Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SuperH Timer Support - CMT
4 *
5 * Copyright (C) 2008 Magnus Damm
6 */
7
8#include <linux/clk.h>
9#include <linux/clockchips.h>
10#include <linux/clocksource.h>
11#include <linux/delay.h>
12#include <linux/err.h>
13#include <linux/init.h>
14#include <linux/interrupt.h>
15#include <linux/io.h>
16#include <linux/iopoll.h>
17#include <linux/ioport.h>
18#include <linux/irq.h>
19#include <linux/module.h>
20#include <linux/of.h>
21#include <linux/platform_device.h>
22#include <linux/pm_domain.h>
23#include <linux/pm_runtime.h>
24#include <linux/sh_timer.h>
25#include <linux/slab.h>
26#include <linux/spinlock.h>
27
28#ifdef CONFIG_SUPERH
29#include <asm/platform_early.h>
30#endif
31
32struct sh_cmt_device;
33
34/*
35 * The CMT comes in 5 different identified flavours, depending not only on the
36 * SoC but also on the particular instance. The following table lists the main
37 * characteristics of those flavours.
38 *
39 * 16B 32B 32B-F 48B R-Car Gen2
40 * -----------------------------------------------------------------------------
41 * Channels 2 1/4 1 6 2/8
42 * Control Width 16 16 16 16 32
43 * Counter Width 16 32 32 32/48 32/48
44 * Shared Start/Stop Y Y Y Y N
45 *
46 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47 * located in the channel registers block. All other versions have a shared
48 * start/stop register located in the global space.
49 *
50 * Channels are indexed from 0 to N-1 in the documentation. The channel index
51 * infers the start/stop bit position in the control register and the channel
52 * registers block address. Some CMT instances have a subset of channels
53 * available, in which case the index in the documentation doesn't match the
54 * "real" index as implemented in hardware. This is for instance the case with
55 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56 * in the documentation but using start/stop bit 5 and having its registers
57 * block at 0x60.
58 *
59 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
61 */
62
63enum sh_cmt_model {
64 SH_CMT_16BIT,
65 SH_CMT_32BIT,
66 SH_CMT_48BIT,
67 SH_CMT0_RCAR_GEN2,
68 SH_CMT1_RCAR_GEN2,
69};
70
71struct sh_cmt_info {
72 enum sh_cmt_model model;
73
74 unsigned int channels_mask;
75
76 unsigned long width; /* 16 or 32 bit version of hardware block */
77 u32 overflow_bit;
78 u32 clear_bits;
79
80 /* callbacks for CMSTR and CMCSR access */
81 u32 (*read_control)(void __iomem *base, unsigned long offs);
82 void (*write_control)(void __iomem *base, unsigned long offs,
83 u32 value);
84
85 /* callbacks for CMCNT and CMCOR access */
86 u32 (*read_count)(void __iomem *base, unsigned long offs);
87 void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
88};
89
90struct sh_cmt_channel {
91 struct sh_cmt_device *cmt;
92
93 unsigned int index; /* Index in the documentation */
94 unsigned int hwidx; /* Real hardware index */
95
96 void __iomem *iostart;
97 void __iomem *ioctrl;
98
99 unsigned int timer_bit;
100 unsigned long flags;
101 u32 match_value;
102 u32 next_match_value;
103 u32 max_match_value;
104 raw_spinlock_t lock;
105 struct clock_event_device ced;
106 struct clocksource cs;
107 u64 total_cycles;
108 bool cs_enabled;
109};
110
111struct sh_cmt_device {
112 struct platform_device *pdev;
113
114 const struct sh_cmt_info *info;
115
116 void __iomem *mapbase;
117 struct clk *clk;
118 unsigned long rate;
119 unsigned int reg_delay;
120
121 raw_spinlock_t lock; /* Protect the shared start/stop register */
122
123 struct sh_cmt_channel *channels;
124 unsigned int num_channels;
125 unsigned int hw_channels;
126
127 bool has_clockevent;
128 bool has_clocksource;
129};
130
131#define SH_CMT16_CMCSR_CMF (1 << 7)
132#define SH_CMT16_CMCSR_CMIE (1 << 6)
133#define SH_CMT16_CMCSR_CKS8 (0 << 0)
134#define SH_CMT16_CMCSR_CKS32 (1 << 0)
135#define SH_CMT16_CMCSR_CKS128 (2 << 0)
136#define SH_CMT16_CMCSR_CKS512 (3 << 0)
137#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
138
139#define SH_CMT32_CMCSR_CMF (1 << 15)
140#define SH_CMT32_CMCSR_OVF (1 << 14)
141#define SH_CMT32_CMCSR_WRFLG (1 << 13)
142#define SH_CMT32_CMCSR_STTF (1 << 12)
143#define SH_CMT32_CMCSR_STPF (1 << 11)
144#define SH_CMT32_CMCSR_SSIE (1 << 10)
145#define SH_CMT32_CMCSR_CMS (1 << 9)
146#define SH_CMT32_CMCSR_CMM (1 << 8)
147#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
148#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
149#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
150#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
151#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
152#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
153#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
154#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
155#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
156#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
157#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
158
159static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
160{
161 return ioread16(base + (offs << 1));
162}
163
164static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
165{
166 return ioread32(base + (offs << 2));
167}
168
169static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
170{
171 iowrite16(value, base + (offs << 1));
172}
173
174static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
175{
176 iowrite32(value, base + (offs << 2));
177}
178
179static const struct sh_cmt_info sh_cmt_info[] = {
180 [SH_CMT_16BIT] = {
181 .model = SH_CMT_16BIT,
182 .width = 16,
183 .overflow_bit = SH_CMT16_CMCSR_CMF,
184 .clear_bits = ~SH_CMT16_CMCSR_CMF,
185 .read_control = sh_cmt_read16,
186 .write_control = sh_cmt_write16,
187 .read_count = sh_cmt_read16,
188 .write_count = sh_cmt_write16,
189 },
190 [SH_CMT_32BIT] = {
191 .model = SH_CMT_32BIT,
192 .width = 32,
193 .overflow_bit = SH_CMT32_CMCSR_CMF,
194 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
195 .read_control = sh_cmt_read16,
196 .write_control = sh_cmt_write16,
197 .read_count = sh_cmt_read32,
198 .write_count = sh_cmt_write32,
199 },
200 [SH_CMT_48BIT] = {
201 .model = SH_CMT_48BIT,
202 .channels_mask = 0x3f,
203 .width = 32,
204 .overflow_bit = SH_CMT32_CMCSR_CMF,
205 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
206 .read_control = sh_cmt_read32,
207 .write_control = sh_cmt_write32,
208 .read_count = sh_cmt_read32,
209 .write_count = sh_cmt_write32,
210 },
211 [SH_CMT0_RCAR_GEN2] = {
212 .model = SH_CMT0_RCAR_GEN2,
213 .channels_mask = 0x60,
214 .width = 32,
215 .overflow_bit = SH_CMT32_CMCSR_CMF,
216 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
217 .read_control = sh_cmt_read32,
218 .write_control = sh_cmt_write32,
219 .read_count = sh_cmt_read32,
220 .write_count = sh_cmt_write32,
221 },
222 [SH_CMT1_RCAR_GEN2] = {
223 .model = SH_CMT1_RCAR_GEN2,
224 .channels_mask = 0xff,
225 .width = 32,
226 .overflow_bit = SH_CMT32_CMCSR_CMF,
227 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
228 .read_control = sh_cmt_read32,
229 .write_control = sh_cmt_write32,
230 .read_count = sh_cmt_read32,
231 .write_count = sh_cmt_write32,
232 },
233};
234
235#define CMCSR 0 /* channel register */
236#define CMCNT 1 /* channel register */
237#define CMCOR 2 /* channel register */
238
239#define CMCLKE 0x1000 /* CLK Enable Register (R-Car Gen2) */
240
241static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
242{
243 if (ch->iostart)
244 return ch->cmt->info->read_control(ch->iostart, 0);
245 else
246 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
247}
248
249static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
250{
251 u32 old_value = sh_cmt_read_cmstr(ch);
252
253 if (value != old_value) {
254 if (ch->iostart) {
255 ch->cmt->info->write_control(ch->iostart, 0, value);
256 udelay(ch->cmt->reg_delay);
257 } else {
258 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
259 udelay(ch->cmt->reg_delay);
260 }
261 }
262}
263
264static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
265{
266 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
267}
268
269static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
270{
271 u32 old_value = sh_cmt_read_cmcsr(ch);
272
273 if (value != old_value) {
274 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
275 udelay(ch->cmt->reg_delay);
276 }
277}
278
279static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
280{
281 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
282}
283
284static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
285{
286 /* Tests showed that we need to wait 3 clocks here */
287 unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
288 u32 reg;
289
290 if (ch->cmt->info->model > SH_CMT_16BIT) {
291 int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
292 !(reg & SH_CMT32_CMCSR_WRFLG),
293 1, cmcnt_delay, false, ch);
294 if (ret < 0)
295 return ret;
296 }
297
298 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
299 udelay(cmcnt_delay);
300 return 0;
301}
302
303static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
304{
305 u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
306
307 if (value != old_value) {
308 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
309 udelay(ch->cmt->reg_delay);
310 }
311}
312
313static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
314{
315 u32 v1, v2, v3;
316 u32 o1, o2;
317
318 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
319
320 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
321 do {
322 o2 = o1;
323 v1 = sh_cmt_read_cmcnt(ch);
324 v2 = sh_cmt_read_cmcnt(ch);
325 v3 = sh_cmt_read_cmcnt(ch);
326 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
327 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
328 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
329
330 *has_wrapped = o1;
331 return v2;
332}
333
334static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
335{
336 unsigned long flags;
337 u32 value;
338
339 /* start stop register shared by multiple timer channels */
340 raw_spin_lock_irqsave(&ch->cmt->lock, flags);
341 value = sh_cmt_read_cmstr(ch);
342
343 if (start)
344 value |= 1 << ch->timer_bit;
345 else
346 value &= ~(1 << ch->timer_bit);
347
348 sh_cmt_write_cmstr(ch, value);
349 raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
350}
351
352static int sh_cmt_enable(struct sh_cmt_channel *ch)
353{
354 int ret;
355
356 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
357
358 /* enable clock */
359 ret = clk_enable(ch->cmt->clk);
360 if (ret) {
361 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
362 ch->index);
363 goto err0;
364 }
365
366 /* make sure channel is disabled */
367 sh_cmt_start_stop_ch(ch, 0);
368
369 /* configure channel, periodic mode and maximum timeout */
370 if (ch->cmt->info->width == 16) {
371 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
372 SH_CMT16_CMCSR_CKS512);
373 } else {
374 u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
375 SH_CMT32_CMCSR_CMTOUT_IE : 0;
376 sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
377 SH_CMT32_CMCSR_CMR_IRQ |
378 SH_CMT32_CMCSR_CKS_RCLK8);
379 }
380
381 sh_cmt_write_cmcor(ch, 0xffffffff);
382 ret = sh_cmt_write_cmcnt(ch, 0);
383
384 if (ret || sh_cmt_read_cmcnt(ch)) {
385 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
386 ch->index);
387 ret = -ETIMEDOUT;
388 goto err1;
389 }
390
391 /* enable channel */
392 sh_cmt_start_stop_ch(ch, 1);
393 return 0;
394 err1:
395 /* stop clock */
396 clk_disable(ch->cmt->clk);
397
398 err0:
399 return ret;
400}
401
402static void sh_cmt_disable(struct sh_cmt_channel *ch)
403{
404 /* disable channel */
405 sh_cmt_start_stop_ch(ch, 0);
406
407 /* disable interrupts in CMT block */
408 sh_cmt_write_cmcsr(ch, 0);
409
410 /* stop clock */
411 clk_disable(ch->cmt->clk);
412
413 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
414}
415
416/* private flags */
417#define FLAG_CLOCKEVENT (1 << 0)
418#define FLAG_CLOCKSOURCE (1 << 1)
419#define FLAG_REPROGRAM (1 << 2)
420#define FLAG_SKIPEVENT (1 << 3)
421#define FLAG_IRQCONTEXT (1 << 4)
422
423static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
424 int absolute)
425{
426 u32 value = ch->next_match_value;
427 u32 new_match;
428 u32 delay = 0;
429 u32 now = 0;
430 u32 has_wrapped;
431
432 now = sh_cmt_get_counter(ch, &has_wrapped);
433 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
434
435 if (has_wrapped) {
436 /* we're competing with the interrupt handler.
437 * -> let the interrupt handler reprogram the timer.
438 * -> interrupt number two handles the event.
439 */
440 ch->flags |= FLAG_SKIPEVENT;
441 return;
442 }
443
444 if (absolute)
445 now = 0;
446
447 do {
448 /* reprogram the timer hardware,
449 * but don't save the new match value yet.
450 */
451 new_match = now + value + delay;
452 if (new_match > ch->max_match_value)
453 new_match = ch->max_match_value;
454
455 sh_cmt_write_cmcor(ch, new_match);
456
457 now = sh_cmt_get_counter(ch, &has_wrapped);
458 if (has_wrapped && (new_match > ch->match_value)) {
459 /* we are changing to a greater match value,
460 * so this wrap must be caused by the counter
461 * matching the old value.
462 * -> first interrupt reprograms the timer.
463 * -> interrupt number two handles the event.
464 */
465 ch->flags |= FLAG_SKIPEVENT;
466 break;
467 }
468
469 if (has_wrapped) {
470 /* we are changing to a smaller match value,
471 * so the wrap must be caused by the counter
472 * matching the new value.
473 * -> save programmed match value.
474 * -> let isr handle the event.
475 */
476 ch->match_value = new_match;
477 break;
478 }
479
480 /* be safe: verify hardware settings */
481 if (now < new_match) {
482 /* timer value is below match value, all good.
483 * this makes sure we won't miss any match events.
484 * -> save programmed match value.
485 * -> let isr handle the event.
486 */
487 ch->match_value = new_match;
488 break;
489 }
490
491 /* the counter has reached a value greater
492 * than our new match value. and since the
493 * has_wrapped flag isn't set we must have
494 * programmed a too close event.
495 * -> increase delay and retry.
496 */
497 if (delay)
498 delay <<= 1;
499 else
500 delay = 1;
501
502 if (!delay)
503 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
504 ch->index);
505
506 } while (delay);
507}
508
509static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
510{
511 if (delta > ch->max_match_value)
512 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
513 ch->index);
514
515 ch->next_match_value = delta;
516 sh_cmt_clock_event_program_verify(ch, 0);
517}
518
519static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
520{
521 unsigned long flags;
522
523 raw_spin_lock_irqsave(&ch->lock, flags);
524 __sh_cmt_set_next(ch, delta);
525 raw_spin_unlock_irqrestore(&ch->lock, flags);
526}
527
528static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
529{
530 struct sh_cmt_channel *ch = dev_id;
531
532 /* clear flags */
533 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
534 ch->cmt->info->clear_bits);
535
536 /* update clock source counter to begin with if enabled
537 * the wrap flag should be cleared by the timer specific
538 * isr before we end up here.
539 */
540 if (ch->flags & FLAG_CLOCKSOURCE)
541 ch->total_cycles += ch->match_value + 1;
542
543 if (!(ch->flags & FLAG_REPROGRAM))
544 ch->next_match_value = ch->max_match_value;
545
546 ch->flags |= FLAG_IRQCONTEXT;
547
548 if (ch->flags & FLAG_CLOCKEVENT) {
549 if (!(ch->flags & FLAG_SKIPEVENT)) {
550 if (clockevent_state_oneshot(&ch->ced)) {
551 ch->next_match_value = ch->max_match_value;
552 ch->flags |= FLAG_REPROGRAM;
553 }
554
555 ch->ced.event_handler(&ch->ced);
556 }
557 }
558
559 ch->flags &= ~FLAG_SKIPEVENT;
560
561 if (ch->flags & FLAG_REPROGRAM) {
562 ch->flags &= ~FLAG_REPROGRAM;
563 sh_cmt_clock_event_program_verify(ch, 1);
564
565 if (ch->flags & FLAG_CLOCKEVENT)
566 if ((clockevent_state_shutdown(&ch->ced))
567 || (ch->match_value == ch->next_match_value))
568 ch->flags &= ~FLAG_REPROGRAM;
569 }
570
571 ch->flags &= ~FLAG_IRQCONTEXT;
572
573 return IRQ_HANDLED;
574}
575
576static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
577{
578 int ret = 0;
579 unsigned long flags;
580
581 if (flag & FLAG_CLOCKSOURCE)
582 pm_runtime_get_sync(&ch->cmt->pdev->dev);
583
584 raw_spin_lock_irqsave(&ch->lock, flags);
585
586 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
587 if (flag & FLAG_CLOCKEVENT)
588 pm_runtime_get_sync(&ch->cmt->pdev->dev);
589 ret = sh_cmt_enable(ch);
590 }
591
592 if (ret)
593 goto out;
594 ch->flags |= flag;
595
596 /* setup timeout if no clockevent */
597 if (ch->cmt->num_channels == 1 &&
598 flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
599 __sh_cmt_set_next(ch, ch->max_match_value);
600 out:
601 raw_spin_unlock_irqrestore(&ch->lock, flags);
602
603 return ret;
604}
605
606static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
607{
608 unsigned long flags;
609 unsigned long f;
610
611 raw_spin_lock_irqsave(&ch->lock, flags);
612
613 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
614 ch->flags &= ~flag;
615
616 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
617 sh_cmt_disable(ch);
618 if (flag & FLAG_CLOCKEVENT)
619 pm_runtime_put(&ch->cmt->pdev->dev);
620 }
621
622 /* adjust the timeout to maximum if only clocksource left */
623 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
624 __sh_cmt_set_next(ch, ch->max_match_value);
625
626 raw_spin_unlock_irqrestore(&ch->lock, flags);
627
628 if (flag & FLAG_CLOCKSOURCE)
629 pm_runtime_put(&ch->cmt->pdev->dev);
630}
631
632static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
633{
634 return container_of(cs, struct sh_cmt_channel, cs);
635}
636
637static u64 sh_cmt_clocksource_read(struct clocksource *cs)
638{
639 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
640 u32 has_wrapped;
641
642 if (ch->cmt->num_channels == 1) {
643 unsigned long flags;
644 u64 value;
645 u32 raw;
646
647 raw_spin_lock_irqsave(&ch->lock, flags);
648 value = ch->total_cycles;
649 raw = sh_cmt_get_counter(ch, &has_wrapped);
650
651 if (unlikely(has_wrapped))
652 raw += ch->match_value + 1;
653 raw_spin_unlock_irqrestore(&ch->lock, flags);
654
655 return value + raw;
656 }
657
658 return sh_cmt_get_counter(ch, &has_wrapped);
659}
660
661static int sh_cmt_clocksource_enable(struct clocksource *cs)
662{
663 int ret;
664 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
665
666 WARN_ON(ch->cs_enabled);
667
668 ch->total_cycles = 0;
669
670 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
671 if (!ret)
672 ch->cs_enabled = true;
673
674 return ret;
675}
676
677static void sh_cmt_clocksource_disable(struct clocksource *cs)
678{
679 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
680
681 WARN_ON(!ch->cs_enabled);
682
683 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
684 ch->cs_enabled = false;
685}
686
687static void sh_cmt_clocksource_suspend(struct clocksource *cs)
688{
689 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
690
691 if (!ch->cs_enabled)
692 return;
693
694 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
695 dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
696}
697
698static void sh_cmt_clocksource_resume(struct clocksource *cs)
699{
700 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
701
702 if (!ch->cs_enabled)
703 return;
704
705 dev_pm_genpd_resume(&ch->cmt->pdev->dev);
706 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
707}
708
709static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
710 const char *name)
711{
712 struct clocksource *cs = &ch->cs;
713
714 cs->name = name;
715 cs->rating = 125;
716 cs->read = sh_cmt_clocksource_read;
717 cs->enable = sh_cmt_clocksource_enable;
718 cs->disable = sh_cmt_clocksource_disable;
719 cs->suspend = sh_cmt_clocksource_suspend;
720 cs->resume = sh_cmt_clocksource_resume;
721 cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
722 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
723
724 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
725 ch->index);
726
727 clocksource_register_hz(cs, ch->cmt->rate);
728 return 0;
729}
730
731static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
732{
733 return container_of(ced, struct sh_cmt_channel, ced);
734}
735
736static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
737{
738 sh_cmt_start(ch, FLAG_CLOCKEVENT);
739
740 if (periodic)
741 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
742 else
743 sh_cmt_set_next(ch, ch->max_match_value);
744}
745
746static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
747{
748 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
749
750 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
751 return 0;
752}
753
754static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
755 int periodic)
756{
757 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
758
759 /* deal with old setting first */
760 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
761 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
762
763 dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
764 ch->index, periodic ? "periodic" : "oneshot");
765 sh_cmt_clock_event_start(ch, periodic);
766 return 0;
767}
768
769static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
770{
771 return sh_cmt_clock_event_set_state(ced, 0);
772}
773
774static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
775{
776 return sh_cmt_clock_event_set_state(ced, 1);
777}
778
779static int sh_cmt_clock_event_next(unsigned long delta,
780 struct clock_event_device *ced)
781{
782 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
783
784 BUG_ON(!clockevent_state_oneshot(ced));
785 if (likely(ch->flags & FLAG_IRQCONTEXT))
786 ch->next_match_value = delta - 1;
787 else
788 sh_cmt_set_next(ch, delta - 1);
789
790 return 0;
791}
792
793static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
794{
795 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
796
797 dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
798 clk_unprepare(ch->cmt->clk);
799}
800
801static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
802{
803 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
804
805 clk_prepare(ch->cmt->clk);
806 dev_pm_genpd_resume(&ch->cmt->pdev->dev);
807}
808
809static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
810 const char *name)
811{
812 struct clock_event_device *ced = &ch->ced;
813 int irq;
814 int ret;
815
816 irq = platform_get_irq(ch->cmt->pdev, ch->index);
817 if (irq < 0)
818 return irq;
819
820 ret = request_irq(irq, sh_cmt_interrupt,
821 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
822 dev_name(&ch->cmt->pdev->dev), ch);
823 if (ret) {
824 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
825 ch->index, irq);
826 return ret;
827 }
828
829 ced->name = name;
830 ced->features = CLOCK_EVT_FEAT_PERIODIC;
831 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
832 ced->rating = 125;
833 ced->cpumask = cpu_possible_mask;
834 ced->set_next_event = sh_cmt_clock_event_next;
835 ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
836 ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
837 ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
838 ced->suspend = sh_cmt_clock_event_suspend;
839 ced->resume = sh_cmt_clock_event_resume;
840
841 /* TODO: calculate good shift from rate and counter bit width */
842 ced->shift = 32;
843 ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
844 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
845 ced->max_delta_ticks = ch->max_match_value;
846 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
847 ced->min_delta_ticks = 0x1f;
848
849 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
850 ch->index);
851 clockevents_register_device(ced);
852
853 return 0;
854}
855
856static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
857 bool clockevent, bool clocksource)
858{
859 int ret;
860
861 if (clockevent) {
862 ch->cmt->has_clockevent = true;
863 ret = sh_cmt_register_clockevent(ch, name);
864 if (ret < 0)
865 return ret;
866 }
867
868 if (clocksource) {
869 ch->cmt->has_clocksource = true;
870 sh_cmt_register_clocksource(ch, name);
871 }
872
873 return 0;
874}
875
876static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
877 unsigned int hwidx, bool clockevent,
878 bool clocksource, struct sh_cmt_device *cmt)
879{
880 u32 value;
881 int ret;
882
883 /* Skip unused channels. */
884 if (!clockevent && !clocksource)
885 return 0;
886
887 ch->cmt = cmt;
888 ch->index = index;
889 ch->hwidx = hwidx;
890 ch->timer_bit = hwidx;
891
892 /*
893 * Compute the address of the channel control register block. For the
894 * timers with a per-channel start/stop register, compute its address
895 * as well.
896 */
897 switch (cmt->info->model) {
898 case SH_CMT_16BIT:
899 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
900 break;
901 case SH_CMT_32BIT:
902 case SH_CMT_48BIT:
903 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
904 break;
905 case SH_CMT0_RCAR_GEN2:
906 case SH_CMT1_RCAR_GEN2:
907 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
908 ch->ioctrl = ch->iostart + 0x10;
909 ch->timer_bit = 0;
910
911 /* Enable the clock supply to the channel */
912 value = ioread32(cmt->mapbase + CMCLKE);
913 value |= BIT(hwidx);
914 iowrite32(value, cmt->mapbase + CMCLKE);
915 break;
916 }
917
918 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
919 ch->max_match_value = ~0;
920 else
921 ch->max_match_value = (1 << cmt->info->width) - 1;
922
923 ch->match_value = ch->max_match_value;
924 raw_spin_lock_init(&ch->lock);
925
926 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
927 clockevent, clocksource);
928 if (ret) {
929 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
930 ch->index);
931 return ret;
932 }
933 ch->cs_enabled = false;
934
935 return 0;
936}
937
938static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
939{
940 struct resource *mem;
941
942 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
943 if (!mem) {
944 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
945 return -ENXIO;
946 }
947
948 cmt->mapbase = ioremap(mem->start, resource_size(mem));
949 if (cmt->mapbase == NULL) {
950 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
951 return -ENXIO;
952 }
953
954 return 0;
955}
956
957static const struct platform_device_id sh_cmt_id_table[] = {
958 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
959 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
960 { }
961};
962MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
963
964static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
965 {
966 /* deprecated, preserved for backward compatibility */
967 .compatible = "renesas,cmt-48",
968 .data = &sh_cmt_info[SH_CMT_48BIT]
969 },
970 {
971 /* deprecated, preserved for backward compatibility */
972 .compatible = "renesas,cmt-48-gen2",
973 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
974 },
975 {
976 .compatible = "renesas,r8a7740-cmt1",
977 .data = &sh_cmt_info[SH_CMT_48BIT]
978 },
979 {
980 .compatible = "renesas,sh73a0-cmt1",
981 .data = &sh_cmt_info[SH_CMT_48BIT]
982 },
983 {
984 .compatible = "renesas,rcar-gen2-cmt0",
985 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
986 },
987 {
988 .compatible = "renesas,rcar-gen2-cmt1",
989 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
990 },
991 {
992 .compatible = "renesas,rcar-gen3-cmt0",
993 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
994 },
995 {
996 .compatible = "renesas,rcar-gen3-cmt1",
997 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
998 },
999 {
1000 .compatible = "renesas,rcar-gen4-cmt0",
1001 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1002 },
1003 {
1004 .compatible = "renesas,rcar-gen4-cmt1",
1005 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1006 },
1007 { }
1008};
1009MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
1010
1011static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
1012{
1013 unsigned int mask, i;
1014 unsigned long rate;
1015 int ret;
1016
1017 cmt->pdev = pdev;
1018 raw_spin_lock_init(&cmt->lock);
1019
1020 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1021 cmt->info = of_device_get_match_data(&pdev->dev);
1022 cmt->hw_channels = cmt->info->channels_mask;
1023 } else if (pdev->dev.platform_data) {
1024 struct sh_timer_config *cfg = pdev->dev.platform_data;
1025 const struct platform_device_id *id = pdev->id_entry;
1026
1027 cmt->info = (const struct sh_cmt_info *)id->driver_data;
1028 cmt->hw_channels = cfg->channels_mask;
1029 } else {
1030 dev_err(&cmt->pdev->dev, "missing platform data\n");
1031 return -ENXIO;
1032 }
1033
1034 /* Get hold of clock. */
1035 cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1036 if (IS_ERR(cmt->clk)) {
1037 dev_err(&cmt->pdev->dev, "cannot get clock\n");
1038 return PTR_ERR(cmt->clk);
1039 }
1040
1041 ret = clk_prepare(cmt->clk);
1042 if (ret < 0)
1043 goto err_clk_put;
1044
1045 /* Determine clock rate. */
1046 ret = clk_enable(cmt->clk);
1047 if (ret < 0)
1048 goto err_clk_unprepare;
1049
1050 rate = clk_get_rate(cmt->clk);
1051 if (!rate) {
1052 ret = -EINVAL;
1053 goto err_clk_disable;
1054 }
1055
1056 /* We shall wait 2 input clks after register writes */
1057 if (cmt->info->model >= SH_CMT_48BIT)
1058 cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1059 cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
1060
1061 /* Map the memory resource(s). */
1062 ret = sh_cmt_map_memory(cmt);
1063 if (ret < 0)
1064 goto err_clk_disable;
1065
1066 /* Allocate and setup the channels. */
1067 cmt->num_channels = hweight8(cmt->hw_channels);
1068 cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1069 GFP_KERNEL);
1070 if (cmt->channels == NULL) {
1071 ret = -ENOMEM;
1072 goto err_unmap;
1073 }
1074
1075 /*
1076 * Use the first channel as a clock event device and the second channel
1077 * as a clock source. If only one channel is available use it for both.
1078 */
1079 for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1080 unsigned int hwidx = ffs(mask) - 1;
1081 bool clocksource = i == 1 || cmt->num_channels == 1;
1082 bool clockevent = i == 0;
1083
1084 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1085 clockevent, clocksource, cmt);
1086 if (ret < 0)
1087 goto err_unmap;
1088
1089 mask &= ~(1 << hwidx);
1090 }
1091
1092 clk_disable(cmt->clk);
1093
1094 platform_set_drvdata(pdev, cmt);
1095
1096 return 0;
1097
1098err_unmap:
1099 kfree(cmt->channels);
1100 iounmap(cmt->mapbase);
1101err_clk_disable:
1102 clk_disable(cmt->clk);
1103err_clk_unprepare:
1104 clk_unprepare(cmt->clk);
1105err_clk_put:
1106 clk_put(cmt->clk);
1107 return ret;
1108}
1109
1110static int sh_cmt_probe(struct platform_device *pdev)
1111{
1112 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1113 int ret;
1114
1115 if (!is_sh_early_platform_device(pdev)) {
1116 pm_runtime_set_active(&pdev->dev);
1117 pm_runtime_enable(&pdev->dev);
1118 }
1119
1120 if (cmt) {
1121 dev_info(&pdev->dev, "kept as earlytimer\n");
1122 goto out;
1123 }
1124
1125 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1126 if (cmt == NULL)
1127 return -ENOMEM;
1128
1129 ret = sh_cmt_setup(cmt, pdev);
1130 if (ret) {
1131 kfree(cmt);
1132 pm_runtime_idle(&pdev->dev);
1133 return ret;
1134 }
1135 if (is_sh_early_platform_device(pdev))
1136 return 0;
1137
1138 out:
1139 if (cmt->has_clockevent || cmt->has_clocksource)
1140 pm_runtime_irq_safe(&pdev->dev);
1141 else
1142 pm_runtime_idle(&pdev->dev);
1143
1144 return 0;
1145}
1146
1147static struct platform_driver sh_cmt_device_driver = {
1148 .probe = sh_cmt_probe,
1149 .driver = {
1150 .name = "sh_cmt",
1151 .of_match_table = of_match_ptr(sh_cmt_of_table),
1152 .suppress_bind_attrs = true,
1153 },
1154 .id_table = sh_cmt_id_table,
1155};
1156
1157static int __init sh_cmt_init(void)
1158{
1159 return platform_driver_register(&sh_cmt_device_driver);
1160}
1161
1162static void __exit sh_cmt_exit(void)
1163{
1164 platform_driver_unregister(&sh_cmt_device_driver);
1165}
1166
1167#ifdef CONFIG_SUPERH
1168sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1169#endif
1170
1171subsys_initcall(sh_cmt_init);
1172module_exit(sh_cmt_exit);
1173
1174MODULE_AUTHOR("Magnus Damm");
1175MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SuperH Timer Support - CMT
4 *
5 * Copyright (C) 2008 Magnus Damm
6 */
7
8#include <linux/clk.h>
9#include <linux/clockchips.h>
10#include <linux/clocksource.h>
11#include <linux/delay.h>
12#include <linux/err.h>
13#include <linux/init.h>
14#include <linux/interrupt.h>
15#include <linux/io.h>
16#include <linux/ioport.h>
17#include <linux/irq.h>
18#include <linux/module.h>
19#include <linux/of.h>
20#include <linux/of_device.h>
21#include <linux/platform_device.h>
22#include <linux/pm_domain.h>
23#include <linux/pm_runtime.h>
24#include <linux/sh_timer.h>
25#include <linux/slab.h>
26#include <linux/spinlock.h>
27
28#ifdef CONFIG_SUPERH
29#include <asm/platform_early.h>
30#endif
31
32struct sh_cmt_device;
33
34/*
35 * The CMT comes in 5 different identified flavours, depending not only on the
36 * SoC but also on the particular instance. The following table lists the main
37 * characteristics of those flavours.
38 *
39 * 16B 32B 32B-F 48B R-Car Gen2
40 * -----------------------------------------------------------------------------
41 * Channels 2 1/4 1 6 2/8
42 * Control Width 16 16 16 16 32
43 * Counter Width 16 32 32 32/48 32/48
44 * Shared Start/Stop Y Y Y Y N
45 *
46 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47 * located in the channel registers block. All other versions have a shared
48 * start/stop register located in the global space.
49 *
50 * Channels are indexed from 0 to N-1 in the documentation. The channel index
51 * infers the start/stop bit position in the control register and the channel
52 * registers block address. Some CMT instances have a subset of channels
53 * available, in which case the index in the documentation doesn't match the
54 * "real" index as implemented in hardware. This is for instance the case with
55 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56 * in the documentation but using start/stop bit 5 and having its registers
57 * block at 0x60.
58 *
59 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
61 */
62
63enum sh_cmt_model {
64 SH_CMT_16BIT,
65 SH_CMT_32BIT,
66 SH_CMT_48BIT,
67 SH_CMT0_RCAR_GEN2,
68 SH_CMT1_RCAR_GEN2,
69};
70
71struct sh_cmt_info {
72 enum sh_cmt_model model;
73
74 unsigned int channels_mask;
75
76 unsigned long width; /* 16 or 32 bit version of hardware block */
77 u32 overflow_bit;
78 u32 clear_bits;
79
80 /* callbacks for CMSTR and CMCSR access */
81 u32 (*read_control)(void __iomem *base, unsigned long offs);
82 void (*write_control)(void __iomem *base, unsigned long offs,
83 u32 value);
84
85 /* callbacks for CMCNT and CMCOR access */
86 u32 (*read_count)(void __iomem *base, unsigned long offs);
87 void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
88};
89
90struct sh_cmt_channel {
91 struct sh_cmt_device *cmt;
92
93 unsigned int index; /* Index in the documentation */
94 unsigned int hwidx; /* Real hardware index */
95
96 void __iomem *iostart;
97 void __iomem *ioctrl;
98
99 unsigned int timer_bit;
100 unsigned long flags;
101 u32 match_value;
102 u32 next_match_value;
103 u32 max_match_value;
104 raw_spinlock_t lock;
105 struct clock_event_device ced;
106 struct clocksource cs;
107 u64 total_cycles;
108 bool cs_enabled;
109};
110
111struct sh_cmt_device {
112 struct platform_device *pdev;
113
114 const struct sh_cmt_info *info;
115
116 void __iomem *mapbase;
117 struct clk *clk;
118 unsigned long rate;
119
120 raw_spinlock_t lock; /* Protect the shared start/stop register */
121
122 struct sh_cmt_channel *channels;
123 unsigned int num_channels;
124 unsigned int hw_channels;
125
126 bool has_clockevent;
127 bool has_clocksource;
128};
129
130#define SH_CMT16_CMCSR_CMF (1 << 7)
131#define SH_CMT16_CMCSR_CMIE (1 << 6)
132#define SH_CMT16_CMCSR_CKS8 (0 << 0)
133#define SH_CMT16_CMCSR_CKS32 (1 << 0)
134#define SH_CMT16_CMCSR_CKS128 (2 << 0)
135#define SH_CMT16_CMCSR_CKS512 (3 << 0)
136#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
137
138#define SH_CMT32_CMCSR_CMF (1 << 15)
139#define SH_CMT32_CMCSR_OVF (1 << 14)
140#define SH_CMT32_CMCSR_WRFLG (1 << 13)
141#define SH_CMT32_CMCSR_STTF (1 << 12)
142#define SH_CMT32_CMCSR_STPF (1 << 11)
143#define SH_CMT32_CMCSR_SSIE (1 << 10)
144#define SH_CMT32_CMCSR_CMS (1 << 9)
145#define SH_CMT32_CMCSR_CMM (1 << 8)
146#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
147#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
148#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
149#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
150#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
151#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
152#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
153#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
154#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
155#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
156#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
157
158static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
159{
160 return ioread16(base + (offs << 1));
161}
162
163static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
164{
165 return ioread32(base + (offs << 2));
166}
167
168static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
169{
170 iowrite16(value, base + (offs << 1));
171}
172
173static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
174{
175 iowrite32(value, base + (offs << 2));
176}
177
178static const struct sh_cmt_info sh_cmt_info[] = {
179 [SH_CMT_16BIT] = {
180 .model = SH_CMT_16BIT,
181 .width = 16,
182 .overflow_bit = SH_CMT16_CMCSR_CMF,
183 .clear_bits = ~SH_CMT16_CMCSR_CMF,
184 .read_control = sh_cmt_read16,
185 .write_control = sh_cmt_write16,
186 .read_count = sh_cmt_read16,
187 .write_count = sh_cmt_write16,
188 },
189 [SH_CMT_32BIT] = {
190 .model = SH_CMT_32BIT,
191 .width = 32,
192 .overflow_bit = SH_CMT32_CMCSR_CMF,
193 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
194 .read_control = sh_cmt_read16,
195 .write_control = sh_cmt_write16,
196 .read_count = sh_cmt_read32,
197 .write_count = sh_cmt_write32,
198 },
199 [SH_CMT_48BIT] = {
200 .model = SH_CMT_48BIT,
201 .channels_mask = 0x3f,
202 .width = 32,
203 .overflow_bit = SH_CMT32_CMCSR_CMF,
204 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
205 .read_control = sh_cmt_read32,
206 .write_control = sh_cmt_write32,
207 .read_count = sh_cmt_read32,
208 .write_count = sh_cmt_write32,
209 },
210 [SH_CMT0_RCAR_GEN2] = {
211 .model = SH_CMT0_RCAR_GEN2,
212 .channels_mask = 0x60,
213 .width = 32,
214 .overflow_bit = SH_CMT32_CMCSR_CMF,
215 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
216 .read_control = sh_cmt_read32,
217 .write_control = sh_cmt_write32,
218 .read_count = sh_cmt_read32,
219 .write_count = sh_cmt_write32,
220 },
221 [SH_CMT1_RCAR_GEN2] = {
222 .model = SH_CMT1_RCAR_GEN2,
223 .channels_mask = 0xff,
224 .width = 32,
225 .overflow_bit = SH_CMT32_CMCSR_CMF,
226 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
227 .read_control = sh_cmt_read32,
228 .write_control = sh_cmt_write32,
229 .read_count = sh_cmt_read32,
230 .write_count = sh_cmt_write32,
231 },
232};
233
234#define CMCSR 0 /* channel register */
235#define CMCNT 1 /* channel register */
236#define CMCOR 2 /* channel register */
237
238static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
239{
240 if (ch->iostart)
241 return ch->cmt->info->read_control(ch->iostart, 0);
242 else
243 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
244}
245
246static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
247{
248 if (ch->iostart)
249 ch->cmt->info->write_control(ch->iostart, 0, value);
250 else
251 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
252}
253
254static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
255{
256 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
257}
258
259static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
260{
261 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
262}
263
264static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
265{
266 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
267}
268
269static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
270{
271 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
272}
273
274static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
275{
276 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
277}
278
279static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
280{
281 u32 v1, v2, v3;
282 u32 o1, o2;
283
284 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
285
286 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
287 do {
288 o2 = o1;
289 v1 = sh_cmt_read_cmcnt(ch);
290 v2 = sh_cmt_read_cmcnt(ch);
291 v3 = sh_cmt_read_cmcnt(ch);
292 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
293 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
294 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
295
296 *has_wrapped = o1;
297 return v2;
298}
299
300static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
301{
302 unsigned long flags;
303 u32 value;
304
305 /* start stop register shared by multiple timer channels */
306 raw_spin_lock_irqsave(&ch->cmt->lock, flags);
307 value = sh_cmt_read_cmstr(ch);
308
309 if (start)
310 value |= 1 << ch->timer_bit;
311 else
312 value &= ~(1 << ch->timer_bit);
313
314 sh_cmt_write_cmstr(ch, value);
315 raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
316}
317
318static int sh_cmt_enable(struct sh_cmt_channel *ch)
319{
320 int k, ret;
321
322 pm_runtime_get_sync(&ch->cmt->pdev->dev);
323 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
324
325 /* enable clock */
326 ret = clk_enable(ch->cmt->clk);
327 if (ret) {
328 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
329 ch->index);
330 goto err0;
331 }
332
333 /* make sure channel is disabled */
334 sh_cmt_start_stop_ch(ch, 0);
335
336 /* configure channel, periodic mode and maximum timeout */
337 if (ch->cmt->info->width == 16) {
338 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
339 SH_CMT16_CMCSR_CKS512);
340 } else {
341 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
342 SH_CMT32_CMCSR_CMTOUT_IE |
343 SH_CMT32_CMCSR_CMR_IRQ |
344 SH_CMT32_CMCSR_CKS_RCLK8);
345 }
346
347 sh_cmt_write_cmcor(ch, 0xffffffff);
348 sh_cmt_write_cmcnt(ch, 0);
349
350 /*
351 * According to the sh73a0 user's manual, as CMCNT can be operated
352 * only by the RCLK (Pseudo 32 kHz), there's one restriction on
353 * modifying CMCNT register; two RCLK cycles are necessary before
354 * this register is either read or any modification of the value
355 * it holds is reflected in the LSI's actual operation.
356 *
357 * While at it, we're supposed to clear out the CMCNT as of this
358 * moment, so make sure it's processed properly here. This will
359 * take RCLKx2 at maximum.
360 */
361 for (k = 0; k < 100; k++) {
362 if (!sh_cmt_read_cmcnt(ch))
363 break;
364 udelay(1);
365 }
366
367 if (sh_cmt_read_cmcnt(ch)) {
368 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
369 ch->index);
370 ret = -ETIMEDOUT;
371 goto err1;
372 }
373
374 /* enable channel */
375 sh_cmt_start_stop_ch(ch, 1);
376 return 0;
377 err1:
378 /* stop clock */
379 clk_disable(ch->cmt->clk);
380
381 err0:
382 return ret;
383}
384
385static void sh_cmt_disable(struct sh_cmt_channel *ch)
386{
387 /* disable channel */
388 sh_cmt_start_stop_ch(ch, 0);
389
390 /* disable interrupts in CMT block */
391 sh_cmt_write_cmcsr(ch, 0);
392
393 /* stop clock */
394 clk_disable(ch->cmt->clk);
395
396 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
397 pm_runtime_put(&ch->cmt->pdev->dev);
398}
399
400/* private flags */
401#define FLAG_CLOCKEVENT (1 << 0)
402#define FLAG_CLOCKSOURCE (1 << 1)
403#define FLAG_REPROGRAM (1 << 2)
404#define FLAG_SKIPEVENT (1 << 3)
405#define FLAG_IRQCONTEXT (1 << 4)
406
407static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
408 int absolute)
409{
410 u32 value = ch->next_match_value;
411 u32 new_match;
412 u32 delay = 0;
413 u32 now = 0;
414 u32 has_wrapped;
415
416 now = sh_cmt_get_counter(ch, &has_wrapped);
417 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
418
419 if (has_wrapped) {
420 /* we're competing with the interrupt handler.
421 * -> let the interrupt handler reprogram the timer.
422 * -> interrupt number two handles the event.
423 */
424 ch->flags |= FLAG_SKIPEVENT;
425 return;
426 }
427
428 if (absolute)
429 now = 0;
430
431 do {
432 /* reprogram the timer hardware,
433 * but don't save the new match value yet.
434 */
435 new_match = now + value + delay;
436 if (new_match > ch->max_match_value)
437 new_match = ch->max_match_value;
438
439 sh_cmt_write_cmcor(ch, new_match);
440
441 now = sh_cmt_get_counter(ch, &has_wrapped);
442 if (has_wrapped && (new_match > ch->match_value)) {
443 /* we are changing to a greater match value,
444 * so this wrap must be caused by the counter
445 * matching the old value.
446 * -> first interrupt reprograms the timer.
447 * -> interrupt number two handles the event.
448 */
449 ch->flags |= FLAG_SKIPEVENT;
450 break;
451 }
452
453 if (has_wrapped) {
454 /* we are changing to a smaller match value,
455 * so the wrap must be caused by the counter
456 * matching the new value.
457 * -> save programmed match value.
458 * -> let isr handle the event.
459 */
460 ch->match_value = new_match;
461 break;
462 }
463
464 /* be safe: verify hardware settings */
465 if (now < new_match) {
466 /* timer value is below match value, all good.
467 * this makes sure we won't miss any match events.
468 * -> save programmed match value.
469 * -> let isr handle the event.
470 */
471 ch->match_value = new_match;
472 break;
473 }
474
475 /* the counter has reached a value greater
476 * than our new match value. and since the
477 * has_wrapped flag isn't set we must have
478 * programmed a too close event.
479 * -> increase delay and retry.
480 */
481 if (delay)
482 delay <<= 1;
483 else
484 delay = 1;
485
486 if (!delay)
487 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
488 ch->index);
489
490 } while (delay);
491}
492
493static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
494{
495 if (delta > ch->max_match_value)
496 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
497 ch->index);
498
499 ch->next_match_value = delta;
500 sh_cmt_clock_event_program_verify(ch, 0);
501}
502
503static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
504{
505 unsigned long flags;
506
507 raw_spin_lock_irqsave(&ch->lock, flags);
508 __sh_cmt_set_next(ch, delta);
509 raw_spin_unlock_irqrestore(&ch->lock, flags);
510}
511
512static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
513{
514 struct sh_cmt_channel *ch = dev_id;
515
516 /* clear flags */
517 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
518 ch->cmt->info->clear_bits);
519
520 /* update clock source counter to begin with if enabled
521 * the wrap flag should be cleared by the timer specific
522 * isr before we end up here.
523 */
524 if (ch->flags & FLAG_CLOCKSOURCE)
525 ch->total_cycles += ch->match_value + 1;
526
527 if (!(ch->flags & FLAG_REPROGRAM))
528 ch->next_match_value = ch->max_match_value;
529
530 ch->flags |= FLAG_IRQCONTEXT;
531
532 if (ch->flags & FLAG_CLOCKEVENT) {
533 if (!(ch->flags & FLAG_SKIPEVENT)) {
534 if (clockevent_state_oneshot(&ch->ced)) {
535 ch->next_match_value = ch->max_match_value;
536 ch->flags |= FLAG_REPROGRAM;
537 }
538
539 ch->ced.event_handler(&ch->ced);
540 }
541 }
542
543 ch->flags &= ~FLAG_SKIPEVENT;
544
545 if (ch->flags & FLAG_REPROGRAM) {
546 ch->flags &= ~FLAG_REPROGRAM;
547 sh_cmt_clock_event_program_verify(ch, 1);
548
549 if (ch->flags & FLAG_CLOCKEVENT)
550 if ((clockevent_state_shutdown(&ch->ced))
551 || (ch->match_value == ch->next_match_value))
552 ch->flags &= ~FLAG_REPROGRAM;
553 }
554
555 ch->flags &= ~FLAG_IRQCONTEXT;
556
557 return IRQ_HANDLED;
558}
559
560static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
561{
562 int ret = 0;
563 unsigned long flags;
564
565 raw_spin_lock_irqsave(&ch->lock, flags);
566
567 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
568 ret = sh_cmt_enable(ch);
569
570 if (ret)
571 goto out;
572 ch->flags |= flag;
573
574 /* setup timeout if no clockevent */
575 if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
576 __sh_cmt_set_next(ch, ch->max_match_value);
577 out:
578 raw_spin_unlock_irqrestore(&ch->lock, flags);
579
580 return ret;
581}
582
583static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
584{
585 unsigned long flags;
586 unsigned long f;
587
588 raw_spin_lock_irqsave(&ch->lock, flags);
589
590 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
591 ch->flags &= ~flag;
592
593 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
594 sh_cmt_disable(ch);
595
596 /* adjust the timeout to maximum if only clocksource left */
597 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
598 __sh_cmt_set_next(ch, ch->max_match_value);
599
600 raw_spin_unlock_irqrestore(&ch->lock, flags);
601}
602
603static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
604{
605 return container_of(cs, struct sh_cmt_channel, cs);
606}
607
608static u64 sh_cmt_clocksource_read(struct clocksource *cs)
609{
610 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
611 unsigned long flags;
612 u32 has_wrapped;
613 u64 value;
614 u32 raw;
615
616 raw_spin_lock_irqsave(&ch->lock, flags);
617 value = ch->total_cycles;
618 raw = sh_cmt_get_counter(ch, &has_wrapped);
619
620 if (unlikely(has_wrapped))
621 raw += ch->match_value + 1;
622 raw_spin_unlock_irqrestore(&ch->lock, flags);
623
624 return value + raw;
625}
626
627static int sh_cmt_clocksource_enable(struct clocksource *cs)
628{
629 int ret;
630 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
631
632 WARN_ON(ch->cs_enabled);
633
634 ch->total_cycles = 0;
635
636 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
637 if (!ret)
638 ch->cs_enabled = true;
639
640 return ret;
641}
642
643static void sh_cmt_clocksource_disable(struct clocksource *cs)
644{
645 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
646
647 WARN_ON(!ch->cs_enabled);
648
649 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
650 ch->cs_enabled = false;
651}
652
653static void sh_cmt_clocksource_suspend(struct clocksource *cs)
654{
655 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
656
657 if (!ch->cs_enabled)
658 return;
659
660 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
661 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
662}
663
664static void sh_cmt_clocksource_resume(struct clocksource *cs)
665{
666 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
667
668 if (!ch->cs_enabled)
669 return;
670
671 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
672 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
673}
674
675static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
676 const char *name)
677{
678 struct clocksource *cs = &ch->cs;
679
680 cs->name = name;
681 cs->rating = 125;
682 cs->read = sh_cmt_clocksource_read;
683 cs->enable = sh_cmt_clocksource_enable;
684 cs->disable = sh_cmt_clocksource_disable;
685 cs->suspend = sh_cmt_clocksource_suspend;
686 cs->resume = sh_cmt_clocksource_resume;
687 cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
688 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
689
690 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
691 ch->index);
692
693 clocksource_register_hz(cs, ch->cmt->rate);
694 return 0;
695}
696
697static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
698{
699 return container_of(ced, struct sh_cmt_channel, ced);
700}
701
702static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
703{
704 sh_cmt_start(ch, FLAG_CLOCKEVENT);
705
706 if (periodic)
707 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
708 else
709 sh_cmt_set_next(ch, ch->max_match_value);
710}
711
712static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
713{
714 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
715
716 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
717 return 0;
718}
719
720static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
721 int periodic)
722{
723 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
724
725 /* deal with old setting first */
726 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
727 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
728
729 dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
730 ch->index, periodic ? "periodic" : "oneshot");
731 sh_cmt_clock_event_start(ch, periodic);
732 return 0;
733}
734
735static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
736{
737 return sh_cmt_clock_event_set_state(ced, 0);
738}
739
740static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
741{
742 return sh_cmt_clock_event_set_state(ced, 1);
743}
744
745static int sh_cmt_clock_event_next(unsigned long delta,
746 struct clock_event_device *ced)
747{
748 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
749
750 BUG_ON(!clockevent_state_oneshot(ced));
751 if (likely(ch->flags & FLAG_IRQCONTEXT))
752 ch->next_match_value = delta - 1;
753 else
754 sh_cmt_set_next(ch, delta - 1);
755
756 return 0;
757}
758
759static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
760{
761 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
762
763 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
764 clk_unprepare(ch->cmt->clk);
765}
766
767static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
768{
769 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
770
771 clk_prepare(ch->cmt->clk);
772 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
773}
774
775static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
776 const char *name)
777{
778 struct clock_event_device *ced = &ch->ced;
779 int irq;
780 int ret;
781
782 irq = platform_get_irq(ch->cmt->pdev, ch->index);
783 if (irq < 0)
784 return irq;
785
786 ret = request_irq(irq, sh_cmt_interrupt,
787 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
788 dev_name(&ch->cmt->pdev->dev), ch);
789 if (ret) {
790 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
791 ch->index, irq);
792 return ret;
793 }
794
795 ced->name = name;
796 ced->features = CLOCK_EVT_FEAT_PERIODIC;
797 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
798 ced->rating = 125;
799 ced->cpumask = cpu_possible_mask;
800 ced->set_next_event = sh_cmt_clock_event_next;
801 ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
802 ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
803 ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
804 ced->suspend = sh_cmt_clock_event_suspend;
805 ced->resume = sh_cmt_clock_event_resume;
806
807 /* TODO: calculate good shift from rate and counter bit width */
808 ced->shift = 32;
809 ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
810 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
811 ced->max_delta_ticks = ch->max_match_value;
812 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
813 ced->min_delta_ticks = 0x1f;
814
815 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
816 ch->index);
817 clockevents_register_device(ced);
818
819 return 0;
820}
821
822static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
823 bool clockevent, bool clocksource)
824{
825 int ret;
826
827 if (clockevent) {
828 ch->cmt->has_clockevent = true;
829 ret = sh_cmt_register_clockevent(ch, name);
830 if (ret < 0)
831 return ret;
832 }
833
834 if (clocksource) {
835 ch->cmt->has_clocksource = true;
836 sh_cmt_register_clocksource(ch, name);
837 }
838
839 return 0;
840}
841
842static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
843 unsigned int hwidx, bool clockevent,
844 bool clocksource, struct sh_cmt_device *cmt)
845{
846 int ret;
847
848 /* Skip unused channels. */
849 if (!clockevent && !clocksource)
850 return 0;
851
852 ch->cmt = cmt;
853 ch->index = index;
854 ch->hwidx = hwidx;
855 ch->timer_bit = hwidx;
856
857 /*
858 * Compute the address of the channel control register block. For the
859 * timers with a per-channel start/stop register, compute its address
860 * as well.
861 */
862 switch (cmt->info->model) {
863 case SH_CMT_16BIT:
864 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
865 break;
866 case SH_CMT_32BIT:
867 case SH_CMT_48BIT:
868 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
869 break;
870 case SH_CMT0_RCAR_GEN2:
871 case SH_CMT1_RCAR_GEN2:
872 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
873 ch->ioctrl = ch->iostart + 0x10;
874 ch->timer_bit = 0;
875 break;
876 }
877
878 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
879 ch->max_match_value = ~0;
880 else
881 ch->max_match_value = (1 << cmt->info->width) - 1;
882
883 ch->match_value = ch->max_match_value;
884 raw_spin_lock_init(&ch->lock);
885
886 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
887 clockevent, clocksource);
888 if (ret) {
889 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
890 ch->index);
891 return ret;
892 }
893 ch->cs_enabled = false;
894
895 return 0;
896}
897
898static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
899{
900 struct resource *mem;
901
902 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
903 if (!mem) {
904 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
905 return -ENXIO;
906 }
907
908 cmt->mapbase = ioremap(mem->start, resource_size(mem));
909 if (cmt->mapbase == NULL) {
910 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
911 return -ENXIO;
912 }
913
914 return 0;
915}
916
917static const struct platform_device_id sh_cmt_id_table[] = {
918 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
919 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
920 { }
921};
922MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
923
924static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
925 {
926 /* deprecated, preserved for backward compatibility */
927 .compatible = "renesas,cmt-48",
928 .data = &sh_cmt_info[SH_CMT_48BIT]
929 },
930 {
931 /* deprecated, preserved for backward compatibility */
932 .compatible = "renesas,cmt-48-gen2",
933 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
934 },
935 {
936 .compatible = "renesas,r8a7740-cmt1",
937 .data = &sh_cmt_info[SH_CMT_48BIT]
938 },
939 {
940 .compatible = "renesas,sh73a0-cmt1",
941 .data = &sh_cmt_info[SH_CMT_48BIT]
942 },
943 {
944 .compatible = "renesas,rcar-gen2-cmt0",
945 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
946 },
947 {
948 .compatible = "renesas,rcar-gen2-cmt1",
949 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
950 },
951 {
952 .compatible = "renesas,rcar-gen3-cmt0",
953 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
954 },
955 {
956 .compatible = "renesas,rcar-gen3-cmt1",
957 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
958 },
959 { }
960};
961MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
962
963static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
964{
965 unsigned int mask;
966 unsigned int i;
967 int ret;
968
969 cmt->pdev = pdev;
970 raw_spin_lock_init(&cmt->lock);
971
972 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
973 cmt->info = of_device_get_match_data(&pdev->dev);
974 cmt->hw_channels = cmt->info->channels_mask;
975 } else if (pdev->dev.platform_data) {
976 struct sh_timer_config *cfg = pdev->dev.platform_data;
977 const struct platform_device_id *id = pdev->id_entry;
978
979 cmt->info = (const struct sh_cmt_info *)id->driver_data;
980 cmt->hw_channels = cfg->channels_mask;
981 } else {
982 dev_err(&cmt->pdev->dev, "missing platform data\n");
983 return -ENXIO;
984 }
985
986 /* Get hold of clock. */
987 cmt->clk = clk_get(&cmt->pdev->dev, "fck");
988 if (IS_ERR(cmt->clk)) {
989 dev_err(&cmt->pdev->dev, "cannot get clock\n");
990 return PTR_ERR(cmt->clk);
991 }
992
993 ret = clk_prepare(cmt->clk);
994 if (ret < 0)
995 goto err_clk_put;
996
997 /* Determine clock rate. */
998 ret = clk_enable(cmt->clk);
999 if (ret < 0)
1000 goto err_clk_unprepare;
1001
1002 if (cmt->info->width == 16)
1003 cmt->rate = clk_get_rate(cmt->clk) / 512;
1004 else
1005 cmt->rate = clk_get_rate(cmt->clk) / 8;
1006
1007 clk_disable(cmt->clk);
1008
1009 /* Map the memory resource(s). */
1010 ret = sh_cmt_map_memory(cmt);
1011 if (ret < 0)
1012 goto err_clk_unprepare;
1013
1014 /* Allocate and setup the channels. */
1015 cmt->num_channels = hweight8(cmt->hw_channels);
1016 cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1017 GFP_KERNEL);
1018 if (cmt->channels == NULL) {
1019 ret = -ENOMEM;
1020 goto err_unmap;
1021 }
1022
1023 /*
1024 * Use the first channel as a clock event device and the second channel
1025 * as a clock source. If only one channel is available use it for both.
1026 */
1027 for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1028 unsigned int hwidx = ffs(mask) - 1;
1029 bool clocksource = i == 1 || cmt->num_channels == 1;
1030 bool clockevent = i == 0;
1031
1032 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1033 clockevent, clocksource, cmt);
1034 if (ret < 0)
1035 goto err_unmap;
1036
1037 mask &= ~(1 << hwidx);
1038 }
1039
1040 platform_set_drvdata(pdev, cmt);
1041
1042 return 0;
1043
1044err_unmap:
1045 kfree(cmt->channels);
1046 iounmap(cmt->mapbase);
1047err_clk_unprepare:
1048 clk_unprepare(cmt->clk);
1049err_clk_put:
1050 clk_put(cmt->clk);
1051 return ret;
1052}
1053
1054static int sh_cmt_probe(struct platform_device *pdev)
1055{
1056 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1057 int ret;
1058
1059 if (!is_sh_early_platform_device(pdev)) {
1060 pm_runtime_set_active(&pdev->dev);
1061 pm_runtime_enable(&pdev->dev);
1062 }
1063
1064 if (cmt) {
1065 dev_info(&pdev->dev, "kept as earlytimer\n");
1066 goto out;
1067 }
1068
1069 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1070 if (cmt == NULL)
1071 return -ENOMEM;
1072
1073 ret = sh_cmt_setup(cmt, pdev);
1074 if (ret) {
1075 kfree(cmt);
1076 pm_runtime_idle(&pdev->dev);
1077 return ret;
1078 }
1079 if (is_sh_early_platform_device(pdev))
1080 return 0;
1081
1082 out:
1083 if (cmt->has_clockevent || cmt->has_clocksource)
1084 pm_runtime_irq_safe(&pdev->dev);
1085 else
1086 pm_runtime_idle(&pdev->dev);
1087
1088 return 0;
1089}
1090
1091static int sh_cmt_remove(struct platform_device *pdev)
1092{
1093 return -EBUSY; /* cannot unregister clockevent and clocksource */
1094}
1095
1096static struct platform_driver sh_cmt_device_driver = {
1097 .probe = sh_cmt_probe,
1098 .remove = sh_cmt_remove,
1099 .driver = {
1100 .name = "sh_cmt",
1101 .of_match_table = of_match_ptr(sh_cmt_of_table),
1102 },
1103 .id_table = sh_cmt_id_table,
1104};
1105
1106static int __init sh_cmt_init(void)
1107{
1108 return platform_driver_register(&sh_cmt_device_driver);
1109}
1110
1111static void __exit sh_cmt_exit(void)
1112{
1113 platform_driver_unregister(&sh_cmt_device_driver);
1114}
1115
1116#ifdef CONFIG_SUPERH
1117sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1118#endif
1119
1120subsys_initcall(sh_cmt_init);
1121module_exit(sh_cmt_exit);
1122
1123MODULE_AUTHOR("Magnus Damm");
1124MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1125MODULE_LICENSE("GPL v2");