Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: ISC
   2/*
   3 * Copyright (c) 2005-2011 Atheros Communications Inc.
   4 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
   5 * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
   6 */
   7
   8#include <linux/pci.h>
   9#include <linux/module.h>
  10#include <linux/interrupt.h>
  11#include <linux/spinlock.h>
  12#include <linux/bitops.h>
  13
  14#include "core.h"
  15#include "debug.h"
  16#include "coredump.h"
  17
  18#include "targaddrs.h"
  19#include "bmi.h"
  20
  21#include "hif.h"
  22#include "htc.h"
  23
  24#include "ce.h"
  25#include "pci.h"
  26
  27enum ath10k_pci_reset_mode {
  28	ATH10K_PCI_RESET_AUTO = 0,
  29	ATH10K_PCI_RESET_WARM_ONLY = 1,
  30};
  31
  32static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
  33static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
  34
  35module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
  36MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
  37
  38module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
  39MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
  40
  41/* how long wait to wait for target to initialise, in ms */
  42#define ATH10K_PCI_TARGET_WAIT 3000
  43#define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
  44
  45/* Maximum number of bytes that can be handled atomically by
  46 * diag read and write.
  47 */
  48#define ATH10K_DIAG_TRANSFER_LIMIT	0x5000
  49
  50#define QCA99X0_PCIE_BAR0_START_REG    0x81030
  51#define QCA99X0_CPU_MEM_ADDR_REG       0x4d00c
  52#define QCA99X0_CPU_MEM_DATA_REG       0x4d010
  53
  54static const struct pci_device_id ath10k_pci_id_table[] = {
  55	/* PCI-E QCA988X V2 (Ubiquiti branded) */
  56	{ PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
  57
  58	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
  59	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
  60	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
  61	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
  62	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
  63	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
  64	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
  65	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
  66	{0}
  67};
  68
  69static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
  70	/* QCA988X pre 2.0 chips are not supported because they need some nasty
  71	 * hacks. ath10k doesn't have them and these devices crash horribly
  72	 * because of that.
  73	 */
  74	{ QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
  75	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
  76
  77	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
  78	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
  79	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
  80	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
  81	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
  82
  83	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
  84	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
  85	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
  86	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
  87	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
  88
  89	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
  90
  91	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
  92
  93	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
  94
  95	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
  96	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
  97
  98	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
  99};
 100
 101static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
 102static int ath10k_pci_cold_reset(struct ath10k *ar);
 103static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
 104static int ath10k_pci_init_irq(struct ath10k *ar);
 105static int ath10k_pci_deinit_irq(struct ath10k *ar);
 106static int ath10k_pci_request_irq(struct ath10k *ar);
 107static void ath10k_pci_free_irq(struct ath10k *ar);
 108static int ath10k_pci_bmi_wait(struct ath10k *ar,
 109			       struct ath10k_ce_pipe *tx_pipe,
 110			       struct ath10k_ce_pipe *rx_pipe,
 111			       struct bmi_xfer *xfer);
 112static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
 113static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
 114static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
 115static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
 116static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
 117static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
 118static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
 119
 120static const struct ce_attr pci_host_ce_config_wlan[] = {
 121	/* CE0: host->target HTC control and raw streams */
 122	{
 123		.flags = CE_ATTR_FLAGS,
 124		.src_nentries = 16,
 125		.src_sz_max = 256,
 126		.dest_nentries = 0,
 127		.send_cb = ath10k_pci_htc_tx_cb,
 128	},
 129
 130	/* CE1: target->host HTT + HTC control */
 131	{
 132		.flags = CE_ATTR_FLAGS,
 133		.src_nentries = 0,
 134		.src_sz_max = 2048,
 135		.dest_nentries = 512,
 136		.recv_cb = ath10k_pci_htt_htc_rx_cb,
 137	},
 138
 139	/* CE2: target->host WMI */
 140	{
 141		.flags = CE_ATTR_FLAGS,
 142		.src_nentries = 0,
 143		.src_sz_max = 2048,
 144		.dest_nentries = 128,
 145		.recv_cb = ath10k_pci_htc_rx_cb,
 146	},
 147
 148	/* CE3: host->target WMI */
 149	{
 150		.flags = CE_ATTR_FLAGS,
 151		.src_nentries = 32,
 152		.src_sz_max = 2048,
 153		.dest_nentries = 0,
 154		.send_cb = ath10k_pci_htc_tx_cb,
 155	},
 156
 157	/* CE4: host->target HTT */
 158	{
 159		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
 160		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
 161		.src_sz_max = 256,
 162		.dest_nentries = 0,
 163		.send_cb = ath10k_pci_htt_tx_cb,
 164	},
 165
 166	/* CE5: target->host HTT (HIF->HTT) */
 167	{
 168		.flags = CE_ATTR_FLAGS,
 169		.src_nentries = 0,
 170		.src_sz_max = 512,
 171		.dest_nentries = 512,
 172		.recv_cb = ath10k_pci_htt_rx_cb,
 173	},
 174
 175	/* CE6: target autonomous hif_memcpy */
 176	{
 177		.flags = CE_ATTR_FLAGS,
 178		.src_nentries = 0,
 179		.src_sz_max = 0,
 180		.dest_nentries = 0,
 181	},
 182
 183	/* CE7: ce_diag, the Diagnostic Window */
 184	{
 185		.flags = CE_ATTR_FLAGS | CE_ATTR_POLL,
 186		.src_nentries = 2,
 187		.src_sz_max = DIAG_TRANSFER_LIMIT,
 188		.dest_nentries = 2,
 189	},
 190
 191	/* CE8: target->host pktlog */
 192	{
 193		.flags = CE_ATTR_FLAGS,
 194		.src_nentries = 0,
 195		.src_sz_max = 2048,
 196		.dest_nentries = 128,
 197		.recv_cb = ath10k_pci_pktlog_rx_cb,
 198	},
 199
 200	/* CE9 target autonomous qcache memcpy */
 201	{
 202		.flags = CE_ATTR_FLAGS,
 203		.src_nentries = 0,
 204		.src_sz_max = 0,
 205		.dest_nentries = 0,
 206	},
 207
 208	/* CE10: target autonomous hif memcpy */
 209	{
 210		.flags = CE_ATTR_FLAGS,
 211		.src_nentries = 0,
 212		.src_sz_max = 0,
 213		.dest_nentries = 0,
 214	},
 215
 216	/* CE11: target autonomous hif memcpy */
 217	{
 218		.flags = CE_ATTR_FLAGS,
 219		.src_nentries = 0,
 220		.src_sz_max = 0,
 221		.dest_nentries = 0,
 222	},
 223};
 224
 225/* Target firmware's Copy Engine configuration. */
 226static const struct ce_pipe_config pci_target_ce_config_wlan[] = {
 227	/* CE0: host->target HTC control and raw streams */
 228	{
 229		.pipenum = __cpu_to_le32(0),
 230		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
 231		.nentries = __cpu_to_le32(32),
 232		.nbytes_max = __cpu_to_le32(256),
 233		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 234		.reserved = __cpu_to_le32(0),
 235	},
 236
 237	/* CE1: target->host HTT + HTC control */
 238	{
 239		.pipenum = __cpu_to_le32(1),
 240		.pipedir = __cpu_to_le32(PIPEDIR_IN),
 241		.nentries = __cpu_to_le32(32),
 242		.nbytes_max = __cpu_to_le32(2048),
 243		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 244		.reserved = __cpu_to_le32(0),
 245	},
 246
 247	/* CE2: target->host WMI */
 248	{
 249		.pipenum = __cpu_to_le32(2),
 250		.pipedir = __cpu_to_le32(PIPEDIR_IN),
 251		.nentries = __cpu_to_le32(64),
 252		.nbytes_max = __cpu_to_le32(2048),
 253		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 254		.reserved = __cpu_to_le32(0),
 255	},
 256
 257	/* CE3: host->target WMI */
 258	{
 259		.pipenum = __cpu_to_le32(3),
 260		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
 261		.nentries = __cpu_to_le32(32),
 262		.nbytes_max = __cpu_to_le32(2048),
 263		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 264		.reserved = __cpu_to_le32(0),
 265	},
 266
 267	/* CE4: host->target HTT */
 268	{
 269		.pipenum = __cpu_to_le32(4),
 270		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
 271		.nentries = __cpu_to_le32(256),
 272		.nbytes_max = __cpu_to_le32(256),
 273		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 274		.reserved = __cpu_to_le32(0),
 275	},
 276
 277	/* NB: 50% of src nentries, since tx has 2 frags */
 278
 279	/* CE5: target->host HTT (HIF->HTT) */
 280	{
 281		.pipenum = __cpu_to_le32(5),
 282		.pipedir = __cpu_to_le32(PIPEDIR_IN),
 283		.nentries = __cpu_to_le32(32),
 284		.nbytes_max = __cpu_to_le32(512),
 285		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 286		.reserved = __cpu_to_le32(0),
 287	},
 288
 289	/* CE6: Reserved for target autonomous hif_memcpy */
 290	{
 291		.pipenum = __cpu_to_le32(6),
 292		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
 293		.nentries = __cpu_to_le32(32),
 294		.nbytes_max = __cpu_to_le32(4096),
 295		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 296		.reserved = __cpu_to_le32(0),
 297	},
 298
 299	/* CE7 used only by Host */
 300	{
 301		.pipenum = __cpu_to_le32(7),
 302		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
 303		.nentries = __cpu_to_le32(0),
 304		.nbytes_max = __cpu_to_le32(0),
 305		.flags = __cpu_to_le32(0),
 306		.reserved = __cpu_to_le32(0),
 307	},
 308
 309	/* CE8 target->host packtlog */
 310	{
 311		.pipenum = __cpu_to_le32(8),
 312		.pipedir = __cpu_to_le32(PIPEDIR_IN),
 313		.nentries = __cpu_to_le32(64),
 314		.nbytes_max = __cpu_to_le32(2048),
 315		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
 316		.reserved = __cpu_to_le32(0),
 317	},
 318
 319	/* CE9 target autonomous qcache memcpy */
 320	{
 321		.pipenum = __cpu_to_le32(9),
 322		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
 323		.nentries = __cpu_to_le32(32),
 324		.nbytes_max = __cpu_to_le32(2048),
 325		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
 326		.reserved = __cpu_to_le32(0),
 327	},
 328
 329	/* It not necessary to send target wlan configuration for CE10 & CE11
 330	 * as these CEs are not actively used in target.
 331	 */
 332};
 333
 334/*
 335 * Map from service/endpoint to Copy Engine.
 336 * This table is derived from the CE_PCI TABLE, above.
 337 * It is passed to the Target at startup for use by firmware.
 338 */
 339static const struct ce_service_to_pipe pci_target_service_to_ce_map_wlan[] = {
 340	{
 341		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
 342		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 343		__cpu_to_le32(3),
 344	},
 345	{
 346		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
 347		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 348		__cpu_to_le32(2),
 349	},
 350	{
 351		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
 352		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 353		__cpu_to_le32(3),
 354	},
 355	{
 356		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
 357		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 358		__cpu_to_le32(2),
 359	},
 360	{
 361		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
 362		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 363		__cpu_to_le32(3),
 364	},
 365	{
 366		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
 367		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 368		__cpu_to_le32(2),
 369	},
 370	{
 371		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
 372		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 373		__cpu_to_le32(3),
 374	},
 375	{
 376		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
 377		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 378		__cpu_to_le32(2),
 379	},
 380	{
 381		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
 382		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 383		__cpu_to_le32(3),
 384	},
 385	{
 386		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
 387		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 388		__cpu_to_le32(2),
 389	},
 390	{
 391		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
 392		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 393		__cpu_to_le32(0),
 394	},
 395	{
 396		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
 397		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 398		__cpu_to_le32(1),
 399	},
 400	{ /* not used */
 401		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
 402		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 403		__cpu_to_le32(0),
 404	},
 405	{ /* not used */
 406		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
 407		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 408		__cpu_to_le32(1),
 409	},
 410	{
 411		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
 412		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 413		__cpu_to_le32(4),
 414	},
 415	{
 416		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
 417		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 418		__cpu_to_le32(5),
 419	},
 420
 421	/* (Additions here) */
 422
 423	{ /* must be last */
 424		__cpu_to_le32(0),
 425		__cpu_to_le32(0),
 426		__cpu_to_le32(0),
 427	},
 428};
 429
 430static bool ath10k_pci_is_awake(struct ath10k *ar)
 431{
 432	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 433	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 434			   RTC_STATE_ADDRESS);
 435
 436	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
 437}
 438
 439static void __ath10k_pci_wake(struct ath10k *ar)
 440{
 441	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 442
 443	lockdep_assert_held(&ar_pci->ps_lock);
 444
 445	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
 446		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 447
 448	iowrite32(PCIE_SOC_WAKE_V_MASK,
 449		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 450		  PCIE_SOC_WAKE_ADDRESS);
 451}
 452
 453static void __ath10k_pci_sleep(struct ath10k *ar)
 454{
 455	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 456
 457	lockdep_assert_held(&ar_pci->ps_lock);
 458
 459	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
 460		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 461
 462	iowrite32(PCIE_SOC_WAKE_RESET,
 463		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 464		  PCIE_SOC_WAKE_ADDRESS);
 465	ar_pci->ps_awake = false;
 466}
 467
 468static int ath10k_pci_wake_wait(struct ath10k *ar)
 469{
 470	int tot_delay = 0;
 471	int curr_delay = 5;
 472
 473	while (tot_delay < PCIE_WAKE_TIMEOUT) {
 474		if (ath10k_pci_is_awake(ar)) {
 475			if (tot_delay > PCIE_WAKE_LATE_US)
 476				ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
 477					    tot_delay / 1000);
 478			return 0;
 479		}
 480
 481		udelay(curr_delay);
 482		tot_delay += curr_delay;
 483
 484		if (curr_delay < 50)
 485			curr_delay += 5;
 486	}
 487
 488	return -ETIMEDOUT;
 489}
 490
 491static int ath10k_pci_force_wake(struct ath10k *ar)
 492{
 493	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 494	unsigned long flags;
 495	int ret = 0;
 496
 497	if (ar_pci->pci_ps)
 498		return ret;
 499
 500	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 501
 502	if (!ar_pci->ps_awake) {
 503		iowrite32(PCIE_SOC_WAKE_V_MASK,
 504			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 505			  PCIE_SOC_WAKE_ADDRESS);
 506
 507		ret = ath10k_pci_wake_wait(ar);
 508		if (ret == 0)
 509			ar_pci->ps_awake = true;
 510	}
 511
 512	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 513
 514	return ret;
 515}
 516
 517static void ath10k_pci_force_sleep(struct ath10k *ar)
 518{
 519	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 520	unsigned long flags;
 521
 522	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 523
 524	iowrite32(PCIE_SOC_WAKE_RESET,
 525		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 526		  PCIE_SOC_WAKE_ADDRESS);
 527	ar_pci->ps_awake = false;
 528
 529	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 530}
 531
 532static int ath10k_pci_wake(struct ath10k *ar)
 533{
 534	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 535	unsigned long flags;
 536	int ret = 0;
 537
 538	if (ar_pci->pci_ps == 0)
 539		return ret;
 540
 541	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 542
 543	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
 544		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 545
 546	/* This function can be called very frequently. To avoid excessive
 547	 * CPU stalls for MMIO reads use a cache var to hold the device state.
 548	 */
 549	if (!ar_pci->ps_awake) {
 550		__ath10k_pci_wake(ar);
 551
 552		ret = ath10k_pci_wake_wait(ar);
 553		if (ret == 0)
 554			ar_pci->ps_awake = true;
 555	}
 556
 557	if (ret == 0) {
 558		ar_pci->ps_wake_refcount++;
 559		WARN_ON(ar_pci->ps_wake_refcount == 0);
 560	}
 561
 562	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 563
 564	return ret;
 565}
 566
 567static void ath10k_pci_sleep(struct ath10k *ar)
 568{
 569	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 570	unsigned long flags;
 571
 572	if (ar_pci->pci_ps == 0)
 573		return;
 574
 575	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 576
 577	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
 578		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 579
 580	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
 581		goto skip;
 582
 583	ar_pci->ps_wake_refcount--;
 584
 585	mod_timer(&ar_pci->ps_timer, jiffies +
 586		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
 587
 588skip:
 589	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 590}
 591
 592static void ath10k_pci_ps_timer(struct timer_list *t)
 593{
 594	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
 595	struct ath10k *ar = ar_pci->ar;
 596	unsigned long flags;
 597
 598	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 599
 600	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
 601		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 602
 603	if (ar_pci->ps_wake_refcount > 0)
 604		goto skip;
 605
 606	__ath10k_pci_sleep(ar);
 607
 608skip:
 609	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 610}
 611
 612static void ath10k_pci_sleep_sync(struct ath10k *ar)
 613{
 614	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 615	unsigned long flags;
 616
 617	if (ar_pci->pci_ps == 0) {
 618		ath10k_pci_force_sleep(ar);
 619		return;
 620	}
 621
 622	del_timer_sync(&ar_pci->ps_timer);
 623
 624	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 625	WARN_ON(ar_pci->ps_wake_refcount > 0);
 626	__ath10k_pci_sleep(ar);
 627	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 628}
 629
 630static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
 631{
 632	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 633	int ret;
 634
 635	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
 636		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
 637			    offset, offset + sizeof(value), ar_pci->mem_len);
 638		return;
 639	}
 640
 641	ret = ath10k_pci_wake(ar);
 642	if (ret) {
 643		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
 644			    value, offset, ret);
 645		return;
 646	}
 647
 648	iowrite32(value, ar_pci->mem + offset);
 649	ath10k_pci_sleep(ar);
 650}
 651
 652static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
 653{
 654	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 655	u32 val;
 656	int ret;
 657
 658	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
 659		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
 660			    offset, offset + sizeof(val), ar_pci->mem_len);
 661		return 0;
 662	}
 663
 664	ret = ath10k_pci_wake(ar);
 665	if (ret) {
 666		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
 667			    offset, ret);
 668		return 0xffffffff;
 669	}
 670
 671	val = ioread32(ar_pci->mem + offset);
 672	ath10k_pci_sleep(ar);
 673
 674	return val;
 675}
 676
 677inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
 678{
 679	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 680
 681	ce->bus_ops->write32(ar, offset, value);
 682}
 683
 684inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
 685{
 686	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 687
 688	return ce->bus_ops->read32(ar, offset);
 689}
 690
 691u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
 692{
 693	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
 694}
 695
 696void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
 697{
 698	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
 699}
 700
 701u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
 702{
 703	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
 704}
 705
 706void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
 707{
 708	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
 709}
 710
 711bool ath10k_pci_irq_pending(struct ath10k *ar)
 712{
 713	u32 cause;
 714
 715	/* Check if the shared legacy irq is for us */
 716	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
 717				  PCIE_INTR_CAUSE_ADDRESS);
 718	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
 719		return true;
 720
 721	return false;
 722}
 723
 724void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
 725{
 726	/* IMPORTANT: INTR_CLR register has to be set after
 727	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
 728	 * really cleared.
 729	 */
 730	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
 731			   0);
 732	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
 733			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
 734
 735	/* IMPORTANT: this extra read transaction is required to
 736	 * flush the posted write buffer.
 737	 */
 738	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
 739				PCIE_INTR_ENABLE_ADDRESS);
 740}
 741
 742void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
 743{
 744	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
 745			   PCIE_INTR_ENABLE_ADDRESS,
 746			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
 747
 748	/* IMPORTANT: this extra read transaction is required to
 749	 * flush the posted write buffer.
 750	 */
 751	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
 752				PCIE_INTR_ENABLE_ADDRESS);
 753}
 754
 755static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
 756{
 757	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 758
 759	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
 760		return "msi";
 761
 762	return "legacy";
 763}
 764
 765static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
 766{
 767	struct ath10k *ar = pipe->hif_ce_state;
 768	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 769	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
 770	struct sk_buff *skb;
 771	dma_addr_t paddr;
 772	int ret;
 773
 774	skb = dev_alloc_skb(pipe->buf_sz);
 775	if (!skb)
 776		return -ENOMEM;
 777
 778	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
 779
 780	paddr = dma_map_single(ar->dev, skb->data,
 781			       skb->len + skb_tailroom(skb),
 782			       DMA_FROM_DEVICE);
 783	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
 784		ath10k_warn(ar, "failed to dma map pci rx buf\n");
 785		dev_kfree_skb_any(skb);
 786		return -EIO;
 787	}
 788
 789	ATH10K_SKB_RXCB(skb)->paddr = paddr;
 790
 791	spin_lock_bh(&ce->ce_lock);
 792	ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
 793	spin_unlock_bh(&ce->ce_lock);
 794	if (ret) {
 795		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
 796				 DMA_FROM_DEVICE);
 797		dev_kfree_skb_any(skb);
 798		return ret;
 799	}
 800
 801	return 0;
 802}
 803
 804static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
 805{
 806	struct ath10k *ar = pipe->hif_ce_state;
 807	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 808	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 809	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
 810	int ret, num;
 811
 812	if (pipe->buf_sz == 0)
 813		return;
 814
 815	if (!ce_pipe->dest_ring)
 816		return;
 817
 818	spin_lock_bh(&ce->ce_lock);
 819	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
 820	spin_unlock_bh(&ce->ce_lock);
 821
 822	while (num >= 0) {
 823		ret = __ath10k_pci_rx_post_buf(pipe);
 824		if (ret) {
 825			if (ret == -ENOSPC)
 826				break;
 827			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
 828			mod_timer(&ar_pci->rx_post_retry, jiffies +
 829				  ATH10K_PCI_RX_POST_RETRY_MS);
 830			break;
 831		}
 832		num--;
 833	}
 834}
 835
 836void ath10k_pci_rx_post(struct ath10k *ar)
 837{
 838	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 839	int i;
 840
 841	for (i = 0; i < CE_COUNT; i++)
 842		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
 843}
 844
 845void ath10k_pci_rx_replenish_retry(struct timer_list *t)
 846{
 847	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
 848	struct ath10k *ar = ar_pci->ar;
 849
 850	ath10k_pci_rx_post(ar);
 851}
 852
 853static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
 854{
 855	u32 val = 0, region = addr & 0xfffff;
 856
 857	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
 858				 & 0x7ff) << 21;
 859	val |= 0x100000 | region;
 860	return val;
 861}
 862
 863/* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr.
 864 * Support to access target space below 1M for qca6174 and qca9377.
 865 * If target space is below 1M, the bit[20] of converted CE addr is 0.
 866 * Otherwise bit[20] of converted CE addr is 1.
 867 */
 868static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
 869{
 870	u32 val = 0, region = addr & 0xfffff;
 871
 872	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
 873				 & 0x7ff) << 21;
 874	val |= ((addr >= 0x100000) ? 0x100000 : 0) | region;
 875	return val;
 876}
 877
 878static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
 879{
 880	u32 val = 0, region = addr & 0xfffff;
 881
 882	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
 883	val |= 0x100000 | region;
 884	return val;
 885}
 886
 887static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
 888{
 889	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 890
 891	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
 892		return -ENOTSUPP;
 893
 894	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
 895}
 896
 897/*
 898 * Diagnostic read/write access is provided for startup/config/debug usage.
 899 * Caller must guarantee proper alignment, when applicable, and single user
 900 * at any moment.
 901 */
 902static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
 903				    int nbytes)
 904{
 905	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 906	int ret = 0;
 907	u32 *buf;
 908	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
 909	struct ath10k_ce_pipe *ce_diag;
 910	/* Host buffer address in CE space */
 911	u32 ce_data;
 912	dma_addr_t ce_data_base = 0;
 913	void *data_buf;
 914	int i;
 915
 916	mutex_lock(&ar_pci->ce_diag_mutex);
 917	ce_diag = ar_pci->ce_diag;
 918
 919	/*
 920	 * Allocate a temporary bounce buffer to hold caller's data
 921	 * to be DMA'ed from Target. This guarantees
 922	 *   1) 4-byte alignment
 923	 *   2) Buffer in DMA-able space
 924	 */
 925	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
 926
 927	data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
 928				      GFP_ATOMIC);
 929	if (!data_buf) {
 930		ret = -ENOMEM;
 931		goto done;
 932	}
 933
 934	/* The address supplied by the caller is in the
 935	 * Target CPU virtual address space.
 936	 *
 937	 * In order to use this address with the diagnostic CE,
 938	 * convert it from Target CPU virtual address space
 939	 * to CE address space
 940	 */
 941	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
 942
 943	remaining_bytes = nbytes;
 944	ce_data = ce_data_base;
 945	while (remaining_bytes) {
 946		nbytes = min_t(unsigned int, remaining_bytes,
 947			       DIAG_TRANSFER_LIMIT);
 948
 949		ret = ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
 950		if (ret != 0)
 951			goto done;
 952
 953		/* Request CE to send from Target(!) address to Host buffer */
 954		ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0);
 955		if (ret)
 956			goto done;
 957
 958		i = 0;
 959		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
 960			udelay(DIAG_ACCESS_CE_WAIT_US);
 961			i += DIAG_ACCESS_CE_WAIT_US;
 962
 963			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
 964				ret = -EBUSY;
 965				goto done;
 966			}
 967		}
 968
 969		i = 0;
 970		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
 971						     &completed_nbytes) != 0) {
 972			udelay(DIAG_ACCESS_CE_WAIT_US);
 973			i += DIAG_ACCESS_CE_WAIT_US;
 974
 975			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
 976				ret = -EBUSY;
 977				goto done;
 978			}
 979		}
 980
 981		if (nbytes != completed_nbytes) {
 982			ret = -EIO;
 983			goto done;
 984		}
 985
 986		if (*buf != ce_data) {
 987			ret = -EIO;
 988			goto done;
 989		}
 990
 991		remaining_bytes -= nbytes;
 992		memcpy(data, data_buf, nbytes);
 993
 994		address += nbytes;
 995		data += nbytes;
 996	}
 997
 998done:
 999
1000	if (data_buf)
1001		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1002				  ce_data_base);
1003
1004	mutex_unlock(&ar_pci->ce_diag_mutex);
1005
1006	return ret;
1007}
1008
1009static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
1010{
1011	__le32 val = 0;
1012	int ret;
1013
1014	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1015	*value = __le32_to_cpu(val);
1016
1017	return ret;
1018}
1019
1020static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1021				     u32 src, u32 len)
1022{
1023	u32 host_addr, addr;
1024	int ret;
1025
1026	host_addr = host_interest_item_address(src);
1027
1028	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1029	if (ret != 0) {
1030		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1031			    src, ret);
1032		return ret;
1033	}
1034
1035	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1036	if (ret != 0) {
1037		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1038			    addr, len, ret);
1039		return ret;
1040	}
1041
1042	return 0;
1043}
1044
1045#define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1046	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1047
1048int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1049			      const void *data, int nbytes)
1050{
1051	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1052	int ret = 0;
1053	u32 *buf;
1054	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
1055	struct ath10k_ce_pipe *ce_diag;
1056	void *data_buf;
1057	dma_addr_t ce_data_base = 0;
1058	int i;
1059
1060	mutex_lock(&ar_pci->ce_diag_mutex);
1061	ce_diag = ar_pci->ce_diag;
1062
1063	/*
1064	 * Allocate a temporary bounce buffer to hold caller's data
1065	 * to be DMA'ed to Target. This guarantees
1066	 *   1) 4-byte alignment
1067	 *   2) Buffer in DMA-able space
1068	 */
1069	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
1070
1071	data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
1072				      GFP_ATOMIC);
1073	if (!data_buf) {
1074		ret = -ENOMEM;
1075		goto done;
1076	}
1077
1078	/*
1079	 * The address supplied by the caller is in the
1080	 * Target CPU virtual address space.
1081	 *
1082	 * In order to use this address with the diagnostic CE,
1083	 * convert it from
1084	 *    Target CPU virtual address space
1085	 * to
1086	 *    CE address space
1087	 */
1088	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1089
1090	remaining_bytes = nbytes;
1091	while (remaining_bytes) {
1092		/* FIXME: check cast */
1093		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1094
1095		/* Copy caller's data to allocated DMA buf */
1096		memcpy(data_buf, data, nbytes);
1097
1098		/* Set up to receive directly into Target(!) address */
1099		ret = ath10k_ce_rx_post_buf(ce_diag, &address, address);
1100		if (ret != 0)
1101			goto done;
1102
1103		/*
1104		 * Request CE to send caller-supplied data that
1105		 * was copied to bounce buffer to Target(!) address.
1106		 */
1107		ret = ath10k_ce_send(ce_diag, NULL, ce_data_base, nbytes, 0, 0);
1108		if (ret != 0)
1109			goto done;
1110
1111		i = 0;
1112		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
1113			udelay(DIAG_ACCESS_CE_WAIT_US);
1114			i += DIAG_ACCESS_CE_WAIT_US;
1115
1116			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1117				ret = -EBUSY;
1118				goto done;
1119			}
1120		}
1121
1122		i = 0;
1123		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
1124						     &completed_nbytes) != 0) {
1125			udelay(DIAG_ACCESS_CE_WAIT_US);
1126			i += DIAG_ACCESS_CE_WAIT_US;
1127
1128			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1129				ret = -EBUSY;
1130				goto done;
1131			}
1132		}
1133
1134		if (nbytes != completed_nbytes) {
1135			ret = -EIO;
1136			goto done;
1137		}
1138
1139		if (*buf != address) {
1140			ret = -EIO;
1141			goto done;
1142		}
1143
1144		remaining_bytes -= nbytes;
1145		address += nbytes;
1146		data += nbytes;
1147	}
1148
1149done:
1150	if (data_buf) {
1151		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1152				  ce_data_base);
1153	}
1154
1155	if (ret != 0)
1156		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1157			    address, ret);
1158
1159	mutex_unlock(&ar_pci->ce_diag_mutex);
1160
1161	return ret;
1162}
1163
1164static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1165{
1166	__le32 val = __cpu_to_le32(value);
1167
1168	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1169}
1170
1171/* Called by lower (CE) layer when a send to Target completes. */
1172static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1173{
1174	struct ath10k *ar = ce_state->ar;
1175	struct sk_buff_head list;
1176	struct sk_buff *skb;
1177
1178	__skb_queue_head_init(&list);
1179	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1180		/* no need to call tx completion for NULL pointers */
1181		if (skb == NULL)
1182			continue;
1183
1184		__skb_queue_tail(&list, skb);
1185	}
1186
1187	while ((skb = __skb_dequeue(&list)))
1188		ath10k_htc_tx_completion_handler(ar, skb);
1189}
1190
1191static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1192				     void (*callback)(struct ath10k *ar,
1193						      struct sk_buff *skb))
1194{
1195	struct ath10k *ar = ce_state->ar;
1196	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1197	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1198	struct sk_buff *skb;
1199	struct sk_buff_head list;
1200	void *transfer_context;
1201	unsigned int nbytes, max_nbytes;
1202
1203	__skb_queue_head_init(&list);
1204	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1205					     &nbytes) == 0) {
1206		skb = transfer_context;
1207		max_nbytes = skb->len + skb_tailroom(skb);
1208		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1209				 max_nbytes, DMA_FROM_DEVICE);
1210
1211		if (unlikely(max_nbytes < nbytes)) {
1212			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1213				    nbytes, max_nbytes);
1214			dev_kfree_skb_any(skb);
1215			continue;
1216		}
1217
1218		skb_put(skb, nbytes);
1219		__skb_queue_tail(&list, skb);
1220	}
1221
1222	while ((skb = __skb_dequeue(&list))) {
1223		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1224			   ce_state->id, skb->len);
1225		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1226				skb->data, skb->len);
1227
1228		callback(ar, skb);
1229	}
1230
1231	ath10k_pci_rx_post_pipe(pipe_info);
1232}
1233
1234static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1235					 void (*callback)(struct ath10k *ar,
1236							  struct sk_buff *skb))
1237{
1238	struct ath10k *ar = ce_state->ar;
1239	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1240	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1241	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1242	struct sk_buff *skb;
1243	struct sk_buff_head list;
1244	void *transfer_context;
1245	unsigned int nbytes, max_nbytes, nentries;
1246	int orig_len;
1247
1248	/* No need to acquire ce_lock for CE5, since this is the only place CE5
1249	 * is processed other than init and deinit. Before releasing CE5
1250	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1251	 */
1252	__skb_queue_head_init(&list);
1253	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1254						    &nbytes) == 0) {
1255		skb = transfer_context;
1256		max_nbytes = skb->len + skb_tailroom(skb);
1257
1258		if (unlikely(max_nbytes < nbytes)) {
1259			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1260				    nbytes, max_nbytes);
1261			continue;
1262		}
1263
1264		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1265					max_nbytes, DMA_FROM_DEVICE);
1266		skb_put(skb, nbytes);
1267		__skb_queue_tail(&list, skb);
1268	}
1269
1270	nentries = skb_queue_len(&list);
1271	while ((skb = __skb_dequeue(&list))) {
1272		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1273			   ce_state->id, skb->len);
1274		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1275				skb->data, skb->len);
1276
1277		orig_len = skb->len;
1278		callback(ar, skb);
1279		skb_push(skb, orig_len - skb->len);
1280		skb_reset_tail_pointer(skb);
1281		skb_trim(skb, 0);
1282
1283		/*let device gain the buffer again*/
1284		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1285					   skb->len + skb_tailroom(skb),
1286					   DMA_FROM_DEVICE);
1287	}
1288	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1289}
1290
1291/* Called by lower (CE) layer when data is received from the Target. */
1292static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1293{
1294	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1295}
1296
1297static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1298{
1299	/* CE4 polling needs to be done whenever CE pipe which transports
1300	 * HTT Rx (target->host) is processed.
1301	 */
1302	ath10k_ce_per_engine_service(ce_state->ar, 4);
1303
1304	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1305}
1306
1307/* Called by lower (CE) layer when data is received from the Target.
1308 * Only 10.4 firmware uses separate CE to transfer pktlog data.
1309 */
1310static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1311{
1312	ath10k_pci_process_rx_cb(ce_state,
1313				 ath10k_htt_rx_pktlog_completion_handler);
1314}
1315
1316/* Called by lower (CE) layer when a send to HTT Target completes. */
1317static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1318{
1319	struct ath10k *ar = ce_state->ar;
1320	struct sk_buff *skb;
1321
1322	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1323		/* no need to call tx completion for NULL pointers */
1324		if (!skb)
1325			continue;
1326
1327		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1328				 skb->len, DMA_TO_DEVICE);
1329		ath10k_htt_hif_tx_complete(ar, skb);
1330	}
1331}
1332
1333static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1334{
1335	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1336	ath10k_htt_t2h_msg_handler(ar, skb);
1337}
1338
1339/* Called by lower (CE) layer when HTT data is received from the Target. */
1340static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1341{
1342	/* CE4 polling needs to be done whenever CE pipe which transports
1343	 * HTT Rx (target->host) is processed.
1344	 */
1345	ath10k_ce_per_engine_service(ce_state->ar, 4);
1346
1347	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1348}
1349
1350int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1351			 struct ath10k_hif_sg_item *items, int n_items)
1352{
1353	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1354	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1355	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1356	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1357	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1358	unsigned int nentries_mask;
1359	unsigned int sw_index;
1360	unsigned int write_index;
1361	int err, i = 0;
1362
1363	spin_lock_bh(&ce->ce_lock);
1364
1365	nentries_mask = src_ring->nentries_mask;
1366	sw_index = src_ring->sw_index;
1367	write_index = src_ring->write_index;
1368
1369	if (unlikely(CE_RING_DELTA(nentries_mask,
1370				   write_index, sw_index - 1) < n_items)) {
1371		err = -ENOBUFS;
1372		goto err;
1373	}
1374
1375	for (i = 0; i < n_items - 1; i++) {
1376		ath10k_dbg(ar, ATH10K_DBG_PCI,
1377			   "pci tx item %d paddr %pad len %d n_items %d\n",
1378			   i, &items[i].paddr, items[i].len, n_items);
1379		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1380				items[i].vaddr, items[i].len);
1381
1382		err = ath10k_ce_send_nolock(ce_pipe,
1383					    items[i].transfer_context,
1384					    items[i].paddr,
1385					    items[i].len,
1386					    items[i].transfer_id,
1387					    CE_SEND_FLAG_GATHER);
1388		if (err)
1389			goto err;
1390	}
1391
1392	/* `i` is equal to `n_items -1` after for() */
1393
1394	ath10k_dbg(ar, ATH10K_DBG_PCI,
1395		   "pci tx item %d paddr %pad len %d n_items %d\n",
1396		   i, &items[i].paddr, items[i].len, n_items);
1397	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1398			items[i].vaddr, items[i].len);
1399
1400	err = ath10k_ce_send_nolock(ce_pipe,
1401				    items[i].transfer_context,
1402				    items[i].paddr,
1403				    items[i].len,
1404				    items[i].transfer_id,
1405				    0);
1406	if (err)
1407		goto err;
1408
1409	spin_unlock_bh(&ce->ce_lock);
1410	return 0;
1411
1412err:
1413	for (; i > 0; i--)
1414		__ath10k_ce_send_revert(ce_pipe);
1415
1416	spin_unlock_bh(&ce->ce_lock);
1417	return err;
1418}
1419
1420int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1421			     size_t buf_len)
1422{
1423	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1424}
1425
1426u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1427{
1428	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1429
1430	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1431
1432	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1433}
1434
1435static void ath10k_pci_dump_registers(struct ath10k *ar,
1436				      struct ath10k_fw_crash_data *crash_data)
1437{
1438	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1439	int i, ret;
1440
1441	lockdep_assert_held(&ar->dump_mutex);
1442
1443	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1444				      hi_failure_state,
1445				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1446	if (ret) {
1447		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1448		return;
1449	}
1450
1451	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1452
1453	ath10k_err(ar, "firmware register dump:\n");
1454	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1455		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1456			   i,
1457			   __le32_to_cpu(reg_dump_values[i]),
1458			   __le32_to_cpu(reg_dump_values[i + 1]),
1459			   __le32_to_cpu(reg_dump_values[i + 2]),
1460			   __le32_to_cpu(reg_dump_values[i + 3]));
1461
1462	if (!crash_data)
1463		return;
1464
1465	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1466		crash_data->registers[i] = reg_dump_values[i];
1467}
1468
1469static int ath10k_pci_dump_memory_section(struct ath10k *ar,
1470					  const struct ath10k_mem_region *mem_region,
1471					  u8 *buf, size_t buf_len)
1472{
1473	const struct ath10k_mem_section *cur_section, *next_section;
1474	unsigned int count, section_size, skip_size;
1475	int ret, i, j;
1476
1477	if (!mem_region || !buf)
1478		return 0;
1479
1480	cur_section = &mem_region->section_table.sections[0];
1481
1482	if (mem_region->start > cur_section->start) {
1483		ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
1484			    mem_region->start, cur_section->start);
1485		return 0;
1486	}
1487
1488	skip_size = cur_section->start - mem_region->start;
1489
1490	/* fill the gap between the first register section and register
1491	 * start address
1492	 */
1493	for (i = 0; i < skip_size; i++) {
1494		*buf = ATH10K_MAGIC_NOT_COPIED;
1495		buf++;
1496	}
1497
1498	count = 0;
1499
1500	for (i = 0; cur_section != NULL; i++) {
1501		section_size = cur_section->end - cur_section->start;
1502
1503		if (section_size <= 0) {
1504			ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
1505				    cur_section->start,
1506				    cur_section->end);
1507			break;
1508		}
1509
1510		if ((i + 1) == mem_region->section_table.size) {
1511			/* last section */
1512			next_section = NULL;
1513			skip_size = 0;
1514		} else {
1515			next_section = cur_section + 1;
1516
1517			if (cur_section->end > next_section->start) {
1518				ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
1519					    next_section->start,
1520					    cur_section->end);
1521				break;
1522			}
1523
1524			skip_size = next_section->start - cur_section->end;
1525		}
1526
1527		if (buf_len < (skip_size + section_size)) {
1528			ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
1529			break;
1530		}
1531
1532		buf_len -= skip_size + section_size;
1533
1534		/* read section to dest memory */
1535		ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
1536					       buf, section_size);
1537		if (ret) {
1538			ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
1539				    cur_section->start, ret);
1540			break;
1541		}
1542
1543		buf += section_size;
1544		count += section_size;
1545
1546		/* fill in the gap between this section and the next */
1547		for (j = 0; j < skip_size; j++) {
1548			*buf = ATH10K_MAGIC_NOT_COPIED;
1549			buf++;
1550		}
1551
1552		count += skip_size;
1553
1554		if (!next_section)
1555			/* this was the last section */
1556			break;
1557
1558		cur_section = next_section;
1559	}
1560
1561	return count;
1562}
1563
1564static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
1565{
1566	u32 val;
1567
1568	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1569			   FW_RAM_CONFIG_ADDRESS, config);
1570
1571	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1572				FW_RAM_CONFIG_ADDRESS);
1573	if (val != config) {
1574		ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
1575			    val, config);
1576		return -EIO;
1577	}
1578
1579	return 0;
1580}
1581
1582/* Always returns the length */
1583static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
1584				       const struct ath10k_mem_region *region,
1585				       u8 *buf)
1586{
1587	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1588	u32 base_addr, i;
1589
1590	base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
1591	base_addr += region->start;
1592
1593	for (i = 0; i < region->len; i += 4) {
1594		iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
1595		*(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
1596	}
1597
1598	return region->len;
1599}
1600
1601/* if an error happened returns < 0, otherwise the length */
1602static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
1603				      const struct ath10k_mem_region *region,
1604				      u8 *buf)
1605{
1606	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1607	u32 i;
1608	int ret;
1609
1610	mutex_lock(&ar->conf_mutex);
1611	if (ar->state != ATH10K_STATE_ON) {
1612		ath10k_warn(ar, "Skipping pci_dump_memory_reg invalid state\n");
1613		ret = -EIO;
1614		goto done;
1615	}
1616
1617	for (i = 0; i < region->len; i += 4)
1618		*(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);
1619
1620	ret = region->len;
1621done:
1622	mutex_unlock(&ar->conf_mutex);
1623	return ret;
1624}
1625
1626/* if an error happened returns < 0, otherwise the length */
1627static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
1628					  const struct ath10k_mem_region *current_region,
1629					  u8 *buf)
1630{
1631	int ret;
1632
1633	if (current_region->section_table.size > 0)
1634		/* Copy each section individually. */
1635		return ath10k_pci_dump_memory_section(ar,
1636						      current_region,
1637						      buf,
1638						      current_region->len);
1639
1640	/* No individual memory sections defined so we can
1641	 * copy the entire memory region.
1642	 */
1643	ret = ath10k_pci_diag_read_mem(ar,
1644				       current_region->start,
1645				       buf,
1646				       current_region->len);
1647	if (ret) {
1648		ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
1649			    current_region->name, ret);
1650		return ret;
1651	}
1652
1653	return current_region->len;
1654}
1655
1656static void ath10k_pci_dump_memory(struct ath10k *ar,
1657				   struct ath10k_fw_crash_data *crash_data)
1658{
1659	const struct ath10k_hw_mem_layout *mem_layout;
1660	const struct ath10k_mem_region *current_region;
1661	struct ath10k_dump_ram_data_hdr *hdr;
1662	u32 count, shift;
1663	size_t buf_len;
1664	int ret, i;
1665	u8 *buf;
1666
1667	lockdep_assert_held(&ar->dump_mutex);
1668
1669	if (!crash_data)
1670		return;
1671
1672	mem_layout = ath10k_coredump_get_mem_layout(ar);
1673	if (!mem_layout)
1674		return;
1675
1676	current_region = &mem_layout->region_table.regions[0];
1677
1678	buf = crash_data->ramdump_buf;
1679	buf_len = crash_data->ramdump_buf_len;
1680
1681	memset(buf, 0, buf_len);
1682
1683	for (i = 0; i < mem_layout->region_table.size; i++) {
1684		count = 0;
1685
1686		if (current_region->len > buf_len) {
1687			ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
1688				    current_region->name,
1689				    current_region->len,
1690				    buf_len);
1691			break;
1692		}
1693
1694		/* To get IRAM dump, the host driver needs to switch target
1695		 * ram config from DRAM to IRAM.
1696		 */
1697		if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
1698		    current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
1699			shift = current_region->start >> 20;
1700
1701			ret = ath10k_pci_set_ram_config(ar, shift);
1702			if (ret) {
1703				ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
1704					    current_region->name, ret);
1705				break;
1706			}
1707		}
1708
1709		/* Reserve space for the header. */
1710		hdr = (void *)buf;
1711		buf += sizeof(*hdr);
1712		buf_len -= sizeof(*hdr);
1713
1714		switch (current_region->type) {
1715		case ATH10K_MEM_REGION_TYPE_IOSRAM:
1716			count = ath10k_pci_dump_memory_sram(ar, current_region, buf);
1717			break;
1718		case ATH10K_MEM_REGION_TYPE_IOREG:
1719			ret = ath10k_pci_dump_memory_reg(ar, current_region, buf);
1720			if (ret < 0)
1721				break;
1722
1723			count = ret;
1724			break;
1725		default:
1726			ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
1727			if (ret < 0)
1728				break;
1729
1730			count = ret;
1731			break;
1732		}
1733
1734		hdr->region_type = cpu_to_le32(current_region->type);
1735		hdr->start = cpu_to_le32(current_region->start);
1736		hdr->length = cpu_to_le32(count);
1737
1738		if (count == 0)
1739			/* Note: the header remains, just with zero length. */
1740			break;
1741
1742		buf += count;
1743		buf_len -= count;
1744
1745		current_region++;
1746	}
1747}
1748
1749static void ath10k_pci_fw_dump_work(struct work_struct *work)
1750{
1751	struct ath10k_pci *ar_pci = container_of(work, struct ath10k_pci,
1752						 dump_work);
1753	struct ath10k_fw_crash_data *crash_data;
1754	struct ath10k *ar = ar_pci->ar;
1755	char guid[UUID_STRING_LEN + 1];
1756
1757	mutex_lock(&ar->dump_mutex);
1758
1759	spin_lock_bh(&ar->data_lock);
1760	ar->stats.fw_crash_counter++;
1761	spin_unlock_bh(&ar->data_lock);
1762
1763	crash_data = ath10k_coredump_new(ar);
1764
1765	if (crash_data)
1766		scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1767	else
1768		scnprintf(guid, sizeof(guid), "n/a");
1769
1770	ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1771	ath10k_print_driver_info(ar);
1772	ath10k_pci_dump_registers(ar, crash_data);
1773	ath10k_ce_dump_registers(ar, crash_data);
1774	ath10k_pci_dump_memory(ar, crash_data);
1775
1776	mutex_unlock(&ar->dump_mutex);
1777
1778	ath10k_core_start_recovery(ar);
1779}
1780
1781static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1782{
1783	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1784
1785	queue_work(ar->workqueue, &ar_pci->dump_work);
1786}
1787
1788void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1789					int force)
1790{
1791	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1792
1793	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1794
1795	if (!force) {
1796		int resources;
1797		/*
1798		 * Decide whether to actually poll for completions, or just
1799		 * wait for a later chance.
1800		 * If there seem to be plenty of resources left, then just wait
1801		 * since checking involves reading a CE register, which is a
1802		 * relatively expensive operation.
1803		 */
1804		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1805
1806		/*
1807		 * If at least 50% of the total resources are still available,
1808		 * don't bother checking again yet.
1809		 */
1810		if (resources > (ar_pci->attr[pipe].src_nentries >> 1))
1811			return;
1812	}
1813	ath10k_ce_per_engine_service(ar, pipe);
1814}
1815
1816static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1817{
1818	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1819
1820	del_timer_sync(&ar_pci->rx_post_retry);
1821}
1822
1823int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1824				       u8 *ul_pipe, u8 *dl_pipe)
1825{
1826	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1827	const struct ce_service_to_pipe *entry;
1828	bool ul_set = false, dl_set = false;
1829	int i;
1830
1831	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1832
1833	for (i = 0; i < ARRAY_SIZE(pci_target_service_to_ce_map_wlan); i++) {
1834		entry = &ar_pci->serv_to_pipe[i];
1835
1836		if (__le32_to_cpu(entry->service_id) != service_id)
1837			continue;
1838
1839		switch (__le32_to_cpu(entry->pipedir)) {
1840		case PIPEDIR_NONE:
1841			break;
1842		case PIPEDIR_IN:
1843			WARN_ON(dl_set);
1844			*dl_pipe = __le32_to_cpu(entry->pipenum);
1845			dl_set = true;
1846			break;
1847		case PIPEDIR_OUT:
1848			WARN_ON(ul_set);
1849			*ul_pipe = __le32_to_cpu(entry->pipenum);
1850			ul_set = true;
1851			break;
1852		case PIPEDIR_INOUT:
1853			WARN_ON(dl_set);
1854			WARN_ON(ul_set);
1855			*dl_pipe = __le32_to_cpu(entry->pipenum);
1856			*ul_pipe = __le32_to_cpu(entry->pipenum);
1857			dl_set = true;
1858			ul_set = true;
1859			break;
1860		}
1861	}
1862
1863	if (!ul_set || !dl_set)
1864		return -ENOENT;
1865
1866	return 0;
1867}
1868
1869void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1870				     u8 *ul_pipe, u8 *dl_pipe)
1871{
1872	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1873
1874	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1875						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1876						 ul_pipe, dl_pipe);
1877}
1878
1879void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1880{
1881	u32 val;
1882
1883	switch (ar->hw_rev) {
1884	case ATH10K_HW_QCA988X:
1885	case ATH10K_HW_QCA9887:
1886	case ATH10K_HW_QCA6174:
1887	case ATH10K_HW_QCA9377:
1888		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1889					CORE_CTRL_ADDRESS);
1890		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1891		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1892				   CORE_CTRL_ADDRESS, val);
1893		break;
1894	case ATH10K_HW_QCA99X0:
1895	case ATH10K_HW_QCA9984:
1896	case ATH10K_HW_QCA9888:
1897	case ATH10K_HW_QCA4019:
1898		/* TODO: Find appropriate register configuration for QCA99X0
1899		 *  to mask irq/MSI.
1900		 */
1901		break;
1902	case ATH10K_HW_WCN3990:
1903		break;
1904	}
1905}
1906
1907static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1908{
1909	u32 val;
1910
1911	switch (ar->hw_rev) {
1912	case ATH10K_HW_QCA988X:
1913	case ATH10K_HW_QCA9887:
1914	case ATH10K_HW_QCA6174:
1915	case ATH10K_HW_QCA9377:
1916		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1917					CORE_CTRL_ADDRESS);
1918		val |= CORE_CTRL_PCIE_REG_31_MASK;
1919		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1920				   CORE_CTRL_ADDRESS, val);
1921		break;
1922	case ATH10K_HW_QCA99X0:
1923	case ATH10K_HW_QCA9984:
1924	case ATH10K_HW_QCA9888:
1925	case ATH10K_HW_QCA4019:
1926		/* TODO: Find appropriate register configuration for QCA99X0
1927		 *  to unmask irq/MSI.
1928		 */
1929		break;
1930	case ATH10K_HW_WCN3990:
1931		break;
1932	}
1933}
1934
1935static void ath10k_pci_irq_disable(struct ath10k *ar)
1936{
1937	ath10k_ce_disable_interrupts(ar);
1938	ath10k_pci_disable_and_clear_legacy_irq(ar);
1939	ath10k_pci_irq_msi_fw_mask(ar);
1940}
1941
1942static void ath10k_pci_irq_sync(struct ath10k *ar)
1943{
1944	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1945
1946	synchronize_irq(ar_pci->pdev->irq);
1947}
1948
1949static void ath10k_pci_irq_enable(struct ath10k *ar)
1950{
1951	ath10k_ce_enable_interrupts(ar);
1952	ath10k_pci_enable_legacy_irq(ar);
1953	ath10k_pci_irq_msi_fw_unmask(ar);
1954}
1955
1956static int ath10k_pci_hif_start(struct ath10k *ar)
1957{
1958	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1959
1960	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1961
1962	ath10k_core_napi_enable(ar);
1963
1964	ath10k_pci_irq_enable(ar);
1965	ath10k_pci_rx_post(ar);
1966
1967	pcie_capability_clear_and_set_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1968					   PCI_EXP_LNKCTL_ASPMC,
1969					   ar_pci->link_ctl & PCI_EXP_LNKCTL_ASPMC);
1970
1971	return 0;
1972}
1973
1974static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1975{
1976	struct ath10k *ar;
1977	struct ath10k_ce_pipe *ce_pipe;
1978	struct ath10k_ce_ring *ce_ring;
1979	struct sk_buff *skb;
1980	int i;
1981
1982	ar = pci_pipe->hif_ce_state;
1983	ce_pipe = pci_pipe->ce_hdl;
1984	ce_ring = ce_pipe->dest_ring;
1985
1986	if (!ce_ring)
1987		return;
1988
1989	if (!pci_pipe->buf_sz)
1990		return;
1991
1992	for (i = 0; i < ce_ring->nentries; i++) {
1993		skb = ce_ring->per_transfer_context[i];
1994		if (!skb)
1995			continue;
1996
1997		ce_ring->per_transfer_context[i] = NULL;
1998
1999		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
2000				 skb->len + skb_tailroom(skb),
2001				 DMA_FROM_DEVICE);
2002		dev_kfree_skb_any(skb);
2003	}
2004}
2005
2006static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
2007{
2008	struct ath10k *ar;
2009	struct ath10k_ce_pipe *ce_pipe;
2010	struct ath10k_ce_ring *ce_ring;
2011	struct sk_buff *skb;
2012	int i;
2013
2014	ar = pci_pipe->hif_ce_state;
2015	ce_pipe = pci_pipe->ce_hdl;
2016	ce_ring = ce_pipe->src_ring;
2017
2018	if (!ce_ring)
2019		return;
2020
2021	if (!pci_pipe->buf_sz)
2022		return;
2023
2024	for (i = 0; i < ce_ring->nentries; i++) {
2025		skb = ce_ring->per_transfer_context[i];
2026		if (!skb)
2027			continue;
2028
2029		ce_ring->per_transfer_context[i] = NULL;
2030
2031		ath10k_htc_tx_completion_handler(ar, skb);
2032	}
2033}
2034
2035/*
2036 * Cleanup residual buffers for device shutdown:
2037 *    buffers that were enqueued for receive
2038 *    buffers that were to be sent
2039 * Note: Buffers that had completed but which were
2040 * not yet processed are on a completion queue. They
2041 * are handled when the completion thread shuts down.
2042 */
2043static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
2044{
2045	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2046	int pipe_num;
2047
2048	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
2049		struct ath10k_pci_pipe *pipe_info;
2050
2051		pipe_info = &ar_pci->pipe_info[pipe_num];
2052		ath10k_pci_rx_pipe_cleanup(pipe_info);
2053		ath10k_pci_tx_pipe_cleanup(pipe_info);
2054	}
2055}
2056
2057void ath10k_pci_ce_deinit(struct ath10k *ar)
2058{
2059	int i;
2060
2061	for (i = 0; i < CE_COUNT; i++)
2062		ath10k_ce_deinit_pipe(ar, i);
2063}
2064
2065void ath10k_pci_flush(struct ath10k *ar)
2066{
2067	ath10k_pci_rx_retry_sync(ar);
2068	ath10k_pci_buffer_cleanup(ar);
2069}
2070
2071static void ath10k_pci_hif_stop(struct ath10k *ar)
2072{
2073	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2074	unsigned long flags;
2075
2076	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
2077
2078	ath10k_pci_irq_disable(ar);
2079	ath10k_pci_irq_sync(ar);
2080
2081	ath10k_core_napi_sync_disable(ar);
2082
2083	cancel_work_sync(&ar_pci->dump_work);
2084
2085	/* Most likely the device has HTT Rx ring configured. The only way to
2086	 * prevent the device from accessing (and possible corrupting) host
2087	 * memory is to reset the chip now.
2088	 *
2089	 * There's also no known way of masking MSI interrupts on the device.
2090	 * For ranged MSI the CE-related interrupts can be masked. However
2091	 * regardless how many MSI interrupts are assigned the first one
2092	 * is always used for firmware indications (crashes) and cannot be
2093	 * masked. To prevent the device from asserting the interrupt reset it
2094	 * before proceeding with cleanup.
2095	 */
2096	ath10k_pci_safe_chip_reset(ar);
2097
2098	ath10k_pci_flush(ar);
2099
2100	spin_lock_irqsave(&ar_pci->ps_lock, flags);
2101	WARN_ON(ar_pci->ps_wake_refcount > 0);
2102	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
2103}
2104
2105int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
2106				    void *req, u32 req_len,
2107				    void *resp, u32 *resp_len)
2108{
2109	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2110	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
2111	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
2112	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
2113	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
2114	dma_addr_t req_paddr = 0;
2115	dma_addr_t resp_paddr = 0;
2116	struct bmi_xfer xfer = {};
2117	void *treq, *tresp = NULL;
2118	int ret = 0;
2119
2120	might_sleep();
2121
2122	if (resp && !resp_len)
2123		return -EINVAL;
2124
2125	if (resp && resp_len && *resp_len == 0)
2126		return -EINVAL;
2127
2128	treq = kmemdup(req, req_len, GFP_KERNEL);
2129	if (!treq)
2130		return -ENOMEM;
2131
2132	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
2133	ret = dma_mapping_error(ar->dev, req_paddr);
2134	if (ret) {
2135		ret = -EIO;
2136		goto err_dma;
2137	}
2138
2139	if (resp && resp_len) {
2140		tresp = kzalloc(*resp_len, GFP_KERNEL);
2141		if (!tresp) {
2142			ret = -ENOMEM;
2143			goto err_req;
2144		}
2145
2146		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
2147					    DMA_FROM_DEVICE);
2148		ret = dma_mapping_error(ar->dev, resp_paddr);
2149		if (ret) {
2150			ret = -EIO;
2151			goto err_req;
2152		}
2153
2154		xfer.wait_for_resp = true;
2155		xfer.resp_len = 0;
2156
2157		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
2158	}
2159
2160	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
2161	if (ret)
2162		goto err_resp;
2163
2164	ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
2165	if (ret) {
2166		dma_addr_t unused_buffer;
2167		unsigned int unused_nbytes;
2168		unsigned int unused_id;
2169
2170		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
2171					   &unused_nbytes, &unused_id);
2172	} else {
2173		/* non-zero means we did not time out */
2174		ret = 0;
2175	}
2176
2177err_resp:
2178	if (resp) {
2179		dma_addr_t unused_buffer;
2180
2181		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
2182		dma_unmap_single(ar->dev, resp_paddr,
2183				 *resp_len, DMA_FROM_DEVICE);
2184	}
2185err_req:
2186	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
2187
2188	if (ret == 0 && resp_len) {
2189		*resp_len = min(*resp_len, xfer.resp_len);
2190		memcpy(resp, tresp, *resp_len);
2191	}
2192err_dma:
2193	kfree(treq);
2194	kfree(tresp);
2195
2196	return ret;
2197}
2198
2199static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
2200{
2201	struct bmi_xfer *xfer;
2202
2203	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
2204		return;
2205
2206	xfer->tx_done = true;
2207}
2208
2209static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
2210{
2211	struct ath10k *ar = ce_state->ar;
2212	struct bmi_xfer *xfer;
2213	unsigned int nbytes;
2214
2215	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
2216					  &nbytes))
2217		return;
2218
2219	if (WARN_ON_ONCE(!xfer))
2220		return;
2221
2222	if (!xfer->wait_for_resp) {
2223		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
2224		return;
2225	}
2226
2227	xfer->resp_len = nbytes;
2228	xfer->rx_done = true;
2229}
2230
2231static int ath10k_pci_bmi_wait(struct ath10k *ar,
2232			       struct ath10k_ce_pipe *tx_pipe,
2233			       struct ath10k_ce_pipe *rx_pipe,
2234			       struct bmi_xfer *xfer)
2235{
2236	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
2237	unsigned long started = jiffies;
2238	unsigned long dur;
2239	int ret;
2240
2241	while (time_before_eq(jiffies, timeout)) {
2242		ath10k_pci_bmi_send_done(tx_pipe);
2243		ath10k_pci_bmi_recv_data(rx_pipe);
2244
2245		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
2246			ret = 0;
2247			goto out;
2248		}
2249
2250		schedule();
2251	}
2252
2253	ret = -ETIMEDOUT;
2254
2255out:
2256	dur = jiffies - started;
2257	if (dur > HZ)
2258		ath10k_dbg(ar, ATH10K_DBG_BMI,
2259			   "bmi cmd took %lu jiffies hz %d ret %d\n",
2260			   dur, HZ, ret);
2261	return ret;
2262}
2263
2264/*
2265 * Send an interrupt to the device to wake up the Target CPU
2266 * so it has an opportunity to notice any changed state.
2267 */
2268static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
2269{
2270	u32 addr, val;
2271
2272	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
2273	val = ath10k_pci_read32(ar, addr);
2274	val |= CORE_CTRL_CPU_INTR_MASK;
2275	ath10k_pci_write32(ar, addr, val);
2276
2277	return 0;
2278}
2279
2280static int ath10k_pci_get_num_banks(struct ath10k *ar)
2281{
2282	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2283
2284	switch (ar_pci->pdev->device) {
2285	case QCA988X_2_0_DEVICE_ID_UBNT:
2286	case QCA988X_2_0_DEVICE_ID:
2287	case QCA99X0_2_0_DEVICE_ID:
2288	case QCA9888_2_0_DEVICE_ID:
2289	case QCA9984_1_0_DEVICE_ID:
2290	case QCA9887_1_0_DEVICE_ID:
2291		return 1;
2292	case QCA6164_2_1_DEVICE_ID:
2293	case QCA6174_2_1_DEVICE_ID:
2294		switch (MS(ar->bus_param.chip_id, SOC_CHIP_ID_REV)) {
2295		case QCA6174_HW_1_0_CHIP_ID_REV:
2296		case QCA6174_HW_1_1_CHIP_ID_REV:
2297		case QCA6174_HW_2_1_CHIP_ID_REV:
2298		case QCA6174_HW_2_2_CHIP_ID_REV:
2299			return 3;
2300		case QCA6174_HW_1_3_CHIP_ID_REV:
2301			return 2;
2302		case QCA6174_HW_3_0_CHIP_ID_REV:
2303		case QCA6174_HW_3_1_CHIP_ID_REV:
2304		case QCA6174_HW_3_2_CHIP_ID_REV:
2305			return 9;
2306		}
2307		break;
2308	case QCA9377_1_0_DEVICE_ID:
2309		return 9;
2310	}
2311
2312	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2313	return 1;
2314}
2315
2316static int ath10k_bus_get_num_banks(struct ath10k *ar)
2317{
2318	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2319
2320	return ce->bus_ops->get_num_banks(ar);
2321}
2322
2323int ath10k_pci_init_config(struct ath10k *ar)
2324{
2325	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2326	u32 interconnect_targ_addr;
2327	u32 pcie_state_targ_addr = 0;
2328	u32 pipe_cfg_targ_addr = 0;
2329	u32 svc_to_pipe_map = 0;
2330	u32 pcie_config_flags = 0;
2331	u32 ealloc_value;
2332	u32 ealloc_targ_addr;
2333	u32 flag2_value;
2334	u32 flag2_targ_addr;
2335	int ret = 0;
2336
2337	/* Download to Target the CE Config and the service-to-CE map */
2338	interconnect_targ_addr =
2339		host_interest_item_address(HI_ITEM(hi_interconnect_state));
2340
2341	/* Supply Target-side CE configuration */
2342	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2343				     &pcie_state_targ_addr);
2344	if (ret != 0) {
2345		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2346		return ret;
2347	}
2348
2349	if (pcie_state_targ_addr == 0) {
2350		ret = -EIO;
2351		ath10k_err(ar, "Invalid pcie state addr\n");
2352		return ret;
2353	}
2354
2355	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2356					  offsetof(struct pcie_state,
2357						   pipe_cfg_addr)),
2358				     &pipe_cfg_targ_addr);
2359	if (ret != 0) {
2360		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2361		return ret;
2362	}
2363
2364	if (pipe_cfg_targ_addr == 0) {
2365		ret = -EIO;
2366		ath10k_err(ar, "Invalid pipe cfg addr\n");
2367		return ret;
2368	}
2369
2370	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2371					ar_pci->pipe_config,
2372					sizeof(struct ce_pipe_config) *
2373					NUM_TARGET_CE_CONFIG_WLAN);
2374
2375	if (ret != 0) {
2376		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2377		return ret;
2378	}
2379
2380	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2381					  offsetof(struct pcie_state,
2382						   svc_to_pipe_map)),
2383				     &svc_to_pipe_map);
2384	if (ret != 0) {
2385		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2386		return ret;
2387	}
2388
2389	if (svc_to_pipe_map == 0) {
2390		ret = -EIO;
2391		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2392		return ret;
2393	}
2394
2395	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2396					ar_pci->serv_to_pipe,
2397					sizeof(pci_target_service_to_ce_map_wlan));
2398	if (ret != 0) {
2399		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2400		return ret;
2401	}
2402
2403	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2404					  offsetof(struct pcie_state,
2405						   config_flags)),
2406				     &pcie_config_flags);
2407	if (ret != 0) {
2408		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2409		return ret;
2410	}
2411
2412	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2413
2414	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2415					   offsetof(struct pcie_state,
2416						    config_flags)),
2417				      pcie_config_flags);
2418	if (ret != 0) {
2419		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2420		return ret;
2421	}
2422
2423	/* configure early allocation */
2424	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2425
2426	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2427	if (ret != 0) {
2428		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2429		return ret;
2430	}
2431
2432	/* first bank is switched to IRAM */
2433	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2434			 HI_EARLY_ALLOC_MAGIC_MASK);
2435	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2436			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2437			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2438
2439	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2440	if (ret != 0) {
2441		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2442		return ret;
2443	}
2444
2445	/* Tell Target to proceed with initialization */
2446	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2447
2448	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2449	if (ret != 0) {
2450		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2451		return ret;
2452	}
2453
2454	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2455
2456	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2457	if (ret != 0) {
2458		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2459		return ret;
2460	}
2461
2462	return 0;
2463}
2464
2465static void ath10k_pci_override_ce_config(struct ath10k *ar)
2466{
2467	struct ce_attr *attr;
2468	struct ce_pipe_config *config;
2469	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2470
2471	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2472	 * since it is currently used for other feature.
2473	 */
2474
2475	/* Override Host's Copy Engine 5 configuration */
2476	attr = &ar_pci->attr[5];
2477	attr->src_sz_max = 0;
2478	attr->dest_nentries = 0;
2479
2480	/* Override Target firmware's Copy Engine configuration */
2481	config = &ar_pci->pipe_config[5];
2482	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2483	config->nbytes_max = __cpu_to_le32(2048);
2484
2485	/* Map from service/endpoint to Copy Engine */
2486	ar_pci->serv_to_pipe[15].pipenum = __cpu_to_le32(1);
2487}
2488
2489int ath10k_pci_alloc_pipes(struct ath10k *ar)
2490{
2491	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2492	struct ath10k_pci_pipe *pipe;
2493	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2494	int i, ret;
2495
2496	for (i = 0; i < CE_COUNT; i++) {
2497		pipe = &ar_pci->pipe_info[i];
2498		pipe->ce_hdl = &ce->ce_states[i];
2499		pipe->pipe_num = i;
2500		pipe->hif_ce_state = ar;
2501
2502		ret = ath10k_ce_alloc_pipe(ar, i, &ar_pci->attr[i]);
2503		if (ret) {
2504			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2505				   i, ret);
2506			return ret;
2507		}
2508
2509		/* Last CE is Diagnostic Window */
2510		if (i == CE_DIAG_PIPE) {
2511			ar_pci->ce_diag = pipe->ce_hdl;
2512			continue;
2513		}
2514
2515		pipe->buf_sz = (size_t)(ar_pci->attr[i].src_sz_max);
2516	}
2517
2518	return 0;
2519}
2520
2521void ath10k_pci_free_pipes(struct ath10k *ar)
2522{
2523	int i;
2524
2525	for (i = 0; i < CE_COUNT; i++)
2526		ath10k_ce_free_pipe(ar, i);
2527}
2528
2529int ath10k_pci_init_pipes(struct ath10k *ar)
2530{
2531	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2532	int i, ret;
2533
2534	for (i = 0; i < CE_COUNT; i++) {
2535		ret = ath10k_ce_init_pipe(ar, i, &ar_pci->attr[i]);
2536		if (ret) {
2537			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2538				   i, ret);
2539			return ret;
2540		}
2541	}
2542
2543	return 0;
2544}
2545
2546static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2547{
2548	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2549	       FW_IND_EVENT_PENDING;
2550}
2551
2552static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2553{
2554	u32 val;
2555
2556	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2557	val &= ~FW_IND_EVENT_PENDING;
2558	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2559}
2560
2561static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2562{
2563	u32 val;
2564
2565	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2566	return (val == 0xffffffff);
2567}
2568
2569/* this function effectively clears target memory controller assert line */
2570static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2571{
2572	u32 val;
2573
2574	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2575	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2576			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2577	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2578
2579	msleep(10);
2580
2581	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2582	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2583			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2584	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2585
2586	msleep(10);
2587}
2588
2589static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2590{
2591	u32 val;
2592
2593	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2594
2595	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2596	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2597			       val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
 
2598}
2599
2600static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2601{
2602	u32 val;
2603
2604	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
 
2605
2606	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2607			       val | SOC_RESET_CONTROL_CE_RST_MASK);
2608	msleep(10);
2609	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2610			       val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2611}
2612
2613static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2614{
2615	u32 val;
2616
2617	val = ath10k_pci_soc_read32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS);
2618	ath10k_pci_soc_write32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS,
2619			       val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
 
 
2620}
2621
2622static int ath10k_pci_warm_reset(struct ath10k *ar)
2623{
2624	int ret;
2625
2626	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2627
2628	spin_lock_bh(&ar->data_lock);
2629	ar->stats.fw_warm_reset_counter++;
2630	spin_unlock_bh(&ar->data_lock);
2631
2632	ath10k_pci_irq_disable(ar);
2633
2634	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2635	 * were to access copy engine while host performs copy engine reset
2636	 * then it is possible for the device to confuse pci-e controller to
2637	 * the point of bringing host system to a complete stop (i.e. hang).
2638	 */
2639	ath10k_pci_warm_reset_si0(ar);
2640	ath10k_pci_warm_reset_cpu(ar);
2641	ath10k_pci_init_pipes(ar);
2642	ath10k_pci_wait_for_target_init(ar);
2643
2644	ath10k_pci_warm_reset_clear_lf(ar);
2645	ath10k_pci_warm_reset_ce(ar);
2646	ath10k_pci_warm_reset_cpu(ar);
2647	ath10k_pci_init_pipes(ar);
2648
2649	ret = ath10k_pci_wait_for_target_init(ar);
2650	if (ret) {
2651		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2652		return ret;
2653	}
2654
2655	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2656
2657	return 0;
2658}
2659
2660static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2661{
2662	ath10k_pci_irq_disable(ar);
2663	return ath10k_pci_qca99x0_chip_reset(ar);
2664}
2665
2666static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2667{
2668	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2669
2670	if (!ar_pci->pci_soft_reset)
2671		return -ENOTSUPP;
2672
2673	return ar_pci->pci_soft_reset(ar);
2674}
2675
2676static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2677{
2678	int i, ret;
2679	u32 val;
2680
2681	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2682
2683	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2684	 * It is thus preferred to use warm reset which is safer but may not be
2685	 * able to recover the device from all possible fail scenarios.
2686	 *
2687	 * Warm reset doesn't always work on first try so attempt it a few
2688	 * times before giving up.
2689	 */
2690	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2691		ret = ath10k_pci_warm_reset(ar);
2692		if (ret) {
2693			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2694				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2695				    ret);
2696			continue;
2697		}
2698
2699		/* FIXME: Sometimes copy engine doesn't recover after warm
2700		 * reset. In most cases this needs cold reset. In some of these
2701		 * cases the device is in such a state that a cold reset may
2702		 * lock up the host.
2703		 *
2704		 * Reading any host interest register via copy engine is
2705		 * sufficient to verify if device is capable of booting
2706		 * firmware blob.
2707		 */
2708		ret = ath10k_pci_init_pipes(ar);
2709		if (ret) {
2710			ath10k_warn(ar, "failed to init copy engine: %d\n",
2711				    ret);
2712			continue;
2713		}
2714
2715		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2716					     &val);
2717		if (ret) {
2718			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2719				    ret);
2720			continue;
2721		}
2722
2723		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2724		return 0;
2725	}
2726
2727	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2728		ath10k_warn(ar, "refusing cold reset as requested\n");
2729		return -EPERM;
2730	}
2731
2732	ret = ath10k_pci_cold_reset(ar);
2733	if (ret) {
2734		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2735		return ret;
2736	}
2737
2738	ret = ath10k_pci_wait_for_target_init(ar);
2739	if (ret) {
2740		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2741			    ret);
2742		return ret;
2743	}
2744
2745	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2746
2747	return 0;
2748}
2749
2750static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2751{
2752	int ret;
2753
2754	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2755
2756	/* FIXME: QCA6174 requires cold + warm reset to work. */
2757
2758	ret = ath10k_pci_cold_reset(ar);
2759	if (ret) {
2760		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2761		return ret;
2762	}
2763
2764	ret = ath10k_pci_wait_for_target_init(ar);
2765	if (ret) {
2766		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2767			    ret);
2768		return ret;
2769	}
2770
2771	ret = ath10k_pci_warm_reset(ar);
2772	if (ret) {
2773		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2774		return ret;
2775	}
2776
2777	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2778
2779	return 0;
2780}
2781
2782static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2783{
2784	int ret;
2785
2786	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2787
2788	ret = ath10k_pci_cold_reset(ar);
2789	if (ret) {
2790		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2791		return ret;
2792	}
2793
2794	ret = ath10k_pci_wait_for_target_init(ar);
2795	if (ret) {
2796		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2797			    ret);
2798		return ret;
2799	}
2800
2801	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2802
2803	return 0;
2804}
2805
2806static int ath10k_pci_chip_reset(struct ath10k *ar)
2807{
2808	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2809
2810	if (WARN_ON(!ar_pci->pci_hard_reset))
2811		return -ENOTSUPP;
2812
2813	return ar_pci->pci_hard_reset(ar);
2814}
2815
2816static int ath10k_pci_hif_power_up(struct ath10k *ar,
2817				   enum ath10k_firmware_mode fw_mode)
2818{
2819	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2820	int ret;
2821
2822	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2823
2824	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2825				  &ar_pci->link_ctl);
2826	pcie_capability_clear_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2827				   PCI_EXP_LNKCTL_ASPMC);
2828
2829	/*
2830	 * Bring the target up cleanly.
2831	 *
2832	 * The target may be in an undefined state with an AUX-powered Target
2833	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2834	 * restarted (without unloading the driver) then the Target is left
2835	 * (aux) powered and running. On a subsequent driver load, the Target
2836	 * is in an unexpected state. We try to catch that here in order to
2837	 * reset the Target and retry the probe.
2838	 */
2839	ret = ath10k_pci_chip_reset(ar);
2840	if (ret) {
2841		if (ath10k_pci_has_fw_crashed(ar)) {
2842			ath10k_warn(ar, "firmware crashed during chip reset\n");
2843			ath10k_pci_fw_crashed_clear(ar);
2844			ath10k_pci_fw_crashed_dump(ar);
2845		}
2846
2847		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2848		goto err_sleep;
2849	}
2850
2851	ret = ath10k_pci_init_pipes(ar);
2852	if (ret) {
2853		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2854		goto err_sleep;
2855	}
2856
2857	ret = ath10k_pci_init_config(ar);
2858	if (ret) {
2859		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2860		goto err_ce;
2861	}
2862
2863	ret = ath10k_pci_wake_target_cpu(ar);
2864	if (ret) {
2865		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2866		goto err_ce;
2867	}
2868
2869	return 0;
2870
2871err_ce:
2872	ath10k_pci_ce_deinit(ar);
2873
2874err_sleep:
2875	return ret;
2876}
2877
2878void ath10k_pci_hif_power_down(struct ath10k *ar)
2879{
2880	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2881
2882	/* Currently hif_power_up performs effectively a reset and hif_stop
2883	 * resets the chip as well so there's no point in resetting here.
2884	 */
2885}
2886
2887static int ath10k_pci_hif_suspend(struct ath10k *ar)
2888{
2889	/* Nothing to do; the important stuff is in the driver suspend. */
2890	return 0;
2891}
2892
2893static int ath10k_pci_suspend(struct ath10k *ar)
2894{
2895	/* The grace timer can still be counting down and ar->ps_awake be true.
2896	 * It is known that the device may be asleep after resuming regardless
2897	 * of the SoC powersave state before suspending. Hence make sure the
2898	 * device is asleep before proceeding.
2899	 */
2900	ath10k_pci_sleep_sync(ar);
2901
2902	return 0;
2903}
2904
2905static int ath10k_pci_hif_resume(struct ath10k *ar)
2906{
2907	/* Nothing to do; the important stuff is in the driver resume. */
2908	return 0;
2909}
2910
2911static int ath10k_pci_resume(struct ath10k *ar)
2912{
2913	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2914	struct pci_dev *pdev = ar_pci->pdev;
2915	u32 val;
2916	int ret = 0;
2917
2918	ret = ath10k_pci_force_wake(ar);
2919	if (ret) {
2920		ath10k_err(ar, "failed to wake up target: %d\n", ret);
2921		return ret;
2922	}
2923
2924	/* Suspend/Resume resets the PCI configuration space, so we have to
2925	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2926	 * from interfering with C3 CPU state. pci_restore_state won't help
2927	 * here since it only restores the first 64 bytes pci config header.
2928	 */
2929	pci_read_config_dword(pdev, 0x40, &val);
2930	if ((val & 0x0000ff00) != 0)
2931		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2932
2933	return ret;
2934}
2935
2936static bool ath10k_pci_validate_cal(void *data, size_t size)
2937{
2938	__le16 *cal_words = data;
2939	u16 checksum = 0;
2940	size_t i;
2941
2942	if (size % 2 != 0)
2943		return false;
2944
2945	for (i = 0; i < size / 2; i++)
2946		checksum ^= le16_to_cpu(cal_words[i]);
2947
2948	return checksum == 0xffff;
2949}
2950
2951static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2952{
2953	/* Enable SI clock */
2954	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2955
2956	/* Configure GPIOs for I2C operation */
2957	ath10k_pci_write32(ar,
2958			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2959			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2960			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2961			      GPIO_PIN0_CONFIG) |
2962			   SM(1, GPIO_PIN0_PAD_PULL));
2963
2964	ath10k_pci_write32(ar,
2965			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2966			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2967			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2968			   SM(1, GPIO_PIN0_PAD_PULL));
2969
2970	ath10k_pci_write32(ar,
2971			   GPIO_BASE_ADDRESS +
2972			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2973			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2974
2975	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2976	ath10k_pci_write32(ar,
2977			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2978			   SM(1, SI_CONFIG_ERR_INT) |
2979			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2980			   SM(1, SI_CONFIG_I2C) |
2981			   SM(1, SI_CONFIG_POS_SAMPLE) |
2982			   SM(1, SI_CONFIG_INACTIVE_DATA) |
2983			   SM(1, SI_CONFIG_INACTIVE_CLK) |
2984			   SM(8, SI_CONFIG_DIVIDER));
2985}
2986
2987static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2988{
2989	u32 reg;
2990	int wait_limit;
2991
2992	/* set device select byte and for the read operation */
2993	reg = QCA9887_EEPROM_SELECT_READ |
2994	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
2995	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2996	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2997
2998	/* write transmit data, transfer length, and START bit */
2999	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
3000			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
3001			   SM(4, SI_CS_TX_CNT));
3002
3003	/* wait max 1 sec */
3004	wait_limit = 100000;
3005
3006	/* wait for SI_CS_DONE_INT */
3007	do {
3008		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
3009		if (MS(reg, SI_CS_DONE_INT))
3010			break;
3011
3012		wait_limit--;
3013		udelay(10);
3014	} while (wait_limit > 0);
3015
3016	if (!MS(reg, SI_CS_DONE_INT)) {
3017		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
3018			   addr);
3019		return -ETIMEDOUT;
3020	}
3021
3022	/* clear SI_CS_DONE_INT */
3023	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
3024
3025	if (MS(reg, SI_CS_DONE_ERR)) {
3026		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
3027		return -EIO;
3028	}
3029
3030	/* extract receive data */
3031	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
3032	*out = reg;
3033
3034	return 0;
3035}
3036
3037static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
3038					   size_t *data_len)
3039{
3040	u8 *caldata = NULL;
3041	size_t calsize, i;
3042	int ret;
3043
3044	if (!QCA_REV_9887(ar))
3045		return -EOPNOTSUPP;
3046
3047	calsize = ar->hw_params.cal_data_len;
3048	caldata = kmalloc(calsize, GFP_KERNEL);
3049	if (!caldata)
3050		return -ENOMEM;
3051
3052	ath10k_pci_enable_eeprom(ar);
3053
3054	for (i = 0; i < calsize; i++) {
3055		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
3056		if (ret)
3057			goto err_free;
3058	}
3059
3060	if (!ath10k_pci_validate_cal(caldata, calsize))
3061		goto err_free;
3062
3063	*data = caldata;
3064	*data_len = calsize;
3065
3066	return 0;
3067
3068err_free:
3069	kfree(caldata);
3070
3071	return -EINVAL;
3072}
3073
3074static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
3075	.tx_sg			= ath10k_pci_hif_tx_sg,
3076	.diag_read		= ath10k_pci_hif_diag_read,
3077	.diag_write		= ath10k_pci_diag_write_mem,
3078	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
3079	.start			= ath10k_pci_hif_start,
3080	.stop			= ath10k_pci_hif_stop,
3081	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
3082	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
3083	.send_complete_check	= ath10k_pci_hif_send_complete_check,
3084	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
3085	.power_up		= ath10k_pci_hif_power_up,
3086	.power_down		= ath10k_pci_hif_power_down,
3087	.read32			= ath10k_pci_read32,
3088	.write32		= ath10k_pci_write32,
3089	.suspend		= ath10k_pci_hif_suspend,
3090	.resume			= ath10k_pci_hif_resume,
3091	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
3092};
3093
3094/*
3095 * Top-level interrupt handler for all PCI interrupts from a Target.
3096 * When a block of MSI interrupts is allocated, this top-level handler
3097 * is not used; instead, we directly call the correct sub-handler.
3098 */
3099static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
3100{
3101	struct ath10k *ar = arg;
3102	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3103	int ret;
3104
3105	if (ath10k_pci_has_device_gone(ar))
3106		return IRQ_NONE;
3107
3108	ret = ath10k_pci_force_wake(ar);
3109	if (ret) {
3110		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
3111		return IRQ_NONE;
3112	}
3113
3114	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
3115	    !ath10k_pci_irq_pending(ar))
3116		return IRQ_NONE;
3117
3118	ath10k_pci_disable_and_clear_legacy_irq(ar);
3119	ath10k_pci_irq_msi_fw_mask(ar);
3120	napi_schedule(&ar->napi);
3121
3122	return IRQ_HANDLED;
3123}
3124
3125static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
3126{
3127	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
3128	int done = 0;
3129
3130	if (ath10k_pci_has_fw_crashed(ar)) {
3131		ath10k_pci_fw_crashed_clear(ar);
3132		ath10k_pci_fw_crashed_dump(ar);
3133		napi_complete(ctx);
3134		return done;
3135	}
3136
3137	ath10k_ce_per_engine_service_any(ar);
3138
3139	done = ath10k_htt_txrx_compl_task(ar, budget);
3140
3141	if (done < budget) {
3142		napi_complete_done(ctx, done);
3143		/* In case of MSI, it is possible that interrupts are received
3144		 * while NAPI poll is inprogress. So pending interrupts that are
3145		 * received after processing all copy engine pipes by NAPI poll
3146		 * will not be handled again. This is causing failure to
3147		 * complete boot sequence in x86 platform. So before enabling
3148		 * interrupts safer to check for pending interrupts for
3149		 * immediate servicing.
3150		 */
3151		if (ath10k_ce_interrupt_summary(ar)) {
3152			napi_schedule(ctx);
3153			goto out;
3154		}
3155		ath10k_pci_enable_legacy_irq(ar);
3156		ath10k_pci_irq_msi_fw_unmask(ar);
3157	}
3158
3159out:
3160	return done;
3161}
3162
3163static int ath10k_pci_request_irq_msi(struct ath10k *ar)
3164{
3165	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3166	int ret;
3167
3168	ret = request_irq(ar_pci->pdev->irq,
3169			  ath10k_pci_interrupt_handler,
3170			  IRQF_SHARED, "ath10k_pci", ar);
3171	if (ret) {
3172		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
3173			    ar_pci->pdev->irq, ret);
3174		return ret;
3175	}
3176
3177	return 0;
3178}
3179
3180static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
3181{
3182	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3183	int ret;
3184
3185	ret = request_irq(ar_pci->pdev->irq,
3186			  ath10k_pci_interrupt_handler,
3187			  IRQF_SHARED, "ath10k_pci", ar);
3188	if (ret) {
3189		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
3190			    ar_pci->pdev->irq, ret);
3191		return ret;
3192	}
3193
3194	return 0;
3195}
3196
3197static int ath10k_pci_request_irq(struct ath10k *ar)
3198{
3199	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3200
3201	switch (ar_pci->oper_irq_mode) {
3202	case ATH10K_PCI_IRQ_LEGACY:
3203		return ath10k_pci_request_irq_legacy(ar);
3204	case ATH10K_PCI_IRQ_MSI:
3205		return ath10k_pci_request_irq_msi(ar);
3206	default:
3207		return -EINVAL;
3208	}
3209}
3210
3211static void ath10k_pci_free_irq(struct ath10k *ar)
3212{
3213	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3214
3215	free_irq(ar_pci->pdev->irq, ar);
3216}
3217
3218void ath10k_pci_init_napi(struct ath10k *ar)
3219{
3220	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll);
 
3221}
3222
3223static int ath10k_pci_init_irq(struct ath10k *ar)
3224{
3225	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3226	int ret;
3227
3228	ath10k_pci_init_napi(ar);
3229
3230	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
3231		ath10k_info(ar, "limiting irq mode to: %d\n",
3232			    ath10k_pci_irq_mode);
3233
3234	/* Try MSI */
3235	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
3236		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
3237		ret = pci_enable_msi(ar_pci->pdev);
3238		if (ret == 0)
3239			return 0;
3240
3241		/* MHI failed, try legacy irq next */
3242	}
3243
3244	/* Try legacy irq
3245	 *
3246	 * A potential race occurs here: The CORE_BASE write
3247	 * depends on target correctly decoding AXI address but
3248	 * host won't know when target writes BAR to CORE_CTRL.
3249	 * This write might get lost if target has NOT written BAR.
3250	 * For now, fix the race by repeating the write in below
3251	 * synchronization checking.
3252	 */
3253	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
3254
3255	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3256			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3257
3258	return 0;
3259}
3260
3261static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
3262{
3263	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3264			   0);
3265}
3266
3267static int ath10k_pci_deinit_irq(struct ath10k *ar)
3268{
3269	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3270
3271	switch (ar_pci->oper_irq_mode) {
3272	case ATH10K_PCI_IRQ_LEGACY:
3273		ath10k_pci_deinit_irq_legacy(ar);
3274		break;
3275	default:
3276		pci_disable_msi(ar_pci->pdev);
3277		break;
3278	}
3279
3280	return 0;
3281}
3282
3283int ath10k_pci_wait_for_target_init(struct ath10k *ar)
3284{
3285	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3286	unsigned long timeout;
3287	u32 val;
3288
3289	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
3290
3291	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
3292
3293	do {
3294		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
3295
3296		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
3297			   val);
3298
3299		/* target should never return this */
3300		if (val == 0xffffffff)
3301			continue;
3302
3303		/* the device has crashed so don't bother trying anymore */
3304		if (val & FW_IND_EVENT_PENDING)
3305			break;
3306
3307		if (val & FW_IND_INITIALIZED)
3308			break;
3309
3310		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
3311			/* Fix potential race by repeating CORE_BASE writes */
3312			ath10k_pci_enable_legacy_irq(ar);
3313
3314		mdelay(10);
3315	} while (time_before(jiffies, timeout));
3316
3317	ath10k_pci_disable_and_clear_legacy_irq(ar);
3318	ath10k_pci_irq_msi_fw_mask(ar);
3319
3320	if (val == 0xffffffff) {
3321		ath10k_err(ar, "failed to read device register, device is gone\n");
3322		return -EIO;
3323	}
3324
3325	if (val & FW_IND_EVENT_PENDING) {
3326		ath10k_warn(ar, "device has crashed during init\n");
3327		return -ECOMM;
3328	}
3329
3330	if (!(val & FW_IND_INITIALIZED)) {
3331		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3332			   val);
3333		return -ETIMEDOUT;
3334	}
3335
3336	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3337	return 0;
3338}
3339
3340static int ath10k_pci_cold_reset(struct ath10k *ar)
3341{
3342	u32 val;
3343
3344	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3345
3346	spin_lock_bh(&ar->data_lock);
3347
3348	ar->stats.fw_cold_reset_counter++;
3349
3350	spin_unlock_bh(&ar->data_lock);
3351
3352	/* Put Target, including PCIe, into RESET. */
3353	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3354	val |= 1;
3355	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3356
3357	/* After writing into SOC_GLOBAL_RESET to put device into
3358	 * reset and pulling out of reset pcie may not be stable
3359	 * for any immediate pcie register access and cause bus error,
3360	 * add delay before any pcie access request to fix this issue.
3361	 */
3362	msleep(20);
3363
3364	/* Pull Target, including PCIe, out of RESET. */
3365	val &= ~1;
3366	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3367
3368	msleep(20);
3369
3370	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3371
3372	return 0;
3373}
3374
3375static int ath10k_pci_claim(struct ath10k *ar)
3376{
3377	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3378	struct pci_dev *pdev = ar_pci->pdev;
3379	int ret;
3380
3381	pci_set_drvdata(pdev, ar);
3382
3383	ret = pci_enable_device(pdev);
3384	if (ret) {
3385		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3386		return ret;
3387	}
3388
3389	ret = pci_request_region(pdev, BAR_NUM, "ath");
3390	if (ret) {
3391		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3392			   ret);
3393		goto err_device;
3394	}
3395
3396	/* Target expects 32 bit DMA. Enforce it. */
3397	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3398	if (ret) {
3399		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3400		goto err_region;
3401	}
3402
 
 
 
 
 
 
 
3403	pci_set_master(pdev);
3404
3405	/* Arrange for access to Target SoC registers. */
3406	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3407	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3408	if (!ar_pci->mem) {
3409		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3410		ret = -EIO;
3411		goto err_region;
3412	}
3413
3414	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3415	return 0;
3416
 
 
 
3417err_region:
3418	pci_release_region(pdev, BAR_NUM);
3419
3420err_device:
3421	pci_disable_device(pdev);
3422
3423	return ret;
3424}
3425
3426static void ath10k_pci_release(struct ath10k *ar)
3427{
3428	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3429	struct pci_dev *pdev = ar_pci->pdev;
3430
3431	pci_iounmap(pdev, ar_pci->mem);
3432	pci_release_region(pdev, BAR_NUM);
 
3433	pci_disable_device(pdev);
3434}
3435
3436static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3437{
3438	const struct ath10k_pci_supp_chip *supp_chip;
3439	int i;
3440	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3441
3442	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3443		supp_chip = &ath10k_pci_supp_chips[i];
3444
3445		if (supp_chip->dev_id == dev_id &&
3446		    supp_chip->rev_id == rev_id)
3447			return true;
3448	}
3449
3450	return false;
3451}
3452
3453int ath10k_pci_setup_resource(struct ath10k *ar)
3454{
3455	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3456	struct ath10k_ce *ce = ath10k_ce_priv(ar);
3457	int ret;
3458
3459	spin_lock_init(&ce->ce_lock);
3460	spin_lock_init(&ar_pci->ps_lock);
3461	mutex_init(&ar_pci->ce_diag_mutex);
3462
3463	INIT_WORK(&ar_pci->dump_work, ath10k_pci_fw_dump_work);
3464
3465	timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3466
3467	ar_pci->attr = kmemdup(pci_host_ce_config_wlan,
3468			       sizeof(pci_host_ce_config_wlan),
3469			       GFP_KERNEL);
3470	if (!ar_pci->attr)
3471		return -ENOMEM;
3472
3473	ar_pci->pipe_config = kmemdup(pci_target_ce_config_wlan,
3474				      sizeof(pci_target_ce_config_wlan),
3475				      GFP_KERNEL);
3476	if (!ar_pci->pipe_config) {
3477		ret = -ENOMEM;
3478		goto err_free_attr;
3479	}
3480
3481	ar_pci->serv_to_pipe = kmemdup(pci_target_service_to_ce_map_wlan,
3482				       sizeof(pci_target_service_to_ce_map_wlan),
3483				       GFP_KERNEL);
3484	if (!ar_pci->serv_to_pipe) {
3485		ret = -ENOMEM;
3486		goto err_free_pipe_config;
3487	}
3488
3489	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3490		ath10k_pci_override_ce_config(ar);
3491
3492	ret = ath10k_pci_alloc_pipes(ar);
3493	if (ret) {
3494		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3495			   ret);
3496		goto err_free_serv_to_pipe;
3497	}
3498
3499	return 0;
3500
3501err_free_serv_to_pipe:
3502	kfree(ar_pci->serv_to_pipe);
3503err_free_pipe_config:
3504	kfree(ar_pci->pipe_config);
3505err_free_attr:
3506	kfree(ar_pci->attr);
3507	return ret;
3508}
3509
3510void ath10k_pci_release_resource(struct ath10k *ar)
3511{
3512	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3513
3514	ath10k_pci_rx_retry_sync(ar);
3515	netif_napi_del(&ar->napi);
3516	ath10k_pci_ce_deinit(ar);
3517	ath10k_pci_free_pipes(ar);
3518	kfree(ar_pci->attr);
3519	kfree(ar_pci->pipe_config);
3520	kfree(ar_pci->serv_to_pipe);
3521}
3522
3523static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3524	.read32		= ath10k_bus_pci_read32,
3525	.write32	= ath10k_bus_pci_write32,
3526	.get_num_banks	= ath10k_pci_get_num_banks,
3527};
3528
3529static int ath10k_pci_probe(struct pci_dev *pdev,
3530			    const struct pci_device_id *pci_dev)
3531{
3532	int ret = 0;
3533	struct ath10k *ar;
3534	struct ath10k_pci *ar_pci;
3535	enum ath10k_hw_rev hw_rev;
3536	struct ath10k_bus_params bus_params = {};
3537	bool pci_ps, is_qca988x = false;
3538	int (*pci_soft_reset)(struct ath10k *ar);
3539	int (*pci_hard_reset)(struct ath10k *ar);
3540	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3541
3542	switch (pci_dev->device) {
3543	case QCA988X_2_0_DEVICE_ID_UBNT:
3544	case QCA988X_2_0_DEVICE_ID:
3545		hw_rev = ATH10K_HW_QCA988X;
3546		pci_ps = false;
3547		is_qca988x = true;
3548		pci_soft_reset = ath10k_pci_warm_reset;
3549		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3550		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3551		break;
3552	case QCA9887_1_0_DEVICE_ID:
3553		hw_rev = ATH10K_HW_QCA9887;
3554		pci_ps = false;
3555		pci_soft_reset = ath10k_pci_warm_reset;
3556		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3557		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3558		break;
3559	case QCA6164_2_1_DEVICE_ID:
3560	case QCA6174_2_1_DEVICE_ID:
3561		hw_rev = ATH10K_HW_QCA6174;
3562		pci_ps = true;
3563		pci_soft_reset = ath10k_pci_warm_reset;
3564		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3565		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3566		break;
3567	case QCA99X0_2_0_DEVICE_ID:
3568		hw_rev = ATH10K_HW_QCA99X0;
3569		pci_ps = false;
3570		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3571		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3572		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3573		break;
3574	case QCA9984_1_0_DEVICE_ID:
3575		hw_rev = ATH10K_HW_QCA9984;
3576		pci_ps = false;
3577		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3578		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3579		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3580		break;
3581	case QCA9888_2_0_DEVICE_ID:
3582		hw_rev = ATH10K_HW_QCA9888;
3583		pci_ps = false;
3584		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3585		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3586		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3587		break;
3588	case QCA9377_1_0_DEVICE_ID:
3589		hw_rev = ATH10K_HW_QCA9377;
3590		pci_ps = true;
3591		pci_soft_reset = ath10k_pci_warm_reset;
3592		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3593		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3594		break;
3595	default:
3596		WARN_ON(1);
3597		return -ENOTSUPP;
3598	}
3599
3600	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3601				hw_rev, &ath10k_pci_hif_ops);
3602	if (!ar) {
3603		dev_err(&pdev->dev, "failed to allocate core\n");
3604		return -ENOMEM;
3605	}
3606
3607	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3608		   pdev->vendor, pdev->device,
3609		   pdev->subsystem_vendor, pdev->subsystem_device);
3610
3611	ar_pci = ath10k_pci_priv(ar);
3612	ar_pci->pdev = pdev;
3613	ar_pci->dev = &pdev->dev;
3614	ar_pci->ar = ar;
3615	ar->dev_id = pci_dev->device;
3616	ar_pci->pci_ps = pci_ps;
3617	ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3618	ar_pci->pci_soft_reset = pci_soft_reset;
3619	ar_pci->pci_hard_reset = pci_hard_reset;
3620	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3621	ar->ce_priv = &ar_pci->ce;
3622
3623	ar->id.vendor = pdev->vendor;
3624	ar->id.device = pdev->device;
3625	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3626	ar->id.subsystem_device = pdev->subsystem_device;
3627
3628	timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
3629
3630	ret = ath10k_pci_setup_resource(ar);
3631	if (ret) {
3632		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3633		goto err_core_destroy;
3634	}
3635
3636	ret = ath10k_pci_claim(ar);
3637	if (ret) {
3638		ath10k_err(ar, "failed to claim device: %d\n", ret);
3639		goto err_free_pipes;
3640	}
3641
3642	ret = ath10k_pci_force_wake(ar);
3643	if (ret) {
3644		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3645		goto err_sleep;
3646	}
3647
3648	ath10k_pci_ce_deinit(ar);
3649	ath10k_pci_irq_disable(ar);
3650
3651	ret = ath10k_pci_init_irq(ar);
3652	if (ret) {
3653		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3654		goto err_sleep;
3655	}
3656
3657	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3658		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3659		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3660
3661	ret = ath10k_pci_request_irq(ar);
3662	if (ret) {
3663		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3664		goto err_deinit_irq;
3665	}
3666
3667	bus_params.dev_type = ATH10K_DEV_TYPE_LL;
3668	bus_params.link_can_suspend = true;
3669	/* Read CHIP_ID before reset to catch QCA9880-AR1A v1 devices that
3670	 * fall off the bus during chip_reset. These chips have the same pci
3671	 * device id as the QCA9880 BR4A or 2R4E. So that's why the check.
3672	 */
3673	if (is_qca988x) {
3674		bus_params.chip_id =
3675			ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3676		if (bus_params.chip_id != 0xffffffff) {
3677			if (!ath10k_pci_chip_is_supported(pdev->device,
3678							  bus_params.chip_id)) {
3679				ret = -ENODEV;
3680				goto err_unsupported;
3681			}
3682		}
3683	}
3684
3685	ret = ath10k_pci_chip_reset(ar);
3686	if (ret) {
3687		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3688		goto err_free_irq;
3689	}
3690
 
 
3691	bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3692	if (bus_params.chip_id == 0xffffffff) {
3693		ret = -ENODEV;
3694		goto err_unsupported;
3695	}
3696
3697	if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id)) {
3698		ret = -ENODEV;
3699		goto err_unsupported;
 
3700	}
3701
3702	ret = ath10k_core_register(ar, &bus_params);
3703	if (ret) {
3704		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3705		goto err_free_irq;
3706	}
3707
3708	return 0;
3709
3710err_unsupported:
3711	ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3712		   pdev->device, bus_params.chip_id);
3713
3714err_free_irq:
3715	ath10k_pci_free_irq(ar);
 
3716
3717err_deinit_irq:
3718	ath10k_pci_release_resource(ar);
3719
3720err_sleep:
3721	ath10k_pci_sleep_sync(ar);
3722	ath10k_pci_release(ar);
3723
3724err_free_pipes:
3725	ath10k_pci_free_pipes(ar);
3726
3727err_core_destroy:
3728	ath10k_core_destroy(ar);
3729
3730	return ret;
3731}
3732
3733static void ath10k_pci_remove(struct pci_dev *pdev)
3734{
3735	struct ath10k *ar = pci_get_drvdata(pdev);
 
3736
3737	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3738
3739	if (!ar)
3740		return;
3741
 
 
 
 
 
3742	ath10k_core_unregister(ar);
3743	ath10k_pci_free_irq(ar);
3744	ath10k_pci_deinit_irq(ar);
3745	ath10k_pci_release_resource(ar);
3746	ath10k_pci_sleep_sync(ar);
3747	ath10k_pci_release(ar);
3748	ath10k_core_destroy(ar);
3749}
3750
3751MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3752
3753static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3754{
3755	struct ath10k *ar = dev_get_drvdata(dev);
3756	int ret;
3757
3758	ret = ath10k_pci_suspend(ar);
3759	if (ret)
3760		ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3761
3762	return ret;
3763}
3764
3765static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3766{
3767	struct ath10k *ar = dev_get_drvdata(dev);
3768	int ret;
3769
3770	ret = ath10k_pci_resume(ar);
3771	if (ret)
3772		ath10k_warn(ar, "failed to resume hif: %d\n", ret);
3773
3774	return ret;
3775}
3776
3777static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3778			 ath10k_pci_pm_suspend,
3779			 ath10k_pci_pm_resume);
3780
3781static struct pci_driver ath10k_pci_driver = {
3782	.name = "ath10k_pci",
3783	.id_table = ath10k_pci_id_table,
3784	.probe = ath10k_pci_probe,
3785	.remove = ath10k_pci_remove,
3786#ifdef CONFIG_PM
3787	.driver.pm = &ath10k_pci_pm_ops,
3788#endif
3789};
3790
3791static int __init ath10k_pci_init(void)
3792{
3793	int ret1, ret2;
3794
3795	ret1 = pci_register_driver(&ath10k_pci_driver);
3796	if (ret1)
3797		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3798		       ret1);
3799
3800	ret2 = ath10k_ahb_init();
3801	if (ret2)
3802		printk(KERN_ERR "ahb init failed: %d\n", ret2);
3803
3804	if (ret1 && ret2)
3805		return ret1;
3806
3807	/* registered to at least one bus */
3808	return 0;
3809}
3810module_init(ath10k_pci_init);
3811
3812static void __exit ath10k_pci_exit(void)
3813{
3814	pci_unregister_driver(&ath10k_pci_driver);
3815	ath10k_ahb_exit();
3816}
3817
3818module_exit(ath10k_pci_exit);
3819
3820MODULE_AUTHOR("Qualcomm Atheros");
3821MODULE_DESCRIPTION("Driver support for Qualcomm Atheros PCIe/AHB 802.11ac WLAN devices");
3822MODULE_LICENSE("Dual BSD/GPL");
3823
3824/* QCA988x 2.0 firmware files */
3825MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3826MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3827MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3828MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3829MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3830MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3831
3832/* QCA9887 1.0 firmware files */
3833MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3834MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3835MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3836
3837/* QCA6174 2.1 firmware files */
3838MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3839MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3840MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3841MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3842
3843/* QCA6174 3.1 firmware files */
3844MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3845MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3846MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3847MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3848MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3849
3850/* QCA9377 1.0 firmware files */
3851MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3852MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3853MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
v5.4
   1// SPDX-License-Identifier: ISC
   2/*
   3 * Copyright (c) 2005-2011 Atheros Communications Inc.
   4 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
 
   5 */
   6
   7#include <linux/pci.h>
   8#include <linux/module.h>
   9#include <linux/interrupt.h>
  10#include <linux/spinlock.h>
  11#include <linux/bitops.h>
  12
  13#include "core.h"
  14#include "debug.h"
  15#include "coredump.h"
  16
  17#include "targaddrs.h"
  18#include "bmi.h"
  19
  20#include "hif.h"
  21#include "htc.h"
  22
  23#include "ce.h"
  24#include "pci.h"
  25
  26enum ath10k_pci_reset_mode {
  27	ATH10K_PCI_RESET_AUTO = 0,
  28	ATH10K_PCI_RESET_WARM_ONLY = 1,
  29};
  30
  31static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
  32static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
  33
  34module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
  35MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
  36
  37module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
  38MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
  39
  40/* how long wait to wait for target to initialise, in ms */
  41#define ATH10K_PCI_TARGET_WAIT 3000
  42#define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
  43
  44/* Maximum number of bytes that can be handled atomically by
  45 * diag read and write.
  46 */
  47#define ATH10K_DIAG_TRANSFER_LIMIT	0x5000
  48
  49#define QCA99X0_PCIE_BAR0_START_REG    0x81030
  50#define QCA99X0_CPU_MEM_ADDR_REG       0x4d00c
  51#define QCA99X0_CPU_MEM_DATA_REG       0x4d010
  52
  53static const struct pci_device_id ath10k_pci_id_table[] = {
  54	/* PCI-E QCA988X V2 (Ubiquiti branded) */
  55	{ PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
  56
  57	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
  58	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
  59	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
  60	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
  61	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
  62	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
  63	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
  64	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
  65	{0}
  66};
  67
  68static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
  69	/* QCA988X pre 2.0 chips are not supported because they need some nasty
  70	 * hacks. ath10k doesn't have them and these devices crash horribly
  71	 * because of that.
  72	 */
  73	{ QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
  74	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
  75
  76	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
  77	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
  78	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
  79	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
  80	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
  81
  82	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
  83	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
  84	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
  85	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
  86	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
  87
  88	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
  89
  90	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
  91
  92	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
  93
  94	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
  95	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
  96
  97	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
  98};
  99
 100static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
 101static int ath10k_pci_cold_reset(struct ath10k *ar);
 102static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
 103static int ath10k_pci_init_irq(struct ath10k *ar);
 104static int ath10k_pci_deinit_irq(struct ath10k *ar);
 105static int ath10k_pci_request_irq(struct ath10k *ar);
 106static void ath10k_pci_free_irq(struct ath10k *ar);
 107static int ath10k_pci_bmi_wait(struct ath10k *ar,
 108			       struct ath10k_ce_pipe *tx_pipe,
 109			       struct ath10k_ce_pipe *rx_pipe,
 110			       struct bmi_xfer *xfer);
 111static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
 112static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
 113static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
 114static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
 115static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
 116static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
 117static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
 118
 119static struct ce_attr host_ce_config_wlan[] = {
 120	/* CE0: host->target HTC control and raw streams */
 121	{
 122		.flags = CE_ATTR_FLAGS,
 123		.src_nentries = 16,
 124		.src_sz_max = 256,
 125		.dest_nentries = 0,
 126		.send_cb = ath10k_pci_htc_tx_cb,
 127	},
 128
 129	/* CE1: target->host HTT + HTC control */
 130	{
 131		.flags = CE_ATTR_FLAGS,
 132		.src_nentries = 0,
 133		.src_sz_max = 2048,
 134		.dest_nentries = 512,
 135		.recv_cb = ath10k_pci_htt_htc_rx_cb,
 136	},
 137
 138	/* CE2: target->host WMI */
 139	{
 140		.flags = CE_ATTR_FLAGS,
 141		.src_nentries = 0,
 142		.src_sz_max = 2048,
 143		.dest_nentries = 128,
 144		.recv_cb = ath10k_pci_htc_rx_cb,
 145	},
 146
 147	/* CE3: host->target WMI */
 148	{
 149		.flags = CE_ATTR_FLAGS,
 150		.src_nentries = 32,
 151		.src_sz_max = 2048,
 152		.dest_nentries = 0,
 153		.send_cb = ath10k_pci_htc_tx_cb,
 154	},
 155
 156	/* CE4: host->target HTT */
 157	{
 158		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
 159		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
 160		.src_sz_max = 256,
 161		.dest_nentries = 0,
 162		.send_cb = ath10k_pci_htt_tx_cb,
 163	},
 164
 165	/* CE5: target->host HTT (HIF->HTT) */
 166	{
 167		.flags = CE_ATTR_FLAGS,
 168		.src_nentries = 0,
 169		.src_sz_max = 512,
 170		.dest_nentries = 512,
 171		.recv_cb = ath10k_pci_htt_rx_cb,
 172	},
 173
 174	/* CE6: target autonomous hif_memcpy */
 175	{
 176		.flags = CE_ATTR_FLAGS,
 177		.src_nentries = 0,
 178		.src_sz_max = 0,
 179		.dest_nentries = 0,
 180	},
 181
 182	/* CE7: ce_diag, the Diagnostic Window */
 183	{
 184		.flags = CE_ATTR_FLAGS | CE_ATTR_POLL,
 185		.src_nentries = 2,
 186		.src_sz_max = DIAG_TRANSFER_LIMIT,
 187		.dest_nentries = 2,
 188	},
 189
 190	/* CE8: target->host pktlog */
 191	{
 192		.flags = CE_ATTR_FLAGS,
 193		.src_nentries = 0,
 194		.src_sz_max = 2048,
 195		.dest_nentries = 128,
 196		.recv_cb = ath10k_pci_pktlog_rx_cb,
 197	},
 198
 199	/* CE9 target autonomous qcache memcpy */
 200	{
 201		.flags = CE_ATTR_FLAGS,
 202		.src_nentries = 0,
 203		.src_sz_max = 0,
 204		.dest_nentries = 0,
 205	},
 206
 207	/* CE10: target autonomous hif memcpy */
 208	{
 209		.flags = CE_ATTR_FLAGS,
 210		.src_nentries = 0,
 211		.src_sz_max = 0,
 212		.dest_nentries = 0,
 213	},
 214
 215	/* CE11: target autonomous hif memcpy */
 216	{
 217		.flags = CE_ATTR_FLAGS,
 218		.src_nentries = 0,
 219		.src_sz_max = 0,
 220		.dest_nentries = 0,
 221	},
 222};
 223
 224/* Target firmware's Copy Engine configuration. */
 225static struct ce_pipe_config target_ce_config_wlan[] = {
 226	/* CE0: host->target HTC control and raw streams */
 227	{
 228		.pipenum = __cpu_to_le32(0),
 229		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
 230		.nentries = __cpu_to_le32(32),
 231		.nbytes_max = __cpu_to_le32(256),
 232		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 233		.reserved = __cpu_to_le32(0),
 234	},
 235
 236	/* CE1: target->host HTT + HTC control */
 237	{
 238		.pipenum = __cpu_to_le32(1),
 239		.pipedir = __cpu_to_le32(PIPEDIR_IN),
 240		.nentries = __cpu_to_le32(32),
 241		.nbytes_max = __cpu_to_le32(2048),
 242		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 243		.reserved = __cpu_to_le32(0),
 244	},
 245
 246	/* CE2: target->host WMI */
 247	{
 248		.pipenum = __cpu_to_le32(2),
 249		.pipedir = __cpu_to_le32(PIPEDIR_IN),
 250		.nentries = __cpu_to_le32(64),
 251		.nbytes_max = __cpu_to_le32(2048),
 252		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 253		.reserved = __cpu_to_le32(0),
 254	},
 255
 256	/* CE3: host->target WMI */
 257	{
 258		.pipenum = __cpu_to_le32(3),
 259		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
 260		.nentries = __cpu_to_le32(32),
 261		.nbytes_max = __cpu_to_le32(2048),
 262		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 263		.reserved = __cpu_to_le32(0),
 264	},
 265
 266	/* CE4: host->target HTT */
 267	{
 268		.pipenum = __cpu_to_le32(4),
 269		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
 270		.nentries = __cpu_to_le32(256),
 271		.nbytes_max = __cpu_to_le32(256),
 272		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 273		.reserved = __cpu_to_le32(0),
 274	},
 275
 276	/* NB: 50% of src nentries, since tx has 2 frags */
 277
 278	/* CE5: target->host HTT (HIF->HTT) */
 279	{
 280		.pipenum = __cpu_to_le32(5),
 281		.pipedir = __cpu_to_le32(PIPEDIR_IN),
 282		.nentries = __cpu_to_le32(32),
 283		.nbytes_max = __cpu_to_le32(512),
 284		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 285		.reserved = __cpu_to_le32(0),
 286	},
 287
 288	/* CE6: Reserved for target autonomous hif_memcpy */
 289	{
 290		.pipenum = __cpu_to_le32(6),
 291		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
 292		.nentries = __cpu_to_le32(32),
 293		.nbytes_max = __cpu_to_le32(4096),
 294		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 295		.reserved = __cpu_to_le32(0),
 296	},
 297
 298	/* CE7 used only by Host */
 299	{
 300		.pipenum = __cpu_to_le32(7),
 301		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
 302		.nentries = __cpu_to_le32(0),
 303		.nbytes_max = __cpu_to_le32(0),
 304		.flags = __cpu_to_le32(0),
 305		.reserved = __cpu_to_le32(0),
 306	},
 307
 308	/* CE8 target->host packtlog */
 309	{
 310		.pipenum = __cpu_to_le32(8),
 311		.pipedir = __cpu_to_le32(PIPEDIR_IN),
 312		.nentries = __cpu_to_le32(64),
 313		.nbytes_max = __cpu_to_le32(2048),
 314		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
 315		.reserved = __cpu_to_le32(0),
 316	},
 317
 318	/* CE9 target autonomous qcache memcpy */
 319	{
 320		.pipenum = __cpu_to_le32(9),
 321		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
 322		.nentries = __cpu_to_le32(32),
 323		.nbytes_max = __cpu_to_le32(2048),
 324		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
 325		.reserved = __cpu_to_le32(0),
 326	},
 327
 328	/* It not necessary to send target wlan configuration for CE10 & CE11
 329	 * as these CEs are not actively used in target.
 330	 */
 331};
 332
 333/*
 334 * Map from service/endpoint to Copy Engine.
 335 * This table is derived from the CE_PCI TABLE, above.
 336 * It is passed to the Target at startup for use by firmware.
 337 */
 338static struct service_to_pipe target_service_to_ce_map_wlan[] = {
 339	{
 340		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
 341		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 342		__cpu_to_le32(3),
 343	},
 344	{
 345		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
 346		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 347		__cpu_to_le32(2),
 348	},
 349	{
 350		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
 351		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 352		__cpu_to_le32(3),
 353	},
 354	{
 355		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
 356		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 357		__cpu_to_le32(2),
 358	},
 359	{
 360		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
 361		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 362		__cpu_to_le32(3),
 363	},
 364	{
 365		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
 366		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 367		__cpu_to_le32(2),
 368	},
 369	{
 370		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
 371		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 372		__cpu_to_le32(3),
 373	},
 374	{
 375		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
 376		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 377		__cpu_to_le32(2),
 378	},
 379	{
 380		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
 381		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 382		__cpu_to_le32(3),
 383	},
 384	{
 385		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
 386		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 387		__cpu_to_le32(2),
 388	},
 389	{
 390		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
 391		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 392		__cpu_to_le32(0),
 393	},
 394	{
 395		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
 396		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 397		__cpu_to_le32(1),
 398	},
 399	{ /* not used */
 400		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
 401		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 402		__cpu_to_le32(0),
 403	},
 404	{ /* not used */
 405		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
 406		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 407		__cpu_to_le32(1),
 408	},
 409	{
 410		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
 411		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 412		__cpu_to_le32(4),
 413	},
 414	{
 415		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
 416		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 417		__cpu_to_le32(5),
 418	},
 419
 420	/* (Additions here) */
 421
 422	{ /* must be last */
 423		__cpu_to_le32(0),
 424		__cpu_to_le32(0),
 425		__cpu_to_le32(0),
 426	},
 427};
 428
 429static bool ath10k_pci_is_awake(struct ath10k *ar)
 430{
 431	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 432	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 433			   RTC_STATE_ADDRESS);
 434
 435	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
 436}
 437
 438static void __ath10k_pci_wake(struct ath10k *ar)
 439{
 440	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 441
 442	lockdep_assert_held(&ar_pci->ps_lock);
 443
 444	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
 445		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 446
 447	iowrite32(PCIE_SOC_WAKE_V_MASK,
 448		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 449		  PCIE_SOC_WAKE_ADDRESS);
 450}
 451
 452static void __ath10k_pci_sleep(struct ath10k *ar)
 453{
 454	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 455
 456	lockdep_assert_held(&ar_pci->ps_lock);
 457
 458	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
 459		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 460
 461	iowrite32(PCIE_SOC_WAKE_RESET,
 462		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 463		  PCIE_SOC_WAKE_ADDRESS);
 464	ar_pci->ps_awake = false;
 465}
 466
 467static int ath10k_pci_wake_wait(struct ath10k *ar)
 468{
 469	int tot_delay = 0;
 470	int curr_delay = 5;
 471
 472	while (tot_delay < PCIE_WAKE_TIMEOUT) {
 473		if (ath10k_pci_is_awake(ar)) {
 474			if (tot_delay > PCIE_WAKE_LATE_US)
 475				ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
 476					    tot_delay / 1000);
 477			return 0;
 478		}
 479
 480		udelay(curr_delay);
 481		tot_delay += curr_delay;
 482
 483		if (curr_delay < 50)
 484			curr_delay += 5;
 485	}
 486
 487	return -ETIMEDOUT;
 488}
 489
 490static int ath10k_pci_force_wake(struct ath10k *ar)
 491{
 492	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 493	unsigned long flags;
 494	int ret = 0;
 495
 496	if (ar_pci->pci_ps)
 497		return ret;
 498
 499	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 500
 501	if (!ar_pci->ps_awake) {
 502		iowrite32(PCIE_SOC_WAKE_V_MASK,
 503			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 504			  PCIE_SOC_WAKE_ADDRESS);
 505
 506		ret = ath10k_pci_wake_wait(ar);
 507		if (ret == 0)
 508			ar_pci->ps_awake = true;
 509	}
 510
 511	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 512
 513	return ret;
 514}
 515
 516static void ath10k_pci_force_sleep(struct ath10k *ar)
 517{
 518	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 519	unsigned long flags;
 520
 521	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 522
 523	iowrite32(PCIE_SOC_WAKE_RESET,
 524		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 525		  PCIE_SOC_WAKE_ADDRESS);
 526	ar_pci->ps_awake = false;
 527
 528	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 529}
 530
 531static int ath10k_pci_wake(struct ath10k *ar)
 532{
 533	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 534	unsigned long flags;
 535	int ret = 0;
 536
 537	if (ar_pci->pci_ps == 0)
 538		return ret;
 539
 540	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 541
 542	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
 543		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 544
 545	/* This function can be called very frequently. To avoid excessive
 546	 * CPU stalls for MMIO reads use a cache var to hold the device state.
 547	 */
 548	if (!ar_pci->ps_awake) {
 549		__ath10k_pci_wake(ar);
 550
 551		ret = ath10k_pci_wake_wait(ar);
 552		if (ret == 0)
 553			ar_pci->ps_awake = true;
 554	}
 555
 556	if (ret == 0) {
 557		ar_pci->ps_wake_refcount++;
 558		WARN_ON(ar_pci->ps_wake_refcount == 0);
 559	}
 560
 561	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 562
 563	return ret;
 564}
 565
 566static void ath10k_pci_sleep(struct ath10k *ar)
 567{
 568	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 569	unsigned long flags;
 570
 571	if (ar_pci->pci_ps == 0)
 572		return;
 573
 574	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 575
 576	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
 577		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 578
 579	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
 580		goto skip;
 581
 582	ar_pci->ps_wake_refcount--;
 583
 584	mod_timer(&ar_pci->ps_timer, jiffies +
 585		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
 586
 587skip:
 588	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 589}
 590
 591static void ath10k_pci_ps_timer(struct timer_list *t)
 592{
 593	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
 594	struct ath10k *ar = ar_pci->ar;
 595	unsigned long flags;
 596
 597	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 598
 599	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
 600		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 601
 602	if (ar_pci->ps_wake_refcount > 0)
 603		goto skip;
 604
 605	__ath10k_pci_sleep(ar);
 606
 607skip:
 608	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 609}
 610
 611static void ath10k_pci_sleep_sync(struct ath10k *ar)
 612{
 613	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 614	unsigned long flags;
 615
 616	if (ar_pci->pci_ps == 0) {
 617		ath10k_pci_force_sleep(ar);
 618		return;
 619	}
 620
 621	del_timer_sync(&ar_pci->ps_timer);
 622
 623	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 624	WARN_ON(ar_pci->ps_wake_refcount > 0);
 625	__ath10k_pci_sleep(ar);
 626	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 627}
 628
 629static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
 630{
 631	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 632	int ret;
 633
 634	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
 635		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
 636			    offset, offset + sizeof(value), ar_pci->mem_len);
 637		return;
 638	}
 639
 640	ret = ath10k_pci_wake(ar);
 641	if (ret) {
 642		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
 643			    value, offset, ret);
 644		return;
 645	}
 646
 647	iowrite32(value, ar_pci->mem + offset);
 648	ath10k_pci_sleep(ar);
 649}
 650
 651static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
 652{
 653	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 654	u32 val;
 655	int ret;
 656
 657	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
 658		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
 659			    offset, offset + sizeof(val), ar_pci->mem_len);
 660		return 0;
 661	}
 662
 663	ret = ath10k_pci_wake(ar);
 664	if (ret) {
 665		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
 666			    offset, ret);
 667		return 0xffffffff;
 668	}
 669
 670	val = ioread32(ar_pci->mem + offset);
 671	ath10k_pci_sleep(ar);
 672
 673	return val;
 674}
 675
 676inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
 677{
 678	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 679
 680	ce->bus_ops->write32(ar, offset, value);
 681}
 682
 683inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
 684{
 685	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 686
 687	return ce->bus_ops->read32(ar, offset);
 688}
 689
 690u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
 691{
 692	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
 693}
 694
 695void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
 696{
 697	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
 698}
 699
 700u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
 701{
 702	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
 703}
 704
 705void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
 706{
 707	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
 708}
 709
 710bool ath10k_pci_irq_pending(struct ath10k *ar)
 711{
 712	u32 cause;
 713
 714	/* Check if the shared legacy irq is for us */
 715	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
 716				  PCIE_INTR_CAUSE_ADDRESS);
 717	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
 718		return true;
 719
 720	return false;
 721}
 722
 723void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
 724{
 725	/* IMPORTANT: INTR_CLR register has to be set after
 726	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
 727	 * really cleared.
 728	 */
 729	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
 730			   0);
 731	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
 732			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
 733
 734	/* IMPORTANT: this extra read transaction is required to
 735	 * flush the posted write buffer.
 736	 */
 737	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
 738				PCIE_INTR_ENABLE_ADDRESS);
 739}
 740
 741void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
 742{
 743	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
 744			   PCIE_INTR_ENABLE_ADDRESS,
 745			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
 746
 747	/* IMPORTANT: this extra read transaction is required to
 748	 * flush the posted write buffer.
 749	 */
 750	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
 751				PCIE_INTR_ENABLE_ADDRESS);
 752}
 753
 754static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
 755{
 756	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 757
 758	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
 759		return "msi";
 760
 761	return "legacy";
 762}
 763
 764static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
 765{
 766	struct ath10k *ar = pipe->hif_ce_state;
 767	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 768	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
 769	struct sk_buff *skb;
 770	dma_addr_t paddr;
 771	int ret;
 772
 773	skb = dev_alloc_skb(pipe->buf_sz);
 774	if (!skb)
 775		return -ENOMEM;
 776
 777	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
 778
 779	paddr = dma_map_single(ar->dev, skb->data,
 780			       skb->len + skb_tailroom(skb),
 781			       DMA_FROM_DEVICE);
 782	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
 783		ath10k_warn(ar, "failed to dma map pci rx buf\n");
 784		dev_kfree_skb_any(skb);
 785		return -EIO;
 786	}
 787
 788	ATH10K_SKB_RXCB(skb)->paddr = paddr;
 789
 790	spin_lock_bh(&ce->ce_lock);
 791	ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
 792	spin_unlock_bh(&ce->ce_lock);
 793	if (ret) {
 794		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
 795				 DMA_FROM_DEVICE);
 796		dev_kfree_skb_any(skb);
 797		return ret;
 798	}
 799
 800	return 0;
 801}
 802
 803static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
 804{
 805	struct ath10k *ar = pipe->hif_ce_state;
 806	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 807	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 808	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
 809	int ret, num;
 810
 811	if (pipe->buf_sz == 0)
 812		return;
 813
 814	if (!ce_pipe->dest_ring)
 815		return;
 816
 817	spin_lock_bh(&ce->ce_lock);
 818	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
 819	spin_unlock_bh(&ce->ce_lock);
 820
 821	while (num >= 0) {
 822		ret = __ath10k_pci_rx_post_buf(pipe);
 823		if (ret) {
 824			if (ret == -ENOSPC)
 825				break;
 826			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
 827			mod_timer(&ar_pci->rx_post_retry, jiffies +
 828				  ATH10K_PCI_RX_POST_RETRY_MS);
 829			break;
 830		}
 831		num--;
 832	}
 833}
 834
 835void ath10k_pci_rx_post(struct ath10k *ar)
 836{
 837	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 838	int i;
 839
 840	for (i = 0; i < CE_COUNT; i++)
 841		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
 842}
 843
 844void ath10k_pci_rx_replenish_retry(struct timer_list *t)
 845{
 846	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
 847	struct ath10k *ar = ar_pci->ar;
 848
 849	ath10k_pci_rx_post(ar);
 850}
 851
 852static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
 853{
 854	u32 val = 0, region = addr & 0xfffff;
 855
 856	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
 857				 & 0x7ff) << 21;
 858	val |= 0x100000 | region;
 859	return val;
 860}
 861
 862/* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr.
 863 * Support to access target space below 1M for qca6174 and qca9377.
 864 * If target space is below 1M, the bit[20] of converted CE addr is 0.
 865 * Otherwise bit[20] of converted CE addr is 1.
 866 */
 867static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
 868{
 869	u32 val = 0, region = addr & 0xfffff;
 870
 871	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
 872				 & 0x7ff) << 21;
 873	val |= ((addr >= 0x100000) ? 0x100000 : 0) | region;
 874	return val;
 875}
 876
 877static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
 878{
 879	u32 val = 0, region = addr & 0xfffff;
 880
 881	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
 882	val |= 0x100000 | region;
 883	return val;
 884}
 885
 886static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
 887{
 888	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 889
 890	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
 891		return -ENOTSUPP;
 892
 893	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
 894}
 895
 896/*
 897 * Diagnostic read/write access is provided for startup/config/debug usage.
 898 * Caller must guarantee proper alignment, when applicable, and single user
 899 * at any moment.
 900 */
 901static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
 902				    int nbytes)
 903{
 904	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 905	int ret = 0;
 906	u32 *buf;
 907	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
 908	struct ath10k_ce_pipe *ce_diag;
 909	/* Host buffer address in CE space */
 910	u32 ce_data;
 911	dma_addr_t ce_data_base = 0;
 912	void *data_buf;
 913	int i;
 914
 915	mutex_lock(&ar_pci->ce_diag_mutex);
 916	ce_diag = ar_pci->ce_diag;
 917
 918	/*
 919	 * Allocate a temporary bounce buffer to hold caller's data
 920	 * to be DMA'ed from Target. This guarantees
 921	 *   1) 4-byte alignment
 922	 *   2) Buffer in DMA-able space
 923	 */
 924	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
 925
 926	data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
 927				      GFP_ATOMIC);
 928	if (!data_buf) {
 929		ret = -ENOMEM;
 930		goto done;
 931	}
 932
 933	/* The address supplied by the caller is in the
 934	 * Target CPU virtual address space.
 935	 *
 936	 * In order to use this address with the diagnostic CE,
 937	 * convert it from Target CPU virtual address space
 938	 * to CE address space
 939	 */
 940	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
 941
 942	remaining_bytes = nbytes;
 943	ce_data = ce_data_base;
 944	while (remaining_bytes) {
 945		nbytes = min_t(unsigned int, remaining_bytes,
 946			       DIAG_TRANSFER_LIMIT);
 947
 948		ret = ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
 949		if (ret != 0)
 950			goto done;
 951
 952		/* Request CE to send from Target(!) address to Host buffer */
 953		ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0);
 954		if (ret)
 955			goto done;
 956
 957		i = 0;
 958		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
 959			udelay(DIAG_ACCESS_CE_WAIT_US);
 960			i += DIAG_ACCESS_CE_WAIT_US;
 961
 962			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
 963				ret = -EBUSY;
 964				goto done;
 965			}
 966		}
 967
 968		i = 0;
 969		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
 970						     &completed_nbytes) != 0) {
 971			udelay(DIAG_ACCESS_CE_WAIT_US);
 972			i += DIAG_ACCESS_CE_WAIT_US;
 973
 974			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
 975				ret = -EBUSY;
 976				goto done;
 977			}
 978		}
 979
 980		if (nbytes != completed_nbytes) {
 981			ret = -EIO;
 982			goto done;
 983		}
 984
 985		if (*buf != ce_data) {
 986			ret = -EIO;
 987			goto done;
 988		}
 989
 990		remaining_bytes -= nbytes;
 991		memcpy(data, data_buf, nbytes);
 992
 993		address += nbytes;
 994		data += nbytes;
 995	}
 996
 997done:
 998
 999	if (data_buf)
1000		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1001				  ce_data_base);
1002
1003	mutex_unlock(&ar_pci->ce_diag_mutex);
1004
1005	return ret;
1006}
1007
1008static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
1009{
1010	__le32 val = 0;
1011	int ret;
1012
1013	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1014	*value = __le32_to_cpu(val);
1015
1016	return ret;
1017}
1018
1019static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1020				     u32 src, u32 len)
1021{
1022	u32 host_addr, addr;
1023	int ret;
1024
1025	host_addr = host_interest_item_address(src);
1026
1027	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1028	if (ret != 0) {
1029		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1030			    src, ret);
1031		return ret;
1032	}
1033
1034	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1035	if (ret != 0) {
1036		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1037			    addr, len, ret);
1038		return ret;
1039	}
1040
1041	return 0;
1042}
1043
1044#define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1045	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1046
1047int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1048			      const void *data, int nbytes)
1049{
1050	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1051	int ret = 0;
1052	u32 *buf;
1053	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
1054	struct ath10k_ce_pipe *ce_diag;
1055	void *data_buf;
1056	dma_addr_t ce_data_base = 0;
1057	int i;
1058
1059	mutex_lock(&ar_pci->ce_diag_mutex);
1060	ce_diag = ar_pci->ce_diag;
1061
1062	/*
1063	 * Allocate a temporary bounce buffer to hold caller's data
1064	 * to be DMA'ed to Target. This guarantees
1065	 *   1) 4-byte alignment
1066	 *   2) Buffer in DMA-able space
1067	 */
1068	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
1069
1070	data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
1071				      GFP_ATOMIC);
1072	if (!data_buf) {
1073		ret = -ENOMEM;
1074		goto done;
1075	}
1076
1077	/*
1078	 * The address supplied by the caller is in the
1079	 * Target CPU virtual address space.
1080	 *
1081	 * In order to use this address with the diagnostic CE,
1082	 * convert it from
1083	 *    Target CPU virtual address space
1084	 * to
1085	 *    CE address space
1086	 */
1087	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1088
1089	remaining_bytes = nbytes;
1090	while (remaining_bytes) {
1091		/* FIXME: check cast */
1092		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1093
1094		/* Copy caller's data to allocated DMA buf */
1095		memcpy(data_buf, data, nbytes);
1096
1097		/* Set up to receive directly into Target(!) address */
1098		ret = ath10k_ce_rx_post_buf(ce_diag, &address, address);
1099		if (ret != 0)
1100			goto done;
1101
1102		/*
1103		 * Request CE to send caller-supplied data that
1104		 * was copied to bounce buffer to Target(!) address.
1105		 */
1106		ret = ath10k_ce_send(ce_diag, NULL, ce_data_base, nbytes, 0, 0);
1107		if (ret != 0)
1108			goto done;
1109
1110		i = 0;
1111		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
1112			udelay(DIAG_ACCESS_CE_WAIT_US);
1113			i += DIAG_ACCESS_CE_WAIT_US;
1114
1115			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1116				ret = -EBUSY;
1117				goto done;
1118			}
1119		}
1120
1121		i = 0;
1122		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
1123						     &completed_nbytes) != 0) {
1124			udelay(DIAG_ACCESS_CE_WAIT_US);
1125			i += DIAG_ACCESS_CE_WAIT_US;
1126
1127			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1128				ret = -EBUSY;
1129				goto done;
1130			}
1131		}
1132
1133		if (nbytes != completed_nbytes) {
1134			ret = -EIO;
1135			goto done;
1136		}
1137
1138		if (*buf != address) {
1139			ret = -EIO;
1140			goto done;
1141		}
1142
1143		remaining_bytes -= nbytes;
1144		address += nbytes;
1145		data += nbytes;
1146	}
1147
1148done:
1149	if (data_buf) {
1150		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1151				  ce_data_base);
1152	}
1153
1154	if (ret != 0)
1155		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1156			    address, ret);
1157
1158	mutex_unlock(&ar_pci->ce_diag_mutex);
1159
1160	return ret;
1161}
1162
1163static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1164{
1165	__le32 val = __cpu_to_le32(value);
1166
1167	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1168}
1169
1170/* Called by lower (CE) layer when a send to Target completes. */
1171static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1172{
1173	struct ath10k *ar = ce_state->ar;
1174	struct sk_buff_head list;
1175	struct sk_buff *skb;
1176
1177	__skb_queue_head_init(&list);
1178	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1179		/* no need to call tx completion for NULL pointers */
1180		if (skb == NULL)
1181			continue;
1182
1183		__skb_queue_tail(&list, skb);
1184	}
1185
1186	while ((skb = __skb_dequeue(&list)))
1187		ath10k_htc_tx_completion_handler(ar, skb);
1188}
1189
1190static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1191				     void (*callback)(struct ath10k *ar,
1192						      struct sk_buff *skb))
1193{
1194	struct ath10k *ar = ce_state->ar;
1195	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1196	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1197	struct sk_buff *skb;
1198	struct sk_buff_head list;
1199	void *transfer_context;
1200	unsigned int nbytes, max_nbytes;
1201
1202	__skb_queue_head_init(&list);
1203	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1204					     &nbytes) == 0) {
1205		skb = transfer_context;
1206		max_nbytes = skb->len + skb_tailroom(skb);
1207		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1208				 max_nbytes, DMA_FROM_DEVICE);
1209
1210		if (unlikely(max_nbytes < nbytes)) {
1211			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1212				    nbytes, max_nbytes);
1213			dev_kfree_skb_any(skb);
1214			continue;
1215		}
1216
1217		skb_put(skb, nbytes);
1218		__skb_queue_tail(&list, skb);
1219	}
1220
1221	while ((skb = __skb_dequeue(&list))) {
1222		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1223			   ce_state->id, skb->len);
1224		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1225				skb->data, skb->len);
1226
1227		callback(ar, skb);
1228	}
1229
1230	ath10k_pci_rx_post_pipe(pipe_info);
1231}
1232
1233static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1234					 void (*callback)(struct ath10k *ar,
1235							  struct sk_buff *skb))
1236{
1237	struct ath10k *ar = ce_state->ar;
1238	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1239	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1240	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1241	struct sk_buff *skb;
1242	struct sk_buff_head list;
1243	void *transfer_context;
1244	unsigned int nbytes, max_nbytes, nentries;
1245	int orig_len;
1246
1247	/* No need to aquire ce_lock for CE5, since this is the only place CE5
1248	 * is processed other than init and deinit. Before releasing CE5
1249	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1250	 */
1251	__skb_queue_head_init(&list);
1252	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1253						    &nbytes) == 0) {
1254		skb = transfer_context;
1255		max_nbytes = skb->len + skb_tailroom(skb);
1256
1257		if (unlikely(max_nbytes < nbytes)) {
1258			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1259				    nbytes, max_nbytes);
1260			continue;
1261		}
1262
1263		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1264					max_nbytes, DMA_FROM_DEVICE);
1265		skb_put(skb, nbytes);
1266		__skb_queue_tail(&list, skb);
1267	}
1268
1269	nentries = skb_queue_len(&list);
1270	while ((skb = __skb_dequeue(&list))) {
1271		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1272			   ce_state->id, skb->len);
1273		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1274				skb->data, skb->len);
1275
1276		orig_len = skb->len;
1277		callback(ar, skb);
1278		skb_push(skb, orig_len - skb->len);
1279		skb_reset_tail_pointer(skb);
1280		skb_trim(skb, 0);
1281
1282		/*let device gain the buffer again*/
1283		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1284					   skb->len + skb_tailroom(skb),
1285					   DMA_FROM_DEVICE);
1286	}
1287	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1288}
1289
1290/* Called by lower (CE) layer when data is received from the Target. */
1291static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1292{
1293	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1294}
1295
1296static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1297{
1298	/* CE4 polling needs to be done whenever CE pipe which transports
1299	 * HTT Rx (target->host) is processed.
1300	 */
1301	ath10k_ce_per_engine_service(ce_state->ar, 4);
1302
1303	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1304}
1305
1306/* Called by lower (CE) layer when data is received from the Target.
1307 * Only 10.4 firmware uses separate CE to transfer pktlog data.
1308 */
1309static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1310{
1311	ath10k_pci_process_rx_cb(ce_state,
1312				 ath10k_htt_rx_pktlog_completion_handler);
1313}
1314
1315/* Called by lower (CE) layer when a send to HTT Target completes. */
1316static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1317{
1318	struct ath10k *ar = ce_state->ar;
1319	struct sk_buff *skb;
1320
1321	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1322		/* no need to call tx completion for NULL pointers */
1323		if (!skb)
1324			continue;
1325
1326		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1327				 skb->len, DMA_TO_DEVICE);
1328		ath10k_htt_hif_tx_complete(ar, skb);
1329	}
1330}
1331
1332static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1333{
1334	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1335	ath10k_htt_t2h_msg_handler(ar, skb);
1336}
1337
1338/* Called by lower (CE) layer when HTT data is received from the Target. */
1339static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1340{
1341	/* CE4 polling needs to be done whenever CE pipe which transports
1342	 * HTT Rx (target->host) is processed.
1343	 */
1344	ath10k_ce_per_engine_service(ce_state->ar, 4);
1345
1346	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1347}
1348
1349int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1350			 struct ath10k_hif_sg_item *items, int n_items)
1351{
1352	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1353	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1354	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1355	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1356	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1357	unsigned int nentries_mask;
1358	unsigned int sw_index;
1359	unsigned int write_index;
1360	int err, i = 0;
1361
1362	spin_lock_bh(&ce->ce_lock);
1363
1364	nentries_mask = src_ring->nentries_mask;
1365	sw_index = src_ring->sw_index;
1366	write_index = src_ring->write_index;
1367
1368	if (unlikely(CE_RING_DELTA(nentries_mask,
1369				   write_index, sw_index - 1) < n_items)) {
1370		err = -ENOBUFS;
1371		goto err;
1372	}
1373
1374	for (i = 0; i < n_items - 1; i++) {
1375		ath10k_dbg(ar, ATH10K_DBG_PCI,
1376			   "pci tx item %d paddr %pad len %d n_items %d\n",
1377			   i, &items[i].paddr, items[i].len, n_items);
1378		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1379				items[i].vaddr, items[i].len);
1380
1381		err = ath10k_ce_send_nolock(ce_pipe,
1382					    items[i].transfer_context,
1383					    items[i].paddr,
1384					    items[i].len,
1385					    items[i].transfer_id,
1386					    CE_SEND_FLAG_GATHER);
1387		if (err)
1388			goto err;
1389	}
1390
1391	/* `i` is equal to `n_items -1` after for() */
1392
1393	ath10k_dbg(ar, ATH10K_DBG_PCI,
1394		   "pci tx item %d paddr %pad len %d n_items %d\n",
1395		   i, &items[i].paddr, items[i].len, n_items);
1396	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1397			items[i].vaddr, items[i].len);
1398
1399	err = ath10k_ce_send_nolock(ce_pipe,
1400				    items[i].transfer_context,
1401				    items[i].paddr,
1402				    items[i].len,
1403				    items[i].transfer_id,
1404				    0);
1405	if (err)
1406		goto err;
1407
1408	spin_unlock_bh(&ce->ce_lock);
1409	return 0;
1410
1411err:
1412	for (; i > 0; i--)
1413		__ath10k_ce_send_revert(ce_pipe);
1414
1415	spin_unlock_bh(&ce->ce_lock);
1416	return err;
1417}
1418
1419int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1420			     size_t buf_len)
1421{
1422	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1423}
1424
1425u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1426{
1427	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1428
1429	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1430
1431	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1432}
1433
1434static void ath10k_pci_dump_registers(struct ath10k *ar,
1435				      struct ath10k_fw_crash_data *crash_data)
1436{
1437	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1438	int i, ret;
1439
1440	lockdep_assert_held(&ar->dump_mutex);
1441
1442	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1443				      hi_failure_state,
1444				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1445	if (ret) {
1446		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1447		return;
1448	}
1449
1450	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1451
1452	ath10k_err(ar, "firmware register dump:\n");
1453	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1454		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1455			   i,
1456			   __le32_to_cpu(reg_dump_values[i]),
1457			   __le32_to_cpu(reg_dump_values[i + 1]),
1458			   __le32_to_cpu(reg_dump_values[i + 2]),
1459			   __le32_to_cpu(reg_dump_values[i + 3]));
1460
1461	if (!crash_data)
1462		return;
1463
1464	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1465		crash_data->registers[i] = reg_dump_values[i];
1466}
1467
1468static int ath10k_pci_dump_memory_section(struct ath10k *ar,
1469					  const struct ath10k_mem_region *mem_region,
1470					  u8 *buf, size_t buf_len)
1471{
1472	const struct ath10k_mem_section *cur_section, *next_section;
1473	unsigned int count, section_size, skip_size;
1474	int ret, i, j;
1475
1476	if (!mem_region || !buf)
1477		return 0;
1478
1479	cur_section = &mem_region->section_table.sections[0];
1480
1481	if (mem_region->start > cur_section->start) {
1482		ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
1483			    mem_region->start, cur_section->start);
1484		return 0;
1485	}
1486
1487	skip_size = cur_section->start - mem_region->start;
1488
1489	/* fill the gap between the first register section and register
1490	 * start address
1491	 */
1492	for (i = 0; i < skip_size; i++) {
1493		*buf = ATH10K_MAGIC_NOT_COPIED;
1494		buf++;
1495	}
1496
1497	count = 0;
1498
1499	for (i = 0; cur_section != NULL; i++) {
1500		section_size = cur_section->end - cur_section->start;
1501
1502		if (section_size <= 0) {
1503			ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
1504				    cur_section->start,
1505				    cur_section->end);
1506			break;
1507		}
1508
1509		if ((i + 1) == mem_region->section_table.size) {
1510			/* last section */
1511			next_section = NULL;
1512			skip_size = 0;
1513		} else {
1514			next_section = cur_section + 1;
1515
1516			if (cur_section->end > next_section->start) {
1517				ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
1518					    next_section->start,
1519					    cur_section->end);
1520				break;
1521			}
1522
1523			skip_size = next_section->start - cur_section->end;
1524		}
1525
1526		if (buf_len < (skip_size + section_size)) {
1527			ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
1528			break;
1529		}
1530
1531		buf_len -= skip_size + section_size;
1532
1533		/* read section to dest memory */
1534		ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
1535					       buf, section_size);
1536		if (ret) {
1537			ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
1538				    cur_section->start, ret);
1539			break;
1540		}
1541
1542		buf += section_size;
1543		count += section_size;
1544
1545		/* fill in the gap between this section and the next */
1546		for (j = 0; j < skip_size; j++) {
1547			*buf = ATH10K_MAGIC_NOT_COPIED;
1548			buf++;
1549		}
1550
1551		count += skip_size;
1552
1553		if (!next_section)
1554			/* this was the last section */
1555			break;
1556
1557		cur_section = next_section;
1558	}
1559
1560	return count;
1561}
1562
1563static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
1564{
1565	u32 val;
1566
1567	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1568			   FW_RAM_CONFIG_ADDRESS, config);
1569
1570	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1571				FW_RAM_CONFIG_ADDRESS);
1572	if (val != config) {
1573		ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
1574			    val, config);
1575		return -EIO;
1576	}
1577
1578	return 0;
1579}
1580
1581/* if an error happened returns < 0, otherwise the length */
1582static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
1583				       const struct ath10k_mem_region *region,
1584				       u8 *buf)
1585{
1586	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1587	u32 base_addr, i;
1588
1589	base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
1590	base_addr += region->start;
1591
1592	for (i = 0; i < region->len; i += 4) {
1593		iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
1594		*(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
1595	}
1596
1597	return region->len;
1598}
1599
1600/* if an error happened returns < 0, otherwise the length */
1601static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
1602				      const struct ath10k_mem_region *region,
1603				      u8 *buf)
1604{
1605	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1606	u32 i;
 
 
 
 
 
 
 
 
1607
1608	for (i = 0; i < region->len; i += 4)
1609		*(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);
1610
1611	return region->len;
 
 
 
1612}
1613
1614/* if an error happened returns < 0, otherwise the length */
1615static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
1616					  const struct ath10k_mem_region *current_region,
1617					  u8 *buf)
1618{
1619	int ret;
1620
1621	if (current_region->section_table.size > 0)
1622		/* Copy each section individually. */
1623		return ath10k_pci_dump_memory_section(ar,
1624						      current_region,
1625						      buf,
1626						      current_region->len);
1627
1628	/* No individiual memory sections defined so we can
1629	 * copy the entire memory region.
1630	 */
1631	ret = ath10k_pci_diag_read_mem(ar,
1632				       current_region->start,
1633				       buf,
1634				       current_region->len);
1635	if (ret) {
1636		ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
1637			    current_region->name, ret);
1638		return ret;
1639	}
1640
1641	return current_region->len;
1642}
1643
1644static void ath10k_pci_dump_memory(struct ath10k *ar,
1645				   struct ath10k_fw_crash_data *crash_data)
1646{
1647	const struct ath10k_hw_mem_layout *mem_layout;
1648	const struct ath10k_mem_region *current_region;
1649	struct ath10k_dump_ram_data_hdr *hdr;
1650	u32 count, shift;
1651	size_t buf_len;
1652	int ret, i;
1653	u8 *buf;
1654
1655	lockdep_assert_held(&ar->dump_mutex);
1656
1657	if (!crash_data)
1658		return;
1659
1660	mem_layout = ath10k_coredump_get_mem_layout(ar);
1661	if (!mem_layout)
1662		return;
1663
1664	current_region = &mem_layout->region_table.regions[0];
1665
1666	buf = crash_data->ramdump_buf;
1667	buf_len = crash_data->ramdump_buf_len;
1668
1669	memset(buf, 0, buf_len);
1670
1671	for (i = 0; i < mem_layout->region_table.size; i++) {
1672		count = 0;
1673
1674		if (current_region->len > buf_len) {
1675			ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
1676				    current_region->name,
1677				    current_region->len,
1678				    buf_len);
1679			break;
1680		}
1681
1682		/* To get IRAM dump, the host driver needs to switch target
1683		 * ram config from DRAM to IRAM.
1684		 */
1685		if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
1686		    current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
1687			shift = current_region->start >> 20;
1688
1689			ret = ath10k_pci_set_ram_config(ar, shift);
1690			if (ret) {
1691				ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
1692					    current_region->name, ret);
1693				break;
1694			}
1695		}
1696
1697		/* Reserve space for the header. */
1698		hdr = (void *)buf;
1699		buf += sizeof(*hdr);
1700		buf_len -= sizeof(*hdr);
1701
1702		switch (current_region->type) {
1703		case ATH10K_MEM_REGION_TYPE_IOSRAM:
1704			count = ath10k_pci_dump_memory_sram(ar, current_region, buf);
1705			break;
1706		case ATH10K_MEM_REGION_TYPE_IOREG:
1707			count = ath10k_pci_dump_memory_reg(ar, current_region, buf);
 
 
 
 
1708			break;
1709		default:
1710			ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
1711			if (ret < 0)
1712				break;
1713
1714			count = ret;
1715			break;
1716		}
1717
1718		hdr->region_type = cpu_to_le32(current_region->type);
1719		hdr->start = cpu_to_le32(current_region->start);
1720		hdr->length = cpu_to_le32(count);
1721
1722		if (count == 0)
1723			/* Note: the header remains, just with zero length. */
1724			break;
1725
1726		buf += count;
1727		buf_len -= count;
1728
1729		current_region++;
1730	}
1731}
1732
1733static void ath10k_pci_fw_dump_work(struct work_struct *work)
1734{
1735	struct ath10k_pci *ar_pci = container_of(work, struct ath10k_pci,
1736						 dump_work);
1737	struct ath10k_fw_crash_data *crash_data;
1738	struct ath10k *ar = ar_pci->ar;
1739	char guid[UUID_STRING_LEN + 1];
1740
1741	mutex_lock(&ar->dump_mutex);
1742
1743	spin_lock_bh(&ar->data_lock);
1744	ar->stats.fw_crash_counter++;
1745	spin_unlock_bh(&ar->data_lock);
1746
1747	crash_data = ath10k_coredump_new(ar);
1748
1749	if (crash_data)
1750		scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1751	else
1752		scnprintf(guid, sizeof(guid), "n/a");
1753
1754	ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1755	ath10k_print_driver_info(ar);
1756	ath10k_pci_dump_registers(ar, crash_data);
1757	ath10k_ce_dump_registers(ar, crash_data);
1758	ath10k_pci_dump_memory(ar, crash_data);
1759
1760	mutex_unlock(&ar->dump_mutex);
1761
1762	queue_work(ar->workqueue, &ar->restart_work);
1763}
1764
1765static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1766{
1767	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1768
1769	queue_work(ar->workqueue, &ar_pci->dump_work);
1770}
1771
1772void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1773					int force)
1774{
 
 
1775	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1776
1777	if (!force) {
1778		int resources;
1779		/*
1780		 * Decide whether to actually poll for completions, or just
1781		 * wait for a later chance.
1782		 * If there seem to be plenty of resources left, then just wait
1783		 * since checking involves reading a CE register, which is a
1784		 * relatively expensive operation.
1785		 */
1786		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1787
1788		/*
1789		 * If at least 50% of the total resources are still available,
1790		 * don't bother checking again yet.
1791		 */
1792		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1793			return;
1794	}
1795	ath10k_ce_per_engine_service(ar, pipe);
1796}
1797
1798static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1799{
1800	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1801
1802	del_timer_sync(&ar_pci->rx_post_retry);
1803}
1804
1805int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1806				       u8 *ul_pipe, u8 *dl_pipe)
1807{
1808	const struct service_to_pipe *entry;
 
1809	bool ul_set = false, dl_set = false;
1810	int i;
1811
1812	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1813
1814	for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1815		entry = &target_service_to_ce_map_wlan[i];
1816
1817		if (__le32_to_cpu(entry->service_id) != service_id)
1818			continue;
1819
1820		switch (__le32_to_cpu(entry->pipedir)) {
1821		case PIPEDIR_NONE:
1822			break;
1823		case PIPEDIR_IN:
1824			WARN_ON(dl_set);
1825			*dl_pipe = __le32_to_cpu(entry->pipenum);
1826			dl_set = true;
1827			break;
1828		case PIPEDIR_OUT:
1829			WARN_ON(ul_set);
1830			*ul_pipe = __le32_to_cpu(entry->pipenum);
1831			ul_set = true;
1832			break;
1833		case PIPEDIR_INOUT:
1834			WARN_ON(dl_set);
1835			WARN_ON(ul_set);
1836			*dl_pipe = __le32_to_cpu(entry->pipenum);
1837			*ul_pipe = __le32_to_cpu(entry->pipenum);
1838			dl_set = true;
1839			ul_set = true;
1840			break;
1841		}
1842	}
1843
1844	if (!ul_set || !dl_set)
1845		return -ENOENT;
1846
1847	return 0;
1848}
1849
1850void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1851				     u8 *ul_pipe, u8 *dl_pipe)
1852{
1853	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1854
1855	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1856						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1857						 ul_pipe, dl_pipe);
1858}
1859
1860void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1861{
1862	u32 val;
1863
1864	switch (ar->hw_rev) {
1865	case ATH10K_HW_QCA988X:
1866	case ATH10K_HW_QCA9887:
1867	case ATH10K_HW_QCA6174:
1868	case ATH10K_HW_QCA9377:
1869		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1870					CORE_CTRL_ADDRESS);
1871		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1872		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1873				   CORE_CTRL_ADDRESS, val);
1874		break;
1875	case ATH10K_HW_QCA99X0:
1876	case ATH10K_HW_QCA9984:
1877	case ATH10K_HW_QCA9888:
1878	case ATH10K_HW_QCA4019:
1879		/* TODO: Find appropriate register configuration for QCA99X0
1880		 *  to mask irq/MSI.
1881		 */
1882		break;
1883	case ATH10K_HW_WCN3990:
1884		break;
1885	}
1886}
1887
1888static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1889{
1890	u32 val;
1891
1892	switch (ar->hw_rev) {
1893	case ATH10K_HW_QCA988X:
1894	case ATH10K_HW_QCA9887:
1895	case ATH10K_HW_QCA6174:
1896	case ATH10K_HW_QCA9377:
1897		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1898					CORE_CTRL_ADDRESS);
1899		val |= CORE_CTRL_PCIE_REG_31_MASK;
1900		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1901				   CORE_CTRL_ADDRESS, val);
1902		break;
1903	case ATH10K_HW_QCA99X0:
1904	case ATH10K_HW_QCA9984:
1905	case ATH10K_HW_QCA9888:
1906	case ATH10K_HW_QCA4019:
1907		/* TODO: Find appropriate register configuration for QCA99X0
1908		 *  to unmask irq/MSI.
1909		 */
1910		break;
1911	case ATH10K_HW_WCN3990:
1912		break;
1913	}
1914}
1915
1916static void ath10k_pci_irq_disable(struct ath10k *ar)
1917{
1918	ath10k_ce_disable_interrupts(ar);
1919	ath10k_pci_disable_and_clear_legacy_irq(ar);
1920	ath10k_pci_irq_msi_fw_mask(ar);
1921}
1922
1923static void ath10k_pci_irq_sync(struct ath10k *ar)
1924{
1925	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1926
1927	synchronize_irq(ar_pci->pdev->irq);
1928}
1929
1930static void ath10k_pci_irq_enable(struct ath10k *ar)
1931{
1932	ath10k_ce_enable_interrupts(ar);
1933	ath10k_pci_enable_legacy_irq(ar);
1934	ath10k_pci_irq_msi_fw_unmask(ar);
1935}
1936
1937static int ath10k_pci_hif_start(struct ath10k *ar)
1938{
1939	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1940
1941	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1942
1943	napi_enable(&ar->napi);
1944
1945	ath10k_pci_irq_enable(ar);
1946	ath10k_pci_rx_post(ar);
1947
1948	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1949				   ar_pci->link_ctl);
 
1950
1951	return 0;
1952}
1953
1954static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1955{
1956	struct ath10k *ar;
1957	struct ath10k_ce_pipe *ce_pipe;
1958	struct ath10k_ce_ring *ce_ring;
1959	struct sk_buff *skb;
1960	int i;
1961
1962	ar = pci_pipe->hif_ce_state;
1963	ce_pipe = pci_pipe->ce_hdl;
1964	ce_ring = ce_pipe->dest_ring;
1965
1966	if (!ce_ring)
1967		return;
1968
1969	if (!pci_pipe->buf_sz)
1970		return;
1971
1972	for (i = 0; i < ce_ring->nentries; i++) {
1973		skb = ce_ring->per_transfer_context[i];
1974		if (!skb)
1975			continue;
1976
1977		ce_ring->per_transfer_context[i] = NULL;
1978
1979		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1980				 skb->len + skb_tailroom(skb),
1981				 DMA_FROM_DEVICE);
1982		dev_kfree_skb_any(skb);
1983	}
1984}
1985
1986static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1987{
1988	struct ath10k *ar;
1989	struct ath10k_ce_pipe *ce_pipe;
1990	struct ath10k_ce_ring *ce_ring;
1991	struct sk_buff *skb;
1992	int i;
1993
1994	ar = pci_pipe->hif_ce_state;
1995	ce_pipe = pci_pipe->ce_hdl;
1996	ce_ring = ce_pipe->src_ring;
1997
1998	if (!ce_ring)
1999		return;
2000
2001	if (!pci_pipe->buf_sz)
2002		return;
2003
2004	for (i = 0; i < ce_ring->nentries; i++) {
2005		skb = ce_ring->per_transfer_context[i];
2006		if (!skb)
2007			continue;
2008
2009		ce_ring->per_transfer_context[i] = NULL;
2010
2011		ath10k_htc_tx_completion_handler(ar, skb);
2012	}
2013}
2014
2015/*
2016 * Cleanup residual buffers for device shutdown:
2017 *    buffers that were enqueued for receive
2018 *    buffers that were to be sent
2019 * Note: Buffers that had completed but which were
2020 * not yet processed are on a completion queue. They
2021 * are handled when the completion thread shuts down.
2022 */
2023static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
2024{
2025	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2026	int pipe_num;
2027
2028	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
2029		struct ath10k_pci_pipe *pipe_info;
2030
2031		pipe_info = &ar_pci->pipe_info[pipe_num];
2032		ath10k_pci_rx_pipe_cleanup(pipe_info);
2033		ath10k_pci_tx_pipe_cleanup(pipe_info);
2034	}
2035}
2036
2037void ath10k_pci_ce_deinit(struct ath10k *ar)
2038{
2039	int i;
2040
2041	for (i = 0; i < CE_COUNT; i++)
2042		ath10k_ce_deinit_pipe(ar, i);
2043}
2044
2045void ath10k_pci_flush(struct ath10k *ar)
2046{
2047	ath10k_pci_rx_retry_sync(ar);
2048	ath10k_pci_buffer_cleanup(ar);
2049}
2050
2051static void ath10k_pci_hif_stop(struct ath10k *ar)
2052{
2053	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2054	unsigned long flags;
2055
2056	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
2057
2058	ath10k_pci_irq_disable(ar);
2059	ath10k_pci_irq_sync(ar);
2060	napi_synchronize(&ar->napi);
2061	napi_disable(&ar->napi);
 
 
2062
2063	/* Most likely the device has HTT Rx ring configured. The only way to
2064	 * prevent the device from accessing (and possible corrupting) host
2065	 * memory is to reset the chip now.
2066	 *
2067	 * There's also no known way of masking MSI interrupts on the device.
2068	 * For ranged MSI the CE-related interrupts can be masked. However
2069	 * regardless how many MSI interrupts are assigned the first one
2070	 * is always used for firmware indications (crashes) and cannot be
2071	 * masked. To prevent the device from asserting the interrupt reset it
2072	 * before proceeding with cleanup.
2073	 */
2074	ath10k_pci_safe_chip_reset(ar);
2075
2076	ath10k_pci_flush(ar);
2077
2078	spin_lock_irqsave(&ar_pci->ps_lock, flags);
2079	WARN_ON(ar_pci->ps_wake_refcount > 0);
2080	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
2081}
2082
2083int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
2084				    void *req, u32 req_len,
2085				    void *resp, u32 *resp_len)
2086{
2087	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2088	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
2089	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
2090	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
2091	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
2092	dma_addr_t req_paddr = 0;
2093	dma_addr_t resp_paddr = 0;
2094	struct bmi_xfer xfer = {};
2095	void *treq, *tresp = NULL;
2096	int ret = 0;
2097
2098	might_sleep();
2099
2100	if (resp && !resp_len)
2101		return -EINVAL;
2102
2103	if (resp && resp_len && *resp_len == 0)
2104		return -EINVAL;
2105
2106	treq = kmemdup(req, req_len, GFP_KERNEL);
2107	if (!treq)
2108		return -ENOMEM;
2109
2110	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
2111	ret = dma_mapping_error(ar->dev, req_paddr);
2112	if (ret) {
2113		ret = -EIO;
2114		goto err_dma;
2115	}
2116
2117	if (resp && resp_len) {
2118		tresp = kzalloc(*resp_len, GFP_KERNEL);
2119		if (!tresp) {
2120			ret = -ENOMEM;
2121			goto err_req;
2122		}
2123
2124		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
2125					    DMA_FROM_DEVICE);
2126		ret = dma_mapping_error(ar->dev, resp_paddr);
2127		if (ret) {
2128			ret = -EIO;
2129			goto err_req;
2130		}
2131
2132		xfer.wait_for_resp = true;
2133		xfer.resp_len = 0;
2134
2135		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
2136	}
2137
2138	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
2139	if (ret)
2140		goto err_resp;
2141
2142	ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
2143	if (ret) {
2144		dma_addr_t unused_buffer;
2145		unsigned int unused_nbytes;
2146		unsigned int unused_id;
2147
2148		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
2149					   &unused_nbytes, &unused_id);
2150	} else {
2151		/* non-zero means we did not time out */
2152		ret = 0;
2153	}
2154
2155err_resp:
2156	if (resp) {
2157		dma_addr_t unused_buffer;
2158
2159		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
2160		dma_unmap_single(ar->dev, resp_paddr,
2161				 *resp_len, DMA_FROM_DEVICE);
2162	}
2163err_req:
2164	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
2165
2166	if (ret == 0 && resp_len) {
2167		*resp_len = min(*resp_len, xfer.resp_len);
2168		memcpy(resp, tresp, xfer.resp_len);
2169	}
2170err_dma:
2171	kfree(treq);
2172	kfree(tresp);
2173
2174	return ret;
2175}
2176
2177static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
2178{
2179	struct bmi_xfer *xfer;
2180
2181	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
2182		return;
2183
2184	xfer->tx_done = true;
2185}
2186
2187static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
2188{
2189	struct ath10k *ar = ce_state->ar;
2190	struct bmi_xfer *xfer;
2191	unsigned int nbytes;
2192
2193	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
2194					  &nbytes))
2195		return;
2196
2197	if (WARN_ON_ONCE(!xfer))
2198		return;
2199
2200	if (!xfer->wait_for_resp) {
2201		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
2202		return;
2203	}
2204
2205	xfer->resp_len = nbytes;
2206	xfer->rx_done = true;
2207}
2208
2209static int ath10k_pci_bmi_wait(struct ath10k *ar,
2210			       struct ath10k_ce_pipe *tx_pipe,
2211			       struct ath10k_ce_pipe *rx_pipe,
2212			       struct bmi_xfer *xfer)
2213{
2214	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
2215	unsigned long started = jiffies;
2216	unsigned long dur;
2217	int ret;
2218
2219	while (time_before_eq(jiffies, timeout)) {
2220		ath10k_pci_bmi_send_done(tx_pipe);
2221		ath10k_pci_bmi_recv_data(rx_pipe);
2222
2223		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
2224			ret = 0;
2225			goto out;
2226		}
2227
2228		schedule();
2229	}
2230
2231	ret = -ETIMEDOUT;
2232
2233out:
2234	dur = jiffies - started;
2235	if (dur > HZ)
2236		ath10k_dbg(ar, ATH10K_DBG_BMI,
2237			   "bmi cmd took %lu jiffies hz %d ret %d\n",
2238			   dur, HZ, ret);
2239	return ret;
2240}
2241
2242/*
2243 * Send an interrupt to the device to wake up the Target CPU
2244 * so it has an opportunity to notice any changed state.
2245 */
2246static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
2247{
2248	u32 addr, val;
2249
2250	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
2251	val = ath10k_pci_read32(ar, addr);
2252	val |= CORE_CTRL_CPU_INTR_MASK;
2253	ath10k_pci_write32(ar, addr, val);
2254
2255	return 0;
2256}
2257
2258static int ath10k_pci_get_num_banks(struct ath10k *ar)
2259{
2260	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2261
2262	switch (ar_pci->pdev->device) {
2263	case QCA988X_2_0_DEVICE_ID_UBNT:
2264	case QCA988X_2_0_DEVICE_ID:
2265	case QCA99X0_2_0_DEVICE_ID:
2266	case QCA9888_2_0_DEVICE_ID:
2267	case QCA9984_1_0_DEVICE_ID:
2268	case QCA9887_1_0_DEVICE_ID:
2269		return 1;
2270	case QCA6164_2_1_DEVICE_ID:
2271	case QCA6174_2_1_DEVICE_ID:
2272		switch (MS(ar->bus_param.chip_id, SOC_CHIP_ID_REV)) {
2273		case QCA6174_HW_1_0_CHIP_ID_REV:
2274		case QCA6174_HW_1_1_CHIP_ID_REV:
2275		case QCA6174_HW_2_1_CHIP_ID_REV:
2276		case QCA6174_HW_2_2_CHIP_ID_REV:
2277			return 3;
2278		case QCA6174_HW_1_3_CHIP_ID_REV:
2279			return 2;
2280		case QCA6174_HW_3_0_CHIP_ID_REV:
2281		case QCA6174_HW_3_1_CHIP_ID_REV:
2282		case QCA6174_HW_3_2_CHIP_ID_REV:
2283			return 9;
2284		}
2285		break;
2286	case QCA9377_1_0_DEVICE_ID:
2287		return 9;
2288	}
2289
2290	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2291	return 1;
2292}
2293
2294static int ath10k_bus_get_num_banks(struct ath10k *ar)
2295{
2296	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2297
2298	return ce->bus_ops->get_num_banks(ar);
2299}
2300
2301int ath10k_pci_init_config(struct ath10k *ar)
2302{
 
2303	u32 interconnect_targ_addr;
2304	u32 pcie_state_targ_addr = 0;
2305	u32 pipe_cfg_targ_addr = 0;
2306	u32 svc_to_pipe_map = 0;
2307	u32 pcie_config_flags = 0;
2308	u32 ealloc_value;
2309	u32 ealloc_targ_addr;
2310	u32 flag2_value;
2311	u32 flag2_targ_addr;
2312	int ret = 0;
2313
2314	/* Download to Target the CE Config and the service-to-CE map */
2315	interconnect_targ_addr =
2316		host_interest_item_address(HI_ITEM(hi_interconnect_state));
2317
2318	/* Supply Target-side CE configuration */
2319	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2320				     &pcie_state_targ_addr);
2321	if (ret != 0) {
2322		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2323		return ret;
2324	}
2325
2326	if (pcie_state_targ_addr == 0) {
2327		ret = -EIO;
2328		ath10k_err(ar, "Invalid pcie state addr\n");
2329		return ret;
2330	}
2331
2332	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2333					  offsetof(struct pcie_state,
2334						   pipe_cfg_addr)),
2335				     &pipe_cfg_targ_addr);
2336	if (ret != 0) {
2337		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2338		return ret;
2339	}
2340
2341	if (pipe_cfg_targ_addr == 0) {
2342		ret = -EIO;
2343		ath10k_err(ar, "Invalid pipe cfg addr\n");
2344		return ret;
2345	}
2346
2347	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2348					target_ce_config_wlan,
2349					sizeof(struct ce_pipe_config) *
2350					NUM_TARGET_CE_CONFIG_WLAN);
2351
2352	if (ret != 0) {
2353		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2354		return ret;
2355	}
2356
2357	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2358					  offsetof(struct pcie_state,
2359						   svc_to_pipe_map)),
2360				     &svc_to_pipe_map);
2361	if (ret != 0) {
2362		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2363		return ret;
2364	}
2365
2366	if (svc_to_pipe_map == 0) {
2367		ret = -EIO;
2368		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2369		return ret;
2370	}
2371
2372	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2373					target_service_to_ce_map_wlan,
2374					sizeof(target_service_to_ce_map_wlan));
2375	if (ret != 0) {
2376		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2377		return ret;
2378	}
2379
2380	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2381					  offsetof(struct pcie_state,
2382						   config_flags)),
2383				     &pcie_config_flags);
2384	if (ret != 0) {
2385		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2386		return ret;
2387	}
2388
2389	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2390
2391	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2392					   offsetof(struct pcie_state,
2393						    config_flags)),
2394				      pcie_config_flags);
2395	if (ret != 0) {
2396		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2397		return ret;
2398	}
2399
2400	/* configure early allocation */
2401	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2402
2403	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2404	if (ret != 0) {
2405		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2406		return ret;
2407	}
2408
2409	/* first bank is switched to IRAM */
2410	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2411			 HI_EARLY_ALLOC_MAGIC_MASK);
2412	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2413			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2414			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2415
2416	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2417	if (ret != 0) {
2418		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2419		return ret;
2420	}
2421
2422	/* Tell Target to proceed with initialization */
2423	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2424
2425	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2426	if (ret != 0) {
2427		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2428		return ret;
2429	}
2430
2431	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2432
2433	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2434	if (ret != 0) {
2435		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2436		return ret;
2437	}
2438
2439	return 0;
2440}
2441
2442static void ath10k_pci_override_ce_config(struct ath10k *ar)
2443{
2444	struct ce_attr *attr;
2445	struct ce_pipe_config *config;
 
2446
2447	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2448	 * since it is currently used for other feature.
2449	 */
2450
2451	/* Override Host's Copy Engine 5 configuration */
2452	attr = &host_ce_config_wlan[5];
2453	attr->src_sz_max = 0;
2454	attr->dest_nentries = 0;
2455
2456	/* Override Target firmware's Copy Engine configuration */
2457	config = &target_ce_config_wlan[5];
2458	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2459	config->nbytes_max = __cpu_to_le32(2048);
2460
2461	/* Map from service/endpoint to Copy Engine */
2462	target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
2463}
2464
2465int ath10k_pci_alloc_pipes(struct ath10k *ar)
2466{
2467	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2468	struct ath10k_pci_pipe *pipe;
2469	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2470	int i, ret;
2471
2472	for (i = 0; i < CE_COUNT; i++) {
2473		pipe = &ar_pci->pipe_info[i];
2474		pipe->ce_hdl = &ce->ce_states[i];
2475		pipe->pipe_num = i;
2476		pipe->hif_ce_state = ar;
2477
2478		ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
2479		if (ret) {
2480			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2481				   i, ret);
2482			return ret;
2483		}
2484
2485		/* Last CE is Diagnostic Window */
2486		if (i == CE_DIAG_PIPE) {
2487			ar_pci->ce_diag = pipe->ce_hdl;
2488			continue;
2489		}
2490
2491		pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
2492	}
2493
2494	return 0;
2495}
2496
2497void ath10k_pci_free_pipes(struct ath10k *ar)
2498{
2499	int i;
2500
2501	for (i = 0; i < CE_COUNT; i++)
2502		ath10k_ce_free_pipe(ar, i);
2503}
2504
2505int ath10k_pci_init_pipes(struct ath10k *ar)
2506{
 
2507	int i, ret;
2508
2509	for (i = 0; i < CE_COUNT; i++) {
2510		ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
2511		if (ret) {
2512			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2513				   i, ret);
2514			return ret;
2515		}
2516	}
2517
2518	return 0;
2519}
2520
2521static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2522{
2523	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2524	       FW_IND_EVENT_PENDING;
2525}
2526
2527static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2528{
2529	u32 val;
2530
2531	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2532	val &= ~FW_IND_EVENT_PENDING;
2533	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2534}
2535
2536static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2537{
2538	u32 val;
2539
2540	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2541	return (val == 0xffffffff);
2542}
2543
2544/* this function effectively clears target memory controller assert line */
2545static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2546{
2547	u32 val;
2548
2549	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2550	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2551			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2552	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2553
2554	msleep(10);
2555
2556	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2557	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2558			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2559	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2560
2561	msleep(10);
2562}
2563
2564static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2565{
2566	u32 val;
2567
2568	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2569
2570	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2571				SOC_RESET_CONTROL_ADDRESS);
2572	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2573			   val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2574}
2575
2576static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2577{
2578	u32 val;
2579
2580	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2581				SOC_RESET_CONTROL_ADDRESS);
2582
2583	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2584			   val | SOC_RESET_CONTROL_CE_RST_MASK);
2585	msleep(10);
2586	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2587			   val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2588}
2589
2590static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2591{
2592	u32 val;
2593
2594	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2595				SOC_LF_TIMER_CONTROL0_ADDRESS);
2596	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
2597			   SOC_LF_TIMER_CONTROL0_ADDRESS,
2598			   val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2599}
2600
2601static int ath10k_pci_warm_reset(struct ath10k *ar)
2602{
2603	int ret;
2604
2605	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2606
2607	spin_lock_bh(&ar->data_lock);
2608	ar->stats.fw_warm_reset_counter++;
2609	spin_unlock_bh(&ar->data_lock);
2610
2611	ath10k_pci_irq_disable(ar);
2612
2613	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2614	 * were to access copy engine while host performs copy engine reset
2615	 * then it is possible for the device to confuse pci-e controller to
2616	 * the point of bringing host system to a complete stop (i.e. hang).
2617	 */
2618	ath10k_pci_warm_reset_si0(ar);
2619	ath10k_pci_warm_reset_cpu(ar);
2620	ath10k_pci_init_pipes(ar);
2621	ath10k_pci_wait_for_target_init(ar);
2622
2623	ath10k_pci_warm_reset_clear_lf(ar);
2624	ath10k_pci_warm_reset_ce(ar);
2625	ath10k_pci_warm_reset_cpu(ar);
2626	ath10k_pci_init_pipes(ar);
2627
2628	ret = ath10k_pci_wait_for_target_init(ar);
2629	if (ret) {
2630		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2631		return ret;
2632	}
2633
2634	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2635
2636	return 0;
2637}
2638
2639static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2640{
2641	ath10k_pci_irq_disable(ar);
2642	return ath10k_pci_qca99x0_chip_reset(ar);
2643}
2644
2645static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2646{
2647	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2648
2649	if (!ar_pci->pci_soft_reset)
2650		return -ENOTSUPP;
2651
2652	return ar_pci->pci_soft_reset(ar);
2653}
2654
2655static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2656{
2657	int i, ret;
2658	u32 val;
2659
2660	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2661
2662	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2663	 * It is thus preferred to use warm reset which is safer but may not be
2664	 * able to recover the device from all possible fail scenarios.
2665	 *
2666	 * Warm reset doesn't always work on first try so attempt it a few
2667	 * times before giving up.
2668	 */
2669	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2670		ret = ath10k_pci_warm_reset(ar);
2671		if (ret) {
2672			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2673				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2674				    ret);
2675			continue;
2676		}
2677
2678		/* FIXME: Sometimes copy engine doesn't recover after warm
2679		 * reset. In most cases this needs cold reset. In some of these
2680		 * cases the device is in such a state that a cold reset may
2681		 * lock up the host.
2682		 *
2683		 * Reading any host interest register via copy engine is
2684		 * sufficient to verify if device is capable of booting
2685		 * firmware blob.
2686		 */
2687		ret = ath10k_pci_init_pipes(ar);
2688		if (ret) {
2689			ath10k_warn(ar, "failed to init copy engine: %d\n",
2690				    ret);
2691			continue;
2692		}
2693
2694		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2695					     &val);
2696		if (ret) {
2697			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2698				    ret);
2699			continue;
2700		}
2701
2702		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2703		return 0;
2704	}
2705
2706	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2707		ath10k_warn(ar, "refusing cold reset as requested\n");
2708		return -EPERM;
2709	}
2710
2711	ret = ath10k_pci_cold_reset(ar);
2712	if (ret) {
2713		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2714		return ret;
2715	}
2716
2717	ret = ath10k_pci_wait_for_target_init(ar);
2718	if (ret) {
2719		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2720			    ret);
2721		return ret;
2722	}
2723
2724	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2725
2726	return 0;
2727}
2728
2729static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2730{
2731	int ret;
2732
2733	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2734
2735	/* FIXME: QCA6174 requires cold + warm reset to work. */
2736
2737	ret = ath10k_pci_cold_reset(ar);
2738	if (ret) {
2739		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2740		return ret;
2741	}
2742
2743	ret = ath10k_pci_wait_for_target_init(ar);
2744	if (ret) {
2745		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2746			    ret);
2747		return ret;
2748	}
2749
2750	ret = ath10k_pci_warm_reset(ar);
2751	if (ret) {
2752		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2753		return ret;
2754	}
2755
2756	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2757
2758	return 0;
2759}
2760
2761static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2762{
2763	int ret;
2764
2765	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2766
2767	ret = ath10k_pci_cold_reset(ar);
2768	if (ret) {
2769		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2770		return ret;
2771	}
2772
2773	ret = ath10k_pci_wait_for_target_init(ar);
2774	if (ret) {
2775		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2776			    ret);
2777		return ret;
2778	}
2779
2780	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2781
2782	return 0;
2783}
2784
2785static int ath10k_pci_chip_reset(struct ath10k *ar)
2786{
2787	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2788
2789	if (WARN_ON(!ar_pci->pci_hard_reset))
2790		return -ENOTSUPP;
2791
2792	return ar_pci->pci_hard_reset(ar);
2793}
2794
2795static int ath10k_pci_hif_power_up(struct ath10k *ar,
2796				   enum ath10k_firmware_mode fw_mode)
2797{
2798	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2799	int ret;
2800
2801	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2802
2803	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2804				  &ar_pci->link_ctl);
2805	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2806				   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2807
2808	/*
2809	 * Bring the target up cleanly.
2810	 *
2811	 * The target may be in an undefined state with an AUX-powered Target
2812	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2813	 * restarted (without unloading the driver) then the Target is left
2814	 * (aux) powered and running. On a subsequent driver load, the Target
2815	 * is in an unexpected state. We try to catch that here in order to
2816	 * reset the Target and retry the probe.
2817	 */
2818	ret = ath10k_pci_chip_reset(ar);
2819	if (ret) {
2820		if (ath10k_pci_has_fw_crashed(ar)) {
2821			ath10k_warn(ar, "firmware crashed during chip reset\n");
2822			ath10k_pci_fw_crashed_clear(ar);
2823			ath10k_pci_fw_crashed_dump(ar);
2824		}
2825
2826		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2827		goto err_sleep;
2828	}
2829
2830	ret = ath10k_pci_init_pipes(ar);
2831	if (ret) {
2832		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2833		goto err_sleep;
2834	}
2835
2836	ret = ath10k_pci_init_config(ar);
2837	if (ret) {
2838		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2839		goto err_ce;
2840	}
2841
2842	ret = ath10k_pci_wake_target_cpu(ar);
2843	if (ret) {
2844		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2845		goto err_ce;
2846	}
2847
2848	return 0;
2849
2850err_ce:
2851	ath10k_pci_ce_deinit(ar);
2852
2853err_sleep:
2854	return ret;
2855}
2856
2857void ath10k_pci_hif_power_down(struct ath10k *ar)
2858{
2859	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2860
2861	/* Currently hif_power_up performs effectively a reset and hif_stop
2862	 * resets the chip as well so there's no point in resetting here.
2863	 */
2864}
2865
2866static int ath10k_pci_hif_suspend(struct ath10k *ar)
2867{
2868	/* Nothing to do; the important stuff is in the driver suspend. */
2869	return 0;
2870}
2871
2872static int ath10k_pci_suspend(struct ath10k *ar)
2873{
2874	/* The grace timer can still be counting down and ar->ps_awake be true.
2875	 * It is known that the device may be asleep after resuming regardless
2876	 * of the SoC powersave state before suspending. Hence make sure the
2877	 * device is asleep before proceeding.
2878	 */
2879	ath10k_pci_sleep_sync(ar);
2880
2881	return 0;
2882}
2883
2884static int ath10k_pci_hif_resume(struct ath10k *ar)
2885{
2886	/* Nothing to do; the important stuff is in the driver resume. */
2887	return 0;
2888}
2889
2890static int ath10k_pci_resume(struct ath10k *ar)
2891{
2892	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2893	struct pci_dev *pdev = ar_pci->pdev;
2894	u32 val;
2895	int ret = 0;
2896
2897	ret = ath10k_pci_force_wake(ar);
2898	if (ret) {
2899		ath10k_err(ar, "failed to wake up target: %d\n", ret);
2900		return ret;
2901	}
2902
2903	/* Suspend/Resume resets the PCI configuration space, so we have to
2904	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2905	 * from interfering with C3 CPU state. pci_restore_state won't help
2906	 * here since it only restores the first 64 bytes pci config header.
2907	 */
2908	pci_read_config_dword(pdev, 0x40, &val);
2909	if ((val & 0x0000ff00) != 0)
2910		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2911
2912	return ret;
2913}
2914
2915static bool ath10k_pci_validate_cal(void *data, size_t size)
2916{
2917	__le16 *cal_words = data;
2918	u16 checksum = 0;
2919	size_t i;
2920
2921	if (size % 2 != 0)
2922		return false;
2923
2924	for (i = 0; i < size / 2; i++)
2925		checksum ^= le16_to_cpu(cal_words[i]);
2926
2927	return checksum == 0xffff;
2928}
2929
2930static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2931{
2932	/* Enable SI clock */
2933	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2934
2935	/* Configure GPIOs for I2C operation */
2936	ath10k_pci_write32(ar,
2937			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2938			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2939			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2940			      GPIO_PIN0_CONFIG) |
2941			   SM(1, GPIO_PIN0_PAD_PULL));
2942
2943	ath10k_pci_write32(ar,
2944			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2945			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2946			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2947			   SM(1, GPIO_PIN0_PAD_PULL));
2948
2949	ath10k_pci_write32(ar,
2950			   GPIO_BASE_ADDRESS +
2951			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2952			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2953
2954	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2955	ath10k_pci_write32(ar,
2956			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2957			   SM(1, SI_CONFIG_ERR_INT) |
2958			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2959			   SM(1, SI_CONFIG_I2C) |
2960			   SM(1, SI_CONFIG_POS_SAMPLE) |
2961			   SM(1, SI_CONFIG_INACTIVE_DATA) |
2962			   SM(1, SI_CONFIG_INACTIVE_CLK) |
2963			   SM(8, SI_CONFIG_DIVIDER));
2964}
2965
2966static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2967{
2968	u32 reg;
2969	int wait_limit;
2970
2971	/* set device select byte and for the read operation */
2972	reg = QCA9887_EEPROM_SELECT_READ |
2973	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
2974	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2975	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2976
2977	/* write transmit data, transfer length, and START bit */
2978	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2979			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
2980			   SM(4, SI_CS_TX_CNT));
2981
2982	/* wait max 1 sec */
2983	wait_limit = 100000;
2984
2985	/* wait for SI_CS_DONE_INT */
2986	do {
2987		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
2988		if (MS(reg, SI_CS_DONE_INT))
2989			break;
2990
2991		wait_limit--;
2992		udelay(10);
2993	} while (wait_limit > 0);
2994
2995	if (!MS(reg, SI_CS_DONE_INT)) {
2996		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
2997			   addr);
2998		return -ETIMEDOUT;
2999	}
3000
3001	/* clear SI_CS_DONE_INT */
3002	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
3003
3004	if (MS(reg, SI_CS_DONE_ERR)) {
3005		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
3006		return -EIO;
3007	}
3008
3009	/* extract receive data */
3010	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
3011	*out = reg;
3012
3013	return 0;
3014}
3015
3016static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
3017					   size_t *data_len)
3018{
3019	u8 *caldata = NULL;
3020	size_t calsize, i;
3021	int ret;
3022
3023	if (!QCA_REV_9887(ar))
3024		return -EOPNOTSUPP;
3025
3026	calsize = ar->hw_params.cal_data_len;
3027	caldata = kmalloc(calsize, GFP_KERNEL);
3028	if (!caldata)
3029		return -ENOMEM;
3030
3031	ath10k_pci_enable_eeprom(ar);
3032
3033	for (i = 0; i < calsize; i++) {
3034		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
3035		if (ret)
3036			goto err_free;
3037	}
3038
3039	if (!ath10k_pci_validate_cal(caldata, calsize))
3040		goto err_free;
3041
3042	*data = caldata;
3043	*data_len = calsize;
3044
3045	return 0;
3046
3047err_free:
3048	kfree(caldata);
3049
3050	return -EINVAL;
3051}
3052
3053static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
3054	.tx_sg			= ath10k_pci_hif_tx_sg,
3055	.diag_read		= ath10k_pci_hif_diag_read,
3056	.diag_write		= ath10k_pci_diag_write_mem,
3057	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
3058	.start			= ath10k_pci_hif_start,
3059	.stop			= ath10k_pci_hif_stop,
3060	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
3061	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
3062	.send_complete_check	= ath10k_pci_hif_send_complete_check,
3063	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
3064	.power_up		= ath10k_pci_hif_power_up,
3065	.power_down		= ath10k_pci_hif_power_down,
3066	.read32			= ath10k_pci_read32,
3067	.write32		= ath10k_pci_write32,
3068	.suspend		= ath10k_pci_hif_suspend,
3069	.resume			= ath10k_pci_hif_resume,
3070	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
3071};
3072
3073/*
3074 * Top-level interrupt handler for all PCI interrupts from a Target.
3075 * When a block of MSI interrupts is allocated, this top-level handler
3076 * is not used; instead, we directly call the correct sub-handler.
3077 */
3078static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
3079{
3080	struct ath10k *ar = arg;
3081	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3082	int ret;
3083
3084	if (ath10k_pci_has_device_gone(ar))
3085		return IRQ_NONE;
3086
3087	ret = ath10k_pci_force_wake(ar);
3088	if (ret) {
3089		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
3090		return IRQ_NONE;
3091	}
3092
3093	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
3094	    !ath10k_pci_irq_pending(ar))
3095		return IRQ_NONE;
3096
3097	ath10k_pci_disable_and_clear_legacy_irq(ar);
3098	ath10k_pci_irq_msi_fw_mask(ar);
3099	napi_schedule(&ar->napi);
3100
3101	return IRQ_HANDLED;
3102}
3103
3104static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
3105{
3106	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
3107	int done = 0;
3108
3109	if (ath10k_pci_has_fw_crashed(ar)) {
3110		ath10k_pci_fw_crashed_clear(ar);
3111		ath10k_pci_fw_crashed_dump(ar);
3112		napi_complete(ctx);
3113		return done;
3114	}
3115
3116	ath10k_ce_per_engine_service_any(ar);
3117
3118	done = ath10k_htt_txrx_compl_task(ar, budget);
3119
3120	if (done < budget) {
3121		napi_complete_done(ctx, done);
3122		/* In case of MSI, it is possible that interrupts are received
3123		 * while NAPI poll is inprogress. So pending interrupts that are
3124		 * received after processing all copy engine pipes by NAPI poll
3125		 * will not be handled again. This is causing failure to
3126		 * complete boot sequence in x86 platform. So before enabling
3127		 * interrupts safer to check for pending interrupts for
3128		 * immediate servicing.
3129		 */
3130		if (ath10k_ce_interrupt_summary(ar)) {
3131			napi_reschedule(ctx);
3132			goto out;
3133		}
3134		ath10k_pci_enable_legacy_irq(ar);
3135		ath10k_pci_irq_msi_fw_unmask(ar);
3136	}
3137
3138out:
3139	return done;
3140}
3141
3142static int ath10k_pci_request_irq_msi(struct ath10k *ar)
3143{
3144	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3145	int ret;
3146
3147	ret = request_irq(ar_pci->pdev->irq,
3148			  ath10k_pci_interrupt_handler,
3149			  IRQF_SHARED, "ath10k_pci", ar);
3150	if (ret) {
3151		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
3152			    ar_pci->pdev->irq, ret);
3153		return ret;
3154	}
3155
3156	return 0;
3157}
3158
3159static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
3160{
3161	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3162	int ret;
3163
3164	ret = request_irq(ar_pci->pdev->irq,
3165			  ath10k_pci_interrupt_handler,
3166			  IRQF_SHARED, "ath10k_pci", ar);
3167	if (ret) {
3168		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
3169			    ar_pci->pdev->irq, ret);
3170		return ret;
3171	}
3172
3173	return 0;
3174}
3175
3176static int ath10k_pci_request_irq(struct ath10k *ar)
3177{
3178	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3179
3180	switch (ar_pci->oper_irq_mode) {
3181	case ATH10K_PCI_IRQ_LEGACY:
3182		return ath10k_pci_request_irq_legacy(ar);
3183	case ATH10K_PCI_IRQ_MSI:
3184		return ath10k_pci_request_irq_msi(ar);
3185	default:
3186		return -EINVAL;
3187	}
3188}
3189
3190static void ath10k_pci_free_irq(struct ath10k *ar)
3191{
3192	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3193
3194	free_irq(ar_pci->pdev->irq, ar);
3195}
3196
3197void ath10k_pci_init_napi(struct ath10k *ar)
3198{
3199	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll,
3200		       ATH10K_NAPI_BUDGET);
3201}
3202
3203static int ath10k_pci_init_irq(struct ath10k *ar)
3204{
3205	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3206	int ret;
3207
3208	ath10k_pci_init_napi(ar);
3209
3210	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
3211		ath10k_info(ar, "limiting irq mode to: %d\n",
3212			    ath10k_pci_irq_mode);
3213
3214	/* Try MSI */
3215	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
3216		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
3217		ret = pci_enable_msi(ar_pci->pdev);
3218		if (ret == 0)
3219			return 0;
3220
3221		/* fall-through */
3222	}
3223
3224	/* Try legacy irq
3225	 *
3226	 * A potential race occurs here: The CORE_BASE write
3227	 * depends on target correctly decoding AXI address but
3228	 * host won't know when target writes BAR to CORE_CTRL.
3229	 * This write might get lost if target has NOT written BAR.
3230	 * For now, fix the race by repeating the write in below
3231	 * synchronization checking.
3232	 */
3233	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
3234
3235	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3236			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3237
3238	return 0;
3239}
3240
3241static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
3242{
3243	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3244			   0);
3245}
3246
3247static int ath10k_pci_deinit_irq(struct ath10k *ar)
3248{
3249	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3250
3251	switch (ar_pci->oper_irq_mode) {
3252	case ATH10K_PCI_IRQ_LEGACY:
3253		ath10k_pci_deinit_irq_legacy(ar);
3254		break;
3255	default:
3256		pci_disable_msi(ar_pci->pdev);
3257		break;
3258	}
3259
3260	return 0;
3261}
3262
3263int ath10k_pci_wait_for_target_init(struct ath10k *ar)
3264{
3265	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3266	unsigned long timeout;
3267	u32 val;
3268
3269	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
3270
3271	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
3272
3273	do {
3274		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
3275
3276		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
3277			   val);
3278
3279		/* target should never return this */
3280		if (val == 0xffffffff)
3281			continue;
3282
3283		/* the device has crashed so don't bother trying anymore */
3284		if (val & FW_IND_EVENT_PENDING)
3285			break;
3286
3287		if (val & FW_IND_INITIALIZED)
3288			break;
3289
3290		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
3291			/* Fix potential race by repeating CORE_BASE writes */
3292			ath10k_pci_enable_legacy_irq(ar);
3293
3294		mdelay(10);
3295	} while (time_before(jiffies, timeout));
3296
3297	ath10k_pci_disable_and_clear_legacy_irq(ar);
3298	ath10k_pci_irq_msi_fw_mask(ar);
3299
3300	if (val == 0xffffffff) {
3301		ath10k_err(ar, "failed to read device register, device is gone\n");
3302		return -EIO;
3303	}
3304
3305	if (val & FW_IND_EVENT_PENDING) {
3306		ath10k_warn(ar, "device has crashed during init\n");
3307		return -ECOMM;
3308	}
3309
3310	if (!(val & FW_IND_INITIALIZED)) {
3311		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3312			   val);
3313		return -ETIMEDOUT;
3314	}
3315
3316	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3317	return 0;
3318}
3319
3320static int ath10k_pci_cold_reset(struct ath10k *ar)
3321{
3322	u32 val;
3323
3324	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3325
3326	spin_lock_bh(&ar->data_lock);
3327
3328	ar->stats.fw_cold_reset_counter++;
3329
3330	spin_unlock_bh(&ar->data_lock);
3331
3332	/* Put Target, including PCIe, into RESET. */
3333	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3334	val |= 1;
3335	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3336
3337	/* After writing into SOC_GLOBAL_RESET to put device into
3338	 * reset and pulling out of reset pcie may not be stable
3339	 * for any immediate pcie register access and cause bus error,
3340	 * add delay before any pcie access request to fix this issue.
3341	 */
3342	msleep(20);
3343
3344	/* Pull Target, including PCIe, out of RESET. */
3345	val &= ~1;
3346	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3347
3348	msleep(20);
3349
3350	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3351
3352	return 0;
3353}
3354
3355static int ath10k_pci_claim(struct ath10k *ar)
3356{
3357	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3358	struct pci_dev *pdev = ar_pci->pdev;
3359	int ret;
3360
3361	pci_set_drvdata(pdev, ar);
3362
3363	ret = pci_enable_device(pdev);
3364	if (ret) {
3365		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3366		return ret;
3367	}
3368
3369	ret = pci_request_region(pdev, BAR_NUM, "ath");
3370	if (ret) {
3371		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3372			   ret);
3373		goto err_device;
3374	}
3375
3376	/* Target expects 32 bit DMA. Enforce it. */
3377	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3378	if (ret) {
3379		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3380		goto err_region;
3381	}
3382
3383	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3384	if (ret) {
3385		ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
3386			   ret);
3387		goto err_region;
3388	}
3389
3390	pci_set_master(pdev);
3391
3392	/* Arrange for access to Target SoC registers. */
3393	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3394	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3395	if (!ar_pci->mem) {
3396		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3397		ret = -EIO;
3398		goto err_master;
3399	}
3400
3401	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3402	return 0;
3403
3404err_master:
3405	pci_clear_master(pdev);
3406
3407err_region:
3408	pci_release_region(pdev, BAR_NUM);
3409
3410err_device:
3411	pci_disable_device(pdev);
3412
3413	return ret;
3414}
3415
3416static void ath10k_pci_release(struct ath10k *ar)
3417{
3418	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3419	struct pci_dev *pdev = ar_pci->pdev;
3420
3421	pci_iounmap(pdev, ar_pci->mem);
3422	pci_release_region(pdev, BAR_NUM);
3423	pci_clear_master(pdev);
3424	pci_disable_device(pdev);
3425}
3426
3427static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3428{
3429	const struct ath10k_pci_supp_chip *supp_chip;
3430	int i;
3431	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3432
3433	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3434		supp_chip = &ath10k_pci_supp_chips[i];
3435
3436		if (supp_chip->dev_id == dev_id &&
3437		    supp_chip->rev_id == rev_id)
3438			return true;
3439	}
3440
3441	return false;
3442}
3443
3444int ath10k_pci_setup_resource(struct ath10k *ar)
3445{
3446	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3447	struct ath10k_ce *ce = ath10k_ce_priv(ar);
3448	int ret;
3449
3450	spin_lock_init(&ce->ce_lock);
3451	spin_lock_init(&ar_pci->ps_lock);
3452	mutex_init(&ar_pci->ce_diag_mutex);
3453
3454	INIT_WORK(&ar_pci->dump_work, ath10k_pci_fw_dump_work);
3455
3456	timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3458	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3459		ath10k_pci_override_ce_config(ar);
3460
3461	ret = ath10k_pci_alloc_pipes(ar);
3462	if (ret) {
3463		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3464			   ret);
3465		return ret;
3466	}
3467
3468	return 0;
 
 
 
 
 
 
 
 
3469}
3470
3471void ath10k_pci_release_resource(struct ath10k *ar)
3472{
 
 
3473	ath10k_pci_rx_retry_sync(ar);
3474	netif_napi_del(&ar->napi);
3475	ath10k_pci_ce_deinit(ar);
3476	ath10k_pci_free_pipes(ar);
 
 
 
3477}
3478
3479static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3480	.read32		= ath10k_bus_pci_read32,
3481	.write32	= ath10k_bus_pci_write32,
3482	.get_num_banks	= ath10k_pci_get_num_banks,
3483};
3484
3485static int ath10k_pci_probe(struct pci_dev *pdev,
3486			    const struct pci_device_id *pci_dev)
3487{
3488	int ret = 0;
3489	struct ath10k *ar;
3490	struct ath10k_pci *ar_pci;
3491	enum ath10k_hw_rev hw_rev;
3492	struct ath10k_bus_params bus_params = {};
3493	bool pci_ps;
3494	int (*pci_soft_reset)(struct ath10k *ar);
3495	int (*pci_hard_reset)(struct ath10k *ar);
3496	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3497
3498	switch (pci_dev->device) {
3499	case QCA988X_2_0_DEVICE_ID_UBNT:
3500	case QCA988X_2_0_DEVICE_ID:
3501		hw_rev = ATH10K_HW_QCA988X;
3502		pci_ps = false;
 
3503		pci_soft_reset = ath10k_pci_warm_reset;
3504		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3505		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3506		break;
3507	case QCA9887_1_0_DEVICE_ID:
3508		hw_rev = ATH10K_HW_QCA9887;
3509		pci_ps = false;
3510		pci_soft_reset = ath10k_pci_warm_reset;
3511		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3512		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3513		break;
3514	case QCA6164_2_1_DEVICE_ID:
3515	case QCA6174_2_1_DEVICE_ID:
3516		hw_rev = ATH10K_HW_QCA6174;
3517		pci_ps = true;
3518		pci_soft_reset = ath10k_pci_warm_reset;
3519		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3520		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3521		break;
3522	case QCA99X0_2_0_DEVICE_ID:
3523		hw_rev = ATH10K_HW_QCA99X0;
3524		pci_ps = false;
3525		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3526		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3527		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3528		break;
3529	case QCA9984_1_0_DEVICE_ID:
3530		hw_rev = ATH10K_HW_QCA9984;
3531		pci_ps = false;
3532		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3533		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3534		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3535		break;
3536	case QCA9888_2_0_DEVICE_ID:
3537		hw_rev = ATH10K_HW_QCA9888;
3538		pci_ps = false;
3539		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3540		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3541		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3542		break;
3543	case QCA9377_1_0_DEVICE_ID:
3544		hw_rev = ATH10K_HW_QCA9377;
3545		pci_ps = true;
3546		pci_soft_reset = ath10k_pci_warm_reset;
3547		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3548		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3549		break;
3550	default:
3551		WARN_ON(1);
3552		return -ENOTSUPP;
3553	}
3554
3555	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3556				hw_rev, &ath10k_pci_hif_ops);
3557	if (!ar) {
3558		dev_err(&pdev->dev, "failed to allocate core\n");
3559		return -ENOMEM;
3560	}
3561
3562	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3563		   pdev->vendor, pdev->device,
3564		   pdev->subsystem_vendor, pdev->subsystem_device);
3565
3566	ar_pci = ath10k_pci_priv(ar);
3567	ar_pci->pdev = pdev;
3568	ar_pci->dev = &pdev->dev;
3569	ar_pci->ar = ar;
3570	ar->dev_id = pci_dev->device;
3571	ar_pci->pci_ps = pci_ps;
3572	ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3573	ar_pci->pci_soft_reset = pci_soft_reset;
3574	ar_pci->pci_hard_reset = pci_hard_reset;
3575	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3576	ar->ce_priv = &ar_pci->ce;
3577
3578	ar->id.vendor = pdev->vendor;
3579	ar->id.device = pdev->device;
3580	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3581	ar->id.subsystem_device = pdev->subsystem_device;
3582
3583	timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
3584
3585	ret = ath10k_pci_setup_resource(ar);
3586	if (ret) {
3587		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3588		goto err_core_destroy;
3589	}
3590
3591	ret = ath10k_pci_claim(ar);
3592	if (ret) {
3593		ath10k_err(ar, "failed to claim device: %d\n", ret);
3594		goto err_free_pipes;
3595	}
3596
3597	ret = ath10k_pci_force_wake(ar);
3598	if (ret) {
3599		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3600		goto err_sleep;
3601	}
3602
3603	ath10k_pci_ce_deinit(ar);
3604	ath10k_pci_irq_disable(ar);
3605
3606	ret = ath10k_pci_init_irq(ar);
3607	if (ret) {
3608		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3609		goto err_sleep;
3610	}
3611
3612	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3613		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3614		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3615
3616	ret = ath10k_pci_request_irq(ar);
3617	if (ret) {
3618		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3619		goto err_deinit_irq;
3620	}
3621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3622	ret = ath10k_pci_chip_reset(ar);
3623	if (ret) {
3624		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3625		goto err_free_irq;
3626	}
3627
3628	bus_params.dev_type = ATH10K_DEV_TYPE_LL;
3629	bus_params.link_can_suspend = true;
3630	bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3631	if (bus_params.chip_id == 0xffffffff) {
3632		ath10k_err(ar, "failed to get chip id\n");
3633		goto err_free_irq;
3634	}
3635
3636	if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id)) {
3637		ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3638			   pdev->device, bus_params.chip_id);
3639		goto err_free_irq;
3640	}
3641
3642	ret = ath10k_core_register(ar, &bus_params);
3643	if (ret) {
3644		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3645		goto err_free_irq;
3646	}
3647
3648	return 0;
3649
 
 
 
 
3650err_free_irq:
3651	ath10k_pci_free_irq(ar);
3652	ath10k_pci_rx_retry_sync(ar);
3653
3654err_deinit_irq:
3655	ath10k_pci_deinit_irq(ar);
3656
3657err_sleep:
3658	ath10k_pci_sleep_sync(ar);
3659	ath10k_pci_release(ar);
3660
3661err_free_pipes:
3662	ath10k_pci_free_pipes(ar);
3663
3664err_core_destroy:
3665	ath10k_core_destroy(ar);
3666
3667	return ret;
3668}
3669
3670static void ath10k_pci_remove(struct pci_dev *pdev)
3671{
3672	struct ath10k *ar = pci_get_drvdata(pdev);
3673	struct ath10k_pci *ar_pci;
3674
3675	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3676
3677	if (!ar)
3678		return;
3679
3680	ar_pci = ath10k_pci_priv(ar);
3681
3682	if (!ar_pci)
3683		return;
3684
3685	ath10k_core_unregister(ar);
3686	ath10k_pci_free_irq(ar);
3687	ath10k_pci_deinit_irq(ar);
3688	ath10k_pci_release_resource(ar);
3689	ath10k_pci_sleep_sync(ar);
3690	ath10k_pci_release(ar);
3691	ath10k_core_destroy(ar);
3692}
3693
3694MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3695
3696static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3697{
3698	struct ath10k *ar = dev_get_drvdata(dev);
3699	int ret;
3700
3701	ret = ath10k_pci_suspend(ar);
3702	if (ret)
3703		ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3704
3705	return ret;
3706}
3707
3708static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3709{
3710	struct ath10k *ar = dev_get_drvdata(dev);
3711	int ret;
3712
3713	ret = ath10k_pci_resume(ar);
3714	if (ret)
3715		ath10k_warn(ar, "failed to resume hif: %d\n", ret);
3716
3717	return ret;
3718}
3719
3720static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3721			 ath10k_pci_pm_suspend,
3722			 ath10k_pci_pm_resume);
3723
3724static struct pci_driver ath10k_pci_driver = {
3725	.name = "ath10k_pci",
3726	.id_table = ath10k_pci_id_table,
3727	.probe = ath10k_pci_probe,
3728	.remove = ath10k_pci_remove,
3729#ifdef CONFIG_PM
3730	.driver.pm = &ath10k_pci_pm_ops,
3731#endif
3732};
3733
3734static int __init ath10k_pci_init(void)
3735{
3736	int ret;
3737
3738	ret = pci_register_driver(&ath10k_pci_driver);
3739	if (ret)
3740		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3741		       ret);
3742
3743	ret = ath10k_ahb_init();
3744	if (ret)
3745		printk(KERN_ERR "ahb init failed: %d\n", ret);
 
 
 
3746
3747	return ret;
 
3748}
3749module_init(ath10k_pci_init);
3750
3751static void __exit ath10k_pci_exit(void)
3752{
3753	pci_unregister_driver(&ath10k_pci_driver);
3754	ath10k_ahb_exit();
3755}
3756
3757module_exit(ath10k_pci_exit);
3758
3759MODULE_AUTHOR("Qualcomm Atheros");
3760MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3761MODULE_LICENSE("Dual BSD/GPL");
3762
3763/* QCA988x 2.0 firmware files */
3764MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3765MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3766MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3767MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3768MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3769MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3770
3771/* QCA9887 1.0 firmware files */
3772MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3773MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3774MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3775
3776/* QCA6174 2.1 firmware files */
3777MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3778MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3779MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3780MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3781
3782/* QCA6174 3.1 firmware files */
3783MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3784MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3785MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3786MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3787MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3788
3789/* QCA9377 1.0 firmware files */
3790MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3791MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3792MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);