Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
   4 *
   5 * Copyright (c) 2009-2010 Micrel, Inc.
   6 * 	Tristram Ha <Tristram.Ha@micrel.com>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/ioport.h>
  16#include <linux/pci.h>
  17#include <linux/proc_fs.h>
  18#include <linux/mii.h>
  19#include <linux/platform_device.h>
  20#include <linux/ethtool.h>
  21#include <linux/etherdevice.h>
  22#include <linux/in.h>
  23#include <linux/ip.h>
  24#include <linux/if_vlan.h>
  25#include <linux/crc32.h>
  26#include <linux/sched.h>
  27#include <linux/slab.h>
  28#include <linux/micrel_phy.h>
  29
  30
  31/* DMA Registers */
  32
  33#define KS_DMA_TX_CTRL			0x0000
  34#define DMA_TX_ENABLE			0x00000001
  35#define DMA_TX_CRC_ENABLE		0x00000002
  36#define DMA_TX_PAD_ENABLE		0x00000004
  37#define DMA_TX_LOOPBACK			0x00000100
  38#define DMA_TX_FLOW_ENABLE		0x00000200
  39#define DMA_TX_CSUM_IP			0x00010000
  40#define DMA_TX_CSUM_TCP			0x00020000
  41#define DMA_TX_CSUM_UDP			0x00040000
  42#define DMA_TX_BURST_SIZE		0x3F000000
  43
  44#define KS_DMA_RX_CTRL			0x0004
  45#define DMA_RX_ENABLE			0x00000001
  46#define KS884X_DMA_RX_MULTICAST		0x00000002
  47#define DMA_RX_PROMISCUOUS		0x00000004
  48#define DMA_RX_ERROR			0x00000008
  49#define DMA_RX_UNICAST			0x00000010
  50#define DMA_RX_ALL_MULTICAST		0x00000020
  51#define DMA_RX_BROADCAST		0x00000040
  52#define DMA_RX_FLOW_ENABLE		0x00000200
  53#define DMA_RX_CSUM_IP			0x00010000
  54#define DMA_RX_CSUM_TCP			0x00020000
  55#define DMA_RX_CSUM_UDP			0x00040000
  56#define DMA_RX_BURST_SIZE		0x3F000000
  57
  58#define DMA_BURST_SHIFT			24
  59#define DMA_BURST_DEFAULT		8
  60
  61#define KS_DMA_TX_START			0x0008
  62#define KS_DMA_RX_START			0x000C
  63#define DMA_START			0x00000001
  64
  65#define KS_DMA_TX_ADDR			0x0010
  66#define KS_DMA_RX_ADDR			0x0014
  67
  68#define DMA_ADDR_LIST_MASK		0xFFFFFFFC
  69#define DMA_ADDR_LIST_SHIFT		2
  70
  71/* MTR0 */
  72#define KS884X_MULTICAST_0_OFFSET	0x0020
  73#define KS884X_MULTICAST_1_OFFSET	0x0021
  74#define KS884X_MULTICAST_2_OFFSET	0x0022
  75#define KS884x_MULTICAST_3_OFFSET	0x0023
  76/* MTR1 */
  77#define KS884X_MULTICAST_4_OFFSET	0x0024
  78#define KS884X_MULTICAST_5_OFFSET	0x0025
  79#define KS884X_MULTICAST_6_OFFSET	0x0026
  80#define KS884X_MULTICAST_7_OFFSET	0x0027
  81
  82/* Interrupt Registers */
  83
  84/* INTEN */
  85#define KS884X_INTERRUPTS_ENABLE	0x0028
  86/* INTST */
  87#define KS884X_INTERRUPTS_STATUS	0x002C
  88
  89#define KS884X_INT_RX_STOPPED		0x02000000
  90#define KS884X_INT_TX_STOPPED		0x04000000
  91#define KS884X_INT_RX_OVERRUN		0x08000000
  92#define KS884X_INT_TX_EMPTY		0x10000000
  93#define KS884X_INT_RX			0x20000000
  94#define KS884X_INT_TX			0x40000000
  95#define KS884X_INT_PHY			0x80000000
  96
  97#define KS884X_INT_RX_MASK		\
  98	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
  99#define KS884X_INT_TX_MASK		\
 100	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
 101#define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
 102
 103/* MAC Additional Station Address */
 104
 105/* MAAL0 */
 106#define KS_ADD_ADDR_0_LO		0x0080
 107/* MAAH0 */
 108#define KS_ADD_ADDR_0_HI		0x0084
 109/* MAAL1 */
 110#define KS_ADD_ADDR_1_LO		0x0088
 111/* MAAH1 */
 112#define KS_ADD_ADDR_1_HI		0x008C
 113/* MAAL2 */
 114#define KS_ADD_ADDR_2_LO		0x0090
 115/* MAAH2 */
 116#define KS_ADD_ADDR_2_HI		0x0094
 117/* MAAL3 */
 118#define KS_ADD_ADDR_3_LO		0x0098
 119/* MAAH3 */
 120#define KS_ADD_ADDR_3_HI		0x009C
 121/* MAAL4 */
 122#define KS_ADD_ADDR_4_LO		0x00A0
 123/* MAAH4 */
 124#define KS_ADD_ADDR_4_HI		0x00A4
 125/* MAAL5 */
 126#define KS_ADD_ADDR_5_LO		0x00A8
 127/* MAAH5 */
 128#define KS_ADD_ADDR_5_HI		0x00AC
 129/* MAAL6 */
 130#define KS_ADD_ADDR_6_LO		0x00B0
 131/* MAAH6 */
 132#define KS_ADD_ADDR_6_HI		0x00B4
 133/* MAAL7 */
 134#define KS_ADD_ADDR_7_LO		0x00B8
 135/* MAAH7 */
 136#define KS_ADD_ADDR_7_HI		0x00BC
 137/* MAAL8 */
 138#define KS_ADD_ADDR_8_LO		0x00C0
 139/* MAAH8 */
 140#define KS_ADD_ADDR_8_HI		0x00C4
 141/* MAAL9 */
 142#define KS_ADD_ADDR_9_LO		0x00C8
 143/* MAAH9 */
 144#define KS_ADD_ADDR_9_HI		0x00CC
 145/* MAAL10 */
 146#define KS_ADD_ADDR_A_LO		0x00D0
 147/* MAAH10 */
 148#define KS_ADD_ADDR_A_HI		0x00D4
 149/* MAAL11 */
 150#define KS_ADD_ADDR_B_LO		0x00D8
 151/* MAAH11 */
 152#define KS_ADD_ADDR_B_HI		0x00DC
 153/* MAAL12 */
 154#define KS_ADD_ADDR_C_LO		0x00E0
 155/* MAAH12 */
 156#define KS_ADD_ADDR_C_HI		0x00E4
 157/* MAAL13 */
 158#define KS_ADD_ADDR_D_LO		0x00E8
 159/* MAAH13 */
 160#define KS_ADD_ADDR_D_HI		0x00EC
 161/* MAAL14 */
 162#define KS_ADD_ADDR_E_LO		0x00F0
 163/* MAAH14 */
 164#define KS_ADD_ADDR_E_HI		0x00F4
 165/* MAAL15 */
 166#define KS_ADD_ADDR_F_LO		0x00F8
 167/* MAAH15 */
 168#define KS_ADD_ADDR_F_HI		0x00FC
 169
 170#define ADD_ADDR_HI_MASK		0x0000FFFF
 171#define ADD_ADDR_ENABLE			0x80000000
 172#define ADD_ADDR_INCR			8
 173
 174/* Miscellaneous Registers */
 175
 176/* MARL */
 177#define KS884X_ADDR_0_OFFSET		0x0200
 178#define KS884X_ADDR_1_OFFSET		0x0201
 179/* MARM */
 180#define KS884X_ADDR_2_OFFSET		0x0202
 181#define KS884X_ADDR_3_OFFSET		0x0203
 182/* MARH */
 183#define KS884X_ADDR_4_OFFSET		0x0204
 184#define KS884X_ADDR_5_OFFSET		0x0205
 185
 186/* OBCR */
 187#define KS884X_BUS_CTRL_OFFSET		0x0210
 188
 189#define BUS_SPEED_125_MHZ		0x0000
 190#define BUS_SPEED_62_5_MHZ		0x0001
 191#define BUS_SPEED_41_66_MHZ		0x0002
 192#define BUS_SPEED_25_MHZ		0x0003
 193
 194/* EEPCR */
 195#define KS884X_EEPROM_CTRL_OFFSET	0x0212
 196
 197#define EEPROM_CHIP_SELECT		0x0001
 198#define EEPROM_SERIAL_CLOCK		0x0002
 199#define EEPROM_DATA_OUT			0x0004
 200#define EEPROM_DATA_IN			0x0008
 201#define EEPROM_ACCESS_ENABLE		0x0010
 202
 203/* MBIR */
 204#define KS884X_MEM_INFO_OFFSET		0x0214
 205
 206#define RX_MEM_TEST_FAILED		0x0008
 207#define RX_MEM_TEST_FINISHED		0x0010
 208#define TX_MEM_TEST_FAILED		0x0800
 209#define TX_MEM_TEST_FINISHED		0x1000
 210
 211/* GCR */
 212#define KS884X_GLOBAL_CTRL_OFFSET	0x0216
 213#define GLOBAL_SOFTWARE_RESET		0x0001
 214
 215#define KS8841_POWER_MANAGE_OFFSET	0x0218
 216
 217/* WFCR */
 218#define KS8841_WOL_CTRL_OFFSET		0x021A
 219#define KS8841_WOL_MAGIC_ENABLE		0x0080
 220#define KS8841_WOL_FRAME3_ENABLE	0x0008
 221#define KS8841_WOL_FRAME2_ENABLE	0x0004
 222#define KS8841_WOL_FRAME1_ENABLE	0x0002
 223#define KS8841_WOL_FRAME0_ENABLE	0x0001
 224
 225/* WF0 */
 226#define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
 227#define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
 228#define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228
 229
 230/* IACR */
 231#define KS884X_IACR_P			0x04A0
 232#define KS884X_IACR_OFFSET		KS884X_IACR_P
 233
 234/* IADR1 */
 235#define KS884X_IADR1_P			0x04A2
 236#define KS884X_IADR2_P			0x04A4
 237#define KS884X_IADR3_P			0x04A6
 238#define KS884X_IADR4_P			0x04A8
 239#define KS884X_IADR5_P			0x04AA
 240
 241#define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
 242#define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)
 243
 244#define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
 245#define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
 246#define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
 247#define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
 248#define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
 249#define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
 250#define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
 251#define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
 252#define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P
 253
 254/* P1MBCR */
 255#define KS884X_P1MBCR_P			0x04D0
 256#define KS884X_P1MBSR_P			0x04D2
 257#define KS884X_PHY1ILR_P		0x04D4
 258#define KS884X_PHY1IHR_P		0x04D6
 259#define KS884X_P1ANAR_P			0x04D8
 260#define KS884X_P1ANLPR_P		0x04DA
 261
 262/* P2MBCR */
 263#define KS884X_P2MBCR_P			0x04E0
 264#define KS884X_P2MBSR_P			0x04E2
 265#define KS884X_PHY2ILR_P		0x04E4
 266#define KS884X_PHY2IHR_P		0x04E6
 267#define KS884X_P2ANAR_P			0x04E8
 268#define KS884X_P2ANLPR_P		0x04EA
 269
 270#define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
 271#define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)
 272
 273#define KS884X_PHY_CTRL_OFFSET		0x00
 274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 275#define KS884X_PHY_STATUS_OFFSET	0x02
 276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 277#define KS884X_PHY_ID_1_OFFSET		0x04
 278#define KS884X_PHY_ID_2_OFFSET		0x06
 279
 
 
 
 
 280#define KS884X_PHY_AUTO_NEG_OFFSET	0x08
 281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 282#define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A
 283
 
 
 
 
 
 
 
 
 
 
 
 
 284/* P1VCT */
 285#define KS884X_P1VCT_P			0x04F0
 286#define KS884X_P1PHYCTRL_P		0x04F2
 287
 288/* P2VCT */
 289#define KS884X_P2VCT_P			0x04F4
 290#define KS884X_P2PHYCTRL_P		0x04F6
 291
 292#define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
 293#define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)
 294
 295#define KS884X_PHY_LINK_MD_OFFSET	0x00
 296
 297#define PHY_START_CABLE_DIAG		0x8000
 298#define PHY_CABLE_DIAG_RESULT		0x6000
 299#define PHY_CABLE_STAT_NORMAL		0x0000
 300#define PHY_CABLE_STAT_OPEN		0x2000
 301#define PHY_CABLE_STAT_SHORT		0x4000
 302#define PHY_CABLE_STAT_FAILED		0x6000
 303#define PHY_CABLE_10M_SHORT		0x1000
 304#define PHY_CABLE_FAULT_COUNTER		0x01FF
 305
 306#define KS884X_PHY_PHY_CTRL_OFFSET	0x02
 307
 308#define PHY_STAT_REVERSED_POLARITY	0x0020
 309#define PHY_STAT_MDIX			0x0010
 310#define PHY_FORCE_LINK			0x0008
 311#define PHY_POWER_SAVING_DISABLE	0x0004
 312#define PHY_REMOTE_LOOPBACK		0x0002
 313
 314/* SIDER */
 315#define KS884X_SIDER_P			0x0400
 316#define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
 317#define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)
 318
 319#define REG_FAMILY_ID			0x88
 320
 321#define REG_CHIP_ID_41			0x8810
 322#define REG_CHIP_ID_42			0x8800
 323
 324#define KS884X_CHIP_ID_MASK_41		0xFF10
 325#define KS884X_CHIP_ID_MASK		0xFFF0
 326#define KS884X_CHIP_ID_SHIFT		4
 327#define KS884X_REVISION_MASK		0x000E
 328#define KS884X_REVISION_SHIFT		1
 329#define KS8842_START			0x0001
 330
 331#define CHIP_IP_41_M			0x8810
 332#define CHIP_IP_42_M			0x8800
 333#define CHIP_IP_61_M			0x8890
 334#define CHIP_IP_62_M			0x8880
 335
 336#define CHIP_IP_41_P			0x8850
 337#define CHIP_IP_42_P			0x8840
 338#define CHIP_IP_61_P			0x88D0
 339#define CHIP_IP_62_P			0x88C0
 340
 341/* SGCR1 */
 342#define KS8842_SGCR1_P			0x0402
 343#define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P
 344
 345#define SWITCH_PASS_ALL			0x8000
 346#define SWITCH_TX_FLOW_CTRL		0x2000
 347#define SWITCH_RX_FLOW_CTRL		0x1000
 348#define SWITCH_CHECK_LENGTH		0x0800
 349#define SWITCH_AGING_ENABLE		0x0400
 350#define SWITCH_FAST_AGING		0x0200
 351#define SWITCH_AGGR_BACKOFF		0x0100
 352#define SWITCH_PASS_PAUSE		0x0008
 353#define SWITCH_LINK_AUTO_AGING		0x0001
 354
 355/* SGCR2 */
 356#define KS8842_SGCR2_P			0x0404
 357#define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P
 358
 359#define SWITCH_VLAN_ENABLE		0x8000
 360#define SWITCH_IGMP_SNOOP		0x4000
 361#define IPV6_MLD_SNOOP_ENABLE		0x2000
 362#define IPV6_MLD_SNOOP_OPTION		0x1000
 363#define PRIORITY_SCHEME_SELECT		0x0800
 364#define SWITCH_MIRROR_RX_TX		0x0100
 365#define UNICAST_VLAN_BOUNDARY		0x0080
 366#define MULTICAST_STORM_DISABLE		0x0040
 367#define SWITCH_BACK_PRESSURE		0x0020
 368#define FAIR_FLOW_CTRL			0x0010
 369#define NO_EXC_COLLISION_DROP		0x0008
 370#define SWITCH_HUGE_PACKET		0x0004
 371#define SWITCH_LEGAL_PACKET		0x0002
 372#define SWITCH_BUF_RESERVE		0x0001
 373
 374/* SGCR3 */
 375#define KS8842_SGCR3_P			0x0406
 376#define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P
 377
 378#define BROADCAST_STORM_RATE_LO		0xFF00
 379#define SWITCH_REPEATER			0x0080
 380#define SWITCH_HALF_DUPLEX		0x0040
 381#define SWITCH_FLOW_CTRL		0x0020
 382#define SWITCH_10_MBIT			0x0010
 383#define SWITCH_REPLACE_NULL_VID		0x0008
 384#define BROADCAST_STORM_RATE_HI		0x0007
 385
 386#define BROADCAST_STORM_RATE		0x07FF
 387
 388/* SGCR4 */
 389#define KS8842_SGCR4_P			0x0408
 390
 391/* SGCR5 */
 392#define KS8842_SGCR5_P			0x040A
 393#define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P
 394
 395#define LED_MODE			0x8200
 396#define LED_SPEED_DUPLEX_ACT		0x0000
 397#define LED_SPEED_DUPLEX_LINK_ACT	0x8000
 398#define LED_DUPLEX_10_100		0x0200
 399
 400/* SGCR6 */
 401#define KS8842_SGCR6_P			0x0410
 402#define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P
 403
 404#define KS8842_PRIORITY_MASK		3
 405#define KS8842_PRIORITY_SHIFT		2
 406
 407/* SGCR7 */
 408#define KS8842_SGCR7_P			0x0412
 409#define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P
 410
 411#define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
 412#define SWITCH_UNK_DEF_PORT_3		0x0004
 413#define SWITCH_UNK_DEF_PORT_2		0x0002
 414#define SWITCH_UNK_DEF_PORT_1		0x0001
 415
 416/* MACAR1 */
 417#define KS8842_MACAR1_P			0x0470
 418#define KS8842_MACAR2_P			0x0472
 419#define KS8842_MACAR3_P			0x0474
 420#define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
 421#define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
 422#define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
 423#define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
 424#define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
 425#define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)
 426
 427/* TOSR1 */
 428#define KS8842_TOSR1_P			0x0480
 429#define KS8842_TOSR2_P			0x0482
 430#define KS8842_TOSR3_P			0x0484
 431#define KS8842_TOSR4_P			0x0486
 432#define KS8842_TOSR5_P			0x0488
 433#define KS8842_TOSR6_P			0x048A
 434#define KS8842_TOSR7_P			0x0490
 435#define KS8842_TOSR8_P			0x0492
 436#define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
 437#define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
 438#define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
 439#define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
 440#define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
 441#define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P
 442
 443#define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
 444#define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P
 445
 446/* P1CR1 */
 447#define KS8842_P1CR1_P			0x0500
 448#define KS8842_P1CR2_P			0x0502
 449#define KS8842_P1VIDR_P			0x0504
 450#define KS8842_P1CR3_P			0x0506
 451#define KS8842_P1IRCR_P			0x0508
 452#define KS8842_P1ERCR_P			0x050A
 453#define KS884X_P1SCSLMD_P		0x0510
 454#define KS884X_P1CR4_P			0x0512
 455#define KS884X_P1SR_P			0x0514
 456
 457/* P2CR1 */
 458#define KS8842_P2CR1_P			0x0520
 459#define KS8842_P2CR2_P			0x0522
 460#define KS8842_P2VIDR_P			0x0524
 461#define KS8842_P2CR3_P			0x0526
 462#define KS8842_P2IRCR_P			0x0528
 463#define KS8842_P2ERCR_P			0x052A
 464#define KS884X_P2SCSLMD_P		0x0530
 465#define KS884X_P2CR4_P			0x0532
 466#define KS884X_P2SR_P			0x0534
 467
 468/* P3CR1 */
 469#define KS8842_P3CR1_P			0x0540
 470#define KS8842_P3CR2_P			0x0542
 471#define KS8842_P3VIDR_P			0x0544
 472#define KS8842_P3CR3_P			0x0546
 473#define KS8842_P3IRCR_P			0x0548
 474#define KS8842_P3ERCR_P			0x054A
 475
 476#define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
 477#define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
 478#define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P
 479
 480#define PORT_CTRL_ADDR(port, addr)		\
 481	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
 482		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
 483
 484#define KS8842_PORT_CTRL_1_OFFSET	0x00
 485
 486#define PORT_BROADCAST_STORM		0x0080
 487#define PORT_DIFFSERV_ENABLE		0x0040
 488#define PORT_802_1P_ENABLE		0x0020
 489#define PORT_BASED_PRIORITY_MASK	0x0018
 490#define PORT_BASED_PRIORITY_BASE	0x0003
 491#define PORT_BASED_PRIORITY_SHIFT	3
 492#define PORT_BASED_PRIORITY_0		0x0000
 493#define PORT_BASED_PRIORITY_1		0x0008
 494#define PORT_BASED_PRIORITY_2		0x0010
 495#define PORT_BASED_PRIORITY_3		0x0018
 496#define PORT_INSERT_TAG			0x0004
 497#define PORT_REMOVE_TAG			0x0002
 498#define PORT_PRIO_QUEUE_ENABLE		0x0001
 499
 500#define KS8842_PORT_CTRL_2_OFFSET	0x02
 501
 502#define PORT_INGRESS_VLAN_FILTER	0x4000
 503#define PORT_DISCARD_NON_VID		0x2000
 504#define PORT_FORCE_FLOW_CTRL		0x1000
 505#define PORT_BACK_PRESSURE		0x0800
 506#define PORT_TX_ENABLE			0x0400
 507#define PORT_RX_ENABLE			0x0200
 508#define PORT_LEARN_DISABLE		0x0100
 509#define PORT_MIRROR_SNIFFER		0x0080
 510#define PORT_MIRROR_RX			0x0040
 511#define PORT_MIRROR_TX			0x0020
 512#define PORT_USER_PRIORITY_CEILING	0x0008
 513#define PORT_VLAN_MEMBERSHIP		0x0007
 514
 515#define KS8842_PORT_CTRL_VID_OFFSET	0x04
 516
 517#define PORT_DEFAULT_VID		0x0001
 518
 519#define KS8842_PORT_CTRL_3_OFFSET	0x06
 520
 521#define PORT_INGRESS_LIMIT_MODE		0x000C
 522#define PORT_INGRESS_ALL		0x0000
 523#define PORT_INGRESS_UNICAST		0x0004
 524#define PORT_INGRESS_MULTICAST		0x0008
 525#define PORT_INGRESS_BROADCAST		0x000C
 526#define PORT_COUNT_IFG			0x0002
 527#define PORT_COUNT_PREAMBLE		0x0001
 528
 529#define KS8842_PORT_IN_RATE_OFFSET	0x08
 530#define KS8842_PORT_OUT_RATE_OFFSET	0x0A
 531
 532#define PORT_PRIORITY_RATE		0x0F
 533#define PORT_PRIORITY_RATE_SHIFT	4
 534
 535#define KS884X_PORT_LINK_MD		0x10
 536
 537#define PORT_CABLE_10M_SHORT		0x8000
 538#define PORT_CABLE_DIAG_RESULT		0x6000
 539#define PORT_CABLE_STAT_NORMAL		0x0000
 540#define PORT_CABLE_STAT_OPEN		0x2000
 541#define PORT_CABLE_STAT_SHORT		0x4000
 542#define PORT_CABLE_STAT_FAILED		0x6000
 543#define PORT_START_CABLE_DIAG		0x1000
 544#define PORT_FORCE_LINK			0x0800
 545#define PORT_POWER_SAVING_DISABLE	0x0400
 546#define PORT_PHY_REMOTE_LOOPBACK	0x0200
 547#define PORT_CABLE_FAULT_COUNTER	0x01FF
 548
 549#define KS884X_PORT_CTRL_4_OFFSET	0x12
 550
 551#define PORT_LED_OFF			0x8000
 552#define PORT_TX_DISABLE			0x4000
 553#define PORT_AUTO_NEG_RESTART		0x2000
 554#define PORT_REMOTE_FAULT_DISABLE	0x1000
 555#define PORT_POWER_DOWN			0x0800
 556#define PORT_AUTO_MDIX_DISABLE		0x0400
 557#define PORT_FORCE_MDIX			0x0200
 558#define PORT_LOOPBACK			0x0100
 559#define PORT_AUTO_NEG_ENABLE		0x0080
 560#define PORT_FORCE_100_MBIT		0x0040
 561#define PORT_FORCE_FULL_DUPLEX		0x0020
 562#define PORT_AUTO_NEG_SYM_PAUSE		0x0010
 563#define PORT_AUTO_NEG_100BTX_FD		0x0008
 564#define PORT_AUTO_NEG_100BTX		0x0004
 565#define PORT_AUTO_NEG_10BT_FD		0x0002
 566#define PORT_AUTO_NEG_10BT		0x0001
 567
 568#define KS884X_PORT_STATUS_OFFSET	0x14
 569
 570#define PORT_HP_MDIX			0x8000
 571#define PORT_REVERSED_POLARITY		0x2000
 572#define PORT_RX_FLOW_CTRL		0x0800
 573#define PORT_TX_FLOW_CTRL		0x1000
 574#define PORT_STATUS_SPEED_100MBIT	0x0400
 575#define PORT_STATUS_FULL_DUPLEX		0x0200
 576#define PORT_REMOTE_FAULT		0x0100
 577#define PORT_MDIX_STATUS		0x0080
 578#define PORT_AUTO_NEG_COMPLETE		0x0040
 579#define PORT_STATUS_LINK_GOOD		0x0020
 580#define PORT_REMOTE_SYM_PAUSE		0x0010
 581#define PORT_REMOTE_100BTX_FD		0x0008
 582#define PORT_REMOTE_100BTX		0x0004
 583#define PORT_REMOTE_10BT_FD		0x0002
 584#define PORT_REMOTE_10BT		0x0001
 585
 586/*
 587#define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 588#define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
 589#define STATIC_MAC_TABLE_VALID		00-00080000-00000000
 590#define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
 591#define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
 592#define STATIC_MAC_TABLE_FID		00-03C00000-00000000
 593*/
 594
 595#define STATIC_MAC_TABLE_ADDR		0x0000FFFF
 596#define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
 597#define STATIC_MAC_TABLE_VALID		0x00080000
 598#define STATIC_MAC_TABLE_OVERRIDE	0x00100000
 599#define STATIC_MAC_TABLE_USE_FID	0x00200000
 600#define STATIC_MAC_TABLE_FID		0x03C00000
 601
 602#define STATIC_MAC_FWD_PORTS_SHIFT	16
 603#define STATIC_MAC_FID_SHIFT		22
 604
 605/*
 606#define VLAN_TABLE_VID			00-00000000-00000FFF
 607#define VLAN_TABLE_FID			00-00000000-0000F000
 608#define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
 609#define VLAN_TABLE_VALID		00-00000000-00080000
 610*/
 611
 612#define VLAN_TABLE_VID			0x00000FFF
 613#define VLAN_TABLE_FID			0x0000F000
 614#define VLAN_TABLE_MEMBERSHIP		0x00070000
 615#define VLAN_TABLE_VALID		0x00080000
 616
 617#define VLAN_TABLE_FID_SHIFT		12
 618#define VLAN_TABLE_MEMBERSHIP_SHIFT	16
 619
 620/*
 621#define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 622#define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
 623#define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
 624#define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
 625#define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
 626#define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
 627#define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
 628#define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
 629*/
 630
 631#define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
 632#define DYNAMIC_MAC_TABLE_FID		0x000F0000
 633#define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
 634#define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
 635#define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000
 636
 637#define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
 638#define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
 639#define DYNAMIC_MAC_TABLE_RESERVED	0x78
 640#define DYNAMIC_MAC_TABLE_NOT_READY	0x80
 641
 642#define DYNAMIC_MAC_FID_SHIFT		16
 643#define DYNAMIC_MAC_SRC_PORT_SHIFT	20
 644#define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
 645#define DYNAMIC_MAC_ENTRIES_SHIFT	24
 646#define DYNAMIC_MAC_ENTRIES_H_SHIFT	8
 647
 648/*
 649#define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
 650#define MIB_COUNTER_VALID		00-00000000-40000000
 651#define MIB_COUNTER_OVERFLOW		00-00000000-80000000
 652*/
 653
 654#define MIB_COUNTER_VALUE		0x3FFFFFFF
 655#define MIB_COUNTER_VALID		0x40000000
 656#define MIB_COUNTER_OVERFLOW		0x80000000
 657
 658#define MIB_PACKET_DROPPED		0x0000FFFF
 659
 660#define KS_MIB_PACKET_DROPPED_TX_0	0x100
 661#define KS_MIB_PACKET_DROPPED_TX_1	0x101
 662#define KS_MIB_PACKET_DROPPED_TX	0x102
 663#define KS_MIB_PACKET_DROPPED_RX_0	0x103
 664#define KS_MIB_PACKET_DROPPED_RX_1	0x104
 665#define KS_MIB_PACKET_DROPPED_RX	0x105
 666
 667/* Change default LED mode. */
 668#define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT
 669
 670#define MAC_ADDR_ORDER(i)		(ETH_ALEN - 1 - (i))
 671
 672#define MAX_ETHERNET_BODY_SIZE		1500
 673#define ETHERNET_HEADER_SIZE		(14 + VLAN_HLEN)
 674
 675#define MAX_ETHERNET_PACKET_SIZE	\
 676	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
 677
 678#define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
 679#define MAX_RX_BUF_SIZE			(1912 + 4)
 680
 681#define ADDITIONAL_ENTRIES		16
 682#define MAX_MULTICAST_LIST		32
 683
 684#define HW_MULTICAST_SIZE		8
 685
 686#define HW_TO_DEV_PORT(port)		(port - 1)
 687
 688enum {
 689	media_connected,
 690	media_disconnected
 691};
 692
 693enum {
 694	OID_COUNTER_UNKOWN,
 695
 696	OID_COUNTER_FIRST,
 697
 698	/* total transmit errors */
 699	OID_COUNTER_XMIT_ERROR,
 700
 701	/* total receive errors */
 702	OID_COUNTER_RCV_ERROR,
 703
 704	OID_COUNTER_LAST
 705};
 706
 707/*
 708 * Hardware descriptor definitions
 709 */
 710
 711#define DESC_ALIGNMENT			16
 712#define BUFFER_ALIGNMENT		8
 713
 714#define NUM_OF_RX_DESC			64
 715#define NUM_OF_TX_DESC			64
 716
 717#define KS_DESC_RX_FRAME_LEN		0x000007FF
 718#define KS_DESC_RX_FRAME_TYPE		0x00008000
 719#define KS_DESC_RX_ERROR_CRC		0x00010000
 720#define KS_DESC_RX_ERROR_RUNT		0x00020000
 721#define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
 722#define KS_DESC_RX_ERROR_PHY		0x00080000
 723#define KS884X_DESC_RX_PORT_MASK	0x00300000
 724#define KS_DESC_RX_MULTICAST		0x01000000
 725#define KS_DESC_RX_ERROR		0x02000000
 726#define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
 727#define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
 728#define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
 729#define KS_DESC_RX_LAST			0x20000000
 730#define KS_DESC_RX_FIRST		0x40000000
 731#define KS_DESC_RX_ERROR_COND		\
 732	(KS_DESC_RX_ERROR_CRC |		\
 733	KS_DESC_RX_ERROR_RUNT |		\
 734	KS_DESC_RX_ERROR_PHY |		\
 735	KS_DESC_RX_ERROR_TOO_LONG)
 736
 737#define KS_DESC_HW_OWNED		0x80000000
 738
 739#define KS_DESC_BUF_SIZE		0x000007FF
 740#define KS884X_DESC_TX_PORT_MASK	0x00300000
 741#define KS_DESC_END_OF_RING		0x02000000
 742#define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
 743#define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
 744#define KS_DESC_TX_CSUM_GEN_IP		0x10000000
 745#define KS_DESC_TX_LAST			0x20000000
 746#define KS_DESC_TX_FIRST		0x40000000
 747#define KS_DESC_TX_INTERRUPT		0x80000000
 748
 749#define KS_DESC_PORT_SHIFT		20
 750
 751#define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)
 752
 753#define KS_DESC_TX_MASK			\
 754	(KS_DESC_TX_INTERRUPT |		\
 755	KS_DESC_TX_FIRST |		\
 756	KS_DESC_TX_LAST |		\
 757	KS_DESC_TX_CSUM_GEN_IP |	\
 758	KS_DESC_TX_CSUM_GEN_TCP |	\
 759	KS_DESC_TX_CSUM_GEN_UDP |	\
 760	KS_DESC_BUF_SIZE)
 761
 762struct ksz_desc_rx_stat {
 763#ifdef __BIG_ENDIAN_BITFIELD
 764	u32 hw_owned:1;
 765	u32 first_desc:1;
 766	u32 last_desc:1;
 767	u32 csum_err_ip:1;
 768	u32 csum_err_tcp:1;
 769	u32 csum_err_udp:1;
 770	u32 error:1;
 771	u32 multicast:1;
 772	u32 src_port:4;
 773	u32 err_phy:1;
 774	u32 err_too_long:1;
 775	u32 err_runt:1;
 776	u32 err_crc:1;
 777	u32 frame_type:1;
 778	u32 reserved1:4;
 779	u32 frame_len:11;
 780#else
 781	u32 frame_len:11;
 782	u32 reserved1:4;
 783	u32 frame_type:1;
 784	u32 err_crc:1;
 785	u32 err_runt:1;
 786	u32 err_too_long:1;
 787	u32 err_phy:1;
 788	u32 src_port:4;
 789	u32 multicast:1;
 790	u32 error:1;
 791	u32 csum_err_udp:1;
 792	u32 csum_err_tcp:1;
 793	u32 csum_err_ip:1;
 794	u32 last_desc:1;
 795	u32 first_desc:1;
 796	u32 hw_owned:1;
 797#endif
 798};
 799
 800struct ksz_desc_tx_stat {
 801#ifdef __BIG_ENDIAN_BITFIELD
 802	u32 hw_owned:1;
 803	u32 reserved1:31;
 804#else
 805	u32 reserved1:31;
 806	u32 hw_owned:1;
 807#endif
 808};
 809
 810struct ksz_desc_rx_buf {
 811#ifdef __BIG_ENDIAN_BITFIELD
 812	u32 reserved4:6;
 813	u32 end_of_ring:1;
 814	u32 reserved3:14;
 815	u32 buf_size:11;
 816#else
 817	u32 buf_size:11;
 818	u32 reserved3:14;
 819	u32 end_of_ring:1;
 820	u32 reserved4:6;
 821#endif
 822};
 823
 824struct ksz_desc_tx_buf {
 825#ifdef __BIG_ENDIAN_BITFIELD
 826	u32 intr:1;
 827	u32 first_seg:1;
 828	u32 last_seg:1;
 829	u32 csum_gen_ip:1;
 830	u32 csum_gen_tcp:1;
 831	u32 csum_gen_udp:1;
 832	u32 end_of_ring:1;
 833	u32 reserved4:1;
 834	u32 dest_port:4;
 835	u32 reserved3:9;
 836	u32 buf_size:11;
 837#else
 838	u32 buf_size:11;
 839	u32 reserved3:9;
 840	u32 dest_port:4;
 841	u32 reserved4:1;
 842	u32 end_of_ring:1;
 843	u32 csum_gen_udp:1;
 844	u32 csum_gen_tcp:1;
 845	u32 csum_gen_ip:1;
 846	u32 last_seg:1;
 847	u32 first_seg:1;
 848	u32 intr:1;
 849#endif
 850};
 851
 852union desc_stat {
 853	struct ksz_desc_rx_stat rx;
 854	struct ksz_desc_tx_stat tx;
 855	u32 data;
 856};
 857
 858union desc_buf {
 859	struct ksz_desc_rx_buf rx;
 860	struct ksz_desc_tx_buf tx;
 861	u32 data;
 862};
 863
 864/**
 865 * struct ksz_hw_desc - Hardware descriptor data structure
 866 * @ctrl:	Descriptor control value.
 867 * @buf:	Descriptor buffer value.
 868 * @addr:	Physical address of memory buffer.
 869 * @next:	Pointer to next hardware descriptor.
 870 */
 871struct ksz_hw_desc {
 872	union desc_stat ctrl;
 873	union desc_buf buf;
 874	u32 addr;
 875	u32 next;
 876};
 877
 878/**
 879 * struct ksz_sw_desc - Software descriptor data structure
 880 * @ctrl:	Descriptor control value.
 881 * @buf:	Descriptor buffer value.
 882 * @buf_size:	Current buffers size value in hardware descriptor.
 883 */
 884struct ksz_sw_desc {
 885	union desc_stat ctrl;
 886	union desc_buf buf;
 887	u32 buf_size;
 888};
 889
 890/**
 891 * struct ksz_dma_buf - OS dependent DMA buffer data structure
 892 * @skb:	Associated socket buffer.
 893 * @dma:	Associated physical DMA address.
 894 * @len:	Actual len used.
 895 */
 896struct ksz_dma_buf {
 897	struct sk_buff *skb;
 898	dma_addr_t dma;
 899	int len;
 900};
 901
 902/**
 903 * struct ksz_desc - Descriptor structure
 904 * @phw:	Hardware descriptor pointer to uncached physical memory.
 905 * @sw:		Cached memory to hold hardware descriptor values for
 906 * 		manipulation.
 907 * @dma_buf:	Operating system dependent data structure to hold physical
 908 * 		memory buffer allocation information.
 909 */
 910struct ksz_desc {
 911	struct ksz_hw_desc *phw;
 912	struct ksz_sw_desc sw;
 913	struct ksz_dma_buf dma_buf;
 914};
 915
 916#define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
 917
 918/**
 919 * struct ksz_desc_info - Descriptor information data structure
 920 * @ring:	First descriptor in the ring.
 921 * @cur:	Current descriptor being manipulated.
 922 * @ring_virt:	First hardware descriptor in the ring.
 923 * @ring_phys:	The physical address of the first descriptor of the ring.
 924 * @size:	Size of hardware descriptor.
 925 * @alloc:	Number of descriptors allocated.
 926 * @avail:	Number of descriptors available for use.
 927 * @last:	Index for last descriptor released to hardware.
 928 * @next:	Index for next descriptor available for use.
 929 * @mask:	Mask for index wrapping.
 930 */
 931struct ksz_desc_info {
 932	struct ksz_desc *ring;
 933	struct ksz_desc *cur;
 934	struct ksz_hw_desc *ring_virt;
 935	u32 ring_phys;
 936	int size;
 937	int alloc;
 938	int avail;
 939	int last;
 940	int next;
 941	int mask;
 942};
 943
 944/*
 945 * KSZ8842 switch definitions
 946 */
 947
 948enum {
 949	TABLE_STATIC_MAC = 0,
 950	TABLE_VLAN,
 951	TABLE_DYNAMIC_MAC,
 952	TABLE_MIB
 953};
 954
 955#define LEARNED_MAC_TABLE_ENTRIES	1024
 956#define STATIC_MAC_TABLE_ENTRIES	8
 957
 958/**
 959 * struct ksz_mac_table - Static MAC table data structure
 960 * @mac_addr:	MAC address to filter.
 961 * @vid:	VID value.
 962 * @fid:	FID value.
 963 * @ports:	Port membership.
 964 * @override:	Override setting.
 965 * @use_fid:	FID use setting.
 966 * @valid:	Valid setting indicating the entry is being used.
 967 */
 968struct ksz_mac_table {
 969	u8 mac_addr[ETH_ALEN];
 970	u16 vid;
 971	u8 fid;
 972	u8 ports;
 973	u8 override:1;
 974	u8 use_fid:1;
 975	u8 valid:1;
 976};
 977
 978#define VLAN_TABLE_ENTRIES		16
 979
 980/**
 981 * struct ksz_vlan_table - VLAN table data structure
 982 * @vid:	VID value.
 983 * @fid:	FID value.
 984 * @member:	Port membership.
 985 */
 986struct ksz_vlan_table {
 987	u16 vid;
 988	u8 fid;
 989	u8 member;
 990};
 991
 992#define DIFFSERV_ENTRIES		64
 993#define PRIO_802_1P_ENTRIES		8
 994#define PRIO_QUEUES			4
 995
 996#define SWITCH_PORT_NUM			2
 997#define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
 998#define HOST_MASK			(1 << SWITCH_PORT_NUM)
 999#define PORT_MASK			7
1000
1001#define MAIN_PORT			0
1002#define OTHER_PORT			1
1003#define HOST_PORT			SWITCH_PORT_NUM
1004
1005#define PORT_COUNTER_NUM		0x20
1006#define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)
1007
1008#define MIB_COUNTER_RX_LO_PRIORITY	0x00
1009#define MIB_COUNTER_RX_HI_PRIORITY	0x01
1010#define MIB_COUNTER_RX_UNDERSIZE	0x02
1011#define MIB_COUNTER_RX_FRAGMENT		0x03
1012#define MIB_COUNTER_RX_OVERSIZE		0x04
1013#define MIB_COUNTER_RX_JABBER		0x05
1014#define MIB_COUNTER_RX_SYMBOL_ERR	0x06
1015#define MIB_COUNTER_RX_CRC_ERR		0x07
1016#define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
1017#define MIB_COUNTER_RX_CTRL_8808	0x09
1018#define MIB_COUNTER_RX_PAUSE		0x0A
1019#define MIB_COUNTER_RX_BROADCAST	0x0B
1020#define MIB_COUNTER_RX_MULTICAST	0x0C
1021#define MIB_COUNTER_RX_UNICAST		0x0D
1022#define MIB_COUNTER_RX_OCTET_64		0x0E
1023#define MIB_COUNTER_RX_OCTET_65_127	0x0F
1024#define MIB_COUNTER_RX_OCTET_128_255	0x10
1025#define MIB_COUNTER_RX_OCTET_256_511	0x11
1026#define MIB_COUNTER_RX_OCTET_512_1023	0x12
1027#define MIB_COUNTER_RX_OCTET_1024_1522	0x13
1028#define MIB_COUNTER_TX_LO_PRIORITY	0x14
1029#define MIB_COUNTER_TX_HI_PRIORITY	0x15
1030#define MIB_COUNTER_TX_LATE_COLLISION	0x16
1031#define MIB_COUNTER_TX_PAUSE		0x17
1032#define MIB_COUNTER_TX_BROADCAST	0x18
1033#define MIB_COUNTER_TX_MULTICAST	0x19
1034#define MIB_COUNTER_TX_UNICAST		0x1A
1035#define MIB_COUNTER_TX_DEFERRED		0x1B
1036#define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
1037#define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
1038#define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
1039#define MIB_COUNTER_TX_MULTI_COLLISION	0x1F
1040
1041#define MIB_COUNTER_RX_DROPPED_PACKET	0x20
1042#define MIB_COUNTER_TX_DROPPED_PACKET	0x21
1043
1044/**
1045 * struct ksz_port_mib - Port MIB data structure
1046 * @cnt_ptr:	Current pointer to MIB counter index.
1047 * @link_down:	Indication the link has just gone down.
1048 * @state:	Connection status of the port.
1049 * @mib_start:	The starting counter index.  Some ports do not start at 0.
1050 * @counter:	64-bit MIB counter value.
1051 * @dropped:	Temporary buffer to remember last read packet dropped values.
1052 *
1053 * MIB counters needs to be read periodically so that counters do not get
1054 * overflowed and give incorrect values.  A right balance is needed to
1055 * satisfy this condition and not waste too much CPU time.
1056 *
1057 * It is pointless to read MIB counters when the port is disconnected.  The
1058 * @state provides the connection status so that MIB counters are read only
1059 * when the port is connected.  The @link_down indicates the port is just
1060 * disconnected so that all MIB counters are read one last time to update the
1061 * information.
1062 */
1063struct ksz_port_mib {
1064	u8 cnt_ptr;
1065	u8 link_down;
1066	u8 state;
1067	u8 mib_start;
1068
1069	u64 counter[TOTAL_PORT_COUNTER_NUM];
1070	u32 dropped[2];
1071};
1072
1073/**
1074 * struct ksz_port_cfg - Port configuration data structure
1075 * @vid:	VID value.
1076 * @member:	Port membership.
1077 * @port_prio:	Port priority.
1078 * @rx_rate:	Receive priority rate.
1079 * @tx_rate:	Transmit priority rate.
1080 * @stp_state:	Current Spanning Tree Protocol state.
1081 */
1082struct ksz_port_cfg {
1083	u16 vid;
1084	u8 member;
1085	u8 port_prio;
1086	u32 rx_rate[PRIO_QUEUES];
1087	u32 tx_rate[PRIO_QUEUES];
1088	int stp_state;
1089};
1090
1091/**
1092 * struct ksz_switch - KSZ8842 switch data structure
1093 * @mac_table:	MAC table entries information.
1094 * @vlan_table:	VLAN table entries information.
1095 * @port_cfg:	Port configuration information.
1096 * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
1097 * 		(bit7 ~ bit2) field.
1098 * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
1099 * 		Tag priority field.
1100 * @br_addr:	Bridge address.  Used for STP.
1101 * @other_addr:	Other MAC address.  Used for multiple network device mode.
1102 * @broad_per:	Broadcast storm percentage.
1103 * @member:	Current port membership.  Used for STP.
1104 */
1105struct ksz_switch {
1106	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1107	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1108	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1109
1110	u8 diffserv[DIFFSERV_ENTRIES];
1111	u8 p_802_1p[PRIO_802_1P_ENTRIES];
1112
1113	u8 br_addr[ETH_ALEN];
1114	u8 other_addr[ETH_ALEN];
1115
1116	u8 broad_per;
1117	u8 member;
1118};
1119
1120#define TX_RATE_UNIT			10000
1121
1122/**
1123 * struct ksz_port_info - Port information data structure
1124 * @state:	Connection status of the port.
1125 * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
1126 * @duplex:	Duplex mode.
1127 * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
1128 * @partner:	Auto-negotiation partner setting.  Used to determine link.
1129 * @port_id:	Port index to access actual hardware register.
1130 * @pdev:	Pointer to OS dependent network device.
1131 */
1132struct ksz_port_info {
1133	uint state;
1134	uint tx_rate;
1135	u8 duplex;
1136	u8 advertised;
1137	u8 partner;
1138	u8 port_id;
1139	void *pdev;
1140};
1141
1142#define MAX_TX_HELD_SIZE		52000
1143
1144/* Hardware features and bug fixes. */
1145#define LINK_INT_WORKING		(1 << 0)
1146#define SMALL_PACKET_TX_BUG		(1 << 1)
1147#define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
1148#define RX_HUGE_FRAME			(1 << 4)
1149#define STP_SUPPORT			(1 << 8)
1150
1151/* Software overrides. */
1152#define PAUSE_FLOW_CTRL			(1 << 0)
1153#define FAST_AGING			(1 << 1)
1154
1155/**
1156 * struct ksz_hw - KSZ884X hardware data structure
1157 * @io:			Virtual address assigned.
1158 * @ksz_switch:		Pointer to KSZ8842 switch.
1159 * @port_info:		Port information.
1160 * @port_mib:		Port MIB information.
1161 * @dev_count:		Number of network devices this hardware supports.
1162 * @dst_ports:		Destination ports in switch for transmission.
1163 * @id:			Hardware ID.  Used for display only.
1164 * @mib_cnt:		Number of MIB counters this hardware has.
1165 * @mib_port_cnt:	Number of ports with MIB counters.
1166 * @tx_cfg:		Cached transmit control settings.
1167 * @rx_cfg:		Cached receive control settings.
1168 * @intr_mask:		Current interrupt mask.
1169 * @intr_set:		Current interrup set.
1170 * @intr_blocked:	Interrupt blocked.
1171 * @rx_desc_info:	Receive descriptor information.
1172 * @tx_desc_info:	Transmit descriptor information.
1173 * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
1174 * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
1175 * @tx_size:		Transmit data size.  Used for TX optimization.
1176 * 			The maximum is defined by MAX_TX_HELD_SIZE.
1177 * @perm_addr:		Permanent MAC address.
1178 * @override_addr:	Overridden MAC address.
1179 * @address:		Additional MAC address entries.
1180 * @addr_list_size:	Additional MAC address list size.
1181 * @mac_override:	Indication of MAC address overridden.
1182 * @promiscuous:	Counter to keep track of promiscuous mode set.
1183 * @all_multi:		Counter to keep track of all multicast mode set.
1184 * @multi_list:		Multicast address entries.
1185 * @multi_bits:		Cached multicast hash table settings.
1186 * @multi_list_size:	Multicast address list size.
1187 * @enabled:		Indication of hardware enabled.
1188 * @rx_stop:		Indication of receive process stop.
1189 * @reserved2:		none
1190 * @features:		Hardware features to enable.
1191 * @overrides:		Hardware features to override.
1192 * @parent:		Pointer to parent, network device private structure.
1193 */
1194struct ksz_hw {
1195	void __iomem *io;
1196
1197	struct ksz_switch *ksz_switch;
1198	struct ksz_port_info port_info[SWITCH_PORT_NUM];
1199	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1200	int dev_count;
1201	int dst_ports;
1202	int id;
1203	int mib_cnt;
1204	int mib_port_cnt;
1205
1206	u32 tx_cfg;
1207	u32 rx_cfg;
1208	u32 intr_mask;
1209	u32 intr_set;
1210	uint intr_blocked;
1211
1212	struct ksz_desc_info rx_desc_info;
1213	struct ksz_desc_info tx_desc_info;
1214
1215	int tx_int_cnt;
1216	int tx_int_mask;
1217	int tx_size;
1218
1219	u8 perm_addr[ETH_ALEN];
1220	u8 override_addr[ETH_ALEN];
1221	u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1222	u8 addr_list_size;
1223	u8 mac_override;
1224	u8 promiscuous;
1225	u8 all_multi;
1226	u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1227	u8 multi_bits[HW_MULTICAST_SIZE];
1228	u8 multi_list_size;
1229
1230	u8 enabled;
1231	u8 rx_stop;
1232	u8 reserved2[1];
1233
1234	uint features;
1235	uint overrides;
1236
1237	void *parent;
1238};
1239
1240enum {
1241	PHY_NO_FLOW_CTRL,
1242	PHY_FLOW_CTRL,
1243	PHY_TX_ONLY,
1244	PHY_RX_ONLY
1245};
1246
1247/**
1248 * struct ksz_port - Virtual port data structure
1249 * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
1250 * 			duplex, and 0 for auto, which normally results in full
1251 * 			duplex.
1252 * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1253 * 			0 for auto, which normally results in 100 Mbit.
1254 * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
1255 * 			force.
1256 * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1257 * 			control, and PHY_FLOW_CTRL for flow control.
1258 * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1259 * 			Mbit PHY.
1260 * @first_port:		Index of first port this port supports.
1261 * @mib_port_cnt:	Number of ports with MIB counters.
1262 * @port_cnt:		Number of ports this port supports.
1263 * @counter:		Port statistics counter.
1264 * @hw:			Pointer to hardware structure.
1265 * @linked:		Pointer to port information linked to this port.
1266 */
1267struct ksz_port {
1268	u8 duplex;
1269	u8 speed;
1270	u8 force_link;
1271	u8 flow_ctrl;
1272
1273	int first_port;
1274	int mib_port_cnt;
1275	int port_cnt;
1276	u64 counter[OID_COUNTER_LAST];
1277
1278	struct ksz_hw *hw;
1279	struct ksz_port_info *linked;
1280};
1281
1282/**
1283 * struct ksz_timer_info - Timer information data structure
1284 * @timer:	Kernel timer.
1285 * @cnt:	Running timer counter.
1286 * @max:	Number of times to run timer; -1 for infinity.
1287 * @period:	Timer period in jiffies.
1288 */
1289struct ksz_timer_info {
1290	struct timer_list timer;
1291	int cnt;
1292	int max;
1293	int period;
1294};
1295
1296/**
1297 * struct ksz_shared_mem - OS dependent shared memory data structure
1298 * @dma_addr:	Physical DMA address allocated.
1299 * @alloc_size:	Allocation size.
1300 * @phys:	Actual physical address used.
1301 * @alloc_virt:	Virtual address allocated.
1302 * @virt:	Actual virtual address used.
1303 */
1304struct ksz_shared_mem {
1305	dma_addr_t dma_addr;
1306	uint alloc_size;
1307	uint phys;
1308	u8 *alloc_virt;
1309	u8 *virt;
1310};
1311
1312/**
1313 * struct ksz_counter_info - OS dependent counter information data structure
1314 * @counter:	Wait queue to wakeup after counters are read.
1315 * @time:	Next time in jiffies to read counter.
1316 * @read:	Indication of counters read in full or not.
1317 */
1318struct ksz_counter_info {
1319	wait_queue_head_t counter;
1320	unsigned long time;
1321	int read;
1322};
1323
1324/**
1325 * struct dev_info - Network device information data structure
1326 * @dev:		Pointer to network device.
1327 * @pdev:		Pointer to PCI device.
1328 * @hw:			Hardware structure.
1329 * @desc_pool:		Physical memory used for descriptor pool.
1330 * @hwlock:		Spinlock to prevent hardware from accessing.
1331 * @lock:		Mutex lock to prevent device from accessing.
1332 * @dev_rcv:		Receive process function used.
1333 * @last_skb:		Socket buffer allocated for descriptor rx fragments.
1334 * @skb_index:		Buffer index for receiving fragments.
1335 * @skb_len:		Buffer length for receiving fragments.
1336 * @mib_read:		Workqueue to read MIB counters.
1337 * @mib_timer_info:	Timer to read MIB counters.
1338 * @counter:		Used for MIB reading.
1339 * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1340 * 			the maximum is MAX_RX_BUF_SIZE.
1341 * @opened:		Counter to keep track of device open.
1342 * @rx_tasklet:		Receive processing tasklet.
1343 * @tx_tasklet:		Transmit processing tasklet.
1344 * @wol_enable:		Wake-on-LAN enable set by ethtool.
1345 * @wol_support:	Wake-on-LAN support used by ethtool.
1346 * @pme_wait:		Used for KSZ8841 power management.
1347 */
1348struct dev_info {
1349	struct net_device *dev;
1350	struct pci_dev *pdev;
1351
1352	struct ksz_hw hw;
1353	struct ksz_shared_mem desc_pool;
1354
1355	spinlock_t hwlock;
1356	struct mutex lock;
1357
1358	int (*dev_rcv)(struct dev_info *);
1359
1360	struct sk_buff *last_skb;
1361	int skb_index;
1362	int skb_len;
1363
1364	struct work_struct mib_read;
1365	struct ksz_timer_info mib_timer_info;
1366	struct ksz_counter_info counter[TOTAL_PORT_NUM];
1367
1368	int mtu;
1369	int opened;
1370
1371	struct tasklet_struct rx_tasklet;
1372	struct tasklet_struct tx_tasklet;
1373
1374	int wol_enable;
1375	int wol_support;
1376	unsigned long pme_wait;
1377};
1378
1379/**
1380 * struct dev_priv - Network device private data structure
1381 * @adapter:		Adapter device information.
1382 * @port:		Port information.
1383 * @monitor_timer_info:	Timer to monitor ports.
1384 * @proc_sem:		Semaphore for proc accessing.
1385 * @id:			Device ID.
1386 * @mii_if:		MII interface information.
1387 * @advertising:	Temporary variable to store advertised settings.
1388 * @msg_enable:		The message flags controlling driver output.
1389 * @media_state:	The connection status of the device.
1390 * @multicast:		The all multicast state of the device.
1391 * @promiscuous:	The promiscuous state of the device.
1392 */
1393struct dev_priv {
1394	struct dev_info *adapter;
1395	struct ksz_port port;
1396	struct ksz_timer_info monitor_timer_info;
1397
1398	struct semaphore proc_sem;
1399	int id;
1400
1401	struct mii_if_info mii_if;
1402	u32 advertising;
1403
1404	u32 msg_enable;
1405	int media_state;
1406	int multicast;
1407	int promiscuous;
1408};
1409
1410#define DRV_NAME		"KSZ884X PCI"
1411#define DEVICE_NAME		"KSZ884x PCI"
1412#define DRV_VERSION		"1.0.0"
1413#define DRV_RELDATE		"Feb 8, 2010"
1414
1415static char version[] =
1416	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1417
1418static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1419
1420/*
1421 * Interrupt processing primary routines
1422 */
1423
1424static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1425{
1426	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1427}
1428
1429static inline void hw_dis_intr(struct ksz_hw *hw)
1430{
1431	hw->intr_blocked = hw->intr_mask;
1432	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1433	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1434}
1435
1436static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1437{
1438	hw->intr_set = interrupt;
1439	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1440}
1441
1442static inline void hw_ena_intr(struct ksz_hw *hw)
1443{
1444	hw->intr_blocked = 0;
1445	hw_set_intr(hw, hw->intr_mask);
1446}
1447
1448static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1449{
1450	hw->intr_mask &= ~(bit);
1451}
1452
1453static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1454{
1455	u32 read_intr;
1456
1457	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1458	hw->intr_set = read_intr & ~interrupt;
1459	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1460	hw_dis_intr_bit(hw, interrupt);
1461}
1462
1463/**
1464 * hw_turn_on_intr - turn on specified interrupts
1465 * @hw: 	The hardware instance.
1466 * @bit:	The interrupt bits to be on.
1467 *
1468 * This routine turns on the specified interrupts in the interrupt mask so that
1469 * those interrupts will be enabled.
1470 */
1471static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1472{
1473	hw->intr_mask |= bit;
1474
1475	if (!hw->intr_blocked)
1476		hw_set_intr(hw, hw->intr_mask);
1477}
1478
 
 
 
 
 
 
 
 
 
1479static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1480{
1481	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1482	*status = *status & hw->intr_set;
1483}
1484
1485static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1486{
1487	if (interrupt)
1488		hw_ena_intr(hw);
1489}
1490
1491/**
1492 * hw_block_intr - block hardware interrupts
1493 * @hw: The hardware instance.
1494 *
1495 * This function blocks all interrupts of the hardware and returns the current
1496 * interrupt enable mask so that interrupts can be restored later.
1497 *
1498 * Return the current interrupt enable mask.
1499 */
1500static uint hw_block_intr(struct ksz_hw *hw)
1501{
1502	uint interrupt = 0;
1503
1504	if (!hw->intr_blocked) {
1505		hw_dis_intr(hw);
1506		interrupt = hw->intr_blocked;
1507	}
1508	return interrupt;
1509}
1510
1511/*
1512 * Hardware descriptor routines
1513 */
1514
1515static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1516{
1517	status.rx.hw_owned = 0;
1518	desc->phw->ctrl.data = cpu_to_le32(status.data);
1519}
1520
1521static inline void release_desc(struct ksz_desc *desc)
1522{
1523	desc->sw.ctrl.tx.hw_owned = 1;
1524	if (desc->sw.buf_size != desc->sw.buf.data) {
1525		desc->sw.buf_size = desc->sw.buf.data;
1526		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1527	}
1528	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1529}
1530
1531static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1532{
1533	*desc = &info->ring[info->last];
1534	info->last++;
1535	info->last &= info->mask;
1536	info->avail--;
1537	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1538}
1539
1540static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1541{
1542	desc->phw->addr = cpu_to_le32(addr);
1543}
1544
1545static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1546{
1547	desc->sw.buf.rx.buf_size = len;
1548}
1549
1550static inline void get_tx_pkt(struct ksz_desc_info *info,
1551	struct ksz_desc **desc)
1552{
1553	*desc = &info->ring[info->next];
1554	info->next++;
1555	info->next &= info->mask;
1556	info->avail--;
1557	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1558}
1559
1560static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1561{
1562	desc->phw->addr = cpu_to_le32(addr);
1563}
1564
1565static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1566{
1567	desc->sw.buf.tx.buf_size = len;
1568}
1569
1570/* Switch functions */
1571
1572#define TABLE_READ			0x10
1573#define TABLE_SEL_SHIFT			2
1574
1575#define HW_DELAY(hw, reg)			\
1576	do {					\
1577		readw(hw->io + reg);		\
 
1578	} while (0)
1579
1580/**
1581 * sw_r_table - read 4 bytes of data from switch table
1582 * @hw:		The hardware instance.
1583 * @table:	The table selector.
1584 * @addr:	The address of the table entry.
1585 * @data:	Buffer to store the read data.
1586 *
1587 * This routine reads 4 bytes of data from the table of the switch.
1588 * Hardware interrupts are disabled to minimize corruption of read data.
1589 */
1590static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1591{
1592	u16 ctrl_addr;
1593	uint interrupt;
1594
1595	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1596
1597	interrupt = hw_block_intr(hw);
1598
1599	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1600	HW_DELAY(hw, KS884X_IACR_OFFSET);
1601	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1602
1603	hw_restore_intr(hw, interrupt);
1604}
1605
1606/**
1607 * sw_w_table_64 - write 8 bytes of data to the switch table
1608 * @hw:		The hardware instance.
1609 * @table:	The table selector.
1610 * @addr:	The address of the table entry.
1611 * @data_hi:	The high part of data to be written (bit63 ~ bit32).
1612 * @data_lo:	The low part of data to be written (bit31 ~ bit0).
1613 *
1614 * This routine writes 8 bytes of data to the table of the switch.
1615 * Hardware interrupts are disabled to minimize corruption of written data.
1616 */
1617static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1618	u32 data_lo)
1619{
1620	u16 ctrl_addr;
1621	uint interrupt;
1622
1623	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1624
1625	interrupt = hw_block_intr(hw);
1626
1627	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1628	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1629
1630	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1631	HW_DELAY(hw, KS884X_IACR_OFFSET);
1632
1633	hw_restore_intr(hw, interrupt);
1634}
1635
1636/**
1637 * sw_w_sta_mac_table - write to the static MAC table
1638 * @hw: 	The hardware instance.
1639 * @addr:	The address of the table entry.
1640 * @mac_addr:	The MAC address.
1641 * @ports:	The port members.
1642 * @override:	The flag to override the port receive/transmit settings.
1643 * @valid:	The flag to indicate entry is valid.
1644 * @use_fid:	The flag to indicate the FID is valid.
1645 * @fid:	The FID value.
1646 *
1647 * This routine writes an entry of the static MAC table of the switch.  It
1648 * calls sw_w_table_64() to write the data.
1649 */
1650static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1651	u8 ports, int override, int valid, int use_fid, u8 fid)
1652{
1653	u32 data_hi;
1654	u32 data_lo;
1655
1656	data_lo = ((u32) mac_addr[2] << 24) |
1657		((u32) mac_addr[3] << 16) |
1658		((u32) mac_addr[4] << 8) | mac_addr[5];
1659	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1660	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1661
1662	if (override)
1663		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1664	if (use_fid) {
1665		data_hi |= STATIC_MAC_TABLE_USE_FID;
1666		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1667	}
1668	if (valid)
1669		data_hi |= STATIC_MAC_TABLE_VALID;
1670
1671	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1672}
1673
1674/**
1675 * sw_r_vlan_table - read from the VLAN table
1676 * @hw: 	The hardware instance.
1677 * @addr:	The address of the table entry.
1678 * @vid:	Buffer to store the VID.
1679 * @fid:	Buffer to store the VID.
1680 * @member:	Buffer to store the port membership.
1681 *
1682 * This function reads an entry of the VLAN table of the switch.  It calls
1683 * sw_r_table() to get the data.
1684 *
1685 * Return 0 if the entry is valid; otherwise -1.
1686 */
1687static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1688	u8 *member)
1689{
1690	u32 data;
1691
1692	sw_r_table(hw, TABLE_VLAN, addr, &data);
1693	if (data & VLAN_TABLE_VALID) {
1694		*vid = (u16)(data & VLAN_TABLE_VID);
1695		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1696		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1697			VLAN_TABLE_MEMBERSHIP_SHIFT);
1698		return 0;
1699	}
1700	return -1;
1701}
1702
1703/**
1704 * port_r_mib_cnt - read MIB counter
1705 * @hw: 	The hardware instance.
1706 * @port:	The port index.
1707 * @addr:	The address of the counter.
1708 * @cnt:	Buffer to store the counter.
1709 *
1710 * This routine reads a MIB counter of the port.
1711 * Hardware interrupts are disabled to minimize corruption of read data.
1712 */
1713static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1714{
1715	u32 data;
1716	u16 ctrl_addr;
1717	uint interrupt;
1718	int timeout;
1719
1720	ctrl_addr = addr + PORT_COUNTER_NUM * port;
1721
1722	interrupt = hw_block_intr(hw);
1723
1724	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1725	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1726	HW_DELAY(hw, KS884X_IACR_OFFSET);
1727
1728	for (timeout = 100; timeout > 0; timeout--) {
1729		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1730
1731		if (data & MIB_COUNTER_VALID) {
1732			if (data & MIB_COUNTER_OVERFLOW)
1733				*cnt += MIB_COUNTER_VALUE + 1;
1734			*cnt += data & MIB_COUNTER_VALUE;
1735			break;
1736		}
1737	}
1738
1739	hw_restore_intr(hw, interrupt);
1740}
1741
1742/**
1743 * port_r_mib_pkt - read dropped packet counts
1744 * @hw: 	The hardware instance.
1745 * @port:	The port index.
1746 * @last:	last one
1747 * @cnt:	Buffer to store the receive and transmit dropped packet counts.
1748 *
1749 * This routine reads the dropped packet counts of the port.
1750 * Hardware interrupts are disabled to minimize corruption of read data.
1751 */
1752static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1753{
1754	u32 cur;
1755	u32 data;
1756	u16 ctrl_addr;
1757	uint interrupt;
1758	int index;
1759
1760	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1761	do {
1762		interrupt = hw_block_intr(hw);
1763
1764		ctrl_addr = (u16) index;
1765		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1766			<< 8);
1767		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1768		HW_DELAY(hw, KS884X_IACR_OFFSET);
1769		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1770
1771		hw_restore_intr(hw, interrupt);
1772
1773		data &= MIB_PACKET_DROPPED;
1774		cur = *last;
1775		if (data != cur) {
1776			*last = data;
1777			if (data < cur)
1778				data += MIB_PACKET_DROPPED + 1;
1779			data -= cur;
1780			*cnt += data;
1781		}
1782		++last;
1783		++cnt;
1784		index -= KS_MIB_PACKET_DROPPED_TX -
1785			KS_MIB_PACKET_DROPPED_TX_0 + 1;
1786	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1787}
1788
1789/**
1790 * port_r_cnt - read MIB counters periodically
1791 * @hw: 	The hardware instance.
1792 * @port:	The port index.
1793 *
1794 * This routine is used to read the counters of the port periodically to avoid
1795 * counter overflow.  The hardware should be acquired first before calling this
1796 * routine.
1797 *
1798 * Return non-zero when not all counters not read.
1799 */
1800static int port_r_cnt(struct ksz_hw *hw, int port)
1801{
1802	struct ksz_port_mib *mib = &hw->port_mib[port];
1803
1804	if (mib->mib_start < PORT_COUNTER_NUM)
1805		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1806			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1807				&mib->counter[mib->cnt_ptr]);
1808			++mib->cnt_ptr;
1809		}
1810	if (hw->mib_cnt > PORT_COUNTER_NUM)
1811		port_r_mib_pkt(hw, port, mib->dropped,
1812			&mib->counter[PORT_COUNTER_NUM]);
1813	mib->cnt_ptr = 0;
1814	return 0;
1815}
1816
1817/**
1818 * port_init_cnt - initialize MIB counter values
1819 * @hw: 	The hardware instance.
1820 * @port:	The port index.
1821 *
1822 * This routine is used to initialize all counters to zero if the hardware
1823 * cannot do it after reset.
1824 */
1825static void port_init_cnt(struct ksz_hw *hw, int port)
1826{
1827	struct ksz_port_mib *mib = &hw->port_mib[port];
1828
1829	mib->cnt_ptr = 0;
1830	if (mib->mib_start < PORT_COUNTER_NUM)
1831		do {
1832			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1833				&mib->counter[mib->cnt_ptr]);
1834			++mib->cnt_ptr;
1835		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
1836	if (hw->mib_cnt > PORT_COUNTER_NUM)
1837		port_r_mib_pkt(hw, port, mib->dropped,
1838			&mib->counter[PORT_COUNTER_NUM]);
1839	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1840	mib->cnt_ptr = 0;
1841}
1842
1843/*
1844 * Port functions
1845 */
1846
1847/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1848 * port_cfg - set port register bits
1849 * @hw: 	The hardware instance.
1850 * @port:	The port index.
1851 * @offset:	The offset of the port register.
1852 * @bits:	The data bits to set.
1853 * @set:	The flag indicating whether the bits are to be set or not.
1854 *
1855 * This routine sets or resets the specified bits of the port register.
1856 */
1857static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1858	int set)
1859{
1860	u32 addr;
1861	u16 data;
1862
1863	PORT_CTRL_ADDR(port, addr);
1864	addr += offset;
1865	data = readw(hw->io + addr);
1866	if (set)
1867		data |= bits;
1868	else
1869		data &= ~bits;
1870	writew(data, hw->io + addr);
1871}
1872
1873/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1874 * port_r8 - read byte from port register
1875 * @hw: 	The hardware instance.
1876 * @port:	The port index.
1877 * @offset:	The offset of the port register.
1878 * @data:	Buffer to store the data.
1879 *
1880 * This routine reads a byte from the port register.
1881 */
1882static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
1883{
1884	u32 addr;
1885
1886	PORT_CTRL_ADDR(port, addr);
1887	addr += offset;
1888	*data = readb(hw->io + addr);
1889}
1890
1891/**
1892 * port_r16 - read word from port register.
1893 * @hw: 	The hardware instance.
1894 * @port:	The port index.
1895 * @offset:	The offset of the port register.
1896 * @data:	Buffer to store the data.
1897 *
1898 * This routine reads a word from the port register.
1899 */
1900static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
1901{
1902	u32 addr;
1903
1904	PORT_CTRL_ADDR(port, addr);
1905	addr += offset;
1906	*data = readw(hw->io + addr);
1907}
1908
1909/**
1910 * port_w16 - write word to port register.
1911 * @hw: 	The hardware instance.
1912 * @port:	The port index.
1913 * @offset:	The offset of the port register.
1914 * @data:	Data to write.
1915 *
1916 * This routine writes a word to the port register.
1917 */
1918static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
1919{
1920	u32 addr;
1921
1922	PORT_CTRL_ADDR(port, addr);
1923	addr += offset;
1924	writew(data, hw->io + addr);
1925}
1926
1927/**
1928 * sw_chk - check switch register bits
1929 * @hw: 	The hardware instance.
1930 * @addr:	The address of the switch register.
1931 * @bits:	The data bits to check.
1932 *
1933 * This function checks whether the specified bits of the switch register are
1934 * set or not.
1935 *
1936 * Return 0 if the bits are not set.
1937 */
1938static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
1939{
1940	u16 data;
1941
1942	data = readw(hw->io + addr);
1943	return (data & bits) == bits;
1944}
1945
1946/**
1947 * sw_cfg - set switch register bits
1948 * @hw: 	The hardware instance.
1949 * @addr:	The address of the switch register.
1950 * @bits:	The data bits to set.
1951 * @set:	The flag indicating whether the bits are to be set or not.
1952 *
1953 * This function sets or resets the specified bits of the switch register.
1954 */
1955static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
1956{
1957	u16 data;
1958
1959	data = readw(hw->io + addr);
1960	if (set)
1961		data |= bits;
1962	else
1963		data &= ~bits;
1964	writew(data, hw->io + addr);
1965}
1966
1967/* Bandwidth */
1968
1969static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
1970{
1971	port_cfg(hw, p,
1972		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
1973}
1974
 
 
 
 
 
 
1975/* Driver set switch broadcast storm protection at 10% rate. */
1976#define BROADCAST_STORM_PROTECTION_RATE	10
1977
1978/* 148,800 frames * 67 ms / 100 */
1979#define BROADCAST_STORM_VALUE		9969
1980
1981/**
1982 * sw_cfg_broad_storm - configure broadcast storm threshold
1983 * @hw: 	The hardware instance.
1984 * @percent:	Broadcast storm threshold in percent of transmit rate.
1985 *
1986 * This routine configures the broadcast storm threshold of the switch.
1987 */
1988static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
1989{
1990	u16 data;
1991	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
1992
1993	if (value > BROADCAST_STORM_RATE)
1994		value = BROADCAST_STORM_RATE;
1995
1996	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
1997	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
1998	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
1999	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2000}
2001
2002/**
2003 * sw_get_broad_storm - get broadcast storm threshold
2004 * @hw: 	The hardware instance.
2005 * @percent:	Buffer to store the broadcast storm threshold percentage.
2006 *
2007 * This routine retrieves the broadcast storm threshold of the switch.
2008 */
2009static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2010{
2011	int num;
2012	u16 data;
2013
2014	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2015	num = (data & BROADCAST_STORM_RATE_HI);
2016	num <<= 8;
2017	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2018	num = DIV_ROUND_CLOSEST(num * 100, BROADCAST_STORM_VALUE);
2019	*percent = (u8) num;
2020}
2021
2022/**
2023 * sw_dis_broad_storm - disable broadstorm
2024 * @hw: 	The hardware instance.
2025 * @port:	The port index.
2026 *
2027 * This routine disables the broadcast storm limit function of the switch.
2028 */
2029static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2030{
2031	port_cfg_broad_storm(hw, port, 0);
2032}
2033
2034/**
2035 * sw_ena_broad_storm - enable broadcast storm
2036 * @hw: 	The hardware instance.
2037 * @port:	The port index.
2038 *
2039 * This routine enables the broadcast storm limit function of the switch.
2040 */
2041static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2042{
2043	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2044	port_cfg_broad_storm(hw, port, 1);
2045}
2046
2047/**
2048 * sw_init_broad_storm - initialize broadcast storm
2049 * @hw: 	The hardware instance.
2050 *
2051 * This routine initializes the broadcast storm limit function of the switch.
2052 */
2053static void sw_init_broad_storm(struct ksz_hw *hw)
2054{
2055	int port;
2056
2057	hw->ksz_switch->broad_per = 1;
2058	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2059	for (port = 0; port < TOTAL_PORT_NUM; port++)
2060		sw_dis_broad_storm(hw, port);
2061	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2062}
2063
2064/**
2065 * hw_cfg_broad_storm - configure broadcast storm
2066 * @hw: 	The hardware instance.
2067 * @percent:	Broadcast storm threshold in percent of transmit rate.
2068 *
2069 * This routine configures the broadcast storm threshold of the switch.
2070 * It is called by user functions.  The hardware should be acquired first.
2071 */
2072static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2073{
2074	if (percent > 100)
2075		percent = 100;
2076
2077	sw_cfg_broad_storm(hw, percent);
2078	sw_get_broad_storm(hw, &percent);
2079	hw->ksz_switch->broad_per = percent;
2080}
2081
2082/**
2083 * sw_dis_prio_rate - disable switch priority rate
2084 * @hw: 	The hardware instance.
2085 * @port:	The port index.
2086 *
2087 * This routine disables the priority rate function of the switch.
2088 */
2089static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2090{
2091	u32 addr;
2092
2093	PORT_CTRL_ADDR(port, addr);
2094	addr += KS8842_PORT_IN_RATE_OFFSET;
2095	writel(0, hw->io + addr);
2096}
2097
2098/**
2099 * sw_init_prio_rate - initialize switch prioirty rate
2100 * @hw: 	The hardware instance.
2101 *
2102 * This routine initializes the priority rate function of the switch.
2103 */
2104static void sw_init_prio_rate(struct ksz_hw *hw)
2105{
2106	int port;
2107	int prio;
2108	struct ksz_switch *sw = hw->ksz_switch;
2109
2110	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2111		for (prio = 0; prio < PRIO_QUEUES; prio++) {
2112			sw->port_cfg[port].rx_rate[prio] =
2113			sw->port_cfg[port].tx_rate[prio] = 0;
2114		}
2115		sw_dis_prio_rate(hw, port);
2116	}
2117}
2118
2119/* Communication */
2120
2121static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2122{
2123	port_cfg(hw, p,
2124		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2125}
2126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2127/* Mirroring */
2128
2129static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2130{
2131	port_cfg(hw, p,
2132		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2133}
2134
2135static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2136{
2137	port_cfg(hw, p,
2138		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2139}
2140
2141static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2142{
2143	port_cfg(hw, p,
2144		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2145}
2146
2147static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2148{
2149	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2150}
2151
2152static void sw_init_mirror(struct ksz_hw *hw)
2153{
2154	int port;
2155
2156	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2157		port_cfg_mirror_sniffer(hw, port, 0);
2158		port_cfg_mirror_rx(hw, port, 0);
2159		port_cfg_mirror_tx(hw, port, 0);
2160	}
2161	sw_cfg_mirror_rx_tx(hw, 0);
2162}
2163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2164/* Priority */
2165
2166static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2167{
2168	port_cfg(hw, p,
2169		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2170}
2171
2172static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2173{
2174	port_cfg(hw, p,
2175		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2176}
2177
2178static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2179{
2180	port_cfg(hw, p,
2181		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2182}
2183
2184static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2185{
2186	port_cfg(hw, p,
2187		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2188}
2189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2190/**
2191 * sw_dis_diffserv - disable switch DiffServ priority
2192 * @hw: 	The hardware instance.
2193 * @port:	The port index.
2194 *
2195 * This routine disables the DiffServ priority function of the switch.
2196 */
2197static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2198{
2199	port_cfg_diffserv(hw, port, 0);
2200}
2201
2202/**
2203 * sw_dis_802_1p - disable switch 802.1p priority
2204 * @hw: 	The hardware instance.
2205 * @port:	The port index.
2206 *
2207 * This routine disables the 802.1p priority function of the switch.
2208 */
2209static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2210{
2211	port_cfg_802_1p(hw, port, 0);
2212}
2213
2214/**
2215 * sw_cfg_replace_null_vid -
2216 * @hw: 	The hardware instance.
2217 * @set:	The flag to disable or enable.
2218 *
2219 */
2220static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2221{
2222	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2223}
2224
2225/**
2226 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2227 * @hw: 	The hardware instance.
2228 * @port:	The port index.
2229 * @set:	The flag to disable or enable.
2230 *
2231 * This routine enables the 802.1p priority re-mapping function of the switch.
2232 * That allows 802.1p priority field to be replaced with the port's default
2233 * tag's priority value if the ingress packet's 802.1p priority has a higher
2234 * priority than port's default tag's priority.
2235 */
2236static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2237{
2238	port_cfg_replace_vid(hw, port, set);
2239}
2240
2241/**
2242 * sw_cfg_port_based - configure switch port based priority
2243 * @hw: 	The hardware instance.
2244 * @port:	The port index.
2245 * @prio:	The priority to set.
2246 *
2247 * This routine configures the port based priority of the switch.
2248 */
2249static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2250{
2251	u16 data;
2252
2253	if (prio > PORT_BASED_PRIORITY_BASE)
2254		prio = PORT_BASED_PRIORITY_BASE;
2255
2256	hw->ksz_switch->port_cfg[port].port_prio = prio;
2257
2258	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2259	data &= ~PORT_BASED_PRIORITY_MASK;
2260	data |= prio << PORT_BASED_PRIORITY_SHIFT;
2261	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2262}
2263
2264/**
2265 * sw_dis_multi_queue - disable transmit multiple queues
2266 * @hw: 	The hardware instance.
2267 * @port:	The port index.
2268 *
2269 * This routine disables the transmit multiple queues selection of the switch
2270 * port.  Only single transmit queue on the port.
2271 */
2272static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2273{
2274	port_cfg_prio(hw, port, 0);
2275}
2276
2277/**
2278 * sw_init_prio - initialize switch priority
2279 * @hw: 	The hardware instance.
2280 *
2281 * This routine initializes the switch QoS priority functions.
2282 */
2283static void sw_init_prio(struct ksz_hw *hw)
2284{
2285	int port;
2286	int tos;
2287	struct ksz_switch *sw = hw->ksz_switch;
2288
2289	/*
2290	 * Init all the 802.1p tag priority value to be assigned to different
2291	 * priority queue.
2292	 */
2293	sw->p_802_1p[0] = 0;
2294	sw->p_802_1p[1] = 0;
2295	sw->p_802_1p[2] = 1;
2296	sw->p_802_1p[3] = 1;
2297	sw->p_802_1p[4] = 2;
2298	sw->p_802_1p[5] = 2;
2299	sw->p_802_1p[6] = 3;
2300	sw->p_802_1p[7] = 3;
2301
2302	/*
2303	 * Init all the DiffServ priority value to be assigned to priority
2304	 * queue 0.
2305	 */
2306	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2307		sw->diffserv[tos] = 0;
2308
2309	/* All QoS functions disabled. */
2310	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2311		sw_dis_multi_queue(hw, port);
2312		sw_dis_diffserv(hw, port);
2313		sw_dis_802_1p(hw, port);
2314		sw_cfg_replace_vid(hw, port, 0);
2315
2316		sw->port_cfg[port].port_prio = 0;
2317		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2318	}
2319	sw_cfg_replace_null_vid(hw, 0);
2320}
2321
2322/**
2323 * port_get_def_vid - get port default VID.
2324 * @hw: 	The hardware instance.
2325 * @port:	The port index.
2326 * @vid:	Buffer to store the VID.
2327 *
2328 * This routine retrieves the default VID of the port.
2329 */
2330static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2331{
2332	u32 addr;
2333
2334	PORT_CTRL_ADDR(port, addr);
2335	addr += KS8842_PORT_CTRL_VID_OFFSET;
2336	*vid = readw(hw->io + addr);
2337}
2338
2339/**
2340 * sw_init_vlan - initialize switch VLAN
2341 * @hw: 	The hardware instance.
2342 *
2343 * This routine initializes the VLAN function of the switch.
2344 */
2345static void sw_init_vlan(struct ksz_hw *hw)
2346{
2347	int port;
2348	int entry;
2349	struct ksz_switch *sw = hw->ksz_switch;
2350
2351	/* Read 16 VLAN entries from device's VLAN table. */
2352	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2353		sw_r_vlan_table(hw, entry,
2354			&sw->vlan_table[entry].vid,
2355			&sw->vlan_table[entry].fid,
2356			&sw->vlan_table[entry].member);
2357	}
2358
2359	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2360		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2361		sw->port_cfg[port].member = PORT_MASK;
2362	}
2363}
2364
2365/**
2366 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2367 * @hw: 	The hardware instance.
2368 * @port:	The port index.
2369 * @member:	The port-based VLAN membership.
2370 *
2371 * This routine configures the port-based VLAN membership of the port.
2372 */
2373static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2374{
2375	u32 addr;
2376	u8 data;
2377
2378	PORT_CTRL_ADDR(port, addr);
2379	addr += KS8842_PORT_CTRL_2_OFFSET;
2380
2381	data = readb(hw->io + addr);
2382	data &= ~PORT_VLAN_MEMBERSHIP;
2383	data |= (member & PORT_MASK);
2384	writeb(data, hw->io + addr);
2385
2386	hw->ksz_switch->port_cfg[port].member = member;
2387}
2388
2389/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2390 * sw_set_addr - configure switch MAC address
2391 * @hw: 	The hardware instance.
2392 * @mac_addr:	The MAC address.
2393 *
2394 * This function configures the MAC address of the switch.
2395 */
2396static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2397{
2398	int i;
2399
2400	for (i = 0; i < 6; i += 2) {
2401		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2402		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2403	}
2404}
2405
2406/**
2407 * sw_set_global_ctrl - set switch global control
2408 * @hw: 	The hardware instance.
2409 *
2410 * This routine sets the global control of the switch function.
2411 */
2412static void sw_set_global_ctrl(struct ksz_hw *hw)
2413{
2414	u16 data;
2415
2416	/* Enable switch MII flow control. */
2417	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2418	data |= SWITCH_FLOW_CTRL;
2419	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2420
2421	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2422
2423	/* Enable aggressive back off algorithm in half duplex mode. */
2424	data |= SWITCH_AGGR_BACKOFF;
2425
2426	/* Enable automatic fast aging when link changed detected. */
2427	data |= SWITCH_AGING_ENABLE;
2428	data |= SWITCH_LINK_AUTO_AGING;
2429
2430	if (hw->overrides & FAST_AGING)
2431		data |= SWITCH_FAST_AGING;
2432	else
2433		data &= ~SWITCH_FAST_AGING;
2434	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2435
2436	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2437
2438	/* Enable no excessive collision drop. */
2439	data |= NO_EXC_COLLISION_DROP;
2440	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2441}
2442
2443enum {
2444	STP_STATE_DISABLED = 0,
2445	STP_STATE_LISTENING,
2446	STP_STATE_LEARNING,
2447	STP_STATE_FORWARDING,
2448	STP_STATE_BLOCKED,
2449	STP_STATE_SIMPLE
2450};
2451
2452/**
2453 * port_set_stp_state - configure port spanning tree state
2454 * @hw: 	The hardware instance.
2455 * @port:	The port index.
2456 * @state:	The spanning tree state.
2457 *
2458 * This routine configures the spanning tree state of the port.
2459 */
2460static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2461{
2462	u16 data;
2463
2464	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2465	switch (state) {
2466	case STP_STATE_DISABLED:
2467		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2468		data |= PORT_LEARN_DISABLE;
2469		break;
2470	case STP_STATE_LISTENING:
2471/*
2472 * No need to turn on transmit because of port direct mode.
2473 * Turning on receive is required if static MAC table is not setup.
2474 */
2475		data &= ~PORT_TX_ENABLE;
2476		data |= PORT_RX_ENABLE;
2477		data |= PORT_LEARN_DISABLE;
2478		break;
2479	case STP_STATE_LEARNING:
2480		data &= ~PORT_TX_ENABLE;
2481		data |= PORT_RX_ENABLE;
2482		data &= ~PORT_LEARN_DISABLE;
2483		break;
2484	case STP_STATE_FORWARDING:
2485		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2486		data &= ~PORT_LEARN_DISABLE;
2487		break;
2488	case STP_STATE_BLOCKED:
2489/*
2490 * Need to setup static MAC table with override to keep receiving BPDU
2491 * messages.  See sw_init_stp routine.
2492 */
2493		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2494		data |= PORT_LEARN_DISABLE;
2495		break;
2496	case STP_STATE_SIMPLE:
2497		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2498		data |= PORT_LEARN_DISABLE;
2499		break;
2500	}
2501	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2502	hw->ksz_switch->port_cfg[port].stp_state = state;
2503}
2504
2505#define STP_ENTRY			0
2506#define BROADCAST_ENTRY			1
2507#define BRIDGE_ADDR_ENTRY		2
2508#define IPV6_ADDR_ENTRY			3
2509
2510/**
2511 * sw_clr_sta_mac_table - clear static MAC table
2512 * @hw: 	The hardware instance.
2513 *
2514 * This routine clears the static MAC table.
2515 */
2516static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2517{
2518	struct ksz_mac_table *entry;
2519	int i;
2520
2521	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2522		entry = &hw->ksz_switch->mac_table[i];
2523		sw_w_sta_mac_table(hw, i,
2524			entry->mac_addr, entry->ports,
2525			entry->override, 0,
2526			entry->use_fid, entry->fid);
2527	}
2528}
2529
2530/**
2531 * sw_init_stp - initialize switch spanning tree support
2532 * @hw: 	The hardware instance.
2533 *
2534 * This routine initializes the spanning tree support of the switch.
2535 */
2536static void sw_init_stp(struct ksz_hw *hw)
2537{
2538	struct ksz_mac_table *entry;
2539
2540	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2541	entry->mac_addr[0] = 0x01;
2542	entry->mac_addr[1] = 0x80;
2543	entry->mac_addr[2] = 0xC2;
2544	entry->mac_addr[3] = 0x00;
2545	entry->mac_addr[4] = 0x00;
2546	entry->mac_addr[5] = 0x00;
2547	entry->ports = HOST_MASK;
2548	entry->override = 1;
2549	entry->valid = 1;
2550	sw_w_sta_mac_table(hw, STP_ENTRY,
2551		entry->mac_addr, entry->ports,
2552		entry->override, entry->valid,
2553		entry->use_fid, entry->fid);
2554}
2555
2556/**
2557 * sw_block_addr - block certain packets from the host port
2558 * @hw: 	The hardware instance.
2559 *
2560 * This routine blocks certain packets from reaching to the host port.
2561 */
2562static void sw_block_addr(struct ksz_hw *hw)
2563{
2564	struct ksz_mac_table *entry;
2565	int i;
2566
2567	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2568		entry = &hw->ksz_switch->mac_table[i];
2569		entry->valid = 0;
2570		sw_w_sta_mac_table(hw, i,
2571			entry->mac_addr, entry->ports,
2572			entry->override, entry->valid,
2573			entry->use_fid, entry->fid);
2574	}
2575}
2576
 
 
 
 
 
 
 
 
 
2577static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2578{
2579	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2580}
2581
2582static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2583{
2584	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2585}
2586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2587/**
2588 * hw_r_phy - read data from PHY register
2589 * @hw: 	The hardware instance.
2590 * @port:	Port to read.
2591 * @reg:	PHY register to read.
2592 * @val:	Buffer to store the read data.
2593 *
2594 * This routine reads data from the PHY register.
2595 */
2596static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2597{
2598	int phy;
2599
2600	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2601	*val = readw(hw->io + phy);
2602}
2603
2604/**
2605 * hw_w_phy - write data to PHY register
2606 * @hw: 	The hardware instance.
2607 * @port:	Port to write.
2608 * @reg:	PHY register to write.
2609 * @val:	Word data to write.
2610 *
2611 * This routine writes data to the PHY register.
2612 */
2613static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2614{
2615	int phy;
2616
2617	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2618	writew(val, hw->io + phy);
2619}
2620
2621/*
2622 * EEPROM access functions
2623 */
2624
2625#define AT93C_CODE			0
2626#define AT93C_WR_OFF			0x00
2627#define AT93C_WR_ALL			0x10
2628#define AT93C_ER_ALL			0x20
2629#define AT93C_WR_ON			0x30
2630
2631#define AT93C_WRITE			1
2632#define AT93C_READ			2
2633#define AT93C_ERASE			3
2634
2635#define EEPROM_DELAY			4
2636
2637static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
2638{
2639	u16 data;
2640
2641	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2642	data &= ~gpio;
2643	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
2644}
2645
2646static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
2647{
2648	u16 data;
2649
2650	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2651	data |= gpio;
2652	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
2653}
2654
2655static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
2656{
2657	u16 data;
2658
2659	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2660	return (u8)(data & gpio);
2661}
2662
2663static void eeprom_clk(struct ksz_hw *hw)
2664{
2665	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
2666	udelay(EEPROM_DELAY);
2667	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
2668	udelay(EEPROM_DELAY);
2669}
2670
2671static u16 spi_r(struct ksz_hw *hw)
2672{
2673	int i;
2674	u16 temp = 0;
2675
2676	for (i = 15; i >= 0; i--) {
2677		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
2678		udelay(EEPROM_DELAY);
2679
2680		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
2681
2682		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
2683		udelay(EEPROM_DELAY);
2684	}
2685	return temp;
2686}
2687
2688static void spi_w(struct ksz_hw *hw, u16 data)
2689{
2690	int i;
2691
2692	for (i = 15; i >= 0; i--) {
2693		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
2694			drop_gpio(hw, EEPROM_DATA_OUT);
2695		eeprom_clk(hw);
2696	}
2697}
2698
2699static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
2700{
2701	int i;
2702
2703	/* Initial start bit */
2704	raise_gpio(hw, EEPROM_DATA_OUT);
2705	eeprom_clk(hw);
2706
2707	/* AT93C operation */
2708	for (i = 1; i >= 0; i--) {
2709		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
2710			drop_gpio(hw, EEPROM_DATA_OUT);
2711		eeprom_clk(hw);
2712	}
2713
2714	/* Address location */
2715	for (i = 5; i >= 0; i--) {
2716		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
2717			drop_gpio(hw, EEPROM_DATA_OUT);
2718		eeprom_clk(hw);
2719	}
2720}
2721
2722#define EEPROM_DATA_RESERVED		0
2723#define EEPROM_DATA_MAC_ADDR_0		1
2724#define EEPROM_DATA_MAC_ADDR_1		2
2725#define EEPROM_DATA_MAC_ADDR_2		3
2726#define EEPROM_DATA_SUBSYS_ID		4
2727#define EEPROM_DATA_SUBSYS_VEN_ID	5
2728#define EEPROM_DATA_PM_CAP		6
2729
2730/* User defined EEPROM data */
2731#define EEPROM_DATA_OTHER_MAC_ADDR	9
2732
2733/**
2734 * eeprom_read - read from AT93C46 EEPROM
2735 * @hw: 	The hardware instance.
2736 * @reg:	The register offset.
2737 *
2738 * This function reads a word from the AT93C46 EEPROM.
2739 *
2740 * Return the data value.
2741 */
2742static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
2743{
2744	u16 data;
2745
2746	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
2747
2748	spi_reg(hw, AT93C_READ, reg);
2749	data = spi_r(hw);
2750
2751	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
2752
2753	return data;
2754}
2755
2756/**
2757 * eeprom_write - write to AT93C46 EEPROM
2758 * @hw: 	The hardware instance.
2759 * @reg:	The register offset.
2760 * @data:	The data value.
2761 *
2762 * This procedure writes a word to the AT93C46 EEPROM.
2763 */
2764static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
2765{
2766	int timeout;
2767
2768	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
2769
2770	/* Enable write. */
2771	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
2772	drop_gpio(hw, EEPROM_CHIP_SELECT);
2773	udelay(1);
2774
2775	/* Erase the register. */
2776	raise_gpio(hw, EEPROM_CHIP_SELECT);
2777	spi_reg(hw, AT93C_ERASE, reg);
2778	drop_gpio(hw, EEPROM_CHIP_SELECT);
2779	udelay(1);
2780
2781	/* Check operation complete. */
2782	raise_gpio(hw, EEPROM_CHIP_SELECT);
2783	timeout = 8;
2784	mdelay(2);
2785	do {
2786		mdelay(1);
2787	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
2788	drop_gpio(hw, EEPROM_CHIP_SELECT);
2789	udelay(1);
2790
2791	/* Write the register. */
2792	raise_gpio(hw, EEPROM_CHIP_SELECT);
2793	spi_reg(hw, AT93C_WRITE, reg);
2794	spi_w(hw, data);
2795	drop_gpio(hw, EEPROM_CHIP_SELECT);
2796	udelay(1);
2797
2798	/* Check operation complete. */
2799	raise_gpio(hw, EEPROM_CHIP_SELECT);
2800	timeout = 8;
2801	mdelay(2);
2802	do {
2803		mdelay(1);
2804	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
2805	drop_gpio(hw, EEPROM_CHIP_SELECT);
2806	udelay(1);
2807
2808	/* Disable write. */
2809	raise_gpio(hw, EEPROM_CHIP_SELECT);
2810	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
2811
2812	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
2813}
2814
2815/*
2816 * Link detection routines
2817 */
2818
2819static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
2820{
2821	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
2822	switch (port->flow_ctrl) {
2823	case PHY_FLOW_CTRL:
2824		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
2825		break;
2826	/* Not supported. */
2827	case PHY_TX_ONLY:
2828	case PHY_RX_ONLY:
2829	default:
2830		break;
2831	}
2832	return ctrl;
2833}
2834
2835static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
2836{
2837	u32 rx_cfg;
2838	u32 tx_cfg;
2839
2840	rx_cfg = hw->rx_cfg;
2841	tx_cfg = hw->tx_cfg;
2842	if (rx)
2843		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
2844	else
2845		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
2846	if (tx)
2847		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
2848	else
2849		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
2850	if (hw->enabled) {
2851		if (rx_cfg != hw->rx_cfg)
2852			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
2853		if (tx_cfg != hw->tx_cfg)
2854			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
2855	}
2856}
2857
2858static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
2859	u16 local, u16 remote)
2860{
2861	int rx;
2862	int tx;
2863
2864	if (hw->overrides & PAUSE_FLOW_CTRL)
2865		return;
2866
2867	rx = tx = 0;
2868	if (port->force_link)
2869		rx = tx = 1;
2870	if (remote & LPA_PAUSE_CAP) {
2871		if (local & ADVERTISE_PAUSE_CAP) {
2872			rx = tx = 1;
2873		} else if ((remote & LPA_PAUSE_ASYM) &&
2874			   (local &
2875			    (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM)) ==
2876			   ADVERTISE_PAUSE_ASYM) {
2877			tx = 1;
2878		}
2879	} else if (remote & LPA_PAUSE_ASYM) {
2880		if ((local & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM))
2881		    == (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM))
2882			rx = 1;
2883	}
2884	if (!hw->ksz_switch)
2885		set_flow_ctrl(hw, rx, tx);
2886}
2887
2888static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
2889	struct ksz_port_info *info, u16 link_status)
2890{
2891	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
2892			!(hw->overrides & PAUSE_FLOW_CTRL)) {
2893		u32 cfg = hw->tx_cfg;
2894
2895		/* Disable flow control in the half duplex mode. */
2896		if (1 == info->duplex)
2897			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
2898		if (hw->enabled && cfg != hw->tx_cfg)
2899			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
2900	}
2901}
2902
2903/**
2904 * port_get_link_speed - get current link status
2905 * @port: 	The port instance.
2906 *
2907 * This routine reads PHY registers to determine the current link status of the
2908 * switch ports.
2909 */
2910static void port_get_link_speed(struct ksz_port *port)
2911{
2912	uint interrupt;
2913	struct ksz_port_info *info;
2914	struct ksz_port_info *linked = NULL;
2915	struct ksz_hw *hw = port->hw;
2916	u16 data;
2917	u16 status;
2918	u8 local;
2919	u8 remote;
2920	int i;
2921	int p;
 
2922
2923	interrupt = hw_block_intr(hw);
2924
2925	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
2926		info = &hw->port_info[p];
2927		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
2928		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
2929
2930		/*
2931		 * Link status is changing all the time even when there is no
2932		 * cable connection!
2933		 */
2934		remote = status & (PORT_AUTO_NEG_COMPLETE |
2935			PORT_STATUS_LINK_GOOD);
2936		local = (u8) data;
2937
2938		/* No change to status. */
2939		if (local == info->advertised && remote == info->partner)
2940			continue;
2941
2942		info->advertised = local;
2943		info->partner = remote;
2944		if (status & PORT_STATUS_LINK_GOOD) {
2945
2946			/* Remember the first linked port. */
2947			if (!linked)
2948				linked = info;
2949
2950			info->tx_rate = 10 * TX_RATE_UNIT;
2951			if (status & PORT_STATUS_SPEED_100MBIT)
2952				info->tx_rate = 100 * TX_RATE_UNIT;
2953
2954			info->duplex = 1;
2955			if (status & PORT_STATUS_FULL_DUPLEX)
2956				info->duplex = 2;
2957
2958			if (media_connected != info->state) {
2959				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
2960					&data);
2961				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
2962					&status);
2963				determine_flow_ctrl(hw, port, data, status);
2964				if (hw->ksz_switch) {
2965					port_cfg_back_pressure(hw, p,
2966						(1 == info->duplex));
2967				}
 
2968				port_cfg_change(hw, port, info, status);
2969			}
2970			info->state = media_connected;
2971		} else {
2972			/* Indicate the link just goes down. */
2973			if (media_disconnected != info->state)
2974				hw->port_mib[p].link_down = 1;
2975
 
 
 
2976			info->state = media_disconnected;
2977		}
2978		hw->port_mib[p].state = (u8) info->state;
2979	}
2980
2981	if (linked && media_disconnected == port->linked->state)
2982		port->linked = linked;
2983
2984	hw_restore_intr(hw, interrupt);
2985}
2986
2987#define PHY_RESET_TIMEOUT		10
2988
2989/**
2990 * port_set_link_speed - set port speed
2991 * @port: 	The port instance.
2992 *
2993 * This routine sets the link speed of the switch ports.
2994 */
2995static void port_set_link_speed(struct ksz_port *port)
2996{
2997	struct ksz_hw *hw = port->hw;
2998	u16 data;
2999	u16 cfg;
3000	u8 status;
3001	int i;
3002	int p;
3003
3004	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3005		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3006		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3007
3008		cfg = 0;
3009		if (status & PORT_STATUS_LINK_GOOD)
3010			cfg = data;
3011
3012		data |= PORT_AUTO_NEG_ENABLE;
3013		data = advertised_flow_ctrl(port, data);
3014
3015		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3016			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3017
3018		/* Check if manual configuration is specified by the user. */
3019		if (port->speed || port->duplex) {
3020			if (10 == port->speed)
3021				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3022					PORT_AUTO_NEG_100BTX);
3023			else if (100 == port->speed)
3024				data &= ~(PORT_AUTO_NEG_10BT_FD |
3025					PORT_AUTO_NEG_10BT);
3026			if (1 == port->duplex)
3027				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3028					PORT_AUTO_NEG_10BT_FD);
3029			else if (2 == port->duplex)
3030				data &= ~(PORT_AUTO_NEG_100BTX |
3031					PORT_AUTO_NEG_10BT);
3032		}
3033		if (data != cfg) {
3034			data |= PORT_AUTO_NEG_RESTART;
3035			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3036		}
3037	}
3038}
3039
3040/**
3041 * port_force_link_speed - force port speed
3042 * @port: 	The port instance.
3043 *
3044 * This routine forces the link speed of the switch ports.
3045 */
3046static void port_force_link_speed(struct ksz_port *port)
3047{
3048	struct ksz_hw *hw = port->hw;
3049	u16 data;
3050	int i;
3051	int phy;
3052	int p;
3053
3054	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3055		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3056		hw_r_phy_ctrl(hw, phy, &data);
3057
3058		data &= ~BMCR_ANENABLE;
3059
3060		if (10 == port->speed)
3061			data &= ~BMCR_SPEED100;
3062		else if (100 == port->speed)
3063			data |= BMCR_SPEED100;
3064		if (1 == port->duplex)
3065			data &= ~BMCR_FULLDPLX;
3066		else if (2 == port->duplex)
3067			data |= BMCR_FULLDPLX;
3068		hw_w_phy_ctrl(hw, phy, data);
3069	}
3070}
3071
3072static void port_set_power_saving(struct ksz_port *port, int enable)
3073{
3074	struct ksz_hw *hw = port->hw;
3075	int i;
3076	int p;
3077
3078	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3079		port_cfg(hw, p,
3080			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3081}
3082
3083/*
3084 * KSZ8841 power management functions
3085 */
3086
3087/**
3088 * hw_chk_wol_pme_status - check PMEN pin
3089 * @hw: 	The hardware instance.
3090 *
3091 * This function is used to check PMEN pin is asserted.
3092 *
3093 * Return 1 if PMEN pin is asserted; otherwise, 0.
3094 */
3095static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3096{
3097	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3098	struct pci_dev *pdev = hw_priv->pdev;
3099	u16 data;
3100
3101	if (!pdev->pm_cap)
3102		return 0;
3103	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3104	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3105}
3106
3107/**
3108 * hw_clr_wol_pme_status - clear PMEN pin
3109 * @hw: 	The hardware instance.
3110 *
3111 * This routine is used to clear PME_Status to deassert PMEN pin.
3112 */
3113static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3114{
3115	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3116	struct pci_dev *pdev = hw_priv->pdev;
3117	u16 data;
3118
3119	if (!pdev->pm_cap)
3120		return;
3121
3122	/* Clear PME_Status to deassert PMEN pin. */
3123	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3124	data |= PCI_PM_CTRL_PME_STATUS;
3125	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3126}
3127
3128/**
3129 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3130 * @hw: 	The hardware instance.
3131 * @set:	The flag indicating whether to enable or disable.
3132 *
3133 * This routine is used to enable or disable Wake-on-LAN.
3134 */
3135static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3136{
3137	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3138	struct pci_dev *pdev = hw_priv->pdev;
3139	u16 data;
3140
3141	if (!pdev->pm_cap)
3142		return;
3143	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3144	data &= ~PCI_PM_CTRL_STATE_MASK;
3145	if (set)
3146		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3147	else
3148		data &= ~PCI_PM_CTRL_PME_ENABLE;
3149	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3150}
3151
3152/**
3153 * hw_cfg_wol - configure Wake-on-LAN features
3154 * @hw: 	The hardware instance.
3155 * @frame:	The pattern frame bit.
3156 * @set:	The flag indicating whether to enable or disable.
3157 *
3158 * This routine is used to enable or disable certain Wake-on-LAN features.
3159 */
3160static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3161{
3162	u16 data;
3163
3164	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3165	if (set)
3166		data |= frame;
3167	else
3168		data &= ~frame;
3169	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3170}
3171
3172/**
3173 * hw_set_wol_frame - program Wake-on-LAN pattern
3174 * @hw: 	The hardware instance.
3175 * @i:		The frame index.
3176 * @mask_size:	The size of the mask.
3177 * @mask:	Mask to ignore certain bytes in the pattern.
3178 * @frame_size:	The size of the frame.
3179 * @pattern:	The frame data.
3180 *
3181 * This routine is used to program Wake-on-LAN pattern.
3182 */
3183static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3184	const u8 *mask, uint frame_size, const u8 *pattern)
3185{
3186	int bits;
3187	int from;
3188	int len;
3189	int to;
3190	u32 crc;
3191	u8 data[64];
3192	u8 val = 0;
3193
3194	if (frame_size > mask_size * 8)
3195		frame_size = mask_size * 8;
3196	if (frame_size > 64)
3197		frame_size = 64;
3198
3199	i *= 0x10;
3200	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3201	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3202
3203	bits = len = from = to = 0;
3204	do {
3205		if (bits) {
3206			if ((val & 1))
3207				data[to++] = pattern[from];
3208			val >>= 1;
3209			++from;
3210			--bits;
3211		} else {
3212			val = mask[len];
3213			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3214				+ len);
3215			++len;
3216			if (val)
3217				bits = 8;
3218			else
3219				from += 8;
3220		}
3221	} while (from < (int) frame_size);
3222	if (val) {
3223		bits = mask[len - 1];
3224		val <<= (from % 8);
3225		bits &= ~val;
3226		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3227			1);
3228	}
3229	crc = ether_crc(to, data);
3230	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3231}
3232
3233/**
3234 * hw_add_wol_arp - add ARP pattern
3235 * @hw: 	The hardware instance.
3236 * @ip_addr:	The IPv4 address assigned to the device.
3237 *
3238 * This routine is used to add ARP pattern for waking up the host.
3239 */
3240static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3241{
3242	static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3243	u8 pattern[42] = {
3244		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3245		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3246		0x08, 0x06,
3247		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3248		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3249		0x00, 0x00, 0x00, 0x00,
3250		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3251		0x00, 0x00, 0x00, 0x00 };
3252
3253	memcpy(&pattern[38], ip_addr, 4);
3254	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3255}
3256
3257/**
3258 * hw_add_wol_bcast - add broadcast pattern
3259 * @hw: 	The hardware instance.
3260 *
3261 * This routine is used to add broadcast pattern for waking up the host.
3262 */
3263static void hw_add_wol_bcast(struct ksz_hw *hw)
3264{
3265	static const u8 mask[] = { 0x3F };
3266	static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3267
3268	hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3269}
3270
3271/**
3272 * hw_add_wol_mcast - add multicast pattern
3273 * @hw: 	The hardware instance.
3274 *
3275 * This routine is used to add multicast pattern for waking up the host.
3276 *
3277 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3278 * by IPv6 ping command.  Note that multicast packets are filtred through the
3279 * multicast hash table, so not all multicast packets can wake up the host.
3280 */
3281static void hw_add_wol_mcast(struct ksz_hw *hw)
3282{
3283	static const u8 mask[] = { 0x3F };
3284	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3285
3286	memcpy(&pattern[3], &hw->override_addr[3], 3);
3287	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3288}
3289
3290/**
3291 * hw_add_wol_ucast - add unicast pattern
3292 * @hw: 	The hardware instance.
3293 *
3294 * This routine is used to add unicast pattern to wakeup the host.
3295 *
3296 * It is assumed the unicast packet is directed to the device, as the hardware
3297 * can only receive them in normal case.
3298 */
3299static void hw_add_wol_ucast(struct ksz_hw *hw)
3300{
3301	static const u8 mask[] = { 0x3F };
3302
3303	hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3304}
3305
3306/**
3307 * hw_enable_wol - enable Wake-on-LAN
3308 * @hw: 	The hardware instance.
3309 * @wol_enable:	The Wake-on-LAN settings.
3310 * @net_addr:	The IPv4 address assigned to the device.
3311 *
3312 * This routine is used to enable Wake-on-LAN depending on driver settings.
3313 */
3314static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3315{
3316	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3317	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3318	hw_add_wol_ucast(hw);
3319	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3320	hw_add_wol_mcast(hw);
3321	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3322	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3323	hw_add_wol_arp(hw, net_addr);
3324}
3325
3326/**
3327 * hw_init - check driver is correct for the hardware
3328 * @hw: 	The hardware instance.
3329 *
3330 * This function checks the hardware is correct for this driver and sets the
3331 * hardware up for proper initialization.
3332 *
3333 * Return number of ports or 0 if not right.
3334 */
3335static int hw_init(struct ksz_hw *hw)
3336{
3337	int rc = 0;
3338	u16 data;
3339	u16 revision;
3340
3341	/* Set bus speed to 125MHz. */
3342	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3343
3344	/* Check KSZ884x chip ID. */
3345	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3346
3347	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3348	data &= KS884X_CHIP_ID_MASK_41;
3349	if (REG_CHIP_ID_41 == data)
3350		rc = 1;
3351	else if (REG_CHIP_ID_42 == data)
3352		rc = 2;
3353	else
3354		return 0;
3355
3356	/* Setup hardware features or bug workarounds. */
3357	if (revision <= 1) {
3358		hw->features |= SMALL_PACKET_TX_BUG;
3359		if (1 == rc)
3360			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3361	}
3362	return rc;
3363}
3364
3365/**
3366 * hw_reset - reset the hardware
3367 * @hw: 	The hardware instance.
3368 *
3369 * This routine resets the hardware.
3370 */
3371static void hw_reset(struct ksz_hw *hw)
3372{
3373	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3374
3375	/* Wait for device to reset. */
3376	mdelay(10);
3377
3378	/* Write 0 to clear device reset. */
3379	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3380}
3381
3382/**
3383 * hw_setup - setup the hardware
3384 * @hw: 	The hardware instance.
3385 *
3386 * This routine setup the hardware for proper operation.
3387 */
3388static void hw_setup(struct ksz_hw *hw)
3389{
3390#if SET_DEFAULT_LED
3391	u16 data;
3392
3393	/* Change default LED mode. */
3394	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3395	data &= ~LED_MODE;
3396	data |= SET_DEFAULT_LED;
3397	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3398#endif
3399
3400	/* Setup transmit control. */
3401	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3402		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3403
3404	/* Setup receive control. */
3405	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3406		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3407	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3408
3409	/* Hardware cannot handle UDP packet in IP fragments. */
3410	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3411
3412	if (hw->all_multi)
3413		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3414	if (hw->promiscuous)
3415		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3416}
3417
3418/**
3419 * hw_setup_intr - setup interrupt mask
3420 * @hw: 	The hardware instance.
3421 *
3422 * This routine setup the interrupt mask for proper operation.
3423 */
3424static void hw_setup_intr(struct ksz_hw *hw)
3425{
3426	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3427}
3428
3429static void ksz_check_desc_num(struct ksz_desc_info *info)
3430{
3431#define MIN_DESC_SHIFT  2
3432
3433	int alloc = info->alloc;
3434	int shift;
3435
3436	shift = 0;
3437	while (!(alloc & 1)) {
3438		shift++;
3439		alloc >>= 1;
3440	}
3441	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3442		pr_alert("Hardware descriptor numbers not right!\n");
3443		while (alloc) {
3444			shift++;
3445			alloc >>= 1;
3446		}
3447		if (shift < MIN_DESC_SHIFT)
3448			shift = MIN_DESC_SHIFT;
3449		alloc = 1 << shift;
3450		info->alloc = alloc;
3451	}
3452	info->mask = info->alloc - 1;
3453}
3454
3455static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3456{
3457	int i;
3458	u32 phys = desc_info->ring_phys;
3459	struct ksz_hw_desc *desc = desc_info->ring_virt;
3460	struct ksz_desc *cur = desc_info->ring;
3461	struct ksz_desc *previous = NULL;
3462
3463	for (i = 0; i < desc_info->alloc; i++) {
3464		cur->phw = desc++;
3465		phys += desc_info->size;
3466		previous = cur++;
3467		previous->phw->next = cpu_to_le32(phys);
3468	}
3469	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3470	previous->sw.buf.rx.end_of_ring = 1;
3471	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3472
3473	desc_info->avail = desc_info->alloc;
3474	desc_info->last = desc_info->next = 0;
3475
3476	desc_info->cur = desc_info->ring;
3477}
3478
3479/**
3480 * hw_set_desc_base - set descriptor base addresses
3481 * @hw: 	The hardware instance.
3482 * @tx_addr:	The transmit descriptor base.
3483 * @rx_addr:	The receive descriptor base.
3484 *
3485 * This routine programs the descriptor base addresses after reset.
3486 */
3487static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3488{
3489	/* Set base address of Tx/Rx descriptors. */
3490	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3491	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3492}
3493
3494static void hw_reset_pkts(struct ksz_desc_info *info)
3495{
3496	info->cur = info->ring;
3497	info->avail = info->alloc;
3498	info->last = info->next = 0;
3499}
3500
3501static inline void hw_resume_rx(struct ksz_hw *hw)
3502{
3503	writel(DMA_START, hw->io + KS_DMA_RX_START);
3504}
3505
3506/**
3507 * hw_start_rx - start receiving
3508 * @hw: 	The hardware instance.
3509 *
3510 * This routine starts the receive function of the hardware.
3511 */
3512static void hw_start_rx(struct ksz_hw *hw)
3513{
3514	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3515
3516	/* Notify when the receive stops. */
3517	hw->intr_mask |= KS884X_INT_RX_STOPPED;
3518
3519	writel(DMA_START, hw->io + KS_DMA_RX_START);
3520	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3521	hw->rx_stop++;
3522
3523	/* Variable overflows. */
3524	if (0 == hw->rx_stop)
3525		hw->rx_stop = 2;
3526}
3527
3528/**
3529 * hw_stop_rx - stop receiving
3530 * @hw: 	The hardware instance.
3531 *
3532 * This routine stops the receive function of the hardware.
3533 */
3534static void hw_stop_rx(struct ksz_hw *hw)
3535{
3536	hw->rx_stop = 0;
3537	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3538	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3539}
3540
3541/**
3542 * hw_start_tx - start transmitting
3543 * @hw: 	The hardware instance.
3544 *
3545 * This routine starts the transmit function of the hardware.
3546 */
3547static void hw_start_tx(struct ksz_hw *hw)
3548{
3549	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3550}
3551
3552/**
3553 * hw_stop_tx - stop transmitting
3554 * @hw: 	The hardware instance.
3555 *
3556 * This routine stops the transmit function of the hardware.
3557 */
3558static void hw_stop_tx(struct ksz_hw *hw)
3559{
3560	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3561}
3562
3563/**
3564 * hw_disable - disable hardware
3565 * @hw: 	The hardware instance.
3566 *
3567 * This routine disables the hardware.
3568 */
3569static void hw_disable(struct ksz_hw *hw)
3570{
3571	hw_stop_rx(hw);
3572	hw_stop_tx(hw);
3573	hw->enabled = 0;
3574}
3575
3576/**
3577 * hw_enable - enable hardware
3578 * @hw: 	The hardware instance.
3579 *
3580 * This routine enables the hardware.
3581 */
3582static void hw_enable(struct ksz_hw *hw)
3583{
3584	hw_start_tx(hw);
3585	hw_start_rx(hw);
3586	hw->enabled = 1;
3587}
3588
3589/**
3590 * hw_alloc_pkt - allocate enough descriptors for transmission
3591 * @hw: 	The hardware instance.
3592 * @length:	The length of the packet.
3593 * @physical:	Number of descriptors required.
3594 *
3595 * This function allocates descriptors for transmission.
3596 *
3597 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3598 */
3599static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3600{
3601	/* Always leave one descriptor free. */
3602	if (hw->tx_desc_info.avail <= 1)
3603		return 0;
3604
3605	/* Allocate a descriptor for transmission and mark it current. */
3606	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3607	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3608
3609	/* Keep track of number of transmit descriptors used so far. */
3610	++hw->tx_int_cnt;
3611	hw->tx_size += length;
3612
3613	/* Cannot hold on too much data. */
3614	if (hw->tx_size >= MAX_TX_HELD_SIZE)
3615		hw->tx_int_cnt = hw->tx_int_mask + 1;
3616
3617	if (physical > hw->tx_desc_info.avail)
3618		return 1;
3619
3620	return hw->tx_desc_info.avail;
3621}
3622
3623/**
3624 * hw_send_pkt - mark packet for transmission
3625 * @hw: 	The hardware instance.
3626 *
3627 * This routine marks the packet for transmission in PCI version.
3628 */
3629static void hw_send_pkt(struct ksz_hw *hw)
3630{
3631	struct ksz_desc *cur = hw->tx_desc_info.cur;
3632
3633	cur->sw.buf.tx.last_seg = 1;
3634
3635	/* Interrupt only after specified number of descriptors used. */
3636	if (hw->tx_int_cnt > hw->tx_int_mask) {
3637		cur->sw.buf.tx.intr = 1;
3638		hw->tx_int_cnt = 0;
3639		hw->tx_size = 0;
3640	}
3641
3642	/* KSZ8842 supports port directed transmission. */
3643	cur->sw.buf.tx.dest_port = hw->dst_ports;
3644
3645	release_desc(cur);
3646
3647	writel(0, hw->io + KS_DMA_TX_START);
3648}
3649
3650static int empty_addr(u8 *addr)
3651{
3652	u32 *addr1 = (u32 *) addr;
3653	u16 *addr2 = (u16 *) &addr[4];
3654
3655	return 0 == *addr1 && 0 == *addr2;
3656}
3657
3658/**
3659 * hw_set_addr - set MAC address
3660 * @hw: 	The hardware instance.
3661 *
3662 * This routine programs the MAC address of the hardware when the address is
3663 * overridden.
3664 */
3665static void hw_set_addr(struct ksz_hw *hw)
3666{
3667	int i;
3668
3669	for (i = 0; i < ETH_ALEN; i++)
3670		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
3671			hw->io + KS884X_ADDR_0_OFFSET + i);
3672
3673	sw_set_addr(hw, hw->override_addr);
3674}
3675
3676/**
3677 * hw_read_addr - read MAC address
3678 * @hw: 	The hardware instance.
3679 *
3680 * This routine retrieves the MAC address of the hardware.
3681 */
3682static void hw_read_addr(struct ksz_hw *hw)
3683{
3684	int i;
3685
3686	for (i = 0; i < ETH_ALEN; i++)
3687		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
3688			KS884X_ADDR_0_OFFSET + i);
3689
3690	if (!hw->mac_override) {
3691		memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
3692		if (empty_addr(hw->override_addr)) {
3693			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
3694			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
3695			       ETH_ALEN);
3696			hw->override_addr[5] += hw->id;
3697			hw_set_addr(hw);
3698		}
3699	}
3700}
3701
3702static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
3703{
3704	int i;
3705	u32 mac_addr_lo;
3706	u32 mac_addr_hi;
3707
3708	mac_addr_hi = 0;
3709	for (i = 0; i < 2; i++) {
3710		mac_addr_hi <<= 8;
3711		mac_addr_hi |= mac_addr[i];
3712	}
3713	mac_addr_hi |= ADD_ADDR_ENABLE;
3714	mac_addr_lo = 0;
3715	for (i = 2; i < 6; i++) {
3716		mac_addr_lo <<= 8;
3717		mac_addr_lo |= mac_addr[i];
3718	}
3719	index *= ADD_ADDR_INCR;
3720
3721	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
3722	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
3723}
3724
3725static void hw_set_add_addr(struct ksz_hw *hw)
3726{
3727	int i;
3728
3729	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
3730		if (empty_addr(hw->address[i]))
3731			writel(0, hw->io + ADD_ADDR_INCR * i +
3732				KS_ADD_ADDR_0_HI);
3733		else
3734			hw_ena_add_addr(hw, i, hw->address[i]);
3735	}
3736}
3737
3738static int hw_add_addr(struct ksz_hw *hw, const u8 *mac_addr)
3739{
3740	int i;
3741	int j = ADDITIONAL_ENTRIES;
3742
3743	if (ether_addr_equal(hw->override_addr, mac_addr))
3744		return 0;
3745	for (i = 0; i < hw->addr_list_size; i++) {
3746		if (ether_addr_equal(hw->address[i], mac_addr))
3747			return 0;
3748		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
3749			j = i;
3750	}
3751	if (j < ADDITIONAL_ENTRIES) {
3752		memcpy(hw->address[j], mac_addr, ETH_ALEN);
3753		hw_ena_add_addr(hw, j, hw->address[j]);
3754		return 0;
3755	}
3756	return -1;
3757}
3758
3759static int hw_del_addr(struct ksz_hw *hw, const u8 *mac_addr)
3760{
3761	int i;
3762
3763	for (i = 0; i < hw->addr_list_size; i++) {
3764		if (ether_addr_equal(hw->address[i], mac_addr)) {
3765			eth_zero_addr(hw->address[i]);
3766			writel(0, hw->io + ADD_ADDR_INCR * i +
3767				KS_ADD_ADDR_0_HI);
3768			return 0;
3769		}
3770	}
3771	return -1;
3772}
3773
3774/**
3775 * hw_clr_multicast - clear multicast addresses
3776 * @hw: 	The hardware instance.
3777 *
3778 * This routine removes all multicast addresses set in the hardware.
3779 */
3780static void hw_clr_multicast(struct ksz_hw *hw)
3781{
3782	int i;
3783
3784	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
3785		hw->multi_bits[i] = 0;
3786
3787		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
3788	}
3789}
3790
3791/**
3792 * hw_set_grp_addr - set multicast addresses
3793 * @hw: 	The hardware instance.
3794 *
3795 * This routine programs multicast addresses for the hardware to accept those
3796 * addresses.
3797 */
3798static void hw_set_grp_addr(struct ksz_hw *hw)
3799{
3800	int i;
3801	int index;
3802	int position;
3803	int value;
3804
3805	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
3806
3807	for (i = 0; i < hw->multi_list_size; i++) {
3808		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
3809		index = position >> 3;
3810		value = 1 << (position & 7);
3811		hw->multi_bits[index] |= (u8) value;
3812	}
3813
3814	for (i = 0; i < HW_MULTICAST_SIZE; i++)
3815		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
3816			i);
3817}
3818
3819/**
3820 * hw_set_multicast - enable or disable all multicast receiving
3821 * @hw: 	The hardware instance.
3822 * @multicast:	To turn on or off the all multicast feature.
3823 *
3824 * This routine enables/disables the hardware to accept all multicast packets.
3825 */
3826static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
3827{
3828	/* Stop receiving for reconfiguration. */
3829	hw_stop_rx(hw);
3830
3831	if (multicast)
3832		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3833	else
3834		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
3835
3836	if (hw->enabled)
3837		hw_start_rx(hw);
3838}
3839
3840/**
3841 * hw_set_promiscuous - enable or disable promiscuous receiving
3842 * @hw: 	The hardware instance.
3843 * @prom:	To turn on or off the promiscuous feature.
3844 *
3845 * This routine enables/disables the hardware to accept all packets.
3846 */
3847static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
3848{
3849	/* Stop receiving for reconfiguration. */
3850	hw_stop_rx(hw);
3851
3852	if (prom)
3853		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3854	else
3855		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
3856
3857	if (hw->enabled)
3858		hw_start_rx(hw);
3859}
3860
3861/**
3862 * sw_enable - enable the switch
3863 * @hw: 	The hardware instance.
3864 * @enable:	The flag to enable or disable the switch
3865 *
3866 * This routine is used to enable/disable the switch in KSZ8842.
3867 */
3868static void sw_enable(struct ksz_hw *hw, int enable)
3869{
3870	int port;
3871
3872	for (port = 0; port < SWITCH_PORT_NUM; port++) {
3873		if (hw->dev_count > 1) {
3874			/* Set port-base vlan membership with host port. */
3875			sw_cfg_port_base_vlan(hw, port,
3876				HOST_MASK | (1 << port));
3877			port_set_stp_state(hw, port, STP_STATE_DISABLED);
3878		} else {
3879			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
3880			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
3881		}
3882	}
3883	if (hw->dev_count > 1)
3884		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
3885	else
3886		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
3887
3888	if (enable)
3889		enable = KS8842_START;
3890	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
3891}
3892
3893/**
3894 * sw_setup - setup the switch
3895 * @hw: 	The hardware instance.
3896 *
3897 * This routine setup the hardware switch engine for default operation.
3898 */
3899static void sw_setup(struct ksz_hw *hw)
3900{
3901	int port;
3902
3903	sw_set_global_ctrl(hw);
3904
3905	/* Enable switch broadcast storm protection at 10% percent rate. */
3906	sw_init_broad_storm(hw);
3907	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
3908	for (port = 0; port < SWITCH_PORT_NUM; port++)
3909		sw_ena_broad_storm(hw, port);
3910
3911	sw_init_prio(hw);
3912
3913	sw_init_mirror(hw);
3914
3915	sw_init_prio_rate(hw);
3916
3917	sw_init_vlan(hw);
3918
3919	if (hw->features & STP_SUPPORT)
3920		sw_init_stp(hw);
3921	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
3922			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
3923		hw->overrides |= PAUSE_FLOW_CTRL;
3924	sw_enable(hw, 1);
3925}
3926
3927/**
3928 * ksz_start_timer - start kernel timer
3929 * @info:	Kernel timer information.
3930 * @time:	The time tick.
3931 *
3932 * This routine starts the kernel timer after the specified time tick.
3933 */
3934static void ksz_start_timer(struct ksz_timer_info *info, int time)
3935{
3936	info->cnt = 0;
3937	info->timer.expires = jiffies + time;
3938	add_timer(&info->timer);
3939
3940	/* infinity */
3941	info->max = -1;
3942}
3943
3944/**
3945 * ksz_stop_timer - stop kernel timer
3946 * @info:	Kernel timer information.
3947 *
3948 * This routine stops the kernel timer.
3949 */
3950static void ksz_stop_timer(struct ksz_timer_info *info)
3951{
3952	if (info->max) {
3953		info->max = 0;
3954		del_timer_sync(&info->timer);
3955	}
3956}
3957
3958static void ksz_init_timer(struct ksz_timer_info *info, int period,
3959	void (*function)(struct timer_list *))
3960{
3961	info->max = 0;
3962	info->period = period;
3963	timer_setup(&info->timer, function, 0);
3964}
3965
3966static void ksz_update_timer(struct ksz_timer_info *info)
3967{
3968	++info->cnt;
3969	if (info->max > 0) {
3970		if (info->cnt < info->max) {
3971			info->timer.expires = jiffies + info->period;
3972			add_timer(&info->timer);
3973		} else
3974			info->max = 0;
3975	} else if (info->max < 0) {
3976		info->timer.expires = jiffies + info->period;
3977		add_timer(&info->timer);
3978	}
3979}
3980
3981/**
3982 * ksz_alloc_soft_desc - allocate software descriptors
3983 * @desc_info:	Descriptor information structure.
3984 * @transmit:	Indication that descriptors are for transmit.
3985 *
3986 * This local function allocates software descriptors for manipulation in
3987 * memory.
3988 *
3989 * Return 0 if successful.
3990 */
3991static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
3992{
3993	desc_info->ring = kcalloc(desc_info->alloc, sizeof(struct ksz_desc),
3994				  GFP_KERNEL);
3995	if (!desc_info->ring)
3996		return 1;
3997	hw_init_desc(desc_info, transmit);
3998	return 0;
3999}
4000
4001/**
4002 * ksz_alloc_desc - allocate hardware descriptors
4003 * @adapter:	Adapter information structure.
4004 *
4005 * This local function allocates hardware descriptors for receiving and
4006 * transmitting.
4007 *
4008 * Return 0 if successful.
4009 */
4010static int ksz_alloc_desc(struct dev_info *adapter)
4011{
4012	struct ksz_hw *hw = &adapter->hw;
4013	int offset;
4014
4015	/* Allocate memory for RX & TX descriptors. */
4016	adapter->desc_pool.alloc_size =
4017		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4018		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4019		DESC_ALIGNMENT;
4020
4021	adapter->desc_pool.alloc_virt =
4022		dma_alloc_coherent(&adapter->pdev->dev,
4023				   adapter->desc_pool.alloc_size,
4024				   &adapter->desc_pool.dma_addr, GFP_KERNEL);
4025	if (adapter->desc_pool.alloc_virt == NULL) {
4026		adapter->desc_pool.alloc_size = 0;
4027		return 1;
4028	}
4029
4030	/* Align to the next cache line boundary. */
4031	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4032		(DESC_ALIGNMENT -
4033		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4034	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4035	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4036
4037	/* Allocate receive/transmit descriptors. */
4038	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4039		adapter->desc_pool.virt;
4040	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4041	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4042	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4043		(adapter->desc_pool.virt + offset);
4044	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4045
4046	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4047		return 1;
4048	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4049		return 1;
4050
4051	return 0;
4052}
4053
4054/**
4055 * free_dma_buf - release DMA buffer resources
4056 * @adapter:	Adapter information structure.
4057 * @dma_buf:	pointer to buf
4058 * @direction:	to or from device
4059 *
4060 * This routine is just a helper function to release the DMA buffer resources.
4061 */
4062static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4063	int direction)
4064{
4065	dma_unmap_single(&adapter->pdev->dev, dma_buf->dma, dma_buf->len,
4066			 direction);
4067	dev_kfree_skb(dma_buf->skb);
4068	dma_buf->skb = NULL;
4069	dma_buf->dma = 0;
4070}
4071
4072/**
4073 * ksz_init_rx_buffers - initialize receive descriptors
4074 * @adapter:	Adapter information structure.
4075 *
4076 * This routine initializes DMA buffers for receiving.
4077 */
4078static void ksz_init_rx_buffers(struct dev_info *adapter)
4079{
4080	int i;
4081	struct ksz_desc *desc;
4082	struct ksz_dma_buf *dma_buf;
4083	struct ksz_hw *hw = &adapter->hw;
4084	struct ksz_desc_info *info = &hw->rx_desc_info;
4085
4086	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4087		get_rx_pkt(info, &desc);
4088
4089		dma_buf = DMA_BUFFER(desc);
4090		if (dma_buf->skb && dma_buf->len != adapter->mtu)
4091			free_dma_buf(adapter, dma_buf, DMA_FROM_DEVICE);
4092		dma_buf->len = adapter->mtu;
4093		if (!dma_buf->skb)
4094			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4095		if (dma_buf->skb && !dma_buf->dma)
4096			dma_buf->dma = dma_map_single(&adapter->pdev->dev,
4097						skb_tail_pointer(dma_buf->skb),
4098						dma_buf->len,
4099						DMA_FROM_DEVICE);
 
4100
4101		/* Set descriptor. */
4102		set_rx_buf(desc, dma_buf->dma);
4103		set_rx_len(desc, dma_buf->len);
4104		release_desc(desc);
4105	}
4106}
4107
4108/**
4109 * ksz_alloc_mem - allocate memory for hardware descriptors
4110 * @adapter:	Adapter information structure.
4111 *
4112 * This function allocates memory for use by hardware descriptors for receiving
4113 * and transmitting.
4114 *
4115 * Return 0 if successful.
4116 */
4117static int ksz_alloc_mem(struct dev_info *adapter)
4118{
4119	struct ksz_hw *hw = &adapter->hw;
4120
4121	/* Determine the number of receive and transmit descriptors. */
4122	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4123	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4124
4125	/* Determine how many descriptors to skip transmit interrupt. */
4126	hw->tx_int_cnt = 0;
4127	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4128	if (hw->tx_int_mask > 8)
4129		hw->tx_int_mask = 8;
4130	while (hw->tx_int_mask) {
4131		hw->tx_int_cnt++;
4132		hw->tx_int_mask >>= 1;
4133	}
4134	if (hw->tx_int_cnt) {
4135		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4136		hw->tx_int_cnt = 0;
4137	}
4138
4139	/* Determine the descriptor size. */
4140	hw->rx_desc_info.size =
4141		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4142		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4143	hw->tx_desc_info.size =
4144		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4145		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4146	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4147		pr_alert("Hardware descriptor size not right!\n");
4148	ksz_check_desc_num(&hw->rx_desc_info);
4149	ksz_check_desc_num(&hw->tx_desc_info);
4150
4151	/* Allocate descriptors. */
4152	if (ksz_alloc_desc(adapter))
4153		return 1;
4154
4155	return 0;
4156}
4157
4158/**
4159 * ksz_free_desc - free software and hardware descriptors
4160 * @adapter:	Adapter information structure.
4161 *
4162 * This local routine frees the software and hardware descriptors allocated by
4163 * ksz_alloc_desc().
4164 */
4165static void ksz_free_desc(struct dev_info *adapter)
4166{
4167	struct ksz_hw *hw = &adapter->hw;
4168
4169	/* Reset descriptor. */
4170	hw->rx_desc_info.ring_virt = NULL;
4171	hw->tx_desc_info.ring_virt = NULL;
4172	hw->rx_desc_info.ring_phys = 0;
4173	hw->tx_desc_info.ring_phys = 0;
4174
4175	/* Free memory. */
4176	if (adapter->desc_pool.alloc_virt)
4177		dma_free_coherent(&adapter->pdev->dev,
4178				  adapter->desc_pool.alloc_size,
4179				  adapter->desc_pool.alloc_virt,
4180				  adapter->desc_pool.dma_addr);
 
4181
4182	/* Reset resource pool. */
4183	adapter->desc_pool.alloc_size = 0;
4184	adapter->desc_pool.alloc_virt = NULL;
4185
4186	kfree(hw->rx_desc_info.ring);
4187	hw->rx_desc_info.ring = NULL;
4188	kfree(hw->tx_desc_info.ring);
4189	hw->tx_desc_info.ring = NULL;
4190}
4191
4192/**
4193 * ksz_free_buffers - free buffers used in the descriptors
4194 * @adapter:	Adapter information structure.
4195 * @desc_info:	Descriptor information structure.
4196 * @direction:	to or from device
4197 *
4198 * This local routine frees buffers used in the DMA buffers.
4199 */
4200static void ksz_free_buffers(struct dev_info *adapter,
4201	struct ksz_desc_info *desc_info, int direction)
4202{
4203	int i;
4204	struct ksz_dma_buf *dma_buf;
4205	struct ksz_desc *desc = desc_info->ring;
4206
4207	for (i = 0; i < desc_info->alloc; i++) {
4208		dma_buf = DMA_BUFFER(desc);
4209		if (dma_buf->skb)
4210			free_dma_buf(adapter, dma_buf, direction);
4211		desc++;
4212	}
4213}
4214
4215/**
4216 * ksz_free_mem - free all resources used by descriptors
4217 * @adapter:	Adapter information structure.
4218 *
4219 * This local routine frees all the resources allocated by ksz_alloc_mem().
4220 */
4221static void ksz_free_mem(struct dev_info *adapter)
4222{
4223	/* Free transmit buffers. */
4224	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info, DMA_TO_DEVICE);
 
4225
4226	/* Free receive buffers. */
4227	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info, DMA_FROM_DEVICE);
 
4228
4229	/* Free descriptors. */
4230	ksz_free_desc(adapter);
4231}
4232
4233static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4234	u64 *counter)
4235{
4236	int i;
4237	int mib;
4238	int port;
4239	struct ksz_port_mib *port_mib;
4240
4241	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4242	for (i = 0, port = first; i < cnt; i++, port++) {
4243		port_mib = &hw->port_mib[port];
4244		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4245			counter[mib] += port_mib->counter[mib];
4246	}
4247}
4248
4249/**
4250 * send_packet - send packet
4251 * @skb:	Socket buffer.
4252 * @dev:	Network device.
4253 *
4254 * This routine is used to send a packet out to the network.
4255 */
4256static void send_packet(struct sk_buff *skb, struct net_device *dev)
4257{
4258	struct ksz_desc *desc;
4259	struct ksz_desc *first;
4260	struct dev_priv *priv = netdev_priv(dev);
4261	struct dev_info *hw_priv = priv->adapter;
4262	struct ksz_hw *hw = &hw_priv->hw;
4263	struct ksz_desc_info *info = &hw->tx_desc_info;
4264	struct ksz_dma_buf *dma_buf;
4265	int len;
4266	int last_frag = skb_shinfo(skb)->nr_frags;
4267
4268	/*
4269	 * KSZ8842 with multiple device interfaces needs to be told which port
4270	 * to send.
4271	 */
4272	if (hw->dev_count > 1)
4273		hw->dst_ports = 1 << priv->port.first_port;
4274
4275	/* Hardware will pad the length to 60. */
4276	len = skb->len;
4277
4278	/* Remember the very first descriptor. */
4279	first = info->cur;
4280	desc = first;
4281
4282	dma_buf = DMA_BUFFER(desc);
4283	if (last_frag) {
4284		int frag;
4285		skb_frag_t *this_frag;
4286
4287		dma_buf->len = skb_headlen(skb);
4288
4289		dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
4290					      dma_buf->len, DMA_TO_DEVICE);
 
4291		set_tx_buf(desc, dma_buf->dma);
4292		set_tx_len(desc, dma_buf->len);
4293
4294		frag = 0;
4295		do {
4296			this_frag = &skb_shinfo(skb)->frags[frag];
4297
4298			/* Get a new descriptor. */
4299			get_tx_pkt(info, &desc);
4300
4301			/* Keep track of descriptors used so far. */
4302			++hw->tx_int_cnt;
4303
4304			dma_buf = DMA_BUFFER(desc);
4305			dma_buf->len = skb_frag_size(this_frag);
4306
4307			dma_buf->dma = dma_map_single(&hw_priv->pdev->dev,
4308						      skb_frag_address(this_frag),
4309						      dma_buf->len,
4310						      DMA_TO_DEVICE);
 
4311			set_tx_buf(desc, dma_buf->dma);
4312			set_tx_len(desc, dma_buf->len);
4313
4314			frag++;
4315			if (frag == last_frag)
4316				break;
4317
4318			/* Do not release the last descriptor here. */
4319			release_desc(desc);
4320		} while (1);
4321
4322		/* current points to the last descriptor. */
4323		info->cur = desc;
4324
4325		/* Release the first descriptor. */
4326		release_desc(first);
4327	} else {
4328		dma_buf->len = len;
4329
4330		dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
4331					      dma_buf->len, DMA_TO_DEVICE);
 
4332		set_tx_buf(desc, dma_buf->dma);
4333		set_tx_len(desc, dma_buf->len);
4334	}
4335
4336	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4337		(desc)->sw.buf.tx.csum_gen_tcp = 1;
4338		(desc)->sw.buf.tx.csum_gen_udp = 1;
4339	}
4340
4341	/*
4342	 * The last descriptor holds the packet so that it can be returned to
4343	 * network subsystem after all descriptors are transmitted.
4344	 */
4345	dma_buf->skb = skb;
4346
4347	hw_send_pkt(hw);
4348
4349	/* Update transmit statistics. */
4350	dev->stats.tx_packets++;
4351	dev->stats.tx_bytes += len;
4352}
4353
4354/**
4355 * transmit_cleanup - clean up transmit descriptors
4356 * @hw_priv:	Network device.
4357 * @normal:	break if owned
4358 *
4359 * This routine is called to clean up the transmitted buffers.
4360 */
4361static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4362{
4363	int last;
4364	union desc_stat status;
4365	struct ksz_hw *hw = &hw_priv->hw;
4366	struct ksz_desc_info *info = &hw->tx_desc_info;
4367	struct ksz_desc *desc;
4368	struct ksz_dma_buf *dma_buf;
4369	struct net_device *dev = NULL;
4370
4371	spin_lock_irq(&hw_priv->hwlock);
4372	last = info->last;
4373
4374	while (info->avail < info->alloc) {
4375		/* Get next descriptor which is not hardware owned. */
4376		desc = &info->ring[last];
4377		status.data = le32_to_cpu(desc->phw->ctrl.data);
4378		if (status.tx.hw_owned) {
4379			if (normal)
4380				break;
4381			else
4382				reset_desc(desc, status);
4383		}
4384
4385		dma_buf = DMA_BUFFER(desc);
4386		dma_unmap_single(&hw_priv->pdev->dev, dma_buf->dma,
4387				 dma_buf->len, DMA_TO_DEVICE);
 
4388
4389		/* This descriptor contains the last buffer in the packet. */
4390		if (dma_buf->skb) {
4391			dev = dma_buf->skb->dev;
4392
4393			/* Release the packet back to network subsystem. */
4394			dev_kfree_skb_irq(dma_buf->skb);
4395			dma_buf->skb = NULL;
4396		}
4397
4398		/* Free the transmitted descriptor. */
4399		last++;
4400		last &= info->mask;
4401		info->avail++;
4402	}
4403	info->last = last;
4404	spin_unlock_irq(&hw_priv->hwlock);
4405
4406	/* Notify the network subsystem that the packet has been sent. */
4407	if (dev)
4408		netif_trans_update(dev);
4409}
4410
4411/**
4412 * tx_done - transmit done processing
4413 * @hw_priv:	Network device.
4414 *
4415 * This routine is called when the transmit interrupt is triggered, indicating
4416 * either a packet is sent successfully or there are transmit errors.
4417 */
4418static void tx_done(struct dev_info *hw_priv)
4419{
4420	struct ksz_hw *hw = &hw_priv->hw;
4421	int port;
4422
4423	transmit_cleanup(hw_priv, 1);
4424
4425	for (port = 0; port < hw->dev_count; port++) {
4426		struct net_device *dev = hw->port_info[port].pdev;
4427
4428		if (netif_running(dev) && netif_queue_stopped(dev))
4429			netif_wake_queue(dev);
4430	}
4431}
4432
4433static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4434{
4435	skb->dev = old->dev;
4436	skb->protocol = old->protocol;
4437	skb->ip_summed = old->ip_summed;
4438	skb->csum = old->csum;
4439	skb_set_network_header(skb, ETH_HLEN);
4440
4441	dev_consume_skb_any(old);
4442}
4443
4444/**
4445 * netdev_tx - send out packet
4446 * @skb:	Socket buffer.
4447 * @dev:	Network device.
4448 *
4449 * This function is used by the upper network layer to send out a packet.
4450 *
4451 * Return 0 if successful; otherwise an error code indicating failure.
4452 */
4453static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4454{
4455	struct dev_priv *priv = netdev_priv(dev);
4456	struct dev_info *hw_priv = priv->adapter;
4457	struct ksz_hw *hw = &hw_priv->hw;
4458	int left;
4459	int num = 1;
4460	int rc = 0;
4461
4462	if (hw->features & SMALL_PACKET_TX_BUG) {
4463		struct sk_buff *org_skb = skb;
4464
4465		if (skb->len <= 48) {
4466			if (skb_end_pointer(skb) - skb->data >= 50) {
4467				memset(&skb->data[skb->len], 0, 50 - skb->len);
4468				skb->len = 50;
4469			} else {
4470				skb = netdev_alloc_skb(dev, 50);
4471				if (!skb)
4472					return NETDEV_TX_BUSY;
4473				memcpy(skb->data, org_skb->data, org_skb->len);
4474				memset(&skb->data[org_skb->len], 0,
4475					50 - org_skb->len);
4476				skb->len = 50;
4477				copy_old_skb(org_skb, skb);
4478			}
4479		}
4480	}
4481
4482	spin_lock_irq(&hw_priv->hwlock);
4483
4484	num = skb_shinfo(skb)->nr_frags + 1;
4485	left = hw_alloc_pkt(hw, skb->len, num);
4486	if (left) {
4487		if (left < num ||
4488		    (CHECKSUM_PARTIAL == skb->ip_summed &&
4489		     skb->protocol == htons(ETH_P_IPV6))) {
4490			struct sk_buff *org_skb = skb;
4491
4492			skb = netdev_alloc_skb(dev, org_skb->len);
4493			if (!skb) {
4494				rc = NETDEV_TX_BUSY;
4495				goto unlock;
4496			}
4497			skb_copy_and_csum_dev(org_skb, skb->data);
4498			org_skb->ip_summed = CHECKSUM_NONE;
4499			skb->len = org_skb->len;
4500			copy_old_skb(org_skb, skb);
4501		}
4502		send_packet(skb, dev);
4503		if (left <= num)
4504			netif_stop_queue(dev);
4505	} else {
4506		/* Stop the transmit queue until packet is allocated. */
4507		netif_stop_queue(dev);
4508		rc = NETDEV_TX_BUSY;
4509	}
4510unlock:
4511	spin_unlock_irq(&hw_priv->hwlock);
4512
4513	return rc;
4514}
4515
4516/**
4517 * netdev_tx_timeout - transmit timeout processing
4518 * @dev:	Network device.
4519 * @txqueue:	index of hanging queue
4520 *
4521 * This routine is called when the transmit timer expires.  That indicates the
4522 * hardware is not running correctly because transmit interrupts are not
4523 * triggered to free up resources so that the transmit routine can continue
4524 * sending out packets.  The hardware is reset to correct the problem.
4525 */
4526static void netdev_tx_timeout(struct net_device *dev, unsigned int txqueue)
4527{
4528	static unsigned long last_reset;
4529
4530	struct dev_priv *priv = netdev_priv(dev);
4531	struct dev_info *hw_priv = priv->adapter;
4532	struct ksz_hw *hw = &hw_priv->hw;
4533	int port;
4534
4535	if (hw->dev_count > 1) {
4536		/*
4537		 * Only reset the hardware if time between calls is long
4538		 * enough.
4539		 */
4540		if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4541			hw_priv = NULL;
4542	}
4543
4544	last_reset = jiffies;
4545	if (hw_priv) {
4546		hw_dis_intr(hw);
4547		hw_disable(hw);
4548
4549		transmit_cleanup(hw_priv, 0);
4550		hw_reset_pkts(&hw->rx_desc_info);
4551		hw_reset_pkts(&hw->tx_desc_info);
4552		ksz_init_rx_buffers(hw_priv);
4553
4554		hw_reset(hw);
4555
4556		hw_set_desc_base(hw,
4557			hw->tx_desc_info.ring_phys,
4558			hw->rx_desc_info.ring_phys);
4559		hw_set_addr(hw);
4560		if (hw->all_multi)
4561			hw_set_multicast(hw, hw->all_multi);
4562		else if (hw->multi_list_size)
4563			hw_set_grp_addr(hw);
4564
4565		if (hw->dev_count > 1) {
4566			hw_set_add_addr(hw);
4567			for (port = 0; port < SWITCH_PORT_NUM; port++) {
4568				struct net_device *port_dev;
4569
4570				port_set_stp_state(hw, port,
4571					STP_STATE_DISABLED);
4572
4573				port_dev = hw->port_info[port].pdev;
4574				if (netif_running(port_dev))
4575					port_set_stp_state(hw, port,
4576						STP_STATE_SIMPLE);
4577			}
4578		}
4579
4580		hw_enable(hw);
4581		hw_ena_intr(hw);
4582	}
4583
4584	netif_trans_update(dev);
4585	netif_wake_queue(dev);
4586}
4587
4588static inline void csum_verified(struct sk_buff *skb)
4589{
4590	unsigned short protocol;
4591	struct iphdr *iph;
4592
4593	protocol = skb->protocol;
4594	skb_reset_network_header(skb);
4595	iph = (struct iphdr *) skb_network_header(skb);
4596	if (protocol == htons(ETH_P_8021Q)) {
4597		protocol = iph->tot_len;
4598		skb_set_network_header(skb, VLAN_HLEN);
4599		iph = (struct iphdr *) skb_network_header(skb);
4600	}
4601	if (protocol == htons(ETH_P_IP)) {
4602		if (iph->protocol == IPPROTO_TCP)
4603			skb->ip_summed = CHECKSUM_UNNECESSARY;
4604	}
4605}
4606
4607static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4608	struct ksz_desc *desc, union desc_stat status)
4609{
4610	int packet_len;
4611	struct dev_priv *priv = netdev_priv(dev);
4612	struct dev_info *hw_priv = priv->adapter;
4613	struct ksz_dma_buf *dma_buf;
4614	struct sk_buff *skb;
 
4615
4616	/* Received length includes 4-byte CRC. */
4617	packet_len = status.rx.frame_len - 4;
4618
4619	dma_buf = DMA_BUFFER(desc);
4620	dma_sync_single_for_cpu(&hw_priv->pdev->dev, dma_buf->dma,
4621				packet_len + 4, DMA_FROM_DEVICE);
 
4622
4623	do {
4624		/* skb->data != skb->head */
4625		skb = netdev_alloc_skb(dev, packet_len + 2);
4626		if (!skb) {
4627			dev->stats.rx_dropped++;
4628			return -ENOMEM;
4629		}
4630
4631		/*
4632		 * Align socket buffer in 4-byte boundary for better
4633		 * performance.
4634		 */
4635		skb_reserve(skb, 2);
4636
4637		skb_put_data(skb, dma_buf->skb->data, packet_len);
4638	} while (0);
4639
4640	skb->protocol = eth_type_trans(skb, dev);
4641
4642	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
4643		csum_verified(skb);
4644
4645	/* Update receive statistics. */
4646	dev->stats.rx_packets++;
4647	dev->stats.rx_bytes += packet_len;
4648
4649	/* Notify upper layer for received packet. */
4650	netif_rx(skb);
4651
4652	return 0;
4653}
4654
4655static int dev_rcv_packets(struct dev_info *hw_priv)
4656{
4657	int next;
4658	union desc_stat status;
4659	struct ksz_hw *hw = &hw_priv->hw;
4660	struct net_device *dev = hw->port_info[0].pdev;
4661	struct ksz_desc_info *info = &hw->rx_desc_info;
4662	int left = info->alloc;
4663	struct ksz_desc *desc;
4664	int received = 0;
4665
4666	next = info->next;
4667	while (left--) {
4668		/* Get next descriptor which is not hardware owned. */
4669		desc = &info->ring[next];
4670		status.data = le32_to_cpu(desc->phw->ctrl.data);
4671		if (status.rx.hw_owned)
4672			break;
4673
4674		/* Status valid only when last descriptor bit is set. */
4675		if (status.rx.last_desc && status.rx.first_desc) {
4676			if (rx_proc(dev, hw, desc, status))
4677				goto release_packet;
4678			received++;
4679		}
4680
4681release_packet:
4682		release_desc(desc);
4683		next++;
4684		next &= info->mask;
4685	}
4686	info->next = next;
4687
4688	return received;
4689}
4690
4691static int port_rcv_packets(struct dev_info *hw_priv)
4692{
4693	int next;
4694	union desc_stat status;
4695	struct ksz_hw *hw = &hw_priv->hw;
4696	struct net_device *dev = hw->port_info[0].pdev;
4697	struct ksz_desc_info *info = &hw->rx_desc_info;
4698	int left = info->alloc;
4699	struct ksz_desc *desc;
4700	int received = 0;
4701
4702	next = info->next;
4703	while (left--) {
4704		/* Get next descriptor which is not hardware owned. */
4705		desc = &info->ring[next];
4706		status.data = le32_to_cpu(desc->phw->ctrl.data);
4707		if (status.rx.hw_owned)
4708			break;
4709
4710		if (hw->dev_count > 1) {
4711			/* Get received port number. */
4712			int p = HW_TO_DEV_PORT(status.rx.src_port);
4713
4714			dev = hw->port_info[p].pdev;
4715			if (!netif_running(dev))
4716				goto release_packet;
4717		}
4718
4719		/* Status valid only when last descriptor bit is set. */
4720		if (status.rx.last_desc && status.rx.first_desc) {
4721			if (rx_proc(dev, hw, desc, status))
4722				goto release_packet;
4723			received++;
4724		}
4725
4726release_packet:
4727		release_desc(desc);
4728		next++;
4729		next &= info->mask;
4730	}
4731	info->next = next;
4732
4733	return received;
4734}
4735
4736static int dev_rcv_special(struct dev_info *hw_priv)
4737{
4738	int next;
4739	union desc_stat status;
4740	struct ksz_hw *hw = &hw_priv->hw;
4741	struct net_device *dev = hw->port_info[0].pdev;
4742	struct ksz_desc_info *info = &hw->rx_desc_info;
4743	int left = info->alloc;
4744	struct ksz_desc *desc;
4745	int received = 0;
4746
4747	next = info->next;
4748	while (left--) {
4749		/* Get next descriptor which is not hardware owned. */
4750		desc = &info->ring[next];
4751		status.data = le32_to_cpu(desc->phw->ctrl.data);
4752		if (status.rx.hw_owned)
4753			break;
4754
4755		if (hw->dev_count > 1) {
4756			/* Get received port number. */
4757			int p = HW_TO_DEV_PORT(status.rx.src_port);
4758
4759			dev = hw->port_info[p].pdev;
4760			if (!netif_running(dev))
4761				goto release_packet;
4762		}
4763
4764		/* Status valid only when last descriptor bit is set. */
4765		if (status.rx.last_desc && status.rx.first_desc) {
4766			/*
4767			 * Receive without error.  With receive errors
4768			 * disabled, packets with receive errors will be
4769			 * dropped, so no need to check the error bit.
4770			 */
4771			if (!status.rx.error || (status.data &
4772					KS_DESC_RX_ERROR_COND) ==
4773					KS_DESC_RX_ERROR_TOO_LONG) {
4774				if (rx_proc(dev, hw, desc, status))
4775					goto release_packet;
4776				received++;
4777			} else {
4778				struct dev_priv *priv = netdev_priv(dev);
4779
4780				/* Update receive error statistics. */
4781				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
4782			}
4783		}
4784
4785release_packet:
4786		release_desc(desc);
4787		next++;
4788		next &= info->mask;
4789	}
4790	info->next = next;
4791
4792	return received;
4793}
4794
4795static void rx_proc_task(struct tasklet_struct *t)
4796{
4797	struct dev_info *hw_priv = from_tasklet(hw_priv, t, rx_tasklet);
4798	struct ksz_hw *hw = &hw_priv->hw;
4799
4800	if (!hw->enabled)
4801		return;
4802	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
4803
4804		/* In case receive process is suspended because of overrun. */
4805		hw_resume_rx(hw);
4806
4807		/* tasklets are interruptible. */
4808		spin_lock_irq(&hw_priv->hwlock);
4809		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
4810		spin_unlock_irq(&hw_priv->hwlock);
4811	} else {
4812		hw_ack_intr(hw, KS884X_INT_RX);
4813		tasklet_schedule(&hw_priv->rx_tasklet);
4814	}
4815}
4816
4817static void tx_proc_task(struct tasklet_struct *t)
4818{
4819	struct dev_info *hw_priv = from_tasklet(hw_priv, t, tx_tasklet);
4820	struct ksz_hw *hw = &hw_priv->hw;
4821
4822	hw_ack_intr(hw, KS884X_INT_TX_MASK);
4823
4824	tx_done(hw_priv);
4825
4826	/* tasklets are interruptible. */
4827	spin_lock_irq(&hw_priv->hwlock);
4828	hw_turn_on_intr(hw, KS884X_INT_TX);
4829	spin_unlock_irq(&hw_priv->hwlock);
4830}
4831
4832static inline void handle_rx_stop(struct ksz_hw *hw)
4833{
4834	/* Receive just has been stopped. */
4835	if (0 == hw->rx_stop)
4836		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
4837	else if (hw->rx_stop > 1) {
4838		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
4839			hw_start_rx(hw);
4840		} else {
4841			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
4842			hw->rx_stop = 0;
4843		}
4844	} else
4845		/* Receive just has been started. */
4846		hw->rx_stop++;
4847}
4848
4849/**
4850 * netdev_intr - interrupt handling
4851 * @irq:	Interrupt number.
4852 * @dev_id:	Network device.
4853 *
4854 * This function is called by upper network layer to signal interrupt.
4855 *
4856 * Return IRQ_HANDLED if interrupt is handled.
4857 */
4858static irqreturn_t netdev_intr(int irq, void *dev_id)
4859{
4860	uint int_enable = 0;
4861	struct net_device *dev = (struct net_device *) dev_id;
4862	struct dev_priv *priv = netdev_priv(dev);
4863	struct dev_info *hw_priv = priv->adapter;
4864	struct ksz_hw *hw = &hw_priv->hw;
4865
4866	spin_lock(&hw_priv->hwlock);
4867
4868	hw_read_intr(hw, &int_enable);
4869
4870	/* Not our interrupt! */
4871	if (!int_enable) {
4872		spin_unlock(&hw_priv->hwlock);
4873		return IRQ_NONE;
4874	}
4875
4876	do {
4877		hw_ack_intr(hw, int_enable);
4878		int_enable &= hw->intr_mask;
4879
4880		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
4881			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
4882			tasklet_schedule(&hw_priv->tx_tasklet);
4883		}
4884
4885		if (likely(int_enable & KS884X_INT_RX)) {
4886			hw_dis_intr_bit(hw, KS884X_INT_RX);
4887			tasklet_schedule(&hw_priv->rx_tasklet);
4888		}
4889
4890		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
4891			dev->stats.rx_fifo_errors++;
4892			hw_resume_rx(hw);
4893		}
4894
4895		if (unlikely(int_enable & KS884X_INT_PHY)) {
4896			struct ksz_port *port = &priv->port;
4897
4898			hw->features |= LINK_INT_WORKING;
4899			port_get_link_speed(port);
4900		}
4901
4902		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
4903			handle_rx_stop(hw);
4904			break;
4905		}
4906
4907		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
4908			u32 data;
4909
4910			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
4911			pr_info("Tx stopped\n");
4912			data = readl(hw->io + KS_DMA_TX_CTRL);
4913			if (!(data & DMA_TX_ENABLE))
4914				pr_info("Tx disabled\n");
4915			break;
4916		}
4917	} while (0);
4918
4919	hw_ena_intr(hw);
4920
4921	spin_unlock(&hw_priv->hwlock);
4922
4923	return IRQ_HANDLED;
4924}
4925
4926/*
4927 * Linux network device functions
4928 */
4929
 
4930
4931#ifdef CONFIG_NET_POLL_CONTROLLER
4932static void netdev_netpoll(struct net_device *dev)
4933{
4934	struct dev_priv *priv = netdev_priv(dev);
4935	struct dev_info *hw_priv = priv->adapter;
4936
4937	hw_dis_intr(&hw_priv->hw);
4938	netdev_intr(dev->irq, dev);
4939}
4940#endif
4941
4942static void bridge_change(struct ksz_hw *hw)
4943{
4944	int port;
4945	u8  member;
4946	struct ksz_switch *sw = hw->ksz_switch;
4947
4948	/* No ports in forwarding state. */
4949	if (!sw->member) {
4950		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4951		sw_block_addr(hw);
4952	}
4953	for (port = 0; port < SWITCH_PORT_NUM; port++) {
4954		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
4955			member = HOST_MASK | sw->member;
4956		else
4957			member = HOST_MASK | (1 << port);
4958		if (member != sw->port_cfg[port].member)
4959			sw_cfg_port_base_vlan(hw, port, member);
4960	}
4961}
4962
4963/**
4964 * netdev_close - close network device
4965 * @dev:	Network device.
4966 *
4967 * This function process the close operation of network device.  This is caused
4968 * by the user command "ifconfig ethX down."
4969 *
4970 * Return 0 if successful; otherwise an error code indicating failure.
4971 */
4972static int netdev_close(struct net_device *dev)
4973{
4974	struct dev_priv *priv = netdev_priv(dev);
4975	struct dev_info *hw_priv = priv->adapter;
4976	struct ksz_port *port = &priv->port;
4977	struct ksz_hw *hw = &hw_priv->hw;
4978	int pi;
4979
4980	netif_stop_queue(dev);
4981
4982	ksz_stop_timer(&priv->monitor_timer_info);
4983
4984	/* Need to shut the port manually in multiple device interfaces mode. */
4985	if (hw->dev_count > 1) {
4986		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
4987
4988		/* Port is closed.  Need to change bridge setting. */
4989		if (hw->features & STP_SUPPORT) {
4990			pi = 1 << port->first_port;
4991			if (hw->ksz_switch->member & pi) {
4992				hw->ksz_switch->member &= ~pi;
4993				bridge_change(hw);
4994			}
4995		}
4996	}
4997	if (port->first_port > 0)
4998		hw_del_addr(hw, dev->dev_addr);
4999	if (!hw_priv->wol_enable)
5000		port_set_power_saving(port, true);
5001
5002	if (priv->multicast)
5003		--hw->all_multi;
5004	if (priv->promiscuous)
5005		--hw->promiscuous;
5006
5007	hw_priv->opened--;
5008	if (!(hw_priv->opened)) {
5009		ksz_stop_timer(&hw_priv->mib_timer_info);
5010		flush_work(&hw_priv->mib_read);
5011
5012		hw_dis_intr(hw);
5013		hw_disable(hw);
5014		hw_clr_multicast(hw);
5015
5016		/* Delay for receive task to stop scheduling itself. */
5017		msleep(2000 / HZ);
5018
5019		tasklet_kill(&hw_priv->rx_tasklet);
5020		tasklet_kill(&hw_priv->tx_tasklet);
5021		free_irq(dev->irq, hw_priv->dev);
5022
5023		transmit_cleanup(hw_priv, 0);
5024		hw_reset_pkts(&hw->rx_desc_info);
5025		hw_reset_pkts(&hw->tx_desc_info);
5026
5027		/* Clean out static MAC table when the switch is shutdown. */
5028		if (hw->features & STP_SUPPORT)
5029			sw_clr_sta_mac_table(hw);
5030	}
5031
5032	return 0;
5033}
5034
5035static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5036{
5037	if (hw->ksz_switch) {
5038		u32 data;
5039
5040		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5041		if (hw->features & RX_HUGE_FRAME)
5042			data |= SWITCH_HUGE_PACKET;
5043		else
5044			data &= ~SWITCH_HUGE_PACKET;
5045		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5046	}
5047	if (hw->features & RX_HUGE_FRAME) {
5048		hw->rx_cfg |= DMA_RX_ERROR;
5049		hw_priv->dev_rcv = dev_rcv_special;
5050	} else {
5051		hw->rx_cfg &= ~DMA_RX_ERROR;
5052		if (hw->dev_count > 1)
5053			hw_priv->dev_rcv = port_rcv_packets;
5054		else
5055			hw_priv->dev_rcv = dev_rcv_packets;
5056	}
5057}
5058
5059static int prepare_hardware(struct net_device *dev)
5060{
5061	struct dev_priv *priv = netdev_priv(dev);
5062	struct dev_info *hw_priv = priv->adapter;
5063	struct ksz_hw *hw = &hw_priv->hw;
5064	int rc = 0;
5065
5066	/* Remember the network device that requests interrupts. */
5067	hw_priv->dev = dev;
5068	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5069	if (rc)
5070		return rc;
5071	tasklet_setup(&hw_priv->rx_tasklet, rx_proc_task);
5072	tasklet_setup(&hw_priv->tx_tasklet, tx_proc_task);
 
 
5073
5074	hw->promiscuous = 0;
5075	hw->all_multi = 0;
5076	hw->multi_list_size = 0;
5077
5078	hw_reset(hw);
5079
5080	hw_set_desc_base(hw,
5081		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5082	hw_set_addr(hw);
5083	hw_cfg_huge_frame(hw_priv, hw);
5084	ksz_init_rx_buffers(hw_priv);
5085	return 0;
5086}
5087
5088static void set_media_state(struct net_device *dev, int media_state)
5089{
5090	struct dev_priv *priv = netdev_priv(dev);
5091
5092	if (media_state == priv->media_state)
5093		netif_carrier_on(dev);
5094	else
5095		netif_carrier_off(dev);
5096	netif_info(priv, link, dev, "link %s\n",
5097		   media_state == priv->media_state ? "on" : "off");
5098}
5099
5100/**
5101 * netdev_open - open network device
5102 * @dev:	Network device.
5103 *
5104 * This function process the open operation of network device.  This is caused
5105 * by the user command "ifconfig ethX up."
5106 *
5107 * Return 0 if successful; otherwise an error code indicating failure.
5108 */
5109static int netdev_open(struct net_device *dev)
5110{
5111	struct dev_priv *priv = netdev_priv(dev);
5112	struct dev_info *hw_priv = priv->adapter;
5113	struct ksz_hw *hw = &hw_priv->hw;
5114	struct ksz_port *port = &priv->port;
5115	unsigned long next_jiffies;
5116	int i;
5117	int p;
5118	int rc = 0;
5119
5120	next_jiffies = jiffies + HZ * 2;
5121	priv->multicast = 0;
5122	priv->promiscuous = 0;
5123
5124	/* Reset device statistics. */
5125	memset(&dev->stats, 0, sizeof(struct net_device_stats));
5126	memset((void *) port->counter, 0,
5127		(sizeof(u64) * OID_COUNTER_LAST));
5128
5129	if (!(hw_priv->opened)) {
5130		rc = prepare_hardware(dev);
5131		if (rc)
5132			return rc;
5133		for (i = 0; i < hw->mib_port_cnt; i++) {
5134			next_jiffies += HZ * 1;
 
 
 
5135			hw_priv->counter[i].time = next_jiffies;
5136			hw->port_mib[i].state = media_disconnected;
5137			port_init_cnt(hw, i);
5138		}
5139		if (hw->ksz_switch)
5140			hw->port_mib[HOST_PORT].state = media_connected;
5141		else {
5142			hw_add_wol_bcast(hw);
5143			hw_cfg_wol_pme(hw, 0);
5144			hw_clr_wol_pme_status(&hw_priv->hw);
5145		}
5146	}
5147	port_set_power_saving(port, false);
5148
5149	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5150		/*
5151		 * Initialize to invalid value so that link detection
5152		 * is done.
5153		 */
5154		hw->port_info[p].partner = 0xFF;
5155		hw->port_info[p].state = media_disconnected;
5156	}
5157
5158	/* Need to open the port in multiple device interfaces mode. */
5159	if (hw->dev_count > 1) {
5160		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5161		if (port->first_port > 0)
5162			hw_add_addr(hw, dev->dev_addr);
5163	}
5164
5165	port_get_link_speed(port);
5166	if (port->force_link)
5167		port_force_link_speed(port);
5168	else
5169		port_set_link_speed(port);
5170
5171	if (!(hw_priv->opened)) {
5172		hw_setup_intr(hw);
5173		hw_enable(hw);
5174		hw_ena_intr(hw);
5175
5176		if (hw->mib_port_cnt)
5177			ksz_start_timer(&hw_priv->mib_timer_info,
5178				hw_priv->mib_timer_info.period);
5179	}
5180
5181	hw_priv->opened++;
5182
5183	ksz_start_timer(&priv->monitor_timer_info,
5184		priv->monitor_timer_info.period);
5185
5186	priv->media_state = port->linked->state;
5187
5188	set_media_state(dev, media_connected);
5189	netif_start_queue(dev);
5190
5191	return 0;
5192}
5193
5194/* RX errors = rx_errors */
5195/* RX dropped = rx_dropped */
5196/* RX overruns = rx_fifo_errors */
5197/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5198/* TX errors = tx_errors */
5199/* TX dropped = tx_dropped */
5200/* TX overruns = tx_fifo_errors */
5201/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5202/* collisions = collisions */
5203
5204/**
5205 * netdev_query_statistics - query network device statistics
5206 * @dev:	Network device.
5207 *
5208 * This function returns the statistics of the network device.  The device
5209 * needs not be opened.
5210 *
5211 * Return network device statistics.
5212 */
5213static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5214{
5215	struct dev_priv *priv = netdev_priv(dev);
5216	struct ksz_port *port = &priv->port;
5217	struct ksz_hw *hw = &priv->adapter->hw;
5218	struct ksz_port_mib *mib;
5219	int i;
5220	int p;
5221
5222	dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5223	dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5224
5225	/* Reset to zero to add count later. */
5226	dev->stats.multicast = 0;
5227	dev->stats.collisions = 0;
5228	dev->stats.rx_length_errors = 0;
5229	dev->stats.rx_crc_errors = 0;
5230	dev->stats.rx_frame_errors = 0;
5231	dev->stats.tx_window_errors = 0;
5232
5233	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5234		mib = &hw->port_mib[p];
5235
5236		dev->stats.multicast += (unsigned long)
5237			mib->counter[MIB_COUNTER_RX_MULTICAST];
5238
5239		dev->stats.collisions += (unsigned long)
5240			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5241
5242		dev->stats.rx_length_errors += (unsigned long)(
5243			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5244			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5245			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5246			mib->counter[MIB_COUNTER_RX_JABBER]);
5247		dev->stats.rx_crc_errors += (unsigned long)
5248			mib->counter[MIB_COUNTER_RX_CRC_ERR];
5249		dev->stats.rx_frame_errors += (unsigned long)(
5250			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5251			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5252
5253		dev->stats.tx_window_errors += (unsigned long)
5254			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5255	}
5256
5257	return &dev->stats;
5258}
5259
5260/**
5261 * netdev_set_mac_address - set network device MAC address
5262 * @dev:	Network device.
5263 * @addr:	Buffer of MAC address.
5264 *
5265 * This function is used to set the MAC address of the network device.
5266 *
5267 * Return 0 to indicate success.
5268 */
5269static int netdev_set_mac_address(struct net_device *dev, void *addr)
5270{
5271	struct dev_priv *priv = netdev_priv(dev);
5272	struct dev_info *hw_priv = priv->adapter;
5273	struct ksz_hw *hw = &hw_priv->hw;
5274	struct sockaddr *mac = addr;
5275	uint interrupt;
5276
5277	if (priv->port.first_port > 0)
5278		hw_del_addr(hw, dev->dev_addr);
5279	else {
5280		hw->mac_override = 1;
5281		memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5282	}
5283
5284	eth_hw_addr_set(dev, mac->sa_data);
5285
5286	interrupt = hw_block_intr(hw);
5287
5288	if (priv->port.first_port > 0)
5289		hw_add_addr(hw, dev->dev_addr);
5290	else
5291		hw_set_addr(hw);
5292	hw_restore_intr(hw, interrupt);
5293
5294	return 0;
5295}
5296
5297static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5298	struct ksz_hw *hw, int promiscuous)
5299{
5300	if (promiscuous != priv->promiscuous) {
5301		u8 prev_state = hw->promiscuous;
5302
5303		if (promiscuous)
5304			++hw->promiscuous;
5305		else
5306			--hw->promiscuous;
5307		priv->promiscuous = promiscuous;
5308
5309		/* Turn on/off promiscuous mode. */
5310		if (hw->promiscuous <= 1 && prev_state <= 1)
5311			hw_set_promiscuous(hw, hw->promiscuous);
5312
5313		/*
5314		 * Port is not in promiscuous mode, meaning it is released
5315		 * from the bridge.
5316		 */
5317		if ((hw->features & STP_SUPPORT) && !promiscuous &&
5318		    netif_is_bridge_port(dev)) {
5319			struct ksz_switch *sw = hw->ksz_switch;
5320			int port = priv->port.first_port;
5321
5322			port_set_stp_state(hw, port, STP_STATE_DISABLED);
5323			port = 1 << port;
5324			if (sw->member & port) {
5325				sw->member &= ~port;
5326				bridge_change(hw);
5327			}
5328		}
5329	}
5330}
5331
5332static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5333	int multicast)
5334{
5335	if (multicast != priv->multicast) {
5336		u8 all_multi = hw->all_multi;
5337
5338		if (multicast)
5339			++hw->all_multi;
5340		else
5341			--hw->all_multi;
5342		priv->multicast = multicast;
5343
5344		/* Turn on/off all multicast mode. */
5345		if (hw->all_multi <= 1 && all_multi <= 1)
5346			hw_set_multicast(hw, hw->all_multi);
5347	}
5348}
5349
5350/**
5351 * netdev_set_rx_mode
5352 * @dev:	Network device.
5353 *
5354 * This routine is used to set multicast addresses or put the network device
5355 * into promiscuous mode.
5356 */
5357static void netdev_set_rx_mode(struct net_device *dev)
5358{
5359	struct dev_priv *priv = netdev_priv(dev);
5360	struct dev_info *hw_priv = priv->adapter;
5361	struct ksz_hw *hw = &hw_priv->hw;
5362	struct netdev_hw_addr *ha;
5363	int multicast = (dev->flags & IFF_ALLMULTI);
5364
5365	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5366
5367	if (hw_priv->hw.dev_count > 1)
5368		multicast |= (dev->flags & IFF_MULTICAST);
5369	dev_set_multicast(priv, hw, multicast);
5370
5371	/* Cannot use different hashes in multiple device interfaces mode. */
5372	if (hw_priv->hw.dev_count > 1)
5373		return;
5374
5375	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5376		int i = 0;
5377
5378		/* List too big to support so turn on all multicast mode. */
5379		if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5380			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5381				hw->multi_list_size = MAX_MULTICAST_LIST;
5382				++hw->all_multi;
5383				hw_set_multicast(hw, hw->all_multi);
5384			}
5385			return;
5386		}
5387
5388		netdev_for_each_mc_addr(ha, dev) {
5389			if (i >= MAX_MULTICAST_LIST)
5390				break;
5391			memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5392		}
5393		hw->multi_list_size = (u8) i;
5394		hw_set_grp_addr(hw);
5395	} else {
5396		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5397			--hw->all_multi;
5398			hw_set_multicast(hw, hw->all_multi);
5399		}
5400		hw->multi_list_size = 0;
5401		hw_clr_multicast(hw);
5402	}
5403}
5404
5405static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5406{
5407	struct dev_priv *priv = netdev_priv(dev);
5408	struct dev_info *hw_priv = priv->adapter;
5409	struct ksz_hw *hw = &hw_priv->hw;
5410	int hw_mtu;
5411
5412	if (netif_running(dev))
5413		return -EBUSY;
5414
5415	/* Cannot use different MTU in multiple device interfaces mode. */
5416	if (hw->dev_count > 1)
5417		if (dev != hw_priv->dev)
5418			return 0;
5419
5420	hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5421	if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5422		hw->features |= RX_HUGE_FRAME;
5423		hw_mtu = MAX_RX_BUF_SIZE;
5424	} else {
5425		hw->features &= ~RX_HUGE_FRAME;
5426		hw_mtu = REGULAR_RX_BUF_SIZE;
5427	}
5428	hw_mtu = (hw_mtu + 3) & ~3;
5429	hw_priv->mtu = hw_mtu;
5430	dev->mtu = new_mtu;
5431
5432	return 0;
5433}
5434
5435/**
5436 * netdev_ioctl - I/O control processing
5437 * @dev:	Network device.
5438 * @ifr:	Interface request structure.
5439 * @cmd:	I/O control code.
5440 *
5441 * This function is used to process I/O control calls.
5442 *
5443 * Return 0 to indicate success.
5444 */
5445static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5446{
5447	struct dev_priv *priv = netdev_priv(dev);
5448	struct dev_info *hw_priv = priv->adapter;
5449	struct ksz_hw *hw = &hw_priv->hw;
5450	struct ksz_port *port = &priv->port;
5451	int result = 0;
5452	struct mii_ioctl_data *data = if_mii(ifr);
5453
5454	if (down_interruptible(&priv->proc_sem))
5455		return -ERESTARTSYS;
5456
5457	switch (cmd) {
5458	/* Get address of MII PHY in use. */
5459	case SIOCGMIIPHY:
5460		data->phy_id = priv->id;
5461		fallthrough;
 
5462
5463	/* Read MII PHY register. */
5464	case SIOCGMIIREG:
5465		if (data->phy_id != priv->id || data->reg_num >= 6)
5466			result = -EIO;
5467		else
5468			hw_r_phy(hw, port->linked->port_id, data->reg_num,
5469				&data->val_out);
5470		break;
5471
5472	/* Write MII PHY register. */
5473	case SIOCSMIIREG:
5474		if (!capable(CAP_NET_ADMIN))
5475			result = -EPERM;
5476		else if (data->phy_id != priv->id || data->reg_num >= 6)
5477			result = -EIO;
5478		else
5479			hw_w_phy(hw, port->linked->port_id, data->reg_num,
5480				data->val_in);
5481		break;
5482
5483	default:
5484		result = -EOPNOTSUPP;
5485	}
5486
5487	up(&priv->proc_sem);
5488
5489	return result;
5490}
5491
5492/*
5493 * MII support
5494 */
5495
5496/**
5497 * mdio_read - read PHY register
5498 * @dev:	Network device.
5499 * @phy_id:	The PHY id.
5500 * @reg_num:	The register number.
5501 *
5502 * This function returns the PHY register value.
5503 *
5504 * Return the register value.
5505 */
5506static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5507{
5508	struct dev_priv *priv = netdev_priv(dev);
5509	struct ksz_port *port = &priv->port;
5510	struct ksz_hw *hw = port->hw;
5511	u16 val_out;
5512
5513	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5514	return val_out;
5515}
5516
5517/**
5518 * mdio_write - set PHY register
5519 * @dev:	Network device.
5520 * @phy_id:	The PHY id.
5521 * @reg_num:	The register number.
5522 * @val:	The register value.
5523 *
5524 * This procedure sets the PHY register value.
5525 */
5526static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5527{
5528	struct dev_priv *priv = netdev_priv(dev);
5529	struct ksz_port *port = &priv->port;
5530	struct ksz_hw *hw = port->hw;
5531	int i;
5532	int pi;
5533
5534	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5535		hw_w_phy(hw, pi, reg_num << 1, val);
5536}
5537
5538/*
5539 * ethtool support
5540 */
5541
5542#define EEPROM_SIZE			0x40
5543
5544static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5545
5546#define ADVERTISED_ALL			\
5547	(ADVERTISED_10baseT_Half |	\
5548	ADVERTISED_10baseT_Full |	\
5549	ADVERTISED_100baseT_Half |	\
5550	ADVERTISED_100baseT_Full)
5551
5552/* These functions use the MII functions in mii.c. */
5553
5554/**
5555 * netdev_get_link_ksettings - get network device settings
5556 * @dev:	Network device.
5557 * @cmd:	Ethtool command.
5558 *
5559 * This function queries the PHY and returns its state in the ethtool command.
5560 *
5561 * Return 0 if successful; otherwise an error code.
5562 */
5563static int netdev_get_link_ksettings(struct net_device *dev,
5564				     struct ethtool_link_ksettings *cmd)
5565{
5566	struct dev_priv *priv = netdev_priv(dev);
5567	struct dev_info *hw_priv = priv->adapter;
5568
5569	mutex_lock(&hw_priv->lock);
5570	mii_ethtool_get_link_ksettings(&priv->mii_if, cmd);
5571	ethtool_link_ksettings_add_link_mode(cmd, advertising, TP);
5572	mutex_unlock(&hw_priv->lock);
5573
5574	/* Save advertised settings for workaround in next function. */
5575	ethtool_convert_link_mode_to_legacy_u32(&priv->advertising,
5576						cmd->link_modes.advertising);
5577
5578	return 0;
5579}
5580
5581/**
5582 * netdev_set_link_ksettings - set network device settings
5583 * @dev:	Network device.
5584 * @cmd:	Ethtool command.
5585 *
5586 * This function sets the PHY according to the ethtool command.
5587 *
5588 * Return 0 if successful; otherwise an error code.
5589 */
5590static int netdev_set_link_ksettings(struct net_device *dev,
5591				     const struct ethtool_link_ksettings *cmd)
5592{
5593	struct dev_priv *priv = netdev_priv(dev);
5594	struct dev_info *hw_priv = priv->adapter;
5595	struct ksz_port *port = &priv->port;
5596	struct ethtool_link_ksettings copy_cmd;
5597	u32 speed = cmd->base.speed;
5598	u32 advertising;
5599	int rc;
5600
5601	ethtool_convert_link_mode_to_legacy_u32(&advertising,
5602						cmd->link_modes.advertising);
5603
5604	/*
5605	 * ethtool utility does not change advertised setting if auto
5606	 * negotiation is not specified explicitly.
5607	 */
5608	if (cmd->base.autoneg && priv->advertising == advertising) {
5609		advertising |= ADVERTISED_ALL;
5610		if (10 == speed)
5611			advertising &=
5612				~(ADVERTISED_100baseT_Full |
5613				ADVERTISED_100baseT_Half);
5614		else if (100 == speed)
5615			advertising &=
5616				~(ADVERTISED_10baseT_Full |
5617				ADVERTISED_10baseT_Half);
5618		if (0 == cmd->base.duplex)
5619			advertising &=
5620				~(ADVERTISED_100baseT_Full |
5621				ADVERTISED_10baseT_Full);
5622		else if (1 == cmd->base.duplex)
5623			advertising &=
5624				~(ADVERTISED_100baseT_Half |
5625				ADVERTISED_10baseT_Half);
5626	}
5627	mutex_lock(&hw_priv->lock);
5628	if (cmd->base.autoneg &&
5629	    (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) {
5630		port->duplex = 0;
5631		port->speed = 0;
5632		port->force_link = 0;
5633	} else {
5634		port->duplex = cmd->base.duplex + 1;
5635		if (1000 != speed)
5636			port->speed = speed;
5637		if (cmd->base.autoneg)
5638			port->force_link = 0;
5639		else
5640			port->force_link = 1;
5641	}
5642
5643	memcpy(&copy_cmd, cmd, sizeof(copy_cmd));
5644	ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising,
5645						advertising);
5646	rc = mii_ethtool_set_link_ksettings(
5647		&priv->mii_if,
5648		(const struct ethtool_link_ksettings *)&copy_cmd);
5649	mutex_unlock(&hw_priv->lock);
5650	return rc;
5651}
5652
5653/**
5654 * netdev_nway_reset - restart auto-negotiation
5655 * @dev:	Network device.
5656 *
5657 * This function restarts the PHY for auto-negotiation.
5658 *
5659 * Return 0 if successful; otherwise an error code.
5660 */
5661static int netdev_nway_reset(struct net_device *dev)
5662{
5663	struct dev_priv *priv = netdev_priv(dev);
5664	struct dev_info *hw_priv = priv->adapter;
5665	int rc;
5666
5667	mutex_lock(&hw_priv->lock);
5668	rc = mii_nway_restart(&priv->mii_if);
5669	mutex_unlock(&hw_priv->lock);
5670	return rc;
5671}
5672
5673/**
5674 * netdev_get_link - get network device link status
5675 * @dev:	Network device.
5676 *
5677 * This function gets the link status from the PHY.
5678 *
5679 * Return true if PHY is linked and false otherwise.
5680 */
5681static u32 netdev_get_link(struct net_device *dev)
5682{
5683	struct dev_priv *priv = netdev_priv(dev);
5684	int rc;
5685
5686	rc = mii_link_ok(&priv->mii_if);
5687	return rc;
5688}
5689
5690/**
5691 * netdev_get_drvinfo - get network driver information
5692 * @dev:	Network device.
5693 * @info:	Ethtool driver info data structure.
5694 *
5695 * This procedure returns the driver information.
5696 */
5697static void netdev_get_drvinfo(struct net_device *dev,
5698	struct ethtool_drvinfo *info)
5699{
5700	struct dev_priv *priv = netdev_priv(dev);
5701	struct dev_info *hw_priv = priv->adapter;
5702
5703	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
5704	strscpy(info->version, DRV_VERSION, sizeof(info->version));
5705	strscpy(info->bus_info, pci_name(hw_priv->pdev),
5706		sizeof(info->bus_info));
5707}
5708
 
 
 
 
 
 
 
 
5709static struct hw_regs {
5710	int start;
5711	int end;
5712} hw_regs_range[] = {
5713	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
5714	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
5715	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
5716	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
5717	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
5718	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
5719	{ 0, 0 }
5720};
5721
5722/**
5723 * netdev_get_regs_len - get length of register dump
5724 * @dev:	Network device.
5725 *
5726 * This function returns the length of the register dump.
5727 *
5728 * Return length of the register dump.
5729 */
5730static int netdev_get_regs_len(struct net_device *dev)
5731{
5732	struct hw_regs *range = hw_regs_range;
5733	int regs_len = 0x10 * sizeof(u32);
5734
5735	while (range->end > range->start) {
5736		regs_len += (range->end - range->start + 3) / 4 * 4;
5737		range++;
5738	}
5739	return regs_len;
5740}
5741
5742/**
5743 * netdev_get_regs - get register dump
5744 * @dev:	Network device.
5745 * @regs:	Ethtool registers data structure.
5746 * @ptr:	Buffer to store the register values.
5747 *
5748 * This procedure dumps the register values in the provided buffer.
5749 */
5750static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
5751	void *ptr)
5752{
5753	struct dev_priv *priv = netdev_priv(dev);
5754	struct dev_info *hw_priv = priv->adapter;
5755	struct ksz_hw *hw = &hw_priv->hw;
5756	int *buf = (int *) ptr;
5757	struct hw_regs *range = hw_regs_range;
5758	int len;
5759
5760	mutex_lock(&hw_priv->lock);
5761	regs->version = 0;
5762	for (len = 0; len < 0x40; len += 4) {
5763		pci_read_config_dword(hw_priv->pdev, len, buf);
5764		buf++;
5765	}
5766	while (range->end > range->start) {
5767		for (len = range->start; len < range->end; len += 4) {
5768			*buf = readl(hw->io + len);
5769			buf++;
5770		}
5771		range++;
5772	}
5773	mutex_unlock(&hw_priv->lock);
5774}
5775
5776#define WOL_SUPPORT			\
5777	(WAKE_PHY | WAKE_MAGIC |	\
5778	WAKE_UCAST | WAKE_MCAST |	\
5779	WAKE_BCAST | WAKE_ARP)
5780
5781/**
5782 * netdev_get_wol - get Wake-on-LAN support
5783 * @dev:	Network device.
5784 * @wol:	Ethtool Wake-on-LAN data structure.
5785 *
5786 * This procedure returns Wake-on-LAN support.
5787 */
5788static void netdev_get_wol(struct net_device *dev,
5789	struct ethtool_wolinfo *wol)
5790{
5791	struct dev_priv *priv = netdev_priv(dev);
5792	struct dev_info *hw_priv = priv->adapter;
5793
5794	wol->supported = hw_priv->wol_support;
5795	wol->wolopts = hw_priv->wol_enable;
5796	memset(&wol->sopass, 0, sizeof(wol->sopass));
5797}
5798
5799/**
5800 * netdev_set_wol - set Wake-on-LAN support
5801 * @dev:	Network device.
5802 * @wol:	Ethtool Wake-on-LAN data structure.
5803 *
5804 * This function sets Wake-on-LAN support.
5805 *
5806 * Return 0 if successful; otherwise an error code.
5807 */
5808static int netdev_set_wol(struct net_device *dev,
5809	struct ethtool_wolinfo *wol)
5810{
5811	struct dev_priv *priv = netdev_priv(dev);
5812	struct dev_info *hw_priv = priv->adapter;
5813
5814	/* Need to find a way to retrieve the device IP address. */
5815	static const u8 net_addr[] = { 192, 168, 1, 1 };
5816
5817	if (wol->wolopts & ~hw_priv->wol_support)
5818		return -EINVAL;
5819
5820	hw_priv->wol_enable = wol->wolopts;
5821
5822	/* Link wakeup cannot really be disabled. */
5823	if (wol->wolopts)
5824		hw_priv->wol_enable |= WAKE_PHY;
5825	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
5826	return 0;
5827}
5828
5829/**
5830 * netdev_get_msglevel - get debug message level
5831 * @dev:	Network device.
5832 *
5833 * This function returns current debug message level.
5834 *
5835 * Return current debug message flags.
5836 */
5837static u32 netdev_get_msglevel(struct net_device *dev)
5838{
5839	struct dev_priv *priv = netdev_priv(dev);
5840
5841	return priv->msg_enable;
5842}
5843
5844/**
5845 * netdev_set_msglevel - set debug message level
5846 * @dev:	Network device.
5847 * @value:	Debug message flags.
5848 *
5849 * This procedure sets debug message level.
5850 */
5851static void netdev_set_msglevel(struct net_device *dev, u32 value)
5852{
5853	struct dev_priv *priv = netdev_priv(dev);
5854
5855	priv->msg_enable = value;
5856}
5857
5858/**
5859 * netdev_get_eeprom_len - get EEPROM length
5860 * @dev:	Network device.
5861 *
5862 * This function returns the length of the EEPROM.
5863 *
5864 * Return length of the EEPROM.
5865 */
5866static int netdev_get_eeprom_len(struct net_device *dev)
5867{
5868	return EEPROM_SIZE * 2;
5869}
5870
5871#define EEPROM_MAGIC			0x10A18842
5872
5873/**
5874 * netdev_get_eeprom - get EEPROM data
5875 * @dev:	Network device.
5876 * @eeprom:	Ethtool EEPROM data structure.
5877 * @data:	Buffer to store the EEPROM data.
5878 *
5879 * This function dumps the EEPROM data in the provided buffer.
5880 *
5881 * Return 0 if successful; otherwise an error code.
5882 */
 
 
5883static int netdev_get_eeprom(struct net_device *dev,
5884	struct ethtool_eeprom *eeprom, u8 *data)
5885{
5886	struct dev_priv *priv = netdev_priv(dev);
5887	struct dev_info *hw_priv = priv->adapter;
5888	u8 *eeprom_byte = (u8 *) eeprom_data;
5889	int i;
5890	int len;
5891
5892	len = (eeprom->offset + eeprom->len + 1) / 2;
5893	for (i = eeprom->offset / 2; i < len; i++)
5894		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
5895	eeprom->magic = EEPROM_MAGIC;
5896	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
5897
5898	return 0;
5899}
5900
5901/**
5902 * netdev_set_eeprom - write EEPROM data
5903 * @dev:	Network device.
5904 * @eeprom:	Ethtool EEPROM data structure.
5905 * @data:	Data buffer.
5906 *
5907 * This function modifies the EEPROM data one byte at a time.
5908 *
5909 * Return 0 if successful; otherwise an error code.
5910 */
5911static int netdev_set_eeprom(struct net_device *dev,
5912	struct ethtool_eeprom *eeprom, u8 *data)
5913{
5914	struct dev_priv *priv = netdev_priv(dev);
5915	struct dev_info *hw_priv = priv->adapter;
5916	u16 eeprom_word[EEPROM_SIZE];
5917	u8 *eeprom_byte = (u8 *) eeprom_word;
5918	int i;
5919	int len;
5920
5921	if (eeprom->magic != EEPROM_MAGIC)
5922		return -EINVAL;
5923
5924	len = (eeprom->offset + eeprom->len + 1) / 2;
5925	for (i = eeprom->offset / 2; i < len; i++)
5926		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
5927	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
5928	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
5929	for (i = 0; i < EEPROM_SIZE; i++)
5930		if (eeprom_word[i] != eeprom_data[i]) {
5931			eeprom_data[i] = eeprom_word[i];
5932			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
5933	}
5934
5935	return 0;
5936}
5937
5938/**
5939 * netdev_get_pauseparam - get flow control parameters
5940 * @dev:	Network device.
5941 * @pause:	Ethtool PAUSE settings data structure.
5942 *
5943 * This procedure returns the PAUSE control flow settings.
5944 */
5945static void netdev_get_pauseparam(struct net_device *dev,
5946	struct ethtool_pauseparam *pause)
5947{
5948	struct dev_priv *priv = netdev_priv(dev);
5949	struct dev_info *hw_priv = priv->adapter;
5950	struct ksz_hw *hw = &hw_priv->hw;
5951
5952	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
5953	if (!hw->ksz_switch) {
5954		pause->rx_pause =
5955			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
5956		pause->tx_pause =
5957			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
5958	} else {
5959		pause->rx_pause =
5960			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
5961				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
5962		pause->tx_pause =
5963			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
5964				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
5965	}
5966}
5967
5968/**
5969 * netdev_set_pauseparam - set flow control parameters
5970 * @dev:	Network device.
5971 * @pause:	Ethtool PAUSE settings data structure.
5972 *
5973 * This function sets the PAUSE control flow settings.
5974 * Not implemented yet.
5975 *
5976 * Return 0 if successful; otherwise an error code.
5977 */
5978static int netdev_set_pauseparam(struct net_device *dev,
5979	struct ethtool_pauseparam *pause)
5980{
5981	struct dev_priv *priv = netdev_priv(dev);
5982	struct dev_info *hw_priv = priv->adapter;
5983	struct ksz_hw *hw = &hw_priv->hw;
5984	struct ksz_port *port = &priv->port;
5985
5986	mutex_lock(&hw_priv->lock);
5987	if (pause->autoneg) {
5988		if (!pause->rx_pause && !pause->tx_pause)
5989			port->flow_ctrl = PHY_NO_FLOW_CTRL;
5990		else
5991			port->flow_ctrl = PHY_FLOW_CTRL;
5992		hw->overrides &= ~PAUSE_FLOW_CTRL;
5993		port->force_link = 0;
5994		if (hw->ksz_switch) {
5995			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
5996				SWITCH_RX_FLOW_CTRL, 1);
5997			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
5998				SWITCH_TX_FLOW_CTRL, 1);
5999		}
6000		port_set_link_speed(port);
6001	} else {
6002		hw->overrides |= PAUSE_FLOW_CTRL;
6003		if (hw->ksz_switch) {
6004			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6005				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6006			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6007				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6008		} else
6009			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6010	}
6011	mutex_unlock(&hw_priv->lock);
6012
6013	return 0;
6014}
6015
6016/**
6017 * netdev_get_ringparam - get tx/rx ring parameters
6018 * @dev:	Network device.
6019 * @ring:	Ethtool RING settings data structure.
6020 * @kernel_ring:	Ethtool external RING settings data structure.
6021 * @extack:	Netlink handle.
6022 *
6023 * This procedure returns the TX/RX ring settings.
6024 */
6025static void netdev_get_ringparam(struct net_device *dev,
6026				 struct ethtool_ringparam *ring,
6027				 struct kernel_ethtool_ringparam *kernel_ring,
6028				 struct netlink_ext_ack *extack)
6029{
6030	struct dev_priv *priv = netdev_priv(dev);
6031	struct dev_info *hw_priv = priv->adapter;
6032	struct ksz_hw *hw = &hw_priv->hw;
6033
6034	ring->tx_max_pending = (1 << 9);
6035	ring->tx_pending = hw->tx_desc_info.alloc;
6036	ring->rx_max_pending = (1 << 9);
6037	ring->rx_pending = hw->rx_desc_info.alloc;
6038}
6039
6040#define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)
6041
6042static struct {
6043	char string[ETH_GSTRING_LEN];
6044} ethtool_stats_keys[STATS_LEN] = {
6045	{ "rx_lo_priority_octets" },
6046	{ "rx_hi_priority_octets" },
6047	{ "rx_undersize_packets" },
6048	{ "rx_fragments" },
6049	{ "rx_oversize_packets" },
6050	{ "rx_jabbers" },
6051	{ "rx_symbol_errors" },
6052	{ "rx_crc_errors" },
6053	{ "rx_align_errors" },
6054	{ "rx_mac_ctrl_packets" },
6055	{ "rx_pause_packets" },
6056	{ "rx_bcast_packets" },
6057	{ "rx_mcast_packets" },
6058	{ "rx_ucast_packets" },
6059	{ "rx_64_or_less_octet_packets" },
6060	{ "rx_65_to_127_octet_packets" },
6061	{ "rx_128_to_255_octet_packets" },
6062	{ "rx_256_to_511_octet_packets" },
6063	{ "rx_512_to_1023_octet_packets" },
6064	{ "rx_1024_to_1522_octet_packets" },
6065
6066	{ "tx_lo_priority_octets" },
6067	{ "tx_hi_priority_octets" },
6068	{ "tx_late_collisions" },
6069	{ "tx_pause_packets" },
6070	{ "tx_bcast_packets" },
6071	{ "tx_mcast_packets" },
6072	{ "tx_ucast_packets" },
6073	{ "tx_deferred" },
6074	{ "tx_total_collisions" },
6075	{ "tx_excessive_collisions" },
6076	{ "tx_single_collisions" },
6077	{ "tx_mult_collisions" },
6078
6079	{ "rx_discards" },
6080	{ "tx_discards" },
6081};
6082
6083/**
6084 * netdev_get_strings - get statistics identity strings
6085 * @dev:	Network device.
6086 * @stringset:	String set identifier.
6087 * @buf:	Buffer to store the strings.
6088 *
6089 * This procedure returns the strings used to identify the statistics.
6090 */
6091static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6092{
6093	struct dev_priv *priv = netdev_priv(dev);
6094	struct dev_info *hw_priv = priv->adapter;
6095	struct ksz_hw *hw = &hw_priv->hw;
6096
6097	if (ETH_SS_STATS == stringset)
6098		memcpy(buf, &ethtool_stats_keys,
6099			ETH_GSTRING_LEN * hw->mib_cnt);
6100}
6101
6102/**
6103 * netdev_get_sset_count - get statistics size
6104 * @dev:	Network device.
6105 * @sset:	The statistics set number.
6106 *
6107 * This function returns the size of the statistics to be reported.
6108 *
6109 * Return size of the statistics to be reported.
6110 */
6111static int netdev_get_sset_count(struct net_device *dev, int sset)
6112{
6113	struct dev_priv *priv = netdev_priv(dev);
6114	struct dev_info *hw_priv = priv->adapter;
6115	struct ksz_hw *hw = &hw_priv->hw;
6116
6117	switch (sset) {
6118	case ETH_SS_STATS:
6119		return hw->mib_cnt;
6120	default:
6121		return -EOPNOTSUPP;
6122	}
6123}
6124
6125/**
6126 * netdev_get_ethtool_stats - get network device statistics
6127 * @dev:	Network device.
6128 * @stats:	Ethtool statistics data structure.
6129 * @data:	Buffer to store the statistics.
6130 *
6131 * This procedure returns the statistics.
6132 */
6133static void netdev_get_ethtool_stats(struct net_device *dev,
6134	struct ethtool_stats *stats, u64 *data)
6135{
6136	struct dev_priv *priv = netdev_priv(dev);
6137	struct dev_info *hw_priv = priv->adapter;
6138	struct ksz_hw *hw = &hw_priv->hw;
6139	struct ksz_port *port = &priv->port;
6140	int n_stats = stats->n_stats;
6141	int i;
6142	int n;
6143	int p;
 
6144	u64 counter[TOTAL_PORT_COUNTER_NUM];
6145
6146	mutex_lock(&hw_priv->lock);
6147	n = SWITCH_PORT_NUM;
6148	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6149		if (media_connected == hw->port_mib[p].state) {
6150			hw_priv->counter[p].read = 1;
6151
6152			/* Remember first port that requests read. */
6153			if (n == SWITCH_PORT_NUM)
6154				n = p;
6155		}
6156	}
6157	mutex_unlock(&hw_priv->lock);
6158
6159	if (n < SWITCH_PORT_NUM)
6160		schedule_work(&hw_priv->mib_read);
6161
6162	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6163		p = n;
6164		wait_event_interruptible_timeout(
6165			hw_priv->counter[p].counter,
6166			2 == hw_priv->counter[p].read,
6167			HZ * 1);
6168	} else
6169		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6170			if (0 == i) {
6171				wait_event_interruptible_timeout(
6172					hw_priv->counter[p].counter,
6173					2 == hw_priv->counter[p].read,
6174					HZ * 2);
6175			} else if (hw->port_mib[p].cnt_ptr) {
6176				wait_event_interruptible_timeout(
6177					hw_priv->counter[p].counter,
6178					2 == hw_priv->counter[p].read,
6179					HZ * 1);
6180			}
6181		}
6182
6183	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6184	n = hw->mib_cnt;
6185	if (n > n_stats)
6186		n = n_stats;
6187	n_stats -= n;
6188	for (i = 0; i < n; i++)
6189		*data++ = counter[i];
6190}
6191
6192/**
6193 * netdev_set_features - set receive checksum support
6194 * @dev:	Network device.
6195 * @features:	New device features (offloads).
6196 *
6197 * This function sets receive checksum support setting.
6198 *
6199 * Return 0 if successful; otherwise an error code.
6200 */
6201static int netdev_set_features(struct net_device *dev,
6202	netdev_features_t features)
6203{
6204	struct dev_priv *priv = netdev_priv(dev);
6205	struct dev_info *hw_priv = priv->adapter;
6206	struct ksz_hw *hw = &hw_priv->hw;
6207
6208	mutex_lock(&hw_priv->lock);
6209
6210	/* see note in hw_setup() */
6211	if (features & NETIF_F_RXCSUM)
6212		hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6213	else
6214		hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6215
6216	if (hw->enabled)
6217		writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6218
6219	mutex_unlock(&hw_priv->lock);
6220
6221	return 0;
6222}
6223
6224static const struct ethtool_ops netdev_ethtool_ops = {
6225	.nway_reset		= netdev_nway_reset,
6226	.get_link		= netdev_get_link,
6227	.get_drvinfo		= netdev_get_drvinfo,
6228	.get_regs_len		= netdev_get_regs_len,
6229	.get_regs		= netdev_get_regs,
6230	.get_wol		= netdev_get_wol,
6231	.set_wol		= netdev_set_wol,
6232	.get_msglevel		= netdev_get_msglevel,
6233	.set_msglevel		= netdev_set_msglevel,
6234	.get_eeprom_len		= netdev_get_eeprom_len,
6235	.get_eeprom		= netdev_get_eeprom,
6236	.set_eeprom		= netdev_set_eeprom,
6237	.get_pauseparam		= netdev_get_pauseparam,
6238	.set_pauseparam		= netdev_set_pauseparam,
6239	.get_ringparam		= netdev_get_ringparam,
6240	.get_strings		= netdev_get_strings,
6241	.get_sset_count		= netdev_get_sset_count,
6242	.get_ethtool_stats	= netdev_get_ethtool_stats,
6243	.get_link_ksettings	= netdev_get_link_ksettings,
6244	.set_link_ksettings	= netdev_set_link_ksettings,
6245};
6246
6247/*
6248 * Hardware monitoring
6249 */
6250
6251static void update_link(struct net_device *dev, struct dev_priv *priv,
6252	struct ksz_port *port)
6253{
6254	if (priv->media_state != port->linked->state) {
6255		priv->media_state = port->linked->state;
6256		if (netif_running(dev))
6257			set_media_state(dev, media_connected);
6258	}
6259}
6260
6261static void mib_read_work(struct work_struct *work)
6262{
6263	struct dev_info *hw_priv =
6264		container_of(work, struct dev_info, mib_read);
6265	struct ksz_hw *hw = &hw_priv->hw;
6266	unsigned long next_jiffies;
6267	struct ksz_port_mib *mib;
6268	int i;
6269
6270	next_jiffies = jiffies;
6271	for (i = 0; i < hw->mib_port_cnt; i++) {
6272		mib = &hw->port_mib[i];
6273
6274		/* Reading MIB counters or requested to read. */
6275		if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6276
6277			/* Need to process receive interrupt. */
6278			if (port_r_cnt(hw, i))
6279				break;
6280			hw_priv->counter[i].read = 0;
6281
6282			/* Finish reading counters. */
6283			if (0 == mib->cnt_ptr) {
6284				hw_priv->counter[i].read = 2;
6285				wake_up_interruptible(
6286					&hw_priv->counter[i].counter);
6287			}
6288		} else if (time_after_eq(jiffies, hw_priv->counter[i].time)) {
6289			/* Only read MIB counters when the port is connected. */
6290			if (media_connected == mib->state)
6291				hw_priv->counter[i].read = 1;
6292			next_jiffies += HZ * 1 * hw->mib_port_cnt;
6293			hw_priv->counter[i].time = next_jiffies;
6294
6295		/* Port is just disconnected. */
6296		} else if (mib->link_down) {
6297			mib->link_down = 0;
6298
6299			/* Read counters one last time after link is lost. */
6300			hw_priv->counter[i].read = 1;
6301		}
6302	}
6303}
6304
6305static void mib_monitor(struct timer_list *t)
6306{
6307	struct dev_info *hw_priv = from_timer(hw_priv, t, mib_timer_info.timer);
6308
6309	mib_read_work(&hw_priv->mib_read);
6310
6311	/* This is used to verify Wake-on-LAN is working. */
6312	if (hw_priv->pme_wait) {
6313		if (time_is_before_eq_jiffies(hw_priv->pme_wait)) {
6314			hw_clr_wol_pme_status(&hw_priv->hw);
6315			hw_priv->pme_wait = 0;
6316		}
6317	} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6318
6319		/* PME is asserted.  Wait 2 seconds to clear it. */
6320		hw_priv->pme_wait = jiffies + HZ * 2;
6321	}
6322
6323	ksz_update_timer(&hw_priv->mib_timer_info);
6324}
6325
6326/**
6327 * dev_monitor - periodic monitoring
6328 * @t:	timer list containing a network device pointer.
6329 *
6330 * This routine is run in a kernel timer to monitor the network device.
6331 */
6332static void dev_monitor(struct timer_list *t)
6333{
6334	struct dev_priv *priv = from_timer(priv, t, monitor_timer_info.timer);
6335	struct net_device *dev = priv->mii_if.dev;
6336	struct dev_info *hw_priv = priv->adapter;
6337	struct ksz_hw *hw = &hw_priv->hw;
6338	struct ksz_port *port = &priv->port;
6339
6340	if (!(hw->features & LINK_INT_WORKING))
6341		port_get_link_speed(port);
6342	update_link(dev, priv, port);
6343
6344	ksz_update_timer(&priv->monitor_timer_info);
6345}
6346
6347/*
6348 * Linux network device interface functions
6349 */
6350
6351/* Driver exported variables */
6352
6353static int msg_enable;
6354
6355static char *macaddr = ":";
6356static char *mac1addr = ":";
6357
6358/*
6359 * This enables multiple network device mode for KSZ8842, which contains a
6360 * switch with two physical ports.  Some users like to take control of the
6361 * ports for running Spanning Tree Protocol.  The driver will create an
6362 * additional eth? device for the other port.
6363 *
6364 * Some limitations are the network devices cannot have different MTU and
6365 * multicast hash tables.
6366 */
6367static int multi_dev;
6368
6369/*
6370 * As most users select multiple network device mode to use Spanning Tree
6371 * Protocol, this enables a feature in which most unicast and multicast packets
6372 * are forwarded inside the switch and not passed to the host.  Only packets
6373 * that need the host's attention are passed to it.  This prevents the host
6374 * wasting CPU time to examine each and every incoming packets and do the
6375 * forwarding itself.
6376 *
6377 * As the hack requires the private bridge header, the driver cannot compile
6378 * with just the kernel headers.
6379 *
6380 * Enabling STP support also turns on multiple network device mode.
6381 */
6382static int stp;
6383
6384/*
6385 * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6386 * needs that.  However, fast aging is used to flush the dynamic MAC table when
6387 * STP support is enabled.
6388 */
6389static int fast_aging;
6390
6391/**
6392 * netdev_init - initialize network device.
6393 * @dev:	Network device.
6394 *
6395 * This function initializes the network device.
6396 *
6397 * Return 0 if successful; otherwise an error code indicating failure.
6398 */
6399static int __init netdev_init(struct net_device *dev)
6400{
6401	struct dev_priv *priv = netdev_priv(dev);
6402
6403	/* 500 ms timeout */
6404	ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6405		dev_monitor);
6406
6407	/* 500 ms timeout */
6408	dev->watchdog_timeo = HZ / 2;
6409
6410	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6411
6412	/*
6413	 * Hardware does not really support IPv6 checksum generation, but
6414	 * driver actually runs faster with this on.
6415	 */
6416	dev->hw_features |= NETIF_F_IPV6_CSUM;
6417
6418	dev->features |= dev->hw_features;
6419
6420	sema_init(&priv->proc_sem, 1);
6421
6422	priv->mii_if.phy_id_mask = 0x1;
6423	priv->mii_if.reg_num_mask = 0x7;
6424	priv->mii_if.dev = dev;
6425	priv->mii_if.mdio_read = mdio_read;
6426	priv->mii_if.mdio_write = mdio_write;
6427	priv->mii_if.phy_id = priv->port.first_port + 1;
6428
6429	priv->msg_enable = netif_msg_init(msg_enable,
6430		(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6431
6432	return 0;
6433}
6434
6435static const struct net_device_ops netdev_ops = {
6436	.ndo_init		= netdev_init,
6437	.ndo_open		= netdev_open,
6438	.ndo_stop		= netdev_close,
6439	.ndo_get_stats		= netdev_query_statistics,
6440	.ndo_start_xmit		= netdev_tx,
6441	.ndo_tx_timeout		= netdev_tx_timeout,
6442	.ndo_change_mtu		= netdev_change_mtu,
6443	.ndo_set_features	= netdev_set_features,
6444	.ndo_set_mac_address	= netdev_set_mac_address,
6445	.ndo_validate_addr	= eth_validate_addr,
6446	.ndo_eth_ioctl		= netdev_ioctl,
6447	.ndo_set_rx_mode	= netdev_set_rx_mode,
6448#ifdef CONFIG_NET_POLL_CONTROLLER
6449	.ndo_poll_controller	= netdev_netpoll,
6450#endif
6451};
6452
6453static void netdev_free(struct net_device *dev)
6454{
6455	if (dev->watchdog_timeo)
6456		unregister_netdev(dev);
6457
6458	free_netdev(dev);
6459}
6460
6461struct platform_info {
6462	struct dev_info dev_info;
6463	struct net_device *netdev[SWITCH_PORT_NUM];
6464};
6465
6466static int net_device_present;
6467
6468static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6469{
6470	int i;
6471	int j;
6472	int got_num;
6473	int num;
6474
6475	i = j = num = got_num = 0;
6476	while (j < ETH_ALEN) {
6477		if (macaddr[i]) {
6478			int digit;
6479
6480			got_num = 1;
6481			digit = hex_to_bin(macaddr[i]);
6482			if (digit >= 0)
6483				num = num * 16 + digit;
6484			else if (':' == macaddr[i])
6485				got_num = 2;
6486			else
6487				break;
6488		} else if (got_num)
6489			got_num = 2;
6490		else
6491			break;
6492		if (2 == got_num) {
6493			if (MAIN_PORT == port) {
6494				hw_priv->hw.override_addr[j++] = (u8) num;
6495				hw_priv->hw.override_addr[5] +=
6496					hw_priv->hw.id;
6497			} else {
6498				hw_priv->hw.ksz_switch->other_addr[j++] =
6499					(u8) num;
6500				hw_priv->hw.ksz_switch->other_addr[5] +=
6501					hw_priv->hw.id;
6502			}
6503			num = got_num = 0;
6504		}
6505		i++;
6506	}
6507	if (ETH_ALEN == j) {
6508		if (MAIN_PORT == port)
6509			hw_priv->hw.mac_override = 1;
6510	}
6511}
6512
6513#define KS884X_DMA_MASK			(~0x0UL)
6514
6515static void read_other_addr(struct ksz_hw *hw)
6516{
6517	int i;
6518	u16 data[3];
6519	struct ksz_switch *sw = hw->ksz_switch;
6520
6521	for (i = 0; i < 3; i++)
6522		data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6523	if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6524		sw->other_addr[5] = (u8) data[0];
6525		sw->other_addr[4] = (u8)(data[0] >> 8);
6526		sw->other_addr[3] = (u8) data[1];
6527		sw->other_addr[2] = (u8)(data[1] >> 8);
6528		sw->other_addr[1] = (u8) data[2];
6529		sw->other_addr[0] = (u8)(data[2] >> 8);
6530	}
6531}
6532
6533#ifndef PCI_VENDOR_ID_MICREL_KS
6534#define PCI_VENDOR_ID_MICREL_KS		0x16c6
6535#endif
6536
6537static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6538{
6539	struct net_device *dev;
6540	struct dev_priv *priv;
6541	struct dev_info *hw_priv;
6542	struct ksz_hw *hw;
6543	struct platform_info *info;
6544	struct ksz_port *port;
6545	unsigned long reg_base;
6546	unsigned long reg_len;
6547	int cnt;
6548	int i;
6549	int mib_port_count;
6550	int pi;
6551	int port_count;
6552	int result;
6553	char banner[sizeof(version)];
6554	struct ksz_switch *sw = NULL;
6555
6556	result = pcim_enable_device(pdev);
6557	if (result)
6558		return result;
6559
6560	result = -ENODEV;
6561
6562	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)) ||
6563	    dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)))
6564		return result;
6565
6566	reg_base = pci_resource_start(pdev, 0);
6567	reg_len = pci_resource_len(pdev, 0);
6568	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6569		return result;
6570
6571	if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6572		return result;
6573	pci_set_master(pdev);
6574
6575	result = -ENOMEM;
6576
6577	info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6578	if (!info)
6579		goto pcidev_init_dev_err;
6580
6581	hw_priv = &info->dev_info;
6582	hw_priv->pdev = pdev;
6583
6584	hw = &hw_priv->hw;
6585
6586	hw->io = ioremap(reg_base, reg_len);
6587	if (!hw->io)
6588		goto pcidev_init_io_err;
6589
6590	cnt = hw_init(hw);
6591	if (!cnt) {
6592		if (msg_enable & NETIF_MSG_PROBE)
6593			pr_alert("chip not detected\n");
6594		result = -ENODEV;
6595		goto pcidev_init_alloc_err;
6596	}
6597
6598	snprintf(banner, sizeof(banner), "%s", version);
6599	banner[13] = cnt + '0';		/* Replace x in "Micrel KSZ884x" */
6600	dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6601	dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6602
6603	/* Assume device is KSZ8841. */
6604	hw->dev_count = 1;
6605	port_count = 1;
6606	mib_port_count = 1;
6607	hw->addr_list_size = 0;
6608	hw->mib_cnt = PORT_COUNTER_NUM;
6609	hw->mib_port_cnt = 1;
6610
6611	/* KSZ8842 has a switch with multiple ports. */
6612	if (2 == cnt) {
6613		if (fast_aging)
6614			hw->overrides |= FAST_AGING;
6615
6616		hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
6617
6618		/* Multiple network device interfaces are required. */
6619		if (multi_dev) {
6620			hw->dev_count = SWITCH_PORT_NUM;
6621			hw->addr_list_size = SWITCH_PORT_NUM - 1;
6622		}
6623
6624		/* Single network device has multiple ports. */
6625		if (1 == hw->dev_count) {
6626			port_count = SWITCH_PORT_NUM;
6627			mib_port_count = SWITCH_PORT_NUM;
6628		}
6629		hw->mib_port_cnt = TOTAL_PORT_NUM;
6630		hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
6631		if (!hw->ksz_switch)
6632			goto pcidev_init_alloc_err;
6633
6634		sw = hw->ksz_switch;
6635	}
6636	for (i = 0; i < hw->mib_port_cnt; i++)
6637		hw->port_mib[i].mib_start = 0;
6638
6639	hw->parent = hw_priv;
6640
6641	/* Default MTU is 1500. */
6642	hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
6643
6644	if (ksz_alloc_mem(hw_priv))
6645		goto pcidev_init_mem_err;
6646
6647	hw_priv->hw.id = net_device_present;
6648
6649	spin_lock_init(&hw_priv->hwlock);
6650	mutex_init(&hw_priv->lock);
6651
6652	for (i = 0; i < TOTAL_PORT_NUM; i++)
6653		init_waitqueue_head(&hw_priv->counter[i].counter);
6654
6655	if (macaddr[0] != ':')
6656		get_mac_addr(hw_priv, macaddr, MAIN_PORT);
6657
6658	/* Read MAC address and initialize override address if not overridden. */
6659	hw_read_addr(hw);
6660
6661	/* Multiple device interfaces mode requires a second MAC address. */
6662	if (hw->dev_count > 1) {
6663		memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
6664		read_other_addr(hw);
6665		if (mac1addr[0] != ':')
6666			get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
6667	}
6668
6669	hw_setup(hw);
6670	if (hw->ksz_switch)
6671		sw_setup(hw);
6672	else {
6673		hw_priv->wol_support = WOL_SUPPORT;
6674		hw_priv->wol_enable = 0;
6675	}
6676
6677	INIT_WORK(&hw_priv->mib_read, mib_read_work);
6678
6679	/* 500 ms timeout */
6680	ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
6681		mib_monitor);
6682
6683	for (i = 0; i < hw->dev_count; i++) {
6684		dev = alloc_etherdev(sizeof(struct dev_priv));
6685		if (!dev)
6686			goto pcidev_init_reg_err;
6687		SET_NETDEV_DEV(dev, &pdev->dev);
6688		info->netdev[i] = dev;
6689
6690		priv = netdev_priv(dev);
6691		priv->adapter = hw_priv;
6692		priv->id = net_device_present++;
6693
6694		port = &priv->port;
6695		port->port_cnt = port_count;
6696		port->mib_port_cnt = mib_port_count;
6697		port->first_port = i;
6698		port->flow_ctrl = PHY_FLOW_CTRL;
6699
6700		port->hw = hw;
6701		port->linked = &hw->port_info[port->first_port];
6702
6703		for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
6704			hw->port_info[pi].port_id = pi;
6705			hw->port_info[pi].pdev = dev;
6706			hw->port_info[pi].state = media_disconnected;
6707		}
6708
6709		dev->mem_start = (unsigned long) hw->io;
6710		dev->mem_end = dev->mem_start + reg_len - 1;
6711		dev->irq = pdev->irq;
6712		if (MAIN_PORT == i)
6713			eth_hw_addr_set(dev, hw_priv->hw.override_addr);
 
6714		else {
6715			u8 addr[ETH_ALEN];
6716
6717			ether_addr_copy(addr, sw->other_addr);
6718			if (ether_addr_equal(sw->other_addr, hw->override_addr))
6719				addr[5] += port->first_port;
6720			eth_hw_addr_set(dev, addr);
6721		}
6722
6723		dev->netdev_ops = &netdev_ops;
6724		dev->ethtool_ops = &netdev_ethtool_ops;
6725
6726		/* MTU range: 60 - 1894 */
6727		dev->min_mtu = ETH_ZLEN;
6728		dev->max_mtu = MAX_RX_BUF_SIZE -
6729			       (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
6730
6731		if (register_netdev(dev))
6732			goto pcidev_init_reg_err;
6733		port_set_power_saving(port, true);
6734	}
6735
6736	pci_dev_get(hw_priv->pdev);
6737	pci_set_drvdata(pdev, info);
6738	return 0;
6739
6740pcidev_init_reg_err:
6741	for (i = 0; i < hw->dev_count; i++) {
6742		if (info->netdev[i]) {
6743			netdev_free(info->netdev[i]);
6744			info->netdev[i] = NULL;
6745		}
6746	}
6747
6748pcidev_init_mem_err:
6749	ksz_free_mem(hw_priv);
6750	kfree(hw->ksz_switch);
6751
6752pcidev_init_alloc_err:
6753	iounmap(hw->io);
6754
6755pcidev_init_io_err:
6756	kfree(info);
6757
6758pcidev_init_dev_err:
6759	release_mem_region(reg_base, reg_len);
6760
6761	return result;
6762}
6763
6764static void pcidev_exit(struct pci_dev *pdev)
6765{
6766	int i;
6767	struct platform_info *info = pci_get_drvdata(pdev);
6768	struct dev_info *hw_priv = &info->dev_info;
6769
6770	release_mem_region(pci_resource_start(pdev, 0),
6771		pci_resource_len(pdev, 0));
6772	for (i = 0; i < hw_priv->hw.dev_count; i++) {
6773		if (info->netdev[i])
6774			netdev_free(info->netdev[i]);
6775	}
6776	if (hw_priv->hw.io)
6777		iounmap(hw_priv->hw.io);
6778	ksz_free_mem(hw_priv);
6779	kfree(hw_priv->hw.ksz_switch);
6780	pci_dev_put(hw_priv->pdev);
6781	kfree(info);
6782}
6783
6784static int __maybe_unused pcidev_resume(struct device *dev_d)
 
6785{
6786	int i;
6787	struct platform_info *info = dev_get_drvdata(dev_d);
6788	struct dev_info *hw_priv = &info->dev_info;
6789	struct ksz_hw *hw = &hw_priv->hw;
6790
6791	device_wakeup_disable(dev_d);
 
 
6792
6793	if (hw_priv->wol_enable)
6794		hw_cfg_wol_pme(hw, 0);
6795	for (i = 0; i < hw->dev_count; i++) {
6796		if (info->netdev[i]) {
6797			struct net_device *dev = info->netdev[i];
6798
6799			if (netif_running(dev)) {
6800				netdev_open(dev);
6801				netif_device_attach(dev);
6802			}
6803		}
6804	}
6805	return 0;
6806}
6807
6808static int __maybe_unused pcidev_suspend(struct device *dev_d)
6809{
6810	int i;
6811	struct platform_info *info = dev_get_drvdata(dev_d);
6812	struct dev_info *hw_priv = &info->dev_info;
6813	struct ksz_hw *hw = &hw_priv->hw;
6814
6815	/* Need to find a way to retrieve the device IP address. */
6816	static const u8 net_addr[] = { 192, 168, 1, 1 };
6817
6818	for (i = 0; i < hw->dev_count; i++) {
6819		if (info->netdev[i]) {
6820			struct net_device *dev = info->netdev[i];
6821
6822			if (netif_running(dev)) {
6823				netif_device_detach(dev);
6824				netdev_close(dev);
6825			}
6826		}
6827	}
6828	if (hw_priv->wol_enable) {
6829		hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
6830		hw_cfg_wol_pme(hw, 1);
6831	}
6832
6833	device_wakeup_enable(dev_d);
 
 
6834	return 0;
6835}
 
6836
6837static char pcidev_name[] = "ksz884xp";
6838
6839static const struct pci_device_id pcidev_table[] = {
6840	{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
6841		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
6842	{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
6843		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
6844	{ 0 }
6845};
6846
6847MODULE_DEVICE_TABLE(pci, pcidev_table);
6848
6849static SIMPLE_DEV_PM_OPS(pcidev_pm_ops, pcidev_suspend, pcidev_resume);
6850
6851static struct pci_driver pci_device_driver = {
6852	.driver.pm	= &pcidev_pm_ops,
 
 
 
6853	.name		= pcidev_name,
6854	.id_table	= pcidev_table,
6855	.probe		= pcidev_init,
6856	.remove		= pcidev_exit
6857};
6858
6859module_pci_driver(pci_device_driver);
6860
6861MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
6862MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
6863MODULE_LICENSE("GPL");
6864
6865module_param_named(message, msg_enable, int, 0);
6866MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
6867
6868module_param(macaddr, charp, 0);
6869module_param(mac1addr, charp, 0);
6870module_param(fast_aging, int, 0);
6871module_param(multi_dev, int, 0);
6872module_param(stp, int, 0);
6873MODULE_PARM_DESC(macaddr, "MAC address");
6874MODULE_PARM_DESC(mac1addr, "Second MAC address");
6875MODULE_PARM_DESC(fast_aging, "Fast aging");
6876MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
6877MODULE_PARM_DESC(stp, "STP support");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/**
   3 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
   4 *
   5 * Copyright (c) 2009-2010 Micrel, Inc.
   6 * 	Tristram Ha <Tristram.Ha@micrel.com>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/ioport.h>
  16#include <linux/pci.h>
  17#include <linux/proc_fs.h>
  18#include <linux/mii.h>
  19#include <linux/platform_device.h>
  20#include <linux/ethtool.h>
  21#include <linux/etherdevice.h>
  22#include <linux/in.h>
  23#include <linux/ip.h>
  24#include <linux/if_vlan.h>
  25#include <linux/crc32.h>
  26#include <linux/sched.h>
  27#include <linux/slab.h>
 
  28
  29
  30/* DMA Registers */
  31
  32#define KS_DMA_TX_CTRL			0x0000
  33#define DMA_TX_ENABLE			0x00000001
  34#define DMA_TX_CRC_ENABLE		0x00000002
  35#define DMA_TX_PAD_ENABLE		0x00000004
  36#define DMA_TX_LOOPBACK			0x00000100
  37#define DMA_TX_FLOW_ENABLE		0x00000200
  38#define DMA_TX_CSUM_IP			0x00010000
  39#define DMA_TX_CSUM_TCP			0x00020000
  40#define DMA_TX_CSUM_UDP			0x00040000
  41#define DMA_TX_BURST_SIZE		0x3F000000
  42
  43#define KS_DMA_RX_CTRL			0x0004
  44#define DMA_RX_ENABLE			0x00000001
  45#define KS884X_DMA_RX_MULTICAST		0x00000002
  46#define DMA_RX_PROMISCUOUS		0x00000004
  47#define DMA_RX_ERROR			0x00000008
  48#define DMA_RX_UNICAST			0x00000010
  49#define DMA_RX_ALL_MULTICAST		0x00000020
  50#define DMA_RX_BROADCAST		0x00000040
  51#define DMA_RX_FLOW_ENABLE		0x00000200
  52#define DMA_RX_CSUM_IP			0x00010000
  53#define DMA_RX_CSUM_TCP			0x00020000
  54#define DMA_RX_CSUM_UDP			0x00040000
  55#define DMA_RX_BURST_SIZE		0x3F000000
  56
  57#define DMA_BURST_SHIFT			24
  58#define DMA_BURST_DEFAULT		8
  59
  60#define KS_DMA_TX_START			0x0008
  61#define KS_DMA_RX_START			0x000C
  62#define DMA_START			0x00000001
  63
  64#define KS_DMA_TX_ADDR			0x0010
  65#define KS_DMA_RX_ADDR			0x0014
  66
  67#define DMA_ADDR_LIST_MASK		0xFFFFFFFC
  68#define DMA_ADDR_LIST_SHIFT		2
  69
  70/* MTR0 */
  71#define KS884X_MULTICAST_0_OFFSET	0x0020
  72#define KS884X_MULTICAST_1_OFFSET	0x0021
  73#define KS884X_MULTICAST_2_OFFSET	0x0022
  74#define KS884x_MULTICAST_3_OFFSET	0x0023
  75/* MTR1 */
  76#define KS884X_MULTICAST_4_OFFSET	0x0024
  77#define KS884X_MULTICAST_5_OFFSET	0x0025
  78#define KS884X_MULTICAST_6_OFFSET	0x0026
  79#define KS884X_MULTICAST_7_OFFSET	0x0027
  80
  81/* Interrupt Registers */
  82
  83/* INTEN */
  84#define KS884X_INTERRUPTS_ENABLE	0x0028
  85/* INTST */
  86#define KS884X_INTERRUPTS_STATUS	0x002C
  87
  88#define KS884X_INT_RX_STOPPED		0x02000000
  89#define KS884X_INT_TX_STOPPED		0x04000000
  90#define KS884X_INT_RX_OVERRUN		0x08000000
  91#define KS884X_INT_TX_EMPTY		0x10000000
  92#define KS884X_INT_RX			0x20000000
  93#define KS884X_INT_TX			0x40000000
  94#define KS884X_INT_PHY			0x80000000
  95
  96#define KS884X_INT_RX_MASK		\
  97	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
  98#define KS884X_INT_TX_MASK		\
  99	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
 100#define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
 101
 102/* MAC Additional Station Address */
 103
 104/* MAAL0 */
 105#define KS_ADD_ADDR_0_LO		0x0080
 106/* MAAH0 */
 107#define KS_ADD_ADDR_0_HI		0x0084
 108/* MAAL1 */
 109#define KS_ADD_ADDR_1_LO		0x0088
 110/* MAAH1 */
 111#define KS_ADD_ADDR_1_HI		0x008C
 112/* MAAL2 */
 113#define KS_ADD_ADDR_2_LO		0x0090
 114/* MAAH2 */
 115#define KS_ADD_ADDR_2_HI		0x0094
 116/* MAAL3 */
 117#define KS_ADD_ADDR_3_LO		0x0098
 118/* MAAH3 */
 119#define KS_ADD_ADDR_3_HI		0x009C
 120/* MAAL4 */
 121#define KS_ADD_ADDR_4_LO		0x00A0
 122/* MAAH4 */
 123#define KS_ADD_ADDR_4_HI		0x00A4
 124/* MAAL5 */
 125#define KS_ADD_ADDR_5_LO		0x00A8
 126/* MAAH5 */
 127#define KS_ADD_ADDR_5_HI		0x00AC
 128/* MAAL6 */
 129#define KS_ADD_ADDR_6_LO		0x00B0
 130/* MAAH6 */
 131#define KS_ADD_ADDR_6_HI		0x00B4
 132/* MAAL7 */
 133#define KS_ADD_ADDR_7_LO		0x00B8
 134/* MAAH7 */
 135#define KS_ADD_ADDR_7_HI		0x00BC
 136/* MAAL8 */
 137#define KS_ADD_ADDR_8_LO		0x00C0
 138/* MAAH8 */
 139#define KS_ADD_ADDR_8_HI		0x00C4
 140/* MAAL9 */
 141#define KS_ADD_ADDR_9_LO		0x00C8
 142/* MAAH9 */
 143#define KS_ADD_ADDR_9_HI		0x00CC
 144/* MAAL10 */
 145#define KS_ADD_ADDR_A_LO		0x00D0
 146/* MAAH10 */
 147#define KS_ADD_ADDR_A_HI		0x00D4
 148/* MAAL11 */
 149#define KS_ADD_ADDR_B_LO		0x00D8
 150/* MAAH11 */
 151#define KS_ADD_ADDR_B_HI		0x00DC
 152/* MAAL12 */
 153#define KS_ADD_ADDR_C_LO		0x00E0
 154/* MAAH12 */
 155#define KS_ADD_ADDR_C_HI		0x00E4
 156/* MAAL13 */
 157#define KS_ADD_ADDR_D_LO		0x00E8
 158/* MAAH13 */
 159#define KS_ADD_ADDR_D_HI		0x00EC
 160/* MAAL14 */
 161#define KS_ADD_ADDR_E_LO		0x00F0
 162/* MAAH14 */
 163#define KS_ADD_ADDR_E_HI		0x00F4
 164/* MAAL15 */
 165#define KS_ADD_ADDR_F_LO		0x00F8
 166/* MAAH15 */
 167#define KS_ADD_ADDR_F_HI		0x00FC
 168
 169#define ADD_ADDR_HI_MASK		0x0000FFFF
 170#define ADD_ADDR_ENABLE			0x80000000
 171#define ADD_ADDR_INCR			8
 172
 173/* Miscellaneous Registers */
 174
 175/* MARL */
 176#define KS884X_ADDR_0_OFFSET		0x0200
 177#define KS884X_ADDR_1_OFFSET		0x0201
 178/* MARM */
 179#define KS884X_ADDR_2_OFFSET		0x0202
 180#define KS884X_ADDR_3_OFFSET		0x0203
 181/* MARH */
 182#define KS884X_ADDR_4_OFFSET		0x0204
 183#define KS884X_ADDR_5_OFFSET		0x0205
 184
 185/* OBCR */
 186#define KS884X_BUS_CTRL_OFFSET		0x0210
 187
 188#define BUS_SPEED_125_MHZ		0x0000
 189#define BUS_SPEED_62_5_MHZ		0x0001
 190#define BUS_SPEED_41_66_MHZ		0x0002
 191#define BUS_SPEED_25_MHZ		0x0003
 192
 193/* EEPCR */
 194#define KS884X_EEPROM_CTRL_OFFSET	0x0212
 195
 196#define EEPROM_CHIP_SELECT		0x0001
 197#define EEPROM_SERIAL_CLOCK		0x0002
 198#define EEPROM_DATA_OUT			0x0004
 199#define EEPROM_DATA_IN			0x0008
 200#define EEPROM_ACCESS_ENABLE		0x0010
 201
 202/* MBIR */
 203#define KS884X_MEM_INFO_OFFSET		0x0214
 204
 205#define RX_MEM_TEST_FAILED		0x0008
 206#define RX_MEM_TEST_FINISHED		0x0010
 207#define TX_MEM_TEST_FAILED		0x0800
 208#define TX_MEM_TEST_FINISHED		0x1000
 209
 210/* GCR */
 211#define KS884X_GLOBAL_CTRL_OFFSET	0x0216
 212#define GLOBAL_SOFTWARE_RESET		0x0001
 213
 214#define KS8841_POWER_MANAGE_OFFSET	0x0218
 215
 216/* WFCR */
 217#define KS8841_WOL_CTRL_OFFSET		0x021A
 218#define KS8841_WOL_MAGIC_ENABLE		0x0080
 219#define KS8841_WOL_FRAME3_ENABLE	0x0008
 220#define KS8841_WOL_FRAME2_ENABLE	0x0004
 221#define KS8841_WOL_FRAME1_ENABLE	0x0002
 222#define KS8841_WOL_FRAME0_ENABLE	0x0001
 223
 224/* WF0 */
 225#define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
 226#define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
 227#define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228
 228
 229/* IACR */
 230#define KS884X_IACR_P			0x04A0
 231#define KS884X_IACR_OFFSET		KS884X_IACR_P
 232
 233/* IADR1 */
 234#define KS884X_IADR1_P			0x04A2
 235#define KS884X_IADR2_P			0x04A4
 236#define KS884X_IADR3_P			0x04A6
 237#define KS884X_IADR4_P			0x04A8
 238#define KS884X_IADR5_P			0x04AA
 239
 240#define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
 241#define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)
 242
 243#define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
 244#define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
 245#define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
 246#define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
 247#define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
 248#define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
 249#define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
 250#define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
 251#define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P
 252
 253/* P1MBCR */
 254#define KS884X_P1MBCR_P			0x04D0
 255#define KS884X_P1MBSR_P			0x04D2
 256#define KS884X_PHY1ILR_P		0x04D4
 257#define KS884X_PHY1IHR_P		0x04D6
 258#define KS884X_P1ANAR_P			0x04D8
 259#define KS884X_P1ANLPR_P		0x04DA
 260
 261/* P2MBCR */
 262#define KS884X_P2MBCR_P			0x04E0
 263#define KS884X_P2MBSR_P			0x04E2
 264#define KS884X_PHY2ILR_P		0x04E4
 265#define KS884X_PHY2IHR_P		0x04E6
 266#define KS884X_P2ANAR_P			0x04E8
 267#define KS884X_P2ANLPR_P		0x04EA
 268
 269#define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
 270#define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)
 271
 272#define KS884X_PHY_CTRL_OFFSET		0x00
 273
 274/* Mode Control Register */
 275#define PHY_REG_CTRL			0
 276
 277#define PHY_RESET			0x8000
 278#define PHY_LOOPBACK			0x4000
 279#define PHY_SPEED_100MBIT		0x2000
 280#define PHY_AUTO_NEG_ENABLE		0x1000
 281#define PHY_POWER_DOWN			0x0800
 282#define PHY_MII_DISABLE			0x0400
 283#define PHY_AUTO_NEG_RESTART		0x0200
 284#define PHY_FULL_DUPLEX			0x0100
 285#define PHY_COLLISION_TEST		0x0080
 286#define PHY_HP_MDIX			0x0020
 287#define PHY_FORCE_MDIX			0x0010
 288#define PHY_AUTO_MDIX_DISABLE		0x0008
 289#define PHY_REMOTE_FAULT_DISABLE	0x0004
 290#define PHY_TRANSMIT_DISABLE		0x0002
 291#define PHY_LED_DISABLE			0x0001
 292
 293#define KS884X_PHY_STATUS_OFFSET	0x02
 294
 295/* Mode Status Register */
 296#define PHY_REG_STATUS			1
 297
 298#define PHY_100BT4_CAPABLE		0x8000
 299#define PHY_100BTX_FD_CAPABLE		0x4000
 300#define PHY_100BTX_CAPABLE		0x2000
 301#define PHY_10BT_FD_CAPABLE		0x1000
 302#define PHY_10BT_CAPABLE		0x0800
 303#define PHY_MII_SUPPRESS_CAPABLE	0x0040
 304#define PHY_AUTO_NEG_ACKNOWLEDGE	0x0020
 305#define PHY_REMOTE_FAULT		0x0010
 306#define PHY_AUTO_NEG_CAPABLE		0x0008
 307#define PHY_LINK_STATUS			0x0004
 308#define PHY_JABBER_DETECT		0x0002
 309#define PHY_EXTENDED_CAPABILITY		0x0001
 310
 311#define KS884X_PHY_ID_1_OFFSET		0x04
 312#define KS884X_PHY_ID_2_OFFSET		0x06
 313
 314/* PHY Identifier Registers */
 315#define PHY_REG_ID_1			2
 316#define PHY_REG_ID_2			3
 317
 318#define KS884X_PHY_AUTO_NEG_OFFSET	0x08
 319
 320/* Auto-Negotiation Advertisement Register */
 321#define PHY_REG_AUTO_NEGOTIATION	4
 322
 323#define PHY_AUTO_NEG_NEXT_PAGE		0x8000
 324#define PHY_AUTO_NEG_REMOTE_FAULT	0x2000
 325/* Not supported. */
 326#define PHY_AUTO_NEG_ASYM_PAUSE		0x0800
 327#define PHY_AUTO_NEG_SYM_PAUSE		0x0400
 328#define PHY_AUTO_NEG_100BT4		0x0200
 329#define PHY_AUTO_NEG_100BTX_FD		0x0100
 330#define PHY_AUTO_NEG_100BTX		0x0080
 331#define PHY_AUTO_NEG_10BT_FD		0x0040
 332#define PHY_AUTO_NEG_10BT		0x0020
 333#define PHY_AUTO_NEG_SELECTOR		0x001F
 334#define PHY_AUTO_NEG_802_3		0x0001
 335
 336#define PHY_AUTO_NEG_PAUSE  (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
 337
 338#define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A
 339
 340/* Auto-Negotiation Link Partner Ability Register */
 341#define PHY_REG_REMOTE_CAPABILITY	5
 342
 343#define PHY_REMOTE_NEXT_PAGE		0x8000
 344#define PHY_REMOTE_ACKNOWLEDGE		0x4000
 345#define PHY_REMOTE_REMOTE_FAULT		0x2000
 346#define PHY_REMOTE_SYM_PAUSE		0x0400
 347#define PHY_REMOTE_100BTX_FD		0x0100
 348#define PHY_REMOTE_100BTX		0x0080
 349#define PHY_REMOTE_10BT_FD		0x0040
 350#define PHY_REMOTE_10BT			0x0020
 351
 352/* P1VCT */
 353#define KS884X_P1VCT_P			0x04F0
 354#define KS884X_P1PHYCTRL_P		0x04F2
 355
 356/* P2VCT */
 357#define KS884X_P2VCT_P			0x04F4
 358#define KS884X_P2PHYCTRL_P		0x04F6
 359
 360#define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
 361#define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)
 362
 363#define KS884X_PHY_LINK_MD_OFFSET	0x00
 364
 365#define PHY_START_CABLE_DIAG		0x8000
 366#define PHY_CABLE_DIAG_RESULT		0x6000
 367#define PHY_CABLE_STAT_NORMAL		0x0000
 368#define PHY_CABLE_STAT_OPEN		0x2000
 369#define PHY_CABLE_STAT_SHORT		0x4000
 370#define PHY_CABLE_STAT_FAILED		0x6000
 371#define PHY_CABLE_10M_SHORT		0x1000
 372#define PHY_CABLE_FAULT_COUNTER		0x01FF
 373
 374#define KS884X_PHY_PHY_CTRL_OFFSET	0x02
 375
 376#define PHY_STAT_REVERSED_POLARITY	0x0020
 377#define PHY_STAT_MDIX			0x0010
 378#define PHY_FORCE_LINK			0x0008
 379#define PHY_POWER_SAVING_DISABLE	0x0004
 380#define PHY_REMOTE_LOOPBACK		0x0002
 381
 382/* SIDER */
 383#define KS884X_SIDER_P			0x0400
 384#define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
 385#define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)
 386
 387#define REG_FAMILY_ID			0x88
 388
 389#define REG_CHIP_ID_41			0x8810
 390#define REG_CHIP_ID_42			0x8800
 391
 392#define KS884X_CHIP_ID_MASK_41		0xFF10
 393#define KS884X_CHIP_ID_MASK		0xFFF0
 394#define KS884X_CHIP_ID_SHIFT		4
 395#define KS884X_REVISION_MASK		0x000E
 396#define KS884X_REVISION_SHIFT		1
 397#define KS8842_START			0x0001
 398
 399#define CHIP_IP_41_M			0x8810
 400#define CHIP_IP_42_M			0x8800
 401#define CHIP_IP_61_M			0x8890
 402#define CHIP_IP_62_M			0x8880
 403
 404#define CHIP_IP_41_P			0x8850
 405#define CHIP_IP_42_P			0x8840
 406#define CHIP_IP_61_P			0x88D0
 407#define CHIP_IP_62_P			0x88C0
 408
 409/* SGCR1 */
 410#define KS8842_SGCR1_P			0x0402
 411#define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P
 412
 413#define SWITCH_PASS_ALL			0x8000
 414#define SWITCH_TX_FLOW_CTRL		0x2000
 415#define SWITCH_RX_FLOW_CTRL		0x1000
 416#define SWITCH_CHECK_LENGTH		0x0800
 417#define SWITCH_AGING_ENABLE		0x0400
 418#define SWITCH_FAST_AGING		0x0200
 419#define SWITCH_AGGR_BACKOFF		0x0100
 420#define SWITCH_PASS_PAUSE		0x0008
 421#define SWITCH_LINK_AUTO_AGING		0x0001
 422
 423/* SGCR2 */
 424#define KS8842_SGCR2_P			0x0404
 425#define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P
 426
 427#define SWITCH_VLAN_ENABLE		0x8000
 428#define SWITCH_IGMP_SNOOP		0x4000
 429#define IPV6_MLD_SNOOP_ENABLE		0x2000
 430#define IPV6_MLD_SNOOP_OPTION		0x1000
 431#define PRIORITY_SCHEME_SELECT		0x0800
 432#define SWITCH_MIRROR_RX_TX		0x0100
 433#define UNICAST_VLAN_BOUNDARY		0x0080
 434#define MULTICAST_STORM_DISABLE		0x0040
 435#define SWITCH_BACK_PRESSURE		0x0020
 436#define FAIR_FLOW_CTRL			0x0010
 437#define NO_EXC_COLLISION_DROP		0x0008
 438#define SWITCH_HUGE_PACKET		0x0004
 439#define SWITCH_LEGAL_PACKET		0x0002
 440#define SWITCH_BUF_RESERVE		0x0001
 441
 442/* SGCR3 */
 443#define KS8842_SGCR3_P			0x0406
 444#define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P
 445
 446#define BROADCAST_STORM_RATE_LO		0xFF00
 447#define SWITCH_REPEATER			0x0080
 448#define SWITCH_HALF_DUPLEX		0x0040
 449#define SWITCH_FLOW_CTRL		0x0020
 450#define SWITCH_10_MBIT			0x0010
 451#define SWITCH_REPLACE_NULL_VID		0x0008
 452#define BROADCAST_STORM_RATE_HI		0x0007
 453
 454#define BROADCAST_STORM_RATE		0x07FF
 455
 456/* SGCR4 */
 457#define KS8842_SGCR4_P			0x0408
 458
 459/* SGCR5 */
 460#define KS8842_SGCR5_P			0x040A
 461#define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P
 462
 463#define LED_MODE			0x8200
 464#define LED_SPEED_DUPLEX_ACT		0x0000
 465#define LED_SPEED_DUPLEX_LINK_ACT	0x8000
 466#define LED_DUPLEX_10_100		0x0200
 467
 468/* SGCR6 */
 469#define KS8842_SGCR6_P			0x0410
 470#define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P
 471
 472#define KS8842_PRIORITY_MASK		3
 473#define KS8842_PRIORITY_SHIFT		2
 474
 475/* SGCR7 */
 476#define KS8842_SGCR7_P			0x0412
 477#define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P
 478
 479#define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
 480#define SWITCH_UNK_DEF_PORT_3		0x0004
 481#define SWITCH_UNK_DEF_PORT_2		0x0002
 482#define SWITCH_UNK_DEF_PORT_1		0x0001
 483
 484/* MACAR1 */
 485#define KS8842_MACAR1_P			0x0470
 486#define KS8842_MACAR2_P			0x0472
 487#define KS8842_MACAR3_P			0x0474
 488#define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
 489#define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
 490#define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
 491#define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
 492#define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
 493#define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)
 494
 495/* TOSR1 */
 496#define KS8842_TOSR1_P			0x0480
 497#define KS8842_TOSR2_P			0x0482
 498#define KS8842_TOSR3_P			0x0484
 499#define KS8842_TOSR4_P			0x0486
 500#define KS8842_TOSR5_P			0x0488
 501#define KS8842_TOSR6_P			0x048A
 502#define KS8842_TOSR7_P			0x0490
 503#define KS8842_TOSR8_P			0x0492
 504#define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
 505#define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
 506#define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
 507#define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
 508#define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
 509#define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P
 510
 511#define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
 512#define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P
 513
 514/* P1CR1 */
 515#define KS8842_P1CR1_P			0x0500
 516#define KS8842_P1CR2_P			0x0502
 517#define KS8842_P1VIDR_P			0x0504
 518#define KS8842_P1CR3_P			0x0506
 519#define KS8842_P1IRCR_P			0x0508
 520#define KS8842_P1ERCR_P			0x050A
 521#define KS884X_P1SCSLMD_P		0x0510
 522#define KS884X_P1CR4_P			0x0512
 523#define KS884X_P1SR_P			0x0514
 524
 525/* P2CR1 */
 526#define KS8842_P2CR1_P			0x0520
 527#define KS8842_P2CR2_P			0x0522
 528#define KS8842_P2VIDR_P			0x0524
 529#define KS8842_P2CR3_P			0x0526
 530#define KS8842_P2IRCR_P			0x0528
 531#define KS8842_P2ERCR_P			0x052A
 532#define KS884X_P2SCSLMD_P		0x0530
 533#define KS884X_P2CR4_P			0x0532
 534#define KS884X_P2SR_P			0x0534
 535
 536/* P3CR1 */
 537#define KS8842_P3CR1_P			0x0540
 538#define KS8842_P3CR2_P			0x0542
 539#define KS8842_P3VIDR_P			0x0544
 540#define KS8842_P3CR3_P			0x0546
 541#define KS8842_P3IRCR_P			0x0548
 542#define KS8842_P3ERCR_P			0x054A
 543
 544#define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
 545#define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
 546#define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P
 547
 548#define PORT_CTRL_ADDR(port, addr)		\
 549	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
 550		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
 551
 552#define KS8842_PORT_CTRL_1_OFFSET	0x00
 553
 554#define PORT_BROADCAST_STORM		0x0080
 555#define PORT_DIFFSERV_ENABLE		0x0040
 556#define PORT_802_1P_ENABLE		0x0020
 557#define PORT_BASED_PRIORITY_MASK	0x0018
 558#define PORT_BASED_PRIORITY_BASE	0x0003
 559#define PORT_BASED_PRIORITY_SHIFT	3
 560#define PORT_BASED_PRIORITY_0		0x0000
 561#define PORT_BASED_PRIORITY_1		0x0008
 562#define PORT_BASED_PRIORITY_2		0x0010
 563#define PORT_BASED_PRIORITY_3		0x0018
 564#define PORT_INSERT_TAG			0x0004
 565#define PORT_REMOVE_TAG			0x0002
 566#define PORT_PRIO_QUEUE_ENABLE		0x0001
 567
 568#define KS8842_PORT_CTRL_2_OFFSET	0x02
 569
 570#define PORT_INGRESS_VLAN_FILTER	0x4000
 571#define PORT_DISCARD_NON_VID		0x2000
 572#define PORT_FORCE_FLOW_CTRL		0x1000
 573#define PORT_BACK_PRESSURE		0x0800
 574#define PORT_TX_ENABLE			0x0400
 575#define PORT_RX_ENABLE			0x0200
 576#define PORT_LEARN_DISABLE		0x0100
 577#define PORT_MIRROR_SNIFFER		0x0080
 578#define PORT_MIRROR_RX			0x0040
 579#define PORT_MIRROR_TX			0x0020
 580#define PORT_USER_PRIORITY_CEILING	0x0008
 581#define PORT_VLAN_MEMBERSHIP		0x0007
 582
 583#define KS8842_PORT_CTRL_VID_OFFSET	0x04
 584
 585#define PORT_DEFAULT_VID		0x0001
 586
 587#define KS8842_PORT_CTRL_3_OFFSET	0x06
 588
 589#define PORT_INGRESS_LIMIT_MODE		0x000C
 590#define PORT_INGRESS_ALL		0x0000
 591#define PORT_INGRESS_UNICAST		0x0004
 592#define PORT_INGRESS_MULTICAST		0x0008
 593#define PORT_INGRESS_BROADCAST		0x000C
 594#define PORT_COUNT_IFG			0x0002
 595#define PORT_COUNT_PREAMBLE		0x0001
 596
 597#define KS8842_PORT_IN_RATE_OFFSET	0x08
 598#define KS8842_PORT_OUT_RATE_OFFSET	0x0A
 599
 600#define PORT_PRIORITY_RATE		0x0F
 601#define PORT_PRIORITY_RATE_SHIFT	4
 602
 603#define KS884X_PORT_LINK_MD		0x10
 604
 605#define PORT_CABLE_10M_SHORT		0x8000
 606#define PORT_CABLE_DIAG_RESULT		0x6000
 607#define PORT_CABLE_STAT_NORMAL		0x0000
 608#define PORT_CABLE_STAT_OPEN		0x2000
 609#define PORT_CABLE_STAT_SHORT		0x4000
 610#define PORT_CABLE_STAT_FAILED		0x6000
 611#define PORT_START_CABLE_DIAG		0x1000
 612#define PORT_FORCE_LINK			0x0800
 613#define PORT_POWER_SAVING_DISABLE	0x0400
 614#define PORT_PHY_REMOTE_LOOPBACK	0x0200
 615#define PORT_CABLE_FAULT_COUNTER	0x01FF
 616
 617#define KS884X_PORT_CTRL_4_OFFSET	0x12
 618
 619#define PORT_LED_OFF			0x8000
 620#define PORT_TX_DISABLE			0x4000
 621#define PORT_AUTO_NEG_RESTART		0x2000
 622#define PORT_REMOTE_FAULT_DISABLE	0x1000
 623#define PORT_POWER_DOWN			0x0800
 624#define PORT_AUTO_MDIX_DISABLE		0x0400
 625#define PORT_FORCE_MDIX			0x0200
 626#define PORT_LOOPBACK			0x0100
 627#define PORT_AUTO_NEG_ENABLE		0x0080
 628#define PORT_FORCE_100_MBIT		0x0040
 629#define PORT_FORCE_FULL_DUPLEX		0x0020
 630#define PORT_AUTO_NEG_SYM_PAUSE		0x0010
 631#define PORT_AUTO_NEG_100BTX_FD		0x0008
 632#define PORT_AUTO_NEG_100BTX		0x0004
 633#define PORT_AUTO_NEG_10BT_FD		0x0002
 634#define PORT_AUTO_NEG_10BT		0x0001
 635
 636#define KS884X_PORT_STATUS_OFFSET	0x14
 637
 638#define PORT_HP_MDIX			0x8000
 639#define PORT_REVERSED_POLARITY		0x2000
 640#define PORT_RX_FLOW_CTRL		0x0800
 641#define PORT_TX_FLOW_CTRL		0x1000
 642#define PORT_STATUS_SPEED_100MBIT	0x0400
 643#define PORT_STATUS_FULL_DUPLEX		0x0200
 644#define PORT_REMOTE_FAULT		0x0100
 645#define PORT_MDIX_STATUS		0x0080
 646#define PORT_AUTO_NEG_COMPLETE		0x0040
 647#define PORT_STATUS_LINK_GOOD		0x0020
 648#define PORT_REMOTE_SYM_PAUSE		0x0010
 649#define PORT_REMOTE_100BTX_FD		0x0008
 650#define PORT_REMOTE_100BTX		0x0004
 651#define PORT_REMOTE_10BT_FD		0x0002
 652#define PORT_REMOTE_10BT		0x0001
 653
 654/*
 655#define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 656#define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
 657#define STATIC_MAC_TABLE_VALID		00-00080000-00000000
 658#define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
 659#define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
 660#define STATIC_MAC_TABLE_FID		00-03C00000-00000000
 661*/
 662
 663#define STATIC_MAC_TABLE_ADDR		0x0000FFFF
 664#define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
 665#define STATIC_MAC_TABLE_VALID		0x00080000
 666#define STATIC_MAC_TABLE_OVERRIDE	0x00100000
 667#define STATIC_MAC_TABLE_USE_FID	0x00200000
 668#define STATIC_MAC_TABLE_FID		0x03C00000
 669
 670#define STATIC_MAC_FWD_PORTS_SHIFT	16
 671#define STATIC_MAC_FID_SHIFT		22
 672
 673/*
 674#define VLAN_TABLE_VID			00-00000000-00000FFF
 675#define VLAN_TABLE_FID			00-00000000-0000F000
 676#define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
 677#define VLAN_TABLE_VALID		00-00000000-00080000
 678*/
 679
 680#define VLAN_TABLE_VID			0x00000FFF
 681#define VLAN_TABLE_FID			0x0000F000
 682#define VLAN_TABLE_MEMBERSHIP		0x00070000
 683#define VLAN_TABLE_VALID		0x00080000
 684
 685#define VLAN_TABLE_FID_SHIFT		12
 686#define VLAN_TABLE_MEMBERSHIP_SHIFT	16
 687
 688/*
 689#define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 690#define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
 691#define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
 692#define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
 693#define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
 694#define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
 695#define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
 696#define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
 697*/
 698
 699#define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
 700#define DYNAMIC_MAC_TABLE_FID		0x000F0000
 701#define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
 702#define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
 703#define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000
 704
 705#define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
 706#define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
 707#define DYNAMIC_MAC_TABLE_RESERVED	0x78
 708#define DYNAMIC_MAC_TABLE_NOT_READY	0x80
 709
 710#define DYNAMIC_MAC_FID_SHIFT		16
 711#define DYNAMIC_MAC_SRC_PORT_SHIFT	20
 712#define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
 713#define DYNAMIC_MAC_ENTRIES_SHIFT	24
 714#define DYNAMIC_MAC_ENTRIES_H_SHIFT	8
 715
 716/*
 717#define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
 718#define MIB_COUNTER_VALID		00-00000000-40000000
 719#define MIB_COUNTER_OVERFLOW		00-00000000-80000000
 720*/
 721
 722#define MIB_COUNTER_VALUE		0x3FFFFFFF
 723#define MIB_COUNTER_VALID		0x40000000
 724#define MIB_COUNTER_OVERFLOW		0x80000000
 725
 726#define MIB_PACKET_DROPPED		0x0000FFFF
 727
 728#define KS_MIB_PACKET_DROPPED_TX_0	0x100
 729#define KS_MIB_PACKET_DROPPED_TX_1	0x101
 730#define KS_MIB_PACKET_DROPPED_TX	0x102
 731#define KS_MIB_PACKET_DROPPED_RX_0	0x103
 732#define KS_MIB_PACKET_DROPPED_RX_1	0x104
 733#define KS_MIB_PACKET_DROPPED_RX	0x105
 734
 735/* Change default LED mode. */
 736#define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT
 737
 738#define MAC_ADDR_ORDER(i)		(ETH_ALEN - 1 - (i))
 739
 740#define MAX_ETHERNET_BODY_SIZE		1500
 741#define ETHERNET_HEADER_SIZE		(14 + VLAN_HLEN)
 742
 743#define MAX_ETHERNET_PACKET_SIZE	\
 744	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
 745
 746#define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
 747#define MAX_RX_BUF_SIZE			(1912 + 4)
 748
 749#define ADDITIONAL_ENTRIES		16
 750#define MAX_MULTICAST_LIST		32
 751
 752#define HW_MULTICAST_SIZE		8
 753
 754#define HW_TO_DEV_PORT(port)		(port - 1)
 755
 756enum {
 757	media_connected,
 758	media_disconnected
 759};
 760
 761enum {
 762	OID_COUNTER_UNKOWN,
 763
 764	OID_COUNTER_FIRST,
 765
 766	/* total transmit errors */
 767	OID_COUNTER_XMIT_ERROR,
 768
 769	/* total receive errors */
 770	OID_COUNTER_RCV_ERROR,
 771
 772	OID_COUNTER_LAST
 773};
 774
 775/*
 776 * Hardware descriptor definitions
 777 */
 778
 779#define DESC_ALIGNMENT			16
 780#define BUFFER_ALIGNMENT		8
 781
 782#define NUM_OF_RX_DESC			64
 783#define NUM_OF_TX_DESC			64
 784
 785#define KS_DESC_RX_FRAME_LEN		0x000007FF
 786#define KS_DESC_RX_FRAME_TYPE		0x00008000
 787#define KS_DESC_RX_ERROR_CRC		0x00010000
 788#define KS_DESC_RX_ERROR_RUNT		0x00020000
 789#define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
 790#define KS_DESC_RX_ERROR_PHY		0x00080000
 791#define KS884X_DESC_RX_PORT_MASK	0x00300000
 792#define KS_DESC_RX_MULTICAST		0x01000000
 793#define KS_DESC_RX_ERROR		0x02000000
 794#define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
 795#define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
 796#define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
 797#define KS_DESC_RX_LAST			0x20000000
 798#define KS_DESC_RX_FIRST		0x40000000
 799#define KS_DESC_RX_ERROR_COND		\
 800	(KS_DESC_RX_ERROR_CRC |		\
 801	KS_DESC_RX_ERROR_RUNT |		\
 802	KS_DESC_RX_ERROR_PHY |		\
 803	KS_DESC_RX_ERROR_TOO_LONG)
 804
 805#define KS_DESC_HW_OWNED		0x80000000
 806
 807#define KS_DESC_BUF_SIZE		0x000007FF
 808#define KS884X_DESC_TX_PORT_MASK	0x00300000
 809#define KS_DESC_END_OF_RING		0x02000000
 810#define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
 811#define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
 812#define KS_DESC_TX_CSUM_GEN_IP		0x10000000
 813#define KS_DESC_TX_LAST			0x20000000
 814#define KS_DESC_TX_FIRST		0x40000000
 815#define KS_DESC_TX_INTERRUPT		0x80000000
 816
 817#define KS_DESC_PORT_SHIFT		20
 818
 819#define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)
 820
 821#define KS_DESC_TX_MASK			\
 822	(KS_DESC_TX_INTERRUPT |		\
 823	KS_DESC_TX_FIRST |		\
 824	KS_DESC_TX_LAST |		\
 825	KS_DESC_TX_CSUM_GEN_IP |	\
 826	KS_DESC_TX_CSUM_GEN_TCP |	\
 827	KS_DESC_TX_CSUM_GEN_UDP |	\
 828	KS_DESC_BUF_SIZE)
 829
 830struct ksz_desc_rx_stat {
 831#ifdef __BIG_ENDIAN_BITFIELD
 832	u32 hw_owned:1;
 833	u32 first_desc:1;
 834	u32 last_desc:1;
 835	u32 csum_err_ip:1;
 836	u32 csum_err_tcp:1;
 837	u32 csum_err_udp:1;
 838	u32 error:1;
 839	u32 multicast:1;
 840	u32 src_port:4;
 841	u32 err_phy:1;
 842	u32 err_too_long:1;
 843	u32 err_runt:1;
 844	u32 err_crc:1;
 845	u32 frame_type:1;
 846	u32 reserved1:4;
 847	u32 frame_len:11;
 848#else
 849	u32 frame_len:11;
 850	u32 reserved1:4;
 851	u32 frame_type:1;
 852	u32 err_crc:1;
 853	u32 err_runt:1;
 854	u32 err_too_long:1;
 855	u32 err_phy:1;
 856	u32 src_port:4;
 857	u32 multicast:1;
 858	u32 error:1;
 859	u32 csum_err_udp:1;
 860	u32 csum_err_tcp:1;
 861	u32 csum_err_ip:1;
 862	u32 last_desc:1;
 863	u32 first_desc:1;
 864	u32 hw_owned:1;
 865#endif
 866};
 867
 868struct ksz_desc_tx_stat {
 869#ifdef __BIG_ENDIAN_BITFIELD
 870	u32 hw_owned:1;
 871	u32 reserved1:31;
 872#else
 873	u32 reserved1:31;
 874	u32 hw_owned:1;
 875#endif
 876};
 877
 878struct ksz_desc_rx_buf {
 879#ifdef __BIG_ENDIAN_BITFIELD
 880	u32 reserved4:6;
 881	u32 end_of_ring:1;
 882	u32 reserved3:14;
 883	u32 buf_size:11;
 884#else
 885	u32 buf_size:11;
 886	u32 reserved3:14;
 887	u32 end_of_ring:1;
 888	u32 reserved4:6;
 889#endif
 890};
 891
 892struct ksz_desc_tx_buf {
 893#ifdef __BIG_ENDIAN_BITFIELD
 894	u32 intr:1;
 895	u32 first_seg:1;
 896	u32 last_seg:1;
 897	u32 csum_gen_ip:1;
 898	u32 csum_gen_tcp:1;
 899	u32 csum_gen_udp:1;
 900	u32 end_of_ring:1;
 901	u32 reserved4:1;
 902	u32 dest_port:4;
 903	u32 reserved3:9;
 904	u32 buf_size:11;
 905#else
 906	u32 buf_size:11;
 907	u32 reserved3:9;
 908	u32 dest_port:4;
 909	u32 reserved4:1;
 910	u32 end_of_ring:1;
 911	u32 csum_gen_udp:1;
 912	u32 csum_gen_tcp:1;
 913	u32 csum_gen_ip:1;
 914	u32 last_seg:1;
 915	u32 first_seg:1;
 916	u32 intr:1;
 917#endif
 918};
 919
 920union desc_stat {
 921	struct ksz_desc_rx_stat rx;
 922	struct ksz_desc_tx_stat tx;
 923	u32 data;
 924};
 925
 926union desc_buf {
 927	struct ksz_desc_rx_buf rx;
 928	struct ksz_desc_tx_buf tx;
 929	u32 data;
 930};
 931
 932/**
 933 * struct ksz_hw_desc - Hardware descriptor data structure
 934 * @ctrl:	Descriptor control value.
 935 * @buf:	Descriptor buffer value.
 936 * @addr:	Physical address of memory buffer.
 937 * @next:	Pointer to next hardware descriptor.
 938 */
 939struct ksz_hw_desc {
 940	union desc_stat ctrl;
 941	union desc_buf buf;
 942	u32 addr;
 943	u32 next;
 944};
 945
 946/**
 947 * struct ksz_sw_desc - Software descriptor data structure
 948 * @ctrl:	Descriptor control value.
 949 * @buf:	Descriptor buffer value.
 950 * @buf_size:	Current buffers size value in hardware descriptor.
 951 */
 952struct ksz_sw_desc {
 953	union desc_stat ctrl;
 954	union desc_buf buf;
 955	u32 buf_size;
 956};
 957
 958/**
 959 * struct ksz_dma_buf - OS dependent DMA buffer data structure
 960 * @skb:	Associated socket buffer.
 961 * @dma:	Associated physical DMA address.
 962 * len:		Actual len used.
 963 */
 964struct ksz_dma_buf {
 965	struct sk_buff *skb;
 966	dma_addr_t dma;
 967	int len;
 968};
 969
 970/**
 971 * struct ksz_desc - Descriptor structure
 972 * @phw:	Hardware descriptor pointer to uncached physical memory.
 973 * @sw:		Cached memory to hold hardware descriptor values for
 974 * 		manipulation.
 975 * @dma_buf:	Operating system dependent data structure to hold physical
 976 * 		memory buffer allocation information.
 977 */
 978struct ksz_desc {
 979	struct ksz_hw_desc *phw;
 980	struct ksz_sw_desc sw;
 981	struct ksz_dma_buf dma_buf;
 982};
 983
 984#define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
 985
 986/**
 987 * struct ksz_desc_info - Descriptor information data structure
 988 * @ring:	First descriptor in the ring.
 989 * @cur:	Current descriptor being manipulated.
 990 * @ring_virt:	First hardware descriptor in the ring.
 991 * @ring_phys:	The physical address of the first descriptor of the ring.
 992 * @size:	Size of hardware descriptor.
 993 * @alloc:	Number of descriptors allocated.
 994 * @avail:	Number of descriptors available for use.
 995 * @last:	Index for last descriptor released to hardware.
 996 * @next:	Index for next descriptor available for use.
 997 * @mask:	Mask for index wrapping.
 998 */
 999struct ksz_desc_info {
1000	struct ksz_desc *ring;
1001	struct ksz_desc *cur;
1002	struct ksz_hw_desc *ring_virt;
1003	u32 ring_phys;
1004	int size;
1005	int alloc;
1006	int avail;
1007	int last;
1008	int next;
1009	int mask;
1010};
1011
1012/*
1013 * KSZ8842 switch definitions
1014 */
1015
1016enum {
1017	TABLE_STATIC_MAC = 0,
1018	TABLE_VLAN,
1019	TABLE_DYNAMIC_MAC,
1020	TABLE_MIB
1021};
1022
1023#define LEARNED_MAC_TABLE_ENTRIES	1024
1024#define STATIC_MAC_TABLE_ENTRIES	8
1025
1026/**
1027 * struct ksz_mac_table - Static MAC table data structure
1028 * @mac_addr:	MAC address to filter.
1029 * @vid:	VID value.
1030 * @fid:	FID value.
1031 * @ports:	Port membership.
1032 * @override:	Override setting.
1033 * @use_fid:	FID use setting.
1034 * @valid:	Valid setting indicating the entry is being used.
1035 */
1036struct ksz_mac_table {
1037	u8 mac_addr[ETH_ALEN];
1038	u16 vid;
1039	u8 fid;
1040	u8 ports;
1041	u8 override:1;
1042	u8 use_fid:1;
1043	u8 valid:1;
1044};
1045
1046#define VLAN_TABLE_ENTRIES		16
1047
1048/**
1049 * struct ksz_vlan_table - VLAN table data structure
1050 * @vid:	VID value.
1051 * @fid:	FID value.
1052 * @member:	Port membership.
1053 */
1054struct ksz_vlan_table {
1055	u16 vid;
1056	u8 fid;
1057	u8 member;
1058};
1059
1060#define DIFFSERV_ENTRIES		64
1061#define PRIO_802_1P_ENTRIES		8
1062#define PRIO_QUEUES			4
1063
1064#define SWITCH_PORT_NUM			2
1065#define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
1066#define HOST_MASK			(1 << SWITCH_PORT_NUM)
1067#define PORT_MASK			7
1068
1069#define MAIN_PORT			0
1070#define OTHER_PORT			1
1071#define HOST_PORT			SWITCH_PORT_NUM
1072
1073#define PORT_COUNTER_NUM		0x20
1074#define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)
1075
1076#define MIB_COUNTER_RX_LO_PRIORITY	0x00
1077#define MIB_COUNTER_RX_HI_PRIORITY	0x01
1078#define MIB_COUNTER_RX_UNDERSIZE	0x02
1079#define MIB_COUNTER_RX_FRAGMENT		0x03
1080#define MIB_COUNTER_RX_OVERSIZE		0x04
1081#define MIB_COUNTER_RX_JABBER		0x05
1082#define MIB_COUNTER_RX_SYMBOL_ERR	0x06
1083#define MIB_COUNTER_RX_CRC_ERR		0x07
1084#define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
1085#define MIB_COUNTER_RX_CTRL_8808	0x09
1086#define MIB_COUNTER_RX_PAUSE		0x0A
1087#define MIB_COUNTER_RX_BROADCAST	0x0B
1088#define MIB_COUNTER_RX_MULTICAST	0x0C
1089#define MIB_COUNTER_RX_UNICAST		0x0D
1090#define MIB_COUNTER_RX_OCTET_64		0x0E
1091#define MIB_COUNTER_RX_OCTET_65_127	0x0F
1092#define MIB_COUNTER_RX_OCTET_128_255	0x10
1093#define MIB_COUNTER_RX_OCTET_256_511	0x11
1094#define MIB_COUNTER_RX_OCTET_512_1023	0x12
1095#define MIB_COUNTER_RX_OCTET_1024_1522	0x13
1096#define MIB_COUNTER_TX_LO_PRIORITY	0x14
1097#define MIB_COUNTER_TX_HI_PRIORITY	0x15
1098#define MIB_COUNTER_TX_LATE_COLLISION	0x16
1099#define MIB_COUNTER_TX_PAUSE		0x17
1100#define MIB_COUNTER_TX_BROADCAST	0x18
1101#define MIB_COUNTER_TX_MULTICAST	0x19
1102#define MIB_COUNTER_TX_UNICAST		0x1A
1103#define MIB_COUNTER_TX_DEFERRED		0x1B
1104#define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
1105#define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
1106#define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
1107#define MIB_COUNTER_TX_MULTI_COLLISION	0x1F
1108
1109#define MIB_COUNTER_RX_DROPPED_PACKET	0x20
1110#define MIB_COUNTER_TX_DROPPED_PACKET	0x21
1111
1112/**
1113 * struct ksz_port_mib - Port MIB data structure
1114 * @cnt_ptr:	Current pointer to MIB counter index.
1115 * @link_down:	Indication the link has just gone down.
1116 * @state:	Connection status of the port.
1117 * @mib_start:	The starting counter index.  Some ports do not start at 0.
1118 * @counter:	64-bit MIB counter value.
1119 * @dropped:	Temporary buffer to remember last read packet dropped values.
1120 *
1121 * MIB counters needs to be read periodically so that counters do not get
1122 * overflowed and give incorrect values.  A right balance is needed to
1123 * satisfy this condition and not waste too much CPU time.
1124 *
1125 * It is pointless to read MIB counters when the port is disconnected.  The
1126 * @state provides the connection status so that MIB counters are read only
1127 * when the port is connected.  The @link_down indicates the port is just
1128 * disconnected so that all MIB counters are read one last time to update the
1129 * information.
1130 */
1131struct ksz_port_mib {
1132	u8 cnt_ptr;
1133	u8 link_down;
1134	u8 state;
1135	u8 mib_start;
1136
1137	u64 counter[TOTAL_PORT_COUNTER_NUM];
1138	u32 dropped[2];
1139};
1140
1141/**
1142 * struct ksz_port_cfg - Port configuration data structure
1143 * @vid:	VID value.
1144 * @member:	Port membership.
1145 * @port_prio:	Port priority.
1146 * @rx_rate:	Receive priority rate.
1147 * @tx_rate:	Transmit priority rate.
1148 * @stp_state:	Current Spanning Tree Protocol state.
1149 */
1150struct ksz_port_cfg {
1151	u16 vid;
1152	u8 member;
1153	u8 port_prio;
1154	u32 rx_rate[PRIO_QUEUES];
1155	u32 tx_rate[PRIO_QUEUES];
1156	int stp_state;
1157};
1158
1159/**
1160 * struct ksz_switch - KSZ8842 switch data structure
1161 * @mac_table:	MAC table entries information.
1162 * @vlan_table:	VLAN table entries information.
1163 * @port_cfg:	Port configuration information.
1164 * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
1165 * 		(bit7 ~ bit2) field.
1166 * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
1167 * 		Tag priority field.
1168 * @br_addr:	Bridge address.  Used for STP.
1169 * @other_addr:	Other MAC address.  Used for multiple network device mode.
1170 * @broad_per:	Broadcast storm percentage.
1171 * @member:	Current port membership.  Used for STP.
1172 */
1173struct ksz_switch {
1174	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1175	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1176	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1177
1178	u8 diffserv[DIFFSERV_ENTRIES];
1179	u8 p_802_1p[PRIO_802_1P_ENTRIES];
1180
1181	u8 br_addr[ETH_ALEN];
1182	u8 other_addr[ETH_ALEN];
1183
1184	u8 broad_per;
1185	u8 member;
1186};
1187
1188#define TX_RATE_UNIT			10000
1189
1190/**
1191 * struct ksz_port_info - Port information data structure
1192 * @state:	Connection status of the port.
1193 * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
1194 * @duplex:	Duplex mode.
1195 * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
1196 * @partner:	Auto-negotiation partner setting.  Used to determine link.
1197 * @port_id:	Port index to access actual hardware register.
1198 * @pdev:	Pointer to OS dependent network device.
1199 */
1200struct ksz_port_info {
1201	uint state;
1202	uint tx_rate;
1203	u8 duplex;
1204	u8 advertised;
1205	u8 partner;
1206	u8 port_id;
1207	void *pdev;
1208};
1209
1210#define MAX_TX_HELD_SIZE		52000
1211
1212/* Hardware features and bug fixes. */
1213#define LINK_INT_WORKING		(1 << 0)
1214#define SMALL_PACKET_TX_BUG		(1 << 1)
1215#define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
1216#define RX_HUGE_FRAME			(1 << 4)
1217#define STP_SUPPORT			(1 << 8)
1218
1219/* Software overrides. */
1220#define PAUSE_FLOW_CTRL			(1 << 0)
1221#define FAST_AGING			(1 << 1)
1222
1223/**
1224 * struct ksz_hw - KSZ884X hardware data structure
1225 * @io:			Virtual address assigned.
1226 * @ksz_switch:		Pointer to KSZ8842 switch.
1227 * @port_info:		Port information.
1228 * @port_mib:		Port MIB information.
1229 * @dev_count:		Number of network devices this hardware supports.
1230 * @dst_ports:		Destination ports in switch for transmission.
1231 * @id:			Hardware ID.  Used for display only.
1232 * @mib_cnt:		Number of MIB counters this hardware has.
1233 * @mib_port_cnt:	Number of ports with MIB counters.
1234 * @tx_cfg:		Cached transmit control settings.
1235 * @rx_cfg:		Cached receive control settings.
1236 * @intr_mask:		Current interrupt mask.
1237 * @intr_set:		Current interrup set.
1238 * @intr_blocked:	Interrupt blocked.
1239 * @rx_desc_info:	Receive descriptor information.
1240 * @tx_desc_info:	Transmit descriptor information.
1241 * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
1242 * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
1243 * @tx_size:		Transmit data size.  Used for TX optimization.
1244 * 			The maximum is defined by MAX_TX_HELD_SIZE.
1245 * @perm_addr:		Permanent MAC address.
1246 * @override_addr:	Overridden MAC address.
1247 * @address:		Additional MAC address entries.
1248 * @addr_list_size:	Additional MAC address list size.
1249 * @mac_override:	Indication of MAC address overridden.
1250 * @promiscuous:	Counter to keep track of promiscuous mode set.
1251 * @all_multi:		Counter to keep track of all multicast mode set.
1252 * @multi_list:		Multicast address entries.
1253 * @multi_bits:		Cached multicast hash table settings.
1254 * @multi_list_size:	Multicast address list size.
1255 * @enabled:		Indication of hardware enabled.
1256 * @rx_stop:		Indication of receive process stop.
 
1257 * @features:		Hardware features to enable.
1258 * @overrides:		Hardware features to override.
1259 * @parent:		Pointer to parent, network device private structure.
1260 */
1261struct ksz_hw {
1262	void __iomem *io;
1263
1264	struct ksz_switch *ksz_switch;
1265	struct ksz_port_info port_info[SWITCH_PORT_NUM];
1266	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1267	int dev_count;
1268	int dst_ports;
1269	int id;
1270	int mib_cnt;
1271	int mib_port_cnt;
1272
1273	u32 tx_cfg;
1274	u32 rx_cfg;
1275	u32 intr_mask;
1276	u32 intr_set;
1277	uint intr_blocked;
1278
1279	struct ksz_desc_info rx_desc_info;
1280	struct ksz_desc_info tx_desc_info;
1281
1282	int tx_int_cnt;
1283	int tx_int_mask;
1284	int tx_size;
1285
1286	u8 perm_addr[ETH_ALEN];
1287	u8 override_addr[ETH_ALEN];
1288	u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1289	u8 addr_list_size;
1290	u8 mac_override;
1291	u8 promiscuous;
1292	u8 all_multi;
1293	u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1294	u8 multi_bits[HW_MULTICAST_SIZE];
1295	u8 multi_list_size;
1296
1297	u8 enabled;
1298	u8 rx_stop;
1299	u8 reserved2[1];
1300
1301	uint features;
1302	uint overrides;
1303
1304	void *parent;
1305};
1306
1307enum {
1308	PHY_NO_FLOW_CTRL,
1309	PHY_FLOW_CTRL,
1310	PHY_TX_ONLY,
1311	PHY_RX_ONLY
1312};
1313
1314/**
1315 * struct ksz_port - Virtual port data structure
1316 * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
1317 * 			duplex, and 0 for auto, which normally results in full
1318 * 			duplex.
1319 * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1320 * 			0 for auto, which normally results in 100 Mbit.
1321 * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
1322 * 			force.
1323 * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1324 * 			control, and PHY_FLOW_CTRL for flow control.
1325 * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1326 * 			Mbit PHY.
1327 * @first_port:		Index of first port this port supports.
1328 * @mib_port_cnt:	Number of ports with MIB counters.
1329 * @port_cnt:		Number of ports this port supports.
1330 * @counter:		Port statistics counter.
1331 * @hw:			Pointer to hardware structure.
1332 * @linked:		Pointer to port information linked to this port.
1333 */
1334struct ksz_port {
1335	u8 duplex;
1336	u8 speed;
1337	u8 force_link;
1338	u8 flow_ctrl;
1339
1340	int first_port;
1341	int mib_port_cnt;
1342	int port_cnt;
1343	u64 counter[OID_COUNTER_LAST];
1344
1345	struct ksz_hw *hw;
1346	struct ksz_port_info *linked;
1347};
1348
1349/**
1350 * struct ksz_timer_info - Timer information data structure
1351 * @timer:	Kernel timer.
1352 * @cnt:	Running timer counter.
1353 * @max:	Number of times to run timer; -1 for infinity.
1354 * @period:	Timer period in jiffies.
1355 */
1356struct ksz_timer_info {
1357	struct timer_list timer;
1358	int cnt;
1359	int max;
1360	int period;
1361};
1362
1363/**
1364 * struct ksz_shared_mem - OS dependent shared memory data structure
1365 * @dma_addr:	Physical DMA address allocated.
1366 * @alloc_size:	Allocation size.
1367 * @phys:	Actual physical address used.
1368 * @alloc_virt:	Virtual address allocated.
1369 * @virt:	Actual virtual address used.
1370 */
1371struct ksz_shared_mem {
1372	dma_addr_t dma_addr;
1373	uint alloc_size;
1374	uint phys;
1375	u8 *alloc_virt;
1376	u8 *virt;
1377};
1378
1379/**
1380 * struct ksz_counter_info - OS dependent counter information data structure
1381 * @counter:	Wait queue to wakeup after counters are read.
1382 * @time:	Next time in jiffies to read counter.
1383 * @read:	Indication of counters read in full or not.
1384 */
1385struct ksz_counter_info {
1386	wait_queue_head_t counter;
1387	unsigned long time;
1388	int read;
1389};
1390
1391/**
1392 * struct dev_info - Network device information data structure
1393 * @dev:		Pointer to network device.
1394 * @pdev:		Pointer to PCI device.
1395 * @hw:			Hardware structure.
1396 * @desc_pool:		Physical memory used for descriptor pool.
1397 * @hwlock:		Spinlock to prevent hardware from accessing.
1398 * @lock:		Mutex lock to prevent device from accessing.
1399 * @dev_rcv:		Receive process function used.
1400 * @last_skb:		Socket buffer allocated for descriptor rx fragments.
1401 * @skb_index:		Buffer index for receiving fragments.
1402 * @skb_len:		Buffer length for receiving fragments.
1403 * @mib_read:		Workqueue to read MIB counters.
1404 * @mib_timer_info:	Timer to read MIB counters.
1405 * @counter:		Used for MIB reading.
1406 * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1407 * 			the maximum is MAX_RX_BUF_SIZE.
1408 * @opened:		Counter to keep track of device open.
1409 * @rx_tasklet:		Receive processing tasklet.
1410 * @tx_tasklet:		Transmit processing tasklet.
1411 * @wol_enable:		Wake-on-LAN enable set by ethtool.
1412 * @wol_support:	Wake-on-LAN support used by ethtool.
1413 * @pme_wait:		Used for KSZ8841 power management.
1414 */
1415struct dev_info {
1416	struct net_device *dev;
1417	struct pci_dev *pdev;
1418
1419	struct ksz_hw hw;
1420	struct ksz_shared_mem desc_pool;
1421
1422	spinlock_t hwlock;
1423	struct mutex lock;
1424
1425	int (*dev_rcv)(struct dev_info *);
1426
1427	struct sk_buff *last_skb;
1428	int skb_index;
1429	int skb_len;
1430
1431	struct work_struct mib_read;
1432	struct ksz_timer_info mib_timer_info;
1433	struct ksz_counter_info counter[TOTAL_PORT_NUM];
1434
1435	int mtu;
1436	int opened;
1437
1438	struct tasklet_struct rx_tasklet;
1439	struct tasklet_struct tx_tasklet;
1440
1441	int wol_enable;
1442	int wol_support;
1443	unsigned long pme_wait;
1444};
1445
1446/**
1447 * struct dev_priv - Network device private data structure
1448 * @adapter:		Adapter device information.
1449 * @port:		Port information.
1450 * @monitor_time_info:	Timer to monitor ports.
1451 * @proc_sem:		Semaphore for proc accessing.
1452 * @id:			Device ID.
1453 * @mii_if:		MII interface information.
1454 * @advertising:	Temporary variable to store advertised settings.
1455 * @msg_enable:		The message flags controlling driver output.
1456 * @media_state:	The connection status of the device.
1457 * @multicast:		The all multicast state of the device.
1458 * @promiscuous:	The promiscuous state of the device.
1459 */
1460struct dev_priv {
1461	struct dev_info *adapter;
1462	struct ksz_port port;
1463	struct ksz_timer_info monitor_timer_info;
1464
1465	struct semaphore proc_sem;
1466	int id;
1467
1468	struct mii_if_info mii_if;
1469	u32 advertising;
1470
1471	u32 msg_enable;
1472	int media_state;
1473	int multicast;
1474	int promiscuous;
1475};
1476
1477#define DRV_NAME		"KSZ884X PCI"
1478#define DEVICE_NAME		"KSZ884x PCI"
1479#define DRV_VERSION		"1.0.0"
1480#define DRV_RELDATE		"Feb 8, 2010"
1481
1482static char version[] =
1483	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1484
1485static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1486
1487/*
1488 * Interrupt processing primary routines
1489 */
1490
1491static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1492{
1493	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1494}
1495
1496static inline void hw_dis_intr(struct ksz_hw *hw)
1497{
1498	hw->intr_blocked = hw->intr_mask;
1499	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1500	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1501}
1502
1503static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1504{
1505	hw->intr_set = interrupt;
1506	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1507}
1508
1509static inline void hw_ena_intr(struct ksz_hw *hw)
1510{
1511	hw->intr_blocked = 0;
1512	hw_set_intr(hw, hw->intr_mask);
1513}
1514
1515static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1516{
1517	hw->intr_mask &= ~(bit);
1518}
1519
1520static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1521{
1522	u32 read_intr;
1523
1524	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1525	hw->intr_set = read_intr & ~interrupt;
1526	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1527	hw_dis_intr_bit(hw, interrupt);
1528}
1529
1530/**
1531 * hw_turn_on_intr - turn on specified interrupts
1532 * @hw: 	The hardware instance.
1533 * @bit:	The interrupt bits to be on.
1534 *
1535 * This routine turns on the specified interrupts in the interrupt mask so that
1536 * those interrupts will be enabled.
1537 */
1538static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1539{
1540	hw->intr_mask |= bit;
1541
1542	if (!hw->intr_blocked)
1543		hw_set_intr(hw, hw->intr_mask);
1544}
1545
1546static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1547{
1548	u32 read_intr;
1549
1550	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1551	hw->intr_set = read_intr | interrupt;
1552	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1553}
1554
1555static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1556{
1557	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1558	*status = *status & hw->intr_set;
1559}
1560
1561static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1562{
1563	if (interrupt)
1564		hw_ena_intr(hw);
1565}
1566
1567/**
1568 * hw_block_intr - block hardware interrupts
 
1569 *
1570 * This function blocks all interrupts of the hardware and returns the current
1571 * interrupt enable mask so that interrupts can be restored later.
1572 *
1573 * Return the current interrupt enable mask.
1574 */
1575static uint hw_block_intr(struct ksz_hw *hw)
1576{
1577	uint interrupt = 0;
1578
1579	if (!hw->intr_blocked) {
1580		hw_dis_intr(hw);
1581		interrupt = hw->intr_blocked;
1582	}
1583	return interrupt;
1584}
1585
1586/*
1587 * Hardware descriptor routines
1588 */
1589
1590static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1591{
1592	status.rx.hw_owned = 0;
1593	desc->phw->ctrl.data = cpu_to_le32(status.data);
1594}
1595
1596static inline void release_desc(struct ksz_desc *desc)
1597{
1598	desc->sw.ctrl.tx.hw_owned = 1;
1599	if (desc->sw.buf_size != desc->sw.buf.data) {
1600		desc->sw.buf_size = desc->sw.buf.data;
1601		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1602	}
1603	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1604}
1605
1606static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1607{
1608	*desc = &info->ring[info->last];
1609	info->last++;
1610	info->last &= info->mask;
1611	info->avail--;
1612	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1613}
1614
1615static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1616{
1617	desc->phw->addr = cpu_to_le32(addr);
1618}
1619
1620static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1621{
1622	desc->sw.buf.rx.buf_size = len;
1623}
1624
1625static inline void get_tx_pkt(struct ksz_desc_info *info,
1626	struct ksz_desc **desc)
1627{
1628	*desc = &info->ring[info->next];
1629	info->next++;
1630	info->next &= info->mask;
1631	info->avail--;
1632	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1633}
1634
1635static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1636{
1637	desc->phw->addr = cpu_to_le32(addr);
1638}
1639
1640static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1641{
1642	desc->sw.buf.tx.buf_size = len;
1643}
1644
1645/* Switch functions */
1646
1647#define TABLE_READ			0x10
1648#define TABLE_SEL_SHIFT			2
1649
1650#define HW_DELAY(hw, reg)			\
1651	do {					\
1652		u16 dummy;			\
1653		dummy = readw(hw->io + reg);	\
1654	} while (0)
1655
1656/**
1657 * sw_r_table - read 4 bytes of data from switch table
1658 * @hw:		The hardware instance.
1659 * @table:	The table selector.
1660 * @addr:	The address of the table entry.
1661 * @data:	Buffer to store the read data.
1662 *
1663 * This routine reads 4 bytes of data from the table of the switch.
1664 * Hardware interrupts are disabled to minimize corruption of read data.
1665 */
1666static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1667{
1668	u16 ctrl_addr;
1669	uint interrupt;
1670
1671	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1672
1673	interrupt = hw_block_intr(hw);
1674
1675	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1676	HW_DELAY(hw, KS884X_IACR_OFFSET);
1677	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1678
1679	hw_restore_intr(hw, interrupt);
1680}
1681
1682/**
1683 * sw_w_table_64 - write 8 bytes of data to the switch table
1684 * @hw:		The hardware instance.
1685 * @table:	The table selector.
1686 * @addr:	The address of the table entry.
1687 * @data_hi:	The high part of data to be written (bit63 ~ bit32).
1688 * @data_lo:	The low part of data to be written (bit31 ~ bit0).
1689 *
1690 * This routine writes 8 bytes of data to the table of the switch.
1691 * Hardware interrupts are disabled to minimize corruption of written data.
1692 */
1693static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1694	u32 data_lo)
1695{
1696	u16 ctrl_addr;
1697	uint interrupt;
1698
1699	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1700
1701	interrupt = hw_block_intr(hw);
1702
1703	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1704	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1705
1706	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1707	HW_DELAY(hw, KS884X_IACR_OFFSET);
1708
1709	hw_restore_intr(hw, interrupt);
1710}
1711
1712/**
1713 * sw_w_sta_mac_table - write to the static MAC table
1714 * @hw: 	The hardware instance.
1715 * @addr:	The address of the table entry.
1716 * @mac_addr:	The MAC address.
1717 * @ports:	The port members.
1718 * @override:	The flag to override the port receive/transmit settings.
1719 * @valid:	The flag to indicate entry is valid.
1720 * @use_fid:	The flag to indicate the FID is valid.
1721 * @fid:	The FID value.
1722 *
1723 * This routine writes an entry of the static MAC table of the switch.  It
1724 * calls sw_w_table_64() to write the data.
1725 */
1726static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1727	u8 ports, int override, int valid, int use_fid, u8 fid)
1728{
1729	u32 data_hi;
1730	u32 data_lo;
1731
1732	data_lo = ((u32) mac_addr[2] << 24) |
1733		((u32) mac_addr[3] << 16) |
1734		((u32) mac_addr[4] << 8) | mac_addr[5];
1735	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1736	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1737
1738	if (override)
1739		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1740	if (use_fid) {
1741		data_hi |= STATIC_MAC_TABLE_USE_FID;
1742		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1743	}
1744	if (valid)
1745		data_hi |= STATIC_MAC_TABLE_VALID;
1746
1747	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1748}
1749
1750/**
1751 * sw_r_vlan_table - read from the VLAN table
1752 * @hw: 	The hardware instance.
1753 * @addr:	The address of the table entry.
1754 * @vid:	Buffer to store the VID.
1755 * @fid:	Buffer to store the VID.
1756 * @member:	Buffer to store the port membership.
1757 *
1758 * This function reads an entry of the VLAN table of the switch.  It calls
1759 * sw_r_table() to get the data.
1760 *
1761 * Return 0 if the entry is valid; otherwise -1.
1762 */
1763static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1764	u8 *member)
1765{
1766	u32 data;
1767
1768	sw_r_table(hw, TABLE_VLAN, addr, &data);
1769	if (data & VLAN_TABLE_VALID) {
1770		*vid = (u16)(data & VLAN_TABLE_VID);
1771		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1772		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1773			VLAN_TABLE_MEMBERSHIP_SHIFT);
1774		return 0;
1775	}
1776	return -1;
1777}
1778
1779/**
1780 * port_r_mib_cnt - read MIB counter
1781 * @hw: 	The hardware instance.
1782 * @port:	The port index.
1783 * @addr:	The address of the counter.
1784 * @cnt:	Buffer to store the counter.
1785 *
1786 * This routine reads a MIB counter of the port.
1787 * Hardware interrupts are disabled to minimize corruption of read data.
1788 */
1789static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1790{
1791	u32 data;
1792	u16 ctrl_addr;
1793	uint interrupt;
1794	int timeout;
1795
1796	ctrl_addr = addr + PORT_COUNTER_NUM * port;
1797
1798	interrupt = hw_block_intr(hw);
1799
1800	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1801	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1802	HW_DELAY(hw, KS884X_IACR_OFFSET);
1803
1804	for (timeout = 100; timeout > 0; timeout--) {
1805		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1806
1807		if (data & MIB_COUNTER_VALID) {
1808			if (data & MIB_COUNTER_OVERFLOW)
1809				*cnt += MIB_COUNTER_VALUE + 1;
1810			*cnt += data & MIB_COUNTER_VALUE;
1811			break;
1812		}
1813	}
1814
1815	hw_restore_intr(hw, interrupt);
1816}
1817
1818/**
1819 * port_r_mib_pkt - read dropped packet counts
1820 * @hw: 	The hardware instance.
1821 * @port:	The port index.
 
1822 * @cnt:	Buffer to store the receive and transmit dropped packet counts.
1823 *
1824 * This routine reads the dropped packet counts of the port.
1825 * Hardware interrupts are disabled to minimize corruption of read data.
1826 */
1827static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1828{
1829	u32 cur;
1830	u32 data;
1831	u16 ctrl_addr;
1832	uint interrupt;
1833	int index;
1834
1835	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1836	do {
1837		interrupt = hw_block_intr(hw);
1838
1839		ctrl_addr = (u16) index;
1840		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1841			<< 8);
1842		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1843		HW_DELAY(hw, KS884X_IACR_OFFSET);
1844		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1845
1846		hw_restore_intr(hw, interrupt);
1847
1848		data &= MIB_PACKET_DROPPED;
1849		cur = *last;
1850		if (data != cur) {
1851			*last = data;
1852			if (data < cur)
1853				data += MIB_PACKET_DROPPED + 1;
1854			data -= cur;
1855			*cnt += data;
1856		}
1857		++last;
1858		++cnt;
1859		index -= KS_MIB_PACKET_DROPPED_TX -
1860			KS_MIB_PACKET_DROPPED_TX_0 + 1;
1861	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1862}
1863
1864/**
1865 * port_r_cnt - read MIB counters periodically
1866 * @hw: 	The hardware instance.
1867 * @port:	The port index.
1868 *
1869 * This routine is used to read the counters of the port periodically to avoid
1870 * counter overflow.  The hardware should be acquired first before calling this
1871 * routine.
1872 *
1873 * Return non-zero when not all counters not read.
1874 */
1875static int port_r_cnt(struct ksz_hw *hw, int port)
1876{
1877	struct ksz_port_mib *mib = &hw->port_mib[port];
1878
1879	if (mib->mib_start < PORT_COUNTER_NUM)
1880		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1881			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1882				&mib->counter[mib->cnt_ptr]);
1883			++mib->cnt_ptr;
1884		}
1885	if (hw->mib_cnt > PORT_COUNTER_NUM)
1886		port_r_mib_pkt(hw, port, mib->dropped,
1887			&mib->counter[PORT_COUNTER_NUM]);
1888	mib->cnt_ptr = 0;
1889	return 0;
1890}
1891
1892/**
1893 * port_init_cnt - initialize MIB counter values
1894 * @hw: 	The hardware instance.
1895 * @port:	The port index.
1896 *
1897 * This routine is used to initialize all counters to zero if the hardware
1898 * cannot do it after reset.
1899 */
1900static void port_init_cnt(struct ksz_hw *hw, int port)
1901{
1902	struct ksz_port_mib *mib = &hw->port_mib[port];
1903
1904	mib->cnt_ptr = 0;
1905	if (mib->mib_start < PORT_COUNTER_NUM)
1906		do {
1907			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1908				&mib->counter[mib->cnt_ptr]);
1909			++mib->cnt_ptr;
1910		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
1911	if (hw->mib_cnt > PORT_COUNTER_NUM)
1912		port_r_mib_pkt(hw, port, mib->dropped,
1913			&mib->counter[PORT_COUNTER_NUM]);
1914	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1915	mib->cnt_ptr = 0;
1916}
1917
1918/*
1919 * Port functions
1920 */
1921
1922/**
1923 * port_chk - check port register bits
1924 * @hw: 	The hardware instance.
1925 * @port:	The port index.
1926 * @offset:	The offset of the port register.
1927 * @bits:	The data bits to check.
1928 *
1929 * This function checks whether the specified bits of the port register are set
1930 * or not.
1931 *
1932 * Return 0 if the bits are not set.
1933 */
1934static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1935{
1936	u32 addr;
1937	u16 data;
1938
1939	PORT_CTRL_ADDR(port, addr);
1940	addr += offset;
1941	data = readw(hw->io + addr);
1942	return (data & bits) == bits;
1943}
1944
1945/**
1946 * port_cfg - set port register bits
1947 * @hw: 	The hardware instance.
1948 * @port:	The port index.
1949 * @offset:	The offset of the port register.
1950 * @bits:	The data bits to set.
1951 * @set:	The flag indicating whether the bits are to be set or not.
1952 *
1953 * This routine sets or resets the specified bits of the port register.
1954 */
1955static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1956	int set)
1957{
1958	u32 addr;
1959	u16 data;
1960
1961	PORT_CTRL_ADDR(port, addr);
1962	addr += offset;
1963	data = readw(hw->io + addr);
1964	if (set)
1965		data |= bits;
1966	else
1967		data &= ~bits;
1968	writew(data, hw->io + addr);
1969}
1970
1971/**
1972 * port_chk_shift - check port bit
1973 * @hw: 	The hardware instance.
1974 * @port:	The port index.
1975 * @offset:	The offset of the register.
1976 * @shift:	Number of bits to shift.
1977 *
1978 * This function checks whether the specified port is set in the register or
1979 * not.
1980 *
1981 * Return 0 if the port is not set.
1982 */
1983static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1984{
1985	u16 data;
1986	u16 bit = 1 << port;
1987
1988	data = readw(hw->io + addr);
1989	data >>= shift;
1990	return (data & bit) == bit;
1991}
1992
1993/**
1994 * port_cfg_shift - set port bit
1995 * @hw: 	The hardware instance.
1996 * @port:	The port index.
1997 * @offset:	The offset of the register.
1998 * @shift:	Number of bits to shift.
1999 * @set:	The flag indicating whether the port is to be set or not.
2000 *
2001 * This routine sets or resets the specified port in the register.
2002 */
2003static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2004	int set)
2005{
2006	u16 data;
2007	u16 bits = 1 << port;
2008
2009	data = readw(hw->io + addr);
2010	bits <<= shift;
2011	if (set)
2012		data |= bits;
2013	else
2014		data &= ~bits;
2015	writew(data, hw->io + addr);
2016}
2017
2018/**
2019 * port_r8 - read byte from port register
2020 * @hw: 	The hardware instance.
2021 * @port:	The port index.
2022 * @offset:	The offset of the port register.
2023 * @data:	Buffer to store the data.
2024 *
2025 * This routine reads a byte from the port register.
2026 */
2027static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2028{
2029	u32 addr;
2030
2031	PORT_CTRL_ADDR(port, addr);
2032	addr += offset;
2033	*data = readb(hw->io + addr);
2034}
2035
2036/**
2037 * port_r16 - read word from port register.
2038 * @hw: 	The hardware instance.
2039 * @port:	The port index.
2040 * @offset:	The offset of the port register.
2041 * @data:	Buffer to store the data.
2042 *
2043 * This routine reads a word from the port register.
2044 */
2045static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2046{
2047	u32 addr;
2048
2049	PORT_CTRL_ADDR(port, addr);
2050	addr += offset;
2051	*data = readw(hw->io + addr);
2052}
2053
2054/**
2055 * port_w16 - write word to port register.
2056 * @hw: 	The hardware instance.
2057 * @port:	The port index.
2058 * @offset:	The offset of the port register.
2059 * @data:	Data to write.
2060 *
2061 * This routine writes a word to the port register.
2062 */
2063static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2064{
2065	u32 addr;
2066
2067	PORT_CTRL_ADDR(port, addr);
2068	addr += offset;
2069	writew(data, hw->io + addr);
2070}
2071
2072/**
2073 * sw_chk - check switch register bits
2074 * @hw: 	The hardware instance.
2075 * @addr:	The address of the switch register.
2076 * @bits:	The data bits to check.
2077 *
2078 * This function checks whether the specified bits of the switch register are
2079 * set or not.
2080 *
2081 * Return 0 if the bits are not set.
2082 */
2083static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2084{
2085	u16 data;
2086
2087	data = readw(hw->io + addr);
2088	return (data & bits) == bits;
2089}
2090
2091/**
2092 * sw_cfg - set switch register bits
2093 * @hw: 	The hardware instance.
2094 * @addr:	The address of the switch register.
2095 * @bits:	The data bits to set.
2096 * @set:	The flag indicating whether the bits are to be set or not.
2097 *
2098 * This function sets or resets the specified bits of the switch register.
2099 */
2100static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2101{
2102	u16 data;
2103
2104	data = readw(hw->io + addr);
2105	if (set)
2106		data |= bits;
2107	else
2108		data &= ~bits;
2109	writew(data, hw->io + addr);
2110}
2111
2112/* Bandwidth */
2113
2114static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2115{
2116	port_cfg(hw, p,
2117		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2118}
2119
2120static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2121{
2122	return port_chk(hw, p,
2123		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2124}
2125
2126/* Driver set switch broadcast storm protection at 10% rate. */
2127#define BROADCAST_STORM_PROTECTION_RATE	10
2128
2129/* 148,800 frames * 67 ms / 100 */
2130#define BROADCAST_STORM_VALUE		9969
2131
2132/**
2133 * sw_cfg_broad_storm - configure broadcast storm threshold
2134 * @hw: 	The hardware instance.
2135 * @percent:	Broadcast storm threshold in percent of transmit rate.
2136 *
2137 * This routine configures the broadcast storm threshold of the switch.
2138 */
2139static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2140{
2141	u16 data;
2142	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2143
2144	if (value > BROADCAST_STORM_RATE)
2145		value = BROADCAST_STORM_RATE;
2146
2147	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2148	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2149	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2150	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2151}
2152
2153/**
2154 * sw_get_board_storm - get broadcast storm threshold
2155 * @hw: 	The hardware instance.
2156 * @percent:	Buffer to store the broadcast storm threshold percentage.
2157 *
2158 * This routine retrieves the broadcast storm threshold of the switch.
2159 */
2160static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2161{
2162	int num;
2163	u16 data;
2164
2165	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2166	num = (data & BROADCAST_STORM_RATE_HI);
2167	num <<= 8;
2168	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2169	num = DIV_ROUND_CLOSEST(num * 100, BROADCAST_STORM_VALUE);
2170	*percent = (u8) num;
2171}
2172
2173/**
2174 * sw_dis_broad_storm - disable broadstorm
2175 * @hw: 	The hardware instance.
2176 * @port:	The port index.
2177 *
2178 * This routine disables the broadcast storm limit function of the switch.
2179 */
2180static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2181{
2182	port_cfg_broad_storm(hw, port, 0);
2183}
2184
2185/**
2186 * sw_ena_broad_storm - enable broadcast storm
2187 * @hw: 	The hardware instance.
2188 * @port:	The port index.
2189 *
2190 * This routine enables the broadcast storm limit function of the switch.
2191 */
2192static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2193{
2194	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2195	port_cfg_broad_storm(hw, port, 1);
2196}
2197
2198/**
2199 * sw_init_broad_storm - initialize broadcast storm
2200 * @hw: 	The hardware instance.
2201 *
2202 * This routine initializes the broadcast storm limit function of the switch.
2203 */
2204static void sw_init_broad_storm(struct ksz_hw *hw)
2205{
2206	int port;
2207
2208	hw->ksz_switch->broad_per = 1;
2209	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2210	for (port = 0; port < TOTAL_PORT_NUM; port++)
2211		sw_dis_broad_storm(hw, port);
2212	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2213}
2214
2215/**
2216 * hw_cfg_broad_storm - configure broadcast storm
2217 * @hw: 	The hardware instance.
2218 * @percent:	Broadcast storm threshold in percent of transmit rate.
2219 *
2220 * This routine configures the broadcast storm threshold of the switch.
2221 * It is called by user functions.  The hardware should be acquired first.
2222 */
2223static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2224{
2225	if (percent > 100)
2226		percent = 100;
2227
2228	sw_cfg_broad_storm(hw, percent);
2229	sw_get_broad_storm(hw, &percent);
2230	hw->ksz_switch->broad_per = percent;
2231}
2232
2233/**
2234 * sw_dis_prio_rate - disable switch priority rate
2235 * @hw: 	The hardware instance.
2236 * @port:	The port index.
2237 *
2238 * This routine disables the priority rate function of the switch.
2239 */
2240static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2241{
2242	u32 addr;
2243
2244	PORT_CTRL_ADDR(port, addr);
2245	addr += KS8842_PORT_IN_RATE_OFFSET;
2246	writel(0, hw->io + addr);
2247}
2248
2249/**
2250 * sw_init_prio_rate - initialize switch prioirty rate
2251 * @hw: 	The hardware instance.
2252 *
2253 * This routine initializes the priority rate function of the switch.
2254 */
2255static void sw_init_prio_rate(struct ksz_hw *hw)
2256{
2257	int port;
2258	int prio;
2259	struct ksz_switch *sw = hw->ksz_switch;
2260
2261	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2262		for (prio = 0; prio < PRIO_QUEUES; prio++) {
2263			sw->port_cfg[port].rx_rate[prio] =
2264			sw->port_cfg[port].tx_rate[prio] = 0;
2265		}
2266		sw_dis_prio_rate(hw, port);
2267	}
2268}
2269
2270/* Communication */
2271
2272static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2273{
2274	port_cfg(hw, p,
2275		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2276}
2277
2278static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2279{
2280	port_cfg(hw, p,
2281		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2282}
2283
2284static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2285{
2286	return port_chk(hw, p,
2287		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2288}
2289
2290static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2291{
2292	return port_chk(hw, p,
2293		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2294}
2295
2296/* Spanning Tree */
2297
2298static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2299{
2300	port_cfg(hw, p,
2301		KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2302}
2303
2304static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2305{
2306	port_cfg(hw, p,
2307		KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2308}
2309
2310static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2311{
2312	sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2313}
2314
2315static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2316{
2317	if (!(hw->overrides & FAST_AGING)) {
2318		sw_cfg_fast_aging(hw, 1);
2319		mdelay(1);
2320		sw_cfg_fast_aging(hw, 0);
2321	}
2322}
2323
2324/* VLAN */
2325
2326static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2327{
2328	port_cfg(hw, p,
2329		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2330}
2331
2332static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2333{
2334	port_cfg(hw, p,
2335		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2336}
2337
2338static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2339{
2340	return port_chk(hw, p,
2341		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2342}
2343
2344static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2345{
2346	return port_chk(hw, p,
2347		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2348}
2349
2350static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2351{
2352	port_cfg(hw, p,
2353		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2354}
2355
2356static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2357{
2358	port_cfg(hw, p,
2359		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2360}
2361
2362static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2363{
2364	return port_chk(hw, p,
2365		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2366}
2367
2368static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2369{
2370	return port_chk(hw, p,
2371		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2372}
2373
2374/* Mirroring */
2375
2376static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2377{
2378	port_cfg(hw, p,
2379		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2380}
2381
2382static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2383{
2384	port_cfg(hw, p,
2385		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2386}
2387
2388static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2389{
2390	port_cfg(hw, p,
2391		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2392}
2393
2394static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2395{
2396	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2397}
2398
2399static void sw_init_mirror(struct ksz_hw *hw)
2400{
2401	int port;
2402
2403	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2404		port_cfg_mirror_sniffer(hw, port, 0);
2405		port_cfg_mirror_rx(hw, port, 0);
2406		port_cfg_mirror_tx(hw, port, 0);
2407	}
2408	sw_cfg_mirror_rx_tx(hw, 0);
2409}
2410
2411static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2412{
2413	sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2414		SWITCH_UNK_DEF_PORT_ENABLE, set);
2415}
2416
2417static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2418{
2419	return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2420		SWITCH_UNK_DEF_PORT_ENABLE);
2421}
2422
2423static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2424{
2425	port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2426}
2427
2428static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2429{
2430	return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2431}
2432
2433/* Priority */
2434
2435static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2436{
2437	port_cfg(hw, p,
2438		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2439}
2440
2441static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2442{
2443	port_cfg(hw, p,
2444		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2445}
2446
2447static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2448{
2449	port_cfg(hw, p,
2450		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2451}
2452
2453static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2454{
2455	port_cfg(hw, p,
2456		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2457}
2458
2459static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2460{
2461	return port_chk(hw, p,
2462		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2463}
2464
2465static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2466{
2467	return port_chk(hw, p,
2468		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2469}
2470
2471static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2472{
2473	return port_chk(hw, p,
2474		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2475}
2476
2477static inline int port_chk_prio(struct ksz_hw *hw, int p)
2478{
2479	return port_chk(hw, p,
2480		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2481}
2482
2483/**
2484 * sw_dis_diffserv - disable switch DiffServ priority
2485 * @hw: 	The hardware instance.
2486 * @port:	The port index.
2487 *
2488 * This routine disables the DiffServ priority function of the switch.
2489 */
2490static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2491{
2492	port_cfg_diffserv(hw, port, 0);
2493}
2494
2495/**
2496 * sw_dis_802_1p - disable switch 802.1p priority
2497 * @hw: 	The hardware instance.
2498 * @port:	The port index.
2499 *
2500 * This routine disables the 802.1p priority function of the switch.
2501 */
2502static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2503{
2504	port_cfg_802_1p(hw, port, 0);
2505}
2506
2507/**
2508 * sw_cfg_replace_null_vid -
2509 * @hw: 	The hardware instance.
2510 * @set:	The flag to disable or enable.
2511 *
2512 */
2513static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2514{
2515	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2516}
2517
2518/**
2519 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2520 * @hw: 	The hardware instance.
2521 * @port:	The port index.
2522 * @set:	The flag to disable or enable.
2523 *
2524 * This routine enables the 802.1p priority re-mapping function of the switch.
2525 * That allows 802.1p priority field to be replaced with the port's default
2526 * tag's priority value if the ingress packet's 802.1p priority has a higher
2527 * priority than port's default tag's priority.
2528 */
2529static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2530{
2531	port_cfg_replace_vid(hw, port, set);
2532}
2533
2534/**
2535 * sw_cfg_port_based - configure switch port based priority
2536 * @hw: 	The hardware instance.
2537 * @port:	The port index.
2538 * @prio:	The priority to set.
2539 *
2540 * This routine configures the port based priority of the switch.
2541 */
2542static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2543{
2544	u16 data;
2545
2546	if (prio > PORT_BASED_PRIORITY_BASE)
2547		prio = PORT_BASED_PRIORITY_BASE;
2548
2549	hw->ksz_switch->port_cfg[port].port_prio = prio;
2550
2551	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2552	data &= ~PORT_BASED_PRIORITY_MASK;
2553	data |= prio << PORT_BASED_PRIORITY_SHIFT;
2554	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2555}
2556
2557/**
2558 * sw_dis_multi_queue - disable transmit multiple queues
2559 * @hw: 	The hardware instance.
2560 * @port:	The port index.
2561 *
2562 * This routine disables the transmit multiple queues selection of the switch
2563 * port.  Only single transmit queue on the port.
2564 */
2565static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2566{
2567	port_cfg_prio(hw, port, 0);
2568}
2569
2570/**
2571 * sw_init_prio - initialize switch priority
2572 * @hw: 	The hardware instance.
2573 *
2574 * This routine initializes the switch QoS priority functions.
2575 */
2576static void sw_init_prio(struct ksz_hw *hw)
2577{
2578	int port;
2579	int tos;
2580	struct ksz_switch *sw = hw->ksz_switch;
2581
2582	/*
2583	 * Init all the 802.1p tag priority value to be assigned to different
2584	 * priority queue.
2585	 */
2586	sw->p_802_1p[0] = 0;
2587	sw->p_802_1p[1] = 0;
2588	sw->p_802_1p[2] = 1;
2589	sw->p_802_1p[3] = 1;
2590	sw->p_802_1p[4] = 2;
2591	sw->p_802_1p[5] = 2;
2592	sw->p_802_1p[6] = 3;
2593	sw->p_802_1p[7] = 3;
2594
2595	/*
2596	 * Init all the DiffServ priority value to be assigned to priority
2597	 * queue 0.
2598	 */
2599	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2600		sw->diffserv[tos] = 0;
2601
2602	/* All QoS functions disabled. */
2603	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2604		sw_dis_multi_queue(hw, port);
2605		sw_dis_diffserv(hw, port);
2606		sw_dis_802_1p(hw, port);
2607		sw_cfg_replace_vid(hw, port, 0);
2608
2609		sw->port_cfg[port].port_prio = 0;
2610		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2611	}
2612	sw_cfg_replace_null_vid(hw, 0);
2613}
2614
2615/**
2616 * port_get_def_vid - get port default VID.
2617 * @hw: 	The hardware instance.
2618 * @port:	The port index.
2619 * @vid:	Buffer to store the VID.
2620 *
2621 * This routine retrieves the default VID of the port.
2622 */
2623static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2624{
2625	u32 addr;
2626
2627	PORT_CTRL_ADDR(port, addr);
2628	addr += KS8842_PORT_CTRL_VID_OFFSET;
2629	*vid = readw(hw->io + addr);
2630}
2631
2632/**
2633 * sw_init_vlan - initialize switch VLAN
2634 * @hw: 	The hardware instance.
2635 *
2636 * This routine initializes the VLAN function of the switch.
2637 */
2638static void sw_init_vlan(struct ksz_hw *hw)
2639{
2640	int port;
2641	int entry;
2642	struct ksz_switch *sw = hw->ksz_switch;
2643
2644	/* Read 16 VLAN entries from device's VLAN table. */
2645	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2646		sw_r_vlan_table(hw, entry,
2647			&sw->vlan_table[entry].vid,
2648			&sw->vlan_table[entry].fid,
2649			&sw->vlan_table[entry].member);
2650	}
2651
2652	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2653		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2654		sw->port_cfg[port].member = PORT_MASK;
2655	}
2656}
2657
2658/**
2659 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2660 * @hw: 	The hardware instance.
2661 * @port:	The port index.
2662 * @member:	The port-based VLAN membership.
2663 *
2664 * This routine configures the port-based VLAN membership of the port.
2665 */
2666static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2667{
2668	u32 addr;
2669	u8 data;
2670
2671	PORT_CTRL_ADDR(port, addr);
2672	addr += KS8842_PORT_CTRL_2_OFFSET;
2673
2674	data = readb(hw->io + addr);
2675	data &= ~PORT_VLAN_MEMBERSHIP;
2676	data |= (member & PORT_MASK);
2677	writeb(data, hw->io + addr);
2678
2679	hw->ksz_switch->port_cfg[port].member = member;
2680}
2681
2682/**
2683 * sw_get_addr - get the switch MAC address.
2684 * @hw: 	The hardware instance.
2685 * @mac_addr:	Buffer to store the MAC address.
2686 *
2687 * This function retrieves the MAC address of the switch.
2688 */
2689static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2690{
2691	int i;
2692
2693	for (i = 0; i < 6; i += 2) {
2694		mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2695		mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2696	}
2697}
2698
2699/**
2700 * sw_set_addr - configure switch MAC address
2701 * @hw: 	The hardware instance.
2702 * @mac_addr:	The MAC address.
2703 *
2704 * This function configures the MAC address of the switch.
2705 */
2706static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2707{
2708	int i;
2709
2710	for (i = 0; i < 6; i += 2) {
2711		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2712		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2713	}
2714}
2715
2716/**
2717 * sw_set_global_ctrl - set switch global control
2718 * @hw: 	The hardware instance.
2719 *
2720 * This routine sets the global control of the switch function.
2721 */
2722static void sw_set_global_ctrl(struct ksz_hw *hw)
2723{
2724	u16 data;
2725
2726	/* Enable switch MII flow control. */
2727	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2728	data |= SWITCH_FLOW_CTRL;
2729	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2730
2731	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2732
2733	/* Enable aggressive back off algorithm in half duplex mode. */
2734	data |= SWITCH_AGGR_BACKOFF;
2735
2736	/* Enable automatic fast aging when link changed detected. */
2737	data |= SWITCH_AGING_ENABLE;
2738	data |= SWITCH_LINK_AUTO_AGING;
2739
2740	if (hw->overrides & FAST_AGING)
2741		data |= SWITCH_FAST_AGING;
2742	else
2743		data &= ~SWITCH_FAST_AGING;
2744	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2745
2746	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2747
2748	/* Enable no excessive collision drop. */
2749	data |= NO_EXC_COLLISION_DROP;
2750	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2751}
2752
2753enum {
2754	STP_STATE_DISABLED = 0,
2755	STP_STATE_LISTENING,
2756	STP_STATE_LEARNING,
2757	STP_STATE_FORWARDING,
2758	STP_STATE_BLOCKED,
2759	STP_STATE_SIMPLE
2760};
2761
2762/**
2763 * port_set_stp_state - configure port spanning tree state
2764 * @hw: 	The hardware instance.
2765 * @port:	The port index.
2766 * @state:	The spanning tree state.
2767 *
2768 * This routine configures the spanning tree state of the port.
2769 */
2770static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2771{
2772	u16 data;
2773
2774	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2775	switch (state) {
2776	case STP_STATE_DISABLED:
2777		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2778		data |= PORT_LEARN_DISABLE;
2779		break;
2780	case STP_STATE_LISTENING:
2781/*
2782 * No need to turn on transmit because of port direct mode.
2783 * Turning on receive is required if static MAC table is not setup.
2784 */
2785		data &= ~PORT_TX_ENABLE;
2786		data |= PORT_RX_ENABLE;
2787		data |= PORT_LEARN_DISABLE;
2788		break;
2789	case STP_STATE_LEARNING:
2790		data &= ~PORT_TX_ENABLE;
2791		data |= PORT_RX_ENABLE;
2792		data &= ~PORT_LEARN_DISABLE;
2793		break;
2794	case STP_STATE_FORWARDING:
2795		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2796		data &= ~PORT_LEARN_DISABLE;
2797		break;
2798	case STP_STATE_BLOCKED:
2799/*
2800 * Need to setup static MAC table with override to keep receiving BPDU
2801 * messages.  See sw_init_stp routine.
2802 */
2803		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2804		data |= PORT_LEARN_DISABLE;
2805		break;
2806	case STP_STATE_SIMPLE:
2807		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2808		data |= PORT_LEARN_DISABLE;
2809		break;
2810	}
2811	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2812	hw->ksz_switch->port_cfg[port].stp_state = state;
2813}
2814
2815#define STP_ENTRY			0
2816#define BROADCAST_ENTRY			1
2817#define BRIDGE_ADDR_ENTRY		2
2818#define IPV6_ADDR_ENTRY			3
2819
2820/**
2821 * sw_clr_sta_mac_table - clear static MAC table
2822 * @hw: 	The hardware instance.
2823 *
2824 * This routine clears the static MAC table.
2825 */
2826static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2827{
2828	struct ksz_mac_table *entry;
2829	int i;
2830
2831	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2832		entry = &hw->ksz_switch->mac_table[i];
2833		sw_w_sta_mac_table(hw, i,
2834			entry->mac_addr, entry->ports,
2835			entry->override, 0,
2836			entry->use_fid, entry->fid);
2837	}
2838}
2839
2840/**
2841 * sw_init_stp - initialize switch spanning tree support
2842 * @hw: 	The hardware instance.
2843 *
2844 * This routine initializes the spanning tree support of the switch.
2845 */
2846static void sw_init_stp(struct ksz_hw *hw)
2847{
2848	struct ksz_mac_table *entry;
2849
2850	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2851	entry->mac_addr[0] = 0x01;
2852	entry->mac_addr[1] = 0x80;
2853	entry->mac_addr[2] = 0xC2;
2854	entry->mac_addr[3] = 0x00;
2855	entry->mac_addr[4] = 0x00;
2856	entry->mac_addr[5] = 0x00;
2857	entry->ports = HOST_MASK;
2858	entry->override = 1;
2859	entry->valid = 1;
2860	sw_w_sta_mac_table(hw, STP_ENTRY,
2861		entry->mac_addr, entry->ports,
2862		entry->override, entry->valid,
2863		entry->use_fid, entry->fid);
2864}
2865
2866/**
2867 * sw_block_addr - block certain packets from the host port
2868 * @hw: 	The hardware instance.
2869 *
2870 * This routine blocks certain packets from reaching to the host port.
2871 */
2872static void sw_block_addr(struct ksz_hw *hw)
2873{
2874	struct ksz_mac_table *entry;
2875	int i;
2876
2877	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2878		entry = &hw->ksz_switch->mac_table[i];
2879		entry->valid = 0;
2880		sw_w_sta_mac_table(hw, i,
2881			entry->mac_addr, entry->ports,
2882			entry->override, entry->valid,
2883			entry->use_fid, entry->fid);
2884	}
2885}
2886
2887#define PHY_LINK_SUPPORT		\
2888	(PHY_AUTO_NEG_ASYM_PAUSE |	\
2889	PHY_AUTO_NEG_SYM_PAUSE |	\
2890	PHY_AUTO_NEG_100BT4 |		\
2891	PHY_AUTO_NEG_100BTX_FD |	\
2892	PHY_AUTO_NEG_100BTX |		\
2893	PHY_AUTO_NEG_10BT_FD |		\
2894	PHY_AUTO_NEG_10BT)
2895
2896static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2897{
2898	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2899}
2900
2901static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2902{
2903	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2904}
2905
2906static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2907{
2908	*data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2909}
2910
2911static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2912{
2913	*data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2914}
2915
2916static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2917{
2918	writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2919}
2920
2921static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2922{
2923	*data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2924}
2925
2926static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2927{
2928	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2929}
2930
2931static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2932{
2933	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2934}
2935
2936static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2937{
2938	*data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2939}
2940
2941static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2942{
2943	writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2944}
2945
2946static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2947{
2948	*data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2949}
2950
2951static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2952{
2953	writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2954}
2955
2956/**
2957 * hw_r_phy - read data from PHY register
2958 * @hw: 	The hardware instance.
2959 * @port:	Port to read.
2960 * @reg:	PHY register to read.
2961 * @val:	Buffer to store the read data.
2962 *
2963 * This routine reads data from the PHY register.
2964 */
2965static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2966{
2967	int phy;
2968
2969	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2970	*val = readw(hw->io + phy);
2971}
2972
2973/**
2974 * port_w_phy - write data to PHY register
2975 * @hw: 	The hardware instance.
2976 * @port:	Port to write.
2977 * @reg:	PHY register to write.
2978 * @val:	Word data to write.
2979 *
2980 * This routine writes data to the PHY register.
2981 */
2982static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2983{
2984	int phy;
2985
2986	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2987	writew(val, hw->io + phy);
2988}
2989
2990/*
2991 * EEPROM access functions
2992 */
2993
2994#define AT93C_CODE			0
2995#define AT93C_WR_OFF			0x00
2996#define AT93C_WR_ALL			0x10
2997#define AT93C_ER_ALL			0x20
2998#define AT93C_WR_ON			0x30
2999
3000#define AT93C_WRITE			1
3001#define AT93C_READ			2
3002#define AT93C_ERASE			3
3003
3004#define EEPROM_DELAY			4
3005
3006static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3007{
3008	u16 data;
3009
3010	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3011	data &= ~gpio;
3012	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3013}
3014
3015static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3016{
3017	u16 data;
3018
3019	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3020	data |= gpio;
3021	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3022}
3023
3024static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3025{
3026	u16 data;
3027
3028	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3029	return (u8)(data & gpio);
3030}
3031
3032static void eeprom_clk(struct ksz_hw *hw)
3033{
3034	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3035	udelay(EEPROM_DELAY);
3036	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3037	udelay(EEPROM_DELAY);
3038}
3039
3040static u16 spi_r(struct ksz_hw *hw)
3041{
3042	int i;
3043	u16 temp = 0;
3044
3045	for (i = 15; i >= 0; i--) {
3046		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3047		udelay(EEPROM_DELAY);
3048
3049		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3050
3051		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3052		udelay(EEPROM_DELAY);
3053	}
3054	return temp;
3055}
3056
3057static void spi_w(struct ksz_hw *hw, u16 data)
3058{
3059	int i;
3060
3061	for (i = 15; i >= 0; i--) {
3062		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3063			drop_gpio(hw, EEPROM_DATA_OUT);
3064		eeprom_clk(hw);
3065	}
3066}
3067
3068static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3069{
3070	int i;
3071
3072	/* Initial start bit */
3073	raise_gpio(hw, EEPROM_DATA_OUT);
3074	eeprom_clk(hw);
3075
3076	/* AT93C operation */
3077	for (i = 1; i >= 0; i--) {
3078		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3079			drop_gpio(hw, EEPROM_DATA_OUT);
3080		eeprom_clk(hw);
3081	}
3082
3083	/* Address location */
3084	for (i = 5; i >= 0; i--) {
3085		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3086			drop_gpio(hw, EEPROM_DATA_OUT);
3087		eeprom_clk(hw);
3088	}
3089}
3090
3091#define EEPROM_DATA_RESERVED		0
3092#define EEPROM_DATA_MAC_ADDR_0		1
3093#define EEPROM_DATA_MAC_ADDR_1		2
3094#define EEPROM_DATA_MAC_ADDR_2		3
3095#define EEPROM_DATA_SUBSYS_ID		4
3096#define EEPROM_DATA_SUBSYS_VEN_ID	5
3097#define EEPROM_DATA_PM_CAP		6
3098
3099/* User defined EEPROM data */
3100#define EEPROM_DATA_OTHER_MAC_ADDR	9
3101
3102/**
3103 * eeprom_read - read from AT93C46 EEPROM
3104 * @hw: 	The hardware instance.
3105 * @reg:	The register offset.
3106 *
3107 * This function reads a word from the AT93C46 EEPROM.
3108 *
3109 * Return the data value.
3110 */
3111static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3112{
3113	u16 data;
3114
3115	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3116
3117	spi_reg(hw, AT93C_READ, reg);
3118	data = spi_r(hw);
3119
3120	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3121
3122	return data;
3123}
3124
3125/**
3126 * eeprom_write - write to AT93C46 EEPROM
3127 * @hw: 	The hardware instance.
3128 * @reg:	The register offset.
3129 * @data:	The data value.
3130 *
3131 * This procedure writes a word to the AT93C46 EEPROM.
3132 */
3133static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3134{
3135	int timeout;
3136
3137	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3138
3139	/* Enable write. */
3140	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3141	drop_gpio(hw, EEPROM_CHIP_SELECT);
3142	udelay(1);
3143
3144	/* Erase the register. */
3145	raise_gpio(hw, EEPROM_CHIP_SELECT);
3146	spi_reg(hw, AT93C_ERASE, reg);
3147	drop_gpio(hw, EEPROM_CHIP_SELECT);
3148	udelay(1);
3149
3150	/* Check operation complete. */
3151	raise_gpio(hw, EEPROM_CHIP_SELECT);
3152	timeout = 8;
3153	mdelay(2);
3154	do {
3155		mdelay(1);
3156	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3157	drop_gpio(hw, EEPROM_CHIP_SELECT);
3158	udelay(1);
3159
3160	/* Write the register. */
3161	raise_gpio(hw, EEPROM_CHIP_SELECT);
3162	spi_reg(hw, AT93C_WRITE, reg);
3163	spi_w(hw, data);
3164	drop_gpio(hw, EEPROM_CHIP_SELECT);
3165	udelay(1);
3166
3167	/* Check operation complete. */
3168	raise_gpio(hw, EEPROM_CHIP_SELECT);
3169	timeout = 8;
3170	mdelay(2);
3171	do {
3172		mdelay(1);
3173	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3174	drop_gpio(hw, EEPROM_CHIP_SELECT);
3175	udelay(1);
3176
3177	/* Disable write. */
3178	raise_gpio(hw, EEPROM_CHIP_SELECT);
3179	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3180
3181	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3182}
3183
3184/*
3185 * Link detection routines
3186 */
3187
3188static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3189{
3190	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3191	switch (port->flow_ctrl) {
3192	case PHY_FLOW_CTRL:
3193		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3194		break;
3195	/* Not supported. */
3196	case PHY_TX_ONLY:
3197	case PHY_RX_ONLY:
3198	default:
3199		break;
3200	}
3201	return ctrl;
3202}
3203
3204static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3205{
3206	u32 rx_cfg;
3207	u32 tx_cfg;
3208
3209	rx_cfg = hw->rx_cfg;
3210	tx_cfg = hw->tx_cfg;
3211	if (rx)
3212		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3213	else
3214		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3215	if (tx)
3216		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3217	else
3218		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3219	if (hw->enabled) {
3220		if (rx_cfg != hw->rx_cfg)
3221			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3222		if (tx_cfg != hw->tx_cfg)
3223			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3224	}
3225}
3226
3227static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3228	u16 local, u16 remote)
3229{
3230	int rx;
3231	int tx;
3232
3233	if (hw->overrides & PAUSE_FLOW_CTRL)
3234		return;
3235
3236	rx = tx = 0;
3237	if (port->force_link)
3238		rx = tx = 1;
3239	if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3240		if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3241			rx = tx = 1;
3242		} else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3243				(local & PHY_AUTO_NEG_PAUSE) ==
3244				PHY_AUTO_NEG_ASYM_PAUSE) {
 
3245			tx = 1;
3246		}
3247	} else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3248		if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
 
3249			rx = 1;
3250	}
3251	if (!hw->ksz_switch)
3252		set_flow_ctrl(hw, rx, tx);
3253}
3254
3255static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3256	struct ksz_port_info *info, u16 link_status)
3257{
3258	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3259			!(hw->overrides & PAUSE_FLOW_CTRL)) {
3260		u32 cfg = hw->tx_cfg;
3261
3262		/* Disable flow control in the half duplex mode. */
3263		if (1 == info->duplex)
3264			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3265		if (hw->enabled && cfg != hw->tx_cfg)
3266			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3267	}
3268}
3269
3270/**
3271 * port_get_link_speed - get current link status
3272 * @port: 	The port instance.
3273 *
3274 * This routine reads PHY registers to determine the current link status of the
3275 * switch ports.
3276 */
3277static void port_get_link_speed(struct ksz_port *port)
3278{
3279	uint interrupt;
3280	struct ksz_port_info *info;
3281	struct ksz_port_info *linked = NULL;
3282	struct ksz_hw *hw = port->hw;
3283	u16 data;
3284	u16 status;
3285	u8 local;
3286	u8 remote;
3287	int i;
3288	int p;
3289	int change = 0;
3290
3291	interrupt = hw_block_intr(hw);
3292
3293	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3294		info = &hw->port_info[p];
3295		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3296		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3297
3298		/*
3299		 * Link status is changing all the time even when there is no
3300		 * cable connection!
3301		 */
3302		remote = status & (PORT_AUTO_NEG_COMPLETE |
3303			PORT_STATUS_LINK_GOOD);
3304		local = (u8) data;
3305
3306		/* No change to status. */
3307		if (local == info->advertised && remote == info->partner)
3308			continue;
3309
3310		info->advertised = local;
3311		info->partner = remote;
3312		if (status & PORT_STATUS_LINK_GOOD) {
3313
3314			/* Remember the first linked port. */
3315			if (!linked)
3316				linked = info;
3317
3318			info->tx_rate = 10 * TX_RATE_UNIT;
3319			if (status & PORT_STATUS_SPEED_100MBIT)
3320				info->tx_rate = 100 * TX_RATE_UNIT;
3321
3322			info->duplex = 1;
3323			if (status & PORT_STATUS_FULL_DUPLEX)
3324				info->duplex = 2;
3325
3326			if (media_connected != info->state) {
3327				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3328					&data);
3329				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3330					&status);
3331				determine_flow_ctrl(hw, port, data, status);
3332				if (hw->ksz_switch) {
3333					port_cfg_back_pressure(hw, p,
3334						(1 == info->duplex));
3335				}
3336				change |= 1 << i;
3337				port_cfg_change(hw, port, info, status);
3338			}
3339			info->state = media_connected;
3340		} else {
3341			if (media_disconnected != info->state) {
3342				change |= 1 << i;
 
3343
3344				/* Indicate the link just goes down. */
3345				hw->port_mib[p].link_down = 1;
3346			}
3347			info->state = media_disconnected;
3348		}
3349		hw->port_mib[p].state = (u8) info->state;
3350	}
3351
3352	if (linked && media_disconnected == port->linked->state)
3353		port->linked = linked;
3354
3355	hw_restore_intr(hw, interrupt);
3356}
3357
3358#define PHY_RESET_TIMEOUT		10
3359
3360/**
3361 * port_set_link_speed - set port speed
3362 * @port: 	The port instance.
3363 *
3364 * This routine sets the link speed of the switch ports.
3365 */
3366static void port_set_link_speed(struct ksz_port *port)
3367{
3368	struct ksz_hw *hw = port->hw;
3369	u16 data;
3370	u16 cfg;
3371	u8 status;
3372	int i;
3373	int p;
3374
3375	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3376		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3377		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3378
3379		cfg = 0;
3380		if (status & PORT_STATUS_LINK_GOOD)
3381			cfg = data;
3382
3383		data |= PORT_AUTO_NEG_ENABLE;
3384		data = advertised_flow_ctrl(port, data);
3385
3386		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3387			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3388
3389		/* Check if manual configuration is specified by the user. */
3390		if (port->speed || port->duplex) {
3391			if (10 == port->speed)
3392				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3393					PORT_AUTO_NEG_100BTX);
3394			else if (100 == port->speed)
3395				data &= ~(PORT_AUTO_NEG_10BT_FD |
3396					PORT_AUTO_NEG_10BT);
3397			if (1 == port->duplex)
3398				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3399					PORT_AUTO_NEG_10BT_FD);
3400			else if (2 == port->duplex)
3401				data &= ~(PORT_AUTO_NEG_100BTX |
3402					PORT_AUTO_NEG_10BT);
3403		}
3404		if (data != cfg) {
3405			data |= PORT_AUTO_NEG_RESTART;
3406			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3407		}
3408	}
3409}
3410
3411/**
3412 * port_force_link_speed - force port speed
3413 * @port: 	The port instance.
3414 *
3415 * This routine forces the link speed of the switch ports.
3416 */
3417static void port_force_link_speed(struct ksz_port *port)
3418{
3419	struct ksz_hw *hw = port->hw;
3420	u16 data;
3421	int i;
3422	int phy;
3423	int p;
3424
3425	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3426		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3427		hw_r_phy_ctrl(hw, phy, &data);
3428
3429		data &= ~PHY_AUTO_NEG_ENABLE;
3430
3431		if (10 == port->speed)
3432			data &= ~PHY_SPEED_100MBIT;
3433		else if (100 == port->speed)
3434			data |= PHY_SPEED_100MBIT;
3435		if (1 == port->duplex)
3436			data &= ~PHY_FULL_DUPLEX;
3437		else if (2 == port->duplex)
3438			data |= PHY_FULL_DUPLEX;
3439		hw_w_phy_ctrl(hw, phy, data);
3440	}
3441}
3442
3443static void port_set_power_saving(struct ksz_port *port, int enable)
3444{
3445	struct ksz_hw *hw = port->hw;
3446	int i;
3447	int p;
3448
3449	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3450		port_cfg(hw, p,
3451			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3452}
3453
3454/*
3455 * KSZ8841 power management functions
3456 */
3457
3458/**
3459 * hw_chk_wol_pme_status - check PMEN pin
3460 * @hw: 	The hardware instance.
3461 *
3462 * This function is used to check PMEN pin is asserted.
3463 *
3464 * Return 1 if PMEN pin is asserted; otherwise, 0.
3465 */
3466static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3467{
3468	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3469	struct pci_dev *pdev = hw_priv->pdev;
3470	u16 data;
3471
3472	if (!pdev->pm_cap)
3473		return 0;
3474	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3475	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3476}
3477
3478/**
3479 * hw_clr_wol_pme_status - clear PMEN pin
3480 * @hw: 	The hardware instance.
3481 *
3482 * This routine is used to clear PME_Status to deassert PMEN pin.
3483 */
3484static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3485{
3486	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3487	struct pci_dev *pdev = hw_priv->pdev;
3488	u16 data;
3489
3490	if (!pdev->pm_cap)
3491		return;
3492
3493	/* Clear PME_Status to deassert PMEN pin. */
3494	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3495	data |= PCI_PM_CTRL_PME_STATUS;
3496	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3497}
3498
3499/**
3500 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3501 * @hw: 	The hardware instance.
3502 * @set:	The flag indicating whether to enable or disable.
3503 *
3504 * This routine is used to enable or disable Wake-on-LAN.
3505 */
3506static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3507{
3508	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3509	struct pci_dev *pdev = hw_priv->pdev;
3510	u16 data;
3511
3512	if (!pdev->pm_cap)
3513		return;
3514	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3515	data &= ~PCI_PM_CTRL_STATE_MASK;
3516	if (set)
3517		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3518	else
3519		data &= ~PCI_PM_CTRL_PME_ENABLE;
3520	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3521}
3522
3523/**
3524 * hw_cfg_wol - configure Wake-on-LAN features
3525 * @hw: 	The hardware instance.
3526 * @frame:	The pattern frame bit.
3527 * @set:	The flag indicating whether to enable or disable.
3528 *
3529 * This routine is used to enable or disable certain Wake-on-LAN features.
3530 */
3531static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3532{
3533	u16 data;
3534
3535	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3536	if (set)
3537		data |= frame;
3538	else
3539		data &= ~frame;
3540	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3541}
3542
3543/**
3544 * hw_set_wol_frame - program Wake-on-LAN pattern
3545 * @hw: 	The hardware instance.
3546 * @i:		The frame index.
3547 * @mask_size:	The size of the mask.
3548 * @mask:	Mask to ignore certain bytes in the pattern.
3549 * @frame_size:	The size of the frame.
3550 * @pattern:	The frame data.
3551 *
3552 * This routine is used to program Wake-on-LAN pattern.
3553 */
3554static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3555	const u8 *mask, uint frame_size, const u8 *pattern)
3556{
3557	int bits;
3558	int from;
3559	int len;
3560	int to;
3561	u32 crc;
3562	u8 data[64];
3563	u8 val = 0;
3564
3565	if (frame_size > mask_size * 8)
3566		frame_size = mask_size * 8;
3567	if (frame_size > 64)
3568		frame_size = 64;
3569
3570	i *= 0x10;
3571	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3572	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3573
3574	bits = len = from = to = 0;
3575	do {
3576		if (bits) {
3577			if ((val & 1))
3578				data[to++] = pattern[from];
3579			val >>= 1;
3580			++from;
3581			--bits;
3582		} else {
3583			val = mask[len];
3584			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3585				+ len);
3586			++len;
3587			if (val)
3588				bits = 8;
3589			else
3590				from += 8;
3591		}
3592	} while (from < (int) frame_size);
3593	if (val) {
3594		bits = mask[len - 1];
3595		val <<= (from % 8);
3596		bits &= ~val;
3597		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3598			1);
3599	}
3600	crc = ether_crc(to, data);
3601	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3602}
3603
3604/**
3605 * hw_add_wol_arp - add ARP pattern
3606 * @hw: 	The hardware instance.
3607 * @ip_addr:	The IPv4 address assigned to the device.
3608 *
3609 * This routine is used to add ARP pattern for waking up the host.
3610 */
3611static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3612{
3613	static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3614	u8 pattern[42] = {
3615		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3616		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3617		0x08, 0x06,
3618		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3619		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3620		0x00, 0x00, 0x00, 0x00,
3621		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3622		0x00, 0x00, 0x00, 0x00 };
3623
3624	memcpy(&pattern[38], ip_addr, 4);
3625	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3626}
3627
3628/**
3629 * hw_add_wol_bcast - add broadcast pattern
3630 * @hw: 	The hardware instance.
3631 *
3632 * This routine is used to add broadcast pattern for waking up the host.
3633 */
3634static void hw_add_wol_bcast(struct ksz_hw *hw)
3635{
3636	static const u8 mask[] = { 0x3F };
3637	static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3638
3639	hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3640}
3641
3642/**
3643 * hw_add_wol_mcast - add multicast pattern
3644 * @hw: 	The hardware instance.
3645 *
3646 * This routine is used to add multicast pattern for waking up the host.
3647 *
3648 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3649 * by IPv6 ping command.  Note that multicast packets are filtred through the
3650 * multicast hash table, so not all multicast packets can wake up the host.
3651 */
3652static void hw_add_wol_mcast(struct ksz_hw *hw)
3653{
3654	static const u8 mask[] = { 0x3F };
3655	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3656
3657	memcpy(&pattern[3], &hw->override_addr[3], 3);
3658	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3659}
3660
3661/**
3662 * hw_add_wol_ucast - add unicast pattern
3663 * @hw: 	The hardware instance.
3664 *
3665 * This routine is used to add unicast pattern to wakeup the host.
3666 *
3667 * It is assumed the unicast packet is directed to the device, as the hardware
3668 * can only receive them in normal case.
3669 */
3670static void hw_add_wol_ucast(struct ksz_hw *hw)
3671{
3672	static const u8 mask[] = { 0x3F };
3673
3674	hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3675}
3676
3677/**
3678 * hw_enable_wol - enable Wake-on-LAN
3679 * @hw: 	The hardware instance.
3680 * @wol_enable:	The Wake-on-LAN settings.
3681 * @net_addr:	The IPv4 address assigned to the device.
3682 *
3683 * This routine is used to enable Wake-on-LAN depending on driver settings.
3684 */
3685static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3686{
3687	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3688	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3689	hw_add_wol_ucast(hw);
3690	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3691	hw_add_wol_mcast(hw);
3692	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3693	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3694	hw_add_wol_arp(hw, net_addr);
3695}
3696
3697/**
3698 * hw_init - check driver is correct for the hardware
3699 * @hw: 	The hardware instance.
3700 *
3701 * This function checks the hardware is correct for this driver and sets the
3702 * hardware up for proper initialization.
3703 *
3704 * Return number of ports or 0 if not right.
3705 */
3706static int hw_init(struct ksz_hw *hw)
3707{
3708	int rc = 0;
3709	u16 data;
3710	u16 revision;
3711
3712	/* Set bus speed to 125MHz. */
3713	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3714
3715	/* Check KSZ884x chip ID. */
3716	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3717
3718	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3719	data &= KS884X_CHIP_ID_MASK_41;
3720	if (REG_CHIP_ID_41 == data)
3721		rc = 1;
3722	else if (REG_CHIP_ID_42 == data)
3723		rc = 2;
3724	else
3725		return 0;
3726
3727	/* Setup hardware features or bug workarounds. */
3728	if (revision <= 1) {
3729		hw->features |= SMALL_PACKET_TX_BUG;
3730		if (1 == rc)
3731			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3732	}
3733	return rc;
3734}
3735
3736/**
3737 * hw_reset - reset the hardware
3738 * @hw: 	The hardware instance.
3739 *
3740 * This routine resets the hardware.
3741 */
3742static void hw_reset(struct ksz_hw *hw)
3743{
3744	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3745
3746	/* Wait for device to reset. */
3747	mdelay(10);
3748
3749	/* Write 0 to clear device reset. */
3750	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3751}
3752
3753/**
3754 * hw_setup - setup the hardware
3755 * @hw: 	The hardware instance.
3756 *
3757 * This routine setup the hardware for proper operation.
3758 */
3759static void hw_setup(struct ksz_hw *hw)
3760{
3761#if SET_DEFAULT_LED
3762	u16 data;
3763
3764	/* Change default LED mode. */
3765	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3766	data &= ~LED_MODE;
3767	data |= SET_DEFAULT_LED;
3768	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3769#endif
3770
3771	/* Setup transmit control. */
3772	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3773		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3774
3775	/* Setup receive control. */
3776	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3777		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3778	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3779
3780	/* Hardware cannot handle UDP packet in IP fragments. */
3781	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3782
3783	if (hw->all_multi)
3784		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3785	if (hw->promiscuous)
3786		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3787}
3788
3789/**
3790 * hw_setup_intr - setup interrupt mask
3791 * @hw: 	The hardware instance.
3792 *
3793 * This routine setup the interrupt mask for proper operation.
3794 */
3795static void hw_setup_intr(struct ksz_hw *hw)
3796{
3797	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3798}
3799
3800static void ksz_check_desc_num(struct ksz_desc_info *info)
3801{
3802#define MIN_DESC_SHIFT  2
3803
3804	int alloc = info->alloc;
3805	int shift;
3806
3807	shift = 0;
3808	while (!(alloc & 1)) {
3809		shift++;
3810		alloc >>= 1;
3811	}
3812	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3813		pr_alert("Hardware descriptor numbers not right!\n");
3814		while (alloc) {
3815			shift++;
3816			alloc >>= 1;
3817		}
3818		if (shift < MIN_DESC_SHIFT)
3819			shift = MIN_DESC_SHIFT;
3820		alloc = 1 << shift;
3821		info->alloc = alloc;
3822	}
3823	info->mask = info->alloc - 1;
3824}
3825
3826static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3827{
3828	int i;
3829	u32 phys = desc_info->ring_phys;
3830	struct ksz_hw_desc *desc = desc_info->ring_virt;
3831	struct ksz_desc *cur = desc_info->ring;
3832	struct ksz_desc *previous = NULL;
3833
3834	for (i = 0; i < desc_info->alloc; i++) {
3835		cur->phw = desc++;
3836		phys += desc_info->size;
3837		previous = cur++;
3838		previous->phw->next = cpu_to_le32(phys);
3839	}
3840	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3841	previous->sw.buf.rx.end_of_ring = 1;
3842	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3843
3844	desc_info->avail = desc_info->alloc;
3845	desc_info->last = desc_info->next = 0;
3846
3847	desc_info->cur = desc_info->ring;
3848}
3849
3850/**
3851 * hw_set_desc_base - set descriptor base addresses
3852 * @hw: 	The hardware instance.
3853 * @tx_addr:	The transmit descriptor base.
3854 * @rx_addr:	The receive descriptor base.
3855 *
3856 * This routine programs the descriptor base addresses after reset.
3857 */
3858static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3859{
3860	/* Set base address of Tx/Rx descriptors. */
3861	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3862	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3863}
3864
3865static void hw_reset_pkts(struct ksz_desc_info *info)
3866{
3867	info->cur = info->ring;
3868	info->avail = info->alloc;
3869	info->last = info->next = 0;
3870}
3871
3872static inline void hw_resume_rx(struct ksz_hw *hw)
3873{
3874	writel(DMA_START, hw->io + KS_DMA_RX_START);
3875}
3876
3877/**
3878 * hw_start_rx - start receiving
3879 * @hw: 	The hardware instance.
3880 *
3881 * This routine starts the receive function of the hardware.
3882 */
3883static void hw_start_rx(struct ksz_hw *hw)
3884{
3885	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3886
3887	/* Notify when the receive stops. */
3888	hw->intr_mask |= KS884X_INT_RX_STOPPED;
3889
3890	writel(DMA_START, hw->io + KS_DMA_RX_START);
3891	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3892	hw->rx_stop++;
3893
3894	/* Variable overflows. */
3895	if (0 == hw->rx_stop)
3896		hw->rx_stop = 2;
3897}
3898
3899/**
3900 * hw_stop_rx - stop receiving
3901 * @hw: 	The hardware instance.
3902 *
3903 * This routine stops the receive function of the hardware.
3904 */
3905static void hw_stop_rx(struct ksz_hw *hw)
3906{
3907	hw->rx_stop = 0;
3908	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3909	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3910}
3911
3912/**
3913 * hw_start_tx - start transmitting
3914 * @hw: 	The hardware instance.
3915 *
3916 * This routine starts the transmit function of the hardware.
3917 */
3918static void hw_start_tx(struct ksz_hw *hw)
3919{
3920	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3921}
3922
3923/**
3924 * hw_stop_tx - stop transmitting
3925 * @hw: 	The hardware instance.
3926 *
3927 * This routine stops the transmit function of the hardware.
3928 */
3929static void hw_stop_tx(struct ksz_hw *hw)
3930{
3931	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3932}
3933
3934/**
3935 * hw_disable - disable hardware
3936 * @hw: 	The hardware instance.
3937 *
3938 * This routine disables the hardware.
3939 */
3940static void hw_disable(struct ksz_hw *hw)
3941{
3942	hw_stop_rx(hw);
3943	hw_stop_tx(hw);
3944	hw->enabled = 0;
3945}
3946
3947/**
3948 * hw_enable - enable hardware
3949 * @hw: 	The hardware instance.
3950 *
3951 * This routine enables the hardware.
3952 */
3953static void hw_enable(struct ksz_hw *hw)
3954{
3955	hw_start_tx(hw);
3956	hw_start_rx(hw);
3957	hw->enabled = 1;
3958}
3959
3960/**
3961 * hw_alloc_pkt - allocate enough descriptors for transmission
3962 * @hw: 	The hardware instance.
3963 * @length:	The length of the packet.
3964 * @physical:	Number of descriptors required.
3965 *
3966 * This function allocates descriptors for transmission.
3967 *
3968 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3969 */
3970static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3971{
3972	/* Always leave one descriptor free. */
3973	if (hw->tx_desc_info.avail <= 1)
3974		return 0;
3975
3976	/* Allocate a descriptor for transmission and mark it current. */
3977	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3978	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3979
3980	/* Keep track of number of transmit descriptors used so far. */
3981	++hw->tx_int_cnt;
3982	hw->tx_size += length;
3983
3984	/* Cannot hold on too much data. */
3985	if (hw->tx_size >= MAX_TX_HELD_SIZE)
3986		hw->tx_int_cnt = hw->tx_int_mask + 1;
3987
3988	if (physical > hw->tx_desc_info.avail)
3989		return 1;
3990
3991	return hw->tx_desc_info.avail;
3992}
3993
3994/**
3995 * hw_send_pkt - mark packet for transmission
3996 * @hw: 	The hardware instance.
3997 *
3998 * This routine marks the packet for transmission in PCI version.
3999 */
4000static void hw_send_pkt(struct ksz_hw *hw)
4001{
4002	struct ksz_desc *cur = hw->tx_desc_info.cur;
4003
4004	cur->sw.buf.tx.last_seg = 1;
4005
4006	/* Interrupt only after specified number of descriptors used. */
4007	if (hw->tx_int_cnt > hw->tx_int_mask) {
4008		cur->sw.buf.tx.intr = 1;
4009		hw->tx_int_cnt = 0;
4010		hw->tx_size = 0;
4011	}
4012
4013	/* KSZ8842 supports port directed transmission. */
4014	cur->sw.buf.tx.dest_port = hw->dst_ports;
4015
4016	release_desc(cur);
4017
4018	writel(0, hw->io + KS_DMA_TX_START);
4019}
4020
4021static int empty_addr(u8 *addr)
4022{
4023	u32 *addr1 = (u32 *) addr;
4024	u16 *addr2 = (u16 *) &addr[4];
4025
4026	return 0 == *addr1 && 0 == *addr2;
4027}
4028
4029/**
4030 * hw_set_addr - set MAC address
4031 * @hw: 	The hardware instance.
4032 *
4033 * This routine programs the MAC address of the hardware when the address is
4034 * overridden.
4035 */
4036static void hw_set_addr(struct ksz_hw *hw)
4037{
4038	int i;
4039
4040	for (i = 0; i < ETH_ALEN; i++)
4041		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4042			hw->io + KS884X_ADDR_0_OFFSET + i);
4043
4044	sw_set_addr(hw, hw->override_addr);
4045}
4046
4047/**
4048 * hw_read_addr - read MAC address
4049 * @hw: 	The hardware instance.
4050 *
4051 * This routine retrieves the MAC address of the hardware.
4052 */
4053static void hw_read_addr(struct ksz_hw *hw)
4054{
4055	int i;
4056
4057	for (i = 0; i < ETH_ALEN; i++)
4058		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4059			KS884X_ADDR_0_OFFSET + i);
4060
4061	if (!hw->mac_override) {
4062		memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
4063		if (empty_addr(hw->override_addr)) {
4064			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
4065			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4066			       ETH_ALEN);
4067			hw->override_addr[5] += hw->id;
4068			hw_set_addr(hw);
4069		}
4070	}
4071}
4072
4073static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4074{
4075	int i;
4076	u32 mac_addr_lo;
4077	u32 mac_addr_hi;
4078
4079	mac_addr_hi = 0;
4080	for (i = 0; i < 2; i++) {
4081		mac_addr_hi <<= 8;
4082		mac_addr_hi |= mac_addr[i];
4083	}
4084	mac_addr_hi |= ADD_ADDR_ENABLE;
4085	mac_addr_lo = 0;
4086	for (i = 2; i < 6; i++) {
4087		mac_addr_lo <<= 8;
4088		mac_addr_lo |= mac_addr[i];
4089	}
4090	index *= ADD_ADDR_INCR;
4091
4092	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4093	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4094}
4095
4096static void hw_set_add_addr(struct ksz_hw *hw)
4097{
4098	int i;
4099
4100	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4101		if (empty_addr(hw->address[i]))
4102			writel(0, hw->io + ADD_ADDR_INCR * i +
4103				KS_ADD_ADDR_0_HI);
4104		else
4105			hw_ena_add_addr(hw, i, hw->address[i]);
4106	}
4107}
4108
4109static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4110{
4111	int i;
4112	int j = ADDITIONAL_ENTRIES;
4113
4114	if (ether_addr_equal(hw->override_addr, mac_addr))
4115		return 0;
4116	for (i = 0; i < hw->addr_list_size; i++) {
4117		if (ether_addr_equal(hw->address[i], mac_addr))
4118			return 0;
4119		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4120			j = i;
4121	}
4122	if (j < ADDITIONAL_ENTRIES) {
4123		memcpy(hw->address[j], mac_addr, ETH_ALEN);
4124		hw_ena_add_addr(hw, j, hw->address[j]);
4125		return 0;
4126	}
4127	return -1;
4128}
4129
4130static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4131{
4132	int i;
4133
4134	for (i = 0; i < hw->addr_list_size; i++) {
4135		if (ether_addr_equal(hw->address[i], mac_addr)) {
4136			eth_zero_addr(hw->address[i]);
4137			writel(0, hw->io + ADD_ADDR_INCR * i +
4138				KS_ADD_ADDR_0_HI);
4139			return 0;
4140		}
4141	}
4142	return -1;
4143}
4144
4145/**
4146 * hw_clr_multicast - clear multicast addresses
4147 * @hw: 	The hardware instance.
4148 *
4149 * This routine removes all multicast addresses set in the hardware.
4150 */
4151static void hw_clr_multicast(struct ksz_hw *hw)
4152{
4153	int i;
4154
4155	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4156		hw->multi_bits[i] = 0;
4157
4158		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4159	}
4160}
4161
4162/**
4163 * hw_set_grp_addr - set multicast addresses
4164 * @hw: 	The hardware instance.
4165 *
4166 * This routine programs multicast addresses for the hardware to accept those
4167 * addresses.
4168 */
4169static void hw_set_grp_addr(struct ksz_hw *hw)
4170{
4171	int i;
4172	int index;
4173	int position;
4174	int value;
4175
4176	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4177
4178	for (i = 0; i < hw->multi_list_size; i++) {
4179		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4180		index = position >> 3;
4181		value = 1 << (position & 7);
4182		hw->multi_bits[index] |= (u8) value;
4183	}
4184
4185	for (i = 0; i < HW_MULTICAST_SIZE; i++)
4186		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4187			i);
4188}
4189
4190/**
4191 * hw_set_multicast - enable or disable all multicast receiving
4192 * @hw: 	The hardware instance.
4193 * @multicast:	To turn on or off the all multicast feature.
4194 *
4195 * This routine enables/disables the hardware to accept all multicast packets.
4196 */
4197static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4198{
4199	/* Stop receiving for reconfiguration. */
4200	hw_stop_rx(hw);
4201
4202	if (multicast)
4203		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4204	else
4205		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4206
4207	if (hw->enabled)
4208		hw_start_rx(hw);
4209}
4210
4211/**
4212 * hw_set_promiscuous - enable or disable promiscuous receiving
4213 * @hw: 	The hardware instance.
4214 * @prom:	To turn on or off the promiscuous feature.
4215 *
4216 * This routine enables/disables the hardware to accept all packets.
4217 */
4218static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4219{
4220	/* Stop receiving for reconfiguration. */
4221	hw_stop_rx(hw);
4222
4223	if (prom)
4224		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4225	else
4226		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4227
4228	if (hw->enabled)
4229		hw_start_rx(hw);
4230}
4231
4232/**
4233 * sw_enable - enable the switch
4234 * @hw: 	The hardware instance.
4235 * @enable:	The flag to enable or disable the switch
4236 *
4237 * This routine is used to enable/disable the switch in KSZ8842.
4238 */
4239static void sw_enable(struct ksz_hw *hw, int enable)
4240{
4241	int port;
4242
4243	for (port = 0; port < SWITCH_PORT_NUM; port++) {
4244		if (hw->dev_count > 1) {
4245			/* Set port-base vlan membership with host port. */
4246			sw_cfg_port_base_vlan(hw, port,
4247				HOST_MASK | (1 << port));
4248			port_set_stp_state(hw, port, STP_STATE_DISABLED);
4249		} else {
4250			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4251			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4252		}
4253	}
4254	if (hw->dev_count > 1)
4255		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4256	else
4257		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4258
4259	if (enable)
4260		enable = KS8842_START;
4261	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4262}
4263
4264/**
4265 * sw_setup - setup the switch
4266 * @hw: 	The hardware instance.
4267 *
4268 * This routine setup the hardware switch engine for default operation.
4269 */
4270static void sw_setup(struct ksz_hw *hw)
4271{
4272	int port;
4273
4274	sw_set_global_ctrl(hw);
4275
4276	/* Enable switch broadcast storm protection at 10% percent rate. */
4277	sw_init_broad_storm(hw);
4278	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4279	for (port = 0; port < SWITCH_PORT_NUM; port++)
4280		sw_ena_broad_storm(hw, port);
4281
4282	sw_init_prio(hw);
4283
4284	sw_init_mirror(hw);
4285
4286	sw_init_prio_rate(hw);
4287
4288	sw_init_vlan(hw);
4289
4290	if (hw->features & STP_SUPPORT)
4291		sw_init_stp(hw);
4292	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4293			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4294		hw->overrides |= PAUSE_FLOW_CTRL;
4295	sw_enable(hw, 1);
4296}
4297
4298/**
4299 * ksz_start_timer - start kernel timer
4300 * @info:	Kernel timer information.
4301 * @time:	The time tick.
4302 *
4303 * This routine starts the kernel timer after the specified time tick.
4304 */
4305static void ksz_start_timer(struct ksz_timer_info *info, int time)
4306{
4307	info->cnt = 0;
4308	info->timer.expires = jiffies + time;
4309	add_timer(&info->timer);
4310
4311	/* infinity */
4312	info->max = -1;
4313}
4314
4315/**
4316 * ksz_stop_timer - stop kernel timer
4317 * @info:	Kernel timer information.
4318 *
4319 * This routine stops the kernel timer.
4320 */
4321static void ksz_stop_timer(struct ksz_timer_info *info)
4322{
4323	if (info->max) {
4324		info->max = 0;
4325		del_timer_sync(&info->timer);
4326	}
4327}
4328
4329static void ksz_init_timer(struct ksz_timer_info *info, int period,
4330	void (*function)(struct timer_list *))
4331{
4332	info->max = 0;
4333	info->period = period;
4334	timer_setup(&info->timer, function, 0);
4335}
4336
4337static void ksz_update_timer(struct ksz_timer_info *info)
4338{
4339	++info->cnt;
4340	if (info->max > 0) {
4341		if (info->cnt < info->max) {
4342			info->timer.expires = jiffies + info->period;
4343			add_timer(&info->timer);
4344		} else
4345			info->max = 0;
4346	} else if (info->max < 0) {
4347		info->timer.expires = jiffies + info->period;
4348		add_timer(&info->timer);
4349	}
4350}
4351
4352/**
4353 * ksz_alloc_soft_desc - allocate software descriptors
4354 * @desc_info:	Descriptor information structure.
4355 * @transmit:	Indication that descriptors are for transmit.
4356 *
4357 * This local function allocates software descriptors for manipulation in
4358 * memory.
4359 *
4360 * Return 0 if successful.
4361 */
4362static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4363{
4364	desc_info->ring = kcalloc(desc_info->alloc, sizeof(struct ksz_desc),
4365				  GFP_KERNEL);
4366	if (!desc_info->ring)
4367		return 1;
4368	hw_init_desc(desc_info, transmit);
4369	return 0;
4370}
4371
4372/**
4373 * ksz_alloc_desc - allocate hardware descriptors
4374 * @adapter:	Adapter information structure.
4375 *
4376 * This local function allocates hardware descriptors for receiving and
4377 * transmitting.
4378 *
4379 * Return 0 if successful.
4380 */
4381static int ksz_alloc_desc(struct dev_info *adapter)
4382{
4383	struct ksz_hw *hw = &adapter->hw;
4384	int offset;
4385
4386	/* Allocate memory for RX & TX descriptors. */
4387	adapter->desc_pool.alloc_size =
4388		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4389		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4390		DESC_ALIGNMENT;
4391
4392	adapter->desc_pool.alloc_virt =
4393		pci_zalloc_consistent(adapter->pdev,
4394				      adapter->desc_pool.alloc_size,
4395				      &adapter->desc_pool.dma_addr);
4396	if (adapter->desc_pool.alloc_virt == NULL) {
4397		adapter->desc_pool.alloc_size = 0;
4398		return 1;
4399	}
4400
4401	/* Align to the next cache line boundary. */
4402	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4403		(DESC_ALIGNMENT -
4404		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4405	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4406	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4407
4408	/* Allocate receive/transmit descriptors. */
4409	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4410		adapter->desc_pool.virt;
4411	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4412	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4413	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4414		(adapter->desc_pool.virt + offset);
4415	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4416
4417	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4418		return 1;
4419	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4420		return 1;
4421
4422	return 0;
4423}
4424
4425/**
4426 * free_dma_buf - release DMA buffer resources
4427 * @adapter:	Adapter information structure.
 
 
4428 *
4429 * This routine is just a helper function to release the DMA buffer resources.
4430 */
4431static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4432	int direction)
4433{
4434	pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
 
4435	dev_kfree_skb(dma_buf->skb);
4436	dma_buf->skb = NULL;
4437	dma_buf->dma = 0;
4438}
4439
4440/**
4441 * ksz_init_rx_buffers - initialize receive descriptors
4442 * @adapter:	Adapter information structure.
4443 *
4444 * This routine initializes DMA buffers for receiving.
4445 */
4446static void ksz_init_rx_buffers(struct dev_info *adapter)
4447{
4448	int i;
4449	struct ksz_desc *desc;
4450	struct ksz_dma_buf *dma_buf;
4451	struct ksz_hw *hw = &adapter->hw;
4452	struct ksz_desc_info *info = &hw->rx_desc_info;
4453
4454	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4455		get_rx_pkt(info, &desc);
4456
4457		dma_buf = DMA_BUFFER(desc);
4458		if (dma_buf->skb && dma_buf->len != adapter->mtu)
4459			free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4460		dma_buf->len = adapter->mtu;
4461		if (!dma_buf->skb)
4462			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4463		if (dma_buf->skb && !dma_buf->dma)
4464			dma_buf->dma = pci_map_single(
4465				adapter->pdev,
4466				skb_tail_pointer(dma_buf->skb),
4467				dma_buf->len,
4468				PCI_DMA_FROMDEVICE);
4469
4470		/* Set descriptor. */
4471		set_rx_buf(desc, dma_buf->dma);
4472		set_rx_len(desc, dma_buf->len);
4473		release_desc(desc);
4474	}
4475}
4476
4477/**
4478 * ksz_alloc_mem - allocate memory for hardware descriptors
4479 * @adapter:	Adapter information structure.
4480 *
4481 * This function allocates memory for use by hardware descriptors for receiving
4482 * and transmitting.
4483 *
4484 * Return 0 if successful.
4485 */
4486static int ksz_alloc_mem(struct dev_info *adapter)
4487{
4488	struct ksz_hw *hw = &adapter->hw;
4489
4490	/* Determine the number of receive and transmit descriptors. */
4491	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4492	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4493
4494	/* Determine how many descriptors to skip transmit interrupt. */
4495	hw->tx_int_cnt = 0;
4496	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4497	if (hw->tx_int_mask > 8)
4498		hw->tx_int_mask = 8;
4499	while (hw->tx_int_mask) {
4500		hw->tx_int_cnt++;
4501		hw->tx_int_mask >>= 1;
4502	}
4503	if (hw->tx_int_cnt) {
4504		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4505		hw->tx_int_cnt = 0;
4506	}
4507
4508	/* Determine the descriptor size. */
4509	hw->rx_desc_info.size =
4510		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4511		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4512	hw->tx_desc_info.size =
4513		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4514		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4515	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4516		pr_alert("Hardware descriptor size not right!\n");
4517	ksz_check_desc_num(&hw->rx_desc_info);
4518	ksz_check_desc_num(&hw->tx_desc_info);
4519
4520	/* Allocate descriptors. */
4521	if (ksz_alloc_desc(adapter))
4522		return 1;
4523
4524	return 0;
4525}
4526
4527/**
4528 * ksz_free_desc - free software and hardware descriptors
4529 * @adapter:	Adapter information structure.
4530 *
4531 * This local routine frees the software and hardware descriptors allocated by
4532 * ksz_alloc_desc().
4533 */
4534static void ksz_free_desc(struct dev_info *adapter)
4535{
4536	struct ksz_hw *hw = &adapter->hw;
4537
4538	/* Reset descriptor. */
4539	hw->rx_desc_info.ring_virt = NULL;
4540	hw->tx_desc_info.ring_virt = NULL;
4541	hw->rx_desc_info.ring_phys = 0;
4542	hw->tx_desc_info.ring_phys = 0;
4543
4544	/* Free memory. */
4545	if (adapter->desc_pool.alloc_virt)
4546		pci_free_consistent(
4547			adapter->pdev,
4548			adapter->desc_pool.alloc_size,
4549			adapter->desc_pool.alloc_virt,
4550			adapter->desc_pool.dma_addr);
4551
4552	/* Reset resource pool. */
4553	adapter->desc_pool.alloc_size = 0;
4554	adapter->desc_pool.alloc_virt = NULL;
4555
4556	kfree(hw->rx_desc_info.ring);
4557	hw->rx_desc_info.ring = NULL;
4558	kfree(hw->tx_desc_info.ring);
4559	hw->tx_desc_info.ring = NULL;
4560}
4561
4562/**
4563 * ksz_free_buffers - free buffers used in the descriptors
4564 * @adapter:	Adapter information structure.
4565 * @desc_info:	Descriptor information structure.
 
4566 *
4567 * This local routine frees buffers used in the DMA buffers.
4568 */
4569static void ksz_free_buffers(struct dev_info *adapter,
4570	struct ksz_desc_info *desc_info, int direction)
4571{
4572	int i;
4573	struct ksz_dma_buf *dma_buf;
4574	struct ksz_desc *desc = desc_info->ring;
4575
4576	for (i = 0; i < desc_info->alloc; i++) {
4577		dma_buf = DMA_BUFFER(desc);
4578		if (dma_buf->skb)
4579			free_dma_buf(adapter, dma_buf, direction);
4580		desc++;
4581	}
4582}
4583
4584/**
4585 * ksz_free_mem - free all resources used by descriptors
4586 * @adapter:	Adapter information structure.
4587 *
4588 * This local routine frees all the resources allocated by ksz_alloc_mem().
4589 */
4590static void ksz_free_mem(struct dev_info *adapter)
4591{
4592	/* Free transmit buffers. */
4593	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4594		PCI_DMA_TODEVICE);
4595
4596	/* Free receive buffers. */
4597	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4598		PCI_DMA_FROMDEVICE);
4599
4600	/* Free descriptors. */
4601	ksz_free_desc(adapter);
4602}
4603
4604static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4605	u64 *counter)
4606{
4607	int i;
4608	int mib;
4609	int port;
4610	struct ksz_port_mib *port_mib;
4611
4612	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4613	for (i = 0, port = first; i < cnt; i++, port++) {
4614		port_mib = &hw->port_mib[port];
4615		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4616			counter[mib] += port_mib->counter[mib];
4617	}
4618}
4619
4620/**
4621 * send_packet - send packet
4622 * @skb:	Socket buffer.
4623 * @dev:	Network device.
4624 *
4625 * This routine is used to send a packet out to the network.
4626 */
4627static void send_packet(struct sk_buff *skb, struct net_device *dev)
4628{
4629	struct ksz_desc *desc;
4630	struct ksz_desc *first;
4631	struct dev_priv *priv = netdev_priv(dev);
4632	struct dev_info *hw_priv = priv->adapter;
4633	struct ksz_hw *hw = &hw_priv->hw;
4634	struct ksz_desc_info *info = &hw->tx_desc_info;
4635	struct ksz_dma_buf *dma_buf;
4636	int len;
4637	int last_frag = skb_shinfo(skb)->nr_frags;
4638
4639	/*
4640	 * KSZ8842 with multiple device interfaces needs to be told which port
4641	 * to send.
4642	 */
4643	if (hw->dev_count > 1)
4644		hw->dst_ports = 1 << priv->port.first_port;
4645
4646	/* Hardware will pad the length to 60. */
4647	len = skb->len;
4648
4649	/* Remember the very first descriptor. */
4650	first = info->cur;
4651	desc = first;
4652
4653	dma_buf = DMA_BUFFER(desc);
4654	if (last_frag) {
4655		int frag;
4656		skb_frag_t *this_frag;
4657
4658		dma_buf->len = skb_headlen(skb);
4659
4660		dma_buf->dma = pci_map_single(
4661			hw_priv->pdev, skb->data, dma_buf->len,
4662			PCI_DMA_TODEVICE);
4663		set_tx_buf(desc, dma_buf->dma);
4664		set_tx_len(desc, dma_buf->len);
4665
4666		frag = 0;
4667		do {
4668			this_frag = &skb_shinfo(skb)->frags[frag];
4669
4670			/* Get a new descriptor. */
4671			get_tx_pkt(info, &desc);
4672
4673			/* Keep track of descriptors used so far. */
4674			++hw->tx_int_cnt;
4675
4676			dma_buf = DMA_BUFFER(desc);
4677			dma_buf->len = skb_frag_size(this_frag);
4678
4679			dma_buf->dma = pci_map_single(
4680				hw_priv->pdev,
4681				skb_frag_address(this_frag),
4682				dma_buf->len,
4683				PCI_DMA_TODEVICE);
4684			set_tx_buf(desc, dma_buf->dma);
4685			set_tx_len(desc, dma_buf->len);
4686
4687			frag++;
4688			if (frag == last_frag)
4689				break;
4690
4691			/* Do not release the last descriptor here. */
4692			release_desc(desc);
4693		} while (1);
4694
4695		/* current points to the last descriptor. */
4696		info->cur = desc;
4697
4698		/* Release the first descriptor. */
4699		release_desc(first);
4700	} else {
4701		dma_buf->len = len;
4702
4703		dma_buf->dma = pci_map_single(
4704			hw_priv->pdev, skb->data, dma_buf->len,
4705			PCI_DMA_TODEVICE);
4706		set_tx_buf(desc, dma_buf->dma);
4707		set_tx_len(desc, dma_buf->len);
4708	}
4709
4710	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4711		(desc)->sw.buf.tx.csum_gen_tcp = 1;
4712		(desc)->sw.buf.tx.csum_gen_udp = 1;
4713	}
4714
4715	/*
4716	 * The last descriptor holds the packet so that it can be returned to
4717	 * network subsystem after all descriptors are transmitted.
4718	 */
4719	dma_buf->skb = skb;
4720
4721	hw_send_pkt(hw);
4722
4723	/* Update transmit statistics. */
4724	dev->stats.tx_packets++;
4725	dev->stats.tx_bytes += len;
4726}
4727
4728/**
4729 * transmit_cleanup - clean up transmit descriptors
4730 * @dev:	Network device.
 
4731 *
4732 * This routine is called to clean up the transmitted buffers.
4733 */
4734static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4735{
4736	int last;
4737	union desc_stat status;
4738	struct ksz_hw *hw = &hw_priv->hw;
4739	struct ksz_desc_info *info = &hw->tx_desc_info;
4740	struct ksz_desc *desc;
4741	struct ksz_dma_buf *dma_buf;
4742	struct net_device *dev = NULL;
4743
4744	spin_lock_irq(&hw_priv->hwlock);
4745	last = info->last;
4746
4747	while (info->avail < info->alloc) {
4748		/* Get next descriptor which is not hardware owned. */
4749		desc = &info->ring[last];
4750		status.data = le32_to_cpu(desc->phw->ctrl.data);
4751		if (status.tx.hw_owned) {
4752			if (normal)
4753				break;
4754			else
4755				reset_desc(desc, status);
4756		}
4757
4758		dma_buf = DMA_BUFFER(desc);
4759		pci_unmap_single(
4760			hw_priv->pdev, dma_buf->dma, dma_buf->len,
4761			PCI_DMA_TODEVICE);
4762
4763		/* This descriptor contains the last buffer in the packet. */
4764		if (dma_buf->skb) {
4765			dev = dma_buf->skb->dev;
4766
4767			/* Release the packet back to network subsystem. */
4768			dev_kfree_skb_irq(dma_buf->skb);
4769			dma_buf->skb = NULL;
4770		}
4771
4772		/* Free the transmitted descriptor. */
4773		last++;
4774		last &= info->mask;
4775		info->avail++;
4776	}
4777	info->last = last;
4778	spin_unlock_irq(&hw_priv->hwlock);
4779
4780	/* Notify the network subsystem that the packet has been sent. */
4781	if (dev)
4782		netif_trans_update(dev);
4783}
4784
4785/**
4786 * transmit_done - transmit done processing
4787 * @dev:	Network device.
4788 *
4789 * This routine is called when the transmit interrupt is triggered, indicating
4790 * either a packet is sent successfully or there are transmit errors.
4791 */
4792static void tx_done(struct dev_info *hw_priv)
4793{
4794	struct ksz_hw *hw = &hw_priv->hw;
4795	int port;
4796
4797	transmit_cleanup(hw_priv, 1);
4798
4799	for (port = 0; port < hw->dev_count; port++) {
4800		struct net_device *dev = hw->port_info[port].pdev;
4801
4802		if (netif_running(dev) && netif_queue_stopped(dev))
4803			netif_wake_queue(dev);
4804	}
4805}
4806
4807static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4808{
4809	skb->dev = old->dev;
4810	skb->protocol = old->protocol;
4811	skb->ip_summed = old->ip_summed;
4812	skb->csum = old->csum;
4813	skb_set_network_header(skb, ETH_HLEN);
4814
4815	dev_consume_skb_any(old);
4816}
4817
4818/**
4819 * netdev_tx - send out packet
4820 * @skb:	Socket buffer.
4821 * @dev:	Network device.
4822 *
4823 * This function is used by the upper network layer to send out a packet.
4824 *
4825 * Return 0 if successful; otherwise an error code indicating failure.
4826 */
4827static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4828{
4829	struct dev_priv *priv = netdev_priv(dev);
4830	struct dev_info *hw_priv = priv->adapter;
4831	struct ksz_hw *hw = &hw_priv->hw;
4832	int left;
4833	int num = 1;
4834	int rc = 0;
4835
4836	if (hw->features & SMALL_PACKET_TX_BUG) {
4837		struct sk_buff *org_skb = skb;
4838
4839		if (skb->len <= 48) {
4840			if (skb_end_pointer(skb) - skb->data >= 50) {
4841				memset(&skb->data[skb->len], 0, 50 - skb->len);
4842				skb->len = 50;
4843			} else {
4844				skb = netdev_alloc_skb(dev, 50);
4845				if (!skb)
4846					return NETDEV_TX_BUSY;
4847				memcpy(skb->data, org_skb->data, org_skb->len);
4848				memset(&skb->data[org_skb->len], 0,
4849					50 - org_skb->len);
4850				skb->len = 50;
4851				copy_old_skb(org_skb, skb);
4852			}
4853		}
4854	}
4855
4856	spin_lock_irq(&hw_priv->hwlock);
4857
4858	num = skb_shinfo(skb)->nr_frags + 1;
4859	left = hw_alloc_pkt(hw, skb->len, num);
4860	if (left) {
4861		if (left < num ||
4862		    (CHECKSUM_PARTIAL == skb->ip_summed &&
4863		     skb->protocol == htons(ETH_P_IPV6))) {
4864			struct sk_buff *org_skb = skb;
4865
4866			skb = netdev_alloc_skb(dev, org_skb->len);
4867			if (!skb) {
4868				rc = NETDEV_TX_BUSY;
4869				goto unlock;
4870			}
4871			skb_copy_and_csum_dev(org_skb, skb->data);
4872			org_skb->ip_summed = CHECKSUM_NONE;
4873			skb->len = org_skb->len;
4874			copy_old_skb(org_skb, skb);
4875		}
4876		send_packet(skb, dev);
4877		if (left <= num)
4878			netif_stop_queue(dev);
4879	} else {
4880		/* Stop the transmit queue until packet is allocated. */
4881		netif_stop_queue(dev);
4882		rc = NETDEV_TX_BUSY;
4883	}
4884unlock:
4885	spin_unlock_irq(&hw_priv->hwlock);
4886
4887	return rc;
4888}
4889
4890/**
4891 * netdev_tx_timeout - transmit timeout processing
4892 * @dev:	Network device.
 
4893 *
4894 * This routine is called when the transmit timer expires.  That indicates the
4895 * hardware is not running correctly because transmit interrupts are not
4896 * triggered to free up resources so that the transmit routine can continue
4897 * sending out packets.  The hardware is reset to correct the problem.
4898 */
4899static void netdev_tx_timeout(struct net_device *dev)
4900{
4901	static unsigned long last_reset;
4902
4903	struct dev_priv *priv = netdev_priv(dev);
4904	struct dev_info *hw_priv = priv->adapter;
4905	struct ksz_hw *hw = &hw_priv->hw;
4906	int port;
4907
4908	if (hw->dev_count > 1) {
4909		/*
4910		 * Only reset the hardware if time between calls is long
4911		 * enough.
4912		 */
4913		if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4914			hw_priv = NULL;
4915	}
4916
4917	last_reset = jiffies;
4918	if (hw_priv) {
4919		hw_dis_intr(hw);
4920		hw_disable(hw);
4921
4922		transmit_cleanup(hw_priv, 0);
4923		hw_reset_pkts(&hw->rx_desc_info);
4924		hw_reset_pkts(&hw->tx_desc_info);
4925		ksz_init_rx_buffers(hw_priv);
4926
4927		hw_reset(hw);
4928
4929		hw_set_desc_base(hw,
4930			hw->tx_desc_info.ring_phys,
4931			hw->rx_desc_info.ring_phys);
4932		hw_set_addr(hw);
4933		if (hw->all_multi)
4934			hw_set_multicast(hw, hw->all_multi);
4935		else if (hw->multi_list_size)
4936			hw_set_grp_addr(hw);
4937
4938		if (hw->dev_count > 1) {
4939			hw_set_add_addr(hw);
4940			for (port = 0; port < SWITCH_PORT_NUM; port++) {
4941				struct net_device *port_dev;
4942
4943				port_set_stp_state(hw, port,
4944					STP_STATE_DISABLED);
4945
4946				port_dev = hw->port_info[port].pdev;
4947				if (netif_running(port_dev))
4948					port_set_stp_state(hw, port,
4949						STP_STATE_SIMPLE);
4950			}
4951		}
4952
4953		hw_enable(hw);
4954		hw_ena_intr(hw);
4955	}
4956
4957	netif_trans_update(dev);
4958	netif_wake_queue(dev);
4959}
4960
4961static inline void csum_verified(struct sk_buff *skb)
4962{
4963	unsigned short protocol;
4964	struct iphdr *iph;
4965
4966	protocol = skb->protocol;
4967	skb_reset_network_header(skb);
4968	iph = (struct iphdr *) skb_network_header(skb);
4969	if (protocol == htons(ETH_P_8021Q)) {
4970		protocol = iph->tot_len;
4971		skb_set_network_header(skb, VLAN_HLEN);
4972		iph = (struct iphdr *) skb_network_header(skb);
4973	}
4974	if (protocol == htons(ETH_P_IP)) {
4975		if (iph->protocol == IPPROTO_TCP)
4976			skb->ip_summed = CHECKSUM_UNNECESSARY;
4977	}
4978}
4979
4980static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4981	struct ksz_desc *desc, union desc_stat status)
4982{
4983	int packet_len;
4984	struct dev_priv *priv = netdev_priv(dev);
4985	struct dev_info *hw_priv = priv->adapter;
4986	struct ksz_dma_buf *dma_buf;
4987	struct sk_buff *skb;
4988	int rx_status;
4989
4990	/* Received length includes 4-byte CRC. */
4991	packet_len = status.rx.frame_len - 4;
4992
4993	dma_buf = DMA_BUFFER(desc);
4994	pci_dma_sync_single_for_cpu(
4995		hw_priv->pdev, dma_buf->dma, packet_len + 4,
4996		PCI_DMA_FROMDEVICE);
4997
4998	do {
4999		/* skb->data != skb->head */
5000		skb = netdev_alloc_skb(dev, packet_len + 2);
5001		if (!skb) {
5002			dev->stats.rx_dropped++;
5003			return -ENOMEM;
5004		}
5005
5006		/*
5007		 * Align socket buffer in 4-byte boundary for better
5008		 * performance.
5009		 */
5010		skb_reserve(skb, 2);
5011
5012		skb_put_data(skb, dma_buf->skb->data, packet_len);
5013	} while (0);
5014
5015	skb->protocol = eth_type_trans(skb, dev);
5016
5017	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5018		csum_verified(skb);
5019
5020	/* Update receive statistics. */
5021	dev->stats.rx_packets++;
5022	dev->stats.rx_bytes += packet_len;
5023
5024	/* Notify upper layer for received packet. */
5025	rx_status = netif_rx(skb);
5026
5027	return 0;
5028}
5029
5030static int dev_rcv_packets(struct dev_info *hw_priv)
5031{
5032	int next;
5033	union desc_stat status;
5034	struct ksz_hw *hw = &hw_priv->hw;
5035	struct net_device *dev = hw->port_info[0].pdev;
5036	struct ksz_desc_info *info = &hw->rx_desc_info;
5037	int left = info->alloc;
5038	struct ksz_desc *desc;
5039	int received = 0;
5040
5041	next = info->next;
5042	while (left--) {
5043		/* Get next descriptor which is not hardware owned. */
5044		desc = &info->ring[next];
5045		status.data = le32_to_cpu(desc->phw->ctrl.data);
5046		if (status.rx.hw_owned)
5047			break;
5048
5049		/* Status valid only when last descriptor bit is set. */
5050		if (status.rx.last_desc && status.rx.first_desc) {
5051			if (rx_proc(dev, hw, desc, status))
5052				goto release_packet;
5053			received++;
5054		}
5055
5056release_packet:
5057		release_desc(desc);
5058		next++;
5059		next &= info->mask;
5060	}
5061	info->next = next;
5062
5063	return received;
5064}
5065
5066static int port_rcv_packets(struct dev_info *hw_priv)
5067{
5068	int next;
5069	union desc_stat status;
5070	struct ksz_hw *hw = &hw_priv->hw;
5071	struct net_device *dev = hw->port_info[0].pdev;
5072	struct ksz_desc_info *info = &hw->rx_desc_info;
5073	int left = info->alloc;
5074	struct ksz_desc *desc;
5075	int received = 0;
5076
5077	next = info->next;
5078	while (left--) {
5079		/* Get next descriptor which is not hardware owned. */
5080		desc = &info->ring[next];
5081		status.data = le32_to_cpu(desc->phw->ctrl.data);
5082		if (status.rx.hw_owned)
5083			break;
5084
5085		if (hw->dev_count > 1) {
5086			/* Get received port number. */
5087			int p = HW_TO_DEV_PORT(status.rx.src_port);
5088
5089			dev = hw->port_info[p].pdev;
5090			if (!netif_running(dev))
5091				goto release_packet;
5092		}
5093
5094		/* Status valid only when last descriptor bit is set. */
5095		if (status.rx.last_desc && status.rx.first_desc) {
5096			if (rx_proc(dev, hw, desc, status))
5097				goto release_packet;
5098			received++;
5099		}
5100
5101release_packet:
5102		release_desc(desc);
5103		next++;
5104		next &= info->mask;
5105	}
5106	info->next = next;
5107
5108	return received;
5109}
5110
5111static int dev_rcv_special(struct dev_info *hw_priv)
5112{
5113	int next;
5114	union desc_stat status;
5115	struct ksz_hw *hw = &hw_priv->hw;
5116	struct net_device *dev = hw->port_info[0].pdev;
5117	struct ksz_desc_info *info = &hw->rx_desc_info;
5118	int left = info->alloc;
5119	struct ksz_desc *desc;
5120	int received = 0;
5121
5122	next = info->next;
5123	while (left--) {
5124		/* Get next descriptor which is not hardware owned. */
5125		desc = &info->ring[next];
5126		status.data = le32_to_cpu(desc->phw->ctrl.data);
5127		if (status.rx.hw_owned)
5128			break;
5129
5130		if (hw->dev_count > 1) {
5131			/* Get received port number. */
5132			int p = HW_TO_DEV_PORT(status.rx.src_port);
5133
5134			dev = hw->port_info[p].pdev;
5135			if (!netif_running(dev))
5136				goto release_packet;
5137		}
5138
5139		/* Status valid only when last descriptor bit is set. */
5140		if (status.rx.last_desc && status.rx.first_desc) {
5141			/*
5142			 * Receive without error.  With receive errors
5143			 * disabled, packets with receive errors will be
5144			 * dropped, so no need to check the error bit.
5145			 */
5146			if (!status.rx.error || (status.data &
5147					KS_DESC_RX_ERROR_COND) ==
5148					KS_DESC_RX_ERROR_TOO_LONG) {
5149				if (rx_proc(dev, hw, desc, status))
5150					goto release_packet;
5151				received++;
5152			} else {
5153				struct dev_priv *priv = netdev_priv(dev);
5154
5155				/* Update receive error statistics. */
5156				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5157			}
5158		}
5159
5160release_packet:
5161		release_desc(desc);
5162		next++;
5163		next &= info->mask;
5164	}
5165	info->next = next;
5166
5167	return received;
5168}
5169
5170static void rx_proc_task(unsigned long data)
5171{
5172	struct dev_info *hw_priv = (struct dev_info *) data;
5173	struct ksz_hw *hw = &hw_priv->hw;
5174
5175	if (!hw->enabled)
5176		return;
5177	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5178
5179		/* In case receive process is suspended because of overrun. */
5180		hw_resume_rx(hw);
5181
5182		/* tasklets are interruptible. */
5183		spin_lock_irq(&hw_priv->hwlock);
5184		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5185		spin_unlock_irq(&hw_priv->hwlock);
5186	} else {
5187		hw_ack_intr(hw, KS884X_INT_RX);
5188		tasklet_schedule(&hw_priv->rx_tasklet);
5189	}
5190}
5191
5192static void tx_proc_task(unsigned long data)
5193{
5194	struct dev_info *hw_priv = (struct dev_info *) data;
5195	struct ksz_hw *hw = &hw_priv->hw;
5196
5197	hw_ack_intr(hw, KS884X_INT_TX_MASK);
5198
5199	tx_done(hw_priv);
5200
5201	/* tasklets are interruptible. */
5202	spin_lock_irq(&hw_priv->hwlock);
5203	hw_turn_on_intr(hw, KS884X_INT_TX);
5204	spin_unlock_irq(&hw_priv->hwlock);
5205}
5206
5207static inline void handle_rx_stop(struct ksz_hw *hw)
5208{
5209	/* Receive just has been stopped. */
5210	if (0 == hw->rx_stop)
5211		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5212	else if (hw->rx_stop > 1) {
5213		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5214			hw_start_rx(hw);
5215		} else {
5216			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5217			hw->rx_stop = 0;
5218		}
5219	} else
5220		/* Receive just has been started. */
5221		hw->rx_stop++;
5222}
5223
5224/**
5225 * netdev_intr - interrupt handling
5226 * @irq:	Interrupt number.
5227 * @dev_id:	Network device.
5228 *
5229 * This function is called by upper network layer to signal interrupt.
5230 *
5231 * Return IRQ_HANDLED if interrupt is handled.
5232 */
5233static irqreturn_t netdev_intr(int irq, void *dev_id)
5234{
5235	uint int_enable = 0;
5236	struct net_device *dev = (struct net_device *) dev_id;
5237	struct dev_priv *priv = netdev_priv(dev);
5238	struct dev_info *hw_priv = priv->adapter;
5239	struct ksz_hw *hw = &hw_priv->hw;
5240
5241	spin_lock(&hw_priv->hwlock);
5242
5243	hw_read_intr(hw, &int_enable);
5244
5245	/* Not our interrupt! */
5246	if (!int_enable) {
5247		spin_unlock(&hw_priv->hwlock);
5248		return IRQ_NONE;
5249	}
5250
5251	do {
5252		hw_ack_intr(hw, int_enable);
5253		int_enable &= hw->intr_mask;
5254
5255		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5256			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5257			tasklet_schedule(&hw_priv->tx_tasklet);
5258		}
5259
5260		if (likely(int_enable & KS884X_INT_RX)) {
5261			hw_dis_intr_bit(hw, KS884X_INT_RX);
5262			tasklet_schedule(&hw_priv->rx_tasklet);
5263		}
5264
5265		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5266			dev->stats.rx_fifo_errors++;
5267			hw_resume_rx(hw);
5268		}
5269
5270		if (unlikely(int_enable & KS884X_INT_PHY)) {
5271			struct ksz_port *port = &priv->port;
5272
5273			hw->features |= LINK_INT_WORKING;
5274			port_get_link_speed(port);
5275		}
5276
5277		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5278			handle_rx_stop(hw);
5279			break;
5280		}
5281
5282		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5283			u32 data;
5284
5285			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5286			pr_info("Tx stopped\n");
5287			data = readl(hw->io + KS_DMA_TX_CTRL);
5288			if (!(data & DMA_TX_ENABLE))
5289				pr_info("Tx disabled\n");
5290			break;
5291		}
5292	} while (0);
5293
5294	hw_ena_intr(hw);
5295
5296	spin_unlock(&hw_priv->hwlock);
5297
5298	return IRQ_HANDLED;
5299}
5300
5301/*
5302 * Linux network device functions
5303 */
5304
5305static unsigned long next_jiffies;
5306
5307#ifdef CONFIG_NET_POLL_CONTROLLER
5308static void netdev_netpoll(struct net_device *dev)
5309{
5310	struct dev_priv *priv = netdev_priv(dev);
5311	struct dev_info *hw_priv = priv->adapter;
5312
5313	hw_dis_intr(&hw_priv->hw);
5314	netdev_intr(dev->irq, dev);
5315}
5316#endif
5317
5318static void bridge_change(struct ksz_hw *hw)
5319{
5320	int port;
5321	u8  member;
5322	struct ksz_switch *sw = hw->ksz_switch;
5323
5324	/* No ports in forwarding state. */
5325	if (!sw->member) {
5326		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5327		sw_block_addr(hw);
5328	}
5329	for (port = 0; port < SWITCH_PORT_NUM; port++) {
5330		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5331			member = HOST_MASK | sw->member;
5332		else
5333			member = HOST_MASK | (1 << port);
5334		if (member != sw->port_cfg[port].member)
5335			sw_cfg_port_base_vlan(hw, port, member);
5336	}
5337}
5338
5339/**
5340 * netdev_close - close network device
5341 * @dev:	Network device.
5342 *
5343 * This function process the close operation of network device.  This is caused
5344 * by the user command "ifconfig ethX down."
5345 *
5346 * Return 0 if successful; otherwise an error code indicating failure.
5347 */
5348static int netdev_close(struct net_device *dev)
5349{
5350	struct dev_priv *priv = netdev_priv(dev);
5351	struct dev_info *hw_priv = priv->adapter;
5352	struct ksz_port *port = &priv->port;
5353	struct ksz_hw *hw = &hw_priv->hw;
5354	int pi;
5355
5356	netif_stop_queue(dev);
5357
5358	ksz_stop_timer(&priv->monitor_timer_info);
5359
5360	/* Need to shut the port manually in multiple device interfaces mode. */
5361	if (hw->dev_count > 1) {
5362		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5363
5364		/* Port is closed.  Need to change bridge setting. */
5365		if (hw->features & STP_SUPPORT) {
5366			pi = 1 << port->first_port;
5367			if (hw->ksz_switch->member & pi) {
5368				hw->ksz_switch->member &= ~pi;
5369				bridge_change(hw);
5370			}
5371		}
5372	}
5373	if (port->first_port > 0)
5374		hw_del_addr(hw, dev->dev_addr);
5375	if (!hw_priv->wol_enable)
5376		port_set_power_saving(port, true);
5377
5378	if (priv->multicast)
5379		--hw->all_multi;
5380	if (priv->promiscuous)
5381		--hw->promiscuous;
5382
5383	hw_priv->opened--;
5384	if (!(hw_priv->opened)) {
5385		ksz_stop_timer(&hw_priv->mib_timer_info);
5386		flush_work(&hw_priv->mib_read);
5387
5388		hw_dis_intr(hw);
5389		hw_disable(hw);
5390		hw_clr_multicast(hw);
5391
5392		/* Delay for receive task to stop scheduling itself. */
5393		msleep(2000 / HZ);
5394
5395		tasklet_kill(&hw_priv->rx_tasklet);
5396		tasklet_kill(&hw_priv->tx_tasklet);
5397		free_irq(dev->irq, hw_priv->dev);
5398
5399		transmit_cleanup(hw_priv, 0);
5400		hw_reset_pkts(&hw->rx_desc_info);
5401		hw_reset_pkts(&hw->tx_desc_info);
5402
5403		/* Clean out static MAC table when the switch is shutdown. */
5404		if (hw->features & STP_SUPPORT)
5405			sw_clr_sta_mac_table(hw);
5406	}
5407
5408	return 0;
5409}
5410
5411static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5412{
5413	if (hw->ksz_switch) {
5414		u32 data;
5415
5416		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5417		if (hw->features & RX_HUGE_FRAME)
5418			data |= SWITCH_HUGE_PACKET;
5419		else
5420			data &= ~SWITCH_HUGE_PACKET;
5421		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5422	}
5423	if (hw->features & RX_HUGE_FRAME) {
5424		hw->rx_cfg |= DMA_RX_ERROR;
5425		hw_priv->dev_rcv = dev_rcv_special;
5426	} else {
5427		hw->rx_cfg &= ~DMA_RX_ERROR;
5428		if (hw->dev_count > 1)
5429			hw_priv->dev_rcv = port_rcv_packets;
5430		else
5431			hw_priv->dev_rcv = dev_rcv_packets;
5432	}
5433}
5434
5435static int prepare_hardware(struct net_device *dev)
5436{
5437	struct dev_priv *priv = netdev_priv(dev);
5438	struct dev_info *hw_priv = priv->adapter;
5439	struct ksz_hw *hw = &hw_priv->hw;
5440	int rc = 0;
5441
5442	/* Remember the network device that requests interrupts. */
5443	hw_priv->dev = dev;
5444	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5445	if (rc)
5446		return rc;
5447	tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
5448		     (unsigned long) hw_priv);
5449	tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
5450		     (unsigned long) hw_priv);
5451
5452	hw->promiscuous = 0;
5453	hw->all_multi = 0;
5454	hw->multi_list_size = 0;
5455
5456	hw_reset(hw);
5457
5458	hw_set_desc_base(hw,
5459		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5460	hw_set_addr(hw);
5461	hw_cfg_huge_frame(hw_priv, hw);
5462	ksz_init_rx_buffers(hw_priv);
5463	return 0;
5464}
5465
5466static void set_media_state(struct net_device *dev, int media_state)
5467{
5468	struct dev_priv *priv = netdev_priv(dev);
5469
5470	if (media_state == priv->media_state)
5471		netif_carrier_on(dev);
5472	else
5473		netif_carrier_off(dev);
5474	netif_info(priv, link, dev, "link %s\n",
5475		   media_state == priv->media_state ? "on" : "off");
5476}
5477
5478/**
5479 * netdev_open - open network device
5480 * @dev:	Network device.
5481 *
5482 * This function process the open operation of network device.  This is caused
5483 * by the user command "ifconfig ethX up."
5484 *
5485 * Return 0 if successful; otherwise an error code indicating failure.
5486 */
5487static int netdev_open(struct net_device *dev)
5488{
5489	struct dev_priv *priv = netdev_priv(dev);
5490	struct dev_info *hw_priv = priv->adapter;
5491	struct ksz_hw *hw = &hw_priv->hw;
5492	struct ksz_port *port = &priv->port;
 
5493	int i;
5494	int p;
5495	int rc = 0;
5496
 
5497	priv->multicast = 0;
5498	priv->promiscuous = 0;
5499
5500	/* Reset device statistics. */
5501	memset(&dev->stats, 0, sizeof(struct net_device_stats));
5502	memset((void *) port->counter, 0,
5503		(sizeof(u64) * OID_COUNTER_LAST));
5504
5505	if (!(hw_priv->opened)) {
5506		rc = prepare_hardware(dev);
5507		if (rc)
5508			return rc;
5509		for (i = 0; i < hw->mib_port_cnt; i++) {
5510			if (next_jiffies < jiffies)
5511				next_jiffies = jiffies + HZ * 2;
5512			else
5513				next_jiffies += HZ * 1;
5514			hw_priv->counter[i].time = next_jiffies;
5515			hw->port_mib[i].state = media_disconnected;
5516			port_init_cnt(hw, i);
5517		}
5518		if (hw->ksz_switch)
5519			hw->port_mib[HOST_PORT].state = media_connected;
5520		else {
5521			hw_add_wol_bcast(hw);
5522			hw_cfg_wol_pme(hw, 0);
5523			hw_clr_wol_pme_status(&hw_priv->hw);
5524		}
5525	}
5526	port_set_power_saving(port, false);
5527
5528	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5529		/*
5530		 * Initialize to invalid value so that link detection
5531		 * is done.
5532		 */
5533		hw->port_info[p].partner = 0xFF;
5534		hw->port_info[p].state = media_disconnected;
5535	}
5536
5537	/* Need to open the port in multiple device interfaces mode. */
5538	if (hw->dev_count > 1) {
5539		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5540		if (port->first_port > 0)
5541			hw_add_addr(hw, dev->dev_addr);
5542	}
5543
5544	port_get_link_speed(port);
5545	if (port->force_link)
5546		port_force_link_speed(port);
5547	else
5548		port_set_link_speed(port);
5549
5550	if (!(hw_priv->opened)) {
5551		hw_setup_intr(hw);
5552		hw_enable(hw);
5553		hw_ena_intr(hw);
5554
5555		if (hw->mib_port_cnt)
5556			ksz_start_timer(&hw_priv->mib_timer_info,
5557				hw_priv->mib_timer_info.period);
5558	}
5559
5560	hw_priv->opened++;
5561
5562	ksz_start_timer(&priv->monitor_timer_info,
5563		priv->monitor_timer_info.period);
5564
5565	priv->media_state = port->linked->state;
5566
5567	set_media_state(dev, media_connected);
5568	netif_start_queue(dev);
5569
5570	return 0;
5571}
5572
5573/* RX errors = rx_errors */
5574/* RX dropped = rx_dropped */
5575/* RX overruns = rx_fifo_errors */
5576/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5577/* TX errors = tx_errors */
5578/* TX dropped = tx_dropped */
5579/* TX overruns = tx_fifo_errors */
5580/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5581/* collisions = collisions */
5582
5583/**
5584 * netdev_query_statistics - query network device statistics
5585 * @dev:	Network device.
5586 *
5587 * This function returns the statistics of the network device.  The device
5588 * needs not be opened.
5589 *
5590 * Return network device statistics.
5591 */
5592static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5593{
5594	struct dev_priv *priv = netdev_priv(dev);
5595	struct ksz_port *port = &priv->port;
5596	struct ksz_hw *hw = &priv->adapter->hw;
5597	struct ksz_port_mib *mib;
5598	int i;
5599	int p;
5600
5601	dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5602	dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5603
5604	/* Reset to zero to add count later. */
5605	dev->stats.multicast = 0;
5606	dev->stats.collisions = 0;
5607	dev->stats.rx_length_errors = 0;
5608	dev->stats.rx_crc_errors = 0;
5609	dev->stats.rx_frame_errors = 0;
5610	dev->stats.tx_window_errors = 0;
5611
5612	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5613		mib = &hw->port_mib[p];
5614
5615		dev->stats.multicast += (unsigned long)
5616			mib->counter[MIB_COUNTER_RX_MULTICAST];
5617
5618		dev->stats.collisions += (unsigned long)
5619			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5620
5621		dev->stats.rx_length_errors += (unsigned long)(
5622			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5623			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5624			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5625			mib->counter[MIB_COUNTER_RX_JABBER]);
5626		dev->stats.rx_crc_errors += (unsigned long)
5627			mib->counter[MIB_COUNTER_RX_CRC_ERR];
5628		dev->stats.rx_frame_errors += (unsigned long)(
5629			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5630			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5631
5632		dev->stats.tx_window_errors += (unsigned long)
5633			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5634	}
5635
5636	return &dev->stats;
5637}
5638
5639/**
5640 * netdev_set_mac_address - set network device MAC address
5641 * @dev:	Network device.
5642 * @addr:	Buffer of MAC address.
5643 *
5644 * This function is used to set the MAC address of the network device.
5645 *
5646 * Return 0 to indicate success.
5647 */
5648static int netdev_set_mac_address(struct net_device *dev, void *addr)
5649{
5650	struct dev_priv *priv = netdev_priv(dev);
5651	struct dev_info *hw_priv = priv->adapter;
5652	struct ksz_hw *hw = &hw_priv->hw;
5653	struct sockaddr *mac = addr;
5654	uint interrupt;
5655
5656	if (priv->port.first_port > 0)
5657		hw_del_addr(hw, dev->dev_addr);
5658	else {
5659		hw->mac_override = 1;
5660		memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5661	}
5662
5663	memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN);
5664
5665	interrupt = hw_block_intr(hw);
5666
5667	if (priv->port.first_port > 0)
5668		hw_add_addr(hw, dev->dev_addr);
5669	else
5670		hw_set_addr(hw);
5671	hw_restore_intr(hw, interrupt);
5672
5673	return 0;
5674}
5675
5676static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5677	struct ksz_hw *hw, int promiscuous)
5678{
5679	if (promiscuous != priv->promiscuous) {
5680		u8 prev_state = hw->promiscuous;
5681
5682		if (promiscuous)
5683			++hw->promiscuous;
5684		else
5685			--hw->promiscuous;
5686		priv->promiscuous = promiscuous;
5687
5688		/* Turn on/off promiscuous mode. */
5689		if (hw->promiscuous <= 1 && prev_state <= 1)
5690			hw_set_promiscuous(hw, hw->promiscuous);
5691
5692		/*
5693		 * Port is not in promiscuous mode, meaning it is released
5694		 * from the bridge.
5695		 */
5696		if ((hw->features & STP_SUPPORT) && !promiscuous &&
5697		    (dev->priv_flags & IFF_BRIDGE_PORT)) {
5698			struct ksz_switch *sw = hw->ksz_switch;
5699			int port = priv->port.first_port;
5700
5701			port_set_stp_state(hw, port, STP_STATE_DISABLED);
5702			port = 1 << port;
5703			if (sw->member & port) {
5704				sw->member &= ~port;
5705				bridge_change(hw);
5706			}
5707		}
5708	}
5709}
5710
5711static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5712	int multicast)
5713{
5714	if (multicast != priv->multicast) {
5715		u8 all_multi = hw->all_multi;
5716
5717		if (multicast)
5718			++hw->all_multi;
5719		else
5720			--hw->all_multi;
5721		priv->multicast = multicast;
5722
5723		/* Turn on/off all multicast mode. */
5724		if (hw->all_multi <= 1 && all_multi <= 1)
5725			hw_set_multicast(hw, hw->all_multi);
5726	}
5727}
5728
5729/**
5730 * netdev_set_rx_mode
5731 * @dev:	Network device.
5732 *
5733 * This routine is used to set multicast addresses or put the network device
5734 * into promiscuous mode.
5735 */
5736static void netdev_set_rx_mode(struct net_device *dev)
5737{
5738	struct dev_priv *priv = netdev_priv(dev);
5739	struct dev_info *hw_priv = priv->adapter;
5740	struct ksz_hw *hw = &hw_priv->hw;
5741	struct netdev_hw_addr *ha;
5742	int multicast = (dev->flags & IFF_ALLMULTI);
5743
5744	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5745
5746	if (hw_priv->hw.dev_count > 1)
5747		multicast |= (dev->flags & IFF_MULTICAST);
5748	dev_set_multicast(priv, hw, multicast);
5749
5750	/* Cannot use different hashes in multiple device interfaces mode. */
5751	if (hw_priv->hw.dev_count > 1)
5752		return;
5753
5754	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5755		int i = 0;
5756
5757		/* List too big to support so turn on all multicast mode. */
5758		if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5759			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5760				hw->multi_list_size = MAX_MULTICAST_LIST;
5761				++hw->all_multi;
5762				hw_set_multicast(hw, hw->all_multi);
5763			}
5764			return;
5765		}
5766
5767		netdev_for_each_mc_addr(ha, dev) {
5768			if (i >= MAX_MULTICAST_LIST)
5769				break;
5770			memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5771		}
5772		hw->multi_list_size = (u8) i;
5773		hw_set_grp_addr(hw);
5774	} else {
5775		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5776			--hw->all_multi;
5777			hw_set_multicast(hw, hw->all_multi);
5778		}
5779		hw->multi_list_size = 0;
5780		hw_clr_multicast(hw);
5781	}
5782}
5783
5784static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5785{
5786	struct dev_priv *priv = netdev_priv(dev);
5787	struct dev_info *hw_priv = priv->adapter;
5788	struct ksz_hw *hw = &hw_priv->hw;
5789	int hw_mtu;
5790
5791	if (netif_running(dev))
5792		return -EBUSY;
5793
5794	/* Cannot use different MTU in multiple device interfaces mode. */
5795	if (hw->dev_count > 1)
5796		if (dev != hw_priv->dev)
5797			return 0;
5798
5799	hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5800	if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5801		hw->features |= RX_HUGE_FRAME;
5802		hw_mtu = MAX_RX_BUF_SIZE;
5803	} else {
5804		hw->features &= ~RX_HUGE_FRAME;
5805		hw_mtu = REGULAR_RX_BUF_SIZE;
5806	}
5807	hw_mtu = (hw_mtu + 3) & ~3;
5808	hw_priv->mtu = hw_mtu;
5809	dev->mtu = new_mtu;
5810
5811	return 0;
5812}
5813
5814/**
5815 * netdev_ioctl - I/O control processing
5816 * @dev:	Network device.
5817 * @ifr:	Interface request structure.
5818 * @cmd:	I/O control code.
5819 *
5820 * This function is used to process I/O control calls.
5821 *
5822 * Return 0 to indicate success.
5823 */
5824static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5825{
5826	struct dev_priv *priv = netdev_priv(dev);
5827	struct dev_info *hw_priv = priv->adapter;
5828	struct ksz_hw *hw = &hw_priv->hw;
5829	struct ksz_port *port = &priv->port;
5830	int result = 0;
5831	struct mii_ioctl_data *data = if_mii(ifr);
5832
5833	if (down_interruptible(&priv->proc_sem))
5834		return -ERESTARTSYS;
5835
5836	switch (cmd) {
5837	/* Get address of MII PHY in use. */
5838	case SIOCGMIIPHY:
5839		data->phy_id = priv->id;
5840
5841		/* Fallthrough... */
5842
5843	/* Read MII PHY register. */
5844	case SIOCGMIIREG:
5845		if (data->phy_id != priv->id || data->reg_num >= 6)
5846			result = -EIO;
5847		else
5848			hw_r_phy(hw, port->linked->port_id, data->reg_num,
5849				&data->val_out);
5850		break;
5851
5852	/* Write MII PHY register. */
5853	case SIOCSMIIREG:
5854		if (!capable(CAP_NET_ADMIN))
5855			result = -EPERM;
5856		else if (data->phy_id != priv->id || data->reg_num >= 6)
5857			result = -EIO;
5858		else
5859			hw_w_phy(hw, port->linked->port_id, data->reg_num,
5860				data->val_in);
5861		break;
5862
5863	default:
5864		result = -EOPNOTSUPP;
5865	}
5866
5867	up(&priv->proc_sem);
5868
5869	return result;
5870}
5871
5872/*
5873 * MII support
5874 */
5875
5876/**
5877 * mdio_read - read PHY register
5878 * @dev:	Network device.
5879 * @phy_id:	The PHY id.
5880 * @reg_num:	The register number.
5881 *
5882 * This function returns the PHY register value.
5883 *
5884 * Return the register value.
5885 */
5886static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5887{
5888	struct dev_priv *priv = netdev_priv(dev);
5889	struct ksz_port *port = &priv->port;
5890	struct ksz_hw *hw = port->hw;
5891	u16 val_out;
5892
5893	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5894	return val_out;
5895}
5896
5897/**
5898 * mdio_write - set PHY register
5899 * @dev:	Network device.
5900 * @phy_id:	The PHY id.
5901 * @reg_num:	The register number.
5902 * @val:	The register value.
5903 *
5904 * This procedure sets the PHY register value.
5905 */
5906static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5907{
5908	struct dev_priv *priv = netdev_priv(dev);
5909	struct ksz_port *port = &priv->port;
5910	struct ksz_hw *hw = port->hw;
5911	int i;
5912	int pi;
5913
5914	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5915		hw_w_phy(hw, pi, reg_num << 1, val);
5916}
5917
5918/*
5919 * ethtool support
5920 */
5921
5922#define EEPROM_SIZE			0x40
5923
5924static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5925
5926#define ADVERTISED_ALL			\
5927	(ADVERTISED_10baseT_Half |	\
5928	ADVERTISED_10baseT_Full |	\
5929	ADVERTISED_100baseT_Half |	\
5930	ADVERTISED_100baseT_Full)
5931
5932/* These functions use the MII functions in mii.c. */
5933
5934/**
5935 * netdev_get_link_ksettings - get network device settings
5936 * @dev:	Network device.
5937 * @cmd:	Ethtool command.
5938 *
5939 * This function queries the PHY and returns its state in the ethtool command.
5940 *
5941 * Return 0 if successful; otherwise an error code.
5942 */
5943static int netdev_get_link_ksettings(struct net_device *dev,
5944				     struct ethtool_link_ksettings *cmd)
5945{
5946	struct dev_priv *priv = netdev_priv(dev);
5947	struct dev_info *hw_priv = priv->adapter;
5948
5949	mutex_lock(&hw_priv->lock);
5950	mii_ethtool_get_link_ksettings(&priv->mii_if, cmd);
5951	ethtool_link_ksettings_add_link_mode(cmd, advertising, TP);
5952	mutex_unlock(&hw_priv->lock);
5953
5954	/* Save advertised settings for workaround in next function. */
5955	ethtool_convert_link_mode_to_legacy_u32(&priv->advertising,
5956						cmd->link_modes.advertising);
5957
5958	return 0;
5959}
5960
5961/**
5962 * netdev_set_link_ksettings - set network device settings
5963 * @dev:	Network device.
5964 * @cmd:	Ethtool command.
5965 *
5966 * This function sets the PHY according to the ethtool command.
5967 *
5968 * Return 0 if successful; otherwise an error code.
5969 */
5970static int netdev_set_link_ksettings(struct net_device *dev,
5971				     const struct ethtool_link_ksettings *cmd)
5972{
5973	struct dev_priv *priv = netdev_priv(dev);
5974	struct dev_info *hw_priv = priv->adapter;
5975	struct ksz_port *port = &priv->port;
5976	struct ethtool_link_ksettings copy_cmd;
5977	u32 speed = cmd->base.speed;
5978	u32 advertising;
5979	int rc;
5980
5981	ethtool_convert_link_mode_to_legacy_u32(&advertising,
5982						cmd->link_modes.advertising);
5983
5984	/*
5985	 * ethtool utility does not change advertised setting if auto
5986	 * negotiation is not specified explicitly.
5987	 */
5988	if (cmd->base.autoneg && priv->advertising == advertising) {
5989		advertising |= ADVERTISED_ALL;
5990		if (10 == speed)
5991			advertising &=
5992				~(ADVERTISED_100baseT_Full |
5993				ADVERTISED_100baseT_Half);
5994		else if (100 == speed)
5995			advertising &=
5996				~(ADVERTISED_10baseT_Full |
5997				ADVERTISED_10baseT_Half);
5998		if (0 == cmd->base.duplex)
5999			advertising &=
6000				~(ADVERTISED_100baseT_Full |
6001				ADVERTISED_10baseT_Full);
6002		else if (1 == cmd->base.duplex)
6003			advertising &=
6004				~(ADVERTISED_100baseT_Half |
6005				ADVERTISED_10baseT_Half);
6006	}
6007	mutex_lock(&hw_priv->lock);
6008	if (cmd->base.autoneg &&
6009	    (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) {
6010		port->duplex = 0;
6011		port->speed = 0;
6012		port->force_link = 0;
6013	} else {
6014		port->duplex = cmd->base.duplex + 1;
6015		if (1000 != speed)
6016			port->speed = speed;
6017		if (cmd->base.autoneg)
6018			port->force_link = 0;
6019		else
6020			port->force_link = 1;
6021	}
6022
6023	memcpy(&copy_cmd, cmd, sizeof(copy_cmd));
6024	ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising,
6025						advertising);
6026	rc = mii_ethtool_set_link_ksettings(
6027		&priv->mii_if,
6028		(const struct ethtool_link_ksettings *)&copy_cmd);
6029	mutex_unlock(&hw_priv->lock);
6030	return rc;
6031}
6032
6033/**
6034 * netdev_nway_reset - restart auto-negotiation
6035 * @dev:	Network device.
6036 *
6037 * This function restarts the PHY for auto-negotiation.
6038 *
6039 * Return 0 if successful; otherwise an error code.
6040 */
6041static int netdev_nway_reset(struct net_device *dev)
6042{
6043	struct dev_priv *priv = netdev_priv(dev);
6044	struct dev_info *hw_priv = priv->adapter;
6045	int rc;
6046
6047	mutex_lock(&hw_priv->lock);
6048	rc = mii_nway_restart(&priv->mii_if);
6049	mutex_unlock(&hw_priv->lock);
6050	return rc;
6051}
6052
6053/**
6054 * netdev_get_link - get network device link status
6055 * @dev:	Network device.
6056 *
6057 * This function gets the link status from the PHY.
6058 *
6059 * Return true if PHY is linked and false otherwise.
6060 */
6061static u32 netdev_get_link(struct net_device *dev)
6062{
6063	struct dev_priv *priv = netdev_priv(dev);
6064	int rc;
6065
6066	rc = mii_link_ok(&priv->mii_if);
6067	return rc;
6068}
6069
6070/**
6071 * netdev_get_drvinfo - get network driver information
6072 * @dev:	Network device.
6073 * @info:	Ethtool driver info data structure.
6074 *
6075 * This procedure returns the driver information.
6076 */
6077static void netdev_get_drvinfo(struct net_device *dev,
6078	struct ethtool_drvinfo *info)
6079{
6080	struct dev_priv *priv = netdev_priv(dev);
6081	struct dev_info *hw_priv = priv->adapter;
6082
6083	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6084	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6085	strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6086		sizeof(info->bus_info));
6087}
6088
6089/**
6090 * netdev_get_regs_len - get length of register dump
6091 * @dev:	Network device.
6092 *
6093 * This function returns the length of the register dump.
6094 *
6095 * Return length of the register dump.
6096 */
6097static struct hw_regs {
6098	int start;
6099	int end;
6100} hw_regs_range[] = {
6101	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
6102	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
6103	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
6104	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
6105	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
6106	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
6107	{ 0, 0 }
6108};
6109
 
 
 
 
 
 
 
 
6110static int netdev_get_regs_len(struct net_device *dev)
6111{
6112	struct hw_regs *range = hw_regs_range;
6113	int regs_len = 0x10 * sizeof(u32);
6114
6115	while (range->end > range->start) {
6116		regs_len += (range->end - range->start + 3) / 4 * 4;
6117		range++;
6118	}
6119	return regs_len;
6120}
6121
6122/**
6123 * netdev_get_regs - get register dump
6124 * @dev:	Network device.
6125 * @regs:	Ethtool registers data structure.
6126 * @ptr:	Buffer to store the register values.
6127 *
6128 * This procedure dumps the register values in the provided buffer.
6129 */
6130static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6131	void *ptr)
6132{
6133	struct dev_priv *priv = netdev_priv(dev);
6134	struct dev_info *hw_priv = priv->adapter;
6135	struct ksz_hw *hw = &hw_priv->hw;
6136	int *buf = (int *) ptr;
6137	struct hw_regs *range = hw_regs_range;
6138	int len;
6139
6140	mutex_lock(&hw_priv->lock);
6141	regs->version = 0;
6142	for (len = 0; len < 0x40; len += 4) {
6143		pci_read_config_dword(hw_priv->pdev, len, buf);
6144		buf++;
6145	}
6146	while (range->end > range->start) {
6147		for (len = range->start; len < range->end; len += 4) {
6148			*buf = readl(hw->io + len);
6149			buf++;
6150		}
6151		range++;
6152	}
6153	mutex_unlock(&hw_priv->lock);
6154}
6155
6156#define WOL_SUPPORT			\
6157	(WAKE_PHY | WAKE_MAGIC |	\
6158	WAKE_UCAST | WAKE_MCAST |	\
6159	WAKE_BCAST | WAKE_ARP)
6160
6161/**
6162 * netdev_get_wol - get Wake-on-LAN support
6163 * @dev:	Network device.
6164 * @wol:	Ethtool Wake-on-LAN data structure.
6165 *
6166 * This procedure returns Wake-on-LAN support.
6167 */
6168static void netdev_get_wol(struct net_device *dev,
6169	struct ethtool_wolinfo *wol)
6170{
6171	struct dev_priv *priv = netdev_priv(dev);
6172	struct dev_info *hw_priv = priv->adapter;
6173
6174	wol->supported = hw_priv->wol_support;
6175	wol->wolopts = hw_priv->wol_enable;
6176	memset(&wol->sopass, 0, sizeof(wol->sopass));
6177}
6178
6179/**
6180 * netdev_set_wol - set Wake-on-LAN support
6181 * @dev:	Network device.
6182 * @wol:	Ethtool Wake-on-LAN data structure.
6183 *
6184 * This function sets Wake-on-LAN support.
6185 *
6186 * Return 0 if successful; otherwise an error code.
6187 */
6188static int netdev_set_wol(struct net_device *dev,
6189	struct ethtool_wolinfo *wol)
6190{
6191	struct dev_priv *priv = netdev_priv(dev);
6192	struct dev_info *hw_priv = priv->adapter;
6193
6194	/* Need to find a way to retrieve the device IP address. */
6195	static const u8 net_addr[] = { 192, 168, 1, 1 };
6196
6197	if (wol->wolopts & ~hw_priv->wol_support)
6198		return -EINVAL;
6199
6200	hw_priv->wol_enable = wol->wolopts;
6201
6202	/* Link wakeup cannot really be disabled. */
6203	if (wol->wolopts)
6204		hw_priv->wol_enable |= WAKE_PHY;
6205	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6206	return 0;
6207}
6208
6209/**
6210 * netdev_get_msglevel - get debug message level
6211 * @dev:	Network device.
6212 *
6213 * This function returns current debug message level.
6214 *
6215 * Return current debug message flags.
6216 */
6217static u32 netdev_get_msglevel(struct net_device *dev)
6218{
6219	struct dev_priv *priv = netdev_priv(dev);
6220
6221	return priv->msg_enable;
6222}
6223
6224/**
6225 * netdev_set_msglevel - set debug message level
6226 * @dev:	Network device.
6227 * @value:	Debug message flags.
6228 *
6229 * This procedure sets debug message level.
6230 */
6231static void netdev_set_msglevel(struct net_device *dev, u32 value)
6232{
6233	struct dev_priv *priv = netdev_priv(dev);
6234
6235	priv->msg_enable = value;
6236}
6237
6238/**
6239 * netdev_get_eeprom_len - get EEPROM length
6240 * @dev:	Network device.
6241 *
6242 * This function returns the length of the EEPROM.
6243 *
6244 * Return length of the EEPROM.
6245 */
6246static int netdev_get_eeprom_len(struct net_device *dev)
6247{
6248	return EEPROM_SIZE * 2;
6249}
6250
 
 
6251/**
6252 * netdev_get_eeprom - get EEPROM data
6253 * @dev:	Network device.
6254 * @eeprom:	Ethtool EEPROM data structure.
6255 * @data:	Buffer to store the EEPROM data.
6256 *
6257 * This function dumps the EEPROM data in the provided buffer.
6258 *
6259 * Return 0 if successful; otherwise an error code.
6260 */
6261#define EEPROM_MAGIC			0x10A18842
6262
6263static int netdev_get_eeprom(struct net_device *dev,
6264	struct ethtool_eeprom *eeprom, u8 *data)
6265{
6266	struct dev_priv *priv = netdev_priv(dev);
6267	struct dev_info *hw_priv = priv->adapter;
6268	u8 *eeprom_byte = (u8 *) eeprom_data;
6269	int i;
6270	int len;
6271
6272	len = (eeprom->offset + eeprom->len + 1) / 2;
6273	for (i = eeprom->offset / 2; i < len; i++)
6274		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6275	eeprom->magic = EEPROM_MAGIC;
6276	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6277
6278	return 0;
6279}
6280
6281/**
6282 * netdev_set_eeprom - write EEPROM data
6283 * @dev:	Network device.
6284 * @eeprom:	Ethtool EEPROM data structure.
6285 * @data:	Data buffer.
6286 *
6287 * This function modifies the EEPROM data one byte at a time.
6288 *
6289 * Return 0 if successful; otherwise an error code.
6290 */
6291static int netdev_set_eeprom(struct net_device *dev,
6292	struct ethtool_eeprom *eeprom, u8 *data)
6293{
6294	struct dev_priv *priv = netdev_priv(dev);
6295	struct dev_info *hw_priv = priv->adapter;
6296	u16 eeprom_word[EEPROM_SIZE];
6297	u8 *eeprom_byte = (u8 *) eeprom_word;
6298	int i;
6299	int len;
6300
6301	if (eeprom->magic != EEPROM_MAGIC)
6302		return -EINVAL;
6303
6304	len = (eeprom->offset + eeprom->len + 1) / 2;
6305	for (i = eeprom->offset / 2; i < len; i++)
6306		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6307	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6308	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6309	for (i = 0; i < EEPROM_SIZE; i++)
6310		if (eeprom_word[i] != eeprom_data[i]) {
6311			eeprom_data[i] = eeprom_word[i];
6312			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6313	}
6314
6315	return 0;
6316}
6317
6318/**
6319 * netdev_get_pauseparam - get flow control parameters
6320 * @dev:	Network device.
6321 * @pause:	Ethtool PAUSE settings data structure.
6322 *
6323 * This procedure returns the PAUSE control flow settings.
6324 */
6325static void netdev_get_pauseparam(struct net_device *dev,
6326	struct ethtool_pauseparam *pause)
6327{
6328	struct dev_priv *priv = netdev_priv(dev);
6329	struct dev_info *hw_priv = priv->adapter;
6330	struct ksz_hw *hw = &hw_priv->hw;
6331
6332	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6333	if (!hw->ksz_switch) {
6334		pause->rx_pause =
6335			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6336		pause->tx_pause =
6337			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6338	} else {
6339		pause->rx_pause =
6340			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6341				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6342		pause->tx_pause =
6343			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6344				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6345	}
6346}
6347
6348/**
6349 * netdev_set_pauseparam - set flow control parameters
6350 * @dev:	Network device.
6351 * @pause:	Ethtool PAUSE settings data structure.
6352 *
6353 * This function sets the PAUSE control flow settings.
6354 * Not implemented yet.
6355 *
6356 * Return 0 if successful; otherwise an error code.
6357 */
6358static int netdev_set_pauseparam(struct net_device *dev,
6359	struct ethtool_pauseparam *pause)
6360{
6361	struct dev_priv *priv = netdev_priv(dev);
6362	struct dev_info *hw_priv = priv->adapter;
6363	struct ksz_hw *hw = &hw_priv->hw;
6364	struct ksz_port *port = &priv->port;
6365
6366	mutex_lock(&hw_priv->lock);
6367	if (pause->autoneg) {
6368		if (!pause->rx_pause && !pause->tx_pause)
6369			port->flow_ctrl = PHY_NO_FLOW_CTRL;
6370		else
6371			port->flow_ctrl = PHY_FLOW_CTRL;
6372		hw->overrides &= ~PAUSE_FLOW_CTRL;
6373		port->force_link = 0;
6374		if (hw->ksz_switch) {
6375			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6376				SWITCH_RX_FLOW_CTRL, 1);
6377			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6378				SWITCH_TX_FLOW_CTRL, 1);
6379		}
6380		port_set_link_speed(port);
6381	} else {
6382		hw->overrides |= PAUSE_FLOW_CTRL;
6383		if (hw->ksz_switch) {
6384			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6385				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6386			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6387				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6388		} else
6389			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6390	}
6391	mutex_unlock(&hw_priv->lock);
6392
6393	return 0;
6394}
6395
6396/**
6397 * netdev_get_ringparam - get tx/rx ring parameters
6398 * @dev:	Network device.
6399 * @pause:	Ethtool RING settings data structure.
 
 
6400 *
6401 * This procedure returns the TX/RX ring settings.
6402 */
6403static void netdev_get_ringparam(struct net_device *dev,
6404	struct ethtool_ringparam *ring)
 
 
6405{
6406	struct dev_priv *priv = netdev_priv(dev);
6407	struct dev_info *hw_priv = priv->adapter;
6408	struct ksz_hw *hw = &hw_priv->hw;
6409
6410	ring->tx_max_pending = (1 << 9);
6411	ring->tx_pending = hw->tx_desc_info.alloc;
6412	ring->rx_max_pending = (1 << 9);
6413	ring->rx_pending = hw->rx_desc_info.alloc;
6414}
6415
6416#define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)
6417
6418static struct {
6419	char string[ETH_GSTRING_LEN];
6420} ethtool_stats_keys[STATS_LEN] = {
6421	{ "rx_lo_priority_octets" },
6422	{ "rx_hi_priority_octets" },
6423	{ "rx_undersize_packets" },
6424	{ "rx_fragments" },
6425	{ "rx_oversize_packets" },
6426	{ "rx_jabbers" },
6427	{ "rx_symbol_errors" },
6428	{ "rx_crc_errors" },
6429	{ "rx_align_errors" },
6430	{ "rx_mac_ctrl_packets" },
6431	{ "rx_pause_packets" },
6432	{ "rx_bcast_packets" },
6433	{ "rx_mcast_packets" },
6434	{ "rx_ucast_packets" },
6435	{ "rx_64_or_less_octet_packets" },
6436	{ "rx_65_to_127_octet_packets" },
6437	{ "rx_128_to_255_octet_packets" },
6438	{ "rx_256_to_511_octet_packets" },
6439	{ "rx_512_to_1023_octet_packets" },
6440	{ "rx_1024_to_1522_octet_packets" },
6441
6442	{ "tx_lo_priority_octets" },
6443	{ "tx_hi_priority_octets" },
6444	{ "tx_late_collisions" },
6445	{ "tx_pause_packets" },
6446	{ "tx_bcast_packets" },
6447	{ "tx_mcast_packets" },
6448	{ "tx_ucast_packets" },
6449	{ "tx_deferred" },
6450	{ "tx_total_collisions" },
6451	{ "tx_excessive_collisions" },
6452	{ "tx_single_collisions" },
6453	{ "tx_mult_collisions" },
6454
6455	{ "rx_discards" },
6456	{ "tx_discards" },
6457};
6458
6459/**
6460 * netdev_get_strings - get statistics identity strings
6461 * @dev:	Network device.
6462 * @stringset:	String set identifier.
6463 * @buf:	Buffer to store the strings.
6464 *
6465 * This procedure returns the strings used to identify the statistics.
6466 */
6467static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6468{
6469	struct dev_priv *priv = netdev_priv(dev);
6470	struct dev_info *hw_priv = priv->adapter;
6471	struct ksz_hw *hw = &hw_priv->hw;
6472
6473	if (ETH_SS_STATS == stringset)
6474		memcpy(buf, &ethtool_stats_keys,
6475			ETH_GSTRING_LEN * hw->mib_cnt);
6476}
6477
6478/**
6479 * netdev_get_sset_count - get statistics size
6480 * @dev:	Network device.
6481 * @sset:	The statistics set number.
6482 *
6483 * This function returns the size of the statistics to be reported.
6484 *
6485 * Return size of the statistics to be reported.
6486 */
6487static int netdev_get_sset_count(struct net_device *dev, int sset)
6488{
6489	struct dev_priv *priv = netdev_priv(dev);
6490	struct dev_info *hw_priv = priv->adapter;
6491	struct ksz_hw *hw = &hw_priv->hw;
6492
6493	switch (sset) {
6494	case ETH_SS_STATS:
6495		return hw->mib_cnt;
6496	default:
6497		return -EOPNOTSUPP;
6498	}
6499}
6500
6501/**
6502 * netdev_get_ethtool_stats - get network device statistics
6503 * @dev:	Network device.
6504 * @stats:	Ethtool statistics data structure.
6505 * @data:	Buffer to store the statistics.
6506 *
6507 * This procedure returns the statistics.
6508 */
6509static void netdev_get_ethtool_stats(struct net_device *dev,
6510	struct ethtool_stats *stats, u64 *data)
6511{
6512	struct dev_priv *priv = netdev_priv(dev);
6513	struct dev_info *hw_priv = priv->adapter;
6514	struct ksz_hw *hw = &hw_priv->hw;
6515	struct ksz_port *port = &priv->port;
6516	int n_stats = stats->n_stats;
6517	int i;
6518	int n;
6519	int p;
6520	int rc;
6521	u64 counter[TOTAL_PORT_COUNTER_NUM];
6522
6523	mutex_lock(&hw_priv->lock);
6524	n = SWITCH_PORT_NUM;
6525	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6526		if (media_connected == hw->port_mib[p].state) {
6527			hw_priv->counter[p].read = 1;
6528
6529			/* Remember first port that requests read. */
6530			if (n == SWITCH_PORT_NUM)
6531				n = p;
6532		}
6533	}
6534	mutex_unlock(&hw_priv->lock);
6535
6536	if (n < SWITCH_PORT_NUM)
6537		schedule_work(&hw_priv->mib_read);
6538
6539	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6540		p = n;
6541		rc = wait_event_interruptible_timeout(
6542			hw_priv->counter[p].counter,
6543			2 == hw_priv->counter[p].read,
6544			HZ * 1);
6545	} else
6546		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6547			if (0 == i) {
6548				rc = wait_event_interruptible_timeout(
6549					hw_priv->counter[p].counter,
6550					2 == hw_priv->counter[p].read,
6551					HZ * 2);
6552			} else if (hw->port_mib[p].cnt_ptr) {
6553				rc = wait_event_interruptible_timeout(
6554					hw_priv->counter[p].counter,
6555					2 == hw_priv->counter[p].read,
6556					HZ * 1);
6557			}
6558		}
6559
6560	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6561	n = hw->mib_cnt;
6562	if (n > n_stats)
6563		n = n_stats;
6564	n_stats -= n;
6565	for (i = 0; i < n; i++)
6566		*data++ = counter[i];
6567}
6568
6569/**
6570 * netdev_set_features - set receive checksum support
6571 * @dev:	Network device.
6572 * @features:	New device features (offloads).
6573 *
6574 * This function sets receive checksum support setting.
6575 *
6576 * Return 0 if successful; otherwise an error code.
6577 */
6578static int netdev_set_features(struct net_device *dev,
6579	netdev_features_t features)
6580{
6581	struct dev_priv *priv = netdev_priv(dev);
6582	struct dev_info *hw_priv = priv->adapter;
6583	struct ksz_hw *hw = &hw_priv->hw;
6584
6585	mutex_lock(&hw_priv->lock);
6586
6587	/* see note in hw_setup() */
6588	if (features & NETIF_F_RXCSUM)
6589		hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6590	else
6591		hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6592
6593	if (hw->enabled)
6594		writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6595
6596	mutex_unlock(&hw_priv->lock);
6597
6598	return 0;
6599}
6600
6601static const struct ethtool_ops netdev_ethtool_ops = {
6602	.nway_reset		= netdev_nway_reset,
6603	.get_link		= netdev_get_link,
6604	.get_drvinfo		= netdev_get_drvinfo,
6605	.get_regs_len		= netdev_get_regs_len,
6606	.get_regs		= netdev_get_regs,
6607	.get_wol		= netdev_get_wol,
6608	.set_wol		= netdev_set_wol,
6609	.get_msglevel		= netdev_get_msglevel,
6610	.set_msglevel		= netdev_set_msglevel,
6611	.get_eeprom_len		= netdev_get_eeprom_len,
6612	.get_eeprom		= netdev_get_eeprom,
6613	.set_eeprom		= netdev_set_eeprom,
6614	.get_pauseparam		= netdev_get_pauseparam,
6615	.set_pauseparam		= netdev_set_pauseparam,
6616	.get_ringparam		= netdev_get_ringparam,
6617	.get_strings		= netdev_get_strings,
6618	.get_sset_count		= netdev_get_sset_count,
6619	.get_ethtool_stats	= netdev_get_ethtool_stats,
6620	.get_link_ksettings	= netdev_get_link_ksettings,
6621	.set_link_ksettings	= netdev_set_link_ksettings,
6622};
6623
6624/*
6625 * Hardware monitoring
6626 */
6627
6628static void update_link(struct net_device *dev, struct dev_priv *priv,
6629	struct ksz_port *port)
6630{
6631	if (priv->media_state != port->linked->state) {
6632		priv->media_state = port->linked->state;
6633		if (netif_running(dev))
6634			set_media_state(dev, media_connected);
6635	}
6636}
6637
6638static void mib_read_work(struct work_struct *work)
6639{
6640	struct dev_info *hw_priv =
6641		container_of(work, struct dev_info, mib_read);
6642	struct ksz_hw *hw = &hw_priv->hw;
 
6643	struct ksz_port_mib *mib;
6644	int i;
6645
6646	next_jiffies = jiffies;
6647	for (i = 0; i < hw->mib_port_cnt; i++) {
6648		mib = &hw->port_mib[i];
6649
6650		/* Reading MIB counters or requested to read. */
6651		if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6652
6653			/* Need to process receive interrupt. */
6654			if (port_r_cnt(hw, i))
6655				break;
6656			hw_priv->counter[i].read = 0;
6657
6658			/* Finish reading counters. */
6659			if (0 == mib->cnt_ptr) {
6660				hw_priv->counter[i].read = 2;
6661				wake_up_interruptible(
6662					&hw_priv->counter[i].counter);
6663			}
6664		} else if (time_after_eq(jiffies, hw_priv->counter[i].time)) {
6665			/* Only read MIB counters when the port is connected. */
6666			if (media_connected == mib->state)
6667				hw_priv->counter[i].read = 1;
6668			next_jiffies += HZ * 1 * hw->mib_port_cnt;
6669			hw_priv->counter[i].time = next_jiffies;
6670
6671		/* Port is just disconnected. */
6672		} else if (mib->link_down) {
6673			mib->link_down = 0;
6674
6675			/* Read counters one last time after link is lost. */
6676			hw_priv->counter[i].read = 1;
6677		}
6678	}
6679}
6680
6681static void mib_monitor(struct timer_list *t)
6682{
6683	struct dev_info *hw_priv = from_timer(hw_priv, t, mib_timer_info.timer);
6684
6685	mib_read_work(&hw_priv->mib_read);
6686
6687	/* This is used to verify Wake-on-LAN is working. */
6688	if (hw_priv->pme_wait) {
6689		if (time_is_before_eq_jiffies(hw_priv->pme_wait)) {
6690			hw_clr_wol_pme_status(&hw_priv->hw);
6691			hw_priv->pme_wait = 0;
6692		}
6693	} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6694
6695		/* PME is asserted.  Wait 2 seconds to clear it. */
6696		hw_priv->pme_wait = jiffies + HZ * 2;
6697	}
6698
6699	ksz_update_timer(&hw_priv->mib_timer_info);
6700}
6701
6702/**
6703 * dev_monitor - periodic monitoring
6704 * @ptr:	Network device pointer.
6705 *
6706 * This routine is run in a kernel timer to monitor the network device.
6707 */
6708static void dev_monitor(struct timer_list *t)
6709{
6710	struct dev_priv *priv = from_timer(priv, t, monitor_timer_info.timer);
6711	struct net_device *dev = priv->mii_if.dev;
6712	struct dev_info *hw_priv = priv->adapter;
6713	struct ksz_hw *hw = &hw_priv->hw;
6714	struct ksz_port *port = &priv->port;
6715
6716	if (!(hw->features & LINK_INT_WORKING))
6717		port_get_link_speed(port);
6718	update_link(dev, priv, port);
6719
6720	ksz_update_timer(&priv->monitor_timer_info);
6721}
6722
6723/*
6724 * Linux network device interface functions
6725 */
6726
6727/* Driver exported variables */
6728
6729static int msg_enable;
6730
6731static char *macaddr = ":";
6732static char *mac1addr = ":";
6733
6734/*
6735 * This enables multiple network device mode for KSZ8842, which contains a
6736 * switch with two physical ports.  Some users like to take control of the
6737 * ports for running Spanning Tree Protocol.  The driver will create an
6738 * additional eth? device for the other port.
6739 *
6740 * Some limitations are the network devices cannot have different MTU and
6741 * multicast hash tables.
6742 */
6743static int multi_dev;
6744
6745/*
6746 * As most users select multiple network device mode to use Spanning Tree
6747 * Protocol, this enables a feature in which most unicast and multicast packets
6748 * are forwarded inside the switch and not passed to the host.  Only packets
6749 * that need the host's attention are passed to it.  This prevents the host
6750 * wasting CPU time to examine each and every incoming packets and do the
6751 * forwarding itself.
6752 *
6753 * As the hack requires the private bridge header, the driver cannot compile
6754 * with just the kernel headers.
6755 *
6756 * Enabling STP support also turns on multiple network device mode.
6757 */
6758static int stp;
6759
6760/*
6761 * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6762 * needs that.  However, fast aging is used to flush the dynamic MAC table when
6763 * STP support is enabled.
6764 */
6765static int fast_aging;
6766
6767/**
6768 * netdev_init - initialize network device.
6769 * @dev:	Network device.
6770 *
6771 * This function initializes the network device.
6772 *
6773 * Return 0 if successful; otherwise an error code indicating failure.
6774 */
6775static int __init netdev_init(struct net_device *dev)
6776{
6777	struct dev_priv *priv = netdev_priv(dev);
6778
6779	/* 500 ms timeout */
6780	ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6781		dev_monitor);
6782
6783	/* 500 ms timeout */
6784	dev->watchdog_timeo = HZ / 2;
6785
6786	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6787
6788	/*
6789	 * Hardware does not really support IPv6 checksum generation, but
6790	 * driver actually runs faster with this on.
6791	 */
6792	dev->hw_features |= NETIF_F_IPV6_CSUM;
6793
6794	dev->features |= dev->hw_features;
6795
6796	sema_init(&priv->proc_sem, 1);
6797
6798	priv->mii_if.phy_id_mask = 0x1;
6799	priv->mii_if.reg_num_mask = 0x7;
6800	priv->mii_if.dev = dev;
6801	priv->mii_if.mdio_read = mdio_read;
6802	priv->mii_if.mdio_write = mdio_write;
6803	priv->mii_if.phy_id = priv->port.first_port + 1;
6804
6805	priv->msg_enable = netif_msg_init(msg_enable,
6806		(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6807
6808	return 0;
6809}
6810
6811static const struct net_device_ops netdev_ops = {
6812	.ndo_init		= netdev_init,
6813	.ndo_open		= netdev_open,
6814	.ndo_stop		= netdev_close,
6815	.ndo_get_stats		= netdev_query_statistics,
6816	.ndo_start_xmit		= netdev_tx,
6817	.ndo_tx_timeout		= netdev_tx_timeout,
6818	.ndo_change_mtu		= netdev_change_mtu,
6819	.ndo_set_features	= netdev_set_features,
6820	.ndo_set_mac_address	= netdev_set_mac_address,
6821	.ndo_validate_addr	= eth_validate_addr,
6822	.ndo_do_ioctl		= netdev_ioctl,
6823	.ndo_set_rx_mode	= netdev_set_rx_mode,
6824#ifdef CONFIG_NET_POLL_CONTROLLER
6825	.ndo_poll_controller	= netdev_netpoll,
6826#endif
6827};
6828
6829static void netdev_free(struct net_device *dev)
6830{
6831	if (dev->watchdog_timeo)
6832		unregister_netdev(dev);
6833
6834	free_netdev(dev);
6835}
6836
6837struct platform_info {
6838	struct dev_info dev_info;
6839	struct net_device *netdev[SWITCH_PORT_NUM];
6840};
6841
6842static int net_device_present;
6843
6844static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6845{
6846	int i;
6847	int j;
6848	int got_num;
6849	int num;
6850
6851	i = j = num = got_num = 0;
6852	while (j < ETH_ALEN) {
6853		if (macaddr[i]) {
6854			int digit;
6855
6856			got_num = 1;
6857			digit = hex_to_bin(macaddr[i]);
6858			if (digit >= 0)
6859				num = num * 16 + digit;
6860			else if (':' == macaddr[i])
6861				got_num = 2;
6862			else
6863				break;
6864		} else if (got_num)
6865			got_num = 2;
6866		else
6867			break;
6868		if (2 == got_num) {
6869			if (MAIN_PORT == port) {
6870				hw_priv->hw.override_addr[j++] = (u8) num;
6871				hw_priv->hw.override_addr[5] +=
6872					hw_priv->hw.id;
6873			} else {
6874				hw_priv->hw.ksz_switch->other_addr[j++] =
6875					(u8) num;
6876				hw_priv->hw.ksz_switch->other_addr[5] +=
6877					hw_priv->hw.id;
6878			}
6879			num = got_num = 0;
6880		}
6881		i++;
6882	}
6883	if (ETH_ALEN == j) {
6884		if (MAIN_PORT == port)
6885			hw_priv->hw.mac_override = 1;
6886	}
6887}
6888
6889#define KS884X_DMA_MASK			(~0x0UL)
6890
6891static void read_other_addr(struct ksz_hw *hw)
6892{
6893	int i;
6894	u16 data[3];
6895	struct ksz_switch *sw = hw->ksz_switch;
6896
6897	for (i = 0; i < 3; i++)
6898		data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6899	if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6900		sw->other_addr[5] = (u8) data[0];
6901		sw->other_addr[4] = (u8)(data[0] >> 8);
6902		sw->other_addr[3] = (u8) data[1];
6903		sw->other_addr[2] = (u8)(data[1] >> 8);
6904		sw->other_addr[1] = (u8) data[2];
6905		sw->other_addr[0] = (u8)(data[2] >> 8);
6906	}
6907}
6908
6909#ifndef PCI_VENDOR_ID_MICREL_KS
6910#define PCI_VENDOR_ID_MICREL_KS		0x16c6
6911#endif
6912
6913static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6914{
6915	struct net_device *dev;
6916	struct dev_priv *priv;
6917	struct dev_info *hw_priv;
6918	struct ksz_hw *hw;
6919	struct platform_info *info;
6920	struct ksz_port *port;
6921	unsigned long reg_base;
6922	unsigned long reg_len;
6923	int cnt;
6924	int i;
6925	int mib_port_count;
6926	int pi;
6927	int port_count;
6928	int result;
6929	char banner[sizeof(version)];
6930	struct ksz_switch *sw = NULL;
6931
6932	result = pci_enable_device(pdev);
6933	if (result)
6934		return result;
6935
6936	result = -ENODEV;
6937
6938	if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6939			pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6940		return result;
6941
6942	reg_base = pci_resource_start(pdev, 0);
6943	reg_len = pci_resource_len(pdev, 0);
6944	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6945		return result;
6946
6947	if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6948		return result;
6949	pci_set_master(pdev);
6950
6951	result = -ENOMEM;
6952
6953	info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6954	if (!info)
6955		goto pcidev_init_dev_err;
6956
6957	hw_priv = &info->dev_info;
6958	hw_priv->pdev = pdev;
6959
6960	hw = &hw_priv->hw;
6961
6962	hw->io = ioremap(reg_base, reg_len);
6963	if (!hw->io)
6964		goto pcidev_init_io_err;
6965
6966	cnt = hw_init(hw);
6967	if (!cnt) {
6968		if (msg_enable & NETIF_MSG_PROBE)
6969			pr_alert("chip not detected\n");
6970		result = -ENODEV;
6971		goto pcidev_init_alloc_err;
6972	}
6973
6974	snprintf(banner, sizeof(banner), "%s", version);
6975	banner[13] = cnt + '0';		/* Replace x in "Micrel KSZ884x" */
6976	dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6977	dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6978
6979	/* Assume device is KSZ8841. */
6980	hw->dev_count = 1;
6981	port_count = 1;
6982	mib_port_count = 1;
6983	hw->addr_list_size = 0;
6984	hw->mib_cnt = PORT_COUNTER_NUM;
6985	hw->mib_port_cnt = 1;
6986
6987	/* KSZ8842 has a switch with multiple ports. */
6988	if (2 == cnt) {
6989		if (fast_aging)
6990			hw->overrides |= FAST_AGING;
6991
6992		hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
6993
6994		/* Multiple network device interfaces are required. */
6995		if (multi_dev) {
6996			hw->dev_count = SWITCH_PORT_NUM;
6997			hw->addr_list_size = SWITCH_PORT_NUM - 1;
6998		}
6999
7000		/* Single network device has multiple ports. */
7001		if (1 == hw->dev_count) {
7002			port_count = SWITCH_PORT_NUM;
7003			mib_port_count = SWITCH_PORT_NUM;
7004		}
7005		hw->mib_port_cnt = TOTAL_PORT_NUM;
7006		hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7007		if (!hw->ksz_switch)
7008			goto pcidev_init_alloc_err;
7009
7010		sw = hw->ksz_switch;
7011	}
7012	for (i = 0; i < hw->mib_port_cnt; i++)
7013		hw->port_mib[i].mib_start = 0;
7014
7015	hw->parent = hw_priv;
7016
7017	/* Default MTU is 1500. */
7018	hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7019
7020	if (ksz_alloc_mem(hw_priv))
7021		goto pcidev_init_mem_err;
7022
7023	hw_priv->hw.id = net_device_present;
7024
7025	spin_lock_init(&hw_priv->hwlock);
7026	mutex_init(&hw_priv->lock);
7027
7028	for (i = 0; i < TOTAL_PORT_NUM; i++)
7029		init_waitqueue_head(&hw_priv->counter[i].counter);
7030
7031	if (macaddr[0] != ':')
7032		get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7033
7034	/* Read MAC address and initialize override address if not overridden. */
7035	hw_read_addr(hw);
7036
7037	/* Multiple device interfaces mode requires a second MAC address. */
7038	if (hw->dev_count > 1) {
7039		memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
7040		read_other_addr(hw);
7041		if (mac1addr[0] != ':')
7042			get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7043	}
7044
7045	hw_setup(hw);
7046	if (hw->ksz_switch)
7047		sw_setup(hw);
7048	else {
7049		hw_priv->wol_support = WOL_SUPPORT;
7050		hw_priv->wol_enable = 0;
7051	}
7052
7053	INIT_WORK(&hw_priv->mib_read, mib_read_work);
7054
7055	/* 500 ms timeout */
7056	ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7057		mib_monitor);
7058
7059	for (i = 0; i < hw->dev_count; i++) {
7060		dev = alloc_etherdev(sizeof(struct dev_priv));
7061		if (!dev)
7062			goto pcidev_init_reg_err;
7063		SET_NETDEV_DEV(dev, &pdev->dev);
7064		info->netdev[i] = dev;
7065
7066		priv = netdev_priv(dev);
7067		priv->adapter = hw_priv;
7068		priv->id = net_device_present++;
7069
7070		port = &priv->port;
7071		port->port_cnt = port_count;
7072		port->mib_port_cnt = mib_port_count;
7073		port->first_port = i;
7074		port->flow_ctrl = PHY_FLOW_CTRL;
7075
7076		port->hw = hw;
7077		port->linked = &hw->port_info[port->first_port];
7078
7079		for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7080			hw->port_info[pi].port_id = pi;
7081			hw->port_info[pi].pdev = dev;
7082			hw->port_info[pi].state = media_disconnected;
7083		}
7084
7085		dev->mem_start = (unsigned long) hw->io;
7086		dev->mem_end = dev->mem_start + reg_len - 1;
7087		dev->irq = pdev->irq;
7088		if (MAIN_PORT == i)
7089			memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7090			       ETH_ALEN);
7091		else {
7092			memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN);
 
 
7093			if (ether_addr_equal(sw->other_addr, hw->override_addr))
7094				dev->dev_addr[5] += port->first_port;
 
7095		}
7096
7097		dev->netdev_ops = &netdev_ops;
7098		dev->ethtool_ops = &netdev_ethtool_ops;
7099
7100		/* MTU range: 60 - 1894 */
7101		dev->min_mtu = ETH_ZLEN;
7102		dev->max_mtu = MAX_RX_BUF_SIZE -
7103			       (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
7104
7105		if (register_netdev(dev))
7106			goto pcidev_init_reg_err;
7107		port_set_power_saving(port, true);
7108	}
7109
7110	pci_dev_get(hw_priv->pdev);
7111	pci_set_drvdata(pdev, info);
7112	return 0;
7113
7114pcidev_init_reg_err:
7115	for (i = 0; i < hw->dev_count; i++) {
7116		if (info->netdev[i]) {
7117			netdev_free(info->netdev[i]);
7118			info->netdev[i] = NULL;
7119		}
7120	}
7121
7122pcidev_init_mem_err:
7123	ksz_free_mem(hw_priv);
7124	kfree(hw->ksz_switch);
7125
7126pcidev_init_alloc_err:
7127	iounmap(hw->io);
7128
7129pcidev_init_io_err:
7130	kfree(info);
7131
7132pcidev_init_dev_err:
7133	release_mem_region(reg_base, reg_len);
7134
7135	return result;
7136}
7137
7138static void pcidev_exit(struct pci_dev *pdev)
7139{
7140	int i;
7141	struct platform_info *info = pci_get_drvdata(pdev);
7142	struct dev_info *hw_priv = &info->dev_info;
7143
7144	release_mem_region(pci_resource_start(pdev, 0),
7145		pci_resource_len(pdev, 0));
7146	for (i = 0; i < hw_priv->hw.dev_count; i++) {
7147		if (info->netdev[i])
7148			netdev_free(info->netdev[i]);
7149	}
7150	if (hw_priv->hw.io)
7151		iounmap(hw_priv->hw.io);
7152	ksz_free_mem(hw_priv);
7153	kfree(hw_priv->hw.ksz_switch);
7154	pci_dev_put(hw_priv->pdev);
7155	kfree(info);
7156}
7157
7158#ifdef CONFIG_PM
7159static int pcidev_resume(struct pci_dev *pdev)
7160{
7161	int i;
7162	struct platform_info *info = pci_get_drvdata(pdev);
7163	struct dev_info *hw_priv = &info->dev_info;
7164	struct ksz_hw *hw = &hw_priv->hw;
7165
7166	pci_set_power_state(pdev, PCI_D0);
7167	pci_restore_state(pdev);
7168	pci_enable_wake(pdev, PCI_D0, 0);
7169
7170	if (hw_priv->wol_enable)
7171		hw_cfg_wol_pme(hw, 0);
7172	for (i = 0; i < hw->dev_count; i++) {
7173		if (info->netdev[i]) {
7174			struct net_device *dev = info->netdev[i];
7175
7176			if (netif_running(dev)) {
7177				netdev_open(dev);
7178				netif_device_attach(dev);
7179			}
7180		}
7181	}
7182	return 0;
7183}
7184
7185static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7186{
7187	int i;
7188	struct platform_info *info = pci_get_drvdata(pdev);
7189	struct dev_info *hw_priv = &info->dev_info;
7190	struct ksz_hw *hw = &hw_priv->hw;
7191
7192	/* Need to find a way to retrieve the device IP address. */
7193	static const u8 net_addr[] = { 192, 168, 1, 1 };
7194
7195	for (i = 0; i < hw->dev_count; i++) {
7196		if (info->netdev[i]) {
7197			struct net_device *dev = info->netdev[i];
7198
7199			if (netif_running(dev)) {
7200				netif_device_detach(dev);
7201				netdev_close(dev);
7202			}
7203		}
7204	}
7205	if (hw_priv->wol_enable) {
7206		hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7207		hw_cfg_wol_pme(hw, 1);
7208	}
7209
7210	pci_save_state(pdev);
7211	pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7212	pci_set_power_state(pdev, pci_choose_state(pdev, state));
7213	return 0;
7214}
7215#endif
7216
7217static char pcidev_name[] = "ksz884xp";
7218
7219static const struct pci_device_id pcidev_table[] = {
7220	{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
7221		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7222	{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
7223		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7224	{ 0 }
7225};
7226
7227MODULE_DEVICE_TABLE(pci, pcidev_table);
7228
 
 
7229static struct pci_driver pci_device_driver = {
7230#ifdef CONFIG_PM
7231	.suspend	= pcidev_suspend,
7232	.resume		= pcidev_resume,
7233#endif
7234	.name		= pcidev_name,
7235	.id_table	= pcidev_table,
7236	.probe		= pcidev_init,
7237	.remove		= pcidev_exit
7238};
7239
7240module_pci_driver(pci_device_driver);
7241
7242MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7243MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7244MODULE_LICENSE("GPL");
7245
7246module_param_named(message, msg_enable, int, 0);
7247MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7248
7249module_param(macaddr, charp, 0);
7250module_param(mac1addr, charp, 0);
7251module_param(fast_aging, int, 0);
7252module_param(multi_dev, int, 0);
7253module_param(stp, int, 0);
7254MODULE_PARM_DESC(macaddr, "MAC address");
7255MODULE_PARM_DESC(mac1addr, "Second MAC address");
7256MODULE_PARM_DESC(fast_aging, "Fast aging");
7257MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7258MODULE_PARM_DESC(stp, "STP support");