Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  PowerPC version
  4 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  5 *
  6 *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
  7 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
  8 *    Copyright (C) 1996 Paul Mackerras
  9 *
 10 *  Derived from "arch/i386/mm/init.c"
 11 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 12 *
 13 *  Dave Engebretsen <engebret@us.ibm.com>
 14 *      Rework for PPC64 port.
 15 */
 16
 17#undef DEBUG
 18
 19#include <linux/signal.h>
 20#include <linux/sched.h>
 21#include <linux/kernel.h>
 22#include <linux/errno.h>
 23#include <linux/string.h>
 24#include <linux/types.h>
 25#include <linux/mman.h>
 26#include <linux/mm.h>
 27#include <linux/swap.h>
 28#include <linux/stddef.h>
 29#include <linux/vmalloc.h>
 30#include <linux/init.h>
 31#include <linux/delay.h>
 32#include <linux/highmem.h>
 33#include <linux/idr.h>
 34#include <linux/nodemask.h>
 35#include <linux/module.h>
 36#include <linux/poison.h>
 37#include <linux/memblock.h>
 38#include <linux/hugetlb.h>
 39#include <linux/slab.h>
 40#include <linux/of_fdt.h>
 41#include <linux/libfdt.h>
 42#include <linux/memremap.h>
 43#include <linux/memory.h>
 44
 45#include <asm/pgalloc.h>
 46#include <asm/page.h>
 47#include <asm/prom.h>
 48#include <asm/rtas.h>
 49#include <asm/io.h>
 50#include <asm/mmu_context.h>
 
 51#include <asm/mmu.h>
 52#include <linux/uaccess.h>
 53#include <asm/smp.h>
 54#include <asm/machdep.h>
 55#include <asm/tlb.h>
 56#include <asm/eeh.h>
 57#include <asm/processor.h>
 58#include <asm/mmzone.h>
 59#include <asm/cputable.h>
 60#include <asm/sections.h>
 61#include <asm/iommu.h>
 62#include <asm/vdso.h>
 63#include <asm/hugetlb.h>
 64
 65#include <mm/mmu_decl.h>
 66
 
 
 
 
 
 67#ifdef CONFIG_SPARSEMEM_VMEMMAP
 68/*
 69 * Given an address within the vmemmap, determine the page that
 70 * represents the start of the subsection it is within.  Note that we have to
 71 * do this by hand as the proffered address may not be correctly aligned.
 72 * Subtraction of non-aligned pointers produces undefined results.
 73 */
 74static struct page * __meminit vmemmap_subsection_start(unsigned long vmemmap_addr)
 75{
 76	unsigned long start_pfn;
 77	unsigned long offset = vmemmap_addr - ((unsigned long)(vmemmap));
 78
 79	/* Return the pfn of the start of the section. */
 80	start_pfn = (offset / sizeof(struct page)) & PAGE_SUBSECTION_MASK;
 81	return pfn_to_page(start_pfn);
 82}
 83
 84/*
 85 * Since memory is added in sub-section chunks, before creating a new vmemmap
 86 * mapping, the kernel should check whether there is an existing memmap mapping
 87 * covering the new subsection added. This is needed because kernel can map
 88 * vmemmap area using 16MB pages which will cover a memory range of 16G. Such
 89 * a range covers multiple subsections (2M)
 90 *
 91 * If any subsection in the 16G range mapped by vmemmap is valid we consider the
 92 * vmemmap populated (There is a page table entry already present). We can't do
 93 * a page table lookup here because with the hash translation we don't keep
 94 * vmemmap details in linux page table.
 95 */
 96int __meminit vmemmap_populated(unsigned long vmemmap_addr, int vmemmap_map_size)
 97{
 98	struct page *start;
 99	unsigned long vmemmap_end = vmemmap_addr + vmemmap_map_size;
100	start = vmemmap_subsection_start(vmemmap_addr);
101
102	for (; (unsigned long)start < vmemmap_end; start += PAGES_PER_SUBSECTION)
103		/*
104		 * pfn valid check here is intended to really check
105		 * whether we have any subsection already initialized
106		 * in this range.
107		 */
108		if (pfn_valid(page_to_pfn(start)))
109			return 1;
110
111	return 0;
112}
113
114/*
115 * vmemmap virtual address space management does not have a traditional page
116 * table to track which virtual struct pages are backed by physical mapping.
117 * The virtual to physical mappings are tracked in a simple linked list
118 * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at
119 * all times where as the 'next' list maintains the available
120 * vmemmap_backing structures which have been deleted from the
121 * 'vmemmap_global' list during system runtime (memory hotplug remove
122 * operation). The freed 'vmemmap_backing' structures are reused later when
123 * new requests come in without allocating fresh memory. This pointer also
124 * tracks the allocated 'vmemmap_backing' structures as we allocate one
125 * full page memory at a time when we dont have any.
126 */
127struct vmemmap_backing *vmemmap_list;
128static struct vmemmap_backing *next;
129
130/*
131 * The same pointer 'next' tracks individual chunks inside the allocated
132 * full page during the boot time and again tracks the freed nodes during
133 * runtime. It is racy but it does not happen as they are separated by the
134 * boot process. Will create problem if some how we have memory hotplug
135 * operation during boot !!
136 */
137static int num_left;
138static int num_freed;
139
140static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
141{
142	struct vmemmap_backing *vmem_back;
143	/* get from freed entries first */
144	if (num_freed) {
145		num_freed--;
146		vmem_back = next;
147		next = next->list;
148
149		return vmem_back;
150	}
151
152	/* allocate a page when required and hand out chunks */
153	if (!num_left) {
154		next = vmemmap_alloc_block(PAGE_SIZE, node);
155		if (unlikely(!next)) {
156			WARN_ON(1);
157			return NULL;
158		}
159		num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
160	}
161
162	num_left--;
163
164	return next++;
165}
166
167static __meminit int vmemmap_list_populate(unsigned long phys,
168					   unsigned long start,
169					   int node)
170{
171	struct vmemmap_backing *vmem_back;
172
173	vmem_back = vmemmap_list_alloc(node);
174	if (unlikely(!vmem_back)) {
175		pr_debug("vmemap list allocation failed\n");
176		return -ENOMEM;
177	}
178
179	vmem_back->phys = phys;
180	vmem_back->virt_addr = start;
181	vmem_back->list = vmemmap_list;
182
183	vmemmap_list = vmem_back;
184	return 0;
185}
186
187bool altmap_cross_boundary(struct vmem_altmap *altmap, unsigned long start,
188			   unsigned long page_size)
189{
190	unsigned long nr_pfn = page_size / sizeof(struct page);
191	unsigned long start_pfn = page_to_pfn((struct page *)start);
192
193	if ((start_pfn + nr_pfn - 1) > altmap->end_pfn)
194		return true;
195
196	if (start_pfn < altmap->base_pfn)
197		return true;
198
199	return false;
200}
201
202static int __meminit __vmemmap_populate(unsigned long start, unsigned long end, int node,
203					struct vmem_altmap *altmap)
204{
205	bool altmap_alloc;
206	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
207
208	/* Align to the page size of the linear mapping. */
209	start = ALIGN_DOWN(start, page_size);
210
211	pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
212
213	for (; start < end; start += page_size) {
214		void *p = NULL;
215		int rc;
216
217		/*
218		 * This vmemmap range is backing different subsections. If any
219		 * of that subsection is marked valid, that means we already
220		 * have initialized a page table covering this range and hence
221		 * the vmemmap range is populated.
222		 */
223		if (vmemmap_populated(start, page_size))
224			continue;
225
226		/*
227		 * Allocate from the altmap first if we have one. This may
228		 * fail due to alignment issues when using 16MB hugepages, so
229		 * fall back to system memory if the altmap allocation fail.
230		 */
231		if (altmap && !altmap_cross_boundary(altmap, start, page_size)) {
232			p = vmemmap_alloc_block_buf(page_size, node, altmap);
233			if (!p)
234				pr_debug("altmap block allocation failed, falling back to system memory");
235			else
236				altmap_alloc = true;
237		}
238		if (!p) {
239			p = vmemmap_alloc_block_buf(page_size, node, NULL);
240			altmap_alloc = false;
241		}
242		if (!p)
 
 
243			return -ENOMEM;
244
245		if (vmemmap_list_populate(__pa(p), start, node)) {
246			/*
247			 * If we don't populate vmemap list, we don't have
248			 * the ability to free the allocated vmemmap
249			 * pages in section_deactivate. Hence free them
250			 * here.
251			 */
252			int nr_pfns = page_size >> PAGE_SHIFT;
253			unsigned long page_order = get_order(page_size);
254
255			if (altmap_alloc)
256				vmem_altmap_free(altmap, nr_pfns);
257			else
258				free_pages((unsigned long)p, page_order);
259			return -ENOMEM;
260		}
261
262		pr_debug("      * %016lx..%016lx allocated at %p\n",
263			 start, start + page_size, p);
264
265		rc = vmemmap_create_mapping(start, page_size, __pa(p));
266		if (rc < 0) {
267			pr_warn("%s: Unable to create vmemmap mapping: %d\n",
268				__func__, rc);
269			return -EFAULT;
270		}
271	}
272
273	return 0;
274}
275
276int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
277			       struct vmem_altmap *altmap)
278{
279
280#ifdef CONFIG_PPC_BOOK3S_64
281	if (radix_enabled())
282		return radix__vmemmap_populate(start, end, node, altmap);
283#endif
284
285	return __vmemmap_populate(start, end, node, altmap);
286}
287
288#ifdef CONFIG_MEMORY_HOTPLUG
289static unsigned long vmemmap_list_free(unsigned long start)
290{
291	struct vmemmap_backing *vmem_back, *vmem_back_prev;
292
293	vmem_back_prev = vmem_back = vmemmap_list;
294
295	/* look for it with prev pointer recorded */
296	for (; vmem_back; vmem_back = vmem_back->list) {
297		if (vmem_back->virt_addr == start)
298			break;
299		vmem_back_prev = vmem_back;
300	}
301
302	if (unlikely(!vmem_back))
 
303		return 0;
 
304
305	/* remove it from vmemmap_list */
306	if (vmem_back == vmemmap_list) /* remove head */
307		vmemmap_list = vmem_back->list;
308	else
309		vmem_back_prev->list = vmem_back->list;
310
311	/* next point to this freed entry */
312	vmem_back->list = next;
313	next = vmem_back;
314	num_freed++;
315
316	return vmem_back->phys;
317}
318
319static void __ref __vmemmap_free(unsigned long start, unsigned long end,
320				 struct vmem_altmap *altmap)
321{
322	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
323	unsigned long page_order = get_order(page_size);
324	unsigned long alt_start = ~0, alt_end = ~0;
325	unsigned long base_pfn;
326
327	start = ALIGN_DOWN(start, page_size);
328	if (altmap) {
329		alt_start = altmap->base_pfn;
330		alt_end = altmap->base_pfn + altmap->reserve + altmap->free;
 
331	}
332
333	pr_debug("vmemmap_free %lx...%lx\n", start, end);
334
335	for (; start < end; start += page_size) {
336		unsigned long nr_pages, addr;
337		struct page *page;
338
339		/*
340		 * We have already marked the subsection we are trying to remove
341		 * invalid. So if we want to remove the vmemmap range, we
342		 * need to make sure there is no subsection marked valid
343		 * in this range.
344		 */
345		if (vmemmap_populated(start, page_size))
346			continue;
347
348		addr = vmemmap_list_free(start);
349		if (!addr)
350			continue;
351
352		page = pfn_to_page(addr >> PAGE_SHIFT);
353		nr_pages = 1 << page_order;
354		base_pfn = PHYS_PFN(addr);
355
356		if (base_pfn >= alt_start && base_pfn < alt_end) {
357			vmem_altmap_free(altmap, nr_pages);
358		} else if (PageReserved(page)) {
359			/* allocated from bootmem */
360			if (page_size < PAGE_SIZE) {
361				/*
362				 * this shouldn't happen, but if it is
363				 * the case, leave the memory there
364				 */
365				WARN_ON_ONCE(1);
366			} else {
367				while (nr_pages--)
368					free_reserved_page(page++);
369			}
370		} else {
371			free_pages((unsigned long)(__va(addr)), page_order);
372		}
373
374		vmemmap_remove_mapping(start, page_size);
375	}
376}
377
378void __ref vmemmap_free(unsigned long start, unsigned long end,
379			struct vmem_altmap *altmap)
380{
381#ifdef CONFIG_PPC_BOOK3S_64
382	if (radix_enabled())
383		return radix__vmemmap_free(start, end, altmap);
384#endif
385	return __vmemmap_free(start, end, altmap);
386}
387
388#endif
389void register_page_bootmem_memmap(unsigned long section_nr,
390				  struct page *start_page, unsigned long size)
391{
392}
393
394#endif /* CONFIG_SPARSEMEM_VMEMMAP */
395
396#ifdef CONFIG_PPC_BOOK3S_64
397unsigned int mmu_lpid_bits;
398#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
399EXPORT_SYMBOL_GPL(mmu_lpid_bits);
400#endif
401unsigned int mmu_pid_bits;
402
403static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT);
404
405static int __init parse_disable_radix(char *p)
406{
407	bool val;
408
409	if (!p)
410		val = true;
411	else if (kstrtobool(p, &val))
412		return -EINVAL;
413
414	disable_radix = val;
415
416	return 0;
417}
418early_param("disable_radix", parse_disable_radix);
419
420/*
421 * If we're running under a hypervisor, we need to check the contents of
422 * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
423 * radix.  If not, we clear the radix feature bit so we fall back to hash.
424 */
425static void __init early_check_vec5(void)
426{
427	unsigned long root, chosen;
428	int size;
429	const u8 *vec5;
430	u8 mmu_supported;
431
432	root = of_get_flat_dt_root();
433	chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
434	if (chosen == -FDT_ERR_NOTFOUND) {
435		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
436		return;
437	}
438	vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
439	if (!vec5) {
440		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
441		return;
442	}
443	if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
444		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
445		return;
446	}
447
448	/* Check for supported configuration */
449	mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
450			OV5_FEAT(OV5_MMU_SUPPORT);
451	if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
452		/* Hypervisor only supports radix - check enabled && GTSE */
453		if (!early_radix_enabled()) {
454			pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
455		}
456		if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
457						OV5_FEAT(OV5_RADIX_GTSE))) {
458			cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
459		} else
460			cur_cpu_spec->mmu_features |= MMU_FTR_GTSE;
461		/* Do radix anyway - the hypervisor said we had to */
462		cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
463	} else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
464		/* Hypervisor only supports hash - disable radix */
465		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
466		cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
467	}
468}
469
470static int __init dt_scan_mmu_pid_width(unsigned long node,
471					   const char *uname, int depth,
472					   void *data)
473{
474	int size = 0;
475	const __be32 *prop;
476	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
477
478	/* We are scanning "cpu" nodes only */
479	if (type == NULL || strcmp(type, "cpu") != 0)
480		return 0;
481
482	/* Find MMU LPID, PID register size */
483	prop = of_get_flat_dt_prop(node, "ibm,mmu-lpid-bits", &size);
484	if (prop && size == 4)
485		mmu_lpid_bits = be32_to_cpup(prop);
486
487	prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
488	if (prop && size == 4)
489		mmu_pid_bits = be32_to_cpup(prop);
490
491	if (!mmu_pid_bits && !mmu_lpid_bits)
492		return 0;
493
494	return 1;
495}
496
497/*
498 * Outside hotplug the kernel uses this value to map the kernel direct map
499 * with radix. To be compatible with older kernels, let's keep this value
500 * as 16M which is also SECTION_SIZE with SPARSEMEM. We can ideally map
501 * things with 1GB size in the case where we don't support hotplug.
502 */
503#ifndef CONFIG_MEMORY_HOTPLUG
504#define DEFAULT_MEMORY_BLOCK_SIZE	SZ_16M
505#else
506#define DEFAULT_MEMORY_BLOCK_SIZE	MIN_MEMORY_BLOCK_SIZE
507#endif
508
509static void update_memory_block_size(unsigned long *block_size, unsigned long mem_size)
510{
511	unsigned long min_memory_block_size = DEFAULT_MEMORY_BLOCK_SIZE;
512
513	for (; *block_size > min_memory_block_size; *block_size >>= 2) {
514		if ((mem_size & *block_size) == 0)
515			break;
516	}
517}
518
519static int __init probe_memory_block_size(unsigned long node, const char *uname, int
520					  depth, void *data)
521{
522	const char *type;
523	unsigned long *block_size = (unsigned long *)data;
524	const __be32 *reg, *endp;
525	int l;
526
527	if (depth != 1)
528		return 0;
529	/*
530	 * If we have dynamic-reconfiguration-memory node, use the
531	 * lmb value.
532	 */
533	if (strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) {
534
535		const __be32 *prop;
536
537		prop = of_get_flat_dt_prop(node, "ibm,lmb-size", &l);
538
539		if (!prop || l < dt_root_size_cells * sizeof(__be32))
540			/*
541			 * Nothing in the device tree
542			 */
543			*block_size = DEFAULT_MEMORY_BLOCK_SIZE;
544		else
545			*block_size = of_read_number(prop, dt_root_size_cells);
546		/*
547		 * We have found the final value. Don't probe further.
548		 */
549		return 1;
550	}
551	/*
552	 * Find all the device tree nodes of memory type and make sure
553	 * the area can be mapped using the memory block size value
554	 * we end up using. We start with 1G value and keep reducing
555	 * it such that we can map the entire area using memory_block_size.
556	 * This will be used on powernv and older pseries that don't
557	 * have ibm,lmb-size node.
558	 * For ex: with P5 we can end up with
559	 * memory@0 -> 128MB
560	 * memory@128M -> 64M
561	 * This will end up using 64MB  memory block size value.
562	 */
563	type = of_get_flat_dt_prop(node, "device_type", NULL);
564	if (type == NULL || strcmp(type, "memory") != 0)
565		return 0;
566
567	reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
568	if (!reg)
569		reg = of_get_flat_dt_prop(node, "reg", &l);
570	if (!reg)
571		return 0;
572
573	endp = reg + (l / sizeof(__be32));
574	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
575		const char *compatible;
576		u64 size;
577
578		dt_mem_next_cell(dt_root_addr_cells, &reg);
579		size = dt_mem_next_cell(dt_root_size_cells, &reg);
580
581		if (size) {
582			update_memory_block_size(block_size, size);
583			continue;
584		}
585		/*
586		 * ibm,coherent-device-memory with linux,usable-memory = 0
587		 * Force 256MiB block size. Work around for GPUs on P9 PowerNV
588		 * linux,usable-memory == 0 implies driver managed memory and
589		 * we can't use large memory block size due to hotplug/unplug
590		 * limitations.
591		 */
592		compatible = of_get_flat_dt_prop(node, "compatible", NULL);
593		if (compatible && !strcmp(compatible, "ibm,coherent-device-memory")) {
594			if (*block_size > SZ_256M)
595				*block_size = SZ_256M;
596			/*
597			 * We keep 256M as the upper limit with GPU present.
598			 */
599			return 0;
600		}
601	}
602	/* continue looking for other memory device types */
603	return 0;
604}
605
606/*
607 * start with 1G memory block size. Early init will
608 * fix this with correct value.
609 */
610unsigned long memory_block_size __ro_after_init = 1UL << 30;
611static void __init early_init_memory_block_size(void)
612{
613	/*
614	 * We need to do memory_block_size probe early so that
615	 * radix__early_init_mmu() can use this as limit for
616	 * mapping page size.
617	 */
618	of_scan_flat_dt(probe_memory_block_size, &memory_block_size);
619}
620
621void __init mmu_early_init_devtree(void)
622{
623	bool hvmode = !!(mfmsr() & MSR_HV);
624
625	/* Disable radix mode based on kernel command line. */
626	if (disable_radix) {
627		if (IS_ENABLED(CONFIG_PPC_64S_HASH_MMU))
628			cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
629		else
630			pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
631	}
632
633	of_scan_flat_dt(dt_scan_mmu_pid_width, NULL);
634	if (hvmode && !mmu_lpid_bits) {
635		if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
636			mmu_lpid_bits = 12; /* POWER8-10 */
637		else
638			mmu_lpid_bits = 10; /* POWER7 */
639	}
640	if (!mmu_pid_bits) {
641		if (early_cpu_has_feature(CPU_FTR_ARCH_300))
642			mmu_pid_bits = 20; /* POWER9-10 */
643	}
644
645	/*
646	 * Check /chosen/ibm,architecture-vec-5 if running as a guest.
647	 * When running bare-metal, we can use radix if we like
648	 * even though the ibm,architecture-vec-5 property created by
649	 * skiboot doesn't have the necessary bits set.
650	 */
651	if (!hvmode)
652		early_check_vec5();
653
654	early_init_memory_block_size();
655
656	if (early_radix_enabled()) {
657		radix__early_init_devtree();
658
659		/*
660		 * We have finalized the translation we are going to use by now.
661		 * Radix mode is not limited by RMA / VRMA addressing.
662		 * Hence don't limit memblock allocations.
663		 */
664		ppc64_rma_size = ULONG_MAX;
665		memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
666	} else
667		hash__early_init_devtree();
668
669	if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
670		hugetlbpage_init_defaultsize();
671
672	if (!(cur_cpu_spec->mmu_features & MMU_FTR_HPTE_TABLE) &&
673	    !(cur_cpu_spec->mmu_features & MMU_FTR_TYPE_RADIX))
674		panic("kernel does not support any MMU type offered by platform");
675}
676#endif /* CONFIG_PPC_BOOK3S_64 */
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  PowerPC version
  4 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  5 *
  6 *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
  7 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
  8 *    Copyright (C) 1996 Paul Mackerras
  9 *
 10 *  Derived from "arch/i386/mm/init.c"
 11 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 12 *
 13 *  Dave Engebretsen <engebret@us.ibm.com>
 14 *      Rework for PPC64 port.
 15 */
 16
 17#undef DEBUG
 18
 19#include <linux/signal.h>
 20#include <linux/sched.h>
 21#include <linux/kernel.h>
 22#include <linux/errno.h>
 23#include <linux/string.h>
 24#include <linux/types.h>
 25#include <linux/mman.h>
 26#include <linux/mm.h>
 27#include <linux/swap.h>
 28#include <linux/stddef.h>
 29#include <linux/vmalloc.h>
 30#include <linux/init.h>
 31#include <linux/delay.h>
 32#include <linux/highmem.h>
 33#include <linux/idr.h>
 34#include <linux/nodemask.h>
 35#include <linux/module.h>
 36#include <linux/poison.h>
 37#include <linux/memblock.h>
 38#include <linux/hugetlb.h>
 39#include <linux/slab.h>
 40#include <linux/of_fdt.h>
 41#include <linux/libfdt.h>
 42#include <linux/memremap.h>
 
 43
 44#include <asm/pgalloc.h>
 45#include <asm/page.h>
 46#include <asm/prom.h>
 47#include <asm/rtas.h>
 48#include <asm/io.h>
 49#include <asm/mmu_context.h>
 50#include <asm/pgtable.h>
 51#include <asm/mmu.h>
 52#include <linux/uaccess.h>
 53#include <asm/smp.h>
 54#include <asm/machdep.h>
 55#include <asm/tlb.h>
 56#include <asm/eeh.h>
 57#include <asm/processor.h>
 58#include <asm/mmzone.h>
 59#include <asm/cputable.h>
 60#include <asm/sections.h>
 61#include <asm/iommu.h>
 62#include <asm/vdso.h>
 
 63
 64#include <mm/mmu_decl.h>
 65
 66phys_addr_t memstart_addr = ~0;
 67EXPORT_SYMBOL_GPL(memstart_addr);
 68phys_addr_t kernstart_addr;
 69EXPORT_SYMBOL_GPL(kernstart_addr);
 70
 71#ifdef CONFIG_SPARSEMEM_VMEMMAP
 72/*
 73 * Given an address within the vmemmap, determine the pfn of the page that
 74 * represents the start of the section it is within.  Note that we have to
 75 * do this by hand as the proffered address may not be correctly aligned.
 76 * Subtraction of non-aligned pointers produces undefined results.
 77 */
 78static unsigned long __meminit vmemmap_section_start(unsigned long page)
 79{
 80	unsigned long offset = page - ((unsigned long)(vmemmap));
 
 81
 82	/* Return the pfn of the start of the section. */
 83	return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
 
 84}
 85
 86/*
 87 * Check if this vmemmap page is already initialised.  If any section
 88 * which overlaps this vmemmap page is initialised then this page is
 89 * initialised already.
 
 
 
 
 
 
 
 90 */
 91static int __meminit vmemmap_populated(unsigned long start, int page_size)
 92{
 93	unsigned long end = start + page_size;
 94	start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
 
 95
 96	for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
 97		if (pfn_valid(page_to_pfn((struct page *)start)))
 
 
 
 
 
 98			return 1;
 99
100	return 0;
101}
102
103/*
104 * vmemmap virtual address space management does not have a traditonal page
105 * table to track which virtual struct pages are backed by physical mapping.
106 * The virtual to physical mappings are tracked in a simple linked list
107 * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at
108 * all times where as the 'next' list maintains the available
109 * vmemmap_backing structures which have been deleted from the
110 * 'vmemmap_global' list during system runtime (memory hotplug remove
111 * operation). The freed 'vmemmap_backing' structures are reused later when
112 * new requests come in without allocating fresh memory. This pointer also
113 * tracks the allocated 'vmemmap_backing' structures as we allocate one
114 * full page memory at a time when we dont have any.
115 */
116struct vmemmap_backing *vmemmap_list;
117static struct vmemmap_backing *next;
118
119/*
120 * The same pointer 'next' tracks individual chunks inside the allocated
121 * full page during the boot time and again tracks the freeed nodes during
122 * runtime. It is racy but it does not happen as they are separated by the
123 * boot process. Will create problem if some how we have memory hotplug
124 * operation during boot !!
125 */
126static int num_left;
127static int num_freed;
128
129static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
130{
131	struct vmemmap_backing *vmem_back;
132	/* get from freed entries first */
133	if (num_freed) {
134		num_freed--;
135		vmem_back = next;
136		next = next->list;
137
138		return vmem_back;
139	}
140
141	/* allocate a page when required and hand out chunks */
142	if (!num_left) {
143		next = vmemmap_alloc_block(PAGE_SIZE, node);
144		if (unlikely(!next)) {
145			WARN_ON(1);
146			return NULL;
147		}
148		num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
149	}
150
151	num_left--;
152
153	return next++;
154}
155
156static __meminit void vmemmap_list_populate(unsigned long phys,
157					    unsigned long start,
158					    int node)
159{
160	struct vmemmap_backing *vmem_back;
161
162	vmem_back = vmemmap_list_alloc(node);
163	if (unlikely(!vmem_back)) {
164		WARN_ON(1);
165		return;
166	}
167
168	vmem_back->phys = phys;
169	vmem_back->virt_addr = start;
170	vmem_back->list = vmemmap_list;
171
172	vmemmap_list = vmem_back;
 
173}
174
175static bool altmap_cross_boundary(struct vmem_altmap *altmap, unsigned long start,
176				unsigned long page_size)
177{
178	unsigned long nr_pfn = page_size / sizeof(struct page);
179	unsigned long start_pfn = page_to_pfn((struct page *)start);
180
181	if ((start_pfn + nr_pfn) > altmap->end_pfn)
182		return true;
183
184	if (start_pfn < altmap->base_pfn)
185		return true;
186
187	return false;
188}
189
190int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
191		struct vmem_altmap *altmap)
192{
 
193	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
194
195	/* Align to the page size of the linear mapping. */
196	start = _ALIGN_DOWN(start, page_size);
197
198	pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
199
200	for (; start < end; start += page_size) {
201		void *p = NULL;
202		int rc;
203
 
 
 
 
 
 
204		if (vmemmap_populated(start, page_size))
205			continue;
206
207		/*
208		 * Allocate from the altmap first if we have one. This may
209		 * fail due to alignment issues when using 16MB hugepages, so
210		 * fall back to system memory if the altmap allocation fail.
211		 */
212		if (altmap && !altmap_cross_boundary(altmap, start, page_size)) {
213			p = altmap_alloc_block_buf(page_size, altmap);
214			if (!p)
215				pr_debug("altmap block allocation failed, falling back to system memory");
 
 
 
 
 
 
216		}
217		if (!p)
218			p = vmemmap_alloc_block_buf(page_size, node);
219		if (!p)
220			return -ENOMEM;
221
222		vmemmap_list_populate(__pa(p), start, node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223
224		pr_debug("      * %016lx..%016lx allocated at %p\n",
225			 start, start + page_size, p);
226
227		rc = vmemmap_create_mapping(start, page_size, __pa(p));
228		if (rc < 0) {
229			pr_warn("%s: Unable to create vmemmap mapping: %d\n",
230				__func__, rc);
231			return -EFAULT;
232		}
233	}
234
235	return 0;
236}
237
 
 
 
 
 
 
 
 
 
 
 
 
238#ifdef CONFIG_MEMORY_HOTPLUG
239static unsigned long vmemmap_list_free(unsigned long start)
240{
241	struct vmemmap_backing *vmem_back, *vmem_back_prev;
242
243	vmem_back_prev = vmem_back = vmemmap_list;
244
245	/* look for it with prev pointer recorded */
246	for (; vmem_back; vmem_back = vmem_back->list) {
247		if (vmem_back->virt_addr == start)
248			break;
249		vmem_back_prev = vmem_back;
250	}
251
252	if (unlikely(!vmem_back)) {
253		WARN_ON(1);
254		return 0;
255	}
256
257	/* remove it from vmemmap_list */
258	if (vmem_back == vmemmap_list) /* remove head */
259		vmemmap_list = vmem_back->list;
260	else
261		vmem_back_prev->list = vmem_back->list;
262
263	/* next point to this freed entry */
264	vmem_back->list = next;
265	next = vmem_back;
266	num_freed++;
267
268	return vmem_back->phys;
269}
270
271void __ref vmemmap_free(unsigned long start, unsigned long end,
272		struct vmem_altmap *altmap)
273{
274	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
275	unsigned long page_order = get_order(page_size);
276	unsigned long alt_start = ~0, alt_end = ~0;
277	unsigned long base_pfn;
278
279	start = _ALIGN_DOWN(start, page_size);
280	if (altmap) {
281		alt_start = altmap->base_pfn;
282		alt_end = altmap->base_pfn + altmap->reserve +
283			  altmap->free + altmap->alloc + altmap->align;
284	}
285
286	pr_debug("vmemmap_free %lx...%lx\n", start, end);
287
288	for (; start < end; start += page_size) {
289		unsigned long nr_pages, addr;
290		struct page *page;
291
292		/*
293		 * the section has already be marked as invalid, so
294		 * vmemmap_populated() true means some other sections still
295		 * in this page, so skip it.
 
296		 */
297		if (vmemmap_populated(start, page_size))
298			continue;
299
300		addr = vmemmap_list_free(start);
301		if (!addr)
302			continue;
303
304		page = pfn_to_page(addr >> PAGE_SHIFT);
305		nr_pages = 1 << page_order;
306		base_pfn = PHYS_PFN(addr);
307
308		if (base_pfn >= alt_start && base_pfn < alt_end) {
309			vmem_altmap_free(altmap, nr_pages);
310		} else if (PageReserved(page)) {
311			/* allocated from bootmem */
312			if (page_size < PAGE_SIZE) {
313				/*
314				 * this shouldn't happen, but if it is
315				 * the case, leave the memory there
316				 */
317				WARN_ON_ONCE(1);
318			} else {
319				while (nr_pages--)
320					free_reserved_page(page++);
321			}
322		} else {
323			free_pages((unsigned long)(__va(addr)), page_order);
324		}
325
326		vmemmap_remove_mapping(start, page_size);
327	}
328}
 
 
 
 
 
 
 
 
 
 
 
329#endif
330void register_page_bootmem_memmap(unsigned long section_nr,
331				  struct page *start_page, unsigned long size)
332{
333}
334
335#endif /* CONFIG_SPARSEMEM_VMEMMAP */
336
337#ifdef CONFIG_PPC_BOOK3S_64
 
 
 
 
 
 
338static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT);
339
340static int __init parse_disable_radix(char *p)
341{
342	bool val;
343
344	if (!p)
345		val = true;
346	else if (kstrtobool(p, &val))
347		return -EINVAL;
348
349	disable_radix = val;
350
351	return 0;
352}
353early_param("disable_radix", parse_disable_radix);
354
355/*
356 * If we're running under a hypervisor, we need to check the contents of
357 * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
358 * radix.  If not, we clear the radix feature bit so we fall back to hash.
359 */
360static void __init early_check_vec5(void)
361{
362	unsigned long root, chosen;
363	int size;
364	const u8 *vec5;
365	u8 mmu_supported;
366
367	root = of_get_flat_dt_root();
368	chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
369	if (chosen == -FDT_ERR_NOTFOUND) {
370		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
371		return;
372	}
373	vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
374	if (!vec5) {
375		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
376		return;
377	}
378	if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
379		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
380		return;
381	}
382
383	/* Check for supported configuration */
384	mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
385			OV5_FEAT(OV5_MMU_SUPPORT);
386	if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
387		/* Hypervisor only supports radix - check enabled && GTSE */
388		if (!early_radix_enabled()) {
389			pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
390		}
391		if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
392						OV5_FEAT(OV5_RADIX_GTSE))) {
393			pr_warn("WARNING: Hypervisor doesn't support RADIX with GTSE\n");
394		}
 
395		/* Do radix anyway - the hypervisor said we had to */
396		cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
397	} else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
398		/* Hypervisor only supports hash - disable radix */
399		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
400	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
401}
402
403void __init mmu_early_init_devtree(void)
404{
 
 
405	/* Disable radix mode based on kernel command line. */
406	if (disable_radix)
407		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408
409	/*
410	 * Check /chosen/ibm,architecture-vec-5 if running as a guest.
411	 * When running bare-metal, we can use radix if we like
412	 * even though the ibm,architecture-vec-5 property created by
413	 * skiboot doesn't have the necessary bits set.
414	 */
415	if (!(mfmsr() & MSR_HV))
416		early_check_vec5();
417
418	if (early_radix_enabled())
 
 
419		radix__early_init_devtree();
420	else
 
 
 
 
 
 
 
 
421		hash__early_init_devtree();
 
 
 
 
 
 
 
422}
423#endif /* CONFIG_PPC_BOOK3S_64 */