Loading...
1// SPDX-License-Identifier: ISC
2/*
3 * Copyright (c) 2005-2011 Atheros Communications Inc.
4 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
5 * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
6 */
7
8#include <linux/pci.h>
9#include <linux/module.h>
10#include <linux/interrupt.h>
11#include <linux/spinlock.h>
12#include <linux/bitops.h>
13
14#include "core.h"
15#include "debug.h"
16#include "coredump.h"
17
18#include "targaddrs.h"
19#include "bmi.h"
20
21#include "hif.h"
22#include "htc.h"
23
24#include "ce.h"
25#include "pci.h"
26
27enum ath10k_pci_reset_mode {
28 ATH10K_PCI_RESET_AUTO = 0,
29 ATH10K_PCI_RESET_WARM_ONLY = 1,
30};
31
32static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
33static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
34
35module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
36MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
37
38module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
39MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
40
41/* how long wait to wait for target to initialise, in ms */
42#define ATH10K_PCI_TARGET_WAIT 3000
43#define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
44
45/* Maximum number of bytes that can be handled atomically by
46 * diag read and write.
47 */
48#define ATH10K_DIAG_TRANSFER_LIMIT 0x5000
49
50#define QCA99X0_PCIE_BAR0_START_REG 0x81030
51#define QCA99X0_CPU_MEM_ADDR_REG 0x4d00c
52#define QCA99X0_CPU_MEM_DATA_REG 0x4d010
53
54static const struct pci_device_id ath10k_pci_id_table[] = {
55 /* PCI-E QCA988X V2 (Ubiquiti branded) */
56 { PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
57
58 { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
59 { PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
60 { PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
61 { PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
62 { PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
63 { PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
64 { PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
65 { PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
66 {0}
67};
68
69static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
70 /* QCA988X pre 2.0 chips are not supported because they need some nasty
71 * hacks. ath10k doesn't have them and these devices crash horribly
72 * because of that.
73 */
74 { QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
75 { QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
76
77 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
78 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
79 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
80 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
81 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
82
83 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
84 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
85 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
86 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
87 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
88
89 { QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
90
91 { QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
92
93 { QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
94
95 { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
96 { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
97
98 { QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
99};
100
101static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
102static int ath10k_pci_cold_reset(struct ath10k *ar);
103static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
104static int ath10k_pci_init_irq(struct ath10k *ar);
105static int ath10k_pci_deinit_irq(struct ath10k *ar);
106static int ath10k_pci_request_irq(struct ath10k *ar);
107static void ath10k_pci_free_irq(struct ath10k *ar);
108static int ath10k_pci_bmi_wait(struct ath10k *ar,
109 struct ath10k_ce_pipe *tx_pipe,
110 struct ath10k_ce_pipe *rx_pipe,
111 struct bmi_xfer *xfer);
112static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
113static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
114static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
115static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
116static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
117static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
118static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
119
120static const struct ce_attr pci_host_ce_config_wlan[] = {
121 /* CE0: host->target HTC control and raw streams */
122 {
123 .flags = CE_ATTR_FLAGS,
124 .src_nentries = 16,
125 .src_sz_max = 256,
126 .dest_nentries = 0,
127 .send_cb = ath10k_pci_htc_tx_cb,
128 },
129
130 /* CE1: target->host HTT + HTC control */
131 {
132 .flags = CE_ATTR_FLAGS,
133 .src_nentries = 0,
134 .src_sz_max = 2048,
135 .dest_nentries = 512,
136 .recv_cb = ath10k_pci_htt_htc_rx_cb,
137 },
138
139 /* CE2: target->host WMI */
140 {
141 .flags = CE_ATTR_FLAGS,
142 .src_nentries = 0,
143 .src_sz_max = 2048,
144 .dest_nentries = 128,
145 .recv_cb = ath10k_pci_htc_rx_cb,
146 },
147
148 /* CE3: host->target WMI */
149 {
150 .flags = CE_ATTR_FLAGS,
151 .src_nentries = 32,
152 .src_sz_max = 2048,
153 .dest_nentries = 0,
154 .send_cb = ath10k_pci_htc_tx_cb,
155 },
156
157 /* CE4: host->target HTT */
158 {
159 .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
160 .src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
161 .src_sz_max = 256,
162 .dest_nentries = 0,
163 .send_cb = ath10k_pci_htt_tx_cb,
164 },
165
166 /* CE5: target->host HTT (HIF->HTT) */
167 {
168 .flags = CE_ATTR_FLAGS,
169 .src_nentries = 0,
170 .src_sz_max = 512,
171 .dest_nentries = 512,
172 .recv_cb = ath10k_pci_htt_rx_cb,
173 },
174
175 /* CE6: target autonomous hif_memcpy */
176 {
177 .flags = CE_ATTR_FLAGS,
178 .src_nentries = 0,
179 .src_sz_max = 0,
180 .dest_nentries = 0,
181 },
182
183 /* CE7: ce_diag, the Diagnostic Window */
184 {
185 .flags = CE_ATTR_FLAGS | CE_ATTR_POLL,
186 .src_nentries = 2,
187 .src_sz_max = DIAG_TRANSFER_LIMIT,
188 .dest_nentries = 2,
189 },
190
191 /* CE8: target->host pktlog */
192 {
193 .flags = CE_ATTR_FLAGS,
194 .src_nentries = 0,
195 .src_sz_max = 2048,
196 .dest_nentries = 128,
197 .recv_cb = ath10k_pci_pktlog_rx_cb,
198 },
199
200 /* CE9 target autonomous qcache memcpy */
201 {
202 .flags = CE_ATTR_FLAGS,
203 .src_nentries = 0,
204 .src_sz_max = 0,
205 .dest_nentries = 0,
206 },
207
208 /* CE10: target autonomous hif memcpy */
209 {
210 .flags = CE_ATTR_FLAGS,
211 .src_nentries = 0,
212 .src_sz_max = 0,
213 .dest_nentries = 0,
214 },
215
216 /* CE11: target autonomous hif memcpy */
217 {
218 .flags = CE_ATTR_FLAGS,
219 .src_nentries = 0,
220 .src_sz_max = 0,
221 .dest_nentries = 0,
222 },
223};
224
225/* Target firmware's Copy Engine configuration. */
226static const struct ce_pipe_config pci_target_ce_config_wlan[] = {
227 /* CE0: host->target HTC control and raw streams */
228 {
229 .pipenum = __cpu_to_le32(0),
230 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
231 .nentries = __cpu_to_le32(32),
232 .nbytes_max = __cpu_to_le32(256),
233 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
234 .reserved = __cpu_to_le32(0),
235 },
236
237 /* CE1: target->host HTT + HTC control */
238 {
239 .pipenum = __cpu_to_le32(1),
240 .pipedir = __cpu_to_le32(PIPEDIR_IN),
241 .nentries = __cpu_to_le32(32),
242 .nbytes_max = __cpu_to_le32(2048),
243 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
244 .reserved = __cpu_to_le32(0),
245 },
246
247 /* CE2: target->host WMI */
248 {
249 .pipenum = __cpu_to_le32(2),
250 .pipedir = __cpu_to_le32(PIPEDIR_IN),
251 .nentries = __cpu_to_le32(64),
252 .nbytes_max = __cpu_to_le32(2048),
253 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
254 .reserved = __cpu_to_le32(0),
255 },
256
257 /* CE3: host->target WMI */
258 {
259 .pipenum = __cpu_to_le32(3),
260 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
261 .nentries = __cpu_to_le32(32),
262 .nbytes_max = __cpu_to_le32(2048),
263 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
264 .reserved = __cpu_to_le32(0),
265 },
266
267 /* CE4: host->target HTT */
268 {
269 .pipenum = __cpu_to_le32(4),
270 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
271 .nentries = __cpu_to_le32(256),
272 .nbytes_max = __cpu_to_le32(256),
273 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
274 .reserved = __cpu_to_le32(0),
275 },
276
277 /* NB: 50% of src nentries, since tx has 2 frags */
278
279 /* CE5: target->host HTT (HIF->HTT) */
280 {
281 .pipenum = __cpu_to_le32(5),
282 .pipedir = __cpu_to_le32(PIPEDIR_IN),
283 .nentries = __cpu_to_le32(32),
284 .nbytes_max = __cpu_to_le32(512),
285 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
286 .reserved = __cpu_to_le32(0),
287 },
288
289 /* CE6: Reserved for target autonomous hif_memcpy */
290 {
291 .pipenum = __cpu_to_le32(6),
292 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
293 .nentries = __cpu_to_le32(32),
294 .nbytes_max = __cpu_to_le32(4096),
295 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
296 .reserved = __cpu_to_le32(0),
297 },
298
299 /* CE7 used only by Host */
300 {
301 .pipenum = __cpu_to_le32(7),
302 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
303 .nentries = __cpu_to_le32(0),
304 .nbytes_max = __cpu_to_le32(0),
305 .flags = __cpu_to_le32(0),
306 .reserved = __cpu_to_le32(0),
307 },
308
309 /* CE8 target->host packtlog */
310 {
311 .pipenum = __cpu_to_le32(8),
312 .pipedir = __cpu_to_le32(PIPEDIR_IN),
313 .nentries = __cpu_to_le32(64),
314 .nbytes_max = __cpu_to_le32(2048),
315 .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
316 .reserved = __cpu_to_le32(0),
317 },
318
319 /* CE9 target autonomous qcache memcpy */
320 {
321 .pipenum = __cpu_to_le32(9),
322 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
323 .nentries = __cpu_to_le32(32),
324 .nbytes_max = __cpu_to_le32(2048),
325 .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
326 .reserved = __cpu_to_le32(0),
327 },
328
329 /* It not necessary to send target wlan configuration for CE10 & CE11
330 * as these CEs are not actively used in target.
331 */
332};
333
334/*
335 * Map from service/endpoint to Copy Engine.
336 * This table is derived from the CE_PCI TABLE, above.
337 * It is passed to the Target at startup for use by firmware.
338 */
339static const struct ce_service_to_pipe pci_target_service_to_ce_map_wlan[] = {
340 {
341 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
342 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
343 __cpu_to_le32(3),
344 },
345 {
346 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
347 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
348 __cpu_to_le32(2),
349 },
350 {
351 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
352 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
353 __cpu_to_le32(3),
354 },
355 {
356 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
357 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
358 __cpu_to_le32(2),
359 },
360 {
361 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
362 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
363 __cpu_to_le32(3),
364 },
365 {
366 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
367 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
368 __cpu_to_le32(2),
369 },
370 {
371 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
372 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
373 __cpu_to_le32(3),
374 },
375 {
376 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
377 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
378 __cpu_to_le32(2),
379 },
380 {
381 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
382 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
383 __cpu_to_le32(3),
384 },
385 {
386 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
387 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
388 __cpu_to_le32(2),
389 },
390 {
391 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
392 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
393 __cpu_to_le32(0),
394 },
395 {
396 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
397 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
398 __cpu_to_le32(1),
399 },
400 { /* not used */
401 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
402 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
403 __cpu_to_le32(0),
404 },
405 { /* not used */
406 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
407 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
408 __cpu_to_le32(1),
409 },
410 {
411 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
412 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
413 __cpu_to_le32(4),
414 },
415 {
416 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
417 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
418 __cpu_to_le32(5),
419 },
420
421 /* (Additions here) */
422
423 { /* must be last */
424 __cpu_to_le32(0),
425 __cpu_to_le32(0),
426 __cpu_to_le32(0),
427 },
428};
429
430static bool ath10k_pci_is_awake(struct ath10k *ar)
431{
432 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
433 u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
434 RTC_STATE_ADDRESS);
435
436 return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
437}
438
439static void __ath10k_pci_wake(struct ath10k *ar)
440{
441 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
442
443 lockdep_assert_held(&ar_pci->ps_lock);
444
445 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
446 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
447
448 iowrite32(PCIE_SOC_WAKE_V_MASK,
449 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
450 PCIE_SOC_WAKE_ADDRESS);
451}
452
453static void __ath10k_pci_sleep(struct ath10k *ar)
454{
455 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
456
457 lockdep_assert_held(&ar_pci->ps_lock);
458
459 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
460 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
461
462 iowrite32(PCIE_SOC_WAKE_RESET,
463 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
464 PCIE_SOC_WAKE_ADDRESS);
465 ar_pci->ps_awake = false;
466}
467
468static int ath10k_pci_wake_wait(struct ath10k *ar)
469{
470 int tot_delay = 0;
471 int curr_delay = 5;
472
473 while (tot_delay < PCIE_WAKE_TIMEOUT) {
474 if (ath10k_pci_is_awake(ar)) {
475 if (tot_delay > PCIE_WAKE_LATE_US)
476 ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
477 tot_delay / 1000);
478 return 0;
479 }
480
481 udelay(curr_delay);
482 tot_delay += curr_delay;
483
484 if (curr_delay < 50)
485 curr_delay += 5;
486 }
487
488 return -ETIMEDOUT;
489}
490
491static int ath10k_pci_force_wake(struct ath10k *ar)
492{
493 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
494 unsigned long flags;
495 int ret = 0;
496
497 if (ar_pci->pci_ps)
498 return ret;
499
500 spin_lock_irqsave(&ar_pci->ps_lock, flags);
501
502 if (!ar_pci->ps_awake) {
503 iowrite32(PCIE_SOC_WAKE_V_MASK,
504 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
505 PCIE_SOC_WAKE_ADDRESS);
506
507 ret = ath10k_pci_wake_wait(ar);
508 if (ret == 0)
509 ar_pci->ps_awake = true;
510 }
511
512 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
513
514 return ret;
515}
516
517static void ath10k_pci_force_sleep(struct ath10k *ar)
518{
519 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
520 unsigned long flags;
521
522 spin_lock_irqsave(&ar_pci->ps_lock, flags);
523
524 iowrite32(PCIE_SOC_WAKE_RESET,
525 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
526 PCIE_SOC_WAKE_ADDRESS);
527 ar_pci->ps_awake = false;
528
529 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
530}
531
532static int ath10k_pci_wake(struct ath10k *ar)
533{
534 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
535 unsigned long flags;
536 int ret = 0;
537
538 if (ar_pci->pci_ps == 0)
539 return ret;
540
541 spin_lock_irqsave(&ar_pci->ps_lock, flags);
542
543 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
544 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
545
546 /* This function can be called very frequently. To avoid excessive
547 * CPU stalls for MMIO reads use a cache var to hold the device state.
548 */
549 if (!ar_pci->ps_awake) {
550 __ath10k_pci_wake(ar);
551
552 ret = ath10k_pci_wake_wait(ar);
553 if (ret == 0)
554 ar_pci->ps_awake = true;
555 }
556
557 if (ret == 0) {
558 ar_pci->ps_wake_refcount++;
559 WARN_ON(ar_pci->ps_wake_refcount == 0);
560 }
561
562 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
563
564 return ret;
565}
566
567static void ath10k_pci_sleep(struct ath10k *ar)
568{
569 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
570 unsigned long flags;
571
572 if (ar_pci->pci_ps == 0)
573 return;
574
575 spin_lock_irqsave(&ar_pci->ps_lock, flags);
576
577 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
578 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
579
580 if (WARN_ON(ar_pci->ps_wake_refcount == 0))
581 goto skip;
582
583 ar_pci->ps_wake_refcount--;
584
585 mod_timer(&ar_pci->ps_timer, jiffies +
586 msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
587
588skip:
589 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
590}
591
592static void ath10k_pci_ps_timer(struct timer_list *t)
593{
594 struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
595 struct ath10k *ar = ar_pci->ar;
596 unsigned long flags;
597
598 spin_lock_irqsave(&ar_pci->ps_lock, flags);
599
600 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
601 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
602
603 if (ar_pci->ps_wake_refcount > 0)
604 goto skip;
605
606 __ath10k_pci_sleep(ar);
607
608skip:
609 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
610}
611
612static void ath10k_pci_sleep_sync(struct ath10k *ar)
613{
614 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
615 unsigned long flags;
616
617 if (ar_pci->pci_ps == 0) {
618 ath10k_pci_force_sleep(ar);
619 return;
620 }
621
622 del_timer_sync(&ar_pci->ps_timer);
623
624 spin_lock_irqsave(&ar_pci->ps_lock, flags);
625 WARN_ON(ar_pci->ps_wake_refcount > 0);
626 __ath10k_pci_sleep(ar);
627 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
628}
629
630static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
631{
632 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
633 int ret;
634
635 if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
636 ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
637 offset, offset + sizeof(value), ar_pci->mem_len);
638 return;
639 }
640
641 ret = ath10k_pci_wake(ar);
642 if (ret) {
643 ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
644 value, offset, ret);
645 return;
646 }
647
648 iowrite32(value, ar_pci->mem + offset);
649 ath10k_pci_sleep(ar);
650}
651
652static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
653{
654 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
655 u32 val;
656 int ret;
657
658 if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
659 ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
660 offset, offset + sizeof(val), ar_pci->mem_len);
661 return 0;
662 }
663
664 ret = ath10k_pci_wake(ar);
665 if (ret) {
666 ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
667 offset, ret);
668 return 0xffffffff;
669 }
670
671 val = ioread32(ar_pci->mem + offset);
672 ath10k_pci_sleep(ar);
673
674 return val;
675}
676
677inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
678{
679 struct ath10k_ce *ce = ath10k_ce_priv(ar);
680
681 ce->bus_ops->write32(ar, offset, value);
682}
683
684inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
685{
686 struct ath10k_ce *ce = ath10k_ce_priv(ar);
687
688 return ce->bus_ops->read32(ar, offset);
689}
690
691u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
692{
693 return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
694}
695
696void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
697{
698 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
699}
700
701u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
702{
703 return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
704}
705
706void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
707{
708 ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
709}
710
711bool ath10k_pci_irq_pending(struct ath10k *ar)
712{
713 u32 cause;
714
715 /* Check if the shared legacy irq is for us */
716 cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
717 PCIE_INTR_CAUSE_ADDRESS);
718 if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
719 return true;
720
721 return false;
722}
723
724void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
725{
726 /* IMPORTANT: INTR_CLR register has to be set after
727 * INTR_ENABLE is set to 0, otherwise interrupt can not be
728 * really cleared.
729 */
730 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
731 0);
732 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
733 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
734
735 /* IMPORTANT: this extra read transaction is required to
736 * flush the posted write buffer.
737 */
738 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
739 PCIE_INTR_ENABLE_ADDRESS);
740}
741
742void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
743{
744 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
745 PCIE_INTR_ENABLE_ADDRESS,
746 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
747
748 /* IMPORTANT: this extra read transaction is required to
749 * flush the posted write buffer.
750 */
751 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
752 PCIE_INTR_ENABLE_ADDRESS);
753}
754
755static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
756{
757 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
758
759 if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
760 return "msi";
761
762 return "legacy";
763}
764
765static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
766{
767 struct ath10k *ar = pipe->hif_ce_state;
768 struct ath10k_ce *ce = ath10k_ce_priv(ar);
769 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
770 struct sk_buff *skb;
771 dma_addr_t paddr;
772 int ret;
773
774 skb = dev_alloc_skb(pipe->buf_sz);
775 if (!skb)
776 return -ENOMEM;
777
778 WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
779
780 paddr = dma_map_single(ar->dev, skb->data,
781 skb->len + skb_tailroom(skb),
782 DMA_FROM_DEVICE);
783 if (unlikely(dma_mapping_error(ar->dev, paddr))) {
784 ath10k_warn(ar, "failed to dma map pci rx buf\n");
785 dev_kfree_skb_any(skb);
786 return -EIO;
787 }
788
789 ATH10K_SKB_RXCB(skb)->paddr = paddr;
790
791 spin_lock_bh(&ce->ce_lock);
792 ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
793 spin_unlock_bh(&ce->ce_lock);
794 if (ret) {
795 dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
796 DMA_FROM_DEVICE);
797 dev_kfree_skb_any(skb);
798 return ret;
799 }
800
801 return 0;
802}
803
804static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
805{
806 struct ath10k *ar = pipe->hif_ce_state;
807 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
808 struct ath10k_ce *ce = ath10k_ce_priv(ar);
809 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
810 int ret, num;
811
812 if (pipe->buf_sz == 0)
813 return;
814
815 if (!ce_pipe->dest_ring)
816 return;
817
818 spin_lock_bh(&ce->ce_lock);
819 num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
820 spin_unlock_bh(&ce->ce_lock);
821
822 while (num >= 0) {
823 ret = __ath10k_pci_rx_post_buf(pipe);
824 if (ret) {
825 if (ret == -ENOSPC)
826 break;
827 ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
828 mod_timer(&ar_pci->rx_post_retry, jiffies +
829 ATH10K_PCI_RX_POST_RETRY_MS);
830 break;
831 }
832 num--;
833 }
834}
835
836void ath10k_pci_rx_post(struct ath10k *ar)
837{
838 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
839 int i;
840
841 for (i = 0; i < CE_COUNT; i++)
842 ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
843}
844
845void ath10k_pci_rx_replenish_retry(struct timer_list *t)
846{
847 struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
848 struct ath10k *ar = ar_pci->ar;
849
850 ath10k_pci_rx_post(ar);
851}
852
853static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
854{
855 u32 val = 0, region = addr & 0xfffff;
856
857 val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
858 & 0x7ff) << 21;
859 val |= 0x100000 | region;
860 return val;
861}
862
863/* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr.
864 * Support to access target space below 1M for qca6174 and qca9377.
865 * If target space is below 1M, the bit[20] of converted CE addr is 0.
866 * Otherwise bit[20] of converted CE addr is 1.
867 */
868static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
869{
870 u32 val = 0, region = addr & 0xfffff;
871
872 val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
873 & 0x7ff) << 21;
874 val |= ((addr >= 0x100000) ? 0x100000 : 0) | region;
875 return val;
876}
877
878static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
879{
880 u32 val = 0, region = addr & 0xfffff;
881
882 val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
883 val |= 0x100000 | region;
884 return val;
885}
886
887static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
888{
889 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
890
891 if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
892 return -ENOTSUPP;
893
894 return ar_pci->targ_cpu_to_ce_addr(ar, addr);
895}
896
897/*
898 * Diagnostic read/write access is provided for startup/config/debug usage.
899 * Caller must guarantee proper alignment, when applicable, and single user
900 * at any moment.
901 */
902static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
903 int nbytes)
904{
905 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
906 int ret = 0;
907 u32 *buf;
908 unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
909 struct ath10k_ce_pipe *ce_diag;
910 /* Host buffer address in CE space */
911 u32 ce_data;
912 dma_addr_t ce_data_base = 0;
913 void *data_buf;
914 int i;
915
916 mutex_lock(&ar_pci->ce_diag_mutex);
917 ce_diag = ar_pci->ce_diag;
918
919 /*
920 * Allocate a temporary bounce buffer to hold caller's data
921 * to be DMA'ed from Target. This guarantees
922 * 1) 4-byte alignment
923 * 2) Buffer in DMA-able space
924 */
925 alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
926
927 data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
928 GFP_ATOMIC);
929 if (!data_buf) {
930 ret = -ENOMEM;
931 goto done;
932 }
933
934 /* The address supplied by the caller is in the
935 * Target CPU virtual address space.
936 *
937 * In order to use this address with the diagnostic CE,
938 * convert it from Target CPU virtual address space
939 * to CE address space
940 */
941 address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
942
943 remaining_bytes = nbytes;
944 ce_data = ce_data_base;
945 while (remaining_bytes) {
946 nbytes = min_t(unsigned int, remaining_bytes,
947 DIAG_TRANSFER_LIMIT);
948
949 ret = ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
950 if (ret != 0)
951 goto done;
952
953 /* Request CE to send from Target(!) address to Host buffer */
954 ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0);
955 if (ret)
956 goto done;
957
958 i = 0;
959 while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
960 udelay(DIAG_ACCESS_CE_WAIT_US);
961 i += DIAG_ACCESS_CE_WAIT_US;
962
963 if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
964 ret = -EBUSY;
965 goto done;
966 }
967 }
968
969 i = 0;
970 while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
971 &completed_nbytes) != 0) {
972 udelay(DIAG_ACCESS_CE_WAIT_US);
973 i += DIAG_ACCESS_CE_WAIT_US;
974
975 if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
976 ret = -EBUSY;
977 goto done;
978 }
979 }
980
981 if (nbytes != completed_nbytes) {
982 ret = -EIO;
983 goto done;
984 }
985
986 if (*buf != ce_data) {
987 ret = -EIO;
988 goto done;
989 }
990
991 remaining_bytes -= nbytes;
992 memcpy(data, data_buf, nbytes);
993
994 address += nbytes;
995 data += nbytes;
996 }
997
998done:
999
1000 if (data_buf)
1001 dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1002 ce_data_base);
1003
1004 mutex_unlock(&ar_pci->ce_diag_mutex);
1005
1006 return ret;
1007}
1008
1009static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
1010{
1011 __le32 val = 0;
1012 int ret;
1013
1014 ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1015 *value = __le32_to_cpu(val);
1016
1017 return ret;
1018}
1019
1020static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1021 u32 src, u32 len)
1022{
1023 u32 host_addr, addr;
1024 int ret;
1025
1026 host_addr = host_interest_item_address(src);
1027
1028 ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1029 if (ret != 0) {
1030 ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1031 src, ret);
1032 return ret;
1033 }
1034
1035 ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1036 if (ret != 0) {
1037 ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1038 addr, len, ret);
1039 return ret;
1040 }
1041
1042 return 0;
1043}
1044
1045#define ath10k_pci_diag_read_hi(ar, dest, src, len) \
1046 __ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1047
1048int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1049 const void *data, int nbytes)
1050{
1051 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1052 int ret = 0;
1053 u32 *buf;
1054 unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
1055 struct ath10k_ce_pipe *ce_diag;
1056 void *data_buf;
1057 dma_addr_t ce_data_base = 0;
1058 int i;
1059
1060 mutex_lock(&ar_pci->ce_diag_mutex);
1061 ce_diag = ar_pci->ce_diag;
1062
1063 /*
1064 * Allocate a temporary bounce buffer to hold caller's data
1065 * to be DMA'ed to Target. This guarantees
1066 * 1) 4-byte alignment
1067 * 2) Buffer in DMA-able space
1068 */
1069 alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
1070
1071 data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
1072 GFP_ATOMIC);
1073 if (!data_buf) {
1074 ret = -ENOMEM;
1075 goto done;
1076 }
1077
1078 /*
1079 * The address supplied by the caller is in the
1080 * Target CPU virtual address space.
1081 *
1082 * In order to use this address with the diagnostic CE,
1083 * convert it from
1084 * Target CPU virtual address space
1085 * to
1086 * CE address space
1087 */
1088 address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1089
1090 remaining_bytes = nbytes;
1091 while (remaining_bytes) {
1092 /* FIXME: check cast */
1093 nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1094
1095 /* Copy caller's data to allocated DMA buf */
1096 memcpy(data_buf, data, nbytes);
1097
1098 /* Set up to receive directly into Target(!) address */
1099 ret = ath10k_ce_rx_post_buf(ce_diag, &address, address);
1100 if (ret != 0)
1101 goto done;
1102
1103 /*
1104 * Request CE to send caller-supplied data that
1105 * was copied to bounce buffer to Target(!) address.
1106 */
1107 ret = ath10k_ce_send(ce_diag, NULL, ce_data_base, nbytes, 0, 0);
1108 if (ret != 0)
1109 goto done;
1110
1111 i = 0;
1112 while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
1113 udelay(DIAG_ACCESS_CE_WAIT_US);
1114 i += DIAG_ACCESS_CE_WAIT_US;
1115
1116 if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1117 ret = -EBUSY;
1118 goto done;
1119 }
1120 }
1121
1122 i = 0;
1123 while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
1124 &completed_nbytes) != 0) {
1125 udelay(DIAG_ACCESS_CE_WAIT_US);
1126 i += DIAG_ACCESS_CE_WAIT_US;
1127
1128 if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1129 ret = -EBUSY;
1130 goto done;
1131 }
1132 }
1133
1134 if (nbytes != completed_nbytes) {
1135 ret = -EIO;
1136 goto done;
1137 }
1138
1139 if (*buf != address) {
1140 ret = -EIO;
1141 goto done;
1142 }
1143
1144 remaining_bytes -= nbytes;
1145 address += nbytes;
1146 data += nbytes;
1147 }
1148
1149done:
1150 if (data_buf) {
1151 dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1152 ce_data_base);
1153 }
1154
1155 if (ret != 0)
1156 ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1157 address, ret);
1158
1159 mutex_unlock(&ar_pci->ce_diag_mutex);
1160
1161 return ret;
1162}
1163
1164static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1165{
1166 __le32 val = __cpu_to_le32(value);
1167
1168 return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1169}
1170
1171/* Called by lower (CE) layer when a send to Target completes. */
1172static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1173{
1174 struct ath10k *ar = ce_state->ar;
1175 struct sk_buff_head list;
1176 struct sk_buff *skb;
1177
1178 __skb_queue_head_init(&list);
1179 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1180 /* no need to call tx completion for NULL pointers */
1181 if (skb == NULL)
1182 continue;
1183
1184 __skb_queue_tail(&list, skb);
1185 }
1186
1187 while ((skb = __skb_dequeue(&list)))
1188 ath10k_htc_tx_completion_handler(ar, skb);
1189}
1190
1191static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1192 void (*callback)(struct ath10k *ar,
1193 struct sk_buff *skb))
1194{
1195 struct ath10k *ar = ce_state->ar;
1196 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1197 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
1198 struct sk_buff *skb;
1199 struct sk_buff_head list;
1200 void *transfer_context;
1201 unsigned int nbytes, max_nbytes;
1202
1203 __skb_queue_head_init(&list);
1204 while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1205 &nbytes) == 0) {
1206 skb = transfer_context;
1207 max_nbytes = skb->len + skb_tailroom(skb);
1208 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1209 max_nbytes, DMA_FROM_DEVICE);
1210
1211 if (unlikely(max_nbytes < nbytes)) {
1212 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1213 nbytes, max_nbytes);
1214 dev_kfree_skb_any(skb);
1215 continue;
1216 }
1217
1218 skb_put(skb, nbytes);
1219 __skb_queue_tail(&list, skb);
1220 }
1221
1222 while ((skb = __skb_dequeue(&list))) {
1223 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1224 ce_state->id, skb->len);
1225 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1226 skb->data, skb->len);
1227
1228 callback(ar, skb);
1229 }
1230
1231 ath10k_pci_rx_post_pipe(pipe_info);
1232}
1233
1234static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1235 void (*callback)(struct ath10k *ar,
1236 struct sk_buff *skb))
1237{
1238 struct ath10k *ar = ce_state->ar;
1239 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1240 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
1241 struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1242 struct sk_buff *skb;
1243 struct sk_buff_head list;
1244 void *transfer_context;
1245 unsigned int nbytes, max_nbytes, nentries;
1246 int orig_len;
1247
1248 /* No need to acquire ce_lock for CE5, since this is the only place CE5
1249 * is processed other than init and deinit. Before releasing CE5
1250 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1251 */
1252 __skb_queue_head_init(&list);
1253 while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1254 &nbytes) == 0) {
1255 skb = transfer_context;
1256 max_nbytes = skb->len + skb_tailroom(skb);
1257
1258 if (unlikely(max_nbytes < nbytes)) {
1259 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1260 nbytes, max_nbytes);
1261 continue;
1262 }
1263
1264 dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1265 max_nbytes, DMA_FROM_DEVICE);
1266 skb_put(skb, nbytes);
1267 __skb_queue_tail(&list, skb);
1268 }
1269
1270 nentries = skb_queue_len(&list);
1271 while ((skb = __skb_dequeue(&list))) {
1272 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1273 ce_state->id, skb->len);
1274 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1275 skb->data, skb->len);
1276
1277 orig_len = skb->len;
1278 callback(ar, skb);
1279 skb_push(skb, orig_len - skb->len);
1280 skb_reset_tail_pointer(skb);
1281 skb_trim(skb, 0);
1282
1283 /*let device gain the buffer again*/
1284 dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1285 skb->len + skb_tailroom(skb),
1286 DMA_FROM_DEVICE);
1287 }
1288 ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1289}
1290
1291/* Called by lower (CE) layer when data is received from the Target. */
1292static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1293{
1294 ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1295}
1296
1297static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1298{
1299 /* CE4 polling needs to be done whenever CE pipe which transports
1300 * HTT Rx (target->host) is processed.
1301 */
1302 ath10k_ce_per_engine_service(ce_state->ar, 4);
1303
1304 ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1305}
1306
1307/* Called by lower (CE) layer when data is received from the Target.
1308 * Only 10.4 firmware uses separate CE to transfer pktlog data.
1309 */
1310static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1311{
1312 ath10k_pci_process_rx_cb(ce_state,
1313 ath10k_htt_rx_pktlog_completion_handler);
1314}
1315
1316/* Called by lower (CE) layer when a send to HTT Target completes. */
1317static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1318{
1319 struct ath10k *ar = ce_state->ar;
1320 struct sk_buff *skb;
1321
1322 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1323 /* no need to call tx completion for NULL pointers */
1324 if (!skb)
1325 continue;
1326
1327 dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1328 skb->len, DMA_TO_DEVICE);
1329 ath10k_htt_hif_tx_complete(ar, skb);
1330 }
1331}
1332
1333static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1334{
1335 skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1336 ath10k_htt_t2h_msg_handler(ar, skb);
1337}
1338
1339/* Called by lower (CE) layer when HTT data is received from the Target. */
1340static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1341{
1342 /* CE4 polling needs to be done whenever CE pipe which transports
1343 * HTT Rx (target->host) is processed.
1344 */
1345 ath10k_ce_per_engine_service(ce_state->ar, 4);
1346
1347 ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1348}
1349
1350int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1351 struct ath10k_hif_sg_item *items, int n_items)
1352{
1353 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1354 struct ath10k_ce *ce = ath10k_ce_priv(ar);
1355 struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1356 struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1357 struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1358 unsigned int nentries_mask;
1359 unsigned int sw_index;
1360 unsigned int write_index;
1361 int err, i = 0;
1362
1363 spin_lock_bh(&ce->ce_lock);
1364
1365 nentries_mask = src_ring->nentries_mask;
1366 sw_index = src_ring->sw_index;
1367 write_index = src_ring->write_index;
1368
1369 if (unlikely(CE_RING_DELTA(nentries_mask,
1370 write_index, sw_index - 1) < n_items)) {
1371 err = -ENOBUFS;
1372 goto err;
1373 }
1374
1375 for (i = 0; i < n_items - 1; i++) {
1376 ath10k_dbg(ar, ATH10K_DBG_PCI,
1377 "pci tx item %d paddr %pad len %d n_items %d\n",
1378 i, &items[i].paddr, items[i].len, n_items);
1379 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1380 items[i].vaddr, items[i].len);
1381
1382 err = ath10k_ce_send_nolock(ce_pipe,
1383 items[i].transfer_context,
1384 items[i].paddr,
1385 items[i].len,
1386 items[i].transfer_id,
1387 CE_SEND_FLAG_GATHER);
1388 if (err)
1389 goto err;
1390 }
1391
1392 /* `i` is equal to `n_items -1` after for() */
1393
1394 ath10k_dbg(ar, ATH10K_DBG_PCI,
1395 "pci tx item %d paddr %pad len %d n_items %d\n",
1396 i, &items[i].paddr, items[i].len, n_items);
1397 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1398 items[i].vaddr, items[i].len);
1399
1400 err = ath10k_ce_send_nolock(ce_pipe,
1401 items[i].transfer_context,
1402 items[i].paddr,
1403 items[i].len,
1404 items[i].transfer_id,
1405 0);
1406 if (err)
1407 goto err;
1408
1409 spin_unlock_bh(&ce->ce_lock);
1410 return 0;
1411
1412err:
1413 for (; i > 0; i--)
1414 __ath10k_ce_send_revert(ce_pipe);
1415
1416 spin_unlock_bh(&ce->ce_lock);
1417 return err;
1418}
1419
1420int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1421 size_t buf_len)
1422{
1423 return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1424}
1425
1426u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1427{
1428 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1429
1430 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1431
1432 return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1433}
1434
1435static void ath10k_pci_dump_registers(struct ath10k *ar,
1436 struct ath10k_fw_crash_data *crash_data)
1437{
1438 __le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1439 int i, ret;
1440
1441 lockdep_assert_held(&ar->dump_mutex);
1442
1443 ret = ath10k_pci_diag_read_hi(ar, ®_dump_values[0],
1444 hi_failure_state,
1445 REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1446 if (ret) {
1447 ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1448 return;
1449 }
1450
1451 BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1452
1453 ath10k_err(ar, "firmware register dump:\n");
1454 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1455 ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1456 i,
1457 __le32_to_cpu(reg_dump_values[i]),
1458 __le32_to_cpu(reg_dump_values[i + 1]),
1459 __le32_to_cpu(reg_dump_values[i + 2]),
1460 __le32_to_cpu(reg_dump_values[i + 3]));
1461
1462 if (!crash_data)
1463 return;
1464
1465 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1466 crash_data->registers[i] = reg_dump_values[i];
1467}
1468
1469static int ath10k_pci_dump_memory_section(struct ath10k *ar,
1470 const struct ath10k_mem_region *mem_region,
1471 u8 *buf, size_t buf_len)
1472{
1473 const struct ath10k_mem_section *cur_section, *next_section;
1474 unsigned int count, section_size, skip_size;
1475 int ret, i, j;
1476
1477 if (!mem_region || !buf)
1478 return 0;
1479
1480 cur_section = &mem_region->section_table.sections[0];
1481
1482 if (mem_region->start > cur_section->start) {
1483 ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
1484 mem_region->start, cur_section->start);
1485 return 0;
1486 }
1487
1488 skip_size = cur_section->start - mem_region->start;
1489
1490 /* fill the gap between the first register section and register
1491 * start address
1492 */
1493 for (i = 0; i < skip_size; i++) {
1494 *buf = ATH10K_MAGIC_NOT_COPIED;
1495 buf++;
1496 }
1497
1498 count = 0;
1499
1500 for (i = 0; cur_section != NULL; i++) {
1501 section_size = cur_section->end - cur_section->start;
1502
1503 if (section_size <= 0) {
1504 ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
1505 cur_section->start,
1506 cur_section->end);
1507 break;
1508 }
1509
1510 if ((i + 1) == mem_region->section_table.size) {
1511 /* last section */
1512 next_section = NULL;
1513 skip_size = 0;
1514 } else {
1515 next_section = cur_section + 1;
1516
1517 if (cur_section->end > next_section->start) {
1518 ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
1519 next_section->start,
1520 cur_section->end);
1521 break;
1522 }
1523
1524 skip_size = next_section->start - cur_section->end;
1525 }
1526
1527 if (buf_len < (skip_size + section_size)) {
1528 ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
1529 break;
1530 }
1531
1532 buf_len -= skip_size + section_size;
1533
1534 /* read section to dest memory */
1535 ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
1536 buf, section_size);
1537 if (ret) {
1538 ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
1539 cur_section->start, ret);
1540 break;
1541 }
1542
1543 buf += section_size;
1544 count += section_size;
1545
1546 /* fill in the gap between this section and the next */
1547 for (j = 0; j < skip_size; j++) {
1548 *buf = ATH10K_MAGIC_NOT_COPIED;
1549 buf++;
1550 }
1551
1552 count += skip_size;
1553
1554 if (!next_section)
1555 /* this was the last section */
1556 break;
1557
1558 cur_section = next_section;
1559 }
1560
1561 return count;
1562}
1563
1564static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
1565{
1566 u32 val;
1567
1568 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1569 FW_RAM_CONFIG_ADDRESS, config);
1570
1571 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1572 FW_RAM_CONFIG_ADDRESS);
1573 if (val != config) {
1574 ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
1575 val, config);
1576 return -EIO;
1577 }
1578
1579 return 0;
1580}
1581
1582/* Always returns the length */
1583static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
1584 const struct ath10k_mem_region *region,
1585 u8 *buf)
1586{
1587 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1588 u32 base_addr, i;
1589
1590 base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
1591 base_addr += region->start;
1592
1593 for (i = 0; i < region->len; i += 4) {
1594 iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
1595 *(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
1596 }
1597
1598 return region->len;
1599}
1600
1601/* if an error happened returns < 0, otherwise the length */
1602static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
1603 const struct ath10k_mem_region *region,
1604 u8 *buf)
1605{
1606 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1607 u32 i;
1608 int ret;
1609
1610 mutex_lock(&ar->conf_mutex);
1611 if (ar->state != ATH10K_STATE_ON) {
1612 ath10k_warn(ar, "Skipping pci_dump_memory_reg invalid state\n");
1613 ret = -EIO;
1614 goto done;
1615 }
1616
1617 for (i = 0; i < region->len; i += 4)
1618 *(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);
1619
1620 ret = region->len;
1621done:
1622 mutex_unlock(&ar->conf_mutex);
1623 return ret;
1624}
1625
1626/* if an error happened returns < 0, otherwise the length */
1627static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
1628 const struct ath10k_mem_region *current_region,
1629 u8 *buf)
1630{
1631 int ret;
1632
1633 if (current_region->section_table.size > 0)
1634 /* Copy each section individually. */
1635 return ath10k_pci_dump_memory_section(ar,
1636 current_region,
1637 buf,
1638 current_region->len);
1639
1640 /* No individual memory sections defined so we can
1641 * copy the entire memory region.
1642 */
1643 ret = ath10k_pci_diag_read_mem(ar,
1644 current_region->start,
1645 buf,
1646 current_region->len);
1647 if (ret) {
1648 ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
1649 current_region->name, ret);
1650 return ret;
1651 }
1652
1653 return current_region->len;
1654}
1655
1656static void ath10k_pci_dump_memory(struct ath10k *ar,
1657 struct ath10k_fw_crash_data *crash_data)
1658{
1659 const struct ath10k_hw_mem_layout *mem_layout;
1660 const struct ath10k_mem_region *current_region;
1661 struct ath10k_dump_ram_data_hdr *hdr;
1662 u32 count, shift;
1663 size_t buf_len;
1664 int ret, i;
1665 u8 *buf;
1666
1667 lockdep_assert_held(&ar->dump_mutex);
1668
1669 if (!crash_data)
1670 return;
1671
1672 mem_layout = ath10k_coredump_get_mem_layout(ar);
1673 if (!mem_layout)
1674 return;
1675
1676 current_region = &mem_layout->region_table.regions[0];
1677
1678 buf = crash_data->ramdump_buf;
1679 buf_len = crash_data->ramdump_buf_len;
1680
1681 memset(buf, 0, buf_len);
1682
1683 for (i = 0; i < mem_layout->region_table.size; i++) {
1684 count = 0;
1685
1686 if (current_region->len > buf_len) {
1687 ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
1688 current_region->name,
1689 current_region->len,
1690 buf_len);
1691 break;
1692 }
1693
1694 /* To get IRAM dump, the host driver needs to switch target
1695 * ram config from DRAM to IRAM.
1696 */
1697 if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
1698 current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
1699 shift = current_region->start >> 20;
1700
1701 ret = ath10k_pci_set_ram_config(ar, shift);
1702 if (ret) {
1703 ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
1704 current_region->name, ret);
1705 break;
1706 }
1707 }
1708
1709 /* Reserve space for the header. */
1710 hdr = (void *)buf;
1711 buf += sizeof(*hdr);
1712 buf_len -= sizeof(*hdr);
1713
1714 switch (current_region->type) {
1715 case ATH10K_MEM_REGION_TYPE_IOSRAM:
1716 count = ath10k_pci_dump_memory_sram(ar, current_region, buf);
1717 break;
1718 case ATH10K_MEM_REGION_TYPE_IOREG:
1719 ret = ath10k_pci_dump_memory_reg(ar, current_region, buf);
1720 if (ret < 0)
1721 break;
1722
1723 count = ret;
1724 break;
1725 default:
1726 ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
1727 if (ret < 0)
1728 break;
1729
1730 count = ret;
1731 break;
1732 }
1733
1734 hdr->region_type = cpu_to_le32(current_region->type);
1735 hdr->start = cpu_to_le32(current_region->start);
1736 hdr->length = cpu_to_le32(count);
1737
1738 if (count == 0)
1739 /* Note: the header remains, just with zero length. */
1740 break;
1741
1742 buf += count;
1743 buf_len -= count;
1744
1745 current_region++;
1746 }
1747}
1748
1749static void ath10k_pci_fw_dump_work(struct work_struct *work)
1750{
1751 struct ath10k_pci *ar_pci = container_of(work, struct ath10k_pci,
1752 dump_work);
1753 struct ath10k_fw_crash_data *crash_data;
1754 struct ath10k *ar = ar_pci->ar;
1755 char guid[UUID_STRING_LEN + 1];
1756
1757 mutex_lock(&ar->dump_mutex);
1758
1759 spin_lock_bh(&ar->data_lock);
1760 ar->stats.fw_crash_counter++;
1761 spin_unlock_bh(&ar->data_lock);
1762
1763 crash_data = ath10k_coredump_new(ar);
1764
1765 if (crash_data)
1766 scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1767 else
1768 scnprintf(guid, sizeof(guid), "n/a");
1769
1770 ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1771 ath10k_print_driver_info(ar);
1772 ath10k_pci_dump_registers(ar, crash_data);
1773 ath10k_ce_dump_registers(ar, crash_data);
1774 ath10k_pci_dump_memory(ar, crash_data);
1775
1776 mutex_unlock(&ar->dump_mutex);
1777
1778 ath10k_core_start_recovery(ar);
1779}
1780
1781static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1782{
1783 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1784
1785 queue_work(ar->workqueue, &ar_pci->dump_work);
1786}
1787
1788void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1789 int force)
1790{
1791 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1792
1793 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1794
1795 if (!force) {
1796 int resources;
1797 /*
1798 * Decide whether to actually poll for completions, or just
1799 * wait for a later chance.
1800 * If there seem to be plenty of resources left, then just wait
1801 * since checking involves reading a CE register, which is a
1802 * relatively expensive operation.
1803 */
1804 resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1805
1806 /*
1807 * If at least 50% of the total resources are still available,
1808 * don't bother checking again yet.
1809 */
1810 if (resources > (ar_pci->attr[pipe].src_nentries >> 1))
1811 return;
1812 }
1813 ath10k_ce_per_engine_service(ar, pipe);
1814}
1815
1816static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1817{
1818 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1819
1820 del_timer_sync(&ar_pci->rx_post_retry);
1821}
1822
1823int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1824 u8 *ul_pipe, u8 *dl_pipe)
1825{
1826 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1827 const struct ce_service_to_pipe *entry;
1828 bool ul_set = false, dl_set = false;
1829 int i;
1830
1831 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1832
1833 for (i = 0; i < ARRAY_SIZE(pci_target_service_to_ce_map_wlan); i++) {
1834 entry = &ar_pci->serv_to_pipe[i];
1835
1836 if (__le32_to_cpu(entry->service_id) != service_id)
1837 continue;
1838
1839 switch (__le32_to_cpu(entry->pipedir)) {
1840 case PIPEDIR_NONE:
1841 break;
1842 case PIPEDIR_IN:
1843 WARN_ON(dl_set);
1844 *dl_pipe = __le32_to_cpu(entry->pipenum);
1845 dl_set = true;
1846 break;
1847 case PIPEDIR_OUT:
1848 WARN_ON(ul_set);
1849 *ul_pipe = __le32_to_cpu(entry->pipenum);
1850 ul_set = true;
1851 break;
1852 case PIPEDIR_INOUT:
1853 WARN_ON(dl_set);
1854 WARN_ON(ul_set);
1855 *dl_pipe = __le32_to_cpu(entry->pipenum);
1856 *ul_pipe = __le32_to_cpu(entry->pipenum);
1857 dl_set = true;
1858 ul_set = true;
1859 break;
1860 }
1861 }
1862
1863 if (!ul_set || !dl_set)
1864 return -ENOENT;
1865
1866 return 0;
1867}
1868
1869void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1870 u8 *ul_pipe, u8 *dl_pipe)
1871{
1872 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1873
1874 (void)ath10k_pci_hif_map_service_to_pipe(ar,
1875 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1876 ul_pipe, dl_pipe);
1877}
1878
1879void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1880{
1881 u32 val;
1882
1883 switch (ar->hw_rev) {
1884 case ATH10K_HW_QCA988X:
1885 case ATH10K_HW_QCA9887:
1886 case ATH10K_HW_QCA6174:
1887 case ATH10K_HW_QCA9377:
1888 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1889 CORE_CTRL_ADDRESS);
1890 val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1891 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1892 CORE_CTRL_ADDRESS, val);
1893 break;
1894 case ATH10K_HW_QCA99X0:
1895 case ATH10K_HW_QCA9984:
1896 case ATH10K_HW_QCA9888:
1897 case ATH10K_HW_QCA4019:
1898 /* TODO: Find appropriate register configuration for QCA99X0
1899 * to mask irq/MSI.
1900 */
1901 break;
1902 case ATH10K_HW_WCN3990:
1903 break;
1904 }
1905}
1906
1907static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1908{
1909 u32 val;
1910
1911 switch (ar->hw_rev) {
1912 case ATH10K_HW_QCA988X:
1913 case ATH10K_HW_QCA9887:
1914 case ATH10K_HW_QCA6174:
1915 case ATH10K_HW_QCA9377:
1916 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1917 CORE_CTRL_ADDRESS);
1918 val |= CORE_CTRL_PCIE_REG_31_MASK;
1919 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1920 CORE_CTRL_ADDRESS, val);
1921 break;
1922 case ATH10K_HW_QCA99X0:
1923 case ATH10K_HW_QCA9984:
1924 case ATH10K_HW_QCA9888:
1925 case ATH10K_HW_QCA4019:
1926 /* TODO: Find appropriate register configuration for QCA99X0
1927 * to unmask irq/MSI.
1928 */
1929 break;
1930 case ATH10K_HW_WCN3990:
1931 break;
1932 }
1933}
1934
1935static void ath10k_pci_irq_disable(struct ath10k *ar)
1936{
1937 ath10k_ce_disable_interrupts(ar);
1938 ath10k_pci_disable_and_clear_legacy_irq(ar);
1939 ath10k_pci_irq_msi_fw_mask(ar);
1940}
1941
1942static void ath10k_pci_irq_sync(struct ath10k *ar)
1943{
1944 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1945
1946 synchronize_irq(ar_pci->pdev->irq);
1947}
1948
1949static void ath10k_pci_irq_enable(struct ath10k *ar)
1950{
1951 ath10k_ce_enable_interrupts(ar);
1952 ath10k_pci_enable_legacy_irq(ar);
1953 ath10k_pci_irq_msi_fw_unmask(ar);
1954}
1955
1956static int ath10k_pci_hif_start(struct ath10k *ar)
1957{
1958 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1959
1960 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1961
1962 ath10k_core_napi_enable(ar);
1963
1964 ath10k_pci_irq_enable(ar);
1965 ath10k_pci_rx_post(ar);
1966
1967 pcie_capability_clear_and_set_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1968 PCI_EXP_LNKCTL_ASPMC,
1969 ar_pci->link_ctl & PCI_EXP_LNKCTL_ASPMC);
1970
1971 return 0;
1972}
1973
1974static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1975{
1976 struct ath10k *ar;
1977 struct ath10k_ce_pipe *ce_pipe;
1978 struct ath10k_ce_ring *ce_ring;
1979 struct sk_buff *skb;
1980 int i;
1981
1982 ar = pci_pipe->hif_ce_state;
1983 ce_pipe = pci_pipe->ce_hdl;
1984 ce_ring = ce_pipe->dest_ring;
1985
1986 if (!ce_ring)
1987 return;
1988
1989 if (!pci_pipe->buf_sz)
1990 return;
1991
1992 for (i = 0; i < ce_ring->nentries; i++) {
1993 skb = ce_ring->per_transfer_context[i];
1994 if (!skb)
1995 continue;
1996
1997 ce_ring->per_transfer_context[i] = NULL;
1998
1999 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
2000 skb->len + skb_tailroom(skb),
2001 DMA_FROM_DEVICE);
2002 dev_kfree_skb_any(skb);
2003 }
2004}
2005
2006static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
2007{
2008 struct ath10k *ar;
2009 struct ath10k_ce_pipe *ce_pipe;
2010 struct ath10k_ce_ring *ce_ring;
2011 struct sk_buff *skb;
2012 int i;
2013
2014 ar = pci_pipe->hif_ce_state;
2015 ce_pipe = pci_pipe->ce_hdl;
2016 ce_ring = ce_pipe->src_ring;
2017
2018 if (!ce_ring)
2019 return;
2020
2021 if (!pci_pipe->buf_sz)
2022 return;
2023
2024 for (i = 0; i < ce_ring->nentries; i++) {
2025 skb = ce_ring->per_transfer_context[i];
2026 if (!skb)
2027 continue;
2028
2029 ce_ring->per_transfer_context[i] = NULL;
2030
2031 ath10k_htc_tx_completion_handler(ar, skb);
2032 }
2033}
2034
2035/*
2036 * Cleanup residual buffers for device shutdown:
2037 * buffers that were enqueued for receive
2038 * buffers that were to be sent
2039 * Note: Buffers that had completed but which were
2040 * not yet processed are on a completion queue. They
2041 * are handled when the completion thread shuts down.
2042 */
2043static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
2044{
2045 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2046 int pipe_num;
2047
2048 for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
2049 struct ath10k_pci_pipe *pipe_info;
2050
2051 pipe_info = &ar_pci->pipe_info[pipe_num];
2052 ath10k_pci_rx_pipe_cleanup(pipe_info);
2053 ath10k_pci_tx_pipe_cleanup(pipe_info);
2054 }
2055}
2056
2057void ath10k_pci_ce_deinit(struct ath10k *ar)
2058{
2059 int i;
2060
2061 for (i = 0; i < CE_COUNT; i++)
2062 ath10k_ce_deinit_pipe(ar, i);
2063}
2064
2065void ath10k_pci_flush(struct ath10k *ar)
2066{
2067 ath10k_pci_rx_retry_sync(ar);
2068 ath10k_pci_buffer_cleanup(ar);
2069}
2070
2071static void ath10k_pci_hif_stop(struct ath10k *ar)
2072{
2073 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2074 unsigned long flags;
2075
2076 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
2077
2078 ath10k_pci_irq_disable(ar);
2079 ath10k_pci_irq_sync(ar);
2080
2081 ath10k_core_napi_sync_disable(ar);
2082
2083 cancel_work_sync(&ar_pci->dump_work);
2084
2085 /* Most likely the device has HTT Rx ring configured. The only way to
2086 * prevent the device from accessing (and possible corrupting) host
2087 * memory is to reset the chip now.
2088 *
2089 * There's also no known way of masking MSI interrupts on the device.
2090 * For ranged MSI the CE-related interrupts can be masked. However
2091 * regardless how many MSI interrupts are assigned the first one
2092 * is always used for firmware indications (crashes) and cannot be
2093 * masked. To prevent the device from asserting the interrupt reset it
2094 * before proceeding with cleanup.
2095 */
2096 ath10k_pci_safe_chip_reset(ar);
2097
2098 ath10k_pci_flush(ar);
2099
2100 spin_lock_irqsave(&ar_pci->ps_lock, flags);
2101 WARN_ON(ar_pci->ps_wake_refcount > 0);
2102 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
2103}
2104
2105int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
2106 void *req, u32 req_len,
2107 void *resp, u32 *resp_len)
2108{
2109 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2110 struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
2111 struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
2112 struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
2113 struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
2114 dma_addr_t req_paddr = 0;
2115 dma_addr_t resp_paddr = 0;
2116 struct bmi_xfer xfer = {};
2117 void *treq, *tresp = NULL;
2118 int ret = 0;
2119
2120 might_sleep();
2121
2122 if (resp && !resp_len)
2123 return -EINVAL;
2124
2125 if (resp && resp_len && *resp_len == 0)
2126 return -EINVAL;
2127
2128 treq = kmemdup(req, req_len, GFP_KERNEL);
2129 if (!treq)
2130 return -ENOMEM;
2131
2132 req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
2133 ret = dma_mapping_error(ar->dev, req_paddr);
2134 if (ret) {
2135 ret = -EIO;
2136 goto err_dma;
2137 }
2138
2139 if (resp && resp_len) {
2140 tresp = kzalloc(*resp_len, GFP_KERNEL);
2141 if (!tresp) {
2142 ret = -ENOMEM;
2143 goto err_req;
2144 }
2145
2146 resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
2147 DMA_FROM_DEVICE);
2148 ret = dma_mapping_error(ar->dev, resp_paddr);
2149 if (ret) {
2150 ret = -EIO;
2151 goto err_req;
2152 }
2153
2154 xfer.wait_for_resp = true;
2155 xfer.resp_len = 0;
2156
2157 ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
2158 }
2159
2160 ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
2161 if (ret)
2162 goto err_resp;
2163
2164 ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
2165 if (ret) {
2166 dma_addr_t unused_buffer;
2167 unsigned int unused_nbytes;
2168 unsigned int unused_id;
2169
2170 ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
2171 &unused_nbytes, &unused_id);
2172 } else {
2173 /* non-zero means we did not time out */
2174 ret = 0;
2175 }
2176
2177err_resp:
2178 if (resp) {
2179 dma_addr_t unused_buffer;
2180
2181 ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
2182 dma_unmap_single(ar->dev, resp_paddr,
2183 *resp_len, DMA_FROM_DEVICE);
2184 }
2185err_req:
2186 dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
2187
2188 if (ret == 0 && resp_len) {
2189 *resp_len = min(*resp_len, xfer.resp_len);
2190 memcpy(resp, tresp, *resp_len);
2191 }
2192err_dma:
2193 kfree(treq);
2194 kfree(tresp);
2195
2196 return ret;
2197}
2198
2199static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
2200{
2201 struct bmi_xfer *xfer;
2202
2203 if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
2204 return;
2205
2206 xfer->tx_done = true;
2207}
2208
2209static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
2210{
2211 struct ath10k *ar = ce_state->ar;
2212 struct bmi_xfer *xfer;
2213 unsigned int nbytes;
2214
2215 if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
2216 &nbytes))
2217 return;
2218
2219 if (WARN_ON_ONCE(!xfer))
2220 return;
2221
2222 if (!xfer->wait_for_resp) {
2223 ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
2224 return;
2225 }
2226
2227 xfer->resp_len = nbytes;
2228 xfer->rx_done = true;
2229}
2230
2231static int ath10k_pci_bmi_wait(struct ath10k *ar,
2232 struct ath10k_ce_pipe *tx_pipe,
2233 struct ath10k_ce_pipe *rx_pipe,
2234 struct bmi_xfer *xfer)
2235{
2236 unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
2237 unsigned long started = jiffies;
2238 unsigned long dur;
2239 int ret;
2240
2241 while (time_before_eq(jiffies, timeout)) {
2242 ath10k_pci_bmi_send_done(tx_pipe);
2243 ath10k_pci_bmi_recv_data(rx_pipe);
2244
2245 if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
2246 ret = 0;
2247 goto out;
2248 }
2249
2250 schedule();
2251 }
2252
2253 ret = -ETIMEDOUT;
2254
2255out:
2256 dur = jiffies - started;
2257 if (dur > HZ)
2258 ath10k_dbg(ar, ATH10K_DBG_BMI,
2259 "bmi cmd took %lu jiffies hz %d ret %d\n",
2260 dur, HZ, ret);
2261 return ret;
2262}
2263
2264/*
2265 * Send an interrupt to the device to wake up the Target CPU
2266 * so it has an opportunity to notice any changed state.
2267 */
2268static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
2269{
2270 u32 addr, val;
2271
2272 addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
2273 val = ath10k_pci_read32(ar, addr);
2274 val |= CORE_CTRL_CPU_INTR_MASK;
2275 ath10k_pci_write32(ar, addr, val);
2276
2277 return 0;
2278}
2279
2280static int ath10k_pci_get_num_banks(struct ath10k *ar)
2281{
2282 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2283
2284 switch (ar_pci->pdev->device) {
2285 case QCA988X_2_0_DEVICE_ID_UBNT:
2286 case QCA988X_2_0_DEVICE_ID:
2287 case QCA99X0_2_0_DEVICE_ID:
2288 case QCA9888_2_0_DEVICE_ID:
2289 case QCA9984_1_0_DEVICE_ID:
2290 case QCA9887_1_0_DEVICE_ID:
2291 return 1;
2292 case QCA6164_2_1_DEVICE_ID:
2293 case QCA6174_2_1_DEVICE_ID:
2294 switch (MS(ar->bus_param.chip_id, SOC_CHIP_ID_REV)) {
2295 case QCA6174_HW_1_0_CHIP_ID_REV:
2296 case QCA6174_HW_1_1_CHIP_ID_REV:
2297 case QCA6174_HW_2_1_CHIP_ID_REV:
2298 case QCA6174_HW_2_2_CHIP_ID_REV:
2299 return 3;
2300 case QCA6174_HW_1_3_CHIP_ID_REV:
2301 return 2;
2302 case QCA6174_HW_3_0_CHIP_ID_REV:
2303 case QCA6174_HW_3_1_CHIP_ID_REV:
2304 case QCA6174_HW_3_2_CHIP_ID_REV:
2305 return 9;
2306 }
2307 break;
2308 case QCA9377_1_0_DEVICE_ID:
2309 return 9;
2310 }
2311
2312 ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2313 return 1;
2314}
2315
2316static int ath10k_bus_get_num_banks(struct ath10k *ar)
2317{
2318 struct ath10k_ce *ce = ath10k_ce_priv(ar);
2319
2320 return ce->bus_ops->get_num_banks(ar);
2321}
2322
2323int ath10k_pci_init_config(struct ath10k *ar)
2324{
2325 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2326 u32 interconnect_targ_addr;
2327 u32 pcie_state_targ_addr = 0;
2328 u32 pipe_cfg_targ_addr = 0;
2329 u32 svc_to_pipe_map = 0;
2330 u32 pcie_config_flags = 0;
2331 u32 ealloc_value;
2332 u32 ealloc_targ_addr;
2333 u32 flag2_value;
2334 u32 flag2_targ_addr;
2335 int ret = 0;
2336
2337 /* Download to Target the CE Config and the service-to-CE map */
2338 interconnect_targ_addr =
2339 host_interest_item_address(HI_ITEM(hi_interconnect_state));
2340
2341 /* Supply Target-side CE configuration */
2342 ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2343 &pcie_state_targ_addr);
2344 if (ret != 0) {
2345 ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2346 return ret;
2347 }
2348
2349 if (pcie_state_targ_addr == 0) {
2350 ret = -EIO;
2351 ath10k_err(ar, "Invalid pcie state addr\n");
2352 return ret;
2353 }
2354
2355 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2356 offsetof(struct pcie_state,
2357 pipe_cfg_addr)),
2358 &pipe_cfg_targ_addr);
2359 if (ret != 0) {
2360 ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2361 return ret;
2362 }
2363
2364 if (pipe_cfg_targ_addr == 0) {
2365 ret = -EIO;
2366 ath10k_err(ar, "Invalid pipe cfg addr\n");
2367 return ret;
2368 }
2369
2370 ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2371 ar_pci->pipe_config,
2372 sizeof(struct ce_pipe_config) *
2373 NUM_TARGET_CE_CONFIG_WLAN);
2374
2375 if (ret != 0) {
2376 ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2377 return ret;
2378 }
2379
2380 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2381 offsetof(struct pcie_state,
2382 svc_to_pipe_map)),
2383 &svc_to_pipe_map);
2384 if (ret != 0) {
2385 ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2386 return ret;
2387 }
2388
2389 if (svc_to_pipe_map == 0) {
2390 ret = -EIO;
2391 ath10k_err(ar, "Invalid svc_to_pipe map\n");
2392 return ret;
2393 }
2394
2395 ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2396 ar_pci->serv_to_pipe,
2397 sizeof(pci_target_service_to_ce_map_wlan));
2398 if (ret != 0) {
2399 ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2400 return ret;
2401 }
2402
2403 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2404 offsetof(struct pcie_state,
2405 config_flags)),
2406 &pcie_config_flags);
2407 if (ret != 0) {
2408 ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2409 return ret;
2410 }
2411
2412 pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2413
2414 ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2415 offsetof(struct pcie_state,
2416 config_flags)),
2417 pcie_config_flags);
2418 if (ret != 0) {
2419 ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2420 return ret;
2421 }
2422
2423 /* configure early allocation */
2424 ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2425
2426 ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2427 if (ret != 0) {
2428 ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2429 return ret;
2430 }
2431
2432 /* first bank is switched to IRAM */
2433 ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2434 HI_EARLY_ALLOC_MAGIC_MASK);
2435 ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2436 HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2437 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2438
2439 ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2440 if (ret != 0) {
2441 ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2442 return ret;
2443 }
2444
2445 /* Tell Target to proceed with initialization */
2446 flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2447
2448 ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2449 if (ret != 0) {
2450 ath10k_err(ar, "Failed to get option val: %d\n", ret);
2451 return ret;
2452 }
2453
2454 flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2455
2456 ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2457 if (ret != 0) {
2458 ath10k_err(ar, "Failed to set option val: %d\n", ret);
2459 return ret;
2460 }
2461
2462 return 0;
2463}
2464
2465static void ath10k_pci_override_ce_config(struct ath10k *ar)
2466{
2467 struct ce_attr *attr;
2468 struct ce_pipe_config *config;
2469 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2470
2471 /* For QCA6174 we're overriding the Copy Engine 5 configuration,
2472 * since it is currently used for other feature.
2473 */
2474
2475 /* Override Host's Copy Engine 5 configuration */
2476 attr = &ar_pci->attr[5];
2477 attr->src_sz_max = 0;
2478 attr->dest_nentries = 0;
2479
2480 /* Override Target firmware's Copy Engine configuration */
2481 config = &ar_pci->pipe_config[5];
2482 config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2483 config->nbytes_max = __cpu_to_le32(2048);
2484
2485 /* Map from service/endpoint to Copy Engine */
2486 ar_pci->serv_to_pipe[15].pipenum = __cpu_to_le32(1);
2487}
2488
2489int ath10k_pci_alloc_pipes(struct ath10k *ar)
2490{
2491 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2492 struct ath10k_pci_pipe *pipe;
2493 struct ath10k_ce *ce = ath10k_ce_priv(ar);
2494 int i, ret;
2495
2496 for (i = 0; i < CE_COUNT; i++) {
2497 pipe = &ar_pci->pipe_info[i];
2498 pipe->ce_hdl = &ce->ce_states[i];
2499 pipe->pipe_num = i;
2500 pipe->hif_ce_state = ar;
2501
2502 ret = ath10k_ce_alloc_pipe(ar, i, &ar_pci->attr[i]);
2503 if (ret) {
2504 ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2505 i, ret);
2506 return ret;
2507 }
2508
2509 /* Last CE is Diagnostic Window */
2510 if (i == CE_DIAG_PIPE) {
2511 ar_pci->ce_diag = pipe->ce_hdl;
2512 continue;
2513 }
2514
2515 pipe->buf_sz = (size_t)(ar_pci->attr[i].src_sz_max);
2516 }
2517
2518 return 0;
2519}
2520
2521void ath10k_pci_free_pipes(struct ath10k *ar)
2522{
2523 int i;
2524
2525 for (i = 0; i < CE_COUNT; i++)
2526 ath10k_ce_free_pipe(ar, i);
2527}
2528
2529int ath10k_pci_init_pipes(struct ath10k *ar)
2530{
2531 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2532 int i, ret;
2533
2534 for (i = 0; i < CE_COUNT; i++) {
2535 ret = ath10k_ce_init_pipe(ar, i, &ar_pci->attr[i]);
2536 if (ret) {
2537 ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2538 i, ret);
2539 return ret;
2540 }
2541 }
2542
2543 return 0;
2544}
2545
2546static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2547{
2548 return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2549 FW_IND_EVENT_PENDING;
2550}
2551
2552static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2553{
2554 u32 val;
2555
2556 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2557 val &= ~FW_IND_EVENT_PENDING;
2558 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2559}
2560
2561static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2562{
2563 u32 val;
2564
2565 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2566 return (val == 0xffffffff);
2567}
2568
2569/* this function effectively clears target memory controller assert line */
2570static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2571{
2572 u32 val;
2573
2574 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2575 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2576 val | SOC_RESET_CONTROL_SI0_RST_MASK);
2577 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2578
2579 msleep(10);
2580
2581 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2582 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2583 val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2584 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2585
2586 msleep(10);
2587}
2588
2589static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2590{
2591 u32 val;
2592
2593 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2594
2595 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2596 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2597 val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2598}
2599
2600static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2601{
2602 u32 val;
2603
2604 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2605
2606 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2607 val | SOC_RESET_CONTROL_CE_RST_MASK);
2608 msleep(10);
2609 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2610 val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2611}
2612
2613static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2614{
2615 u32 val;
2616
2617 val = ath10k_pci_soc_read32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS);
2618 ath10k_pci_soc_write32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS,
2619 val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2620}
2621
2622static int ath10k_pci_warm_reset(struct ath10k *ar)
2623{
2624 int ret;
2625
2626 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2627
2628 spin_lock_bh(&ar->data_lock);
2629 ar->stats.fw_warm_reset_counter++;
2630 spin_unlock_bh(&ar->data_lock);
2631
2632 ath10k_pci_irq_disable(ar);
2633
2634 /* Make sure the target CPU is not doing anything dangerous, e.g. if it
2635 * were to access copy engine while host performs copy engine reset
2636 * then it is possible for the device to confuse pci-e controller to
2637 * the point of bringing host system to a complete stop (i.e. hang).
2638 */
2639 ath10k_pci_warm_reset_si0(ar);
2640 ath10k_pci_warm_reset_cpu(ar);
2641 ath10k_pci_init_pipes(ar);
2642 ath10k_pci_wait_for_target_init(ar);
2643
2644 ath10k_pci_warm_reset_clear_lf(ar);
2645 ath10k_pci_warm_reset_ce(ar);
2646 ath10k_pci_warm_reset_cpu(ar);
2647 ath10k_pci_init_pipes(ar);
2648
2649 ret = ath10k_pci_wait_for_target_init(ar);
2650 if (ret) {
2651 ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2652 return ret;
2653 }
2654
2655 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2656
2657 return 0;
2658}
2659
2660static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2661{
2662 ath10k_pci_irq_disable(ar);
2663 return ath10k_pci_qca99x0_chip_reset(ar);
2664}
2665
2666static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2667{
2668 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2669
2670 if (!ar_pci->pci_soft_reset)
2671 return -ENOTSUPP;
2672
2673 return ar_pci->pci_soft_reset(ar);
2674}
2675
2676static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2677{
2678 int i, ret;
2679 u32 val;
2680
2681 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2682
2683 /* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2684 * It is thus preferred to use warm reset which is safer but may not be
2685 * able to recover the device from all possible fail scenarios.
2686 *
2687 * Warm reset doesn't always work on first try so attempt it a few
2688 * times before giving up.
2689 */
2690 for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2691 ret = ath10k_pci_warm_reset(ar);
2692 if (ret) {
2693 ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2694 i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2695 ret);
2696 continue;
2697 }
2698
2699 /* FIXME: Sometimes copy engine doesn't recover after warm
2700 * reset. In most cases this needs cold reset. In some of these
2701 * cases the device is in such a state that a cold reset may
2702 * lock up the host.
2703 *
2704 * Reading any host interest register via copy engine is
2705 * sufficient to verify if device is capable of booting
2706 * firmware blob.
2707 */
2708 ret = ath10k_pci_init_pipes(ar);
2709 if (ret) {
2710 ath10k_warn(ar, "failed to init copy engine: %d\n",
2711 ret);
2712 continue;
2713 }
2714
2715 ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2716 &val);
2717 if (ret) {
2718 ath10k_warn(ar, "failed to poke copy engine: %d\n",
2719 ret);
2720 continue;
2721 }
2722
2723 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2724 return 0;
2725 }
2726
2727 if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2728 ath10k_warn(ar, "refusing cold reset as requested\n");
2729 return -EPERM;
2730 }
2731
2732 ret = ath10k_pci_cold_reset(ar);
2733 if (ret) {
2734 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2735 return ret;
2736 }
2737
2738 ret = ath10k_pci_wait_for_target_init(ar);
2739 if (ret) {
2740 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2741 ret);
2742 return ret;
2743 }
2744
2745 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2746
2747 return 0;
2748}
2749
2750static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2751{
2752 int ret;
2753
2754 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2755
2756 /* FIXME: QCA6174 requires cold + warm reset to work. */
2757
2758 ret = ath10k_pci_cold_reset(ar);
2759 if (ret) {
2760 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2761 return ret;
2762 }
2763
2764 ret = ath10k_pci_wait_for_target_init(ar);
2765 if (ret) {
2766 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2767 ret);
2768 return ret;
2769 }
2770
2771 ret = ath10k_pci_warm_reset(ar);
2772 if (ret) {
2773 ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2774 return ret;
2775 }
2776
2777 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2778
2779 return 0;
2780}
2781
2782static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2783{
2784 int ret;
2785
2786 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2787
2788 ret = ath10k_pci_cold_reset(ar);
2789 if (ret) {
2790 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2791 return ret;
2792 }
2793
2794 ret = ath10k_pci_wait_for_target_init(ar);
2795 if (ret) {
2796 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2797 ret);
2798 return ret;
2799 }
2800
2801 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2802
2803 return 0;
2804}
2805
2806static int ath10k_pci_chip_reset(struct ath10k *ar)
2807{
2808 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2809
2810 if (WARN_ON(!ar_pci->pci_hard_reset))
2811 return -ENOTSUPP;
2812
2813 return ar_pci->pci_hard_reset(ar);
2814}
2815
2816static int ath10k_pci_hif_power_up(struct ath10k *ar,
2817 enum ath10k_firmware_mode fw_mode)
2818{
2819 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2820 int ret;
2821
2822 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2823
2824 pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2825 &ar_pci->link_ctl);
2826 pcie_capability_clear_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2827 PCI_EXP_LNKCTL_ASPMC);
2828
2829 /*
2830 * Bring the target up cleanly.
2831 *
2832 * The target may be in an undefined state with an AUX-powered Target
2833 * and a Host in WoW mode. If the Host crashes, loses power, or is
2834 * restarted (without unloading the driver) then the Target is left
2835 * (aux) powered and running. On a subsequent driver load, the Target
2836 * is in an unexpected state. We try to catch that here in order to
2837 * reset the Target and retry the probe.
2838 */
2839 ret = ath10k_pci_chip_reset(ar);
2840 if (ret) {
2841 if (ath10k_pci_has_fw_crashed(ar)) {
2842 ath10k_warn(ar, "firmware crashed during chip reset\n");
2843 ath10k_pci_fw_crashed_clear(ar);
2844 ath10k_pci_fw_crashed_dump(ar);
2845 }
2846
2847 ath10k_err(ar, "failed to reset chip: %d\n", ret);
2848 goto err_sleep;
2849 }
2850
2851 ret = ath10k_pci_init_pipes(ar);
2852 if (ret) {
2853 ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2854 goto err_sleep;
2855 }
2856
2857 ret = ath10k_pci_init_config(ar);
2858 if (ret) {
2859 ath10k_err(ar, "failed to setup init config: %d\n", ret);
2860 goto err_ce;
2861 }
2862
2863 ret = ath10k_pci_wake_target_cpu(ar);
2864 if (ret) {
2865 ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2866 goto err_ce;
2867 }
2868
2869 return 0;
2870
2871err_ce:
2872 ath10k_pci_ce_deinit(ar);
2873
2874err_sleep:
2875 return ret;
2876}
2877
2878void ath10k_pci_hif_power_down(struct ath10k *ar)
2879{
2880 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2881
2882 /* Currently hif_power_up performs effectively a reset and hif_stop
2883 * resets the chip as well so there's no point in resetting here.
2884 */
2885}
2886
2887static int ath10k_pci_hif_suspend(struct ath10k *ar)
2888{
2889 /* Nothing to do; the important stuff is in the driver suspend. */
2890 return 0;
2891}
2892
2893static int ath10k_pci_suspend(struct ath10k *ar)
2894{
2895 /* The grace timer can still be counting down and ar->ps_awake be true.
2896 * It is known that the device may be asleep after resuming regardless
2897 * of the SoC powersave state before suspending. Hence make sure the
2898 * device is asleep before proceeding.
2899 */
2900 ath10k_pci_sleep_sync(ar);
2901
2902 return 0;
2903}
2904
2905static int ath10k_pci_hif_resume(struct ath10k *ar)
2906{
2907 /* Nothing to do; the important stuff is in the driver resume. */
2908 return 0;
2909}
2910
2911static int ath10k_pci_resume(struct ath10k *ar)
2912{
2913 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2914 struct pci_dev *pdev = ar_pci->pdev;
2915 u32 val;
2916 int ret = 0;
2917
2918 ret = ath10k_pci_force_wake(ar);
2919 if (ret) {
2920 ath10k_err(ar, "failed to wake up target: %d\n", ret);
2921 return ret;
2922 }
2923
2924 /* Suspend/Resume resets the PCI configuration space, so we have to
2925 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2926 * from interfering with C3 CPU state. pci_restore_state won't help
2927 * here since it only restores the first 64 bytes pci config header.
2928 */
2929 pci_read_config_dword(pdev, 0x40, &val);
2930 if ((val & 0x0000ff00) != 0)
2931 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2932
2933 return ret;
2934}
2935
2936static bool ath10k_pci_validate_cal(void *data, size_t size)
2937{
2938 __le16 *cal_words = data;
2939 u16 checksum = 0;
2940 size_t i;
2941
2942 if (size % 2 != 0)
2943 return false;
2944
2945 for (i = 0; i < size / 2; i++)
2946 checksum ^= le16_to_cpu(cal_words[i]);
2947
2948 return checksum == 0xffff;
2949}
2950
2951static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2952{
2953 /* Enable SI clock */
2954 ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2955
2956 /* Configure GPIOs for I2C operation */
2957 ath10k_pci_write32(ar,
2958 GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2959 4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2960 SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2961 GPIO_PIN0_CONFIG) |
2962 SM(1, GPIO_PIN0_PAD_PULL));
2963
2964 ath10k_pci_write32(ar,
2965 GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2966 4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2967 SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2968 SM(1, GPIO_PIN0_PAD_PULL));
2969
2970 ath10k_pci_write32(ar,
2971 GPIO_BASE_ADDRESS +
2972 QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2973 1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2974
2975 /* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2976 ath10k_pci_write32(ar,
2977 SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2978 SM(1, SI_CONFIG_ERR_INT) |
2979 SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2980 SM(1, SI_CONFIG_I2C) |
2981 SM(1, SI_CONFIG_POS_SAMPLE) |
2982 SM(1, SI_CONFIG_INACTIVE_DATA) |
2983 SM(1, SI_CONFIG_INACTIVE_CLK) |
2984 SM(8, SI_CONFIG_DIVIDER));
2985}
2986
2987static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2988{
2989 u32 reg;
2990 int wait_limit;
2991
2992 /* set device select byte and for the read operation */
2993 reg = QCA9887_EEPROM_SELECT_READ |
2994 SM(addr, QCA9887_EEPROM_ADDR_LO) |
2995 SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2996 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2997
2998 /* write transmit data, transfer length, and START bit */
2999 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
3000 SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
3001 SM(4, SI_CS_TX_CNT));
3002
3003 /* wait max 1 sec */
3004 wait_limit = 100000;
3005
3006 /* wait for SI_CS_DONE_INT */
3007 do {
3008 reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
3009 if (MS(reg, SI_CS_DONE_INT))
3010 break;
3011
3012 wait_limit--;
3013 udelay(10);
3014 } while (wait_limit > 0);
3015
3016 if (!MS(reg, SI_CS_DONE_INT)) {
3017 ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
3018 addr);
3019 return -ETIMEDOUT;
3020 }
3021
3022 /* clear SI_CS_DONE_INT */
3023 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
3024
3025 if (MS(reg, SI_CS_DONE_ERR)) {
3026 ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
3027 return -EIO;
3028 }
3029
3030 /* extract receive data */
3031 reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
3032 *out = reg;
3033
3034 return 0;
3035}
3036
3037static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
3038 size_t *data_len)
3039{
3040 u8 *caldata = NULL;
3041 size_t calsize, i;
3042 int ret;
3043
3044 if (!QCA_REV_9887(ar))
3045 return -EOPNOTSUPP;
3046
3047 calsize = ar->hw_params.cal_data_len;
3048 caldata = kmalloc(calsize, GFP_KERNEL);
3049 if (!caldata)
3050 return -ENOMEM;
3051
3052 ath10k_pci_enable_eeprom(ar);
3053
3054 for (i = 0; i < calsize; i++) {
3055 ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
3056 if (ret)
3057 goto err_free;
3058 }
3059
3060 if (!ath10k_pci_validate_cal(caldata, calsize))
3061 goto err_free;
3062
3063 *data = caldata;
3064 *data_len = calsize;
3065
3066 return 0;
3067
3068err_free:
3069 kfree(caldata);
3070
3071 return -EINVAL;
3072}
3073
3074static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
3075 .tx_sg = ath10k_pci_hif_tx_sg,
3076 .diag_read = ath10k_pci_hif_diag_read,
3077 .diag_write = ath10k_pci_diag_write_mem,
3078 .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg,
3079 .start = ath10k_pci_hif_start,
3080 .stop = ath10k_pci_hif_stop,
3081 .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe,
3082 .get_default_pipe = ath10k_pci_hif_get_default_pipe,
3083 .send_complete_check = ath10k_pci_hif_send_complete_check,
3084 .get_free_queue_number = ath10k_pci_hif_get_free_queue_number,
3085 .power_up = ath10k_pci_hif_power_up,
3086 .power_down = ath10k_pci_hif_power_down,
3087 .read32 = ath10k_pci_read32,
3088 .write32 = ath10k_pci_write32,
3089 .suspend = ath10k_pci_hif_suspend,
3090 .resume = ath10k_pci_hif_resume,
3091 .fetch_cal_eeprom = ath10k_pci_hif_fetch_cal_eeprom,
3092};
3093
3094/*
3095 * Top-level interrupt handler for all PCI interrupts from a Target.
3096 * When a block of MSI interrupts is allocated, this top-level handler
3097 * is not used; instead, we directly call the correct sub-handler.
3098 */
3099static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
3100{
3101 struct ath10k *ar = arg;
3102 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3103 int ret;
3104
3105 if (ath10k_pci_has_device_gone(ar))
3106 return IRQ_NONE;
3107
3108 ret = ath10k_pci_force_wake(ar);
3109 if (ret) {
3110 ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
3111 return IRQ_NONE;
3112 }
3113
3114 if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
3115 !ath10k_pci_irq_pending(ar))
3116 return IRQ_NONE;
3117
3118 ath10k_pci_disable_and_clear_legacy_irq(ar);
3119 ath10k_pci_irq_msi_fw_mask(ar);
3120 napi_schedule(&ar->napi);
3121
3122 return IRQ_HANDLED;
3123}
3124
3125static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
3126{
3127 struct ath10k *ar = container_of(ctx, struct ath10k, napi);
3128 int done = 0;
3129
3130 if (ath10k_pci_has_fw_crashed(ar)) {
3131 ath10k_pci_fw_crashed_clear(ar);
3132 ath10k_pci_fw_crashed_dump(ar);
3133 napi_complete(ctx);
3134 return done;
3135 }
3136
3137 ath10k_ce_per_engine_service_any(ar);
3138
3139 done = ath10k_htt_txrx_compl_task(ar, budget);
3140
3141 if (done < budget) {
3142 napi_complete_done(ctx, done);
3143 /* In case of MSI, it is possible that interrupts are received
3144 * while NAPI poll is inprogress. So pending interrupts that are
3145 * received after processing all copy engine pipes by NAPI poll
3146 * will not be handled again. This is causing failure to
3147 * complete boot sequence in x86 platform. So before enabling
3148 * interrupts safer to check for pending interrupts for
3149 * immediate servicing.
3150 */
3151 if (ath10k_ce_interrupt_summary(ar)) {
3152 napi_schedule(ctx);
3153 goto out;
3154 }
3155 ath10k_pci_enable_legacy_irq(ar);
3156 ath10k_pci_irq_msi_fw_unmask(ar);
3157 }
3158
3159out:
3160 return done;
3161}
3162
3163static int ath10k_pci_request_irq_msi(struct ath10k *ar)
3164{
3165 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3166 int ret;
3167
3168 ret = request_irq(ar_pci->pdev->irq,
3169 ath10k_pci_interrupt_handler,
3170 IRQF_SHARED, "ath10k_pci", ar);
3171 if (ret) {
3172 ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
3173 ar_pci->pdev->irq, ret);
3174 return ret;
3175 }
3176
3177 return 0;
3178}
3179
3180static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
3181{
3182 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3183 int ret;
3184
3185 ret = request_irq(ar_pci->pdev->irq,
3186 ath10k_pci_interrupt_handler,
3187 IRQF_SHARED, "ath10k_pci", ar);
3188 if (ret) {
3189 ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
3190 ar_pci->pdev->irq, ret);
3191 return ret;
3192 }
3193
3194 return 0;
3195}
3196
3197static int ath10k_pci_request_irq(struct ath10k *ar)
3198{
3199 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3200
3201 switch (ar_pci->oper_irq_mode) {
3202 case ATH10K_PCI_IRQ_LEGACY:
3203 return ath10k_pci_request_irq_legacy(ar);
3204 case ATH10K_PCI_IRQ_MSI:
3205 return ath10k_pci_request_irq_msi(ar);
3206 default:
3207 return -EINVAL;
3208 }
3209}
3210
3211static void ath10k_pci_free_irq(struct ath10k *ar)
3212{
3213 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3214
3215 free_irq(ar_pci->pdev->irq, ar);
3216}
3217
3218void ath10k_pci_init_napi(struct ath10k *ar)
3219{
3220 netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll);
3221}
3222
3223static int ath10k_pci_init_irq(struct ath10k *ar)
3224{
3225 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3226 int ret;
3227
3228 ath10k_pci_init_napi(ar);
3229
3230 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
3231 ath10k_info(ar, "limiting irq mode to: %d\n",
3232 ath10k_pci_irq_mode);
3233
3234 /* Try MSI */
3235 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
3236 ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
3237 ret = pci_enable_msi(ar_pci->pdev);
3238 if (ret == 0)
3239 return 0;
3240
3241 /* MHI failed, try legacy irq next */
3242 }
3243
3244 /* Try legacy irq
3245 *
3246 * A potential race occurs here: The CORE_BASE write
3247 * depends on target correctly decoding AXI address but
3248 * host won't know when target writes BAR to CORE_CTRL.
3249 * This write might get lost if target has NOT written BAR.
3250 * For now, fix the race by repeating the write in below
3251 * synchronization checking.
3252 */
3253 ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
3254
3255 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3256 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3257
3258 return 0;
3259}
3260
3261static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
3262{
3263 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3264 0);
3265}
3266
3267static int ath10k_pci_deinit_irq(struct ath10k *ar)
3268{
3269 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3270
3271 switch (ar_pci->oper_irq_mode) {
3272 case ATH10K_PCI_IRQ_LEGACY:
3273 ath10k_pci_deinit_irq_legacy(ar);
3274 break;
3275 default:
3276 pci_disable_msi(ar_pci->pdev);
3277 break;
3278 }
3279
3280 return 0;
3281}
3282
3283int ath10k_pci_wait_for_target_init(struct ath10k *ar)
3284{
3285 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3286 unsigned long timeout;
3287 u32 val;
3288
3289 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
3290
3291 timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
3292
3293 do {
3294 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
3295
3296 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
3297 val);
3298
3299 /* target should never return this */
3300 if (val == 0xffffffff)
3301 continue;
3302
3303 /* the device has crashed so don't bother trying anymore */
3304 if (val & FW_IND_EVENT_PENDING)
3305 break;
3306
3307 if (val & FW_IND_INITIALIZED)
3308 break;
3309
3310 if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
3311 /* Fix potential race by repeating CORE_BASE writes */
3312 ath10k_pci_enable_legacy_irq(ar);
3313
3314 mdelay(10);
3315 } while (time_before(jiffies, timeout));
3316
3317 ath10k_pci_disable_and_clear_legacy_irq(ar);
3318 ath10k_pci_irq_msi_fw_mask(ar);
3319
3320 if (val == 0xffffffff) {
3321 ath10k_err(ar, "failed to read device register, device is gone\n");
3322 return -EIO;
3323 }
3324
3325 if (val & FW_IND_EVENT_PENDING) {
3326 ath10k_warn(ar, "device has crashed during init\n");
3327 return -ECOMM;
3328 }
3329
3330 if (!(val & FW_IND_INITIALIZED)) {
3331 ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3332 val);
3333 return -ETIMEDOUT;
3334 }
3335
3336 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3337 return 0;
3338}
3339
3340static int ath10k_pci_cold_reset(struct ath10k *ar)
3341{
3342 u32 val;
3343
3344 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3345
3346 spin_lock_bh(&ar->data_lock);
3347
3348 ar->stats.fw_cold_reset_counter++;
3349
3350 spin_unlock_bh(&ar->data_lock);
3351
3352 /* Put Target, including PCIe, into RESET. */
3353 val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3354 val |= 1;
3355 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3356
3357 /* After writing into SOC_GLOBAL_RESET to put device into
3358 * reset and pulling out of reset pcie may not be stable
3359 * for any immediate pcie register access and cause bus error,
3360 * add delay before any pcie access request to fix this issue.
3361 */
3362 msleep(20);
3363
3364 /* Pull Target, including PCIe, out of RESET. */
3365 val &= ~1;
3366 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3367
3368 msleep(20);
3369
3370 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3371
3372 return 0;
3373}
3374
3375static int ath10k_pci_claim(struct ath10k *ar)
3376{
3377 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3378 struct pci_dev *pdev = ar_pci->pdev;
3379 int ret;
3380
3381 pci_set_drvdata(pdev, ar);
3382
3383 ret = pci_enable_device(pdev);
3384 if (ret) {
3385 ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3386 return ret;
3387 }
3388
3389 ret = pci_request_region(pdev, BAR_NUM, "ath");
3390 if (ret) {
3391 ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3392 ret);
3393 goto err_device;
3394 }
3395
3396 /* Target expects 32 bit DMA. Enforce it. */
3397 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3398 if (ret) {
3399 ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3400 goto err_region;
3401 }
3402
3403 pci_set_master(pdev);
3404
3405 /* Arrange for access to Target SoC registers. */
3406 ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3407 ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3408 if (!ar_pci->mem) {
3409 ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3410 ret = -EIO;
3411 goto err_region;
3412 }
3413
3414 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3415 return 0;
3416
3417err_region:
3418 pci_release_region(pdev, BAR_NUM);
3419
3420err_device:
3421 pci_disable_device(pdev);
3422
3423 return ret;
3424}
3425
3426static void ath10k_pci_release(struct ath10k *ar)
3427{
3428 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3429 struct pci_dev *pdev = ar_pci->pdev;
3430
3431 pci_iounmap(pdev, ar_pci->mem);
3432 pci_release_region(pdev, BAR_NUM);
3433 pci_disable_device(pdev);
3434}
3435
3436static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3437{
3438 const struct ath10k_pci_supp_chip *supp_chip;
3439 int i;
3440 u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3441
3442 for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3443 supp_chip = &ath10k_pci_supp_chips[i];
3444
3445 if (supp_chip->dev_id == dev_id &&
3446 supp_chip->rev_id == rev_id)
3447 return true;
3448 }
3449
3450 return false;
3451}
3452
3453int ath10k_pci_setup_resource(struct ath10k *ar)
3454{
3455 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3456 struct ath10k_ce *ce = ath10k_ce_priv(ar);
3457 int ret;
3458
3459 spin_lock_init(&ce->ce_lock);
3460 spin_lock_init(&ar_pci->ps_lock);
3461 mutex_init(&ar_pci->ce_diag_mutex);
3462
3463 INIT_WORK(&ar_pci->dump_work, ath10k_pci_fw_dump_work);
3464
3465 timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3466
3467 ar_pci->attr = kmemdup(pci_host_ce_config_wlan,
3468 sizeof(pci_host_ce_config_wlan),
3469 GFP_KERNEL);
3470 if (!ar_pci->attr)
3471 return -ENOMEM;
3472
3473 ar_pci->pipe_config = kmemdup(pci_target_ce_config_wlan,
3474 sizeof(pci_target_ce_config_wlan),
3475 GFP_KERNEL);
3476 if (!ar_pci->pipe_config) {
3477 ret = -ENOMEM;
3478 goto err_free_attr;
3479 }
3480
3481 ar_pci->serv_to_pipe = kmemdup(pci_target_service_to_ce_map_wlan,
3482 sizeof(pci_target_service_to_ce_map_wlan),
3483 GFP_KERNEL);
3484 if (!ar_pci->serv_to_pipe) {
3485 ret = -ENOMEM;
3486 goto err_free_pipe_config;
3487 }
3488
3489 if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3490 ath10k_pci_override_ce_config(ar);
3491
3492 ret = ath10k_pci_alloc_pipes(ar);
3493 if (ret) {
3494 ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3495 ret);
3496 goto err_free_serv_to_pipe;
3497 }
3498
3499 return 0;
3500
3501err_free_serv_to_pipe:
3502 kfree(ar_pci->serv_to_pipe);
3503err_free_pipe_config:
3504 kfree(ar_pci->pipe_config);
3505err_free_attr:
3506 kfree(ar_pci->attr);
3507 return ret;
3508}
3509
3510void ath10k_pci_release_resource(struct ath10k *ar)
3511{
3512 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3513
3514 ath10k_pci_rx_retry_sync(ar);
3515 netif_napi_del(&ar->napi);
3516 ath10k_pci_ce_deinit(ar);
3517 ath10k_pci_free_pipes(ar);
3518 kfree(ar_pci->attr);
3519 kfree(ar_pci->pipe_config);
3520 kfree(ar_pci->serv_to_pipe);
3521}
3522
3523static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3524 .read32 = ath10k_bus_pci_read32,
3525 .write32 = ath10k_bus_pci_write32,
3526 .get_num_banks = ath10k_pci_get_num_banks,
3527};
3528
3529static int ath10k_pci_probe(struct pci_dev *pdev,
3530 const struct pci_device_id *pci_dev)
3531{
3532 int ret = 0;
3533 struct ath10k *ar;
3534 struct ath10k_pci *ar_pci;
3535 enum ath10k_hw_rev hw_rev;
3536 struct ath10k_bus_params bus_params = {};
3537 bool pci_ps, is_qca988x = false;
3538 int (*pci_soft_reset)(struct ath10k *ar);
3539 int (*pci_hard_reset)(struct ath10k *ar);
3540 u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3541
3542 switch (pci_dev->device) {
3543 case QCA988X_2_0_DEVICE_ID_UBNT:
3544 case QCA988X_2_0_DEVICE_ID:
3545 hw_rev = ATH10K_HW_QCA988X;
3546 pci_ps = false;
3547 is_qca988x = true;
3548 pci_soft_reset = ath10k_pci_warm_reset;
3549 pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3550 targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3551 break;
3552 case QCA9887_1_0_DEVICE_ID:
3553 hw_rev = ATH10K_HW_QCA9887;
3554 pci_ps = false;
3555 pci_soft_reset = ath10k_pci_warm_reset;
3556 pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3557 targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3558 break;
3559 case QCA6164_2_1_DEVICE_ID:
3560 case QCA6174_2_1_DEVICE_ID:
3561 hw_rev = ATH10K_HW_QCA6174;
3562 pci_ps = true;
3563 pci_soft_reset = ath10k_pci_warm_reset;
3564 pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3565 targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3566 break;
3567 case QCA99X0_2_0_DEVICE_ID:
3568 hw_rev = ATH10K_HW_QCA99X0;
3569 pci_ps = false;
3570 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3571 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3572 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3573 break;
3574 case QCA9984_1_0_DEVICE_ID:
3575 hw_rev = ATH10K_HW_QCA9984;
3576 pci_ps = false;
3577 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3578 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3579 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3580 break;
3581 case QCA9888_2_0_DEVICE_ID:
3582 hw_rev = ATH10K_HW_QCA9888;
3583 pci_ps = false;
3584 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3585 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3586 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3587 break;
3588 case QCA9377_1_0_DEVICE_ID:
3589 hw_rev = ATH10K_HW_QCA9377;
3590 pci_ps = true;
3591 pci_soft_reset = ath10k_pci_warm_reset;
3592 pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3593 targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3594 break;
3595 default:
3596 WARN_ON(1);
3597 return -ENOTSUPP;
3598 }
3599
3600 ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3601 hw_rev, &ath10k_pci_hif_ops);
3602 if (!ar) {
3603 dev_err(&pdev->dev, "failed to allocate core\n");
3604 return -ENOMEM;
3605 }
3606
3607 ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3608 pdev->vendor, pdev->device,
3609 pdev->subsystem_vendor, pdev->subsystem_device);
3610
3611 ar_pci = ath10k_pci_priv(ar);
3612 ar_pci->pdev = pdev;
3613 ar_pci->dev = &pdev->dev;
3614 ar_pci->ar = ar;
3615 ar->dev_id = pci_dev->device;
3616 ar_pci->pci_ps = pci_ps;
3617 ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3618 ar_pci->pci_soft_reset = pci_soft_reset;
3619 ar_pci->pci_hard_reset = pci_hard_reset;
3620 ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3621 ar->ce_priv = &ar_pci->ce;
3622
3623 ar->id.vendor = pdev->vendor;
3624 ar->id.device = pdev->device;
3625 ar->id.subsystem_vendor = pdev->subsystem_vendor;
3626 ar->id.subsystem_device = pdev->subsystem_device;
3627
3628 timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
3629
3630 ret = ath10k_pci_setup_resource(ar);
3631 if (ret) {
3632 ath10k_err(ar, "failed to setup resource: %d\n", ret);
3633 goto err_core_destroy;
3634 }
3635
3636 ret = ath10k_pci_claim(ar);
3637 if (ret) {
3638 ath10k_err(ar, "failed to claim device: %d\n", ret);
3639 goto err_free_pipes;
3640 }
3641
3642 ret = ath10k_pci_force_wake(ar);
3643 if (ret) {
3644 ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3645 goto err_sleep;
3646 }
3647
3648 ath10k_pci_ce_deinit(ar);
3649 ath10k_pci_irq_disable(ar);
3650
3651 ret = ath10k_pci_init_irq(ar);
3652 if (ret) {
3653 ath10k_err(ar, "failed to init irqs: %d\n", ret);
3654 goto err_sleep;
3655 }
3656
3657 ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3658 ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3659 ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3660
3661 ret = ath10k_pci_request_irq(ar);
3662 if (ret) {
3663 ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3664 goto err_deinit_irq;
3665 }
3666
3667 bus_params.dev_type = ATH10K_DEV_TYPE_LL;
3668 bus_params.link_can_suspend = true;
3669 /* Read CHIP_ID before reset to catch QCA9880-AR1A v1 devices that
3670 * fall off the bus during chip_reset. These chips have the same pci
3671 * device id as the QCA9880 BR4A or 2R4E. So that's why the check.
3672 */
3673 if (is_qca988x) {
3674 bus_params.chip_id =
3675 ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3676 if (bus_params.chip_id != 0xffffffff) {
3677 if (!ath10k_pci_chip_is_supported(pdev->device,
3678 bus_params.chip_id)) {
3679 ret = -ENODEV;
3680 goto err_unsupported;
3681 }
3682 }
3683 }
3684
3685 ret = ath10k_pci_chip_reset(ar);
3686 if (ret) {
3687 ath10k_err(ar, "failed to reset chip: %d\n", ret);
3688 goto err_free_irq;
3689 }
3690
3691 bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3692 if (bus_params.chip_id == 0xffffffff) {
3693 ret = -ENODEV;
3694 goto err_unsupported;
3695 }
3696
3697 if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id)) {
3698 ret = -ENODEV;
3699 goto err_unsupported;
3700 }
3701
3702 ret = ath10k_core_register(ar, &bus_params);
3703 if (ret) {
3704 ath10k_err(ar, "failed to register driver core: %d\n", ret);
3705 goto err_free_irq;
3706 }
3707
3708 return 0;
3709
3710err_unsupported:
3711 ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3712 pdev->device, bus_params.chip_id);
3713
3714err_free_irq:
3715 ath10k_pci_free_irq(ar);
3716
3717err_deinit_irq:
3718 ath10k_pci_release_resource(ar);
3719
3720err_sleep:
3721 ath10k_pci_sleep_sync(ar);
3722 ath10k_pci_release(ar);
3723
3724err_free_pipes:
3725 ath10k_pci_free_pipes(ar);
3726
3727err_core_destroy:
3728 ath10k_core_destroy(ar);
3729
3730 return ret;
3731}
3732
3733static void ath10k_pci_remove(struct pci_dev *pdev)
3734{
3735 struct ath10k *ar = pci_get_drvdata(pdev);
3736
3737 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3738
3739 if (!ar)
3740 return;
3741
3742 ath10k_core_unregister(ar);
3743 ath10k_pci_free_irq(ar);
3744 ath10k_pci_deinit_irq(ar);
3745 ath10k_pci_release_resource(ar);
3746 ath10k_pci_sleep_sync(ar);
3747 ath10k_pci_release(ar);
3748 ath10k_core_destroy(ar);
3749}
3750
3751MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3752
3753static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3754{
3755 struct ath10k *ar = dev_get_drvdata(dev);
3756 int ret;
3757
3758 ret = ath10k_pci_suspend(ar);
3759 if (ret)
3760 ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3761
3762 return ret;
3763}
3764
3765static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3766{
3767 struct ath10k *ar = dev_get_drvdata(dev);
3768 int ret;
3769
3770 ret = ath10k_pci_resume(ar);
3771 if (ret)
3772 ath10k_warn(ar, "failed to resume hif: %d\n", ret);
3773
3774 return ret;
3775}
3776
3777static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3778 ath10k_pci_pm_suspend,
3779 ath10k_pci_pm_resume);
3780
3781static struct pci_driver ath10k_pci_driver = {
3782 .name = "ath10k_pci",
3783 .id_table = ath10k_pci_id_table,
3784 .probe = ath10k_pci_probe,
3785 .remove = ath10k_pci_remove,
3786#ifdef CONFIG_PM
3787 .driver.pm = &ath10k_pci_pm_ops,
3788#endif
3789};
3790
3791static int __init ath10k_pci_init(void)
3792{
3793 int ret1, ret2;
3794
3795 ret1 = pci_register_driver(&ath10k_pci_driver);
3796 if (ret1)
3797 printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3798 ret1);
3799
3800 ret2 = ath10k_ahb_init();
3801 if (ret2)
3802 printk(KERN_ERR "ahb init failed: %d\n", ret2);
3803
3804 if (ret1 && ret2)
3805 return ret1;
3806
3807 /* registered to at least one bus */
3808 return 0;
3809}
3810module_init(ath10k_pci_init);
3811
3812static void __exit ath10k_pci_exit(void)
3813{
3814 pci_unregister_driver(&ath10k_pci_driver);
3815 ath10k_ahb_exit();
3816}
3817
3818module_exit(ath10k_pci_exit);
3819
3820MODULE_AUTHOR("Qualcomm Atheros");
3821MODULE_DESCRIPTION("Driver support for Qualcomm Atheros PCIe/AHB 802.11ac WLAN devices");
3822MODULE_LICENSE("Dual BSD/GPL");
3823
3824/* QCA988x 2.0 firmware files */
3825MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3826MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3827MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3828MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3829MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3830MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3831
3832/* QCA9887 1.0 firmware files */
3833MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3834MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3835MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3836
3837/* QCA6174 2.1 firmware files */
3838MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3839MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3840MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3841MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3842
3843/* QCA6174 3.1 firmware files */
3844MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3845MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3846MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3847MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3848MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3849
3850/* QCA9377 1.0 firmware files */
3851MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3852MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3853MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
1/*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18#include <linux/pci.h>
19#include <linux/module.h>
20#include <linux/interrupt.h>
21#include <linux/spinlock.h>
22#include <linux/bitops.h>
23
24#include "core.h"
25#include "debug.h"
26
27#include "targaddrs.h"
28#include "bmi.h"
29
30#include "hif.h"
31#include "htc.h"
32
33#include "ce.h"
34#include "pci.h"
35
36enum ath10k_pci_reset_mode {
37 ATH10K_PCI_RESET_AUTO = 0,
38 ATH10K_PCI_RESET_WARM_ONLY = 1,
39};
40
41static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
42static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
43
44module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
45MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
46
47module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
48MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
49
50/* how long wait to wait for target to initialise, in ms */
51#define ATH10K_PCI_TARGET_WAIT 3000
52#define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
53
54static const struct pci_device_id ath10k_pci_id_table[] = {
55 { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
56 { PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
57 { PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
58 { PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
59 { PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
60 { PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
61 { PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
62 { PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
63 {0}
64};
65
66static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
67 /* QCA988X pre 2.0 chips are not supported because they need some nasty
68 * hacks. ath10k doesn't have them and these devices crash horribly
69 * because of that.
70 */
71 { QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
72
73 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
74 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
75 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
76 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
77 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
78
79 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
80 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
81 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
82 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
83 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
84
85 { QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
86
87 { QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
88
89 { QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
90
91 { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
92 { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
93
94 { QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
95};
96
97static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
98static int ath10k_pci_cold_reset(struct ath10k *ar);
99static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
100static int ath10k_pci_init_irq(struct ath10k *ar);
101static int ath10k_pci_deinit_irq(struct ath10k *ar);
102static int ath10k_pci_request_irq(struct ath10k *ar);
103static void ath10k_pci_free_irq(struct ath10k *ar);
104static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
105 struct ath10k_ce_pipe *rx_pipe,
106 struct bmi_xfer *xfer);
107static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
108static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
109static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
110static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
111static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
112static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
113static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
114
115static struct ce_attr host_ce_config_wlan[] = {
116 /* CE0: host->target HTC control and raw streams */
117 {
118 .flags = CE_ATTR_FLAGS,
119 .src_nentries = 16,
120 .src_sz_max = 256,
121 .dest_nentries = 0,
122 .send_cb = ath10k_pci_htc_tx_cb,
123 },
124
125 /* CE1: target->host HTT + HTC control */
126 {
127 .flags = CE_ATTR_FLAGS,
128 .src_nentries = 0,
129 .src_sz_max = 2048,
130 .dest_nentries = 512,
131 .recv_cb = ath10k_pci_htt_htc_rx_cb,
132 },
133
134 /* CE2: target->host WMI */
135 {
136 .flags = CE_ATTR_FLAGS,
137 .src_nentries = 0,
138 .src_sz_max = 2048,
139 .dest_nentries = 128,
140 .recv_cb = ath10k_pci_htc_rx_cb,
141 },
142
143 /* CE3: host->target WMI */
144 {
145 .flags = CE_ATTR_FLAGS,
146 .src_nentries = 32,
147 .src_sz_max = 2048,
148 .dest_nentries = 0,
149 .send_cb = ath10k_pci_htc_tx_cb,
150 },
151
152 /* CE4: host->target HTT */
153 {
154 .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
155 .src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
156 .src_sz_max = 256,
157 .dest_nentries = 0,
158 .send_cb = ath10k_pci_htt_tx_cb,
159 },
160
161 /* CE5: target->host HTT (HIF->HTT) */
162 {
163 .flags = CE_ATTR_FLAGS,
164 .src_nentries = 0,
165 .src_sz_max = 512,
166 .dest_nentries = 512,
167 .recv_cb = ath10k_pci_htt_rx_cb,
168 },
169
170 /* CE6: target autonomous hif_memcpy */
171 {
172 .flags = CE_ATTR_FLAGS,
173 .src_nentries = 0,
174 .src_sz_max = 0,
175 .dest_nentries = 0,
176 },
177
178 /* CE7: ce_diag, the Diagnostic Window */
179 {
180 .flags = CE_ATTR_FLAGS,
181 .src_nentries = 2,
182 .src_sz_max = DIAG_TRANSFER_LIMIT,
183 .dest_nentries = 2,
184 },
185
186 /* CE8: target->host pktlog */
187 {
188 .flags = CE_ATTR_FLAGS,
189 .src_nentries = 0,
190 .src_sz_max = 2048,
191 .dest_nentries = 128,
192 .recv_cb = ath10k_pci_pktlog_rx_cb,
193 },
194
195 /* CE9 target autonomous qcache memcpy */
196 {
197 .flags = CE_ATTR_FLAGS,
198 .src_nentries = 0,
199 .src_sz_max = 0,
200 .dest_nentries = 0,
201 },
202
203 /* CE10: target autonomous hif memcpy */
204 {
205 .flags = CE_ATTR_FLAGS,
206 .src_nentries = 0,
207 .src_sz_max = 0,
208 .dest_nentries = 0,
209 },
210
211 /* CE11: target autonomous hif memcpy */
212 {
213 .flags = CE_ATTR_FLAGS,
214 .src_nentries = 0,
215 .src_sz_max = 0,
216 .dest_nentries = 0,
217 },
218};
219
220/* Target firmware's Copy Engine configuration. */
221static struct ce_pipe_config target_ce_config_wlan[] = {
222 /* CE0: host->target HTC control and raw streams */
223 {
224 .pipenum = __cpu_to_le32(0),
225 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
226 .nentries = __cpu_to_le32(32),
227 .nbytes_max = __cpu_to_le32(256),
228 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
229 .reserved = __cpu_to_le32(0),
230 },
231
232 /* CE1: target->host HTT + HTC control */
233 {
234 .pipenum = __cpu_to_le32(1),
235 .pipedir = __cpu_to_le32(PIPEDIR_IN),
236 .nentries = __cpu_to_le32(32),
237 .nbytes_max = __cpu_to_le32(2048),
238 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
239 .reserved = __cpu_to_le32(0),
240 },
241
242 /* CE2: target->host WMI */
243 {
244 .pipenum = __cpu_to_le32(2),
245 .pipedir = __cpu_to_le32(PIPEDIR_IN),
246 .nentries = __cpu_to_le32(64),
247 .nbytes_max = __cpu_to_le32(2048),
248 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
249 .reserved = __cpu_to_le32(0),
250 },
251
252 /* CE3: host->target WMI */
253 {
254 .pipenum = __cpu_to_le32(3),
255 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
256 .nentries = __cpu_to_le32(32),
257 .nbytes_max = __cpu_to_le32(2048),
258 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
259 .reserved = __cpu_to_le32(0),
260 },
261
262 /* CE4: host->target HTT */
263 {
264 .pipenum = __cpu_to_le32(4),
265 .pipedir = __cpu_to_le32(PIPEDIR_OUT),
266 .nentries = __cpu_to_le32(256),
267 .nbytes_max = __cpu_to_le32(256),
268 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
269 .reserved = __cpu_to_le32(0),
270 },
271
272 /* NB: 50% of src nentries, since tx has 2 frags */
273
274 /* CE5: target->host HTT (HIF->HTT) */
275 {
276 .pipenum = __cpu_to_le32(5),
277 .pipedir = __cpu_to_le32(PIPEDIR_IN),
278 .nentries = __cpu_to_le32(32),
279 .nbytes_max = __cpu_to_le32(512),
280 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
281 .reserved = __cpu_to_le32(0),
282 },
283
284 /* CE6: Reserved for target autonomous hif_memcpy */
285 {
286 .pipenum = __cpu_to_le32(6),
287 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
288 .nentries = __cpu_to_le32(32),
289 .nbytes_max = __cpu_to_le32(4096),
290 .flags = __cpu_to_le32(CE_ATTR_FLAGS),
291 .reserved = __cpu_to_le32(0),
292 },
293
294 /* CE7 used only by Host */
295 {
296 .pipenum = __cpu_to_le32(7),
297 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
298 .nentries = __cpu_to_le32(0),
299 .nbytes_max = __cpu_to_le32(0),
300 .flags = __cpu_to_le32(0),
301 .reserved = __cpu_to_le32(0),
302 },
303
304 /* CE8 target->host packtlog */
305 {
306 .pipenum = __cpu_to_le32(8),
307 .pipedir = __cpu_to_le32(PIPEDIR_IN),
308 .nentries = __cpu_to_le32(64),
309 .nbytes_max = __cpu_to_le32(2048),
310 .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
311 .reserved = __cpu_to_le32(0),
312 },
313
314 /* CE9 target autonomous qcache memcpy */
315 {
316 .pipenum = __cpu_to_le32(9),
317 .pipedir = __cpu_to_le32(PIPEDIR_INOUT),
318 .nentries = __cpu_to_le32(32),
319 .nbytes_max = __cpu_to_le32(2048),
320 .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
321 .reserved = __cpu_to_le32(0),
322 },
323
324 /* It not necessary to send target wlan configuration for CE10 & CE11
325 * as these CEs are not actively used in target.
326 */
327};
328
329/*
330 * Map from service/endpoint to Copy Engine.
331 * This table is derived from the CE_PCI TABLE, above.
332 * It is passed to the Target at startup for use by firmware.
333 */
334static struct service_to_pipe target_service_to_ce_map_wlan[] = {
335 {
336 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
337 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
338 __cpu_to_le32(3),
339 },
340 {
341 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
342 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
343 __cpu_to_le32(2),
344 },
345 {
346 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
347 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
348 __cpu_to_le32(3),
349 },
350 {
351 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
352 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
353 __cpu_to_le32(2),
354 },
355 {
356 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
357 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
358 __cpu_to_le32(3),
359 },
360 {
361 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
362 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
363 __cpu_to_le32(2),
364 },
365 {
366 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
367 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
368 __cpu_to_le32(3),
369 },
370 {
371 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
372 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
373 __cpu_to_le32(2),
374 },
375 {
376 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
377 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
378 __cpu_to_le32(3),
379 },
380 {
381 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
382 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
383 __cpu_to_le32(2),
384 },
385 {
386 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
387 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
388 __cpu_to_le32(0),
389 },
390 {
391 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
392 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
393 __cpu_to_le32(1),
394 },
395 { /* not used */
396 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
397 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
398 __cpu_to_le32(0),
399 },
400 { /* not used */
401 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
402 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
403 __cpu_to_le32(1),
404 },
405 {
406 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
407 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
408 __cpu_to_le32(4),
409 },
410 {
411 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
412 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
413 __cpu_to_le32(5),
414 },
415
416 /* (Additions here) */
417
418 { /* must be last */
419 __cpu_to_le32(0),
420 __cpu_to_le32(0),
421 __cpu_to_le32(0),
422 },
423};
424
425static bool ath10k_pci_is_awake(struct ath10k *ar)
426{
427 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
428 u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
429 RTC_STATE_ADDRESS);
430
431 return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
432}
433
434static void __ath10k_pci_wake(struct ath10k *ar)
435{
436 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
437
438 lockdep_assert_held(&ar_pci->ps_lock);
439
440 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
441 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
442
443 iowrite32(PCIE_SOC_WAKE_V_MASK,
444 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
445 PCIE_SOC_WAKE_ADDRESS);
446}
447
448static void __ath10k_pci_sleep(struct ath10k *ar)
449{
450 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
451
452 lockdep_assert_held(&ar_pci->ps_lock);
453
454 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
455 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
456
457 iowrite32(PCIE_SOC_WAKE_RESET,
458 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
459 PCIE_SOC_WAKE_ADDRESS);
460 ar_pci->ps_awake = false;
461}
462
463static int ath10k_pci_wake_wait(struct ath10k *ar)
464{
465 int tot_delay = 0;
466 int curr_delay = 5;
467
468 while (tot_delay < PCIE_WAKE_TIMEOUT) {
469 if (ath10k_pci_is_awake(ar)) {
470 if (tot_delay > PCIE_WAKE_LATE_US)
471 ath10k_warn(ar, "device wakeup took %d ms which is unusally long, otherwise it works normally.\n",
472 tot_delay / 1000);
473 return 0;
474 }
475
476 udelay(curr_delay);
477 tot_delay += curr_delay;
478
479 if (curr_delay < 50)
480 curr_delay += 5;
481 }
482
483 return -ETIMEDOUT;
484}
485
486static int ath10k_pci_force_wake(struct ath10k *ar)
487{
488 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
489 unsigned long flags;
490 int ret = 0;
491
492 if (ar_pci->pci_ps)
493 return ret;
494
495 spin_lock_irqsave(&ar_pci->ps_lock, flags);
496
497 if (!ar_pci->ps_awake) {
498 iowrite32(PCIE_SOC_WAKE_V_MASK,
499 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
500 PCIE_SOC_WAKE_ADDRESS);
501
502 ret = ath10k_pci_wake_wait(ar);
503 if (ret == 0)
504 ar_pci->ps_awake = true;
505 }
506
507 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
508
509 return ret;
510}
511
512static void ath10k_pci_force_sleep(struct ath10k *ar)
513{
514 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
515 unsigned long flags;
516
517 spin_lock_irqsave(&ar_pci->ps_lock, flags);
518
519 iowrite32(PCIE_SOC_WAKE_RESET,
520 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
521 PCIE_SOC_WAKE_ADDRESS);
522 ar_pci->ps_awake = false;
523
524 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
525}
526
527static int ath10k_pci_wake(struct ath10k *ar)
528{
529 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
530 unsigned long flags;
531 int ret = 0;
532
533 if (ar_pci->pci_ps == 0)
534 return ret;
535
536 spin_lock_irqsave(&ar_pci->ps_lock, flags);
537
538 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
539 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
540
541 /* This function can be called very frequently. To avoid excessive
542 * CPU stalls for MMIO reads use a cache var to hold the device state.
543 */
544 if (!ar_pci->ps_awake) {
545 __ath10k_pci_wake(ar);
546
547 ret = ath10k_pci_wake_wait(ar);
548 if (ret == 0)
549 ar_pci->ps_awake = true;
550 }
551
552 if (ret == 0) {
553 ar_pci->ps_wake_refcount++;
554 WARN_ON(ar_pci->ps_wake_refcount == 0);
555 }
556
557 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
558
559 return ret;
560}
561
562static void ath10k_pci_sleep(struct ath10k *ar)
563{
564 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
565 unsigned long flags;
566
567 if (ar_pci->pci_ps == 0)
568 return;
569
570 spin_lock_irqsave(&ar_pci->ps_lock, flags);
571
572 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
573 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
574
575 if (WARN_ON(ar_pci->ps_wake_refcount == 0))
576 goto skip;
577
578 ar_pci->ps_wake_refcount--;
579
580 mod_timer(&ar_pci->ps_timer, jiffies +
581 msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
582
583skip:
584 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
585}
586
587static void ath10k_pci_ps_timer(unsigned long ptr)
588{
589 struct ath10k *ar = (void *)ptr;
590 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
591 unsigned long flags;
592
593 spin_lock_irqsave(&ar_pci->ps_lock, flags);
594
595 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
596 ar_pci->ps_wake_refcount, ar_pci->ps_awake);
597
598 if (ar_pci->ps_wake_refcount > 0)
599 goto skip;
600
601 __ath10k_pci_sleep(ar);
602
603skip:
604 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
605}
606
607static void ath10k_pci_sleep_sync(struct ath10k *ar)
608{
609 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
610 unsigned long flags;
611
612 if (ar_pci->pci_ps == 0) {
613 ath10k_pci_force_sleep(ar);
614 return;
615 }
616
617 del_timer_sync(&ar_pci->ps_timer);
618
619 spin_lock_irqsave(&ar_pci->ps_lock, flags);
620 WARN_ON(ar_pci->ps_wake_refcount > 0);
621 __ath10k_pci_sleep(ar);
622 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
623}
624
625static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
626{
627 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
628 int ret;
629
630 if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
631 ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
632 offset, offset + sizeof(value), ar_pci->mem_len);
633 return;
634 }
635
636 ret = ath10k_pci_wake(ar);
637 if (ret) {
638 ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
639 value, offset, ret);
640 return;
641 }
642
643 iowrite32(value, ar_pci->mem + offset);
644 ath10k_pci_sleep(ar);
645}
646
647static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
648{
649 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
650 u32 val;
651 int ret;
652
653 if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
654 ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
655 offset, offset + sizeof(val), ar_pci->mem_len);
656 return 0;
657 }
658
659 ret = ath10k_pci_wake(ar);
660 if (ret) {
661 ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
662 offset, ret);
663 return 0xffffffff;
664 }
665
666 val = ioread32(ar_pci->mem + offset);
667 ath10k_pci_sleep(ar);
668
669 return val;
670}
671
672inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
673{
674 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
675
676 ar_pci->bus_ops->write32(ar, offset, value);
677}
678
679inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
680{
681 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
682
683 return ar_pci->bus_ops->read32(ar, offset);
684}
685
686u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
687{
688 return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
689}
690
691void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
692{
693 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
694}
695
696u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
697{
698 return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
699}
700
701void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
702{
703 ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
704}
705
706bool ath10k_pci_irq_pending(struct ath10k *ar)
707{
708 u32 cause;
709
710 /* Check if the shared legacy irq is for us */
711 cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
712 PCIE_INTR_CAUSE_ADDRESS);
713 if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
714 return true;
715
716 return false;
717}
718
719void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
720{
721 /* IMPORTANT: INTR_CLR register has to be set after
722 * INTR_ENABLE is set to 0, otherwise interrupt can not be
723 * really cleared. */
724 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
725 0);
726 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
727 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
728
729 /* IMPORTANT: this extra read transaction is required to
730 * flush the posted write buffer. */
731 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
732 PCIE_INTR_ENABLE_ADDRESS);
733}
734
735void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
736{
737 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
738 PCIE_INTR_ENABLE_ADDRESS,
739 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
740
741 /* IMPORTANT: this extra read transaction is required to
742 * flush the posted write buffer. */
743 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
744 PCIE_INTR_ENABLE_ADDRESS);
745}
746
747static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
748{
749 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
750
751 if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
752 return "msi";
753
754 return "legacy";
755}
756
757static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
758{
759 struct ath10k *ar = pipe->hif_ce_state;
760 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
761 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
762 struct sk_buff *skb;
763 dma_addr_t paddr;
764 int ret;
765
766 skb = dev_alloc_skb(pipe->buf_sz);
767 if (!skb)
768 return -ENOMEM;
769
770 WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
771
772 paddr = dma_map_single(ar->dev, skb->data,
773 skb->len + skb_tailroom(skb),
774 DMA_FROM_DEVICE);
775 if (unlikely(dma_mapping_error(ar->dev, paddr))) {
776 ath10k_warn(ar, "failed to dma map pci rx buf\n");
777 dev_kfree_skb_any(skb);
778 return -EIO;
779 }
780
781 ATH10K_SKB_RXCB(skb)->paddr = paddr;
782
783 spin_lock_bh(&ar_pci->ce_lock);
784 ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr);
785 spin_unlock_bh(&ar_pci->ce_lock);
786 if (ret) {
787 dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
788 DMA_FROM_DEVICE);
789 dev_kfree_skb_any(skb);
790 return ret;
791 }
792
793 return 0;
794}
795
796static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
797{
798 struct ath10k *ar = pipe->hif_ce_state;
799 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
800 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
801 int ret, num;
802
803 if (pipe->buf_sz == 0)
804 return;
805
806 if (!ce_pipe->dest_ring)
807 return;
808
809 spin_lock_bh(&ar_pci->ce_lock);
810 num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
811 spin_unlock_bh(&ar_pci->ce_lock);
812
813 while (num >= 0) {
814 ret = __ath10k_pci_rx_post_buf(pipe);
815 if (ret) {
816 if (ret == -ENOSPC)
817 break;
818 ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
819 mod_timer(&ar_pci->rx_post_retry, jiffies +
820 ATH10K_PCI_RX_POST_RETRY_MS);
821 break;
822 }
823 num--;
824 }
825}
826
827void ath10k_pci_rx_post(struct ath10k *ar)
828{
829 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
830 int i;
831
832 for (i = 0; i < CE_COUNT; i++)
833 ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
834}
835
836void ath10k_pci_rx_replenish_retry(unsigned long ptr)
837{
838 struct ath10k *ar = (void *)ptr;
839
840 ath10k_pci_rx_post(ar);
841}
842
843static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
844{
845 u32 val = 0;
846
847 switch (ar->hw_rev) {
848 case ATH10K_HW_QCA988X:
849 case ATH10K_HW_QCA9887:
850 case ATH10K_HW_QCA6174:
851 case ATH10K_HW_QCA9377:
852 val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
853 CORE_CTRL_ADDRESS) &
854 0x7ff) << 21;
855 break;
856 case ATH10K_HW_QCA9888:
857 case ATH10K_HW_QCA99X0:
858 case ATH10K_HW_QCA9984:
859 case ATH10K_HW_QCA4019:
860 val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
861 break;
862 }
863
864 val |= 0x100000 | (addr & 0xfffff);
865 return val;
866}
867
868/*
869 * Diagnostic read/write access is provided for startup/config/debug usage.
870 * Caller must guarantee proper alignment, when applicable, and single user
871 * at any moment.
872 */
873static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
874 int nbytes)
875{
876 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
877 int ret = 0;
878 u32 *buf;
879 unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
880 struct ath10k_ce_pipe *ce_diag;
881 /* Host buffer address in CE space */
882 u32 ce_data;
883 dma_addr_t ce_data_base = 0;
884 void *data_buf = NULL;
885 int i;
886
887 spin_lock_bh(&ar_pci->ce_lock);
888
889 ce_diag = ar_pci->ce_diag;
890
891 /*
892 * Allocate a temporary bounce buffer to hold caller's data
893 * to be DMA'ed from Target. This guarantees
894 * 1) 4-byte alignment
895 * 2) Buffer in DMA-able space
896 */
897 alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
898
899 data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
900 alloc_nbytes,
901 &ce_data_base,
902 GFP_ATOMIC);
903
904 if (!data_buf) {
905 ret = -ENOMEM;
906 goto done;
907 }
908 memset(data_buf, 0, alloc_nbytes);
909
910 remaining_bytes = nbytes;
911 ce_data = ce_data_base;
912 while (remaining_bytes) {
913 nbytes = min_t(unsigned int, remaining_bytes,
914 DIAG_TRANSFER_LIMIT);
915
916 ret = __ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
917 if (ret != 0)
918 goto done;
919
920 /* Request CE to send from Target(!) address to Host buffer */
921 /*
922 * The address supplied by the caller is in the
923 * Target CPU virtual address space.
924 *
925 * In order to use this address with the diagnostic CE,
926 * convert it from Target CPU virtual address space
927 * to CE address space
928 */
929 address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
930
931 ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
932 0);
933 if (ret)
934 goto done;
935
936 i = 0;
937 while (ath10k_ce_completed_send_next_nolock(ce_diag,
938 NULL) != 0) {
939 mdelay(1);
940 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
941 ret = -EBUSY;
942 goto done;
943 }
944 }
945
946 i = 0;
947 while (ath10k_ce_completed_recv_next_nolock(ce_diag,
948 (void **)&buf,
949 &completed_nbytes)
950 != 0) {
951 mdelay(1);
952
953 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
954 ret = -EBUSY;
955 goto done;
956 }
957 }
958
959 if (nbytes != completed_nbytes) {
960 ret = -EIO;
961 goto done;
962 }
963
964 if (*buf != ce_data) {
965 ret = -EIO;
966 goto done;
967 }
968
969 remaining_bytes -= nbytes;
970
971 if (ret) {
972 ath10k_warn(ar, "failed to read diag value at 0x%x: %d\n",
973 address, ret);
974 break;
975 }
976 memcpy(data, data_buf, nbytes);
977
978 address += nbytes;
979 data += nbytes;
980 }
981
982done:
983
984 if (data_buf)
985 dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
986 ce_data_base);
987
988 spin_unlock_bh(&ar_pci->ce_lock);
989
990 return ret;
991}
992
993static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
994{
995 __le32 val = 0;
996 int ret;
997
998 ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
999 *value = __le32_to_cpu(val);
1000
1001 return ret;
1002}
1003
1004static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1005 u32 src, u32 len)
1006{
1007 u32 host_addr, addr;
1008 int ret;
1009
1010 host_addr = host_interest_item_address(src);
1011
1012 ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1013 if (ret != 0) {
1014 ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1015 src, ret);
1016 return ret;
1017 }
1018
1019 ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1020 if (ret != 0) {
1021 ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1022 addr, len, ret);
1023 return ret;
1024 }
1025
1026 return 0;
1027}
1028
1029#define ath10k_pci_diag_read_hi(ar, dest, src, len) \
1030 __ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1031
1032int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1033 const void *data, int nbytes)
1034{
1035 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1036 int ret = 0;
1037 u32 *buf;
1038 unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
1039 struct ath10k_ce_pipe *ce_diag;
1040 void *data_buf = NULL;
1041 u32 ce_data; /* Host buffer address in CE space */
1042 dma_addr_t ce_data_base = 0;
1043 int i;
1044
1045 spin_lock_bh(&ar_pci->ce_lock);
1046
1047 ce_diag = ar_pci->ce_diag;
1048
1049 /*
1050 * Allocate a temporary bounce buffer to hold caller's data
1051 * to be DMA'ed to Target. This guarantees
1052 * 1) 4-byte alignment
1053 * 2) Buffer in DMA-able space
1054 */
1055 orig_nbytes = nbytes;
1056 data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
1057 orig_nbytes,
1058 &ce_data_base,
1059 GFP_ATOMIC);
1060 if (!data_buf) {
1061 ret = -ENOMEM;
1062 goto done;
1063 }
1064
1065 /* Copy caller's data to allocated DMA buf */
1066 memcpy(data_buf, data, orig_nbytes);
1067
1068 /*
1069 * The address supplied by the caller is in the
1070 * Target CPU virtual address space.
1071 *
1072 * In order to use this address with the diagnostic CE,
1073 * convert it from
1074 * Target CPU virtual address space
1075 * to
1076 * CE address space
1077 */
1078 address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1079
1080 remaining_bytes = orig_nbytes;
1081 ce_data = ce_data_base;
1082 while (remaining_bytes) {
1083 /* FIXME: check cast */
1084 nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1085
1086 /* Set up to receive directly into Target(!) address */
1087 ret = __ath10k_ce_rx_post_buf(ce_diag, &address, address);
1088 if (ret != 0)
1089 goto done;
1090
1091 /*
1092 * Request CE to send caller-supplied data that
1093 * was copied to bounce buffer to Target(!) address.
1094 */
1095 ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)ce_data,
1096 nbytes, 0, 0);
1097 if (ret != 0)
1098 goto done;
1099
1100 i = 0;
1101 while (ath10k_ce_completed_send_next_nolock(ce_diag,
1102 NULL) != 0) {
1103 mdelay(1);
1104
1105 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1106 ret = -EBUSY;
1107 goto done;
1108 }
1109 }
1110
1111 i = 0;
1112 while (ath10k_ce_completed_recv_next_nolock(ce_diag,
1113 (void **)&buf,
1114 &completed_nbytes)
1115 != 0) {
1116 mdelay(1);
1117
1118 if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1119 ret = -EBUSY;
1120 goto done;
1121 }
1122 }
1123
1124 if (nbytes != completed_nbytes) {
1125 ret = -EIO;
1126 goto done;
1127 }
1128
1129 if (*buf != address) {
1130 ret = -EIO;
1131 goto done;
1132 }
1133
1134 remaining_bytes -= nbytes;
1135 address += nbytes;
1136 ce_data += nbytes;
1137 }
1138
1139done:
1140 if (data_buf) {
1141 dma_free_coherent(ar->dev, orig_nbytes, data_buf,
1142 ce_data_base);
1143 }
1144
1145 if (ret != 0)
1146 ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1147 address, ret);
1148
1149 spin_unlock_bh(&ar_pci->ce_lock);
1150
1151 return ret;
1152}
1153
1154static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1155{
1156 __le32 val = __cpu_to_le32(value);
1157
1158 return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1159}
1160
1161/* Called by lower (CE) layer when a send to Target completes. */
1162static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1163{
1164 struct ath10k *ar = ce_state->ar;
1165 struct sk_buff_head list;
1166 struct sk_buff *skb;
1167
1168 __skb_queue_head_init(&list);
1169 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1170 /* no need to call tx completion for NULL pointers */
1171 if (skb == NULL)
1172 continue;
1173
1174 __skb_queue_tail(&list, skb);
1175 }
1176
1177 while ((skb = __skb_dequeue(&list)))
1178 ath10k_htc_tx_completion_handler(ar, skb);
1179}
1180
1181static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1182 void (*callback)(struct ath10k *ar,
1183 struct sk_buff *skb))
1184{
1185 struct ath10k *ar = ce_state->ar;
1186 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1187 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
1188 struct sk_buff *skb;
1189 struct sk_buff_head list;
1190 void *transfer_context;
1191 unsigned int nbytes, max_nbytes;
1192
1193 __skb_queue_head_init(&list);
1194 while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1195 &nbytes) == 0) {
1196 skb = transfer_context;
1197 max_nbytes = skb->len + skb_tailroom(skb);
1198 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1199 max_nbytes, DMA_FROM_DEVICE);
1200
1201 if (unlikely(max_nbytes < nbytes)) {
1202 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1203 nbytes, max_nbytes);
1204 dev_kfree_skb_any(skb);
1205 continue;
1206 }
1207
1208 skb_put(skb, nbytes);
1209 __skb_queue_tail(&list, skb);
1210 }
1211
1212 while ((skb = __skb_dequeue(&list))) {
1213 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1214 ce_state->id, skb->len);
1215 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1216 skb->data, skb->len);
1217
1218 callback(ar, skb);
1219 }
1220
1221 ath10k_pci_rx_post_pipe(pipe_info);
1222}
1223
1224static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1225 void (*callback)(struct ath10k *ar,
1226 struct sk_buff *skb))
1227{
1228 struct ath10k *ar = ce_state->ar;
1229 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1230 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
1231 struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1232 struct sk_buff *skb;
1233 struct sk_buff_head list;
1234 void *transfer_context;
1235 unsigned int nbytes, max_nbytes, nentries;
1236 int orig_len;
1237
1238 /* No need to aquire ce_lock for CE5, since this is the only place CE5
1239 * is processed other than init and deinit. Before releasing CE5
1240 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1241 */
1242 __skb_queue_head_init(&list);
1243 while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1244 &nbytes) == 0) {
1245 skb = transfer_context;
1246 max_nbytes = skb->len + skb_tailroom(skb);
1247
1248 if (unlikely(max_nbytes < nbytes)) {
1249 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1250 nbytes, max_nbytes);
1251 continue;
1252 }
1253
1254 dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1255 max_nbytes, DMA_FROM_DEVICE);
1256 skb_put(skb, nbytes);
1257 __skb_queue_tail(&list, skb);
1258 }
1259
1260 nentries = skb_queue_len(&list);
1261 while ((skb = __skb_dequeue(&list))) {
1262 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1263 ce_state->id, skb->len);
1264 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1265 skb->data, skb->len);
1266
1267 orig_len = skb->len;
1268 callback(ar, skb);
1269 skb_push(skb, orig_len - skb->len);
1270 skb_reset_tail_pointer(skb);
1271 skb_trim(skb, 0);
1272
1273 /*let device gain the buffer again*/
1274 dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1275 skb->len + skb_tailroom(skb),
1276 DMA_FROM_DEVICE);
1277 }
1278 ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1279}
1280
1281/* Called by lower (CE) layer when data is received from the Target. */
1282static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1283{
1284 ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1285}
1286
1287static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1288{
1289 /* CE4 polling needs to be done whenever CE pipe which transports
1290 * HTT Rx (target->host) is processed.
1291 */
1292 ath10k_ce_per_engine_service(ce_state->ar, 4);
1293
1294 ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1295}
1296
1297/* Called by lower (CE) layer when data is received from the Target.
1298 * Only 10.4 firmware uses separate CE to transfer pktlog data.
1299 */
1300static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1301{
1302 ath10k_pci_process_rx_cb(ce_state,
1303 ath10k_htt_rx_pktlog_completion_handler);
1304}
1305
1306/* Called by lower (CE) layer when a send to HTT Target completes. */
1307static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1308{
1309 struct ath10k *ar = ce_state->ar;
1310 struct sk_buff *skb;
1311
1312 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1313 /* no need to call tx completion for NULL pointers */
1314 if (!skb)
1315 continue;
1316
1317 dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1318 skb->len, DMA_TO_DEVICE);
1319 ath10k_htt_hif_tx_complete(ar, skb);
1320 }
1321}
1322
1323static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1324{
1325 skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1326 ath10k_htt_t2h_msg_handler(ar, skb);
1327}
1328
1329/* Called by lower (CE) layer when HTT data is received from the Target. */
1330static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1331{
1332 /* CE4 polling needs to be done whenever CE pipe which transports
1333 * HTT Rx (target->host) is processed.
1334 */
1335 ath10k_ce_per_engine_service(ce_state->ar, 4);
1336
1337 ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1338}
1339
1340int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1341 struct ath10k_hif_sg_item *items, int n_items)
1342{
1343 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1344 struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1345 struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1346 struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1347 unsigned int nentries_mask;
1348 unsigned int sw_index;
1349 unsigned int write_index;
1350 int err, i = 0;
1351
1352 spin_lock_bh(&ar_pci->ce_lock);
1353
1354 nentries_mask = src_ring->nentries_mask;
1355 sw_index = src_ring->sw_index;
1356 write_index = src_ring->write_index;
1357
1358 if (unlikely(CE_RING_DELTA(nentries_mask,
1359 write_index, sw_index - 1) < n_items)) {
1360 err = -ENOBUFS;
1361 goto err;
1362 }
1363
1364 for (i = 0; i < n_items - 1; i++) {
1365 ath10k_dbg(ar, ATH10K_DBG_PCI,
1366 "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1367 i, items[i].paddr, items[i].len, n_items);
1368 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1369 items[i].vaddr, items[i].len);
1370
1371 err = ath10k_ce_send_nolock(ce_pipe,
1372 items[i].transfer_context,
1373 items[i].paddr,
1374 items[i].len,
1375 items[i].transfer_id,
1376 CE_SEND_FLAG_GATHER);
1377 if (err)
1378 goto err;
1379 }
1380
1381 /* `i` is equal to `n_items -1` after for() */
1382
1383 ath10k_dbg(ar, ATH10K_DBG_PCI,
1384 "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1385 i, items[i].paddr, items[i].len, n_items);
1386 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1387 items[i].vaddr, items[i].len);
1388
1389 err = ath10k_ce_send_nolock(ce_pipe,
1390 items[i].transfer_context,
1391 items[i].paddr,
1392 items[i].len,
1393 items[i].transfer_id,
1394 0);
1395 if (err)
1396 goto err;
1397
1398 spin_unlock_bh(&ar_pci->ce_lock);
1399 return 0;
1400
1401err:
1402 for (; i > 0; i--)
1403 __ath10k_ce_send_revert(ce_pipe);
1404
1405 spin_unlock_bh(&ar_pci->ce_lock);
1406 return err;
1407}
1408
1409int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1410 size_t buf_len)
1411{
1412 return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1413}
1414
1415u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1416{
1417 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1418
1419 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1420
1421 return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1422}
1423
1424static void ath10k_pci_dump_registers(struct ath10k *ar,
1425 struct ath10k_fw_crash_data *crash_data)
1426{
1427 __le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1428 int i, ret;
1429
1430 lockdep_assert_held(&ar->data_lock);
1431
1432 ret = ath10k_pci_diag_read_hi(ar, ®_dump_values[0],
1433 hi_failure_state,
1434 REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1435 if (ret) {
1436 ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1437 return;
1438 }
1439
1440 BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1441
1442 ath10k_err(ar, "firmware register dump:\n");
1443 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1444 ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1445 i,
1446 __le32_to_cpu(reg_dump_values[i]),
1447 __le32_to_cpu(reg_dump_values[i + 1]),
1448 __le32_to_cpu(reg_dump_values[i + 2]),
1449 __le32_to_cpu(reg_dump_values[i + 3]));
1450
1451 if (!crash_data)
1452 return;
1453
1454 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1455 crash_data->registers[i] = reg_dump_values[i];
1456}
1457
1458static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1459{
1460 struct ath10k_fw_crash_data *crash_data;
1461 char uuid[50];
1462
1463 spin_lock_bh(&ar->data_lock);
1464
1465 ar->stats.fw_crash_counter++;
1466
1467 crash_data = ath10k_debug_get_new_fw_crash_data(ar);
1468
1469 if (crash_data)
1470 scnprintf(uuid, sizeof(uuid), "%pUl", &crash_data->uuid);
1471 else
1472 scnprintf(uuid, sizeof(uuid), "n/a");
1473
1474 ath10k_err(ar, "firmware crashed! (uuid %s)\n", uuid);
1475 ath10k_print_driver_info(ar);
1476 ath10k_pci_dump_registers(ar, crash_data);
1477
1478 spin_unlock_bh(&ar->data_lock);
1479
1480 queue_work(ar->workqueue, &ar->restart_work);
1481}
1482
1483void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1484 int force)
1485{
1486 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1487
1488 if (!force) {
1489 int resources;
1490 /*
1491 * Decide whether to actually poll for completions, or just
1492 * wait for a later chance.
1493 * If there seem to be plenty of resources left, then just wait
1494 * since checking involves reading a CE register, which is a
1495 * relatively expensive operation.
1496 */
1497 resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1498
1499 /*
1500 * If at least 50% of the total resources are still available,
1501 * don't bother checking again yet.
1502 */
1503 if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1504 return;
1505 }
1506 ath10k_ce_per_engine_service(ar, pipe);
1507}
1508
1509static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1510{
1511 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1512
1513 del_timer_sync(&ar_pci->rx_post_retry);
1514}
1515
1516int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1517 u8 *ul_pipe, u8 *dl_pipe)
1518{
1519 const struct service_to_pipe *entry;
1520 bool ul_set = false, dl_set = false;
1521 int i;
1522
1523 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1524
1525 for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1526 entry = &target_service_to_ce_map_wlan[i];
1527
1528 if (__le32_to_cpu(entry->service_id) != service_id)
1529 continue;
1530
1531 switch (__le32_to_cpu(entry->pipedir)) {
1532 case PIPEDIR_NONE:
1533 break;
1534 case PIPEDIR_IN:
1535 WARN_ON(dl_set);
1536 *dl_pipe = __le32_to_cpu(entry->pipenum);
1537 dl_set = true;
1538 break;
1539 case PIPEDIR_OUT:
1540 WARN_ON(ul_set);
1541 *ul_pipe = __le32_to_cpu(entry->pipenum);
1542 ul_set = true;
1543 break;
1544 case PIPEDIR_INOUT:
1545 WARN_ON(dl_set);
1546 WARN_ON(ul_set);
1547 *dl_pipe = __le32_to_cpu(entry->pipenum);
1548 *ul_pipe = __le32_to_cpu(entry->pipenum);
1549 dl_set = true;
1550 ul_set = true;
1551 break;
1552 }
1553 }
1554
1555 if (WARN_ON(!ul_set || !dl_set))
1556 return -ENOENT;
1557
1558 return 0;
1559}
1560
1561void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1562 u8 *ul_pipe, u8 *dl_pipe)
1563{
1564 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1565
1566 (void)ath10k_pci_hif_map_service_to_pipe(ar,
1567 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1568 ul_pipe, dl_pipe);
1569}
1570
1571void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1572{
1573 u32 val;
1574
1575 switch (ar->hw_rev) {
1576 case ATH10K_HW_QCA988X:
1577 case ATH10K_HW_QCA9887:
1578 case ATH10K_HW_QCA6174:
1579 case ATH10K_HW_QCA9377:
1580 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1581 CORE_CTRL_ADDRESS);
1582 val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1583 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1584 CORE_CTRL_ADDRESS, val);
1585 break;
1586 case ATH10K_HW_QCA99X0:
1587 case ATH10K_HW_QCA9984:
1588 case ATH10K_HW_QCA9888:
1589 case ATH10K_HW_QCA4019:
1590 /* TODO: Find appropriate register configuration for QCA99X0
1591 * to mask irq/MSI.
1592 */
1593 break;
1594 }
1595}
1596
1597static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1598{
1599 u32 val;
1600
1601 switch (ar->hw_rev) {
1602 case ATH10K_HW_QCA988X:
1603 case ATH10K_HW_QCA9887:
1604 case ATH10K_HW_QCA6174:
1605 case ATH10K_HW_QCA9377:
1606 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1607 CORE_CTRL_ADDRESS);
1608 val |= CORE_CTRL_PCIE_REG_31_MASK;
1609 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1610 CORE_CTRL_ADDRESS, val);
1611 break;
1612 case ATH10K_HW_QCA99X0:
1613 case ATH10K_HW_QCA9984:
1614 case ATH10K_HW_QCA9888:
1615 case ATH10K_HW_QCA4019:
1616 /* TODO: Find appropriate register configuration for QCA99X0
1617 * to unmask irq/MSI.
1618 */
1619 break;
1620 }
1621}
1622
1623static void ath10k_pci_irq_disable(struct ath10k *ar)
1624{
1625 ath10k_ce_disable_interrupts(ar);
1626 ath10k_pci_disable_and_clear_legacy_irq(ar);
1627 ath10k_pci_irq_msi_fw_mask(ar);
1628}
1629
1630static void ath10k_pci_irq_sync(struct ath10k *ar)
1631{
1632 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1633
1634 synchronize_irq(ar_pci->pdev->irq);
1635}
1636
1637static void ath10k_pci_irq_enable(struct ath10k *ar)
1638{
1639 ath10k_ce_enable_interrupts(ar);
1640 ath10k_pci_enable_legacy_irq(ar);
1641 ath10k_pci_irq_msi_fw_unmask(ar);
1642}
1643
1644static int ath10k_pci_hif_start(struct ath10k *ar)
1645{
1646 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1647
1648 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1649
1650 ath10k_pci_irq_enable(ar);
1651 ath10k_pci_rx_post(ar);
1652
1653 pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1654 ar_pci->link_ctl);
1655
1656 return 0;
1657}
1658
1659static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1660{
1661 struct ath10k *ar;
1662 struct ath10k_ce_pipe *ce_pipe;
1663 struct ath10k_ce_ring *ce_ring;
1664 struct sk_buff *skb;
1665 int i;
1666
1667 ar = pci_pipe->hif_ce_state;
1668 ce_pipe = pci_pipe->ce_hdl;
1669 ce_ring = ce_pipe->dest_ring;
1670
1671 if (!ce_ring)
1672 return;
1673
1674 if (!pci_pipe->buf_sz)
1675 return;
1676
1677 for (i = 0; i < ce_ring->nentries; i++) {
1678 skb = ce_ring->per_transfer_context[i];
1679 if (!skb)
1680 continue;
1681
1682 ce_ring->per_transfer_context[i] = NULL;
1683
1684 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1685 skb->len + skb_tailroom(skb),
1686 DMA_FROM_DEVICE);
1687 dev_kfree_skb_any(skb);
1688 }
1689}
1690
1691static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1692{
1693 struct ath10k *ar;
1694 struct ath10k_ce_pipe *ce_pipe;
1695 struct ath10k_ce_ring *ce_ring;
1696 struct sk_buff *skb;
1697 int i;
1698
1699 ar = pci_pipe->hif_ce_state;
1700 ce_pipe = pci_pipe->ce_hdl;
1701 ce_ring = ce_pipe->src_ring;
1702
1703 if (!ce_ring)
1704 return;
1705
1706 if (!pci_pipe->buf_sz)
1707 return;
1708
1709 for (i = 0; i < ce_ring->nentries; i++) {
1710 skb = ce_ring->per_transfer_context[i];
1711 if (!skb)
1712 continue;
1713
1714 ce_ring->per_transfer_context[i] = NULL;
1715
1716 ath10k_htc_tx_completion_handler(ar, skb);
1717 }
1718}
1719
1720/*
1721 * Cleanup residual buffers for device shutdown:
1722 * buffers that were enqueued for receive
1723 * buffers that were to be sent
1724 * Note: Buffers that had completed but which were
1725 * not yet processed are on a completion queue. They
1726 * are handled when the completion thread shuts down.
1727 */
1728static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1729{
1730 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1731 int pipe_num;
1732
1733 for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1734 struct ath10k_pci_pipe *pipe_info;
1735
1736 pipe_info = &ar_pci->pipe_info[pipe_num];
1737 ath10k_pci_rx_pipe_cleanup(pipe_info);
1738 ath10k_pci_tx_pipe_cleanup(pipe_info);
1739 }
1740}
1741
1742void ath10k_pci_ce_deinit(struct ath10k *ar)
1743{
1744 int i;
1745
1746 for (i = 0; i < CE_COUNT; i++)
1747 ath10k_ce_deinit_pipe(ar, i);
1748}
1749
1750void ath10k_pci_flush(struct ath10k *ar)
1751{
1752 ath10k_pci_rx_retry_sync(ar);
1753 ath10k_pci_buffer_cleanup(ar);
1754}
1755
1756static void ath10k_pci_hif_stop(struct ath10k *ar)
1757{
1758 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1759 unsigned long flags;
1760
1761 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
1762
1763 /* Most likely the device has HTT Rx ring configured. The only way to
1764 * prevent the device from accessing (and possible corrupting) host
1765 * memory is to reset the chip now.
1766 *
1767 * There's also no known way of masking MSI interrupts on the device.
1768 * For ranged MSI the CE-related interrupts can be masked. However
1769 * regardless how many MSI interrupts are assigned the first one
1770 * is always used for firmware indications (crashes) and cannot be
1771 * masked. To prevent the device from asserting the interrupt reset it
1772 * before proceeding with cleanup.
1773 */
1774 ath10k_pci_safe_chip_reset(ar);
1775
1776 ath10k_pci_irq_disable(ar);
1777 ath10k_pci_irq_sync(ar);
1778 ath10k_pci_flush(ar);
1779 napi_synchronize(&ar->napi);
1780 napi_disable(&ar->napi);
1781
1782 spin_lock_irqsave(&ar_pci->ps_lock, flags);
1783 WARN_ON(ar_pci->ps_wake_refcount > 0);
1784 spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
1785}
1786
1787int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1788 void *req, u32 req_len,
1789 void *resp, u32 *resp_len)
1790{
1791 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1792 struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1793 struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1794 struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
1795 struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
1796 dma_addr_t req_paddr = 0;
1797 dma_addr_t resp_paddr = 0;
1798 struct bmi_xfer xfer = {};
1799 void *treq, *tresp = NULL;
1800 int ret = 0;
1801
1802 might_sleep();
1803
1804 if (resp && !resp_len)
1805 return -EINVAL;
1806
1807 if (resp && resp_len && *resp_len == 0)
1808 return -EINVAL;
1809
1810 treq = kmemdup(req, req_len, GFP_KERNEL);
1811 if (!treq)
1812 return -ENOMEM;
1813
1814 req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1815 ret = dma_mapping_error(ar->dev, req_paddr);
1816 if (ret) {
1817 ret = -EIO;
1818 goto err_dma;
1819 }
1820
1821 if (resp && resp_len) {
1822 tresp = kzalloc(*resp_len, GFP_KERNEL);
1823 if (!tresp) {
1824 ret = -ENOMEM;
1825 goto err_req;
1826 }
1827
1828 resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1829 DMA_FROM_DEVICE);
1830 ret = dma_mapping_error(ar->dev, resp_paddr);
1831 if (ret) {
1832 ret = -EIO;
1833 goto err_req;
1834 }
1835
1836 xfer.wait_for_resp = true;
1837 xfer.resp_len = 0;
1838
1839 ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
1840 }
1841
1842 ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1843 if (ret)
1844 goto err_resp;
1845
1846 ret = ath10k_pci_bmi_wait(ce_tx, ce_rx, &xfer);
1847 if (ret) {
1848 u32 unused_buffer;
1849 unsigned int unused_nbytes;
1850 unsigned int unused_id;
1851
1852 ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1853 &unused_nbytes, &unused_id);
1854 } else {
1855 /* non-zero means we did not time out */
1856 ret = 0;
1857 }
1858
1859err_resp:
1860 if (resp) {
1861 u32 unused_buffer;
1862
1863 ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1864 dma_unmap_single(ar->dev, resp_paddr,
1865 *resp_len, DMA_FROM_DEVICE);
1866 }
1867err_req:
1868 dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1869
1870 if (ret == 0 && resp_len) {
1871 *resp_len = min(*resp_len, xfer.resp_len);
1872 memcpy(resp, tresp, xfer.resp_len);
1873 }
1874err_dma:
1875 kfree(treq);
1876 kfree(tresp);
1877
1878 return ret;
1879}
1880
1881static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
1882{
1883 struct bmi_xfer *xfer;
1884
1885 if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
1886 return;
1887
1888 xfer->tx_done = true;
1889}
1890
1891static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
1892{
1893 struct ath10k *ar = ce_state->ar;
1894 struct bmi_xfer *xfer;
1895 unsigned int nbytes;
1896
1897 if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
1898 &nbytes))
1899 return;
1900
1901 if (WARN_ON_ONCE(!xfer))
1902 return;
1903
1904 if (!xfer->wait_for_resp) {
1905 ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
1906 return;
1907 }
1908
1909 xfer->resp_len = nbytes;
1910 xfer->rx_done = true;
1911}
1912
1913static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
1914 struct ath10k_ce_pipe *rx_pipe,
1915 struct bmi_xfer *xfer)
1916{
1917 unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1918
1919 while (time_before_eq(jiffies, timeout)) {
1920 ath10k_pci_bmi_send_done(tx_pipe);
1921 ath10k_pci_bmi_recv_data(rx_pipe);
1922
1923 if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp))
1924 return 0;
1925
1926 schedule();
1927 }
1928
1929 return -ETIMEDOUT;
1930}
1931
1932/*
1933 * Send an interrupt to the device to wake up the Target CPU
1934 * so it has an opportunity to notice any changed state.
1935 */
1936static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1937{
1938 u32 addr, val;
1939
1940 addr = SOC_CORE_BASE_ADDRESS | CORE_CTRL_ADDRESS;
1941 val = ath10k_pci_read32(ar, addr);
1942 val |= CORE_CTRL_CPU_INTR_MASK;
1943 ath10k_pci_write32(ar, addr, val);
1944
1945 return 0;
1946}
1947
1948static int ath10k_pci_get_num_banks(struct ath10k *ar)
1949{
1950 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1951
1952 switch (ar_pci->pdev->device) {
1953 case QCA988X_2_0_DEVICE_ID:
1954 case QCA99X0_2_0_DEVICE_ID:
1955 case QCA9888_2_0_DEVICE_ID:
1956 case QCA9984_1_0_DEVICE_ID:
1957 case QCA9887_1_0_DEVICE_ID:
1958 return 1;
1959 case QCA6164_2_1_DEVICE_ID:
1960 case QCA6174_2_1_DEVICE_ID:
1961 switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) {
1962 case QCA6174_HW_1_0_CHIP_ID_REV:
1963 case QCA6174_HW_1_1_CHIP_ID_REV:
1964 case QCA6174_HW_2_1_CHIP_ID_REV:
1965 case QCA6174_HW_2_2_CHIP_ID_REV:
1966 return 3;
1967 case QCA6174_HW_1_3_CHIP_ID_REV:
1968 return 2;
1969 case QCA6174_HW_3_0_CHIP_ID_REV:
1970 case QCA6174_HW_3_1_CHIP_ID_REV:
1971 case QCA6174_HW_3_2_CHIP_ID_REV:
1972 return 9;
1973 }
1974 break;
1975 case QCA9377_1_0_DEVICE_ID:
1976 return 2;
1977 }
1978
1979 ath10k_warn(ar, "unknown number of banks, assuming 1\n");
1980 return 1;
1981}
1982
1983static int ath10k_bus_get_num_banks(struct ath10k *ar)
1984{
1985 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1986
1987 return ar_pci->bus_ops->get_num_banks(ar);
1988}
1989
1990int ath10k_pci_init_config(struct ath10k *ar)
1991{
1992 u32 interconnect_targ_addr;
1993 u32 pcie_state_targ_addr = 0;
1994 u32 pipe_cfg_targ_addr = 0;
1995 u32 svc_to_pipe_map = 0;
1996 u32 pcie_config_flags = 0;
1997 u32 ealloc_value;
1998 u32 ealloc_targ_addr;
1999 u32 flag2_value;
2000 u32 flag2_targ_addr;
2001 int ret = 0;
2002
2003 /* Download to Target the CE Config and the service-to-CE map */
2004 interconnect_targ_addr =
2005 host_interest_item_address(HI_ITEM(hi_interconnect_state));
2006
2007 /* Supply Target-side CE configuration */
2008 ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2009 &pcie_state_targ_addr);
2010 if (ret != 0) {
2011 ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2012 return ret;
2013 }
2014
2015 if (pcie_state_targ_addr == 0) {
2016 ret = -EIO;
2017 ath10k_err(ar, "Invalid pcie state addr\n");
2018 return ret;
2019 }
2020
2021 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2022 offsetof(struct pcie_state,
2023 pipe_cfg_addr)),
2024 &pipe_cfg_targ_addr);
2025 if (ret != 0) {
2026 ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2027 return ret;
2028 }
2029
2030 if (pipe_cfg_targ_addr == 0) {
2031 ret = -EIO;
2032 ath10k_err(ar, "Invalid pipe cfg addr\n");
2033 return ret;
2034 }
2035
2036 ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2037 target_ce_config_wlan,
2038 sizeof(struct ce_pipe_config) *
2039 NUM_TARGET_CE_CONFIG_WLAN);
2040
2041 if (ret != 0) {
2042 ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2043 return ret;
2044 }
2045
2046 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2047 offsetof(struct pcie_state,
2048 svc_to_pipe_map)),
2049 &svc_to_pipe_map);
2050 if (ret != 0) {
2051 ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2052 return ret;
2053 }
2054
2055 if (svc_to_pipe_map == 0) {
2056 ret = -EIO;
2057 ath10k_err(ar, "Invalid svc_to_pipe map\n");
2058 return ret;
2059 }
2060
2061 ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2062 target_service_to_ce_map_wlan,
2063 sizeof(target_service_to_ce_map_wlan));
2064 if (ret != 0) {
2065 ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2066 return ret;
2067 }
2068
2069 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2070 offsetof(struct pcie_state,
2071 config_flags)),
2072 &pcie_config_flags);
2073 if (ret != 0) {
2074 ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2075 return ret;
2076 }
2077
2078 pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2079
2080 ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2081 offsetof(struct pcie_state,
2082 config_flags)),
2083 pcie_config_flags);
2084 if (ret != 0) {
2085 ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2086 return ret;
2087 }
2088
2089 /* configure early allocation */
2090 ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2091
2092 ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2093 if (ret != 0) {
2094 ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2095 return ret;
2096 }
2097
2098 /* first bank is switched to IRAM */
2099 ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2100 HI_EARLY_ALLOC_MAGIC_MASK);
2101 ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2102 HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2103 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2104
2105 ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2106 if (ret != 0) {
2107 ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2108 return ret;
2109 }
2110
2111 /* Tell Target to proceed with initialization */
2112 flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2113
2114 ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2115 if (ret != 0) {
2116 ath10k_err(ar, "Failed to get option val: %d\n", ret);
2117 return ret;
2118 }
2119
2120 flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2121
2122 ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2123 if (ret != 0) {
2124 ath10k_err(ar, "Failed to set option val: %d\n", ret);
2125 return ret;
2126 }
2127
2128 return 0;
2129}
2130
2131static void ath10k_pci_override_ce_config(struct ath10k *ar)
2132{
2133 struct ce_attr *attr;
2134 struct ce_pipe_config *config;
2135
2136 /* For QCA6174 we're overriding the Copy Engine 5 configuration,
2137 * since it is currently used for other feature.
2138 */
2139
2140 /* Override Host's Copy Engine 5 configuration */
2141 attr = &host_ce_config_wlan[5];
2142 attr->src_sz_max = 0;
2143 attr->dest_nentries = 0;
2144
2145 /* Override Target firmware's Copy Engine configuration */
2146 config = &target_ce_config_wlan[5];
2147 config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2148 config->nbytes_max = __cpu_to_le32(2048);
2149
2150 /* Map from service/endpoint to Copy Engine */
2151 target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
2152}
2153
2154int ath10k_pci_alloc_pipes(struct ath10k *ar)
2155{
2156 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2157 struct ath10k_pci_pipe *pipe;
2158 int i, ret;
2159
2160 for (i = 0; i < CE_COUNT; i++) {
2161 pipe = &ar_pci->pipe_info[i];
2162 pipe->ce_hdl = &ar_pci->ce_states[i];
2163 pipe->pipe_num = i;
2164 pipe->hif_ce_state = ar;
2165
2166 ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
2167 if (ret) {
2168 ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2169 i, ret);
2170 return ret;
2171 }
2172
2173 /* Last CE is Diagnostic Window */
2174 if (i == CE_DIAG_PIPE) {
2175 ar_pci->ce_diag = pipe->ce_hdl;
2176 continue;
2177 }
2178
2179 pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
2180 }
2181
2182 return 0;
2183}
2184
2185void ath10k_pci_free_pipes(struct ath10k *ar)
2186{
2187 int i;
2188
2189 for (i = 0; i < CE_COUNT; i++)
2190 ath10k_ce_free_pipe(ar, i);
2191}
2192
2193int ath10k_pci_init_pipes(struct ath10k *ar)
2194{
2195 int i, ret;
2196
2197 for (i = 0; i < CE_COUNT; i++) {
2198 ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
2199 if (ret) {
2200 ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2201 i, ret);
2202 return ret;
2203 }
2204 }
2205
2206 return 0;
2207}
2208
2209static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2210{
2211 return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2212 FW_IND_EVENT_PENDING;
2213}
2214
2215static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2216{
2217 u32 val;
2218
2219 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2220 val &= ~FW_IND_EVENT_PENDING;
2221 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2222}
2223
2224static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2225{
2226 u32 val;
2227
2228 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2229 return (val == 0xffffffff);
2230}
2231
2232/* this function effectively clears target memory controller assert line */
2233static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2234{
2235 u32 val;
2236
2237 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2238 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2239 val | SOC_RESET_CONTROL_SI0_RST_MASK);
2240 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2241
2242 msleep(10);
2243
2244 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2245 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2246 val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2247 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2248
2249 msleep(10);
2250}
2251
2252static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2253{
2254 u32 val;
2255
2256 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2257
2258 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2259 SOC_RESET_CONTROL_ADDRESS);
2260 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2261 val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2262}
2263
2264static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2265{
2266 u32 val;
2267
2268 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2269 SOC_RESET_CONTROL_ADDRESS);
2270
2271 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2272 val | SOC_RESET_CONTROL_CE_RST_MASK);
2273 msleep(10);
2274 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2275 val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2276}
2277
2278static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2279{
2280 u32 val;
2281
2282 val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2283 SOC_LF_TIMER_CONTROL0_ADDRESS);
2284 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
2285 SOC_LF_TIMER_CONTROL0_ADDRESS,
2286 val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2287}
2288
2289static int ath10k_pci_warm_reset(struct ath10k *ar)
2290{
2291 int ret;
2292
2293 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2294
2295 spin_lock_bh(&ar->data_lock);
2296 ar->stats.fw_warm_reset_counter++;
2297 spin_unlock_bh(&ar->data_lock);
2298
2299 ath10k_pci_irq_disable(ar);
2300
2301 /* Make sure the target CPU is not doing anything dangerous, e.g. if it
2302 * were to access copy engine while host performs copy engine reset
2303 * then it is possible for the device to confuse pci-e controller to
2304 * the point of bringing host system to a complete stop (i.e. hang).
2305 */
2306 ath10k_pci_warm_reset_si0(ar);
2307 ath10k_pci_warm_reset_cpu(ar);
2308 ath10k_pci_init_pipes(ar);
2309 ath10k_pci_wait_for_target_init(ar);
2310
2311 ath10k_pci_warm_reset_clear_lf(ar);
2312 ath10k_pci_warm_reset_ce(ar);
2313 ath10k_pci_warm_reset_cpu(ar);
2314 ath10k_pci_init_pipes(ar);
2315
2316 ret = ath10k_pci_wait_for_target_init(ar);
2317 if (ret) {
2318 ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2319 return ret;
2320 }
2321
2322 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2323
2324 return 0;
2325}
2326
2327static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2328{
2329 ath10k_pci_irq_disable(ar);
2330 return ath10k_pci_qca99x0_chip_reset(ar);
2331}
2332
2333static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2334{
2335 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2336
2337 if (!ar_pci->pci_soft_reset)
2338 return -ENOTSUPP;
2339
2340 return ar_pci->pci_soft_reset(ar);
2341}
2342
2343static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2344{
2345 int i, ret;
2346 u32 val;
2347
2348 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2349
2350 /* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2351 * It is thus preferred to use warm reset which is safer but may not be
2352 * able to recover the device from all possible fail scenarios.
2353 *
2354 * Warm reset doesn't always work on first try so attempt it a few
2355 * times before giving up.
2356 */
2357 for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2358 ret = ath10k_pci_warm_reset(ar);
2359 if (ret) {
2360 ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2361 i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2362 ret);
2363 continue;
2364 }
2365
2366 /* FIXME: Sometimes copy engine doesn't recover after warm
2367 * reset. In most cases this needs cold reset. In some of these
2368 * cases the device is in such a state that a cold reset may
2369 * lock up the host.
2370 *
2371 * Reading any host interest register via copy engine is
2372 * sufficient to verify if device is capable of booting
2373 * firmware blob.
2374 */
2375 ret = ath10k_pci_init_pipes(ar);
2376 if (ret) {
2377 ath10k_warn(ar, "failed to init copy engine: %d\n",
2378 ret);
2379 continue;
2380 }
2381
2382 ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2383 &val);
2384 if (ret) {
2385 ath10k_warn(ar, "failed to poke copy engine: %d\n",
2386 ret);
2387 continue;
2388 }
2389
2390 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2391 return 0;
2392 }
2393
2394 if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2395 ath10k_warn(ar, "refusing cold reset as requested\n");
2396 return -EPERM;
2397 }
2398
2399 ret = ath10k_pci_cold_reset(ar);
2400 if (ret) {
2401 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2402 return ret;
2403 }
2404
2405 ret = ath10k_pci_wait_for_target_init(ar);
2406 if (ret) {
2407 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2408 ret);
2409 return ret;
2410 }
2411
2412 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2413
2414 return 0;
2415}
2416
2417static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2418{
2419 int ret;
2420
2421 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2422
2423 /* FIXME: QCA6174 requires cold + warm reset to work. */
2424
2425 ret = ath10k_pci_cold_reset(ar);
2426 if (ret) {
2427 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2428 return ret;
2429 }
2430
2431 ret = ath10k_pci_wait_for_target_init(ar);
2432 if (ret) {
2433 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2434 ret);
2435 return ret;
2436 }
2437
2438 ret = ath10k_pci_warm_reset(ar);
2439 if (ret) {
2440 ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2441 return ret;
2442 }
2443
2444 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2445
2446 return 0;
2447}
2448
2449static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2450{
2451 int ret;
2452
2453 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2454
2455 ret = ath10k_pci_cold_reset(ar);
2456 if (ret) {
2457 ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2458 return ret;
2459 }
2460
2461 ret = ath10k_pci_wait_for_target_init(ar);
2462 if (ret) {
2463 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2464 ret);
2465 return ret;
2466 }
2467
2468 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2469
2470 return 0;
2471}
2472
2473static int ath10k_pci_chip_reset(struct ath10k *ar)
2474{
2475 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2476
2477 if (WARN_ON(!ar_pci->pci_hard_reset))
2478 return -ENOTSUPP;
2479
2480 return ar_pci->pci_hard_reset(ar);
2481}
2482
2483static int ath10k_pci_hif_power_up(struct ath10k *ar)
2484{
2485 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2486 int ret;
2487
2488 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2489
2490 pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2491 &ar_pci->link_ctl);
2492 pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2493 ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2494
2495 /*
2496 * Bring the target up cleanly.
2497 *
2498 * The target may be in an undefined state with an AUX-powered Target
2499 * and a Host in WoW mode. If the Host crashes, loses power, or is
2500 * restarted (without unloading the driver) then the Target is left
2501 * (aux) powered and running. On a subsequent driver load, the Target
2502 * is in an unexpected state. We try to catch that here in order to
2503 * reset the Target and retry the probe.
2504 */
2505 ret = ath10k_pci_chip_reset(ar);
2506 if (ret) {
2507 if (ath10k_pci_has_fw_crashed(ar)) {
2508 ath10k_warn(ar, "firmware crashed during chip reset\n");
2509 ath10k_pci_fw_crashed_clear(ar);
2510 ath10k_pci_fw_crashed_dump(ar);
2511 }
2512
2513 ath10k_err(ar, "failed to reset chip: %d\n", ret);
2514 goto err_sleep;
2515 }
2516
2517 ret = ath10k_pci_init_pipes(ar);
2518 if (ret) {
2519 ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2520 goto err_sleep;
2521 }
2522
2523 ret = ath10k_pci_init_config(ar);
2524 if (ret) {
2525 ath10k_err(ar, "failed to setup init config: %d\n", ret);
2526 goto err_ce;
2527 }
2528
2529 ret = ath10k_pci_wake_target_cpu(ar);
2530 if (ret) {
2531 ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2532 goto err_ce;
2533 }
2534 napi_enable(&ar->napi);
2535
2536 return 0;
2537
2538err_ce:
2539 ath10k_pci_ce_deinit(ar);
2540
2541err_sleep:
2542 return ret;
2543}
2544
2545void ath10k_pci_hif_power_down(struct ath10k *ar)
2546{
2547 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2548
2549 /* Currently hif_power_up performs effectively a reset and hif_stop
2550 * resets the chip as well so there's no point in resetting here.
2551 */
2552}
2553
2554#ifdef CONFIG_PM
2555
2556static int ath10k_pci_hif_suspend(struct ath10k *ar)
2557{
2558 /* The grace timer can still be counting down and ar->ps_awake be true.
2559 * It is known that the device may be asleep after resuming regardless
2560 * of the SoC powersave state before suspending. Hence make sure the
2561 * device is asleep before proceeding.
2562 */
2563 ath10k_pci_sleep_sync(ar);
2564
2565 return 0;
2566}
2567
2568static int ath10k_pci_hif_resume(struct ath10k *ar)
2569{
2570 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2571 struct pci_dev *pdev = ar_pci->pdev;
2572 u32 val;
2573 int ret = 0;
2574
2575 ret = ath10k_pci_force_wake(ar);
2576 if (ret) {
2577 ath10k_err(ar, "failed to wake up target: %d\n", ret);
2578 return ret;
2579 }
2580
2581 /* Suspend/Resume resets the PCI configuration space, so we have to
2582 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2583 * from interfering with C3 CPU state. pci_restore_state won't help
2584 * here since it only restores the first 64 bytes pci config header.
2585 */
2586 pci_read_config_dword(pdev, 0x40, &val);
2587 if ((val & 0x0000ff00) != 0)
2588 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2589
2590 return ret;
2591}
2592#endif
2593
2594static bool ath10k_pci_validate_cal(void *data, size_t size)
2595{
2596 __le16 *cal_words = data;
2597 u16 checksum = 0;
2598 size_t i;
2599
2600 if (size % 2 != 0)
2601 return false;
2602
2603 for (i = 0; i < size / 2; i++)
2604 checksum ^= le16_to_cpu(cal_words[i]);
2605
2606 return checksum == 0xffff;
2607}
2608
2609static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2610{
2611 /* Enable SI clock */
2612 ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2613
2614 /* Configure GPIOs for I2C operation */
2615 ath10k_pci_write32(ar,
2616 GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2617 4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2618 SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2619 GPIO_PIN0_CONFIG) |
2620 SM(1, GPIO_PIN0_PAD_PULL));
2621
2622 ath10k_pci_write32(ar,
2623 GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2624 4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2625 SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2626 SM(1, GPIO_PIN0_PAD_PULL));
2627
2628 ath10k_pci_write32(ar,
2629 GPIO_BASE_ADDRESS +
2630 QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2631 1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2632
2633 /* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2634 ath10k_pci_write32(ar,
2635 SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2636 SM(1, SI_CONFIG_ERR_INT) |
2637 SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2638 SM(1, SI_CONFIG_I2C) |
2639 SM(1, SI_CONFIG_POS_SAMPLE) |
2640 SM(1, SI_CONFIG_INACTIVE_DATA) |
2641 SM(1, SI_CONFIG_INACTIVE_CLK) |
2642 SM(8, SI_CONFIG_DIVIDER));
2643}
2644
2645static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2646{
2647 u32 reg;
2648 int wait_limit;
2649
2650 /* set device select byte and for the read operation */
2651 reg = QCA9887_EEPROM_SELECT_READ |
2652 SM(addr, QCA9887_EEPROM_ADDR_LO) |
2653 SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2654 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2655
2656 /* write transmit data, transfer length, and START bit */
2657 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2658 SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
2659 SM(4, SI_CS_TX_CNT));
2660
2661 /* wait max 1 sec */
2662 wait_limit = 100000;
2663
2664 /* wait for SI_CS_DONE_INT */
2665 do {
2666 reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
2667 if (MS(reg, SI_CS_DONE_INT))
2668 break;
2669
2670 wait_limit--;
2671 udelay(10);
2672 } while (wait_limit > 0);
2673
2674 if (!MS(reg, SI_CS_DONE_INT)) {
2675 ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
2676 addr);
2677 return -ETIMEDOUT;
2678 }
2679
2680 /* clear SI_CS_DONE_INT */
2681 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
2682
2683 if (MS(reg, SI_CS_DONE_ERR)) {
2684 ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
2685 return -EIO;
2686 }
2687
2688 /* extract receive data */
2689 reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
2690 *out = reg;
2691
2692 return 0;
2693}
2694
2695static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
2696 size_t *data_len)
2697{
2698 u8 *caldata = NULL;
2699 size_t calsize, i;
2700 int ret;
2701
2702 if (!QCA_REV_9887(ar))
2703 return -EOPNOTSUPP;
2704
2705 calsize = ar->hw_params.cal_data_len;
2706 caldata = kmalloc(calsize, GFP_KERNEL);
2707 if (!caldata)
2708 return -ENOMEM;
2709
2710 ath10k_pci_enable_eeprom(ar);
2711
2712 for (i = 0; i < calsize; i++) {
2713 ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
2714 if (ret)
2715 goto err_free;
2716 }
2717
2718 if (!ath10k_pci_validate_cal(caldata, calsize))
2719 goto err_free;
2720
2721 *data = caldata;
2722 *data_len = calsize;
2723
2724 return 0;
2725
2726err_free:
2727 kfree(caldata);
2728
2729 return -EINVAL;
2730}
2731
2732static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
2733 .tx_sg = ath10k_pci_hif_tx_sg,
2734 .diag_read = ath10k_pci_hif_diag_read,
2735 .diag_write = ath10k_pci_diag_write_mem,
2736 .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg,
2737 .start = ath10k_pci_hif_start,
2738 .stop = ath10k_pci_hif_stop,
2739 .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe,
2740 .get_default_pipe = ath10k_pci_hif_get_default_pipe,
2741 .send_complete_check = ath10k_pci_hif_send_complete_check,
2742 .get_free_queue_number = ath10k_pci_hif_get_free_queue_number,
2743 .power_up = ath10k_pci_hif_power_up,
2744 .power_down = ath10k_pci_hif_power_down,
2745 .read32 = ath10k_pci_read32,
2746 .write32 = ath10k_pci_write32,
2747#ifdef CONFIG_PM
2748 .suspend = ath10k_pci_hif_suspend,
2749 .resume = ath10k_pci_hif_resume,
2750#endif
2751 .fetch_cal_eeprom = ath10k_pci_hif_fetch_cal_eeprom,
2752};
2753
2754/*
2755 * Top-level interrupt handler for all PCI interrupts from a Target.
2756 * When a block of MSI interrupts is allocated, this top-level handler
2757 * is not used; instead, we directly call the correct sub-handler.
2758 */
2759static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
2760{
2761 struct ath10k *ar = arg;
2762 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2763 int ret;
2764
2765 if (ath10k_pci_has_device_gone(ar))
2766 return IRQ_NONE;
2767
2768 ret = ath10k_pci_force_wake(ar);
2769 if (ret) {
2770 ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
2771 return IRQ_NONE;
2772 }
2773
2774 if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
2775 !ath10k_pci_irq_pending(ar))
2776 return IRQ_NONE;
2777
2778 ath10k_pci_disable_and_clear_legacy_irq(ar);
2779 ath10k_pci_irq_msi_fw_mask(ar);
2780 napi_schedule(&ar->napi);
2781
2782 return IRQ_HANDLED;
2783}
2784
2785static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
2786{
2787 struct ath10k *ar = container_of(ctx, struct ath10k, napi);
2788 int done = 0;
2789
2790 if (ath10k_pci_has_fw_crashed(ar)) {
2791 ath10k_pci_fw_crashed_clear(ar);
2792 ath10k_pci_fw_crashed_dump(ar);
2793 napi_complete(ctx);
2794 return done;
2795 }
2796
2797 ath10k_ce_per_engine_service_any(ar);
2798
2799 done = ath10k_htt_txrx_compl_task(ar, budget);
2800
2801 if (done < budget) {
2802 napi_complete(ctx);
2803 /* In case of MSI, it is possible that interrupts are received
2804 * while NAPI poll is inprogress. So pending interrupts that are
2805 * received after processing all copy engine pipes by NAPI poll
2806 * will not be handled again. This is causing failure to
2807 * complete boot sequence in x86 platform. So before enabling
2808 * interrupts safer to check for pending interrupts for
2809 * immediate servicing.
2810 */
2811 if (CE_INTERRUPT_SUMMARY(ar)) {
2812 napi_reschedule(ctx);
2813 goto out;
2814 }
2815 ath10k_pci_enable_legacy_irq(ar);
2816 ath10k_pci_irq_msi_fw_unmask(ar);
2817 }
2818
2819out:
2820 return done;
2821}
2822
2823static int ath10k_pci_request_irq_msi(struct ath10k *ar)
2824{
2825 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2826 int ret;
2827
2828 ret = request_irq(ar_pci->pdev->irq,
2829 ath10k_pci_interrupt_handler,
2830 IRQF_SHARED, "ath10k_pci", ar);
2831 if (ret) {
2832 ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
2833 ar_pci->pdev->irq, ret);
2834 return ret;
2835 }
2836
2837 return 0;
2838}
2839
2840static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
2841{
2842 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2843 int ret;
2844
2845 ret = request_irq(ar_pci->pdev->irq,
2846 ath10k_pci_interrupt_handler,
2847 IRQF_SHARED, "ath10k_pci", ar);
2848 if (ret) {
2849 ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
2850 ar_pci->pdev->irq, ret);
2851 return ret;
2852 }
2853
2854 return 0;
2855}
2856
2857static int ath10k_pci_request_irq(struct ath10k *ar)
2858{
2859 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2860
2861 switch (ar_pci->oper_irq_mode) {
2862 case ATH10K_PCI_IRQ_LEGACY:
2863 return ath10k_pci_request_irq_legacy(ar);
2864 case ATH10K_PCI_IRQ_MSI:
2865 return ath10k_pci_request_irq_msi(ar);
2866 default:
2867 return -EINVAL;
2868 }
2869}
2870
2871static void ath10k_pci_free_irq(struct ath10k *ar)
2872{
2873 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2874
2875 free_irq(ar_pci->pdev->irq, ar);
2876}
2877
2878void ath10k_pci_init_napi(struct ath10k *ar)
2879{
2880 netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll,
2881 ATH10K_NAPI_BUDGET);
2882}
2883
2884static int ath10k_pci_init_irq(struct ath10k *ar)
2885{
2886 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2887 int ret;
2888
2889 ath10k_pci_init_napi(ar);
2890
2891 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
2892 ath10k_info(ar, "limiting irq mode to: %d\n",
2893 ath10k_pci_irq_mode);
2894
2895 /* Try MSI */
2896 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
2897 ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
2898 ret = pci_enable_msi(ar_pci->pdev);
2899 if (ret == 0)
2900 return 0;
2901
2902 /* fall-through */
2903 }
2904
2905 /* Try legacy irq
2906 *
2907 * A potential race occurs here: The CORE_BASE write
2908 * depends on target correctly decoding AXI address but
2909 * host won't know when target writes BAR to CORE_CTRL.
2910 * This write might get lost if target has NOT written BAR.
2911 * For now, fix the race by repeating the write in below
2912 * synchronization checking. */
2913 ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
2914
2915 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2916 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
2917
2918 return 0;
2919}
2920
2921static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
2922{
2923 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2924 0);
2925}
2926
2927static int ath10k_pci_deinit_irq(struct ath10k *ar)
2928{
2929 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2930
2931 switch (ar_pci->oper_irq_mode) {
2932 case ATH10K_PCI_IRQ_LEGACY:
2933 ath10k_pci_deinit_irq_legacy(ar);
2934 break;
2935 default:
2936 pci_disable_msi(ar_pci->pdev);
2937 break;
2938 }
2939
2940 return 0;
2941}
2942
2943int ath10k_pci_wait_for_target_init(struct ath10k *ar)
2944{
2945 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2946 unsigned long timeout;
2947 u32 val;
2948
2949 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
2950
2951 timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
2952
2953 do {
2954 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2955
2956 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
2957 val);
2958
2959 /* target should never return this */
2960 if (val == 0xffffffff)
2961 continue;
2962
2963 /* the device has crashed so don't bother trying anymore */
2964 if (val & FW_IND_EVENT_PENDING)
2965 break;
2966
2967 if (val & FW_IND_INITIALIZED)
2968 break;
2969
2970 if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
2971 /* Fix potential race by repeating CORE_BASE writes */
2972 ath10k_pci_enable_legacy_irq(ar);
2973
2974 mdelay(10);
2975 } while (time_before(jiffies, timeout));
2976
2977 ath10k_pci_disable_and_clear_legacy_irq(ar);
2978 ath10k_pci_irq_msi_fw_mask(ar);
2979
2980 if (val == 0xffffffff) {
2981 ath10k_err(ar, "failed to read device register, device is gone\n");
2982 return -EIO;
2983 }
2984
2985 if (val & FW_IND_EVENT_PENDING) {
2986 ath10k_warn(ar, "device has crashed during init\n");
2987 return -ECOMM;
2988 }
2989
2990 if (!(val & FW_IND_INITIALIZED)) {
2991 ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
2992 val);
2993 return -ETIMEDOUT;
2994 }
2995
2996 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
2997 return 0;
2998}
2999
3000static int ath10k_pci_cold_reset(struct ath10k *ar)
3001{
3002 u32 val;
3003
3004 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3005
3006 spin_lock_bh(&ar->data_lock);
3007
3008 ar->stats.fw_cold_reset_counter++;
3009
3010 spin_unlock_bh(&ar->data_lock);
3011
3012 /* Put Target, including PCIe, into RESET. */
3013 val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3014 val |= 1;
3015 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3016
3017 /* After writing into SOC_GLOBAL_RESET to put device into
3018 * reset and pulling out of reset pcie may not be stable
3019 * for any immediate pcie register access and cause bus error,
3020 * add delay before any pcie access request to fix this issue.
3021 */
3022 msleep(20);
3023
3024 /* Pull Target, including PCIe, out of RESET. */
3025 val &= ~1;
3026 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3027
3028 msleep(20);
3029
3030 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3031
3032 return 0;
3033}
3034
3035static int ath10k_pci_claim(struct ath10k *ar)
3036{
3037 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3038 struct pci_dev *pdev = ar_pci->pdev;
3039 int ret;
3040
3041 pci_set_drvdata(pdev, ar);
3042
3043 ret = pci_enable_device(pdev);
3044 if (ret) {
3045 ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3046 return ret;
3047 }
3048
3049 ret = pci_request_region(pdev, BAR_NUM, "ath");
3050 if (ret) {
3051 ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3052 ret);
3053 goto err_device;
3054 }
3055
3056 /* Target expects 32 bit DMA. Enforce it. */
3057 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3058 if (ret) {
3059 ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3060 goto err_region;
3061 }
3062
3063 ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3064 if (ret) {
3065 ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
3066 ret);
3067 goto err_region;
3068 }
3069
3070 pci_set_master(pdev);
3071
3072 /* Arrange for access to Target SoC registers. */
3073 ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3074 ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3075 if (!ar_pci->mem) {
3076 ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3077 ret = -EIO;
3078 goto err_master;
3079 }
3080
3081 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3082 return 0;
3083
3084err_master:
3085 pci_clear_master(pdev);
3086
3087err_region:
3088 pci_release_region(pdev, BAR_NUM);
3089
3090err_device:
3091 pci_disable_device(pdev);
3092
3093 return ret;
3094}
3095
3096static void ath10k_pci_release(struct ath10k *ar)
3097{
3098 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3099 struct pci_dev *pdev = ar_pci->pdev;
3100
3101 pci_iounmap(pdev, ar_pci->mem);
3102 pci_release_region(pdev, BAR_NUM);
3103 pci_clear_master(pdev);
3104 pci_disable_device(pdev);
3105}
3106
3107static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3108{
3109 const struct ath10k_pci_supp_chip *supp_chip;
3110 int i;
3111 u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3112
3113 for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3114 supp_chip = &ath10k_pci_supp_chips[i];
3115
3116 if (supp_chip->dev_id == dev_id &&
3117 supp_chip->rev_id == rev_id)
3118 return true;
3119 }
3120
3121 return false;
3122}
3123
3124int ath10k_pci_setup_resource(struct ath10k *ar)
3125{
3126 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3127 int ret;
3128
3129 spin_lock_init(&ar_pci->ce_lock);
3130 spin_lock_init(&ar_pci->ps_lock);
3131
3132 setup_timer(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry,
3133 (unsigned long)ar);
3134
3135 if (QCA_REV_6174(ar))
3136 ath10k_pci_override_ce_config(ar);
3137
3138 ret = ath10k_pci_alloc_pipes(ar);
3139 if (ret) {
3140 ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3141 ret);
3142 return ret;
3143 }
3144
3145 return 0;
3146}
3147
3148void ath10k_pci_release_resource(struct ath10k *ar)
3149{
3150 ath10k_pci_rx_retry_sync(ar);
3151 netif_napi_del(&ar->napi);
3152 ath10k_pci_ce_deinit(ar);
3153 ath10k_pci_free_pipes(ar);
3154}
3155
3156static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3157 .read32 = ath10k_bus_pci_read32,
3158 .write32 = ath10k_bus_pci_write32,
3159 .get_num_banks = ath10k_pci_get_num_banks,
3160};
3161
3162static int ath10k_pci_probe(struct pci_dev *pdev,
3163 const struct pci_device_id *pci_dev)
3164{
3165 int ret = 0;
3166 struct ath10k *ar;
3167 struct ath10k_pci *ar_pci;
3168 enum ath10k_hw_rev hw_rev;
3169 u32 chip_id;
3170 bool pci_ps;
3171 int (*pci_soft_reset)(struct ath10k *ar);
3172 int (*pci_hard_reset)(struct ath10k *ar);
3173
3174 switch (pci_dev->device) {
3175 case QCA988X_2_0_DEVICE_ID:
3176 hw_rev = ATH10K_HW_QCA988X;
3177 pci_ps = false;
3178 pci_soft_reset = ath10k_pci_warm_reset;
3179 pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3180 break;
3181 case QCA9887_1_0_DEVICE_ID:
3182 hw_rev = ATH10K_HW_QCA9887;
3183 pci_ps = false;
3184 pci_soft_reset = ath10k_pci_warm_reset;
3185 pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3186 break;
3187 case QCA6164_2_1_DEVICE_ID:
3188 case QCA6174_2_1_DEVICE_ID:
3189 hw_rev = ATH10K_HW_QCA6174;
3190 pci_ps = true;
3191 pci_soft_reset = ath10k_pci_warm_reset;
3192 pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3193 break;
3194 case QCA99X0_2_0_DEVICE_ID:
3195 hw_rev = ATH10K_HW_QCA99X0;
3196 pci_ps = false;
3197 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3198 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3199 break;
3200 case QCA9984_1_0_DEVICE_ID:
3201 hw_rev = ATH10K_HW_QCA9984;
3202 pci_ps = false;
3203 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3204 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3205 break;
3206 case QCA9888_2_0_DEVICE_ID:
3207 hw_rev = ATH10K_HW_QCA9888;
3208 pci_ps = false;
3209 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3210 pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3211 break;
3212 case QCA9377_1_0_DEVICE_ID:
3213 hw_rev = ATH10K_HW_QCA9377;
3214 pci_ps = true;
3215 pci_soft_reset = NULL;
3216 pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3217 break;
3218 default:
3219 WARN_ON(1);
3220 return -ENOTSUPP;
3221 }
3222
3223 ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3224 hw_rev, &ath10k_pci_hif_ops);
3225 if (!ar) {
3226 dev_err(&pdev->dev, "failed to allocate core\n");
3227 return -ENOMEM;
3228 }
3229
3230 ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3231 pdev->vendor, pdev->device,
3232 pdev->subsystem_vendor, pdev->subsystem_device);
3233
3234 ar_pci = ath10k_pci_priv(ar);
3235 ar_pci->pdev = pdev;
3236 ar_pci->dev = &pdev->dev;
3237 ar_pci->ar = ar;
3238 ar->dev_id = pci_dev->device;
3239 ar_pci->pci_ps = pci_ps;
3240 ar_pci->bus_ops = &ath10k_pci_bus_ops;
3241 ar_pci->pci_soft_reset = pci_soft_reset;
3242 ar_pci->pci_hard_reset = pci_hard_reset;
3243
3244 ar->id.vendor = pdev->vendor;
3245 ar->id.device = pdev->device;
3246 ar->id.subsystem_vendor = pdev->subsystem_vendor;
3247 ar->id.subsystem_device = pdev->subsystem_device;
3248
3249 setup_timer(&ar_pci->ps_timer, ath10k_pci_ps_timer,
3250 (unsigned long)ar);
3251
3252 ret = ath10k_pci_setup_resource(ar);
3253 if (ret) {
3254 ath10k_err(ar, "failed to setup resource: %d\n", ret);
3255 goto err_core_destroy;
3256 }
3257
3258 ret = ath10k_pci_claim(ar);
3259 if (ret) {
3260 ath10k_err(ar, "failed to claim device: %d\n", ret);
3261 goto err_free_pipes;
3262 }
3263
3264 ret = ath10k_pci_force_wake(ar);
3265 if (ret) {
3266 ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3267 goto err_sleep;
3268 }
3269
3270 ath10k_pci_ce_deinit(ar);
3271 ath10k_pci_irq_disable(ar);
3272
3273 ret = ath10k_pci_init_irq(ar);
3274 if (ret) {
3275 ath10k_err(ar, "failed to init irqs: %d\n", ret);
3276 goto err_sleep;
3277 }
3278
3279 ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3280 ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3281 ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3282
3283 ret = ath10k_pci_request_irq(ar);
3284 if (ret) {
3285 ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3286 goto err_deinit_irq;
3287 }
3288
3289 ret = ath10k_pci_chip_reset(ar);
3290 if (ret) {
3291 ath10k_err(ar, "failed to reset chip: %d\n", ret);
3292 goto err_free_irq;
3293 }
3294
3295 chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3296 if (chip_id == 0xffffffff) {
3297 ath10k_err(ar, "failed to get chip id\n");
3298 goto err_free_irq;
3299 }
3300
3301 if (!ath10k_pci_chip_is_supported(pdev->device, chip_id)) {
3302 ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3303 pdev->device, chip_id);
3304 goto err_free_irq;
3305 }
3306
3307 ret = ath10k_core_register(ar, chip_id);
3308 if (ret) {
3309 ath10k_err(ar, "failed to register driver core: %d\n", ret);
3310 goto err_free_irq;
3311 }
3312
3313 return 0;
3314
3315err_free_irq:
3316 ath10k_pci_free_irq(ar);
3317 ath10k_pci_rx_retry_sync(ar);
3318
3319err_deinit_irq:
3320 ath10k_pci_deinit_irq(ar);
3321
3322err_sleep:
3323 ath10k_pci_sleep_sync(ar);
3324 ath10k_pci_release(ar);
3325
3326err_free_pipes:
3327 ath10k_pci_free_pipes(ar);
3328
3329err_core_destroy:
3330 ath10k_core_destroy(ar);
3331
3332 return ret;
3333}
3334
3335static void ath10k_pci_remove(struct pci_dev *pdev)
3336{
3337 struct ath10k *ar = pci_get_drvdata(pdev);
3338 struct ath10k_pci *ar_pci;
3339
3340 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3341
3342 if (!ar)
3343 return;
3344
3345 ar_pci = ath10k_pci_priv(ar);
3346
3347 if (!ar_pci)
3348 return;
3349
3350 ath10k_core_unregister(ar);
3351 ath10k_pci_free_irq(ar);
3352 ath10k_pci_deinit_irq(ar);
3353 ath10k_pci_release_resource(ar);
3354 ath10k_pci_sleep_sync(ar);
3355 ath10k_pci_release(ar);
3356 ath10k_core_destroy(ar);
3357}
3358
3359MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3360
3361static struct pci_driver ath10k_pci_driver = {
3362 .name = "ath10k_pci",
3363 .id_table = ath10k_pci_id_table,
3364 .probe = ath10k_pci_probe,
3365 .remove = ath10k_pci_remove,
3366};
3367
3368static int __init ath10k_pci_init(void)
3369{
3370 int ret;
3371
3372 ret = pci_register_driver(&ath10k_pci_driver);
3373 if (ret)
3374 printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3375 ret);
3376
3377 ret = ath10k_ahb_init();
3378 if (ret)
3379 printk(KERN_ERR "ahb init failed: %d\n", ret);
3380
3381 return ret;
3382}
3383module_init(ath10k_pci_init);
3384
3385static void __exit ath10k_pci_exit(void)
3386{
3387 pci_unregister_driver(&ath10k_pci_driver);
3388 ath10k_ahb_exit();
3389}
3390
3391module_exit(ath10k_pci_exit);
3392
3393MODULE_AUTHOR("Qualcomm Atheros");
3394MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3395MODULE_LICENSE("Dual BSD/GPL");
3396
3397/* QCA988x 2.0 firmware files */
3398MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3399MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3400MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3401MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3402MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3403MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3404
3405/* QCA9887 1.0 firmware files */
3406MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3407MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3408MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3409
3410/* QCA6174 2.1 firmware files */
3411MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3412MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3413MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3414MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3415
3416/* QCA6174 3.1 firmware files */
3417MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3418MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3419MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3420MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3421
3422/* QCA9377 1.0 firmware files */
3423MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3424MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);