sh_cmt_init(void)
1103{
1104	return platform_driver_register(&sh_cmt_device_driver);
1105}
1106
1107static void __exit sh_cmt_exit(void)
1108{
1109	platform_driver_unregister(&sh_cmt_device_driver);
1110}
1111
1112early_platform_init("earlytimer", &sh_cmt_device_driver);
 
 
 
1113subsys_initcall(sh_cmt_init);
1114module_exit(sh_cmt_exit);
1115
1116MODULE_AUTHOR("Magnus Damm");
1117MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1118MODULE_LICENSE("GPL v2");