Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include <linux/backing-dev.h>
8#include <linux/dax.h>
9
10#include "xfs_shared.h"
11#include "xfs_format.h"
12#include "xfs_log_format.h"
13#include "xfs_trans_resv.h"
14#include "xfs_mount.h"
15#include "xfs_trace.h"
16#include "xfs_log.h"
17#include "xfs_log_recover.h"
18#include "xfs_log_priv.h"
19#include "xfs_trans.h"
20#include "xfs_buf_item.h"
21#include "xfs_errortag.h"
22#include "xfs_error.h"
23#include "xfs_ag.h"
24
25struct kmem_cache *xfs_buf_cache;
26
27/*
28 * Locking orders
29 *
30 * xfs_buf_ioacct_inc:
31 * xfs_buf_ioacct_dec:
32 * b_sema (caller holds)
33 * b_lock
34 *
35 * xfs_buf_stale:
36 * b_sema (caller holds)
37 * b_lock
38 * lru_lock
39 *
40 * xfs_buf_rele:
41 * b_lock
42 * pag_buf_lock
43 * lru_lock
44 *
45 * xfs_buftarg_drain_rele
46 * lru_lock
47 * b_lock (trylock due to inversion)
48 *
49 * xfs_buftarg_isolate
50 * lru_lock
51 * b_lock (trylock due to inversion)
52 */
53
54static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
55
56static inline int
57xfs_buf_submit(
58 struct xfs_buf *bp)
59{
60 return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
61}
62
63static inline int
64xfs_buf_is_vmapped(
65 struct xfs_buf *bp)
66{
67 /*
68 * Return true if the buffer is vmapped.
69 *
70 * b_addr is null if the buffer is not mapped, but the code is clever
71 * enough to know it doesn't have to map a single page, so the check has
72 * to be both for b_addr and bp->b_page_count > 1.
73 */
74 return bp->b_addr && bp->b_page_count > 1;
75}
76
77static inline int
78xfs_buf_vmap_len(
79 struct xfs_buf *bp)
80{
81 return (bp->b_page_count * PAGE_SIZE);
82}
83
84/*
85 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
86 * this buffer. The count is incremented once per buffer (per hold cycle)
87 * because the corresponding decrement is deferred to buffer release. Buffers
88 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
89 * tracking adds unnecessary overhead. This is used for sychronization purposes
90 * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
91 * in-flight buffers.
92 *
93 * Buffers that are never released (e.g., superblock, iclog buffers) must set
94 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
95 * never reaches zero and unmount hangs indefinitely.
96 */
97static inline void
98xfs_buf_ioacct_inc(
99 struct xfs_buf *bp)
100{
101 if (bp->b_flags & XBF_NO_IOACCT)
102 return;
103
104 ASSERT(bp->b_flags & XBF_ASYNC);
105 spin_lock(&bp->b_lock);
106 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
107 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
108 percpu_counter_inc(&bp->b_target->bt_io_count);
109 }
110 spin_unlock(&bp->b_lock);
111}
112
113/*
114 * Clear the in-flight state on a buffer about to be released to the LRU or
115 * freed and unaccount from the buftarg.
116 */
117static inline void
118__xfs_buf_ioacct_dec(
119 struct xfs_buf *bp)
120{
121 lockdep_assert_held(&bp->b_lock);
122
123 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
124 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
125 percpu_counter_dec(&bp->b_target->bt_io_count);
126 }
127}
128
129static inline void
130xfs_buf_ioacct_dec(
131 struct xfs_buf *bp)
132{
133 spin_lock(&bp->b_lock);
134 __xfs_buf_ioacct_dec(bp);
135 spin_unlock(&bp->b_lock);
136}
137
138/*
139 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
140 * b_lru_ref count so that the buffer is freed immediately when the buffer
141 * reference count falls to zero. If the buffer is already on the LRU, we need
142 * to remove the reference that LRU holds on the buffer.
143 *
144 * This prevents build-up of stale buffers on the LRU.
145 */
146void
147xfs_buf_stale(
148 struct xfs_buf *bp)
149{
150 ASSERT(xfs_buf_islocked(bp));
151
152 bp->b_flags |= XBF_STALE;
153
154 /*
155 * Clear the delwri status so that a delwri queue walker will not
156 * flush this buffer to disk now that it is stale. The delwri queue has
157 * a reference to the buffer, so this is safe to do.
158 */
159 bp->b_flags &= ~_XBF_DELWRI_Q;
160
161 /*
162 * Once the buffer is marked stale and unlocked, a subsequent lookup
163 * could reset b_flags. There is no guarantee that the buffer is
164 * unaccounted (released to LRU) before that occurs. Drop in-flight
165 * status now to preserve accounting consistency.
166 */
167 spin_lock(&bp->b_lock);
168 __xfs_buf_ioacct_dec(bp);
169
170 atomic_set(&bp->b_lru_ref, 0);
171 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
172 (list_lru_del_obj(&bp->b_target->bt_lru, &bp->b_lru)))
173 atomic_dec(&bp->b_hold);
174
175 ASSERT(atomic_read(&bp->b_hold) >= 1);
176 spin_unlock(&bp->b_lock);
177}
178
179static int
180xfs_buf_get_maps(
181 struct xfs_buf *bp,
182 int map_count)
183{
184 ASSERT(bp->b_maps == NULL);
185 bp->b_map_count = map_count;
186
187 if (map_count == 1) {
188 bp->b_maps = &bp->__b_map;
189 return 0;
190 }
191
192 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
193 KM_NOFS);
194 if (!bp->b_maps)
195 return -ENOMEM;
196 return 0;
197}
198
199/*
200 * Frees b_pages if it was allocated.
201 */
202static void
203xfs_buf_free_maps(
204 struct xfs_buf *bp)
205{
206 if (bp->b_maps != &bp->__b_map) {
207 kmem_free(bp->b_maps);
208 bp->b_maps = NULL;
209 }
210}
211
212static int
213_xfs_buf_alloc(
214 struct xfs_buftarg *target,
215 struct xfs_buf_map *map,
216 int nmaps,
217 xfs_buf_flags_t flags,
218 struct xfs_buf **bpp)
219{
220 struct xfs_buf *bp;
221 int error;
222 int i;
223
224 *bpp = NULL;
225 bp = kmem_cache_zalloc(xfs_buf_cache, GFP_NOFS | __GFP_NOFAIL);
226
227 /*
228 * We don't want certain flags to appear in b_flags unless they are
229 * specifically set by later operations on the buffer.
230 */
231 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
232
233 atomic_set(&bp->b_hold, 1);
234 atomic_set(&bp->b_lru_ref, 1);
235 init_completion(&bp->b_iowait);
236 INIT_LIST_HEAD(&bp->b_lru);
237 INIT_LIST_HEAD(&bp->b_list);
238 INIT_LIST_HEAD(&bp->b_li_list);
239 sema_init(&bp->b_sema, 0); /* held, no waiters */
240 spin_lock_init(&bp->b_lock);
241 bp->b_target = target;
242 bp->b_mount = target->bt_mount;
243 bp->b_flags = flags;
244
245 /*
246 * Set length and io_length to the same value initially.
247 * I/O routines should use io_length, which will be the same in
248 * most cases but may be reset (e.g. XFS recovery).
249 */
250 error = xfs_buf_get_maps(bp, nmaps);
251 if (error) {
252 kmem_cache_free(xfs_buf_cache, bp);
253 return error;
254 }
255
256 bp->b_rhash_key = map[0].bm_bn;
257 bp->b_length = 0;
258 for (i = 0; i < nmaps; i++) {
259 bp->b_maps[i].bm_bn = map[i].bm_bn;
260 bp->b_maps[i].bm_len = map[i].bm_len;
261 bp->b_length += map[i].bm_len;
262 }
263
264 atomic_set(&bp->b_pin_count, 0);
265 init_waitqueue_head(&bp->b_waiters);
266
267 XFS_STATS_INC(bp->b_mount, xb_create);
268 trace_xfs_buf_init(bp, _RET_IP_);
269
270 *bpp = bp;
271 return 0;
272}
273
274static void
275xfs_buf_free_pages(
276 struct xfs_buf *bp)
277{
278 uint i;
279
280 ASSERT(bp->b_flags & _XBF_PAGES);
281
282 if (xfs_buf_is_vmapped(bp))
283 vm_unmap_ram(bp->b_addr, bp->b_page_count);
284
285 for (i = 0; i < bp->b_page_count; i++) {
286 if (bp->b_pages[i])
287 __free_page(bp->b_pages[i]);
288 }
289 mm_account_reclaimed_pages(bp->b_page_count);
290
291 if (bp->b_pages != bp->b_page_array)
292 kmem_free(bp->b_pages);
293 bp->b_pages = NULL;
294 bp->b_flags &= ~_XBF_PAGES;
295}
296
297static void
298xfs_buf_free_callback(
299 struct callback_head *cb)
300{
301 struct xfs_buf *bp = container_of(cb, struct xfs_buf, b_rcu);
302
303 xfs_buf_free_maps(bp);
304 kmem_cache_free(xfs_buf_cache, bp);
305}
306
307static void
308xfs_buf_free(
309 struct xfs_buf *bp)
310{
311 trace_xfs_buf_free(bp, _RET_IP_);
312
313 ASSERT(list_empty(&bp->b_lru));
314
315 if (bp->b_flags & _XBF_PAGES)
316 xfs_buf_free_pages(bp);
317 else if (bp->b_flags & _XBF_KMEM)
318 kmem_free(bp->b_addr);
319
320 call_rcu(&bp->b_rcu, xfs_buf_free_callback);
321}
322
323static int
324xfs_buf_alloc_kmem(
325 struct xfs_buf *bp,
326 xfs_buf_flags_t flags)
327{
328 xfs_km_flags_t kmflag_mask = KM_NOFS;
329 size_t size = BBTOB(bp->b_length);
330
331 /* Assure zeroed buffer for non-read cases. */
332 if (!(flags & XBF_READ))
333 kmflag_mask |= KM_ZERO;
334
335 bp->b_addr = kmem_alloc(size, kmflag_mask);
336 if (!bp->b_addr)
337 return -ENOMEM;
338
339 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
340 ((unsigned long)bp->b_addr & PAGE_MASK)) {
341 /* b_addr spans two pages - use alloc_page instead */
342 kmem_free(bp->b_addr);
343 bp->b_addr = NULL;
344 return -ENOMEM;
345 }
346 bp->b_offset = offset_in_page(bp->b_addr);
347 bp->b_pages = bp->b_page_array;
348 bp->b_pages[0] = kmem_to_page(bp->b_addr);
349 bp->b_page_count = 1;
350 bp->b_flags |= _XBF_KMEM;
351 return 0;
352}
353
354static int
355xfs_buf_alloc_pages(
356 struct xfs_buf *bp,
357 xfs_buf_flags_t flags)
358{
359 gfp_t gfp_mask = __GFP_NOWARN;
360 long filled = 0;
361
362 if (flags & XBF_READ_AHEAD)
363 gfp_mask |= __GFP_NORETRY;
364 else
365 gfp_mask |= GFP_NOFS;
366
367 /* Make sure that we have a page list */
368 bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
369 if (bp->b_page_count <= XB_PAGES) {
370 bp->b_pages = bp->b_page_array;
371 } else {
372 bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
373 gfp_mask);
374 if (!bp->b_pages)
375 return -ENOMEM;
376 }
377 bp->b_flags |= _XBF_PAGES;
378
379 /* Assure zeroed buffer for non-read cases. */
380 if (!(flags & XBF_READ))
381 gfp_mask |= __GFP_ZERO;
382
383 /*
384 * Bulk filling of pages can take multiple calls. Not filling the entire
385 * array is not an allocation failure, so don't back off if we get at
386 * least one extra page.
387 */
388 for (;;) {
389 long last = filled;
390
391 filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count,
392 bp->b_pages);
393 if (filled == bp->b_page_count) {
394 XFS_STATS_INC(bp->b_mount, xb_page_found);
395 break;
396 }
397
398 if (filled != last)
399 continue;
400
401 if (flags & XBF_READ_AHEAD) {
402 xfs_buf_free_pages(bp);
403 return -ENOMEM;
404 }
405
406 XFS_STATS_INC(bp->b_mount, xb_page_retries);
407 memalloc_retry_wait(gfp_mask);
408 }
409 return 0;
410}
411
412/*
413 * Map buffer into kernel address-space if necessary.
414 */
415STATIC int
416_xfs_buf_map_pages(
417 struct xfs_buf *bp,
418 xfs_buf_flags_t flags)
419{
420 ASSERT(bp->b_flags & _XBF_PAGES);
421 if (bp->b_page_count == 1) {
422 /* A single page buffer is always mappable */
423 bp->b_addr = page_address(bp->b_pages[0]);
424 } else if (flags & XBF_UNMAPPED) {
425 bp->b_addr = NULL;
426 } else {
427 int retried = 0;
428 unsigned nofs_flag;
429
430 /*
431 * vm_map_ram() will allocate auxiliary structures (e.g.
432 * pagetables) with GFP_KERNEL, yet we are likely to be under
433 * GFP_NOFS context here. Hence we need to tell memory reclaim
434 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
435 * memory reclaim re-entering the filesystem here and
436 * potentially deadlocking.
437 */
438 nofs_flag = memalloc_nofs_save();
439 do {
440 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
441 -1);
442 if (bp->b_addr)
443 break;
444 vm_unmap_aliases();
445 } while (retried++ <= 1);
446 memalloc_nofs_restore(nofs_flag);
447
448 if (!bp->b_addr)
449 return -ENOMEM;
450 }
451
452 return 0;
453}
454
455/*
456 * Finding and Reading Buffers
457 */
458static int
459_xfs_buf_obj_cmp(
460 struct rhashtable_compare_arg *arg,
461 const void *obj)
462{
463 const struct xfs_buf_map *map = arg->key;
464 const struct xfs_buf *bp = obj;
465
466 /*
467 * The key hashing in the lookup path depends on the key being the
468 * first element of the compare_arg, make sure to assert this.
469 */
470 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
471
472 if (bp->b_rhash_key != map->bm_bn)
473 return 1;
474
475 if (unlikely(bp->b_length != map->bm_len)) {
476 /*
477 * found a block number match. If the range doesn't
478 * match, the only way this is allowed is if the buffer
479 * in the cache is stale and the transaction that made
480 * it stale has not yet committed. i.e. we are
481 * reallocating a busy extent. Skip this buffer and
482 * continue searching for an exact match.
483 */
484 if (!(map->bm_flags & XBM_LIVESCAN))
485 ASSERT(bp->b_flags & XBF_STALE);
486 return 1;
487 }
488 return 0;
489}
490
491static const struct rhashtable_params xfs_buf_hash_params = {
492 .min_size = 32, /* empty AGs have minimal footprint */
493 .nelem_hint = 16,
494 .key_len = sizeof(xfs_daddr_t),
495 .key_offset = offsetof(struct xfs_buf, b_rhash_key),
496 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
497 .automatic_shrinking = true,
498 .obj_cmpfn = _xfs_buf_obj_cmp,
499};
500
501int
502xfs_buf_hash_init(
503 struct xfs_perag *pag)
504{
505 spin_lock_init(&pag->pag_buf_lock);
506 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
507}
508
509void
510xfs_buf_hash_destroy(
511 struct xfs_perag *pag)
512{
513 rhashtable_destroy(&pag->pag_buf_hash);
514}
515
516static int
517xfs_buf_map_verify(
518 struct xfs_buftarg *btp,
519 struct xfs_buf_map *map)
520{
521 xfs_daddr_t eofs;
522
523 /* Check for IOs smaller than the sector size / not sector aligned */
524 ASSERT(!(BBTOB(map->bm_len) < btp->bt_meta_sectorsize));
525 ASSERT(!(BBTOB(map->bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
526
527 /*
528 * Corrupted block numbers can get through to here, unfortunately, so we
529 * have to check that the buffer falls within the filesystem bounds.
530 */
531 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
532 if (map->bm_bn < 0 || map->bm_bn >= eofs) {
533 xfs_alert(btp->bt_mount,
534 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
535 __func__, map->bm_bn, eofs);
536 WARN_ON(1);
537 return -EFSCORRUPTED;
538 }
539 return 0;
540}
541
542static int
543xfs_buf_find_lock(
544 struct xfs_buf *bp,
545 xfs_buf_flags_t flags)
546{
547 if (flags & XBF_TRYLOCK) {
548 if (!xfs_buf_trylock(bp)) {
549 XFS_STATS_INC(bp->b_mount, xb_busy_locked);
550 return -EAGAIN;
551 }
552 } else {
553 xfs_buf_lock(bp);
554 XFS_STATS_INC(bp->b_mount, xb_get_locked_waited);
555 }
556
557 /*
558 * if the buffer is stale, clear all the external state associated with
559 * it. We need to keep flags such as how we allocated the buffer memory
560 * intact here.
561 */
562 if (bp->b_flags & XBF_STALE) {
563 if (flags & XBF_LIVESCAN) {
564 xfs_buf_unlock(bp);
565 return -ENOENT;
566 }
567 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
568 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
569 bp->b_ops = NULL;
570 }
571 return 0;
572}
573
574static inline int
575xfs_buf_lookup(
576 struct xfs_perag *pag,
577 struct xfs_buf_map *map,
578 xfs_buf_flags_t flags,
579 struct xfs_buf **bpp)
580{
581 struct xfs_buf *bp;
582 int error;
583
584 rcu_read_lock();
585 bp = rhashtable_lookup(&pag->pag_buf_hash, map, xfs_buf_hash_params);
586 if (!bp || !atomic_inc_not_zero(&bp->b_hold)) {
587 rcu_read_unlock();
588 return -ENOENT;
589 }
590 rcu_read_unlock();
591
592 error = xfs_buf_find_lock(bp, flags);
593 if (error) {
594 xfs_buf_rele(bp);
595 return error;
596 }
597
598 trace_xfs_buf_find(bp, flags, _RET_IP_);
599 *bpp = bp;
600 return 0;
601}
602
603/*
604 * Insert the new_bp into the hash table. This consumes the perag reference
605 * taken for the lookup regardless of the result of the insert.
606 */
607static int
608xfs_buf_find_insert(
609 struct xfs_buftarg *btp,
610 struct xfs_perag *pag,
611 struct xfs_buf_map *cmap,
612 struct xfs_buf_map *map,
613 int nmaps,
614 xfs_buf_flags_t flags,
615 struct xfs_buf **bpp)
616{
617 struct xfs_buf *new_bp;
618 struct xfs_buf *bp;
619 int error;
620
621 error = _xfs_buf_alloc(btp, map, nmaps, flags, &new_bp);
622 if (error)
623 goto out_drop_pag;
624
625 /*
626 * For buffers that fit entirely within a single page, first attempt to
627 * allocate the memory from the heap to minimise memory usage. If we
628 * can't get heap memory for these small buffers, we fall back to using
629 * the page allocator.
630 */
631 if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
632 xfs_buf_alloc_kmem(new_bp, flags) < 0) {
633 error = xfs_buf_alloc_pages(new_bp, flags);
634 if (error)
635 goto out_free_buf;
636 }
637
638 spin_lock(&pag->pag_buf_lock);
639 bp = rhashtable_lookup_get_insert_fast(&pag->pag_buf_hash,
640 &new_bp->b_rhash_head, xfs_buf_hash_params);
641 if (IS_ERR(bp)) {
642 error = PTR_ERR(bp);
643 spin_unlock(&pag->pag_buf_lock);
644 goto out_free_buf;
645 }
646 if (bp) {
647 /* found an existing buffer */
648 atomic_inc(&bp->b_hold);
649 spin_unlock(&pag->pag_buf_lock);
650 error = xfs_buf_find_lock(bp, flags);
651 if (error)
652 xfs_buf_rele(bp);
653 else
654 *bpp = bp;
655 goto out_free_buf;
656 }
657
658 /* The new buffer keeps the perag reference until it is freed. */
659 new_bp->b_pag = pag;
660 spin_unlock(&pag->pag_buf_lock);
661 *bpp = new_bp;
662 return 0;
663
664out_free_buf:
665 xfs_buf_free(new_bp);
666out_drop_pag:
667 xfs_perag_put(pag);
668 return error;
669}
670
671/*
672 * Assembles a buffer covering the specified range. The code is optimised for
673 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
674 * more hits than misses.
675 */
676int
677xfs_buf_get_map(
678 struct xfs_buftarg *btp,
679 struct xfs_buf_map *map,
680 int nmaps,
681 xfs_buf_flags_t flags,
682 struct xfs_buf **bpp)
683{
684 struct xfs_perag *pag;
685 struct xfs_buf *bp = NULL;
686 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
687 int error;
688 int i;
689
690 if (flags & XBF_LIVESCAN)
691 cmap.bm_flags |= XBM_LIVESCAN;
692 for (i = 0; i < nmaps; i++)
693 cmap.bm_len += map[i].bm_len;
694
695 error = xfs_buf_map_verify(btp, &cmap);
696 if (error)
697 return error;
698
699 pag = xfs_perag_get(btp->bt_mount,
700 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
701
702 error = xfs_buf_lookup(pag, &cmap, flags, &bp);
703 if (error && error != -ENOENT)
704 goto out_put_perag;
705
706 /* cache hits always outnumber misses by at least 10:1 */
707 if (unlikely(!bp)) {
708 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
709
710 if (flags & XBF_INCORE)
711 goto out_put_perag;
712
713 /* xfs_buf_find_insert() consumes the perag reference. */
714 error = xfs_buf_find_insert(btp, pag, &cmap, map, nmaps,
715 flags, &bp);
716 if (error)
717 return error;
718 } else {
719 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
720 xfs_perag_put(pag);
721 }
722
723 /* We do not hold a perag reference anymore. */
724 if (!bp->b_addr) {
725 error = _xfs_buf_map_pages(bp, flags);
726 if (unlikely(error)) {
727 xfs_warn_ratelimited(btp->bt_mount,
728 "%s: failed to map %u pages", __func__,
729 bp->b_page_count);
730 xfs_buf_relse(bp);
731 return error;
732 }
733 }
734
735 /*
736 * Clear b_error if this is a lookup from a caller that doesn't expect
737 * valid data to be found in the buffer.
738 */
739 if (!(flags & XBF_READ))
740 xfs_buf_ioerror(bp, 0);
741
742 XFS_STATS_INC(btp->bt_mount, xb_get);
743 trace_xfs_buf_get(bp, flags, _RET_IP_);
744 *bpp = bp;
745 return 0;
746
747out_put_perag:
748 xfs_perag_put(pag);
749 return error;
750}
751
752int
753_xfs_buf_read(
754 struct xfs_buf *bp,
755 xfs_buf_flags_t flags)
756{
757 ASSERT(!(flags & XBF_WRITE));
758 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
759
760 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
761 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
762
763 return xfs_buf_submit(bp);
764}
765
766/*
767 * Reverify a buffer found in cache without an attached ->b_ops.
768 *
769 * If the caller passed an ops structure and the buffer doesn't have ops
770 * assigned, set the ops and use it to verify the contents. If verification
771 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
772 * already in XBF_DONE state on entry.
773 *
774 * Under normal operations, every in-core buffer is verified on read I/O
775 * completion. There are two scenarios that can lead to in-core buffers without
776 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
777 * filesystem, though these buffers are purged at the end of recovery. The
778 * other is online repair, which intentionally reads with a NULL buffer ops to
779 * run several verifiers across an in-core buffer in order to establish buffer
780 * type. If repair can't establish that, the buffer will be left in memory
781 * with NULL buffer ops.
782 */
783int
784xfs_buf_reverify(
785 struct xfs_buf *bp,
786 const struct xfs_buf_ops *ops)
787{
788 ASSERT(bp->b_flags & XBF_DONE);
789 ASSERT(bp->b_error == 0);
790
791 if (!ops || bp->b_ops)
792 return 0;
793
794 bp->b_ops = ops;
795 bp->b_ops->verify_read(bp);
796 if (bp->b_error)
797 bp->b_flags &= ~XBF_DONE;
798 return bp->b_error;
799}
800
801int
802xfs_buf_read_map(
803 struct xfs_buftarg *target,
804 struct xfs_buf_map *map,
805 int nmaps,
806 xfs_buf_flags_t flags,
807 struct xfs_buf **bpp,
808 const struct xfs_buf_ops *ops,
809 xfs_failaddr_t fa)
810{
811 struct xfs_buf *bp;
812 int error;
813
814 flags |= XBF_READ;
815 *bpp = NULL;
816
817 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
818 if (error)
819 return error;
820
821 trace_xfs_buf_read(bp, flags, _RET_IP_);
822
823 if (!(bp->b_flags & XBF_DONE)) {
824 /* Initiate the buffer read and wait. */
825 XFS_STATS_INC(target->bt_mount, xb_get_read);
826 bp->b_ops = ops;
827 error = _xfs_buf_read(bp, flags);
828
829 /* Readahead iodone already dropped the buffer, so exit. */
830 if (flags & XBF_ASYNC)
831 return 0;
832 } else {
833 /* Buffer already read; all we need to do is check it. */
834 error = xfs_buf_reverify(bp, ops);
835
836 /* Readahead already finished; drop the buffer and exit. */
837 if (flags & XBF_ASYNC) {
838 xfs_buf_relse(bp);
839 return 0;
840 }
841
842 /* We do not want read in the flags */
843 bp->b_flags &= ~XBF_READ;
844 ASSERT(bp->b_ops != NULL || ops == NULL);
845 }
846
847 /*
848 * If we've had a read error, then the contents of the buffer are
849 * invalid and should not be used. To ensure that a followup read tries
850 * to pull the buffer from disk again, we clear the XBF_DONE flag and
851 * mark the buffer stale. This ensures that anyone who has a current
852 * reference to the buffer will interpret it's contents correctly and
853 * future cache lookups will also treat it as an empty, uninitialised
854 * buffer.
855 */
856 if (error) {
857 /*
858 * Check against log shutdown for error reporting because
859 * metadata writeback may require a read first and we need to
860 * report errors in metadata writeback until the log is shut
861 * down. High level transaction read functions already check
862 * against mount shutdown, anyway, so we only need to be
863 * concerned about low level IO interactions here.
864 */
865 if (!xlog_is_shutdown(target->bt_mount->m_log))
866 xfs_buf_ioerror_alert(bp, fa);
867
868 bp->b_flags &= ~XBF_DONE;
869 xfs_buf_stale(bp);
870 xfs_buf_relse(bp);
871
872 /* bad CRC means corrupted metadata */
873 if (error == -EFSBADCRC)
874 error = -EFSCORRUPTED;
875 return error;
876 }
877
878 *bpp = bp;
879 return 0;
880}
881
882/*
883 * If we are not low on memory then do the readahead in a deadlock
884 * safe manner.
885 */
886void
887xfs_buf_readahead_map(
888 struct xfs_buftarg *target,
889 struct xfs_buf_map *map,
890 int nmaps,
891 const struct xfs_buf_ops *ops)
892{
893 struct xfs_buf *bp;
894
895 xfs_buf_read_map(target, map, nmaps,
896 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
897 __this_address);
898}
899
900/*
901 * Read an uncached buffer from disk. Allocates and returns a locked
902 * buffer containing the disk contents or nothing. Uncached buffers always have
903 * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
904 * is cached or uncached during fault diagnosis.
905 */
906int
907xfs_buf_read_uncached(
908 struct xfs_buftarg *target,
909 xfs_daddr_t daddr,
910 size_t numblks,
911 xfs_buf_flags_t flags,
912 struct xfs_buf **bpp,
913 const struct xfs_buf_ops *ops)
914{
915 struct xfs_buf *bp;
916 int error;
917
918 *bpp = NULL;
919
920 error = xfs_buf_get_uncached(target, numblks, flags, &bp);
921 if (error)
922 return error;
923
924 /* set up the buffer for a read IO */
925 ASSERT(bp->b_map_count == 1);
926 bp->b_rhash_key = XFS_BUF_DADDR_NULL;
927 bp->b_maps[0].bm_bn = daddr;
928 bp->b_flags |= XBF_READ;
929 bp->b_ops = ops;
930
931 xfs_buf_submit(bp);
932 if (bp->b_error) {
933 error = bp->b_error;
934 xfs_buf_relse(bp);
935 return error;
936 }
937
938 *bpp = bp;
939 return 0;
940}
941
942int
943xfs_buf_get_uncached(
944 struct xfs_buftarg *target,
945 size_t numblks,
946 xfs_buf_flags_t flags,
947 struct xfs_buf **bpp)
948{
949 int error;
950 struct xfs_buf *bp;
951 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
952
953 *bpp = NULL;
954
955 /* flags might contain irrelevant bits, pass only what we care about */
956 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
957 if (error)
958 return error;
959
960 error = xfs_buf_alloc_pages(bp, flags);
961 if (error)
962 goto fail_free_buf;
963
964 error = _xfs_buf_map_pages(bp, 0);
965 if (unlikely(error)) {
966 xfs_warn(target->bt_mount,
967 "%s: failed to map pages", __func__);
968 goto fail_free_buf;
969 }
970
971 trace_xfs_buf_get_uncached(bp, _RET_IP_);
972 *bpp = bp;
973 return 0;
974
975fail_free_buf:
976 xfs_buf_free(bp);
977 return error;
978}
979
980/*
981 * Increment reference count on buffer, to hold the buffer concurrently
982 * with another thread which may release (free) the buffer asynchronously.
983 * Must hold the buffer already to call this function.
984 */
985void
986xfs_buf_hold(
987 struct xfs_buf *bp)
988{
989 trace_xfs_buf_hold(bp, _RET_IP_);
990 atomic_inc(&bp->b_hold);
991}
992
993/*
994 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
995 * placed on LRU or freed (depending on b_lru_ref).
996 */
997void
998xfs_buf_rele(
999 struct xfs_buf *bp)
1000{
1001 struct xfs_perag *pag = bp->b_pag;
1002 bool release;
1003 bool freebuf = false;
1004
1005 trace_xfs_buf_rele(bp, _RET_IP_);
1006
1007 if (!pag) {
1008 ASSERT(list_empty(&bp->b_lru));
1009 if (atomic_dec_and_test(&bp->b_hold)) {
1010 xfs_buf_ioacct_dec(bp);
1011 xfs_buf_free(bp);
1012 }
1013 return;
1014 }
1015
1016 ASSERT(atomic_read(&bp->b_hold) > 0);
1017
1018 /*
1019 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1020 * calls. The pag_buf_lock being taken on the last reference only
1021 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1022 * to last reference we drop here is not serialised against the last
1023 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1024 * first, the last "release" reference can win the race to the lock and
1025 * free the buffer before the second-to-last reference is processed,
1026 * leading to a use-after-free scenario.
1027 */
1028 spin_lock(&bp->b_lock);
1029 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1030 if (!release) {
1031 /*
1032 * Drop the in-flight state if the buffer is already on the LRU
1033 * and it holds the only reference. This is racy because we
1034 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1035 * ensures the decrement occurs only once per-buf.
1036 */
1037 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1038 __xfs_buf_ioacct_dec(bp);
1039 goto out_unlock;
1040 }
1041
1042 /* the last reference has been dropped ... */
1043 __xfs_buf_ioacct_dec(bp);
1044 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1045 /*
1046 * If the buffer is added to the LRU take a new reference to the
1047 * buffer for the LRU and clear the (now stale) dispose list
1048 * state flag
1049 */
1050 if (list_lru_add_obj(&bp->b_target->bt_lru, &bp->b_lru)) {
1051 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1052 atomic_inc(&bp->b_hold);
1053 }
1054 spin_unlock(&pag->pag_buf_lock);
1055 } else {
1056 /*
1057 * most of the time buffers will already be removed from the
1058 * LRU, so optimise that case by checking for the
1059 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1060 * was on was the disposal list
1061 */
1062 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1063 list_lru_del_obj(&bp->b_target->bt_lru, &bp->b_lru);
1064 } else {
1065 ASSERT(list_empty(&bp->b_lru));
1066 }
1067
1068 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1069 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1070 xfs_buf_hash_params);
1071 spin_unlock(&pag->pag_buf_lock);
1072 xfs_perag_put(pag);
1073 freebuf = true;
1074 }
1075
1076out_unlock:
1077 spin_unlock(&bp->b_lock);
1078
1079 if (freebuf)
1080 xfs_buf_free(bp);
1081}
1082
1083
1084/*
1085 * Lock a buffer object, if it is not already locked.
1086 *
1087 * If we come across a stale, pinned, locked buffer, we know that we are
1088 * being asked to lock a buffer that has been reallocated. Because it is
1089 * pinned, we know that the log has not been pushed to disk and hence it
1090 * will still be locked. Rather than continuing to have trylock attempts
1091 * fail until someone else pushes the log, push it ourselves before
1092 * returning. This means that the xfsaild will not get stuck trying
1093 * to push on stale inode buffers.
1094 */
1095int
1096xfs_buf_trylock(
1097 struct xfs_buf *bp)
1098{
1099 int locked;
1100
1101 locked = down_trylock(&bp->b_sema) == 0;
1102 if (locked)
1103 trace_xfs_buf_trylock(bp, _RET_IP_);
1104 else
1105 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1106 return locked;
1107}
1108
1109/*
1110 * Lock a buffer object.
1111 *
1112 * If we come across a stale, pinned, locked buffer, we know that we
1113 * are being asked to lock a buffer that has been reallocated. Because
1114 * it is pinned, we know that the log has not been pushed to disk and
1115 * hence it will still be locked. Rather than sleeping until someone
1116 * else pushes the log, push it ourselves before trying to get the lock.
1117 */
1118void
1119xfs_buf_lock(
1120 struct xfs_buf *bp)
1121{
1122 trace_xfs_buf_lock(bp, _RET_IP_);
1123
1124 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1125 xfs_log_force(bp->b_mount, 0);
1126 down(&bp->b_sema);
1127
1128 trace_xfs_buf_lock_done(bp, _RET_IP_);
1129}
1130
1131void
1132xfs_buf_unlock(
1133 struct xfs_buf *bp)
1134{
1135 ASSERT(xfs_buf_islocked(bp));
1136
1137 up(&bp->b_sema);
1138 trace_xfs_buf_unlock(bp, _RET_IP_);
1139}
1140
1141STATIC void
1142xfs_buf_wait_unpin(
1143 struct xfs_buf *bp)
1144{
1145 DECLARE_WAITQUEUE (wait, current);
1146
1147 if (atomic_read(&bp->b_pin_count) == 0)
1148 return;
1149
1150 add_wait_queue(&bp->b_waiters, &wait);
1151 for (;;) {
1152 set_current_state(TASK_UNINTERRUPTIBLE);
1153 if (atomic_read(&bp->b_pin_count) == 0)
1154 break;
1155 io_schedule();
1156 }
1157 remove_wait_queue(&bp->b_waiters, &wait);
1158 set_current_state(TASK_RUNNING);
1159}
1160
1161static void
1162xfs_buf_ioerror_alert_ratelimited(
1163 struct xfs_buf *bp)
1164{
1165 static unsigned long lasttime;
1166 static struct xfs_buftarg *lasttarg;
1167
1168 if (bp->b_target != lasttarg ||
1169 time_after(jiffies, (lasttime + 5*HZ))) {
1170 lasttime = jiffies;
1171 xfs_buf_ioerror_alert(bp, __this_address);
1172 }
1173 lasttarg = bp->b_target;
1174}
1175
1176/*
1177 * Account for this latest trip around the retry handler, and decide if
1178 * we've failed enough times to constitute a permanent failure.
1179 */
1180static bool
1181xfs_buf_ioerror_permanent(
1182 struct xfs_buf *bp,
1183 struct xfs_error_cfg *cfg)
1184{
1185 struct xfs_mount *mp = bp->b_mount;
1186
1187 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1188 ++bp->b_retries > cfg->max_retries)
1189 return true;
1190 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1191 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1192 return true;
1193
1194 /* At unmount we may treat errors differently */
1195 if (xfs_is_unmounting(mp) && mp->m_fail_unmount)
1196 return true;
1197
1198 return false;
1199}
1200
1201/*
1202 * On a sync write or shutdown we just want to stale the buffer and let the
1203 * caller handle the error in bp->b_error appropriately.
1204 *
1205 * If the write was asynchronous then no one will be looking for the error. If
1206 * this is the first failure of this type, clear the error state and write the
1207 * buffer out again. This means we always retry an async write failure at least
1208 * once, but we also need to set the buffer up to behave correctly now for
1209 * repeated failures.
1210 *
1211 * If we get repeated async write failures, then we take action according to the
1212 * error configuration we have been set up to use.
1213 *
1214 * Returns true if this function took care of error handling and the caller must
1215 * not touch the buffer again. Return false if the caller should proceed with
1216 * normal I/O completion handling.
1217 */
1218static bool
1219xfs_buf_ioend_handle_error(
1220 struct xfs_buf *bp)
1221{
1222 struct xfs_mount *mp = bp->b_mount;
1223 struct xfs_error_cfg *cfg;
1224
1225 /*
1226 * If we've already shutdown the journal because of I/O errors, there's
1227 * no point in giving this a retry.
1228 */
1229 if (xlog_is_shutdown(mp->m_log))
1230 goto out_stale;
1231
1232 xfs_buf_ioerror_alert_ratelimited(bp);
1233
1234 /*
1235 * We're not going to bother about retrying this during recovery.
1236 * One strike!
1237 */
1238 if (bp->b_flags & _XBF_LOGRECOVERY) {
1239 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1240 return false;
1241 }
1242
1243 /*
1244 * Synchronous writes will have callers process the error.
1245 */
1246 if (!(bp->b_flags & XBF_ASYNC))
1247 goto out_stale;
1248
1249 trace_xfs_buf_iodone_async(bp, _RET_IP_);
1250
1251 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1252 if (bp->b_last_error != bp->b_error ||
1253 !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1254 bp->b_last_error = bp->b_error;
1255 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1256 !bp->b_first_retry_time)
1257 bp->b_first_retry_time = jiffies;
1258 goto resubmit;
1259 }
1260
1261 /*
1262 * Permanent error - we need to trigger a shutdown if we haven't already
1263 * to indicate that inconsistency will result from this action.
1264 */
1265 if (xfs_buf_ioerror_permanent(bp, cfg)) {
1266 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1267 goto out_stale;
1268 }
1269
1270 /* Still considered a transient error. Caller will schedule retries. */
1271 if (bp->b_flags & _XBF_INODES)
1272 xfs_buf_inode_io_fail(bp);
1273 else if (bp->b_flags & _XBF_DQUOTS)
1274 xfs_buf_dquot_io_fail(bp);
1275 else
1276 ASSERT(list_empty(&bp->b_li_list));
1277 xfs_buf_ioerror(bp, 0);
1278 xfs_buf_relse(bp);
1279 return true;
1280
1281resubmit:
1282 xfs_buf_ioerror(bp, 0);
1283 bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1284 xfs_buf_submit(bp);
1285 return true;
1286out_stale:
1287 xfs_buf_stale(bp);
1288 bp->b_flags |= XBF_DONE;
1289 bp->b_flags &= ~XBF_WRITE;
1290 trace_xfs_buf_error_relse(bp, _RET_IP_);
1291 return false;
1292}
1293
1294static void
1295xfs_buf_ioend(
1296 struct xfs_buf *bp)
1297{
1298 trace_xfs_buf_iodone(bp, _RET_IP_);
1299
1300 /*
1301 * Pull in IO completion errors now. We are guaranteed to be running
1302 * single threaded, so we don't need the lock to read b_io_error.
1303 */
1304 if (!bp->b_error && bp->b_io_error)
1305 xfs_buf_ioerror(bp, bp->b_io_error);
1306
1307 if (bp->b_flags & XBF_READ) {
1308 if (!bp->b_error && bp->b_ops)
1309 bp->b_ops->verify_read(bp);
1310 if (!bp->b_error)
1311 bp->b_flags |= XBF_DONE;
1312 } else {
1313 if (!bp->b_error) {
1314 bp->b_flags &= ~XBF_WRITE_FAIL;
1315 bp->b_flags |= XBF_DONE;
1316 }
1317
1318 if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1319 return;
1320
1321 /* clear the retry state */
1322 bp->b_last_error = 0;
1323 bp->b_retries = 0;
1324 bp->b_first_retry_time = 0;
1325
1326 /*
1327 * Note that for things like remote attribute buffers, there may
1328 * not be a buffer log item here, so processing the buffer log
1329 * item must remain optional.
1330 */
1331 if (bp->b_log_item)
1332 xfs_buf_item_done(bp);
1333
1334 if (bp->b_flags & _XBF_INODES)
1335 xfs_buf_inode_iodone(bp);
1336 else if (bp->b_flags & _XBF_DQUOTS)
1337 xfs_buf_dquot_iodone(bp);
1338
1339 }
1340
1341 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1342 _XBF_LOGRECOVERY);
1343
1344 if (bp->b_flags & XBF_ASYNC)
1345 xfs_buf_relse(bp);
1346 else
1347 complete(&bp->b_iowait);
1348}
1349
1350static void
1351xfs_buf_ioend_work(
1352 struct work_struct *work)
1353{
1354 struct xfs_buf *bp =
1355 container_of(work, struct xfs_buf, b_ioend_work);
1356
1357 xfs_buf_ioend(bp);
1358}
1359
1360static void
1361xfs_buf_ioend_async(
1362 struct xfs_buf *bp)
1363{
1364 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1365 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1366}
1367
1368void
1369__xfs_buf_ioerror(
1370 struct xfs_buf *bp,
1371 int error,
1372 xfs_failaddr_t failaddr)
1373{
1374 ASSERT(error <= 0 && error >= -1000);
1375 bp->b_error = error;
1376 trace_xfs_buf_ioerror(bp, error, failaddr);
1377}
1378
1379void
1380xfs_buf_ioerror_alert(
1381 struct xfs_buf *bp,
1382 xfs_failaddr_t func)
1383{
1384 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1385 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1386 func, (uint64_t)xfs_buf_daddr(bp),
1387 bp->b_length, -bp->b_error);
1388}
1389
1390/*
1391 * To simulate an I/O failure, the buffer must be locked and held with at least
1392 * three references. The LRU reference is dropped by the stale call. The buf
1393 * item reference is dropped via ioend processing. The third reference is owned
1394 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1395 */
1396void
1397xfs_buf_ioend_fail(
1398 struct xfs_buf *bp)
1399{
1400 bp->b_flags &= ~XBF_DONE;
1401 xfs_buf_stale(bp);
1402 xfs_buf_ioerror(bp, -EIO);
1403 xfs_buf_ioend(bp);
1404}
1405
1406int
1407xfs_bwrite(
1408 struct xfs_buf *bp)
1409{
1410 int error;
1411
1412 ASSERT(xfs_buf_islocked(bp));
1413
1414 bp->b_flags |= XBF_WRITE;
1415 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1416 XBF_DONE);
1417
1418 error = xfs_buf_submit(bp);
1419 if (error)
1420 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1421 return error;
1422}
1423
1424static void
1425xfs_buf_bio_end_io(
1426 struct bio *bio)
1427{
1428 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1429
1430 if (!bio->bi_status &&
1431 (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1432 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1433 bio->bi_status = BLK_STS_IOERR;
1434
1435 /*
1436 * don't overwrite existing errors - otherwise we can lose errors on
1437 * buffers that require multiple bios to complete.
1438 */
1439 if (bio->bi_status) {
1440 int error = blk_status_to_errno(bio->bi_status);
1441
1442 cmpxchg(&bp->b_io_error, 0, error);
1443 }
1444
1445 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1446 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1447
1448 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1449 xfs_buf_ioend_async(bp);
1450 bio_put(bio);
1451}
1452
1453static void
1454xfs_buf_ioapply_map(
1455 struct xfs_buf *bp,
1456 int map,
1457 int *buf_offset,
1458 int *count,
1459 blk_opf_t op)
1460{
1461 int page_index;
1462 unsigned int total_nr_pages = bp->b_page_count;
1463 int nr_pages;
1464 struct bio *bio;
1465 sector_t sector = bp->b_maps[map].bm_bn;
1466 int size;
1467 int offset;
1468
1469 /* skip the pages in the buffer before the start offset */
1470 page_index = 0;
1471 offset = *buf_offset;
1472 while (offset >= PAGE_SIZE) {
1473 page_index++;
1474 offset -= PAGE_SIZE;
1475 }
1476
1477 /*
1478 * Limit the IO size to the length of the current vector, and update the
1479 * remaining IO count for the next time around.
1480 */
1481 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1482 *count -= size;
1483 *buf_offset += size;
1484
1485next_chunk:
1486 atomic_inc(&bp->b_io_remaining);
1487 nr_pages = bio_max_segs(total_nr_pages);
1488
1489 bio = bio_alloc(bp->b_target->bt_bdev, nr_pages, op, GFP_NOIO);
1490 bio->bi_iter.bi_sector = sector;
1491 bio->bi_end_io = xfs_buf_bio_end_io;
1492 bio->bi_private = bp;
1493
1494 for (; size && nr_pages; nr_pages--, page_index++) {
1495 int rbytes, nbytes = PAGE_SIZE - offset;
1496
1497 if (nbytes > size)
1498 nbytes = size;
1499
1500 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1501 offset);
1502 if (rbytes < nbytes)
1503 break;
1504
1505 offset = 0;
1506 sector += BTOBB(nbytes);
1507 size -= nbytes;
1508 total_nr_pages--;
1509 }
1510
1511 if (likely(bio->bi_iter.bi_size)) {
1512 if (xfs_buf_is_vmapped(bp)) {
1513 flush_kernel_vmap_range(bp->b_addr,
1514 xfs_buf_vmap_len(bp));
1515 }
1516 submit_bio(bio);
1517 if (size)
1518 goto next_chunk;
1519 } else {
1520 /*
1521 * This is guaranteed not to be the last io reference count
1522 * because the caller (xfs_buf_submit) holds a count itself.
1523 */
1524 atomic_dec(&bp->b_io_remaining);
1525 xfs_buf_ioerror(bp, -EIO);
1526 bio_put(bio);
1527 }
1528
1529}
1530
1531STATIC void
1532_xfs_buf_ioapply(
1533 struct xfs_buf *bp)
1534{
1535 struct blk_plug plug;
1536 blk_opf_t op;
1537 int offset;
1538 int size;
1539 int i;
1540
1541 /*
1542 * Make sure we capture only current IO errors rather than stale errors
1543 * left over from previous use of the buffer (e.g. failed readahead).
1544 */
1545 bp->b_error = 0;
1546
1547 if (bp->b_flags & XBF_WRITE) {
1548 op = REQ_OP_WRITE;
1549
1550 /*
1551 * Run the write verifier callback function if it exists. If
1552 * this function fails it will mark the buffer with an error and
1553 * the IO should not be dispatched.
1554 */
1555 if (bp->b_ops) {
1556 bp->b_ops->verify_write(bp);
1557 if (bp->b_error) {
1558 xfs_force_shutdown(bp->b_mount,
1559 SHUTDOWN_CORRUPT_INCORE);
1560 return;
1561 }
1562 } else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) {
1563 struct xfs_mount *mp = bp->b_mount;
1564
1565 /*
1566 * non-crc filesystems don't attach verifiers during
1567 * log recovery, so don't warn for such filesystems.
1568 */
1569 if (xfs_has_crc(mp)) {
1570 xfs_warn(mp,
1571 "%s: no buf ops on daddr 0x%llx len %d",
1572 __func__, xfs_buf_daddr(bp),
1573 bp->b_length);
1574 xfs_hex_dump(bp->b_addr,
1575 XFS_CORRUPTION_DUMP_LEN);
1576 dump_stack();
1577 }
1578 }
1579 } else {
1580 op = REQ_OP_READ;
1581 if (bp->b_flags & XBF_READ_AHEAD)
1582 op |= REQ_RAHEAD;
1583 }
1584
1585 /* we only use the buffer cache for meta-data */
1586 op |= REQ_META;
1587
1588 /*
1589 * Walk all the vectors issuing IO on them. Set up the initial offset
1590 * into the buffer and the desired IO size before we start -
1591 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1592 * subsequent call.
1593 */
1594 offset = bp->b_offset;
1595 size = BBTOB(bp->b_length);
1596 blk_start_plug(&plug);
1597 for (i = 0; i < bp->b_map_count; i++) {
1598 xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1599 if (bp->b_error)
1600 break;
1601 if (size <= 0)
1602 break; /* all done */
1603 }
1604 blk_finish_plug(&plug);
1605}
1606
1607/*
1608 * Wait for I/O completion of a sync buffer and return the I/O error code.
1609 */
1610static int
1611xfs_buf_iowait(
1612 struct xfs_buf *bp)
1613{
1614 ASSERT(!(bp->b_flags & XBF_ASYNC));
1615
1616 trace_xfs_buf_iowait(bp, _RET_IP_);
1617 wait_for_completion(&bp->b_iowait);
1618 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1619
1620 return bp->b_error;
1621}
1622
1623/*
1624 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1625 * the buffer lock ownership and the current reference to the IO. It is not
1626 * safe to reference the buffer after a call to this function unless the caller
1627 * holds an additional reference itself.
1628 */
1629static int
1630__xfs_buf_submit(
1631 struct xfs_buf *bp,
1632 bool wait)
1633{
1634 int error = 0;
1635
1636 trace_xfs_buf_submit(bp, _RET_IP_);
1637
1638 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1639
1640 /*
1641 * On log shutdown we stale and complete the buffer immediately. We can
1642 * be called to read the superblock before the log has been set up, so
1643 * be careful checking the log state.
1644 *
1645 * Checking the mount shutdown state here can result in the log tail
1646 * moving inappropriately on disk as the log may not yet be shut down.
1647 * i.e. failing this buffer on mount shutdown can remove it from the AIL
1648 * and move the tail of the log forwards without having written this
1649 * buffer to disk. This corrupts the log tail state in memory, and
1650 * because the log may not be shut down yet, it can then be propagated
1651 * to disk before the log is shutdown. Hence we check log shutdown
1652 * state here rather than mount state to avoid corrupting the log tail
1653 * on shutdown.
1654 */
1655 if (bp->b_mount->m_log &&
1656 xlog_is_shutdown(bp->b_mount->m_log)) {
1657 xfs_buf_ioend_fail(bp);
1658 return -EIO;
1659 }
1660
1661 /*
1662 * Grab a reference so the buffer does not go away underneath us. For
1663 * async buffers, I/O completion drops the callers reference, which
1664 * could occur before submission returns.
1665 */
1666 xfs_buf_hold(bp);
1667
1668 if (bp->b_flags & XBF_WRITE)
1669 xfs_buf_wait_unpin(bp);
1670
1671 /* clear the internal error state to avoid spurious errors */
1672 bp->b_io_error = 0;
1673
1674 /*
1675 * Set the count to 1 initially, this will stop an I/O completion
1676 * callout which happens before we have started all the I/O from calling
1677 * xfs_buf_ioend too early.
1678 */
1679 atomic_set(&bp->b_io_remaining, 1);
1680 if (bp->b_flags & XBF_ASYNC)
1681 xfs_buf_ioacct_inc(bp);
1682 _xfs_buf_ioapply(bp);
1683
1684 /*
1685 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1686 * reference we took above. If we drop it to zero, run completion so
1687 * that we don't return to the caller with completion still pending.
1688 */
1689 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1690 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1691 xfs_buf_ioend(bp);
1692 else
1693 xfs_buf_ioend_async(bp);
1694 }
1695
1696 if (wait)
1697 error = xfs_buf_iowait(bp);
1698
1699 /*
1700 * Release the hold that keeps the buffer referenced for the entire
1701 * I/O. Note that if the buffer is async, it is not safe to reference
1702 * after this release.
1703 */
1704 xfs_buf_rele(bp);
1705 return error;
1706}
1707
1708void *
1709xfs_buf_offset(
1710 struct xfs_buf *bp,
1711 size_t offset)
1712{
1713 struct page *page;
1714
1715 if (bp->b_addr)
1716 return bp->b_addr + offset;
1717
1718 page = bp->b_pages[offset >> PAGE_SHIFT];
1719 return page_address(page) + (offset & (PAGE_SIZE-1));
1720}
1721
1722void
1723xfs_buf_zero(
1724 struct xfs_buf *bp,
1725 size_t boff,
1726 size_t bsize)
1727{
1728 size_t bend;
1729
1730 bend = boff + bsize;
1731 while (boff < bend) {
1732 struct page *page;
1733 int page_index, page_offset, csize;
1734
1735 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1736 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1737 page = bp->b_pages[page_index];
1738 csize = min_t(size_t, PAGE_SIZE - page_offset,
1739 BBTOB(bp->b_length) - boff);
1740
1741 ASSERT((csize + page_offset) <= PAGE_SIZE);
1742
1743 memset(page_address(page) + page_offset, 0, csize);
1744
1745 boff += csize;
1746 }
1747}
1748
1749/*
1750 * Log a message about and stale a buffer that a caller has decided is corrupt.
1751 *
1752 * This function should be called for the kinds of metadata corruption that
1753 * cannot be detect from a verifier, such as incorrect inter-block relationship
1754 * data. Do /not/ call this function from a verifier function.
1755 *
1756 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will
1757 * be marked stale, but b_error will not be set. The caller is responsible for
1758 * releasing the buffer or fixing it.
1759 */
1760void
1761__xfs_buf_mark_corrupt(
1762 struct xfs_buf *bp,
1763 xfs_failaddr_t fa)
1764{
1765 ASSERT(bp->b_flags & XBF_DONE);
1766
1767 xfs_buf_corruption_error(bp, fa);
1768 xfs_buf_stale(bp);
1769}
1770
1771/*
1772 * Handling of buffer targets (buftargs).
1773 */
1774
1775/*
1776 * Wait for any bufs with callbacks that have been submitted but have not yet
1777 * returned. These buffers will have an elevated hold count, so wait on those
1778 * while freeing all the buffers only held by the LRU.
1779 */
1780static enum lru_status
1781xfs_buftarg_drain_rele(
1782 struct list_head *item,
1783 struct list_lru_one *lru,
1784 spinlock_t *lru_lock,
1785 void *arg)
1786
1787{
1788 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1789 struct list_head *dispose = arg;
1790
1791 if (atomic_read(&bp->b_hold) > 1) {
1792 /* need to wait, so skip it this pass */
1793 trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1794 return LRU_SKIP;
1795 }
1796 if (!spin_trylock(&bp->b_lock))
1797 return LRU_SKIP;
1798
1799 /*
1800 * clear the LRU reference count so the buffer doesn't get
1801 * ignored in xfs_buf_rele().
1802 */
1803 atomic_set(&bp->b_lru_ref, 0);
1804 bp->b_state |= XFS_BSTATE_DISPOSE;
1805 list_lru_isolate_move(lru, item, dispose);
1806 spin_unlock(&bp->b_lock);
1807 return LRU_REMOVED;
1808}
1809
1810/*
1811 * Wait for outstanding I/O on the buftarg to complete.
1812 */
1813void
1814xfs_buftarg_wait(
1815 struct xfs_buftarg *btp)
1816{
1817 /*
1818 * First wait on the buftarg I/O count for all in-flight buffers to be
1819 * released. This is critical as new buffers do not make the LRU until
1820 * they are released.
1821 *
1822 * Next, flush the buffer workqueue to ensure all completion processing
1823 * has finished. Just waiting on buffer locks is not sufficient for
1824 * async IO as the reference count held over IO is not released until
1825 * after the buffer lock is dropped. Hence we need to ensure here that
1826 * all reference counts have been dropped before we start walking the
1827 * LRU list.
1828 */
1829 while (percpu_counter_sum(&btp->bt_io_count))
1830 delay(100);
1831 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1832}
1833
1834void
1835xfs_buftarg_drain(
1836 struct xfs_buftarg *btp)
1837{
1838 LIST_HEAD(dispose);
1839 int loop = 0;
1840 bool write_fail = false;
1841
1842 xfs_buftarg_wait(btp);
1843
1844 /* loop until there is nothing left on the lru list. */
1845 while (list_lru_count(&btp->bt_lru)) {
1846 list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1847 &dispose, LONG_MAX);
1848
1849 while (!list_empty(&dispose)) {
1850 struct xfs_buf *bp;
1851 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1852 list_del_init(&bp->b_lru);
1853 if (bp->b_flags & XBF_WRITE_FAIL) {
1854 write_fail = true;
1855 xfs_buf_alert_ratelimited(bp,
1856 "XFS: Corruption Alert",
1857"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1858 (long long)xfs_buf_daddr(bp));
1859 }
1860 xfs_buf_rele(bp);
1861 }
1862 if (loop++ != 0)
1863 delay(100);
1864 }
1865
1866 /*
1867 * If one or more failed buffers were freed, that means dirty metadata
1868 * was thrown away. This should only ever happen after I/O completion
1869 * handling has elevated I/O error(s) to permanent failures and shuts
1870 * down the journal.
1871 */
1872 if (write_fail) {
1873 ASSERT(xlog_is_shutdown(btp->bt_mount->m_log));
1874 xfs_alert(btp->bt_mount,
1875 "Please run xfs_repair to determine the extent of the problem.");
1876 }
1877}
1878
1879static enum lru_status
1880xfs_buftarg_isolate(
1881 struct list_head *item,
1882 struct list_lru_one *lru,
1883 spinlock_t *lru_lock,
1884 void *arg)
1885{
1886 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1887 struct list_head *dispose = arg;
1888
1889 /*
1890 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1891 * If we fail to get the lock, just skip it.
1892 */
1893 if (!spin_trylock(&bp->b_lock))
1894 return LRU_SKIP;
1895 /*
1896 * Decrement the b_lru_ref count unless the value is already
1897 * zero. If the value is already zero, we need to reclaim the
1898 * buffer, otherwise it gets another trip through the LRU.
1899 */
1900 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1901 spin_unlock(&bp->b_lock);
1902 return LRU_ROTATE;
1903 }
1904
1905 bp->b_state |= XFS_BSTATE_DISPOSE;
1906 list_lru_isolate_move(lru, item, dispose);
1907 spin_unlock(&bp->b_lock);
1908 return LRU_REMOVED;
1909}
1910
1911static unsigned long
1912xfs_buftarg_shrink_scan(
1913 struct shrinker *shrink,
1914 struct shrink_control *sc)
1915{
1916 struct xfs_buftarg *btp = shrink->private_data;
1917 LIST_HEAD(dispose);
1918 unsigned long freed;
1919
1920 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1921 xfs_buftarg_isolate, &dispose);
1922
1923 while (!list_empty(&dispose)) {
1924 struct xfs_buf *bp;
1925 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1926 list_del_init(&bp->b_lru);
1927 xfs_buf_rele(bp);
1928 }
1929
1930 return freed;
1931}
1932
1933static unsigned long
1934xfs_buftarg_shrink_count(
1935 struct shrinker *shrink,
1936 struct shrink_control *sc)
1937{
1938 struct xfs_buftarg *btp = shrink->private_data;
1939 return list_lru_shrink_count(&btp->bt_lru, sc);
1940}
1941
1942void
1943xfs_free_buftarg(
1944 struct xfs_buftarg *btp)
1945{
1946 shrinker_free(btp->bt_shrinker);
1947 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1948 percpu_counter_destroy(&btp->bt_io_count);
1949 list_lru_destroy(&btp->bt_lru);
1950
1951 fs_put_dax(btp->bt_daxdev, btp->bt_mount);
1952 /* the main block device is closed by kill_block_super */
1953 if (btp->bt_bdev != btp->bt_mount->m_super->s_bdev)
1954 bdev_release(btp->bt_bdev_handle);
1955
1956 kmem_free(btp);
1957}
1958
1959int
1960xfs_setsize_buftarg(
1961 xfs_buftarg_t *btp,
1962 unsigned int sectorsize)
1963{
1964 /* Set up metadata sector size info */
1965 btp->bt_meta_sectorsize = sectorsize;
1966 btp->bt_meta_sectormask = sectorsize - 1;
1967
1968 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1969 xfs_warn(btp->bt_mount,
1970 "Cannot set_blocksize to %u on device %pg",
1971 sectorsize, btp->bt_bdev);
1972 return -EINVAL;
1973 }
1974
1975 /* Set up device logical sector size mask */
1976 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1977 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1978
1979 return 0;
1980}
1981
1982/*
1983 * When allocating the initial buffer target we have not yet
1984 * read in the superblock, so don't know what sized sectors
1985 * are being used at this early stage. Play safe.
1986 */
1987STATIC int
1988xfs_setsize_buftarg_early(
1989 xfs_buftarg_t *btp)
1990{
1991 return xfs_setsize_buftarg(btp, bdev_logical_block_size(btp->bt_bdev));
1992}
1993
1994struct xfs_buftarg *
1995xfs_alloc_buftarg(
1996 struct xfs_mount *mp,
1997 struct bdev_handle *bdev_handle)
1998{
1999 xfs_buftarg_t *btp;
2000 const struct dax_holder_operations *ops = NULL;
2001
2002#if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE)
2003 ops = &xfs_dax_holder_operations;
2004#endif
2005 btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
2006
2007 btp->bt_mount = mp;
2008 btp->bt_bdev_handle = bdev_handle;
2009 btp->bt_dev = bdev_handle->bdev->bd_dev;
2010 btp->bt_bdev = bdev_handle->bdev;
2011 btp->bt_daxdev = fs_dax_get_by_bdev(btp->bt_bdev, &btp->bt_dax_part_off,
2012 mp, ops);
2013
2014 /*
2015 * Buffer IO error rate limiting. Limit it to no more than 10 messages
2016 * per 30 seconds so as to not spam logs too much on repeated errors.
2017 */
2018 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
2019 DEFAULT_RATELIMIT_BURST);
2020
2021 if (xfs_setsize_buftarg_early(btp))
2022 goto error_free;
2023
2024 if (list_lru_init(&btp->bt_lru))
2025 goto error_free;
2026
2027 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
2028 goto error_lru;
2029
2030 btp->bt_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE, "xfs-buf:%s",
2031 mp->m_super->s_id);
2032 if (!btp->bt_shrinker)
2033 goto error_pcpu;
2034
2035 btp->bt_shrinker->count_objects = xfs_buftarg_shrink_count;
2036 btp->bt_shrinker->scan_objects = xfs_buftarg_shrink_scan;
2037 btp->bt_shrinker->private_data = btp;
2038
2039 shrinker_register(btp->bt_shrinker);
2040
2041 return btp;
2042
2043error_pcpu:
2044 percpu_counter_destroy(&btp->bt_io_count);
2045error_lru:
2046 list_lru_destroy(&btp->bt_lru);
2047error_free:
2048 kmem_free(btp);
2049 return NULL;
2050}
2051
2052static inline void
2053xfs_buf_list_del(
2054 struct xfs_buf *bp)
2055{
2056 list_del_init(&bp->b_list);
2057 wake_up_var(&bp->b_list);
2058}
2059
2060/*
2061 * Cancel a delayed write list.
2062 *
2063 * Remove each buffer from the list, clear the delwri queue flag and drop the
2064 * associated buffer reference.
2065 */
2066void
2067xfs_buf_delwri_cancel(
2068 struct list_head *list)
2069{
2070 struct xfs_buf *bp;
2071
2072 while (!list_empty(list)) {
2073 bp = list_first_entry(list, struct xfs_buf, b_list);
2074
2075 xfs_buf_lock(bp);
2076 bp->b_flags &= ~_XBF_DELWRI_Q;
2077 xfs_buf_list_del(bp);
2078 xfs_buf_relse(bp);
2079 }
2080}
2081
2082/*
2083 * Add a buffer to the delayed write list.
2084 *
2085 * This queues a buffer for writeout if it hasn't already been. Note that
2086 * neither this routine nor the buffer list submission functions perform
2087 * any internal synchronization. It is expected that the lists are thread-local
2088 * to the callers.
2089 *
2090 * Returns true if we queued up the buffer, or false if it already had
2091 * been on the buffer list.
2092 */
2093bool
2094xfs_buf_delwri_queue(
2095 struct xfs_buf *bp,
2096 struct list_head *list)
2097{
2098 ASSERT(xfs_buf_islocked(bp));
2099 ASSERT(!(bp->b_flags & XBF_READ));
2100
2101 /*
2102 * If the buffer is already marked delwri it already is queued up
2103 * by someone else for imediate writeout. Just ignore it in that
2104 * case.
2105 */
2106 if (bp->b_flags & _XBF_DELWRI_Q) {
2107 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2108 return false;
2109 }
2110
2111 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
2112
2113 /*
2114 * If a buffer gets written out synchronously or marked stale while it
2115 * is on a delwri list we lazily remove it. To do this, the other party
2116 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2117 * It remains referenced and on the list. In a rare corner case it
2118 * might get readded to a delwri list after the synchronous writeout, in
2119 * which case we need just need to re-add the flag here.
2120 */
2121 bp->b_flags |= _XBF_DELWRI_Q;
2122 if (list_empty(&bp->b_list)) {
2123 atomic_inc(&bp->b_hold);
2124 list_add_tail(&bp->b_list, list);
2125 }
2126
2127 return true;
2128}
2129
2130/*
2131 * Queue a buffer to this delwri list as part of a data integrity operation.
2132 * If the buffer is on any other delwri list, we'll wait for that to clear
2133 * so that the caller can submit the buffer for IO and wait for the result.
2134 * Callers must ensure the buffer is not already on the list.
2135 */
2136void
2137xfs_buf_delwri_queue_here(
2138 struct xfs_buf *bp,
2139 struct list_head *buffer_list)
2140{
2141 /*
2142 * We need this buffer to end up on the /caller's/ delwri list, not any
2143 * old list. This can happen if the buffer is marked stale (which
2144 * clears DELWRI_Q) after the AIL queues the buffer to its list but
2145 * before the AIL has a chance to submit the list.
2146 */
2147 while (!list_empty(&bp->b_list)) {
2148 xfs_buf_unlock(bp);
2149 wait_var_event(&bp->b_list, list_empty(&bp->b_list));
2150 xfs_buf_lock(bp);
2151 }
2152
2153 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
2154
2155 xfs_buf_delwri_queue(bp, buffer_list);
2156}
2157
2158/*
2159 * Compare function is more complex than it needs to be because
2160 * the return value is only 32 bits and we are doing comparisons
2161 * on 64 bit values
2162 */
2163static int
2164xfs_buf_cmp(
2165 void *priv,
2166 const struct list_head *a,
2167 const struct list_head *b)
2168{
2169 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
2170 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
2171 xfs_daddr_t diff;
2172
2173 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
2174 if (diff < 0)
2175 return -1;
2176 if (diff > 0)
2177 return 1;
2178 return 0;
2179}
2180
2181/*
2182 * Submit buffers for write. If wait_list is specified, the buffers are
2183 * submitted using sync I/O and placed on the wait list such that the caller can
2184 * iowait each buffer. Otherwise async I/O is used and the buffers are released
2185 * at I/O completion time. In either case, buffers remain locked until I/O
2186 * completes and the buffer is released from the queue.
2187 */
2188static int
2189xfs_buf_delwri_submit_buffers(
2190 struct list_head *buffer_list,
2191 struct list_head *wait_list)
2192{
2193 struct xfs_buf *bp, *n;
2194 int pinned = 0;
2195 struct blk_plug plug;
2196
2197 list_sort(NULL, buffer_list, xfs_buf_cmp);
2198
2199 blk_start_plug(&plug);
2200 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2201 if (!wait_list) {
2202 if (!xfs_buf_trylock(bp))
2203 continue;
2204 if (xfs_buf_ispinned(bp)) {
2205 xfs_buf_unlock(bp);
2206 pinned++;
2207 continue;
2208 }
2209 } else {
2210 xfs_buf_lock(bp);
2211 }
2212
2213 /*
2214 * Someone else might have written the buffer synchronously or
2215 * marked it stale in the meantime. In that case only the
2216 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2217 * reference and remove it from the list here.
2218 */
2219 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2220 xfs_buf_list_del(bp);
2221 xfs_buf_relse(bp);
2222 continue;
2223 }
2224
2225 trace_xfs_buf_delwri_split(bp, _RET_IP_);
2226
2227 /*
2228 * If we have a wait list, each buffer (and associated delwri
2229 * queue reference) transfers to it and is submitted
2230 * synchronously. Otherwise, drop the buffer from the delwri
2231 * queue and submit async.
2232 */
2233 bp->b_flags &= ~_XBF_DELWRI_Q;
2234 bp->b_flags |= XBF_WRITE;
2235 if (wait_list) {
2236 bp->b_flags &= ~XBF_ASYNC;
2237 list_move_tail(&bp->b_list, wait_list);
2238 } else {
2239 bp->b_flags |= XBF_ASYNC;
2240 xfs_buf_list_del(bp);
2241 }
2242 __xfs_buf_submit(bp, false);
2243 }
2244 blk_finish_plug(&plug);
2245
2246 return pinned;
2247}
2248
2249/*
2250 * Write out a buffer list asynchronously.
2251 *
2252 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2253 * out and not wait for I/O completion on any of the buffers. This interface
2254 * is only safely useable for callers that can track I/O completion by higher
2255 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2256 * function.
2257 *
2258 * Note: this function will skip buffers it would block on, and in doing so
2259 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2260 * it is up to the caller to ensure that the buffer list is fully submitted or
2261 * cancelled appropriately when they are finished with the list. Failure to
2262 * cancel or resubmit the list until it is empty will result in leaked buffers
2263 * at unmount time.
2264 */
2265int
2266xfs_buf_delwri_submit_nowait(
2267 struct list_head *buffer_list)
2268{
2269 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2270}
2271
2272/*
2273 * Write out a buffer list synchronously.
2274 *
2275 * This will take the @buffer_list, write all buffers out and wait for I/O
2276 * completion on all of the buffers. @buffer_list is consumed by the function,
2277 * so callers must have some other way of tracking buffers if they require such
2278 * functionality.
2279 */
2280int
2281xfs_buf_delwri_submit(
2282 struct list_head *buffer_list)
2283{
2284 LIST_HEAD (wait_list);
2285 int error = 0, error2;
2286 struct xfs_buf *bp;
2287
2288 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2289
2290 /* Wait for IO to complete. */
2291 while (!list_empty(&wait_list)) {
2292 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2293
2294 xfs_buf_list_del(bp);
2295
2296 /*
2297 * Wait on the locked buffer, check for errors and unlock and
2298 * release the delwri queue reference.
2299 */
2300 error2 = xfs_buf_iowait(bp);
2301 xfs_buf_relse(bp);
2302 if (!error)
2303 error = error2;
2304 }
2305
2306 return error;
2307}
2308
2309/*
2310 * Push a single buffer on a delwri queue.
2311 *
2312 * The purpose of this function is to submit a single buffer of a delwri queue
2313 * and return with the buffer still on the original queue. The waiting delwri
2314 * buffer submission infrastructure guarantees transfer of the delwri queue
2315 * buffer reference to a temporary wait list. We reuse this infrastructure to
2316 * transfer the buffer back to the original queue.
2317 *
2318 * Note the buffer transitions from the queued state, to the submitted and wait
2319 * listed state and back to the queued state during this call. The buffer
2320 * locking and queue management logic between _delwri_pushbuf() and
2321 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2322 * before returning.
2323 */
2324int
2325xfs_buf_delwri_pushbuf(
2326 struct xfs_buf *bp,
2327 struct list_head *buffer_list)
2328{
2329 LIST_HEAD (submit_list);
2330 int error;
2331
2332 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2333
2334 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2335
2336 /*
2337 * Isolate the buffer to a new local list so we can submit it for I/O
2338 * independently from the rest of the original list.
2339 */
2340 xfs_buf_lock(bp);
2341 list_move(&bp->b_list, &submit_list);
2342 xfs_buf_unlock(bp);
2343
2344 /*
2345 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2346 * the buffer on the wait list with the original reference. Rather than
2347 * bounce the buffer from a local wait list back to the original list
2348 * after I/O completion, reuse the original list as the wait list.
2349 */
2350 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2351
2352 /*
2353 * The buffer is now locked, under I/O and wait listed on the original
2354 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2355 * return with the buffer unlocked and on the original queue.
2356 */
2357 error = xfs_buf_iowait(bp);
2358 bp->b_flags |= _XBF_DELWRI_Q;
2359 xfs_buf_unlock(bp);
2360
2361 return error;
2362}
2363
2364void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2365{
2366 /*
2367 * Set the lru reference count to 0 based on the error injection tag.
2368 * This allows userspace to disrupt buffer caching for debug/testing
2369 * purposes.
2370 */
2371 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2372 lru_ref = 0;
2373
2374 atomic_set(&bp->b_lru_ref, lru_ref);
2375}
2376
2377/*
2378 * Verify an on-disk magic value against the magic value specified in the
2379 * verifier structure. The verifier magic is in disk byte order so the caller is
2380 * expected to pass the value directly from disk.
2381 */
2382bool
2383xfs_verify_magic(
2384 struct xfs_buf *bp,
2385 __be32 dmagic)
2386{
2387 struct xfs_mount *mp = bp->b_mount;
2388 int idx;
2389
2390 idx = xfs_has_crc(mp);
2391 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2392 return false;
2393 return dmagic == bp->b_ops->magic[idx];
2394}
2395/*
2396 * Verify an on-disk magic value against the magic value specified in the
2397 * verifier structure. The verifier magic is in disk byte order so the caller is
2398 * expected to pass the value directly from disk.
2399 */
2400bool
2401xfs_verify_magic16(
2402 struct xfs_buf *bp,
2403 __be16 dmagic)
2404{
2405 struct xfs_mount *mp = bp->b_mount;
2406 int idx;
2407
2408 idx = xfs_has_crc(mp);
2409 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2410 return false;
2411 return dmagic == bp->b_ops->magic16[idx];
2412}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include <linux/backing-dev.h>
8
9#include "xfs_shared.h"
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_trace.h"
16#include "xfs_log.h"
17#include "xfs_errortag.h"
18#include "xfs_error.h"
19
20static kmem_zone_t *xfs_buf_zone;
21
22#define xb_to_gfp(flags) \
23 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
24
25/*
26 * Locking orders
27 *
28 * xfs_buf_ioacct_inc:
29 * xfs_buf_ioacct_dec:
30 * b_sema (caller holds)
31 * b_lock
32 *
33 * xfs_buf_stale:
34 * b_sema (caller holds)
35 * b_lock
36 * lru_lock
37 *
38 * xfs_buf_rele:
39 * b_lock
40 * pag_buf_lock
41 * lru_lock
42 *
43 * xfs_buftarg_wait_rele
44 * lru_lock
45 * b_lock (trylock due to inversion)
46 *
47 * xfs_buftarg_isolate
48 * lru_lock
49 * b_lock (trylock due to inversion)
50 */
51
52static inline int
53xfs_buf_is_vmapped(
54 struct xfs_buf *bp)
55{
56 /*
57 * Return true if the buffer is vmapped.
58 *
59 * b_addr is null if the buffer is not mapped, but the code is clever
60 * enough to know it doesn't have to map a single page, so the check has
61 * to be both for b_addr and bp->b_page_count > 1.
62 */
63 return bp->b_addr && bp->b_page_count > 1;
64}
65
66static inline int
67xfs_buf_vmap_len(
68 struct xfs_buf *bp)
69{
70 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
71}
72
73/*
74 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
75 * this buffer. The count is incremented once per buffer (per hold cycle)
76 * because the corresponding decrement is deferred to buffer release. Buffers
77 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
78 * tracking adds unnecessary overhead. This is used for sychronization purposes
79 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
80 * in-flight buffers.
81 *
82 * Buffers that are never released (e.g., superblock, iclog buffers) must set
83 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
84 * never reaches zero and unmount hangs indefinitely.
85 */
86static inline void
87xfs_buf_ioacct_inc(
88 struct xfs_buf *bp)
89{
90 if (bp->b_flags & XBF_NO_IOACCT)
91 return;
92
93 ASSERT(bp->b_flags & XBF_ASYNC);
94 spin_lock(&bp->b_lock);
95 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
96 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
97 percpu_counter_inc(&bp->b_target->bt_io_count);
98 }
99 spin_unlock(&bp->b_lock);
100}
101
102/*
103 * Clear the in-flight state on a buffer about to be released to the LRU or
104 * freed and unaccount from the buftarg.
105 */
106static inline void
107__xfs_buf_ioacct_dec(
108 struct xfs_buf *bp)
109{
110 lockdep_assert_held(&bp->b_lock);
111
112 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
113 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
114 percpu_counter_dec(&bp->b_target->bt_io_count);
115 }
116}
117
118static inline void
119xfs_buf_ioacct_dec(
120 struct xfs_buf *bp)
121{
122 spin_lock(&bp->b_lock);
123 __xfs_buf_ioacct_dec(bp);
124 spin_unlock(&bp->b_lock);
125}
126
127/*
128 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
129 * b_lru_ref count so that the buffer is freed immediately when the buffer
130 * reference count falls to zero. If the buffer is already on the LRU, we need
131 * to remove the reference that LRU holds on the buffer.
132 *
133 * This prevents build-up of stale buffers on the LRU.
134 */
135void
136xfs_buf_stale(
137 struct xfs_buf *bp)
138{
139 ASSERT(xfs_buf_islocked(bp));
140
141 bp->b_flags |= XBF_STALE;
142
143 /*
144 * Clear the delwri status so that a delwri queue walker will not
145 * flush this buffer to disk now that it is stale. The delwri queue has
146 * a reference to the buffer, so this is safe to do.
147 */
148 bp->b_flags &= ~_XBF_DELWRI_Q;
149
150 /*
151 * Once the buffer is marked stale and unlocked, a subsequent lookup
152 * could reset b_flags. There is no guarantee that the buffer is
153 * unaccounted (released to LRU) before that occurs. Drop in-flight
154 * status now to preserve accounting consistency.
155 */
156 spin_lock(&bp->b_lock);
157 __xfs_buf_ioacct_dec(bp);
158
159 atomic_set(&bp->b_lru_ref, 0);
160 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
161 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
162 atomic_dec(&bp->b_hold);
163
164 ASSERT(atomic_read(&bp->b_hold) >= 1);
165 spin_unlock(&bp->b_lock);
166}
167
168static int
169xfs_buf_get_maps(
170 struct xfs_buf *bp,
171 int map_count)
172{
173 ASSERT(bp->b_maps == NULL);
174 bp->b_map_count = map_count;
175
176 if (map_count == 1) {
177 bp->b_maps = &bp->__b_map;
178 return 0;
179 }
180
181 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
182 KM_NOFS);
183 if (!bp->b_maps)
184 return -ENOMEM;
185 return 0;
186}
187
188/*
189 * Frees b_pages if it was allocated.
190 */
191static void
192xfs_buf_free_maps(
193 struct xfs_buf *bp)
194{
195 if (bp->b_maps != &bp->__b_map) {
196 kmem_free(bp->b_maps);
197 bp->b_maps = NULL;
198 }
199}
200
201static struct xfs_buf *
202_xfs_buf_alloc(
203 struct xfs_buftarg *target,
204 struct xfs_buf_map *map,
205 int nmaps,
206 xfs_buf_flags_t flags)
207{
208 struct xfs_buf *bp;
209 int error;
210 int i;
211
212 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
213 if (unlikely(!bp))
214 return NULL;
215
216 /*
217 * We don't want certain flags to appear in b_flags unless they are
218 * specifically set by later operations on the buffer.
219 */
220 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
221
222 atomic_set(&bp->b_hold, 1);
223 atomic_set(&bp->b_lru_ref, 1);
224 init_completion(&bp->b_iowait);
225 INIT_LIST_HEAD(&bp->b_lru);
226 INIT_LIST_HEAD(&bp->b_list);
227 INIT_LIST_HEAD(&bp->b_li_list);
228 sema_init(&bp->b_sema, 0); /* held, no waiters */
229 spin_lock_init(&bp->b_lock);
230 bp->b_target = target;
231 bp->b_mount = target->bt_mount;
232 bp->b_flags = flags;
233
234 /*
235 * Set length and io_length to the same value initially.
236 * I/O routines should use io_length, which will be the same in
237 * most cases but may be reset (e.g. XFS recovery).
238 */
239 error = xfs_buf_get_maps(bp, nmaps);
240 if (error) {
241 kmem_zone_free(xfs_buf_zone, bp);
242 return NULL;
243 }
244
245 bp->b_bn = map[0].bm_bn;
246 bp->b_length = 0;
247 for (i = 0; i < nmaps; i++) {
248 bp->b_maps[i].bm_bn = map[i].bm_bn;
249 bp->b_maps[i].bm_len = map[i].bm_len;
250 bp->b_length += map[i].bm_len;
251 }
252
253 atomic_set(&bp->b_pin_count, 0);
254 init_waitqueue_head(&bp->b_waiters);
255
256 XFS_STATS_INC(bp->b_mount, xb_create);
257 trace_xfs_buf_init(bp, _RET_IP_);
258
259 return bp;
260}
261
262/*
263 * Allocate a page array capable of holding a specified number
264 * of pages, and point the page buf at it.
265 */
266STATIC int
267_xfs_buf_get_pages(
268 xfs_buf_t *bp,
269 int page_count)
270{
271 /* Make sure that we have a page list */
272 if (bp->b_pages == NULL) {
273 bp->b_page_count = page_count;
274 if (page_count <= XB_PAGES) {
275 bp->b_pages = bp->b_page_array;
276 } else {
277 bp->b_pages = kmem_alloc(sizeof(struct page *) *
278 page_count, KM_NOFS);
279 if (bp->b_pages == NULL)
280 return -ENOMEM;
281 }
282 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
283 }
284 return 0;
285}
286
287/*
288 * Frees b_pages if it was allocated.
289 */
290STATIC void
291_xfs_buf_free_pages(
292 xfs_buf_t *bp)
293{
294 if (bp->b_pages != bp->b_page_array) {
295 kmem_free(bp->b_pages);
296 bp->b_pages = NULL;
297 }
298}
299
300/*
301 * Releases the specified buffer.
302 *
303 * The modification state of any associated pages is left unchanged.
304 * The buffer must not be on any hash - use xfs_buf_rele instead for
305 * hashed and refcounted buffers
306 */
307void
308xfs_buf_free(
309 xfs_buf_t *bp)
310{
311 trace_xfs_buf_free(bp, _RET_IP_);
312
313 ASSERT(list_empty(&bp->b_lru));
314
315 if (bp->b_flags & _XBF_PAGES) {
316 uint i;
317
318 if (xfs_buf_is_vmapped(bp))
319 vm_unmap_ram(bp->b_addr - bp->b_offset,
320 bp->b_page_count);
321
322 for (i = 0; i < bp->b_page_count; i++) {
323 struct page *page = bp->b_pages[i];
324
325 __free_page(page);
326 }
327 } else if (bp->b_flags & _XBF_KMEM)
328 kmem_free(bp->b_addr);
329 _xfs_buf_free_pages(bp);
330 xfs_buf_free_maps(bp);
331 kmem_zone_free(xfs_buf_zone, bp);
332}
333
334/*
335 * Allocates all the pages for buffer in question and builds it's page list.
336 */
337STATIC int
338xfs_buf_allocate_memory(
339 xfs_buf_t *bp,
340 uint flags)
341{
342 size_t size;
343 size_t nbytes, offset;
344 gfp_t gfp_mask = xb_to_gfp(flags);
345 unsigned short page_count, i;
346 xfs_off_t start, end;
347 int error;
348 xfs_km_flags_t kmflag_mask = 0;
349
350 /*
351 * assure zeroed buffer for non-read cases.
352 */
353 if (!(flags & XBF_READ)) {
354 kmflag_mask |= KM_ZERO;
355 gfp_mask |= __GFP_ZERO;
356 }
357
358 /*
359 * for buffers that are contained within a single page, just allocate
360 * the memory from the heap - there's no need for the complexity of
361 * page arrays to keep allocation down to order 0.
362 */
363 size = BBTOB(bp->b_length);
364 if (size < PAGE_SIZE) {
365 int align_mask = xfs_buftarg_dma_alignment(bp->b_target);
366 bp->b_addr = kmem_alloc_io(size, align_mask,
367 KM_NOFS | kmflag_mask);
368 if (!bp->b_addr) {
369 /* low memory - use alloc_page loop instead */
370 goto use_alloc_page;
371 }
372
373 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
374 ((unsigned long)bp->b_addr & PAGE_MASK)) {
375 /* b_addr spans two pages - use alloc_page instead */
376 kmem_free(bp->b_addr);
377 bp->b_addr = NULL;
378 goto use_alloc_page;
379 }
380 bp->b_offset = offset_in_page(bp->b_addr);
381 bp->b_pages = bp->b_page_array;
382 bp->b_pages[0] = kmem_to_page(bp->b_addr);
383 bp->b_page_count = 1;
384 bp->b_flags |= _XBF_KMEM;
385 return 0;
386 }
387
388use_alloc_page:
389 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
390 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
391 >> PAGE_SHIFT;
392 page_count = end - start;
393 error = _xfs_buf_get_pages(bp, page_count);
394 if (unlikely(error))
395 return error;
396
397 offset = bp->b_offset;
398 bp->b_flags |= _XBF_PAGES;
399
400 for (i = 0; i < bp->b_page_count; i++) {
401 struct page *page;
402 uint retries = 0;
403retry:
404 page = alloc_page(gfp_mask);
405 if (unlikely(page == NULL)) {
406 if (flags & XBF_READ_AHEAD) {
407 bp->b_page_count = i;
408 error = -ENOMEM;
409 goto out_free_pages;
410 }
411
412 /*
413 * This could deadlock.
414 *
415 * But until all the XFS lowlevel code is revamped to
416 * handle buffer allocation failures we can't do much.
417 */
418 if (!(++retries % 100))
419 xfs_err(NULL,
420 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
421 current->comm, current->pid,
422 __func__, gfp_mask);
423
424 XFS_STATS_INC(bp->b_mount, xb_page_retries);
425 congestion_wait(BLK_RW_ASYNC, HZ/50);
426 goto retry;
427 }
428
429 XFS_STATS_INC(bp->b_mount, xb_page_found);
430
431 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
432 size -= nbytes;
433 bp->b_pages[i] = page;
434 offset = 0;
435 }
436 return 0;
437
438out_free_pages:
439 for (i = 0; i < bp->b_page_count; i++)
440 __free_page(bp->b_pages[i]);
441 bp->b_flags &= ~_XBF_PAGES;
442 return error;
443}
444
445/*
446 * Map buffer into kernel address-space if necessary.
447 */
448STATIC int
449_xfs_buf_map_pages(
450 xfs_buf_t *bp,
451 uint flags)
452{
453 ASSERT(bp->b_flags & _XBF_PAGES);
454 if (bp->b_page_count == 1) {
455 /* A single page buffer is always mappable */
456 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
457 } else if (flags & XBF_UNMAPPED) {
458 bp->b_addr = NULL;
459 } else {
460 int retried = 0;
461 unsigned nofs_flag;
462
463 /*
464 * vm_map_ram() will allocate auxillary structures (e.g.
465 * pagetables) with GFP_KERNEL, yet we are likely to be under
466 * GFP_NOFS context here. Hence we need to tell memory reclaim
467 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
468 * memory reclaim re-entering the filesystem here and
469 * potentially deadlocking.
470 */
471 nofs_flag = memalloc_nofs_save();
472 do {
473 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
474 -1, PAGE_KERNEL);
475 if (bp->b_addr)
476 break;
477 vm_unmap_aliases();
478 } while (retried++ <= 1);
479 memalloc_nofs_restore(nofs_flag);
480
481 if (!bp->b_addr)
482 return -ENOMEM;
483 bp->b_addr += bp->b_offset;
484 }
485
486 return 0;
487}
488
489/*
490 * Finding and Reading Buffers
491 */
492static int
493_xfs_buf_obj_cmp(
494 struct rhashtable_compare_arg *arg,
495 const void *obj)
496{
497 const struct xfs_buf_map *map = arg->key;
498 const struct xfs_buf *bp = obj;
499
500 /*
501 * The key hashing in the lookup path depends on the key being the
502 * first element of the compare_arg, make sure to assert this.
503 */
504 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
505
506 if (bp->b_bn != map->bm_bn)
507 return 1;
508
509 if (unlikely(bp->b_length != map->bm_len)) {
510 /*
511 * found a block number match. If the range doesn't
512 * match, the only way this is allowed is if the buffer
513 * in the cache is stale and the transaction that made
514 * it stale has not yet committed. i.e. we are
515 * reallocating a busy extent. Skip this buffer and
516 * continue searching for an exact match.
517 */
518 ASSERT(bp->b_flags & XBF_STALE);
519 return 1;
520 }
521 return 0;
522}
523
524static const struct rhashtable_params xfs_buf_hash_params = {
525 .min_size = 32, /* empty AGs have minimal footprint */
526 .nelem_hint = 16,
527 .key_len = sizeof(xfs_daddr_t),
528 .key_offset = offsetof(struct xfs_buf, b_bn),
529 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
530 .automatic_shrinking = true,
531 .obj_cmpfn = _xfs_buf_obj_cmp,
532};
533
534int
535xfs_buf_hash_init(
536 struct xfs_perag *pag)
537{
538 spin_lock_init(&pag->pag_buf_lock);
539 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
540}
541
542void
543xfs_buf_hash_destroy(
544 struct xfs_perag *pag)
545{
546 rhashtable_destroy(&pag->pag_buf_hash);
547}
548
549/*
550 * Look up a buffer in the buffer cache and return it referenced and locked
551 * in @found_bp.
552 *
553 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
554 * cache.
555 *
556 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
557 * -EAGAIN if we fail to lock it.
558 *
559 * Return values are:
560 * -EFSCORRUPTED if have been supplied with an invalid address
561 * -EAGAIN on trylock failure
562 * -ENOENT if we fail to find a match and @new_bp was NULL
563 * 0, with @found_bp:
564 * - @new_bp if we inserted it into the cache
565 * - the buffer we found and locked.
566 */
567static int
568xfs_buf_find(
569 struct xfs_buftarg *btp,
570 struct xfs_buf_map *map,
571 int nmaps,
572 xfs_buf_flags_t flags,
573 struct xfs_buf *new_bp,
574 struct xfs_buf **found_bp)
575{
576 struct xfs_perag *pag;
577 xfs_buf_t *bp;
578 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
579 xfs_daddr_t eofs;
580 int i;
581
582 *found_bp = NULL;
583
584 for (i = 0; i < nmaps; i++)
585 cmap.bm_len += map[i].bm_len;
586
587 /* Check for IOs smaller than the sector size / not sector aligned */
588 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
589 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
590
591 /*
592 * Corrupted block numbers can get through to here, unfortunately, so we
593 * have to check that the buffer falls within the filesystem bounds.
594 */
595 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
596 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
597 xfs_alert(btp->bt_mount,
598 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
599 __func__, cmap.bm_bn, eofs);
600 WARN_ON(1);
601 return -EFSCORRUPTED;
602 }
603
604 pag = xfs_perag_get(btp->bt_mount,
605 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
606
607 spin_lock(&pag->pag_buf_lock);
608 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
609 xfs_buf_hash_params);
610 if (bp) {
611 atomic_inc(&bp->b_hold);
612 goto found;
613 }
614
615 /* No match found */
616 if (!new_bp) {
617 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
618 spin_unlock(&pag->pag_buf_lock);
619 xfs_perag_put(pag);
620 return -ENOENT;
621 }
622
623 /* the buffer keeps the perag reference until it is freed */
624 new_bp->b_pag = pag;
625 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
626 xfs_buf_hash_params);
627 spin_unlock(&pag->pag_buf_lock);
628 *found_bp = new_bp;
629 return 0;
630
631found:
632 spin_unlock(&pag->pag_buf_lock);
633 xfs_perag_put(pag);
634
635 if (!xfs_buf_trylock(bp)) {
636 if (flags & XBF_TRYLOCK) {
637 xfs_buf_rele(bp);
638 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
639 return -EAGAIN;
640 }
641 xfs_buf_lock(bp);
642 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
643 }
644
645 /*
646 * if the buffer is stale, clear all the external state associated with
647 * it. We need to keep flags such as how we allocated the buffer memory
648 * intact here.
649 */
650 if (bp->b_flags & XBF_STALE) {
651 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
652 ASSERT(bp->b_iodone == NULL);
653 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
654 bp->b_ops = NULL;
655 }
656
657 trace_xfs_buf_find(bp, flags, _RET_IP_);
658 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
659 *found_bp = bp;
660 return 0;
661}
662
663struct xfs_buf *
664xfs_buf_incore(
665 struct xfs_buftarg *target,
666 xfs_daddr_t blkno,
667 size_t numblks,
668 xfs_buf_flags_t flags)
669{
670 struct xfs_buf *bp;
671 int error;
672 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
673
674 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
675 if (error)
676 return NULL;
677 return bp;
678}
679
680/*
681 * Assembles a buffer covering the specified range. The code is optimised for
682 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
683 * more hits than misses.
684 */
685struct xfs_buf *
686xfs_buf_get_map(
687 struct xfs_buftarg *target,
688 struct xfs_buf_map *map,
689 int nmaps,
690 xfs_buf_flags_t flags)
691{
692 struct xfs_buf *bp;
693 struct xfs_buf *new_bp;
694 int error = 0;
695
696 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
697
698 switch (error) {
699 case 0:
700 /* cache hit */
701 goto found;
702 case -EAGAIN:
703 /* cache hit, trylock failure, caller handles failure */
704 ASSERT(flags & XBF_TRYLOCK);
705 return NULL;
706 case -ENOENT:
707 /* cache miss, go for insert */
708 break;
709 case -EFSCORRUPTED:
710 default:
711 /*
712 * None of the higher layers understand failure types
713 * yet, so return NULL to signal a fatal lookup error.
714 */
715 return NULL;
716 }
717
718 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
719 if (unlikely(!new_bp))
720 return NULL;
721
722 error = xfs_buf_allocate_memory(new_bp, flags);
723 if (error) {
724 xfs_buf_free(new_bp);
725 return NULL;
726 }
727
728 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
729 if (error) {
730 xfs_buf_free(new_bp);
731 return NULL;
732 }
733
734 if (bp != new_bp)
735 xfs_buf_free(new_bp);
736
737found:
738 if (!bp->b_addr) {
739 error = _xfs_buf_map_pages(bp, flags);
740 if (unlikely(error)) {
741 xfs_warn(target->bt_mount,
742 "%s: failed to map pagesn", __func__);
743 xfs_buf_relse(bp);
744 return NULL;
745 }
746 }
747
748 /*
749 * Clear b_error if this is a lookup from a caller that doesn't expect
750 * valid data to be found in the buffer.
751 */
752 if (!(flags & XBF_READ))
753 xfs_buf_ioerror(bp, 0);
754
755 XFS_STATS_INC(target->bt_mount, xb_get);
756 trace_xfs_buf_get(bp, flags, _RET_IP_);
757 return bp;
758}
759
760STATIC int
761_xfs_buf_read(
762 xfs_buf_t *bp,
763 xfs_buf_flags_t flags)
764{
765 ASSERT(!(flags & XBF_WRITE));
766 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
767
768 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
769 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
770
771 return xfs_buf_submit(bp);
772}
773
774/*
775 * Reverify a buffer found in cache without an attached ->b_ops.
776 *
777 * If the caller passed an ops structure and the buffer doesn't have ops
778 * assigned, set the ops and use it to verify the contents. If verification
779 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
780 * already in XBF_DONE state on entry.
781 *
782 * Under normal operations, every in-core buffer is verified on read I/O
783 * completion. There are two scenarios that can lead to in-core buffers without
784 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
785 * filesystem, though these buffers are purged at the end of recovery. The
786 * other is online repair, which intentionally reads with a NULL buffer ops to
787 * run several verifiers across an in-core buffer in order to establish buffer
788 * type. If repair can't establish that, the buffer will be left in memory
789 * with NULL buffer ops.
790 */
791int
792xfs_buf_reverify(
793 struct xfs_buf *bp,
794 const struct xfs_buf_ops *ops)
795{
796 ASSERT(bp->b_flags & XBF_DONE);
797 ASSERT(bp->b_error == 0);
798
799 if (!ops || bp->b_ops)
800 return 0;
801
802 bp->b_ops = ops;
803 bp->b_ops->verify_read(bp);
804 if (bp->b_error)
805 bp->b_flags &= ~XBF_DONE;
806 return bp->b_error;
807}
808
809xfs_buf_t *
810xfs_buf_read_map(
811 struct xfs_buftarg *target,
812 struct xfs_buf_map *map,
813 int nmaps,
814 xfs_buf_flags_t flags,
815 const struct xfs_buf_ops *ops)
816{
817 struct xfs_buf *bp;
818
819 flags |= XBF_READ;
820
821 bp = xfs_buf_get_map(target, map, nmaps, flags);
822 if (!bp)
823 return NULL;
824
825 trace_xfs_buf_read(bp, flags, _RET_IP_);
826
827 if (!(bp->b_flags & XBF_DONE)) {
828 XFS_STATS_INC(target->bt_mount, xb_get_read);
829 bp->b_ops = ops;
830 _xfs_buf_read(bp, flags);
831 return bp;
832 }
833
834 xfs_buf_reverify(bp, ops);
835
836 if (flags & XBF_ASYNC) {
837 /*
838 * Read ahead call which is already satisfied,
839 * drop the buffer
840 */
841 xfs_buf_relse(bp);
842 return NULL;
843 }
844
845 /* We do not want read in the flags */
846 bp->b_flags &= ~XBF_READ;
847 ASSERT(bp->b_ops != NULL || ops == NULL);
848 return bp;
849}
850
851/*
852 * If we are not low on memory then do the readahead in a deadlock
853 * safe manner.
854 */
855void
856xfs_buf_readahead_map(
857 struct xfs_buftarg *target,
858 struct xfs_buf_map *map,
859 int nmaps,
860 const struct xfs_buf_ops *ops)
861{
862 if (bdi_read_congested(target->bt_bdev->bd_bdi))
863 return;
864
865 xfs_buf_read_map(target, map, nmaps,
866 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
867}
868
869/*
870 * Read an uncached buffer from disk. Allocates and returns a locked
871 * buffer containing the disk contents or nothing.
872 */
873int
874xfs_buf_read_uncached(
875 struct xfs_buftarg *target,
876 xfs_daddr_t daddr,
877 size_t numblks,
878 int flags,
879 struct xfs_buf **bpp,
880 const struct xfs_buf_ops *ops)
881{
882 struct xfs_buf *bp;
883
884 *bpp = NULL;
885
886 bp = xfs_buf_get_uncached(target, numblks, flags);
887 if (!bp)
888 return -ENOMEM;
889
890 /* set up the buffer for a read IO */
891 ASSERT(bp->b_map_count == 1);
892 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
893 bp->b_maps[0].bm_bn = daddr;
894 bp->b_flags |= XBF_READ;
895 bp->b_ops = ops;
896
897 xfs_buf_submit(bp);
898 if (bp->b_error) {
899 int error = bp->b_error;
900 xfs_buf_relse(bp);
901 return error;
902 }
903
904 *bpp = bp;
905 return 0;
906}
907
908xfs_buf_t *
909xfs_buf_get_uncached(
910 struct xfs_buftarg *target,
911 size_t numblks,
912 int flags)
913{
914 unsigned long page_count;
915 int error, i;
916 struct xfs_buf *bp;
917 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
918
919 /* flags might contain irrelevant bits, pass only what we care about */
920 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
921 if (unlikely(bp == NULL))
922 goto fail;
923
924 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
925 error = _xfs_buf_get_pages(bp, page_count);
926 if (error)
927 goto fail_free_buf;
928
929 for (i = 0; i < page_count; i++) {
930 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
931 if (!bp->b_pages[i])
932 goto fail_free_mem;
933 }
934 bp->b_flags |= _XBF_PAGES;
935
936 error = _xfs_buf_map_pages(bp, 0);
937 if (unlikely(error)) {
938 xfs_warn(target->bt_mount,
939 "%s: failed to map pages", __func__);
940 goto fail_free_mem;
941 }
942
943 trace_xfs_buf_get_uncached(bp, _RET_IP_);
944 return bp;
945
946 fail_free_mem:
947 while (--i >= 0)
948 __free_page(bp->b_pages[i]);
949 _xfs_buf_free_pages(bp);
950 fail_free_buf:
951 xfs_buf_free_maps(bp);
952 kmem_zone_free(xfs_buf_zone, bp);
953 fail:
954 return NULL;
955}
956
957/*
958 * Increment reference count on buffer, to hold the buffer concurrently
959 * with another thread which may release (free) the buffer asynchronously.
960 * Must hold the buffer already to call this function.
961 */
962void
963xfs_buf_hold(
964 xfs_buf_t *bp)
965{
966 trace_xfs_buf_hold(bp, _RET_IP_);
967 atomic_inc(&bp->b_hold);
968}
969
970/*
971 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
972 * placed on LRU or freed (depending on b_lru_ref).
973 */
974void
975xfs_buf_rele(
976 xfs_buf_t *bp)
977{
978 struct xfs_perag *pag = bp->b_pag;
979 bool release;
980 bool freebuf = false;
981
982 trace_xfs_buf_rele(bp, _RET_IP_);
983
984 if (!pag) {
985 ASSERT(list_empty(&bp->b_lru));
986 if (atomic_dec_and_test(&bp->b_hold)) {
987 xfs_buf_ioacct_dec(bp);
988 xfs_buf_free(bp);
989 }
990 return;
991 }
992
993 ASSERT(atomic_read(&bp->b_hold) > 0);
994
995 /*
996 * We grab the b_lock here first to serialise racing xfs_buf_rele()
997 * calls. The pag_buf_lock being taken on the last reference only
998 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
999 * to last reference we drop here is not serialised against the last
1000 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1001 * first, the last "release" reference can win the race to the lock and
1002 * free the buffer before the second-to-last reference is processed,
1003 * leading to a use-after-free scenario.
1004 */
1005 spin_lock(&bp->b_lock);
1006 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1007 if (!release) {
1008 /*
1009 * Drop the in-flight state if the buffer is already on the LRU
1010 * and it holds the only reference. This is racy because we
1011 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1012 * ensures the decrement occurs only once per-buf.
1013 */
1014 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1015 __xfs_buf_ioacct_dec(bp);
1016 goto out_unlock;
1017 }
1018
1019 /* the last reference has been dropped ... */
1020 __xfs_buf_ioacct_dec(bp);
1021 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1022 /*
1023 * If the buffer is added to the LRU take a new reference to the
1024 * buffer for the LRU and clear the (now stale) dispose list
1025 * state flag
1026 */
1027 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1028 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1029 atomic_inc(&bp->b_hold);
1030 }
1031 spin_unlock(&pag->pag_buf_lock);
1032 } else {
1033 /*
1034 * most of the time buffers will already be removed from the
1035 * LRU, so optimise that case by checking for the
1036 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1037 * was on was the disposal list
1038 */
1039 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1040 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1041 } else {
1042 ASSERT(list_empty(&bp->b_lru));
1043 }
1044
1045 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1046 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1047 xfs_buf_hash_params);
1048 spin_unlock(&pag->pag_buf_lock);
1049 xfs_perag_put(pag);
1050 freebuf = true;
1051 }
1052
1053out_unlock:
1054 spin_unlock(&bp->b_lock);
1055
1056 if (freebuf)
1057 xfs_buf_free(bp);
1058}
1059
1060
1061/*
1062 * Lock a buffer object, if it is not already locked.
1063 *
1064 * If we come across a stale, pinned, locked buffer, we know that we are
1065 * being asked to lock a buffer that has been reallocated. Because it is
1066 * pinned, we know that the log has not been pushed to disk and hence it
1067 * will still be locked. Rather than continuing to have trylock attempts
1068 * fail until someone else pushes the log, push it ourselves before
1069 * returning. This means that the xfsaild will not get stuck trying
1070 * to push on stale inode buffers.
1071 */
1072int
1073xfs_buf_trylock(
1074 struct xfs_buf *bp)
1075{
1076 int locked;
1077
1078 locked = down_trylock(&bp->b_sema) == 0;
1079 if (locked)
1080 trace_xfs_buf_trylock(bp, _RET_IP_);
1081 else
1082 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1083 return locked;
1084}
1085
1086/*
1087 * Lock a buffer object.
1088 *
1089 * If we come across a stale, pinned, locked buffer, we know that we
1090 * are being asked to lock a buffer that has been reallocated. Because
1091 * it is pinned, we know that the log has not been pushed to disk and
1092 * hence it will still be locked. Rather than sleeping until someone
1093 * else pushes the log, push it ourselves before trying to get the lock.
1094 */
1095void
1096xfs_buf_lock(
1097 struct xfs_buf *bp)
1098{
1099 trace_xfs_buf_lock(bp, _RET_IP_);
1100
1101 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1102 xfs_log_force(bp->b_mount, 0);
1103 down(&bp->b_sema);
1104
1105 trace_xfs_buf_lock_done(bp, _RET_IP_);
1106}
1107
1108void
1109xfs_buf_unlock(
1110 struct xfs_buf *bp)
1111{
1112 ASSERT(xfs_buf_islocked(bp));
1113
1114 up(&bp->b_sema);
1115 trace_xfs_buf_unlock(bp, _RET_IP_);
1116}
1117
1118STATIC void
1119xfs_buf_wait_unpin(
1120 xfs_buf_t *bp)
1121{
1122 DECLARE_WAITQUEUE (wait, current);
1123
1124 if (atomic_read(&bp->b_pin_count) == 0)
1125 return;
1126
1127 add_wait_queue(&bp->b_waiters, &wait);
1128 for (;;) {
1129 set_current_state(TASK_UNINTERRUPTIBLE);
1130 if (atomic_read(&bp->b_pin_count) == 0)
1131 break;
1132 io_schedule();
1133 }
1134 remove_wait_queue(&bp->b_waiters, &wait);
1135 set_current_state(TASK_RUNNING);
1136}
1137
1138/*
1139 * Buffer Utility Routines
1140 */
1141
1142void
1143xfs_buf_ioend(
1144 struct xfs_buf *bp)
1145{
1146 bool read = bp->b_flags & XBF_READ;
1147
1148 trace_xfs_buf_iodone(bp, _RET_IP_);
1149
1150 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1151
1152 /*
1153 * Pull in IO completion errors now. We are guaranteed to be running
1154 * single threaded, so we don't need the lock to read b_io_error.
1155 */
1156 if (!bp->b_error && bp->b_io_error)
1157 xfs_buf_ioerror(bp, bp->b_io_error);
1158
1159 /* Only validate buffers that were read without errors */
1160 if (read && !bp->b_error && bp->b_ops) {
1161 ASSERT(!bp->b_iodone);
1162 bp->b_ops->verify_read(bp);
1163 }
1164
1165 if (!bp->b_error)
1166 bp->b_flags |= XBF_DONE;
1167
1168 if (bp->b_iodone)
1169 (*(bp->b_iodone))(bp);
1170 else if (bp->b_flags & XBF_ASYNC)
1171 xfs_buf_relse(bp);
1172 else
1173 complete(&bp->b_iowait);
1174}
1175
1176static void
1177xfs_buf_ioend_work(
1178 struct work_struct *work)
1179{
1180 struct xfs_buf *bp =
1181 container_of(work, xfs_buf_t, b_ioend_work);
1182
1183 xfs_buf_ioend(bp);
1184}
1185
1186static void
1187xfs_buf_ioend_async(
1188 struct xfs_buf *bp)
1189{
1190 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1191 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1192}
1193
1194void
1195__xfs_buf_ioerror(
1196 xfs_buf_t *bp,
1197 int error,
1198 xfs_failaddr_t failaddr)
1199{
1200 ASSERT(error <= 0 && error >= -1000);
1201 bp->b_error = error;
1202 trace_xfs_buf_ioerror(bp, error, failaddr);
1203}
1204
1205void
1206xfs_buf_ioerror_alert(
1207 struct xfs_buf *bp,
1208 const char *func)
1209{
1210 xfs_alert(bp->b_mount,
1211"metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1212 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1213 -bp->b_error);
1214}
1215
1216int
1217xfs_bwrite(
1218 struct xfs_buf *bp)
1219{
1220 int error;
1221
1222 ASSERT(xfs_buf_islocked(bp));
1223
1224 bp->b_flags |= XBF_WRITE;
1225 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1226 XBF_WRITE_FAIL | XBF_DONE);
1227
1228 error = xfs_buf_submit(bp);
1229 if (error)
1230 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1231 return error;
1232}
1233
1234static void
1235xfs_buf_bio_end_io(
1236 struct bio *bio)
1237{
1238 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1239
1240 /*
1241 * don't overwrite existing errors - otherwise we can lose errors on
1242 * buffers that require multiple bios to complete.
1243 */
1244 if (bio->bi_status) {
1245 int error = blk_status_to_errno(bio->bi_status);
1246
1247 cmpxchg(&bp->b_io_error, 0, error);
1248 }
1249
1250 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1251 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1252
1253 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1254 xfs_buf_ioend_async(bp);
1255 bio_put(bio);
1256}
1257
1258static void
1259xfs_buf_ioapply_map(
1260 struct xfs_buf *bp,
1261 int map,
1262 int *buf_offset,
1263 int *count,
1264 int op,
1265 int op_flags)
1266{
1267 int page_index;
1268 int total_nr_pages = bp->b_page_count;
1269 int nr_pages;
1270 struct bio *bio;
1271 sector_t sector = bp->b_maps[map].bm_bn;
1272 int size;
1273 int offset;
1274
1275 /* skip the pages in the buffer before the start offset */
1276 page_index = 0;
1277 offset = *buf_offset;
1278 while (offset >= PAGE_SIZE) {
1279 page_index++;
1280 offset -= PAGE_SIZE;
1281 }
1282
1283 /*
1284 * Limit the IO size to the length of the current vector, and update the
1285 * remaining IO count for the next time around.
1286 */
1287 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1288 *count -= size;
1289 *buf_offset += size;
1290
1291next_chunk:
1292 atomic_inc(&bp->b_io_remaining);
1293 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1294
1295 bio = bio_alloc(GFP_NOIO, nr_pages);
1296 bio_set_dev(bio, bp->b_target->bt_bdev);
1297 bio->bi_iter.bi_sector = sector;
1298 bio->bi_end_io = xfs_buf_bio_end_io;
1299 bio->bi_private = bp;
1300 bio_set_op_attrs(bio, op, op_flags);
1301
1302 for (; size && nr_pages; nr_pages--, page_index++) {
1303 int rbytes, nbytes = PAGE_SIZE - offset;
1304
1305 if (nbytes > size)
1306 nbytes = size;
1307
1308 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1309 offset);
1310 if (rbytes < nbytes)
1311 break;
1312
1313 offset = 0;
1314 sector += BTOBB(nbytes);
1315 size -= nbytes;
1316 total_nr_pages--;
1317 }
1318
1319 if (likely(bio->bi_iter.bi_size)) {
1320 if (xfs_buf_is_vmapped(bp)) {
1321 flush_kernel_vmap_range(bp->b_addr,
1322 xfs_buf_vmap_len(bp));
1323 }
1324 submit_bio(bio);
1325 if (size)
1326 goto next_chunk;
1327 } else {
1328 /*
1329 * This is guaranteed not to be the last io reference count
1330 * because the caller (xfs_buf_submit) holds a count itself.
1331 */
1332 atomic_dec(&bp->b_io_remaining);
1333 xfs_buf_ioerror(bp, -EIO);
1334 bio_put(bio);
1335 }
1336
1337}
1338
1339STATIC void
1340_xfs_buf_ioapply(
1341 struct xfs_buf *bp)
1342{
1343 struct blk_plug plug;
1344 int op;
1345 int op_flags = 0;
1346 int offset;
1347 int size;
1348 int i;
1349
1350 /*
1351 * Make sure we capture only current IO errors rather than stale errors
1352 * left over from previous use of the buffer (e.g. failed readahead).
1353 */
1354 bp->b_error = 0;
1355
1356 if (bp->b_flags & XBF_WRITE) {
1357 op = REQ_OP_WRITE;
1358
1359 /*
1360 * Run the write verifier callback function if it exists. If
1361 * this function fails it will mark the buffer with an error and
1362 * the IO should not be dispatched.
1363 */
1364 if (bp->b_ops) {
1365 bp->b_ops->verify_write(bp);
1366 if (bp->b_error) {
1367 xfs_force_shutdown(bp->b_mount,
1368 SHUTDOWN_CORRUPT_INCORE);
1369 return;
1370 }
1371 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1372 struct xfs_mount *mp = bp->b_mount;
1373
1374 /*
1375 * non-crc filesystems don't attach verifiers during
1376 * log recovery, so don't warn for such filesystems.
1377 */
1378 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1379 xfs_warn(mp,
1380 "%s: no buf ops on daddr 0x%llx len %d",
1381 __func__, bp->b_bn, bp->b_length);
1382 xfs_hex_dump(bp->b_addr,
1383 XFS_CORRUPTION_DUMP_LEN);
1384 dump_stack();
1385 }
1386 }
1387 } else if (bp->b_flags & XBF_READ_AHEAD) {
1388 op = REQ_OP_READ;
1389 op_flags = REQ_RAHEAD;
1390 } else {
1391 op = REQ_OP_READ;
1392 }
1393
1394 /* we only use the buffer cache for meta-data */
1395 op_flags |= REQ_META;
1396
1397 /*
1398 * Walk all the vectors issuing IO on them. Set up the initial offset
1399 * into the buffer and the desired IO size before we start -
1400 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1401 * subsequent call.
1402 */
1403 offset = bp->b_offset;
1404 size = BBTOB(bp->b_length);
1405 blk_start_plug(&plug);
1406 for (i = 0; i < bp->b_map_count; i++) {
1407 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1408 if (bp->b_error)
1409 break;
1410 if (size <= 0)
1411 break; /* all done */
1412 }
1413 blk_finish_plug(&plug);
1414}
1415
1416/*
1417 * Wait for I/O completion of a sync buffer and return the I/O error code.
1418 */
1419static int
1420xfs_buf_iowait(
1421 struct xfs_buf *bp)
1422{
1423 ASSERT(!(bp->b_flags & XBF_ASYNC));
1424
1425 trace_xfs_buf_iowait(bp, _RET_IP_);
1426 wait_for_completion(&bp->b_iowait);
1427 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1428
1429 return bp->b_error;
1430}
1431
1432/*
1433 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1434 * the buffer lock ownership and the current reference to the IO. It is not
1435 * safe to reference the buffer after a call to this function unless the caller
1436 * holds an additional reference itself.
1437 */
1438int
1439__xfs_buf_submit(
1440 struct xfs_buf *bp,
1441 bool wait)
1442{
1443 int error = 0;
1444
1445 trace_xfs_buf_submit(bp, _RET_IP_);
1446
1447 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1448
1449 /* on shutdown we stale and complete the buffer immediately */
1450 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1451 xfs_buf_ioerror(bp, -EIO);
1452 bp->b_flags &= ~XBF_DONE;
1453 xfs_buf_stale(bp);
1454 xfs_buf_ioend(bp);
1455 return -EIO;
1456 }
1457
1458 /*
1459 * Grab a reference so the buffer does not go away underneath us. For
1460 * async buffers, I/O completion drops the callers reference, which
1461 * could occur before submission returns.
1462 */
1463 xfs_buf_hold(bp);
1464
1465 if (bp->b_flags & XBF_WRITE)
1466 xfs_buf_wait_unpin(bp);
1467
1468 /* clear the internal error state to avoid spurious errors */
1469 bp->b_io_error = 0;
1470
1471 /*
1472 * Set the count to 1 initially, this will stop an I/O completion
1473 * callout which happens before we have started all the I/O from calling
1474 * xfs_buf_ioend too early.
1475 */
1476 atomic_set(&bp->b_io_remaining, 1);
1477 if (bp->b_flags & XBF_ASYNC)
1478 xfs_buf_ioacct_inc(bp);
1479 _xfs_buf_ioapply(bp);
1480
1481 /*
1482 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1483 * reference we took above. If we drop it to zero, run completion so
1484 * that we don't return to the caller with completion still pending.
1485 */
1486 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1487 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1488 xfs_buf_ioend(bp);
1489 else
1490 xfs_buf_ioend_async(bp);
1491 }
1492
1493 if (wait)
1494 error = xfs_buf_iowait(bp);
1495
1496 /*
1497 * Release the hold that keeps the buffer referenced for the entire
1498 * I/O. Note that if the buffer is async, it is not safe to reference
1499 * after this release.
1500 */
1501 xfs_buf_rele(bp);
1502 return error;
1503}
1504
1505void *
1506xfs_buf_offset(
1507 struct xfs_buf *bp,
1508 size_t offset)
1509{
1510 struct page *page;
1511
1512 if (bp->b_addr)
1513 return bp->b_addr + offset;
1514
1515 offset += bp->b_offset;
1516 page = bp->b_pages[offset >> PAGE_SHIFT];
1517 return page_address(page) + (offset & (PAGE_SIZE-1));
1518}
1519
1520void
1521xfs_buf_zero(
1522 struct xfs_buf *bp,
1523 size_t boff,
1524 size_t bsize)
1525{
1526 size_t bend;
1527
1528 bend = boff + bsize;
1529 while (boff < bend) {
1530 struct page *page;
1531 int page_index, page_offset, csize;
1532
1533 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1534 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1535 page = bp->b_pages[page_index];
1536 csize = min_t(size_t, PAGE_SIZE - page_offset,
1537 BBTOB(bp->b_length) - boff);
1538
1539 ASSERT((csize + page_offset) <= PAGE_SIZE);
1540
1541 memset(page_address(page) + page_offset, 0, csize);
1542
1543 boff += csize;
1544 }
1545}
1546
1547/*
1548 * Handling of buffer targets (buftargs).
1549 */
1550
1551/*
1552 * Wait for any bufs with callbacks that have been submitted but have not yet
1553 * returned. These buffers will have an elevated hold count, so wait on those
1554 * while freeing all the buffers only held by the LRU.
1555 */
1556static enum lru_status
1557xfs_buftarg_wait_rele(
1558 struct list_head *item,
1559 struct list_lru_one *lru,
1560 spinlock_t *lru_lock,
1561 void *arg)
1562
1563{
1564 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1565 struct list_head *dispose = arg;
1566
1567 if (atomic_read(&bp->b_hold) > 1) {
1568 /* need to wait, so skip it this pass */
1569 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1570 return LRU_SKIP;
1571 }
1572 if (!spin_trylock(&bp->b_lock))
1573 return LRU_SKIP;
1574
1575 /*
1576 * clear the LRU reference count so the buffer doesn't get
1577 * ignored in xfs_buf_rele().
1578 */
1579 atomic_set(&bp->b_lru_ref, 0);
1580 bp->b_state |= XFS_BSTATE_DISPOSE;
1581 list_lru_isolate_move(lru, item, dispose);
1582 spin_unlock(&bp->b_lock);
1583 return LRU_REMOVED;
1584}
1585
1586void
1587xfs_wait_buftarg(
1588 struct xfs_buftarg *btp)
1589{
1590 LIST_HEAD(dispose);
1591 int loop = 0;
1592
1593 /*
1594 * First wait on the buftarg I/O count for all in-flight buffers to be
1595 * released. This is critical as new buffers do not make the LRU until
1596 * they are released.
1597 *
1598 * Next, flush the buffer workqueue to ensure all completion processing
1599 * has finished. Just waiting on buffer locks is not sufficient for
1600 * async IO as the reference count held over IO is not released until
1601 * after the buffer lock is dropped. Hence we need to ensure here that
1602 * all reference counts have been dropped before we start walking the
1603 * LRU list.
1604 */
1605 while (percpu_counter_sum(&btp->bt_io_count))
1606 delay(100);
1607 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1608
1609 /* loop until there is nothing left on the lru list. */
1610 while (list_lru_count(&btp->bt_lru)) {
1611 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1612 &dispose, LONG_MAX);
1613
1614 while (!list_empty(&dispose)) {
1615 struct xfs_buf *bp;
1616 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1617 list_del_init(&bp->b_lru);
1618 if (bp->b_flags & XBF_WRITE_FAIL) {
1619 xfs_alert(btp->bt_mount,
1620"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1621 (long long)bp->b_bn);
1622 xfs_alert(btp->bt_mount,
1623"Please run xfs_repair to determine the extent of the problem.");
1624 }
1625 xfs_buf_rele(bp);
1626 }
1627 if (loop++ != 0)
1628 delay(100);
1629 }
1630}
1631
1632static enum lru_status
1633xfs_buftarg_isolate(
1634 struct list_head *item,
1635 struct list_lru_one *lru,
1636 spinlock_t *lru_lock,
1637 void *arg)
1638{
1639 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1640 struct list_head *dispose = arg;
1641
1642 /*
1643 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1644 * If we fail to get the lock, just skip it.
1645 */
1646 if (!spin_trylock(&bp->b_lock))
1647 return LRU_SKIP;
1648 /*
1649 * Decrement the b_lru_ref count unless the value is already
1650 * zero. If the value is already zero, we need to reclaim the
1651 * buffer, otherwise it gets another trip through the LRU.
1652 */
1653 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1654 spin_unlock(&bp->b_lock);
1655 return LRU_ROTATE;
1656 }
1657
1658 bp->b_state |= XFS_BSTATE_DISPOSE;
1659 list_lru_isolate_move(lru, item, dispose);
1660 spin_unlock(&bp->b_lock);
1661 return LRU_REMOVED;
1662}
1663
1664static unsigned long
1665xfs_buftarg_shrink_scan(
1666 struct shrinker *shrink,
1667 struct shrink_control *sc)
1668{
1669 struct xfs_buftarg *btp = container_of(shrink,
1670 struct xfs_buftarg, bt_shrinker);
1671 LIST_HEAD(dispose);
1672 unsigned long freed;
1673
1674 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1675 xfs_buftarg_isolate, &dispose);
1676
1677 while (!list_empty(&dispose)) {
1678 struct xfs_buf *bp;
1679 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1680 list_del_init(&bp->b_lru);
1681 xfs_buf_rele(bp);
1682 }
1683
1684 return freed;
1685}
1686
1687static unsigned long
1688xfs_buftarg_shrink_count(
1689 struct shrinker *shrink,
1690 struct shrink_control *sc)
1691{
1692 struct xfs_buftarg *btp = container_of(shrink,
1693 struct xfs_buftarg, bt_shrinker);
1694 return list_lru_shrink_count(&btp->bt_lru, sc);
1695}
1696
1697void
1698xfs_free_buftarg(
1699 struct xfs_buftarg *btp)
1700{
1701 unregister_shrinker(&btp->bt_shrinker);
1702 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1703 percpu_counter_destroy(&btp->bt_io_count);
1704 list_lru_destroy(&btp->bt_lru);
1705
1706 xfs_blkdev_issue_flush(btp);
1707
1708 kmem_free(btp);
1709}
1710
1711int
1712xfs_setsize_buftarg(
1713 xfs_buftarg_t *btp,
1714 unsigned int sectorsize)
1715{
1716 /* Set up metadata sector size info */
1717 btp->bt_meta_sectorsize = sectorsize;
1718 btp->bt_meta_sectormask = sectorsize - 1;
1719
1720 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1721 xfs_warn(btp->bt_mount,
1722 "Cannot set_blocksize to %u on device %pg",
1723 sectorsize, btp->bt_bdev);
1724 return -EINVAL;
1725 }
1726
1727 /* Set up device logical sector size mask */
1728 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1729 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1730
1731 return 0;
1732}
1733
1734/*
1735 * When allocating the initial buffer target we have not yet
1736 * read in the superblock, so don't know what sized sectors
1737 * are being used at this early stage. Play safe.
1738 */
1739STATIC int
1740xfs_setsize_buftarg_early(
1741 xfs_buftarg_t *btp,
1742 struct block_device *bdev)
1743{
1744 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1745}
1746
1747xfs_buftarg_t *
1748xfs_alloc_buftarg(
1749 struct xfs_mount *mp,
1750 struct block_device *bdev,
1751 struct dax_device *dax_dev)
1752{
1753 xfs_buftarg_t *btp;
1754
1755 btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1756
1757 btp->bt_mount = mp;
1758 btp->bt_dev = bdev->bd_dev;
1759 btp->bt_bdev = bdev;
1760 btp->bt_daxdev = dax_dev;
1761
1762 if (xfs_setsize_buftarg_early(btp, bdev))
1763 goto error_free;
1764
1765 if (list_lru_init(&btp->bt_lru))
1766 goto error_free;
1767
1768 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1769 goto error_lru;
1770
1771 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1772 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1773 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1774 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1775 if (register_shrinker(&btp->bt_shrinker))
1776 goto error_pcpu;
1777 return btp;
1778
1779error_pcpu:
1780 percpu_counter_destroy(&btp->bt_io_count);
1781error_lru:
1782 list_lru_destroy(&btp->bt_lru);
1783error_free:
1784 kmem_free(btp);
1785 return NULL;
1786}
1787
1788/*
1789 * Cancel a delayed write list.
1790 *
1791 * Remove each buffer from the list, clear the delwri queue flag and drop the
1792 * associated buffer reference.
1793 */
1794void
1795xfs_buf_delwri_cancel(
1796 struct list_head *list)
1797{
1798 struct xfs_buf *bp;
1799
1800 while (!list_empty(list)) {
1801 bp = list_first_entry(list, struct xfs_buf, b_list);
1802
1803 xfs_buf_lock(bp);
1804 bp->b_flags &= ~_XBF_DELWRI_Q;
1805 list_del_init(&bp->b_list);
1806 xfs_buf_relse(bp);
1807 }
1808}
1809
1810/*
1811 * Add a buffer to the delayed write list.
1812 *
1813 * This queues a buffer for writeout if it hasn't already been. Note that
1814 * neither this routine nor the buffer list submission functions perform
1815 * any internal synchronization. It is expected that the lists are thread-local
1816 * to the callers.
1817 *
1818 * Returns true if we queued up the buffer, or false if it already had
1819 * been on the buffer list.
1820 */
1821bool
1822xfs_buf_delwri_queue(
1823 struct xfs_buf *bp,
1824 struct list_head *list)
1825{
1826 ASSERT(xfs_buf_islocked(bp));
1827 ASSERT(!(bp->b_flags & XBF_READ));
1828
1829 /*
1830 * If the buffer is already marked delwri it already is queued up
1831 * by someone else for imediate writeout. Just ignore it in that
1832 * case.
1833 */
1834 if (bp->b_flags & _XBF_DELWRI_Q) {
1835 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1836 return false;
1837 }
1838
1839 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1840
1841 /*
1842 * If a buffer gets written out synchronously or marked stale while it
1843 * is on a delwri list we lazily remove it. To do this, the other party
1844 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1845 * It remains referenced and on the list. In a rare corner case it
1846 * might get readded to a delwri list after the synchronous writeout, in
1847 * which case we need just need to re-add the flag here.
1848 */
1849 bp->b_flags |= _XBF_DELWRI_Q;
1850 if (list_empty(&bp->b_list)) {
1851 atomic_inc(&bp->b_hold);
1852 list_add_tail(&bp->b_list, list);
1853 }
1854
1855 return true;
1856}
1857
1858/*
1859 * Compare function is more complex than it needs to be because
1860 * the return value is only 32 bits and we are doing comparisons
1861 * on 64 bit values
1862 */
1863static int
1864xfs_buf_cmp(
1865 void *priv,
1866 struct list_head *a,
1867 struct list_head *b)
1868{
1869 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1870 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1871 xfs_daddr_t diff;
1872
1873 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1874 if (diff < 0)
1875 return -1;
1876 if (diff > 0)
1877 return 1;
1878 return 0;
1879}
1880
1881/*
1882 * Submit buffers for write. If wait_list is specified, the buffers are
1883 * submitted using sync I/O and placed on the wait list such that the caller can
1884 * iowait each buffer. Otherwise async I/O is used and the buffers are released
1885 * at I/O completion time. In either case, buffers remain locked until I/O
1886 * completes and the buffer is released from the queue.
1887 */
1888static int
1889xfs_buf_delwri_submit_buffers(
1890 struct list_head *buffer_list,
1891 struct list_head *wait_list)
1892{
1893 struct xfs_buf *bp, *n;
1894 int pinned = 0;
1895 struct blk_plug plug;
1896
1897 list_sort(NULL, buffer_list, xfs_buf_cmp);
1898
1899 blk_start_plug(&plug);
1900 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1901 if (!wait_list) {
1902 if (xfs_buf_ispinned(bp)) {
1903 pinned++;
1904 continue;
1905 }
1906 if (!xfs_buf_trylock(bp))
1907 continue;
1908 } else {
1909 xfs_buf_lock(bp);
1910 }
1911
1912 /*
1913 * Someone else might have written the buffer synchronously or
1914 * marked it stale in the meantime. In that case only the
1915 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1916 * reference and remove it from the list here.
1917 */
1918 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1919 list_del_init(&bp->b_list);
1920 xfs_buf_relse(bp);
1921 continue;
1922 }
1923
1924 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1925
1926 /*
1927 * If we have a wait list, each buffer (and associated delwri
1928 * queue reference) transfers to it and is submitted
1929 * synchronously. Otherwise, drop the buffer from the delwri
1930 * queue and submit async.
1931 */
1932 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1933 bp->b_flags |= XBF_WRITE;
1934 if (wait_list) {
1935 bp->b_flags &= ~XBF_ASYNC;
1936 list_move_tail(&bp->b_list, wait_list);
1937 } else {
1938 bp->b_flags |= XBF_ASYNC;
1939 list_del_init(&bp->b_list);
1940 }
1941 __xfs_buf_submit(bp, false);
1942 }
1943 blk_finish_plug(&plug);
1944
1945 return pinned;
1946}
1947
1948/*
1949 * Write out a buffer list asynchronously.
1950 *
1951 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1952 * out and not wait for I/O completion on any of the buffers. This interface
1953 * is only safely useable for callers that can track I/O completion by higher
1954 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1955 * function.
1956 *
1957 * Note: this function will skip buffers it would block on, and in doing so
1958 * leaves them on @buffer_list so they can be retried on a later pass. As such,
1959 * it is up to the caller to ensure that the buffer list is fully submitted or
1960 * cancelled appropriately when they are finished with the list. Failure to
1961 * cancel or resubmit the list until it is empty will result in leaked buffers
1962 * at unmount time.
1963 */
1964int
1965xfs_buf_delwri_submit_nowait(
1966 struct list_head *buffer_list)
1967{
1968 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1969}
1970
1971/*
1972 * Write out a buffer list synchronously.
1973 *
1974 * This will take the @buffer_list, write all buffers out and wait for I/O
1975 * completion on all of the buffers. @buffer_list is consumed by the function,
1976 * so callers must have some other way of tracking buffers if they require such
1977 * functionality.
1978 */
1979int
1980xfs_buf_delwri_submit(
1981 struct list_head *buffer_list)
1982{
1983 LIST_HEAD (wait_list);
1984 int error = 0, error2;
1985 struct xfs_buf *bp;
1986
1987 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1988
1989 /* Wait for IO to complete. */
1990 while (!list_empty(&wait_list)) {
1991 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1992
1993 list_del_init(&bp->b_list);
1994
1995 /*
1996 * Wait on the locked buffer, check for errors and unlock and
1997 * release the delwri queue reference.
1998 */
1999 error2 = xfs_buf_iowait(bp);
2000 xfs_buf_relse(bp);
2001 if (!error)
2002 error = error2;
2003 }
2004
2005 return error;
2006}
2007
2008/*
2009 * Push a single buffer on a delwri queue.
2010 *
2011 * The purpose of this function is to submit a single buffer of a delwri queue
2012 * and return with the buffer still on the original queue. The waiting delwri
2013 * buffer submission infrastructure guarantees transfer of the delwri queue
2014 * buffer reference to a temporary wait list. We reuse this infrastructure to
2015 * transfer the buffer back to the original queue.
2016 *
2017 * Note the buffer transitions from the queued state, to the submitted and wait
2018 * listed state and back to the queued state during this call. The buffer
2019 * locking and queue management logic between _delwri_pushbuf() and
2020 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2021 * before returning.
2022 */
2023int
2024xfs_buf_delwri_pushbuf(
2025 struct xfs_buf *bp,
2026 struct list_head *buffer_list)
2027{
2028 LIST_HEAD (submit_list);
2029 int error;
2030
2031 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2032
2033 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2034
2035 /*
2036 * Isolate the buffer to a new local list so we can submit it for I/O
2037 * independently from the rest of the original list.
2038 */
2039 xfs_buf_lock(bp);
2040 list_move(&bp->b_list, &submit_list);
2041 xfs_buf_unlock(bp);
2042
2043 /*
2044 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2045 * the buffer on the wait list with the original reference. Rather than
2046 * bounce the buffer from a local wait list back to the original list
2047 * after I/O completion, reuse the original list as the wait list.
2048 */
2049 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2050
2051 /*
2052 * The buffer is now locked, under I/O and wait listed on the original
2053 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2054 * return with the buffer unlocked and on the original queue.
2055 */
2056 error = xfs_buf_iowait(bp);
2057 bp->b_flags |= _XBF_DELWRI_Q;
2058 xfs_buf_unlock(bp);
2059
2060 return error;
2061}
2062
2063int __init
2064xfs_buf_init(void)
2065{
2066 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2067 KM_ZONE_HWALIGN, NULL);
2068 if (!xfs_buf_zone)
2069 goto out;
2070
2071 return 0;
2072
2073 out:
2074 return -ENOMEM;
2075}
2076
2077void
2078xfs_buf_terminate(void)
2079{
2080 kmem_zone_destroy(xfs_buf_zone);
2081}
2082
2083void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2084{
2085 /*
2086 * Set the lru reference count to 0 based on the error injection tag.
2087 * This allows userspace to disrupt buffer caching for debug/testing
2088 * purposes.
2089 */
2090 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2091 lru_ref = 0;
2092
2093 atomic_set(&bp->b_lru_ref, lru_ref);
2094}
2095
2096/*
2097 * Verify an on-disk magic value against the magic value specified in the
2098 * verifier structure. The verifier magic is in disk byte order so the caller is
2099 * expected to pass the value directly from disk.
2100 */
2101bool
2102xfs_verify_magic(
2103 struct xfs_buf *bp,
2104 __be32 dmagic)
2105{
2106 struct xfs_mount *mp = bp->b_mount;
2107 int idx;
2108
2109 idx = xfs_sb_version_hascrc(&mp->m_sb);
2110 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2111 return false;
2112 return dmagic == bp->b_ops->magic[idx];
2113}
2114/*
2115 * Verify an on-disk magic value against the magic value specified in the
2116 * verifier structure. The verifier magic is in disk byte order so the caller is
2117 * expected to pass the value directly from disk.
2118 */
2119bool
2120xfs_verify_magic16(
2121 struct xfs_buf *bp,
2122 __be16 dmagic)
2123{
2124 struct xfs_mount *mp = bp->b_mount;
2125 int idx;
2126
2127 idx = xfs_sb_version_hascrc(&mp->m_sb);
2128 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2129 return false;
2130 return dmagic == bp->b_ops->magic16[idx];
2131}