Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH Timer Support - CMT
   4 *
   5 *  Copyright (C) 2008 Magnus Damm
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/clockchips.h>
  10#include <linux/clocksource.h>
  11#include <linux/delay.h>
  12#include <linux/err.h>
  13#include <linux/init.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
  16#include <linux/iopoll.h>
  17#include <linux/ioport.h>
  18#include <linux/irq.h>
  19#include <linux/module.h>
  20#include <linux/of.h>
 
  21#include <linux/platform_device.h>
  22#include <linux/pm_domain.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/sh_timer.h>
  25#include <linux/slab.h>
  26#include <linux/spinlock.h>
  27
  28#ifdef CONFIG_SUPERH
  29#include <asm/platform_early.h>
  30#endif
  31
  32struct sh_cmt_device;
  33
  34/*
  35 * The CMT comes in 5 different identified flavours, depending not only on the
  36 * SoC but also on the particular instance. The following table lists the main
  37 * characteristics of those flavours.
  38 *
  39 *			16B	32B	32B-F	48B	R-Car Gen2
  40 * -----------------------------------------------------------------------------
  41 * Channels		2	1/4	1	6	2/8
  42 * Control Width	16	16	16	16	32
  43 * Counter Width	16	32	32	32/48	32/48
  44 * Shared Start/Stop	Y	Y	Y	Y	N
  45 *
  46 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
  47 * located in the channel registers block. All other versions have a shared
  48 * start/stop register located in the global space.
  49 *
  50 * Channels are indexed from 0 to N-1 in the documentation. The channel index
  51 * infers the start/stop bit position in the control register and the channel
  52 * registers block address. Some CMT instances have a subset of channels
  53 * available, in which case the index in the documentation doesn't match the
  54 * "real" index as implemented in hardware. This is for instance the case with
  55 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
  56 * in the documentation but using start/stop bit 5 and having its registers
  57 * block at 0x60.
  58 *
  59 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
  60 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
  61 */
  62
  63enum sh_cmt_model {
  64	SH_CMT_16BIT,
  65	SH_CMT_32BIT,
  66	SH_CMT_48BIT,
  67	SH_CMT0_RCAR_GEN2,
  68	SH_CMT1_RCAR_GEN2,
  69};
  70
  71struct sh_cmt_info {
  72	enum sh_cmt_model model;
  73
  74	unsigned int channels_mask;
  75
  76	unsigned long width; /* 16 or 32 bit version of hardware block */
  77	u32 overflow_bit;
  78	u32 clear_bits;
  79
  80	/* callbacks for CMSTR and CMCSR access */
  81	u32 (*read_control)(void __iomem *base, unsigned long offs);
  82	void (*write_control)(void __iomem *base, unsigned long offs,
  83			      u32 value);
  84
  85	/* callbacks for CMCNT and CMCOR access */
  86	u32 (*read_count)(void __iomem *base, unsigned long offs);
  87	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
  88};
  89
  90struct sh_cmt_channel {
  91	struct sh_cmt_device *cmt;
  92
  93	unsigned int index;	/* Index in the documentation */
  94	unsigned int hwidx;	/* Real hardware index */
  95
  96	void __iomem *iostart;
  97	void __iomem *ioctrl;
  98
  99	unsigned int timer_bit;
 100	unsigned long flags;
 101	u32 match_value;
 102	u32 next_match_value;
 103	u32 max_match_value;
 104	raw_spinlock_t lock;
 105	struct clock_event_device ced;
 106	struct clocksource cs;
 107	u64 total_cycles;
 108	bool cs_enabled;
 109};
 110
 111struct sh_cmt_device {
 112	struct platform_device *pdev;
 113
 114	const struct sh_cmt_info *info;
 115
 116	void __iomem *mapbase;
 117	struct clk *clk;
 118	unsigned long rate;
 119	unsigned int reg_delay;
 120
 121	raw_spinlock_t lock; /* Protect the shared start/stop register */
 122
 123	struct sh_cmt_channel *channels;
 124	unsigned int num_channels;
 125	unsigned int hw_channels;
 126
 127	bool has_clockevent;
 128	bool has_clocksource;
 129};
 130
 131#define SH_CMT16_CMCSR_CMF		(1 << 7)
 132#define SH_CMT16_CMCSR_CMIE		(1 << 6)
 133#define SH_CMT16_CMCSR_CKS8		(0 << 0)
 134#define SH_CMT16_CMCSR_CKS32		(1 << 0)
 135#define SH_CMT16_CMCSR_CKS128		(2 << 0)
 136#define SH_CMT16_CMCSR_CKS512		(3 << 0)
 137#define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
 138
 139#define SH_CMT32_CMCSR_CMF		(1 << 15)
 140#define SH_CMT32_CMCSR_OVF		(1 << 14)
 141#define SH_CMT32_CMCSR_WRFLG		(1 << 13)
 142#define SH_CMT32_CMCSR_STTF		(1 << 12)
 143#define SH_CMT32_CMCSR_STPF		(1 << 11)
 144#define SH_CMT32_CMCSR_SSIE		(1 << 10)
 145#define SH_CMT32_CMCSR_CMS		(1 << 9)
 146#define SH_CMT32_CMCSR_CMM		(1 << 8)
 147#define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
 148#define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
 149#define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
 150#define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
 151#define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
 152#define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
 153#define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
 154#define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
 155#define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
 156#define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
 157#define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
 158
 159static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
 160{
 161	return ioread16(base + (offs << 1));
 162}
 163
 164static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
 165{
 166	return ioread32(base + (offs << 2));
 167}
 168
 169static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
 170{
 171	iowrite16(value, base + (offs << 1));
 172}
 173
 174static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
 175{
 176	iowrite32(value, base + (offs << 2));
 177}
 178
 179static const struct sh_cmt_info sh_cmt_info[] = {
 180	[SH_CMT_16BIT] = {
 181		.model = SH_CMT_16BIT,
 182		.width = 16,
 183		.overflow_bit = SH_CMT16_CMCSR_CMF,
 184		.clear_bits = ~SH_CMT16_CMCSR_CMF,
 185		.read_control = sh_cmt_read16,
 186		.write_control = sh_cmt_write16,
 187		.read_count = sh_cmt_read16,
 188		.write_count = sh_cmt_write16,
 189	},
 190	[SH_CMT_32BIT] = {
 191		.model = SH_CMT_32BIT,
 192		.width = 32,
 193		.overflow_bit = SH_CMT32_CMCSR_CMF,
 194		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 195		.read_control = sh_cmt_read16,
 196		.write_control = sh_cmt_write16,
 197		.read_count = sh_cmt_read32,
 198		.write_count = sh_cmt_write32,
 199	},
 200	[SH_CMT_48BIT] = {
 201		.model = SH_CMT_48BIT,
 202		.channels_mask = 0x3f,
 203		.width = 32,
 204		.overflow_bit = SH_CMT32_CMCSR_CMF,
 205		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 206		.read_control = sh_cmt_read32,
 207		.write_control = sh_cmt_write32,
 208		.read_count = sh_cmt_read32,
 209		.write_count = sh_cmt_write32,
 210	},
 211	[SH_CMT0_RCAR_GEN2] = {
 212		.model = SH_CMT0_RCAR_GEN2,
 213		.channels_mask = 0x60,
 214		.width = 32,
 215		.overflow_bit = SH_CMT32_CMCSR_CMF,
 216		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 217		.read_control = sh_cmt_read32,
 218		.write_control = sh_cmt_write32,
 219		.read_count = sh_cmt_read32,
 220		.write_count = sh_cmt_write32,
 221	},
 222	[SH_CMT1_RCAR_GEN2] = {
 223		.model = SH_CMT1_RCAR_GEN2,
 224		.channels_mask = 0xff,
 225		.width = 32,
 226		.overflow_bit = SH_CMT32_CMCSR_CMF,
 227		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 228		.read_control = sh_cmt_read32,
 229		.write_control = sh_cmt_write32,
 230		.read_count = sh_cmt_read32,
 231		.write_count = sh_cmt_write32,
 232	},
 233};
 234
 235#define CMCSR 0 /* channel register */
 236#define CMCNT 1 /* channel register */
 237#define CMCOR 2 /* channel register */
 238
 239#define CMCLKE	0x1000	/* CLK Enable Register (R-Car Gen2) */
 240
 241static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
 242{
 243	if (ch->iostart)
 244		return ch->cmt->info->read_control(ch->iostart, 0);
 245	else
 246		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
 247}
 248
 249static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
 250{
 251	u32 old_value = sh_cmt_read_cmstr(ch);
 252
 253	if (value != old_value) {
 254		if (ch->iostart) {
 255			ch->cmt->info->write_control(ch->iostart, 0, value);
 256			udelay(ch->cmt->reg_delay);
 257		} else {
 258			ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
 259			udelay(ch->cmt->reg_delay);
 260		}
 261	}
 262}
 263
 264static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
 265{
 266	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
 267}
 268
 269static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
 270{
 271	u32 old_value = sh_cmt_read_cmcsr(ch);
 272
 273	if (value != old_value) {
 274		ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
 275		udelay(ch->cmt->reg_delay);
 276	}
 277}
 278
 279static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
 280{
 281	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
 282}
 283
 284static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
 285{
 286	/* Tests showed that we need to wait 3 clocks here */
 287	unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
 288	u32 reg;
 289
 290	if (ch->cmt->info->model > SH_CMT_16BIT) {
 291		int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
 292						   !(reg & SH_CMT32_CMCSR_WRFLG),
 293						   1, cmcnt_delay, false, ch);
 294		if (ret < 0)
 295			return ret;
 296	}
 297
 298	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
 299	udelay(cmcnt_delay);
 300	return 0;
 301}
 302
 303static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
 304{
 305	u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
 306
 307	if (value != old_value) {
 308		ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
 309		udelay(ch->cmt->reg_delay);
 310	}
 311}
 312
 313static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
 314{
 315	u32 v1, v2, v3;
 316	u32 o1, o2;
 317
 318	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 319
 320	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
 321	do {
 322		o2 = o1;
 323		v1 = sh_cmt_read_cmcnt(ch);
 324		v2 = sh_cmt_read_cmcnt(ch);
 325		v3 = sh_cmt_read_cmcnt(ch);
 326		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 327	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
 328			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
 329
 330	*has_wrapped = o1;
 331	return v2;
 332}
 333
 334static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
 335{
 336	unsigned long flags;
 337	u32 value;
 338
 339	/* start stop register shared by multiple timer channels */
 340	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
 341	value = sh_cmt_read_cmstr(ch);
 342
 343	if (start)
 344		value |= 1 << ch->timer_bit;
 345	else
 346		value &= ~(1 << ch->timer_bit);
 347
 348	sh_cmt_write_cmstr(ch, value);
 349	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
 350}
 351
 352static int sh_cmt_enable(struct sh_cmt_channel *ch)
 353{
 354	int ret;
 355
 
 356	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
 357
 358	/* enable clock */
 359	ret = clk_enable(ch->cmt->clk);
 360	if (ret) {
 361		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
 362			ch->index);
 363		goto err0;
 364	}
 365
 366	/* make sure channel is disabled */
 367	sh_cmt_start_stop_ch(ch, 0);
 368
 369	/* configure channel, periodic mode and maximum timeout */
 370	if (ch->cmt->info->width == 16) {
 371		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
 372				   SH_CMT16_CMCSR_CKS512);
 373	} else {
 374		u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
 375			      SH_CMT32_CMCSR_CMTOUT_IE : 0;
 376		sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
 377				   SH_CMT32_CMCSR_CMR_IRQ |
 378				   SH_CMT32_CMCSR_CKS_RCLK8);
 379	}
 380
 381	sh_cmt_write_cmcor(ch, 0xffffffff);
 382	ret = sh_cmt_write_cmcnt(ch, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 383
 384	if (ret || sh_cmt_read_cmcnt(ch)) {
 385		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
 386			ch->index);
 387		ret = -ETIMEDOUT;
 388		goto err1;
 389	}
 390
 391	/* enable channel */
 392	sh_cmt_start_stop_ch(ch, 1);
 393	return 0;
 394 err1:
 395	/* stop clock */
 396	clk_disable(ch->cmt->clk);
 397
 398 err0:
 399	return ret;
 400}
 401
 402static void sh_cmt_disable(struct sh_cmt_channel *ch)
 403{
 404	/* disable channel */
 405	sh_cmt_start_stop_ch(ch, 0);
 406
 407	/* disable interrupts in CMT block */
 408	sh_cmt_write_cmcsr(ch, 0);
 409
 410	/* stop clock */
 411	clk_disable(ch->cmt->clk);
 412
 413	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
 
 414}
 415
 416/* private flags */
 417#define FLAG_CLOCKEVENT (1 << 0)
 418#define FLAG_CLOCKSOURCE (1 << 1)
 419#define FLAG_REPROGRAM (1 << 2)
 420#define FLAG_SKIPEVENT (1 << 3)
 421#define FLAG_IRQCONTEXT (1 << 4)
 422
 423static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
 424					      int absolute)
 425{
 426	u32 value = ch->next_match_value;
 427	u32 new_match;
 428	u32 delay = 0;
 429	u32 now = 0;
 430	u32 has_wrapped;
 431
 432	now = sh_cmt_get_counter(ch, &has_wrapped);
 433	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
 434
 435	if (has_wrapped) {
 436		/* we're competing with the interrupt handler.
 437		 *  -> let the interrupt handler reprogram the timer.
 438		 *  -> interrupt number two handles the event.
 439		 */
 440		ch->flags |= FLAG_SKIPEVENT;
 441		return;
 442	}
 443
 444	if (absolute)
 445		now = 0;
 446
 447	do {
 448		/* reprogram the timer hardware,
 449		 * but don't save the new match value yet.
 450		 */
 451		new_match = now + value + delay;
 452		if (new_match > ch->max_match_value)
 453			new_match = ch->max_match_value;
 454
 455		sh_cmt_write_cmcor(ch, new_match);
 456
 457		now = sh_cmt_get_counter(ch, &has_wrapped);
 458		if (has_wrapped && (new_match > ch->match_value)) {
 459			/* we are changing to a greater match value,
 460			 * so this wrap must be caused by the counter
 461			 * matching the old value.
 462			 * -> first interrupt reprograms the timer.
 463			 * -> interrupt number two handles the event.
 464			 */
 465			ch->flags |= FLAG_SKIPEVENT;
 466			break;
 467		}
 468
 469		if (has_wrapped) {
 470			/* we are changing to a smaller match value,
 471			 * so the wrap must be caused by the counter
 472			 * matching the new value.
 473			 * -> save programmed match value.
 474			 * -> let isr handle the event.
 475			 */
 476			ch->match_value = new_match;
 477			break;
 478		}
 479
 480		/* be safe: verify hardware settings */
 481		if (now < new_match) {
 482			/* timer value is below match value, all good.
 483			 * this makes sure we won't miss any match events.
 484			 * -> save programmed match value.
 485			 * -> let isr handle the event.
 486			 */
 487			ch->match_value = new_match;
 488			break;
 489		}
 490
 491		/* the counter has reached a value greater
 492		 * than our new match value. and since the
 493		 * has_wrapped flag isn't set we must have
 494		 * programmed a too close event.
 495		 * -> increase delay and retry.
 496		 */
 497		if (delay)
 498			delay <<= 1;
 499		else
 500			delay = 1;
 501
 502		if (!delay)
 503			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
 504				 ch->index);
 505
 506	} while (delay);
 507}
 508
 509static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 510{
 511	if (delta > ch->max_match_value)
 512		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
 513			 ch->index);
 514
 515	ch->next_match_value = delta;
 516	sh_cmt_clock_event_program_verify(ch, 0);
 517}
 518
 519static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 520{
 521	unsigned long flags;
 522
 523	raw_spin_lock_irqsave(&ch->lock, flags);
 524	__sh_cmt_set_next(ch, delta);
 525	raw_spin_unlock_irqrestore(&ch->lock, flags);
 526}
 527
 528static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
 529{
 530	struct sh_cmt_channel *ch = dev_id;
 531
 532	/* clear flags */
 533	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
 534			   ch->cmt->info->clear_bits);
 535
 536	/* update clock source counter to begin with if enabled
 537	 * the wrap flag should be cleared by the timer specific
 538	 * isr before we end up here.
 539	 */
 540	if (ch->flags & FLAG_CLOCKSOURCE)
 541		ch->total_cycles += ch->match_value + 1;
 542
 543	if (!(ch->flags & FLAG_REPROGRAM))
 544		ch->next_match_value = ch->max_match_value;
 545
 546	ch->flags |= FLAG_IRQCONTEXT;
 547
 548	if (ch->flags & FLAG_CLOCKEVENT) {
 549		if (!(ch->flags & FLAG_SKIPEVENT)) {
 550			if (clockevent_state_oneshot(&ch->ced)) {
 551				ch->next_match_value = ch->max_match_value;
 552				ch->flags |= FLAG_REPROGRAM;
 553			}
 554
 555			ch->ced.event_handler(&ch->ced);
 556		}
 557	}
 558
 559	ch->flags &= ~FLAG_SKIPEVENT;
 560
 561	if (ch->flags & FLAG_REPROGRAM) {
 562		ch->flags &= ~FLAG_REPROGRAM;
 563		sh_cmt_clock_event_program_verify(ch, 1);
 564
 565		if (ch->flags & FLAG_CLOCKEVENT)
 566			if ((clockevent_state_shutdown(&ch->ced))
 567			    || (ch->match_value == ch->next_match_value))
 568				ch->flags &= ~FLAG_REPROGRAM;
 569	}
 570
 571	ch->flags &= ~FLAG_IRQCONTEXT;
 572
 573	return IRQ_HANDLED;
 574}
 575
 576static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
 577{
 578	int ret = 0;
 579	unsigned long flags;
 580
 581	if (flag & FLAG_CLOCKSOURCE)
 582		pm_runtime_get_sync(&ch->cmt->pdev->dev);
 583
 584	raw_spin_lock_irqsave(&ch->lock, flags);
 585
 586	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
 587		if (flag & FLAG_CLOCKEVENT)
 588			pm_runtime_get_sync(&ch->cmt->pdev->dev);
 589		ret = sh_cmt_enable(ch);
 590	}
 591
 592	if (ret)
 593		goto out;
 594	ch->flags |= flag;
 595
 596	/* setup timeout if no clockevent */
 597	if (ch->cmt->num_channels == 1 &&
 598	    flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
 599		__sh_cmt_set_next(ch, ch->max_match_value);
 600 out:
 601	raw_spin_unlock_irqrestore(&ch->lock, flags);
 602
 603	return ret;
 604}
 605
 606static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
 607{
 608	unsigned long flags;
 609	unsigned long f;
 610
 611	raw_spin_lock_irqsave(&ch->lock, flags);
 612
 613	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
 614	ch->flags &= ~flag;
 615
 616	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
 617		sh_cmt_disable(ch);
 618		if (flag & FLAG_CLOCKEVENT)
 619			pm_runtime_put(&ch->cmt->pdev->dev);
 620	}
 621
 622	/* adjust the timeout to maximum if only clocksource left */
 623	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
 624		__sh_cmt_set_next(ch, ch->max_match_value);
 625
 626	raw_spin_unlock_irqrestore(&ch->lock, flags);
 627
 628	if (flag & FLAG_CLOCKSOURCE)
 629		pm_runtime_put(&ch->cmt->pdev->dev);
 630}
 631
 632static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
 633{
 634	return container_of(cs, struct sh_cmt_channel, cs);
 635}
 636
 637static u64 sh_cmt_clocksource_read(struct clocksource *cs)
 638{
 639	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 
 640	u32 has_wrapped;
 
 
 641
 642	if (ch->cmt->num_channels == 1) {
 643		unsigned long flags;
 644		u64 value;
 645		u32 raw;
 646
 647		raw_spin_lock_irqsave(&ch->lock, flags);
 648		value = ch->total_cycles;
 649		raw = sh_cmt_get_counter(ch, &has_wrapped);
 650
 651		if (unlikely(has_wrapped))
 652			raw += ch->match_value + 1;
 653		raw_spin_unlock_irqrestore(&ch->lock, flags);
 654
 655		return value + raw;
 656	}
 
 657
 658	return sh_cmt_get_counter(ch, &has_wrapped);
 659}
 660
 661static int sh_cmt_clocksource_enable(struct clocksource *cs)
 662{
 663	int ret;
 664	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 665
 666	WARN_ON(ch->cs_enabled);
 667
 668	ch->total_cycles = 0;
 669
 670	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 671	if (!ret)
 672		ch->cs_enabled = true;
 673
 674	return ret;
 675}
 676
 677static void sh_cmt_clocksource_disable(struct clocksource *cs)
 678{
 679	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 680
 681	WARN_ON(!ch->cs_enabled);
 682
 683	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 684	ch->cs_enabled = false;
 685}
 686
 687static void sh_cmt_clocksource_suspend(struct clocksource *cs)
 688{
 689	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 690
 691	if (!ch->cs_enabled)
 692		return;
 693
 694	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 695	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
 696}
 697
 698static void sh_cmt_clocksource_resume(struct clocksource *cs)
 699{
 700	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 701
 702	if (!ch->cs_enabled)
 703		return;
 704
 705	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
 706	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 707}
 708
 709static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
 710				       const char *name)
 711{
 712	struct clocksource *cs = &ch->cs;
 713
 714	cs->name = name;
 715	cs->rating = 125;
 716	cs->read = sh_cmt_clocksource_read;
 717	cs->enable = sh_cmt_clocksource_enable;
 718	cs->disable = sh_cmt_clocksource_disable;
 719	cs->suspend = sh_cmt_clocksource_suspend;
 720	cs->resume = sh_cmt_clocksource_resume;
 721	cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
 722	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 723
 724	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
 725		 ch->index);
 726
 727	clocksource_register_hz(cs, ch->cmt->rate);
 728	return 0;
 729}
 730
 731static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
 732{
 733	return container_of(ced, struct sh_cmt_channel, ced);
 734}
 735
 736static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
 737{
 738	sh_cmt_start(ch, FLAG_CLOCKEVENT);
 739
 740	if (periodic)
 741		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
 742	else
 743		sh_cmt_set_next(ch, ch->max_match_value);
 744}
 745
 746static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
 747{
 748	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 749
 750	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 751	return 0;
 752}
 753
 754static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
 755					int periodic)
 756{
 757	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 758
 759	/* deal with old setting first */
 760	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 761		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 762
 763	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
 764		 ch->index, periodic ? "periodic" : "oneshot");
 765	sh_cmt_clock_event_start(ch, periodic);
 766	return 0;
 767}
 768
 769static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
 770{
 771	return sh_cmt_clock_event_set_state(ced, 0);
 772}
 773
 774static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
 775{
 776	return sh_cmt_clock_event_set_state(ced, 1);
 777}
 778
 779static int sh_cmt_clock_event_next(unsigned long delta,
 780				   struct clock_event_device *ced)
 781{
 782	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 783
 784	BUG_ON(!clockevent_state_oneshot(ced));
 785	if (likely(ch->flags & FLAG_IRQCONTEXT))
 786		ch->next_match_value = delta - 1;
 787	else
 788		sh_cmt_set_next(ch, delta - 1);
 789
 790	return 0;
 791}
 792
 793static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
 794{
 795	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 796
 797	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
 798	clk_unprepare(ch->cmt->clk);
 799}
 800
 801static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
 802{
 803	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 804
 805	clk_prepare(ch->cmt->clk);
 806	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
 807}
 808
 809static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
 810				      const char *name)
 811{
 812	struct clock_event_device *ced = &ch->ced;
 813	int irq;
 814	int ret;
 815
 816	irq = platform_get_irq(ch->cmt->pdev, ch->index);
 817	if (irq < 0)
 818		return irq;
 819
 820	ret = request_irq(irq, sh_cmt_interrupt,
 821			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 822			  dev_name(&ch->cmt->pdev->dev), ch);
 823	if (ret) {
 824		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
 825			ch->index, irq);
 826		return ret;
 827	}
 828
 829	ced->name = name;
 830	ced->features = CLOCK_EVT_FEAT_PERIODIC;
 831	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 832	ced->rating = 125;
 833	ced->cpumask = cpu_possible_mask;
 834	ced->set_next_event = sh_cmt_clock_event_next;
 835	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
 836	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
 837	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
 838	ced->suspend = sh_cmt_clock_event_suspend;
 839	ced->resume = sh_cmt_clock_event_resume;
 840
 841	/* TODO: calculate good shift from rate and counter bit width */
 842	ced->shift = 32;
 843	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
 844	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
 845	ced->max_delta_ticks = ch->max_match_value;
 846	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
 847	ced->min_delta_ticks = 0x1f;
 848
 849	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
 850		 ch->index);
 851	clockevents_register_device(ced);
 852
 853	return 0;
 854}
 855
 856static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
 857			   bool clockevent, bool clocksource)
 858{
 859	int ret;
 860
 861	if (clockevent) {
 862		ch->cmt->has_clockevent = true;
 863		ret = sh_cmt_register_clockevent(ch, name);
 864		if (ret < 0)
 865			return ret;
 866	}
 867
 868	if (clocksource) {
 869		ch->cmt->has_clocksource = true;
 870		sh_cmt_register_clocksource(ch, name);
 871	}
 872
 873	return 0;
 874}
 875
 876static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
 877				unsigned int hwidx, bool clockevent,
 878				bool clocksource, struct sh_cmt_device *cmt)
 879{
 880	u32 value;
 881	int ret;
 882
 883	/* Skip unused channels. */
 884	if (!clockevent && !clocksource)
 885		return 0;
 886
 887	ch->cmt = cmt;
 888	ch->index = index;
 889	ch->hwidx = hwidx;
 890	ch->timer_bit = hwidx;
 891
 892	/*
 893	 * Compute the address of the channel control register block. For the
 894	 * timers with a per-channel start/stop register, compute its address
 895	 * as well.
 896	 */
 897	switch (cmt->info->model) {
 898	case SH_CMT_16BIT:
 899		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
 900		break;
 901	case SH_CMT_32BIT:
 902	case SH_CMT_48BIT:
 903		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
 904		break;
 905	case SH_CMT0_RCAR_GEN2:
 906	case SH_CMT1_RCAR_GEN2:
 907		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
 908		ch->ioctrl = ch->iostart + 0x10;
 909		ch->timer_bit = 0;
 910
 911		/* Enable the clock supply to the channel */
 912		value = ioread32(cmt->mapbase + CMCLKE);
 913		value |= BIT(hwidx);
 914		iowrite32(value, cmt->mapbase + CMCLKE);
 915		break;
 916	}
 917
 918	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
 919		ch->max_match_value = ~0;
 920	else
 921		ch->max_match_value = (1 << cmt->info->width) - 1;
 922
 923	ch->match_value = ch->max_match_value;
 924	raw_spin_lock_init(&ch->lock);
 925
 926	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
 927			      clockevent, clocksource);
 928	if (ret) {
 929		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
 930			ch->index);
 931		return ret;
 932	}
 933	ch->cs_enabled = false;
 934
 935	return 0;
 936}
 937
 938static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
 939{
 940	struct resource *mem;
 941
 942	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 943	if (!mem) {
 944		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 945		return -ENXIO;
 946	}
 947
 948	cmt->mapbase = ioremap(mem->start, resource_size(mem));
 949	if (cmt->mapbase == NULL) {
 950		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 951		return -ENXIO;
 952	}
 953
 954	return 0;
 955}
 956
 957static const struct platform_device_id sh_cmt_id_table[] = {
 958	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
 959	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
 960	{ }
 961};
 962MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
 963
 964static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
 965	{
 966		/* deprecated, preserved for backward compatibility */
 967		.compatible = "renesas,cmt-48",
 968		.data = &sh_cmt_info[SH_CMT_48BIT]
 969	},
 970	{
 971		/* deprecated, preserved for backward compatibility */
 972		.compatible = "renesas,cmt-48-gen2",
 973		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 974	},
 975	{
 976		.compatible = "renesas,r8a7740-cmt1",
 977		.data = &sh_cmt_info[SH_CMT_48BIT]
 978	},
 979	{
 980		.compatible = "renesas,sh73a0-cmt1",
 981		.data = &sh_cmt_info[SH_CMT_48BIT]
 982	},
 983	{
 984		.compatible = "renesas,rcar-gen2-cmt0",
 985		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 986	},
 987	{
 988		.compatible = "renesas,rcar-gen2-cmt1",
 989		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 990	},
 991	{
 992		.compatible = "renesas,rcar-gen3-cmt0",
 993		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 994	},
 995	{
 996		.compatible = "renesas,rcar-gen3-cmt1",
 997		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 998	},
 999	{
1000		.compatible = "renesas,rcar-gen4-cmt0",
1001		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1002	},
1003	{
1004		.compatible = "renesas,rcar-gen4-cmt1",
1005		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1006	},
1007	{ }
1008};
1009MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
1010
1011static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
1012{
1013	unsigned int mask, i;
1014	unsigned long rate;
1015	int ret;
1016
1017	cmt->pdev = pdev;
1018	raw_spin_lock_init(&cmt->lock);
1019
1020	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1021		cmt->info = of_device_get_match_data(&pdev->dev);
1022		cmt->hw_channels = cmt->info->channels_mask;
1023	} else if (pdev->dev.platform_data) {
1024		struct sh_timer_config *cfg = pdev->dev.platform_data;
1025		const struct platform_device_id *id = pdev->id_entry;
1026
1027		cmt->info = (const struct sh_cmt_info *)id->driver_data;
1028		cmt->hw_channels = cfg->channels_mask;
1029	} else {
1030		dev_err(&cmt->pdev->dev, "missing platform data\n");
1031		return -ENXIO;
1032	}
1033
1034	/* Get hold of clock. */
1035	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1036	if (IS_ERR(cmt->clk)) {
1037		dev_err(&cmt->pdev->dev, "cannot get clock\n");
1038		return PTR_ERR(cmt->clk);
1039	}
1040
1041	ret = clk_prepare(cmt->clk);
1042	if (ret < 0)
1043		goto err_clk_put;
1044
1045	/* Determine clock rate. */
1046	ret = clk_enable(cmt->clk);
1047	if (ret < 0)
1048		goto err_clk_unprepare;
1049
1050	rate = clk_get_rate(cmt->clk);
1051	if (!rate) {
1052		ret = -EINVAL;
1053		goto err_clk_disable;
1054	}
1055
1056	/* We shall wait 2 input clks after register writes */
1057	if (cmt->info->model >= SH_CMT_48BIT)
1058		cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1059	cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
1060
1061	/* Map the memory resource(s). */
1062	ret = sh_cmt_map_memory(cmt);
1063	if (ret < 0)
1064		goto err_clk_disable;
1065
1066	/* Allocate and setup the channels. */
1067	cmt->num_channels = hweight8(cmt->hw_channels);
1068	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1069				GFP_KERNEL);
1070	if (cmt->channels == NULL) {
1071		ret = -ENOMEM;
1072		goto err_unmap;
1073	}
1074
1075	/*
1076	 * Use the first channel as a clock event device and the second channel
1077	 * as a clock source. If only one channel is available use it for both.
1078	 */
1079	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1080		unsigned int hwidx = ffs(mask) - 1;
1081		bool clocksource = i == 1 || cmt->num_channels == 1;
1082		bool clockevent = i == 0;
1083
1084		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1085					   clockevent, clocksource, cmt);
1086		if (ret < 0)
1087			goto err_unmap;
1088
1089		mask &= ~(1 << hwidx);
1090	}
1091
1092	clk_disable(cmt->clk);
1093
1094	platform_set_drvdata(pdev, cmt);
1095
1096	return 0;
1097
1098err_unmap:
1099	kfree(cmt->channels);
1100	iounmap(cmt->mapbase);
1101err_clk_disable:
1102	clk_disable(cmt->clk);
1103err_clk_unprepare:
1104	clk_unprepare(cmt->clk);
1105err_clk_put:
1106	clk_put(cmt->clk);
1107	return ret;
1108}
1109
1110static int sh_cmt_probe(struct platform_device *pdev)
1111{
1112	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1113	int ret;
1114
1115	if (!is_sh_early_platform_device(pdev)) {
1116		pm_runtime_set_active(&pdev->dev);
1117		pm_runtime_enable(&pdev->dev);
1118	}
1119
1120	if (cmt) {
1121		dev_info(&pdev->dev, "kept as earlytimer\n");
1122		goto out;
1123	}
1124
1125	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1126	if (cmt == NULL)
1127		return -ENOMEM;
1128
1129	ret = sh_cmt_setup(cmt, pdev);
1130	if (ret) {
1131		kfree(cmt);
1132		pm_runtime_idle(&pdev->dev);
1133		return ret;
1134	}
1135	if (is_sh_early_platform_device(pdev))
1136		return 0;
1137
1138 out:
1139	if (cmt->has_clockevent || cmt->has_clocksource)
1140		pm_runtime_irq_safe(&pdev->dev);
1141	else
1142		pm_runtime_idle(&pdev->dev);
1143
1144	return 0;
1145}
1146
 
 
 
 
 
1147static struct platform_driver sh_cmt_device_driver = {
1148	.probe		= sh_cmt_probe,
 
1149	.driver		= {
1150		.name	= "sh_cmt",
1151		.of_match_table = of_match_ptr(sh_cmt_of_table),
1152		.suppress_bind_attrs = true,
1153	},
1154	.id_table	= sh_cmt_id_table,
1155};
1156
1157static int __init sh_cmt_init(void)
1158{
1159	return platform_driver_register(&sh_cmt_device_driver);
1160}
1161
1162static void __exit sh_cmt_exit(void)
1163{
1164	platform_driver_unregister(&sh_cmt_device_driver);
1165}
1166
1167#ifdef CONFIG_SUPERH
1168sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1169#endif
1170
1171subsys_initcall(sh_cmt_init);
1172module_exit(sh_cmt_exit);
1173
1174MODULE_AUTHOR("Magnus Damm");
1175MODULE_DESCRIPTION("SuperH CMT Timer Driver");
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH Timer Support - CMT
   4 *
   5 *  Copyright (C) 2008 Magnus Damm
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/clockchips.h>
  10#include <linux/clocksource.h>
  11#include <linux/delay.h>
  12#include <linux/err.h>
  13#include <linux/init.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
 
  16#include <linux/ioport.h>
  17#include <linux/irq.h>
  18#include <linux/module.h>
  19#include <linux/of.h>
  20#include <linux/of_device.h>
  21#include <linux/platform_device.h>
  22#include <linux/pm_domain.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/sh_timer.h>
  25#include <linux/slab.h>
  26#include <linux/spinlock.h>
  27
  28#ifdef CONFIG_SUPERH
  29#include <asm/platform_early.h>
  30#endif
  31
  32struct sh_cmt_device;
  33
  34/*
  35 * The CMT comes in 5 different identified flavours, depending not only on the
  36 * SoC but also on the particular instance. The following table lists the main
  37 * characteristics of those flavours.
  38 *
  39 *			16B	32B	32B-F	48B	R-Car Gen2
  40 * -----------------------------------------------------------------------------
  41 * Channels		2	1/4	1	6	2/8
  42 * Control Width	16	16	16	16	32
  43 * Counter Width	16	32	32	32/48	32/48
  44 * Shared Start/Stop	Y	Y	Y	Y	N
  45 *
  46 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
  47 * located in the channel registers block. All other versions have a shared
  48 * start/stop register located in the global space.
  49 *
  50 * Channels are indexed from 0 to N-1 in the documentation. The channel index
  51 * infers the start/stop bit position in the control register and the channel
  52 * registers block address. Some CMT instances have a subset of channels
  53 * available, in which case the index in the documentation doesn't match the
  54 * "real" index as implemented in hardware. This is for instance the case with
  55 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
  56 * in the documentation but using start/stop bit 5 and having its registers
  57 * block at 0x60.
  58 *
  59 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
  60 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
  61 */
  62
  63enum sh_cmt_model {
  64	SH_CMT_16BIT,
  65	SH_CMT_32BIT,
  66	SH_CMT_48BIT,
  67	SH_CMT0_RCAR_GEN2,
  68	SH_CMT1_RCAR_GEN2,
  69};
  70
  71struct sh_cmt_info {
  72	enum sh_cmt_model model;
  73
  74	unsigned int channels_mask;
  75
  76	unsigned long width; /* 16 or 32 bit version of hardware block */
  77	u32 overflow_bit;
  78	u32 clear_bits;
  79
  80	/* callbacks for CMSTR and CMCSR access */
  81	u32 (*read_control)(void __iomem *base, unsigned long offs);
  82	void (*write_control)(void __iomem *base, unsigned long offs,
  83			      u32 value);
  84
  85	/* callbacks for CMCNT and CMCOR access */
  86	u32 (*read_count)(void __iomem *base, unsigned long offs);
  87	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
  88};
  89
  90struct sh_cmt_channel {
  91	struct sh_cmt_device *cmt;
  92
  93	unsigned int index;	/* Index in the documentation */
  94	unsigned int hwidx;	/* Real hardware index */
  95
  96	void __iomem *iostart;
  97	void __iomem *ioctrl;
  98
  99	unsigned int timer_bit;
 100	unsigned long flags;
 101	u32 match_value;
 102	u32 next_match_value;
 103	u32 max_match_value;
 104	raw_spinlock_t lock;
 105	struct clock_event_device ced;
 106	struct clocksource cs;
 107	u64 total_cycles;
 108	bool cs_enabled;
 109};
 110
 111struct sh_cmt_device {
 112	struct platform_device *pdev;
 113
 114	const struct sh_cmt_info *info;
 115
 116	void __iomem *mapbase;
 117	struct clk *clk;
 118	unsigned long rate;
 
 119
 120	raw_spinlock_t lock; /* Protect the shared start/stop register */
 121
 122	struct sh_cmt_channel *channels;
 123	unsigned int num_channels;
 124	unsigned int hw_channels;
 125
 126	bool has_clockevent;
 127	bool has_clocksource;
 128};
 129
 130#define SH_CMT16_CMCSR_CMF		(1 << 7)
 131#define SH_CMT16_CMCSR_CMIE		(1 << 6)
 132#define SH_CMT16_CMCSR_CKS8		(0 << 0)
 133#define SH_CMT16_CMCSR_CKS32		(1 << 0)
 134#define SH_CMT16_CMCSR_CKS128		(2 << 0)
 135#define SH_CMT16_CMCSR_CKS512		(3 << 0)
 136#define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
 137
 138#define SH_CMT32_CMCSR_CMF		(1 << 15)
 139#define SH_CMT32_CMCSR_OVF		(1 << 14)
 140#define SH_CMT32_CMCSR_WRFLG		(1 << 13)
 141#define SH_CMT32_CMCSR_STTF		(1 << 12)
 142#define SH_CMT32_CMCSR_STPF		(1 << 11)
 143#define SH_CMT32_CMCSR_SSIE		(1 << 10)
 144#define SH_CMT32_CMCSR_CMS		(1 << 9)
 145#define SH_CMT32_CMCSR_CMM		(1 << 8)
 146#define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
 147#define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
 148#define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
 149#define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
 150#define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
 151#define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
 152#define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
 153#define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
 154#define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
 155#define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
 156#define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
 157
 158static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
 159{
 160	return ioread16(base + (offs << 1));
 161}
 162
 163static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
 164{
 165	return ioread32(base + (offs << 2));
 166}
 167
 168static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
 169{
 170	iowrite16(value, base + (offs << 1));
 171}
 172
 173static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
 174{
 175	iowrite32(value, base + (offs << 2));
 176}
 177
 178static const struct sh_cmt_info sh_cmt_info[] = {
 179	[SH_CMT_16BIT] = {
 180		.model = SH_CMT_16BIT,
 181		.width = 16,
 182		.overflow_bit = SH_CMT16_CMCSR_CMF,
 183		.clear_bits = ~SH_CMT16_CMCSR_CMF,
 184		.read_control = sh_cmt_read16,
 185		.write_control = sh_cmt_write16,
 186		.read_count = sh_cmt_read16,
 187		.write_count = sh_cmt_write16,
 188	},
 189	[SH_CMT_32BIT] = {
 190		.model = SH_CMT_32BIT,
 191		.width = 32,
 192		.overflow_bit = SH_CMT32_CMCSR_CMF,
 193		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 194		.read_control = sh_cmt_read16,
 195		.write_control = sh_cmt_write16,
 196		.read_count = sh_cmt_read32,
 197		.write_count = sh_cmt_write32,
 198	},
 199	[SH_CMT_48BIT] = {
 200		.model = SH_CMT_48BIT,
 201		.channels_mask = 0x3f,
 202		.width = 32,
 203		.overflow_bit = SH_CMT32_CMCSR_CMF,
 204		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 205		.read_control = sh_cmt_read32,
 206		.write_control = sh_cmt_write32,
 207		.read_count = sh_cmt_read32,
 208		.write_count = sh_cmt_write32,
 209	},
 210	[SH_CMT0_RCAR_GEN2] = {
 211		.model = SH_CMT0_RCAR_GEN2,
 212		.channels_mask = 0x60,
 213		.width = 32,
 214		.overflow_bit = SH_CMT32_CMCSR_CMF,
 215		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 216		.read_control = sh_cmt_read32,
 217		.write_control = sh_cmt_write32,
 218		.read_count = sh_cmt_read32,
 219		.write_count = sh_cmt_write32,
 220	},
 221	[SH_CMT1_RCAR_GEN2] = {
 222		.model = SH_CMT1_RCAR_GEN2,
 223		.channels_mask = 0xff,
 224		.width = 32,
 225		.overflow_bit = SH_CMT32_CMCSR_CMF,
 226		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 227		.read_control = sh_cmt_read32,
 228		.write_control = sh_cmt_write32,
 229		.read_count = sh_cmt_read32,
 230		.write_count = sh_cmt_write32,
 231	},
 232};
 233
 234#define CMCSR 0 /* channel register */
 235#define CMCNT 1 /* channel register */
 236#define CMCOR 2 /* channel register */
 237
 
 
 238static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
 239{
 240	if (ch->iostart)
 241		return ch->cmt->info->read_control(ch->iostart, 0);
 242	else
 243		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
 244}
 245
 246static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
 247{
 248	if (ch->iostart)
 249		ch->cmt->info->write_control(ch->iostart, 0, value);
 250	else
 251		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
 
 
 
 
 
 
 
 252}
 253
 254static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
 255{
 256	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
 257}
 258
 259static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
 260{
 261	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
 
 
 
 
 
 262}
 263
 264static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
 265{
 266	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
 267}
 268
 269static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
 270{
 
 
 
 
 
 
 
 
 
 
 
 
 271	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
 
 
 272}
 273
 274static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
 275{
 276	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
 
 
 
 
 
 277}
 278
 279static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
 280{
 281	u32 v1, v2, v3;
 282	u32 o1, o2;
 283
 284	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 285
 286	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
 287	do {
 288		o2 = o1;
 289		v1 = sh_cmt_read_cmcnt(ch);
 290		v2 = sh_cmt_read_cmcnt(ch);
 291		v3 = sh_cmt_read_cmcnt(ch);
 292		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 293	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
 294			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
 295
 296	*has_wrapped = o1;
 297	return v2;
 298}
 299
 300static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
 301{
 302	unsigned long flags;
 303	u32 value;
 304
 305	/* start stop register shared by multiple timer channels */
 306	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
 307	value = sh_cmt_read_cmstr(ch);
 308
 309	if (start)
 310		value |= 1 << ch->timer_bit;
 311	else
 312		value &= ~(1 << ch->timer_bit);
 313
 314	sh_cmt_write_cmstr(ch, value);
 315	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
 316}
 317
 318static int sh_cmt_enable(struct sh_cmt_channel *ch)
 319{
 320	int k, ret;
 321
 322	pm_runtime_get_sync(&ch->cmt->pdev->dev);
 323	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
 324
 325	/* enable clock */
 326	ret = clk_enable(ch->cmt->clk);
 327	if (ret) {
 328		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
 329			ch->index);
 330		goto err0;
 331	}
 332
 333	/* make sure channel is disabled */
 334	sh_cmt_start_stop_ch(ch, 0);
 335
 336	/* configure channel, periodic mode and maximum timeout */
 337	if (ch->cmt->info->width == 16) {
 338		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
 339				   SH_CMT16_CMCSR_CKS512);
 340	} else {
 341		sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
 342				   SH_CMT32_CMCSR_CMTOUT_IE |
 
 343				   SH_CMT32_CMCSR_CMR_IRQ |
 344				   SH_CMT32_CMCSR_CKS_RCLK8);
 345	}
 346
 347	sh_cmt_write_cmcor(ch, 0xffffffff);
 348	sh_cmt_write_cmcnt(ch, 0);
 349
 350	/*
 351	 * According to the sh73a0 user's manual, as CMCNT can be operated
 352	 * only by the RCLK (Pseudo 32 kHz), there's one restriction on
 353	 * modifying CMCNT register; two RCLK cycles are necessary before
 354	 * this register is either read or any modification of the value
 355	 * it holds is reflected in the LSI's actual operation.
 356	 *
 357	 * While at it, we're supposed to clear out the CMCNT as of this
 358	 * moment, so make sure it's processed properly here.  This will
 359	 * take RCLKx2 at maximum.
 360	 */
 361	for (k = 0; k < 100; k++) {
 362		if (!sh_cmt_read_cmcnt(ch))
 363			break;
 364		udelay(1);
 365	}
 366
 367	if (sh_cmt_read_cmcnt(ch)) {
 368		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
 369			ch->index);
 370		ret = -ETIMEDOUT;
 371		goto err1;
 372	}
 373
 374	/* enable channel */
 375	sh_cmt_start_stop_ch(ch, 1);
 376	return 0;
 377 err1:
 378	/* stop clock */
 379	clk_disable(ch->cmt->clk);
 380
 381 err0:
 382	return ret;
 383}
 384
 385static void sh_cmt_disable(struct sh_cmt_channel *ch)
 386{
 387	/* disable channel */
 388	sh_cmt_start_stop_ch(ch, 0);
 389
 390	/* disable interrupts in CMT block */
 391	sh_cmt_write_cmcsr(ch, 0);
 392
 393	/* stop clock */
 394	clk_disable(ch->cmt->clk);
 395
 396	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
 397	pm_runtime_put(&ch->cmt->pdev->dev);
 398}
 399
 400/* private flags */
 401#define FLAG_CLOCKEVENT (1 << 0)
 402#define FLAG_CLOCKSOURCE (1 << 1)
 403#define FLAG_REPROGRAM (1 << 2)
 404#define FLAG_SKIPEVENT (1 << 3)
 405#define FLAG_IRQCONTEXT (1 << 4)
 406
 407static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
 408					      int absolute)
 409{
 410	u32 value = ch->next_match_value;
 411	u32 new_match;
 412	u32 delay = 0;
 413	u32 now = 0;
 414	u32 has_wrapped;
 415
 416	now = sh_cmt_get_counter(ch, &has_wrapped);
 417	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
 418
 419	if (has_wrapped) {
 420		/* we're competing with the interrupt handler.
 421		 *  -> let the interrupt handler reprogram the timer.
 422		 *  -> interrupt number two handles the event.
 423		 */
 424		ch->flags |= FLAG_SKIPEVENT;
 425		return;
 426	}
 427
 428	if (absolute)
 429		now = 0;
 430
 431	do {
 432		/* reprogram the timer hardware,
 433		 * but don't save the new match value yet.
 434		 */
 435		new_match = now + value + delay;
 436		if (new_match > ch->max_match_value)
 437			new_match = ch->max_match_value;
 438
 439		sh_cmt_write_cmcor(ch, new_match);
 440
 441		now = sh_cmt_get_counter(ch, &has_wrapped);
 442		if (has_wrapped && (new_match > ch->match_value)) {
 443			/* we are changing to a greater match value,
 444			 * so this wrap must be caused by the counter
 445			 * matching the old value.
 446			 * -> first interrupt reprograms the timer.
 447			 * -> interrupt number two handles the event.
 448			 */
 449			ch->flags |= FLAG_SKIPEVENT;
 450			break;
 451		}
 452
 453		if (has_wrapped) {
 454			/* we are changing to a smaller match value,
 455			 * so the wrap must be caused by the counter
 456			 * matching the new value.
 457			 * -> save programmed match value.
 458			 * -> let isr handle the event.
 459			 */
 460			ch->match_value = new_match;
 461			break;
 462		}
 463
 464		/* be safe: verify hardware settings */
 465		if (now < new_match) {
 466			/* timer value is below match value, all good.
 467			 * this makes sure we won't miss any match events.
 468			 * -> save programmed match value.
 469			 * -> let isr handle the event.
 470			 */
 471			ch->match_value = new_match;
 472			break;
 473		}
 474
 475		/* the counter has reached a value greater
 476		 * than our new match value. and since the
 477		 * has_wrapped flag isn't set we must have
 478		 * programmed a too close event.
 479		 * -> increase delay and retry.
 480		 */
 481		if (delay)
 482			delay <<= 1;
 483		else
 484			delay = 1;
 485
 486		if (!delay)
 487			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
 488				 ch->index);
 489
 490	} while (delay);
 491}
 492
 493static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 494{
 495	if (delta > ch->max_match_value)
 496		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
 497			 ch->index);
 498
 499	ch->next_match_value = delta;
 500	sh_cmt_clock_event_program_verify(ch, 0);
 501}
 502
 503static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 504{
 505	unsigned long flags;
 506
 507	raw_spin_lock_irqsave(&ch->lock, flags);
 508	__sh_cmt_set_next(ch, delta);
 509	raw_spin_unlock_irqrestore(&ch->lock, flags);
 510}
 511
 512static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
 513{
 514	struct sh_cmt_channel *ch = dev_id;
 515
 516	/* clear flags */
 517	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
 518			   ch->cmt->info->clear_bits);
 519
 520	/* update clock source counter to begin with if enabled
 521	 * the wrap flag should be cleared by the timer specific
 522	 * isr before we end up here.
 523	 */
 524	if (ch->flags & FLAG_CLOCKSOURCE)
 525		ch->total_cycles += ch->match_value + 1;
 526
 527	if (!(ch->flags & FLAG_REPROGRAM))
 528		ch->next_match_value = ch->max_match_value;
 529
 530	ch->flags |= FLAG_IRQCONTEXT;
 531
 532	if (ch->flags & FLAG_CLOCKEVENT) {
 533		if (!(ch->flags & FLAG_SKIPEVENT)) {
 534			if (clockevent_state_oneshot(&ch->ced)) {
 535				ch->next_match_value = ch->max_match_value;
 536				ch->flags |= FLAG_REPROGRAM;
 537			}
 538
 539			ch->ced.event_handler(&ch->ced);
 540		}
 541	}
 542
 543	ch->flags &= ~FLAG_SKIPEVENT;
 544
 545	if (ch->flags & FLAG_REPROGRAM) {
 546		ch->flags &= ~FLAG_REPROGRAM;
 547		sh_cmt_clock_event_program_verify(ch, 1);
 548
 549		if (ch->flags & FLAG_CLOCKEVENT)
 550			if ((clockevent_state_shutdown(&ch->ced))
 551			    || (ch->match_value == ch->next_match_value))
 552				ch->flags &= ~FLAG_REPROGRAM;
 553	}
 554
 555	ch->flags &= ~FLAG_IRQCONTEXT;
 556
 557	return IRQ_HANDLED;
 558}
 559
 560static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
 561{
 562	int ret = 0;
 563	unsigned long flags;
 564
 
 
 
 565	raw_spin_lock_irqsave(&ch->lock, flags);
 566
 567	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 
 
 568		ret = sh_cmt_enable(ch);
 
 569
 570	if (ret)
 571		goto out;
 572	ch->flags |= flag;
 573
 574	/* setup timeout if no clockevent */
 575	if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
 
 576		__sh_cmt_set_next(ch, ch->max_match_value);
 577 out:
 578	raw_spin_unlock_irqrestore(&ch->lock, flags);
 579
 580	return ret;
 581}
 582
 583static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
 584{
 585	unsigned long flags;
 586	unsigned long f;
 587
 588	raw_spin_lock_irqsave(&ch->lock, flags);
 589
 590	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
 591	ch->flags &= ~flag;
 592
 593	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 594		sh_cmt_disable(ch);
 
 
 
 595
 596	/* adjust the timeout to maximum if only clocksource left */
 597	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
 598		__sh_cmt_set_next(ch, ch->max_match_value);
 599
 600	raw_spin_unlock_irqrestore(&ch->lock, flags);
 
 
 
 601}
 602
 603static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
 604{
 605	return container_of(cs, struct sh_cmt_channel, cs);
 606}
 607
 608static u64 sh_cmt_clocksource_read(struct clocksource *cs)
 609{
 610	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 611	unsigned long flags;
 612	u32 has_wrapped;
 613	u64 value;
 614	u32 raw;
 615
 616	raw_spin_lock_irqsave(&ch->lock, flags);
 617	value = ch->total_cycles;
 618	raw = sh_cmt_get_counter(ch, &has_wrapped);
 
 
 
 
 
 
 
 
 
 619
 620	if (unlikely(has_wrapped))
 621		raw += ch->match_value + 1;
 622	raw_spin_unlock_irqrestore(&ch->lock, flags);
 623
 624	return value + raw;
 625}
 626
 627static int sh_cmt_clocksource_enable(struct clocksource *cs)
 628{
 629	int ret;
 630	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 631
 632	WARN_ON(ch->cs_enabled);
 633
 634	ch->total_cycles = 0;
 635
 636	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 637	if (!ret)
 638		ch->cs_enabled = true;
 639
 640	return ret;
 641}
 642
 643static void sh_cmt_clocksource_disable(struct clocksource *cs)
 644{
 645	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 646
 647	WARN_ON(!ch->cs_enabled);
 648
 649	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 650	ch->cs_enabled = false;
 651}
 652
 653static void sh_cmt_clocksource_suspend(struct clocksource *cs)
 654{
 655	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 656
 657	if (!ch->cs_enabled)
 658		return;
 659
 660	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 661	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 662}
 663
 664static void sh_cmt_clocksource_resume(struct clocksource *cs)
 665{
 666	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 667
 668	if (!ch->cs_enabled)
 669		return;
 670
 671	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 672	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 673}
 674
 675static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
 676				       const char *name)
 677{
 678	struct clocksource *cs = &ch->cs;
 679
 680	cs->name = name;
 681	cs->rating = 125;
 682	cs->read = sh_cmt_clocksource_read;
 683	cs->enable = sh_cmt_clocksource_enable;
 684	cs->disable = sh_cmt_clocksource_disable;
 685	cs->suspend = sh_cmt_clocksource_suspend;
 686	cs->resume = sh_cmt_clocksource_resume;
 687	cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
 688	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 689
 690	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
 691		 ch->index);
 692
 693	clocksource_register_hz(cs, ch->cmt->rate);
 694	return 0;
 695}
 696
 697static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
 698{
 699	return container_of(ced, struct sh_cmt_channel, ced);
 700}
 701
 702static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
 703{
 704	sh_cmt_start(ch, FLAG_CLOCKEVENT);
 705
 706	if (periodic)
 707		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
 708	else
 709		sh_cmt_set_next(ch, ch->max_match_value);
 710}
 711
 712static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
 713{
 714	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 715
 716	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 717	return 0;
 718}
 719
 720static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
 721					int periodic)
 722{
 723	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 724
 725	/* deal with old setting first */
 726	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 727		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 728
 729	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
 730		 ch->index, periodic ? "periodic" : "oneshot");
 731	sh_cmt_clock_event_start(ch, periodic);
 732	return 0;
 733}
 734
 735static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
 736{
 737	return sh_cmt_clock_event_set_state(ced, 0);
 738}
 739
 740static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
 741{
 742	return sh_cmt_clock_event_set_state(ced, 1);
 743}
 744
 745static int sh_cmt_clock_event_next(unsigned long delta,
 746				   struct clock_event_device *ced)
 747{
 748	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 749
 750	BUG_ON(!clockevent_state_oneshot(ced));
 751	if (likely(ch->flags & FLAG_IRQCONTEXT))
 752		ch->next_match_value = delta - 1;
 753	else
 754		sh_cmt_set_next(ch, delta - 1);
 755
 756	return 0;
 757}
 758
 759static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
 760{
 761	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 762
 763	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 764	clk_unprepare(ch->cmt->clk);
 765}
 766
 767static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
 768{
 769	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 770
 771	clk_prepare(ch->cmt->clk);
 772	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 773}
 774
 775static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
 776				      const char *name)
 777{
 778	struct clock_event_device *ced = &ch->ced;
 779	int irq;
 780	int ret;
 781
 782	irq = platform_get_irq(ch->cmt->pdev, ch->index);
 783	if (irq < 0)
 784		return irq;
 785
 786	ret = request_irq(irq, sh_cmt_interrupt,
 787			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 788			  dev_name(&ch->cmt->pdev->dev), ch);
 789	if (ret) {
 790		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
 791			ch->index, irq);
 792		return ret;
 793	}
 794
 795	ced->name = name;
 796	ced->features = CLOCK_EVT_FEAT_PERIODIC;
 797	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 798	ced->rating = 125;
 799	ced->cpumask = cpu_possible_mask;
 800	ced->set_next_event = sh_cmt_clock_event_next;
 801	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
 802	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
 803	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
 804	ced->suspend = sh_cmt_clock_event_suspend;
 805	ced->resume = sh_cmt_clock_event_resume;
 806
 807	/* TODO: calculate good shift from rate and counter bit width */
 808	ced->shift = 32;
 809	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
 810	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
 811	ced->max_delta_ticks = ch->max_match_value;
 812	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
 813	ced->min_delta_ticks = 0x1f;
 814
 815	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
 816		 ch->index);
 817	clockevents_register_device(ced);
 818
 819	return 0;
 820}
 821
 822static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
 823			   bool clockevent, bool clocksource)
 824{
 825	int ret;
 826
 827	if (clockevent) {
 828		ch->cmt->has_clockevent = true;
 829		ret = sh_cmt_register_clockevent(ch, name);
 830		if (ret < 0)
 831			return ret;
 832	}
 833
 834	if (clocksource) {
 835		ch->cmt->has_clocksource = true;
 836		sh_cmt_register_clocksource(ch, name);
 837	}
 838
 839	return 0;
 840}
 841
 842static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
 843				unsigned int hwidx, bool clockevent,
 844				bool clocksource, struct sh_cmt_device *cmt)
 845{
 
 846	int ret;
 847
 848	/* Skip unused channels. */
 849	if (!clockevent && !clocksource)
 850		return 0;
 851
 852	ch->cmt = cmt;
 853	ch->index = index;
 854	ch->hwidx = hwidx;
 855	ch->timer_bit = hwidx;
 856
 857	/*
 858	 * Compute the address of the channel control register block. For the
 859	 * timers with a per-channel start/stop register, compute its address
 860	 * as well.
 861	 */
 862	switch (cmt->info->model) {
 863	case SH_CMT_16BIT:
 864		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
 865		break;
 866	case SH_CMT_32BIT:
 867	case SH_CMT_48BIT:
 868		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
 869		break;
 870	case SH_CMT0_RCAR_GEN2:
 871	case SH_CMT1_RCAR_GEN2:
 872		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
 873		ch->ioctrl = ch->iostart + 0x10;
 874		ch->timer_bit = 0;
 
 
 
 
 
 875		break;
 876	}
 877
 878	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
 879		ch->max_match_value = ~0;
 880	else
 881		ch->max_match_value = (1 << cmt->info->width) - 1;
 882
 883	ch->match_value = ch->max_match_value;
 884	raw_spin_lock_init(&ch->lock);
 885
 886	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
 887			      clockevent, clocksource);
 888	if (ret) {
 889		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
 890			ch->index);
 891		return ret;
 892	}
 893	ch->cs_enabled = false;
 894
 895	return 0;
 896}
 897
 898static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
 899{
 900	struct resource *mem;
 901
 902	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 903	if (!mem) {
 904		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 905		return -ENXIO;
 906	}
 907
 908	cmt->mapbase = ioremap(mem->start, resource_size(mem));
 909	if (cmt->mapbase == NULL) {
 910		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 911		return -ENXIO;
 912	}
 913
 914	return 0;
 915}
 916
 917static const struct platform_device_id sh_cmt_id_table[] = {
 918	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
 919	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
 920	{ }
 921};
 922MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
 923
 924static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
 925	{
 926		/* deprecated, preserved for backward compatibility */
 927		.compatible = "renesas,cmt-48",
 928		.data = &sh_cmt_info[SH_CMT_48BIT]
 929	},
 930	{
 931		/* deprecated, preserved for backward compatibility */
 932		.compatible = "renesas,cmt-48-gen2",
 933		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 934	},
 935	{
 936		.compatible = "renesas,r8a7740-cmt1",
 937		.data = &sh_cmt_info[SH_CMT_48BIT]
 938	},
 939	{
 940		.compatible = "renesas,sh73a0-cmt1",
 941		.data = &sh_cmt_info[SH_CMT_48BIT]
 942	},
 943	{
 944		.compatible = "renesas,rcar-gen2-cmt0",
 945		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 946	},
 947	{
 948		.compatible = "renesas,rcar-gen2-cmt1",
 949		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 950	},
 951	{
 952		.compatible = "renesas,rcar-gen3-cmt0",
 953		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 954	},
 955	{
 956		.compatible = "renesas,rcar-gen3-cmt1",
 957		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 958	},
 
 
 
 
 
 
 
 
 959	{ }
 960};
 961MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
 962
 963static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
 964{
 965	unsigned int mask;
 966	unsigned int i;
 967	int ret;
 968
 969	cmt->pdev = pdev;
 970	raw_spin_lock_init(&cmt->lock);
 971
 972	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
 973		cmt->info = of_device_get_match_data(&pdev->dev);
 974		cmt->hw_channels = cmt->info->channels_mask;
 975	} else if (pdev->dev.platform_data) {
 976		struct sh_timer_config *cfg = pdev->dev.platform_data;
 977		const struct platform_device_id *id = pdev->id_entry;
 978
 979		cmt->info = (const struct sh_cmt_info *)id->driver_data;
 980		cmt->hw_channels = cfg->channels_mask;
 981	} else {
 982		dev_err(&cmt->pdev->dev, "missing platform data\n");
 983		return -ENXIO;
 984	}
 985
 986	/* Get hold of clock. */
 987	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
 988	if (IS_ERR(cmt->clk)) {
 989		dev_err(&cmt->pdev->dev, "cannot get clock\n");
 990		return PTR_ERR(cmt->clk);
 991	}
 992
 993	ret = clk_prepare(cmt->clk);
 994	if (ret < 0)
 995		goto err_clk_put;
 996
 997	/* Determine clock rate. */
 998	ret = clk_enable(cmt->clk);
 999	if (ret < 0)
1000		goto err_clk_unprepare;
1001
1002	if (cmt->info->width == 16)
1003		cmt->rate = clk_get_rate(cmt->clk) / 512;
1004	else
1005		cmt->rate = clk_get_rate(cmt->clk) / 8;
 
1006
1007	clk_disable(cmt->clk);
 
 
 
1008
1009	/* Map the memory resource(s). */
1010	ret = sh_cmt_map_memory(cmt);
1011	if (ret < 0)
1012		goto err_clk_unprepare;
1013
1014	/* Allocate and setup the channels. */
1015	cmt->num_channels = hweight8(cmt->hw_channels);
1016	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1017				GFP_KERNEL);
1018	if (cmt->channels == NULL) {
1019		ret = -ENOMEM;
1020		goto err_unmap;
1021	}
1022
1023	/*
1024	 * Use the first channel as a clock event device and the second channel
1025	 * as a clock source. If only one channel is available use it for both.
1026	 */
1027	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1028		unsigned int hwidx = ffs(mask) - 1;
1029		bool clocksource = i == 1 || cmt->num_channels == 1;
1030		bool clockevent = i == 0;
1031
1032		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1033					   clockevent, clocksource, cmt);
1034		if (ret < 0)
1035			goto err_unmap;
1036
1037		mask &= ~(1 << hwidx);
1038	}
1039
 
 
1040	platform_set_drvdata(pdev, cmt);
1041
1042	return 0;
1043
1044err_unmap:
1045	kfree(cmt->channels);
1046	iounmap(cmt->mapbase);
 
 
1047err_clk_unprepare:
1048	clk_unprepare(cmt->clk);
1049err_clk_put:
1050	clk_put(cmt->clk);
1051	return ret;
1052}
1053
1054static int sh_cmt_probe(struct platform_device *pdev)
1055{
1056	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1057	int ret;
1058
1059	if (!is_sh_early_platform_device(pdev)) {
1060		pm_runtime_set_active(&pdev->dev);
1061		pm_runtime_enable(&pdev->dev);
1062	}
1063
1064	if (cmt) {
1065		dev_info(&pdev->dev, "kept as earlytimer\n");
1066		goto out;
1067	}
1068
1069	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1070	if (cmt == NULL)
1071		return -ENOMEM;
1072
1073	ret = sh_cmt_setup(cmt, pdev);
1074	if (ret) {
1075		kfree(cmt);
1076		pm_runtime_idle(&pdev->dev);
1077		return ret;
1078	}
1079	if (is_sh_early_platform_device(pdev))
1080		return 0;
1081
1082 out:
1083	if (cmt->has_clockevent || cmt->has_clocksource)
1084		pm_runtime_irq_safe(&pdev->dev);
1085	else
1086		pm_runtime_idle(&pdev->dev);
1087
1088	return 0;
1089}
1090
1091static int sh_cmt_remove(struct platform_device *pdev)
1092{
1093	return -EBUSY; /* cannot unregister clockevent and clocksource */
1094}
1095
1096static struct platform_driver sh_cmt_device_driver = {
1097	.probe		= sh_cmt_probe,
1098	.remove		= sh_cmt_remove,
1099	.driver		= {
1100		.name	= "sh_cmt",
1101		.of_match_table = of_match_ptr(sh_cmt_of_table),
 
1102	},
1103	.id_table	= sh_cmt_id_table,
1104};
1105
1106static int __init sh_cmt_init(void)
1107{
1108	return platform_driver_register(&sh_cmt_device_driver);
1109}
1110
1111static void __exit sh_cmt_exit(void)
1112{
1113	platform_driver_unregister(&sh_cmt_device_driver);
1114}
1115
1116#ifdef CONFIG_SUPERH
1117sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1118#endif
1119
1120subsys_initcall(sh_cmt_init);
1121module_exit(sh_cmt_exit);
1122
1123MODULE_AUTHOR("Magnus Damm");
1124MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1125MODULE_LICENSE("GPL v2");