Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
   4 *
   5 * Copyright (c) 2009-2010 Micrel, Inc.
   6 * 	Tristram Ha <Tristram.Ha@micrel.com>
 
 
 
 
 
 
 
 
 
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/ioport.h>
  16#include <linux/pci.h>
  17#include <linux/proc_fs.h>
  18#include <linux/mii.h>
  19#include <linux/platform_device.h>
  20#include <linux/ethtool.h>
  21#include <linux/etherdevice.h>
  22#include <linux/in.h>
  23#include <linux/ip.h>
  24#include <linux/if_vlan.h>
  25#include <linux/crc32.h>
  26#include <linux/sched.h>
  27#include <linux/slab.h>
  28#include <linux/micrel_phy.h>
  29
  30
  31/* DMA Registers */
  32
  33#define KS_DMA_TX_CTRL			0x0000
  34#define DMA_TX_ENABLE			0x00000001
  35#define DMA_TX_CRC_ENABLE		0x00000002
  36#define DMA_TX_PAD_ENABLE		0x00000004
  37#define DMA_TX_LOOPBACK			0x00000100
  38#define DMA_TX_FLOW_ENABLE		0x00000200
  39#define DMA_TX_CSUM_IP			0x00010000
  40#define DMA_TX_CSUM_TCP			0x00020000
  41#define DMA_TX_CSUM_UDP			0x00040000
  42#define DMA_TX_BURST_SIZE		0x3F000000
  43
  44#define KS_DMA_RX_CTRL			0x0004
  45#define DMA_RX_ENABLE			0x00000001
  46#define KS884X_DMA_RX_MULTICAST		0x00000002
  47#define DMA_RX_PROMISCUOUS		0x00000004
  48#define DMA_RX_ERROR			0x00000008
  49#define DMA_RX_UNICAST			0x00000010
  50#define DMA_RX_ALL_MULTICAST		0x00000020
  51#define DMA_RX_BROADCAST		0x00000040
  52#define DMA_RX_FLOW_ENABLE		0x00000200
  53#define DMA_RX_CSUM_IP			0x00010000
  54#define DMA_RX_CSUM_TCP			0x00020000
  55#define DMA_RX_CSUM_UDP			0x00040000
  56#define DMA_RX_BURST_SIZE		0x3F000000
  57
  58#define DMA_BURST_SHIFT			24
  59#define DMA_BURST_DEFAULT		8
  60
  61#define KS_DMA_TX_START			0x0008
  62#define KS_DMA_RX_START			0x000C
  63#define DMA_START			0x00000001
  64
  65#define KS_DMA_TX_ADDR			0x0010
  66#define KS_DMA_RX_ADDR			0x0014
  67
  68#define DMA_ADDR_LIST_MASK		0xFFFFFFFC
  69#define DMA_ADDR_LIST_SHIFT		2
  70
  71/* MTR0 */
  72#define KS884X_MULTICAST_0_OFFSET	0x0020
  73#define KS884X_MULTICAST_1_OFFSET	0x0021
  74#define KS884X_MULTICAST_2_OFFSET	0x0022
  75#define KS884x_MULTICAST_3_OFFSET	0x0023
  76/* MTR1 */
  77#define KS884X_MULTICAST_4_OFFSET	0x0024
  78#define KS884X_MULTICAST_5_OFFSET	0x0025
  79#define KS884X_MULTICAST_6_OFFSET	0x0026
  80#define KS884X_MULTICAST_7_OFFSET	0x0027
  81
  82/* Interrupt Registers */
  83
  84/* INTEN */
  85#define KS884X_INTERRUPTS_ENABLE	0x0028
  86/* INTST */
  87#define KS884X_INTERRUPTS_STATUS	0x002C
  88
  89#define KS884X_INT_RX_STOPPED		0x02000000
  90#define KS884X_INT_TX_STOPPED		0x04000000
  91#define KS884X_INT_RX_OVERRUN		0x08000000
  92#define KS884X_INT_TX_EMPTY		0x10000000
  93#define KS884X_INT_RX			0x20000000
  94#define KS884X_INT_TX			0x40000000
  95#define KS884X_INT_PHY			0x80000000
  96
  97#define KS884X_INT_RX_MASK		\
  98	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
  99#define KS884X_INT_TX_MASK		\
 100	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
 101#define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
 102
 103/* MAC Additional Station Address */
 104
 105/* MAAL0 */
 106#define KS_ADD_ADDR_0_LO		0x0080
 107/* MAAH0 */
 108#define KS_ADD_ADDR_0_HI		0x0084
 109/* MAAL1 */
 110#define KS_ADD_ADDR_1_LO		0x0088
 111/* MAAH1 */
 112#define KS_ADD_ADDR_1_HI		0x008C
 113/* MAAL2 */
 114#define KS_ADD_ADDR_2_LO		0x0090
 115/* MAAH2 */
 116#define KS_ADD_ADDR_2_HI		0x0094
 117/* MAAL3 */
 118#define KS_ADD_ADDR_3_LO		0x0098
 119/* MAAH3 */
 120#define KS_ADD_ADDR_3_HI		0x009C
 121/* MAAL4 */
 122#define KS_ADD_ADDR_4_LO		0x00A0
 123/* MAAH4 */
 124#define KS_ADD_ADDR_4_HI		0x00A4
 125/* MAAL5 */
 126#define KS_ADD_ADDR_5_LO		0x00A8
 127/* MAAH5 */
 128#define KS_ADD_ADDR_5_HI		0x00AC
 129/* MAAL6 */
 130#define KS_ADD_ADDR_6_LO		0x00B0
 131/* MAAH6 */
 132#define KS_ADD_ADDR_6_HI		0x00B4
 133/* MAAL7 */
 134#define KS_ADD_ADDR_7_LO		0x00B8
 135/* MAAH7 */
 136#define KS_ADD_ADDR_7_HI		0x00BC
 137/* MAAL8 */
 138#define KS_ADD_ADDR_8_LO		0x00C0
 139/* MAAH8 */
 140#define KS_ADD_ADDR_8_HI		0x00C4
 141/* MAAL9 */
 142#define KS_ADD_ADDR_9_LO		0x00C8
 143/* MAAH9 */
 144#define KS_ADD_ADDR_9_HI		0x00CC
 145/* MAAL10 */
 146#define KS_ADD_ADDR_A_LO		0x00D0
 147/* MAAH10 */
 148#define KS_ADD_ADDR_A_HI		0x00D4
 149/* MAAL11 */
 150#define KS_ADD_ADDR_B_LO		0x00D8
 151/* MAAH11 */
 152#define KS_ADD_ADDR_B_HI		0x00DC
 153/* MAAL12 */
 154#define KS_ADD_ADDR_C_LO		0x00E0
 155/* MAAH12 */
 156#define KS_ADD_ADDR_C_HI		0x00E4
 157/* MAAL13 */
 158#define KS_ADD_ADDR_D_LO		0x00E8
 159/* MAAH13 */
 160#define KS_ADD_ADDR_D_HI		0x00EC
 161/* MAAL14 */
 162#define KS_ADD_ADDR_E_LO		0x00F0
 163/* MAAH14 */
 164#define KS_ADD_ADDR_E_HI		0x00F4
 165/* MAAL15 */
 166#define KS_ADD_ADDR_F_LO		0x00F8
 167/* MAAH15 */
 168#define KS_ADD_ADDR_F_HI		0x00FC
 169
 170#define ADD_ADDR_HI_MASK		0x0000FFFF
 171#define ADD_ADDR_ENABLE			0x80000000
 172#define ADD_ADDR_INCR			8
 173
 174/* Miscellaneous Registers */
 175
 176/* MARL */
 177#define KS884X_ADDR_0_OFFSET		0x0200
 178#define KS884X_ADDR_1_OFFSET		0x0201
 179/* MARM */
 180#define KS884X_ADDR_2_OFFSET		0x0202
 181#define KS884X_ADDR_3_OFFSET		0x0203
 182/* MARH */
 183#define KS884X_ADDR_4_OFFSET		0x0204
 184#define KS884X_ADDR_5_OFFSET		0x0205
 185
 186/* OBCR */
 187#define KS884X_BUS_CTRL_OFFSET		0x0210
 188
 189#define BUS_SPEED_125_MHZ		0x0000
 190#define BUS_SPEED_62_5_MHZ		0x0001
 191#define BUS_SPEED_41_66_MHZ		0x0002
 192#define BUS_SPEED_25_MHZ		0x0003
 193
 194/* EEPCR */
 195#define KS884X_EEPROM_CTRL_OFFSET	0x0212
 196
 197#define EEPROM_CHIP_SELECT		0x0001
 198#define EEPROM_SERIAL_CLOCK		0x0002
 199#define EEPROM_DATA_OUT			0x0004
 200#define EEPROM_DATA_IN			0x0008
 201#define EEPROM_ACCESS_ENABLE		0x0010
 202
 203/* MBIR */
 204#define KS884X_MEM_INFO_OFFSET		0x0214
 205
 206#define RX_MEM_TEST_FAILED		0x0008
 207#define RX_MEM_TEST_FINISHED		0x0010
 208#define TX_MEM_TEST_FAILED		0x0800
 209#define TX_MEM_TEST_FINISHED		0x1000
 210
 211/* GCR */
 212#define KS884X_GLOBAL_CTRL_OFFSET	0x0216
 213#define GLOBAL_SOFTWARE_RESET		0x0001
 214
 215#define KS8841_POWER_MANAGE_OFFSET	0x0218
 216
 217/* WFCR */
 218#define KS8841_WOL_CTRL_OFFSET		0x021A
 219#define KS8841_WOL_MAGIC_ENABLE		0x0080
 220#define KS8841_WOL_FRAME3_ENABLE	0x0008
 221#define KS8841_WOL_FRAME2_ENABLE	0x0004
 222#define KS8841_WOL_FRAME1_ENABLE	0x0002
 223#define KS8841_WOL_FRAME0_ENABLE	0x0001
 224
 225/* WF0 */
 226#define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
 227#define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
 228#define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228
 229
 230/* IACR */
 231#define KS884X_IACR_P			0x04A0
 232#define KS884X_IACR_OFFSET		KS884X_IACR_P
 233
 234/* IADR1 */
 235#define KS884X_IADR1_P			0x04A2
 236#define KS884X_IADR2_P			0x04A4
 237#define KS884X_IADR3_P			0x04A6
 238#define KS884X_IADR4_P			0x04A8
 239#define KS884X_IADR5_P			0x04AA
 240
 241#define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
 242#define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)
 243
 244#define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
 245#define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
 246#define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
 247#define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
 248#define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
 249#define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
 250#define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
 251#define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
 252#define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P
 253
 254/* P1MBCR */
 255#define KS884X_P1MBCR_P			0x04D0
 256#define KS884X_P1MBSR_P			0x04D2
 257#define KS884X_PHY1ILR_P		0x04D4
 258#define KS884X_PHY1IHR_P		0x04D6
 259#define KS884X_P1ANAR_P			0x04D8
 260#define KS884X_P1ANLPR_P		0x04DA
 261
 262/* P2MBCR */
 263#define KS884X_P2MBCR_P			0x04E0
 264#define KS884X_P2MBSR_P			0x04E2
 265#define KS884X_PHY2ILR_P		0x04E4
 266#define KS884X_PHY2IHR_P		0x04E6
 267#define KS884X_P2ANAR_P			0x04E8
 268#define KS884X_P2ANLPR_P		0x04EA
 269
 270#define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
 271#define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)
 272
 273#define KS884X_PHY_CTRL_OFFSET		0x00
 274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 275#define KS884X_PHY_STATUS_OFFSET	0x02
 276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 277#define KS884X_PHY_ID_1_OFFSET		0x04
 278#define KS884X_PHY_ID_2_OFFSET		0x06
 279
 
 
 
 
 280#define KS884X_PHY_AUTO_NEG_OFFSET	0x08
 281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 282#define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A
 283
 
 
 
 
 
 
 
 
 
 
 
 
 284/* P1VCT */
 285#define KS884X_P1VCT_P			0x04F0
 286#define KS884X_P1PHYCTRL_P		0x04F2
 287
 288/* P2VCT */
 289#define KS884X_P2VCT_P			0x04F4
 290#define KS884X_P2PHYCTRL_P		0x04F6
 291
 292#define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
 293#define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)
 294
 295#define KS884X_PHY_LINK_MD_OFFSET	0x00
 296
 297#define PHY_START_CABLE_DIAG		0x8000
 298#define PHY_CABLE_DIAG_RESULT		0x6000
 299#define PHY_CABLE_STAT_NORMAL		0x0000
 300#define PHY_CABLE_STAT_OPEN		0x2000
 301#define PHY_CABLE_STAT_SHORT		0x4000
 302#define PHY_CABLE_STAT_FAILED		0x6000
 303#define PHY_CABLE_10M_SHORT		0x1000
 304#define PHY_CABLE_FAULT_COUNTER		0x01FF
 305
 306#define KS884X_PHY_PHY_CTRL_OFFSET	0x02
 307
 308#define PHY_STAT_REVERSED_POLARITY	0x0020
 309#define PHY_STAT_MDIX			0x0010
 310#define PHY_FORCE_LINK			0x0008
 311#define PHY_POWER_SAVING_DISABLE	0x0004
 312#define PHY_REMOTE_LOOPBACK		0x0002
 313
 314/* SIDER */
 315#define KS884X_SIDER_P			0x0400
 316#define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
 317#define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)
 318
 319#define REG_FAMILY_ID			0x88
 320
 321#define REG_CHIP_ID_41			0x8810
 322#define REG_CHIP_ID_42			0x8800
 323
 324#define KS884X_CHIP_ID_MASK_41		0xFF10
 325#define KS884X_CHIP_ID_MASK		0xFFF0
 326#define KS884X_CHIP_ID_SHIFT		4
 327#define KS884X_REVISION_MASK		0x000E
 328#define KS884X_REVISION_SHIFT		1
 329#define KS8842_START			0x0001
 330
 331#define CHIP_IP_41_M			0x8810
 332#define CHIP_IP_42_M			0x8800
 333#define CHIP_IP_61_M			0x8890
 334#define CHIP_IP_62_M			0x8880
 335
 336#define CHIP_IP_41_P			0x8850
 337#define CHIP_IP_42_P			0x8840
 338#define CHIP_IP_61_P			0x88D0
 339#define CHIP_IP_62_P			0x88C0
 340
 341/* SGCR1 */
 342#define KS8842_SGCR1_P			0x0402
 343#define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P
 344
 345#define SWITCH_PASS_ALL			0x8000
 346#define SWITCH_TX_FLOW_CTRL		0x2000
 347#define SWITCH_RX_FLOW_CTRL		0x1000
 348#define SWITCH_CHECK_LENGTH		0x0800
 349#define SWITCH_AGING_ENABLE		0x0400
 350#define SWITCH_FAST_AGING		0x0200
 351#define SWITCH_AGGR_BACKOFF		0x0100
 352#define SWITCH_PASS_PAUSE		0x0008
 353#define SWITCH_LINK_AUTO_AGING		0x0001
 354
 355/* SGCR2 */
 356#define KS8842_SGCR2_P			0x0404
 357#define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P
 358
 359#define SWITCH_VLAN_ENABLE		0x8000
 360#define SWITCH_IGMP_SNOOP		0x4000
 361#define IPV6_MLD_SNOOP_ENABLE		0x2000
 362#define IPV6_MLD_SNOOP_OPTION		0x1000
 363#define PRIORITY_SCHEME_SELECT		0x0800
 364#define SWITCH_MIRROR_RX_TX		0x0100
 365#define UNICAST_VLAN_BOUNDARY		0x0080
 366#define MULTICAST_STORM_DISABLE		0x0040
 367#define SWITCH_BACK_PRESSURE		0x0020
 368#define FAIR_FLOW_CTRL			0x0010
 369#define NO_EXC_COLLISION_DROP		0x0008
 370#define SWITCH_HUGE_PACKET		0x0004
 371#define SWITCH_LEGAL_PACKET		0x0002
 372#define SWITCH_BUF_RESERVE		0x0001
 373
 374/* SGCR3 */
 375#define KS8842_SGCR3_P			0x0406
 376#define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P
 377
 378#define BROADCAST_STORM_RATE_LO		0xFF00
 379#define SWITCH_REPEATER			0x0080
 380#define SWITCH_HALF_DUPLEX		0x0040
 381#define SWITCH_FLOW_CTRL		0x0020
 382#define SWITCH_10_MBIT			0x0010
 383#define SWITCH_REPLACE_NULL_VID		0x0008
 384#define BROADCAST_STORM_RATE_HI		0x0007
 385
 386#define BROADCAST_STORM_RATE		0x07FF
 387
 388/* SGCR4 */
 389#define KS8842_SGCR4_P			0x0408
 390
 391/* SGCR5 */
 392#define KS8842_SGCR5_P			0x040A
 393#define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P
 394
 395#define LED_MODE			0x8200
 396#define LED_SPEED_DUPLEX_ACT		0x0000
 397#define LED_SPEED_DUPLEX_LINK_ACT	0x8000
 398#define LED_DUPLEX_10_100		0x0200
 399
 400/* SGCR6 */
 401#define KS8842_SGCR6_P			0x0410
 402#define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P
 403
 404#define KS8842_PRIORITY_MASK		3
 405#define KS8842_PRIORITY_SHIFT		2
 406
 407/* SGCR7 */
 408#define KS8842_SGCR7_P			0x0412
 409#define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P
 410
 411#define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
 412#define SWITCH_UNK_DEF_PORT_3		0x0004
 413#define SWITCH_UNK_DEF_PORT_2		0x0002
 414#define SWITCH_UNK_DEF_PORT_1		0x0001
 415
 416/* MACAR1 */
 417#define KS8842_MACAR1_P			0x0470
 418#define KS8842_MACAR2_P			0x0472
 419#define KS8842_MACAR3_P			0x0474
 420#define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
 421#define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
 422#define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
 423#define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
 424#define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
 425#define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)
 426
 427/* TOSR1 */
 428#define KS8842_TOSR1_P			0x0480
 429#define KS8842_TOSR2_P			0x0482
 430#define KS8842_TOSR3_P			0x0484
 431#define KS8842_TOSR4_P			0x0486
 432#define KS8842_TOSR5_P			0x0488
 433#define KS8842_TOSR6_P			0x048A
 434#define KS8842_TOSR7_P			0x0490
 435#define KS8842_TOSR8_P			0x0492
 436#define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
 437#define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
 438#define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
 439#define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
 440#define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
 441#define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P
 442
 443#define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
 444#define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P
 445
 446/* P1CR1 */
 447#define KS8842_P1CR1_P			0x0500
 448#define KS8842_P1CR2_P			0x0502
 449#define KS8842_P1VIDR_P			0x0504
 450#define KS8842_P1CR3_P			0x0506
 451#define KS8842_P1IRCR_P			0x0508
 452#define KS8842_P1ERCR_P			0x050A
 453#define KS884X_P1SCSLMD_P		0x0510
 454#define KS884X_P1CR4_P			0x0512
 455#define KS884X_P1SR_P			0x0514
 456
 457/* P2CR1 */
 458#define KS8842_P2CR1_P			0x0520
 459#define KS8842_P2CR2_P			0x0522
 460#define KS8842_P2VIDR_P			0x0524
 461#define KS8842_P2CR3_P			0x0526
 462#define KS8842_P2IRCR_P			0x0528
 463#define KS8842_P2ERCR_P			0x052A
 464#define KS884X_P2SCSLMD_P		0x0530
 465#define KS884X_P2CR4_P			0x0532
 466#define KS884X_P2SR_P			0x0534
 467
 468/* P3CR1 */
 469#define KS8842_P3CR1_P			0x0540
 470#define KS8842_P3CR2_P			0x0542
 471#define KS8842_P3VIDR_P			0x0544
 472#define KS8842_P3CR3_P			0x0546
 473#define KS8842_P3IRCR_P			0x0548
 474#define KS8842_P3ERCR_P			0x054A
 475
 476#define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
 477#define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
 478#define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P
 479
 480#define PORT_CTRL_ADDR(port, addr)		\
 481	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
 482		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
 483
 484#define KS8842_PORT_CTRL_1_OFFSET	0x00
 485
 486#define PORT_BROADCAST_STORM		0x0080
 487#define PORT_DIFFSERV_ENABLE		0x0040
 488#define PORT_802_1P_ENABLE		0x0020
 489#define PORT_BASED_PRIORITY_MASK	0x0018
 490#define PORT_BASED_PRIORITY_BASE	0x0003
 491#define PORT_BASED_PRIORITY_SHIFT	3
 492#define PORT_BASED_PRIORITY_0		0x0000
 493#define PORT_BASED_PRIORITY_1		0x0008
 494#define PORT_BASED_PRIORITY_2		0x0010
 495#define PORT_BASED_PRIORITY_3		0x0018
 496#define PORT_INSERT_TAG			0x0004
 497#define PORT_REMOVE_TAG			0x0002
 498#define PORT_PRIO_QUEUE_ENABLE		0x0001
 499
 500#define KS8842_PORT_CTRL_2_OFFSET	0x02
 501
 502#define PORT_INGRESS_VLAN_FILTER	0x4000
 503#define PORT_DISCARD_NON_VID		0x2000
 504#define PORT_FORCE_FLOW_CTRL		0x1000
 505#define PORT_BACK_PRESSURE		0x0800
 506#define PORT_TX_ENABLE			0x0400
 507#define PORT_RX_ENABLE			0x0200
 508#define PORT_LEARN_DISABLE		0x0100
 509#define PORT_MIRROR_SNIFFER		0x0080
 510#define PORT_MIRROR_RX			0x0040
 511#define PORT_MIRROR_TX			0x0020
 512#define PORT_USER_PRIORITY_CEILING	0x0008
 513#define PORT_VLAN_MEMBERSHIP		0x0007
 514
 515#define KS8842_PORT_CTRL_VID_OFFSET	0x04
 516
 517#define PORT_DEFAULT_VID		0x0001
 518
 519#define KS8842_PORT_CTRL_3_OFFSET	0x06
 520
 521#define PORT_INGRESS_LIMIT_MODE		0x000C
 522#define PORT_INGRESS_ALL		0x0000
 523#define PORT_INGRESS_UNICAST		0x0004
 524#define PORT_INGRESS_MULTICAST		0x0008
 525#define PORT_INGRESS_BROADCAST		0x000C
 526#define PORT_COUNT_IFG			0x0002
 527#define PORT_COUNT_PREAMBLE		0x0001
 528
 529#define KS8842_PORT_IN_RATE_OFFSET	0x08
 530#define KS8842_PORT_OUT_RATE_OFFSET	0x0A
 531
 532#define PORT_PRIORITY_RATE		0x0F
 533#define PORT_PRIORITY_RATE_SHIFT	4
 534
 535#define KS884X_PORT_LINK_MD		0x10
 536
 537#define PORT_CABLE_10M_SHORT		0x8000
 538#define PORT_CABLE_DIAG_RESULT		0x6000
 539#define PORT_CABLE_STAT_NORMAL		0x0000
 540#define PORT_CABLE_STAT_OPEN		0x2000
 541#define PORT_CABLE_STAT_SHORT		0x4000
 542#define PORT_CABLE_STAT_FAILED		0x6000
 543#define PORT_START_CABLE_DIAG		0x1000
 544#define PORT_FORCE_LINK			0x0800
 545#define PORT_POWER_SAVING_DISABLE	0x0400
 546#define PORT_PHY_REMOTE_LOOPBACK	0x0200
 547#define PORT_CABLE_FAULT_COUNTER	0x01FF
 548
 549#define KS884X_PORT_CTRL_4_OFFSET	0x12
 550
 551#define PORT_LED_OFF			0x8000
 552#define PORT_TX_DISABLE			0x4000
 553#define PORT_AUTO_NEG_RESTART		0x2000
 554#define PORT_REMOTE_FAULT_DISABLE	0x1000
 555#define PORT_POWER_DOWN			0x0800
 556#define PORT_AUTO_MDIX_DISABLE		0x0400
 557#define PORT_FORCE_MDIX			0x0200
 558#define PORT_LOOPBACK			0x0100
 559#define PORT_AUTO_NEG_ENABLE		0x0080
 560#define PORT_FORCE_100_MBIT		0x0040
 561#define PORT_FORCE_FULL_DUPLEX		0x0020
 562#define PORT_AUTO_NEG_SYM_PAUSE		0x0010
 563#define PORT_AUTO_NEG_100BTX_FD		0x0008
 564#define PORT_AUTO_NEG_100BTX		0x0004
 565#define PORT_AUTO_NEG_10BT_FD		0x0002
 566#define PORT_AUTO_NEG_10BT		0x0001
 567
 568#define KS884X_PORT_STATUS_OFFSET	0x14
 569
 570#define PORT_HP_MDIX			0x8000
 571#define PORT_REVERSED_POLARITY		0x2000
 572#define PORT_RX_FLOW_CTRL		0x0800
 573#define PORT_TX_FLOW_CTRL		0x1000
 574#define PORT_STATUS_SPEED_100MBIT	0x0400
 575#define PORT_STATUS_FULL_DUPLEX		0x0200
 576#define PORT_REMOTE_FAULT		0x0100
 577#define PORT_MDIX_STATUS		0x0080
 578#define PORT_AUTO_NEG_COMPLETE		0x0040
 579#define PORT_STATUS_LINK_GOOD		0x0020
 580#define PORT_REMOTE_SYM_PAUSE		0x0010
 581#define PORT_REMOTE_100BTX_FD		0x0008
 582#define PORT_REMOTE_100BTX		0x0004
 583#define PORT_REMOTE_10BT_FD		0x0002
 584#define PORT_REMOTE_10BT		0x0001
 585
 586/*
 587#define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 588#define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
 589#define STATIC_MAC_TABLE_VALID		00-00080000-00000000
 590#define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
 591#define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
 592#define STATIC_MAC_TABLE_FID		00-03C00000-00000000
 593*/
 594
 595#define STATIC_MAC_TABLE_ADDR		0x0000FFFF
 596#define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
 597#define STATIC_MAC_TABLE_VALID		0x00080000
 598#define STATIC_MAC_TABLE_OVERRIDE	0x00100000
 599#define STATIC_MAC_TABLE_USE_FID	0x00200000
 600#define STATIC_MAC_TABLE_FID		0x03C00000
 601
 602#define STATIC_MAC_FWD_PORTS_SHIFT	16
 603#define STATIC_MAC_FID_SHIFT		22
 604
 605/*
 606#define VLAN_TABLE_VID			00-00000000-00000FFF
 607#define VLAN_TABLE_FID			00-00000000-0000F000
 608#define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
 609#define VLAN_TABLE_VALID		00-00000000-00080000
 610*/
 611
 612#define VLAN_TABLE_VID			0x00000FFF
 613#define VLAN_TABLE_FID			0x0000F000
 614#define VLAN_TABLE_MEMBERSHIP		0x00070000
 615#define VLAN_TABLE_VALID		0x00080000
 616
 617#define VLAN_TABLE_FID_SHIFT		12
 618#define VLAN_TABLE_MEMBERSHIP_SHIFT	16
 619
 620/*
 621#define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 622#define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
 623#define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
 624#define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
 625#define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
 626#define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
 627#define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
 628#define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
 629*/
 630
 631#define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
 632#define DYNAMIC_MAC_TABLE_FID		0x000F0000
 633#define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
 634#define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
 635#define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000
 636
 637#define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
 638#define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
 639#define DYNAMIC_MAC_TABLE_RESERVED	0x78
 640#define DYNAMIC_MAC_TABLE_NOT_READY	0x80
 641
 642#define DYNAMIC_MAC_FID_SHIFT		16
 643#define DYNAMIC_MAC_SRC_PORT_SHIFT	20
 644#define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
 645#define DYNAMIC_MAC_ENTRIES_SHIFT	24
 646#define DYNAMIC_MAC_ENTRIES_H_SHIFT	8
 647
 648/*
 649#define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
 650#define MIB_COUNTER_VALID		00-00000000-40000000
 651#define MIB_COUNTER_OVERFLOW		00-00000000-80000000
 652*/
 653
 654#define MIB_COUNTER_VALUE		0x3FFFFFFF
 655#define MIB_COUNTER_VALID		0x40000000
 656#define MIB_COUNTER_OVERFLOW		0x80000000
 657
 658#define MIB_PACKET_DROPPED		0x0000FFFF
 659
 660#define KS_MIB_PACKET_DROPPED_TX_0	0x100
 661#define KS_MIB_PACKET_DROPPED_TX_1	0x101
 662#define KS_MIB_PACKET_DROPPED_TX	0x102
 663#define KS_MIB_PACKET_DROPPED_RX_0	0x103
 664#define KS_MIB_PACKET_DROPPED_RX_1	0x104
 665#define KS_MIB_PACKET_DROPPED_RX	0x105
 666
 667/* Change default LED mode. */
 668#define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT
 669
 670#define MAC_ADDR_ORDER(i)		(ETH_ALEN - 1 - (i))
 671
 672#define MAX_ETHERNET_BODY_SIZE		1500
 673#define ETHERNET_HEADER_SIZE		(14 + VLAN_HLEN)
 674
 675#define MAX_ETHERNET_PACKET_SIZE	\
 676	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
 677
 678#define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
 679#define MAX_RX_BUF_SIZE			(1912 + 4)
 680
 681#define ADDITIONAL_ENTRIES		16
 682#define MAX_MULTICAST_LIST		32
 683
 684#define HW_MULTICAST_SIZE		8
 685
 686#define HW_TO_DEV_PORT(port)		(port - 1)
 687
 688enum {
 689	media_connected,
 690	media_disconnected
 691};
 692
 693enum {
 694	OID_COUNTER_UNKOWN,
 695
 696	OID_COUNTER_FIRST,
 697
 698	/* total transmit errors */
 699	OID_COUNTER_XMIT_ERROR,
 700
 701	/* total receive errors */
 702	OID_COUNTER_RCV_ERROR,
 703
 704	OID_COUNTER_LAST
 705};
 706
 707/*
 708 * Hardware descriptor definitions
 709 */
 710
 711#define DESC_ALIGNMENT			16
 712#define BUFFER_ALIGNMENT		8
 713
 714#define NUM_OF_RX_DESC			64
 715#define NUM_OF_TX_DESC			64
 716
 717#define KS_DESC_RX_FRAME_LEN		0x000007FF
 718#define KS_DESC_RX_FRAME_TYPE		0x00008000
 719#define KS_DESC_RX_ERROR_CRC		0x00010000
 720#define KS_DESC_RX_ERROR_RUNT		0x00020000
 721#define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
 722#define KS_DESC_RX_ERROR_PHY		0x00080000
 723#define KS884X_DESC_RX_PORT_MASK	0x00300000
 724#define KS_DESC_RX_MULTICAST		0x01000000
 725#define KS_DESC_RX_ERROR		0x02000000
 726#define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
 727#define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
 728#define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
 729#define KS_DESC_RX_LAST			0x20000000
 730#define KS_DESC_RX_FIRST		0x40000000
 731#define KS_DESC_RX_ERROR_COND		\
 732	(KS_DESC_RX_ERROR_CRC |		\
 733	KS_DESC_RX_ERROR_RUNT |		\
 734	KS_DESC_RX_ERROR_PHY |		\
 735	KS_DESC_RX_ERROR_TOO_LONG)
 736
 737#define KS_DESC_HW_OWNED		0x80000000
 738
 739#define KS_DESC_BUF_SIZE		0x000007FF
 740#define KS884X_DESC_TX_PORT_MASK	0x00300000
 741#define KS_DESC_END_OF_RING		0x02000000
 742#define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
 743#define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
 744#define KS_DESC_TX_CSUM_GEN_IP		0x10000000
 745#define KS_DESC_TX_LAST			0x20000000
 746#define KS_DESC_TX_FIRST		0x40000000
 747#define KS_DESC_TX_INTERRUPT		0x80000000
 748
 749#define KS_DESC_PORT_SHIFT		20
 750
 751#define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)
 752
 753#define KS_DESC_TX_MASK			\
 754	(KS_DESC_TX_INTERRUPT |		\
 755	KS_DESC_TX_FIRST |		\
 756	KS_DESC_TX_LAST |		\
 757	KS_DESC_TX_CSUM_GEN_IP |	\
 758	KS_DESC_TX_CSUM_GEN_TCP |	\
 759	KS_DESC_TX_CSUM_GEN_UDP |	\
 760	KS_DESC_BUF_SIZE)
 761
 762struct ksz_desc_rx_stat {
 763#ifdef __BIG_ENDIAN_BITFIELD
 764	u32 hw_owned:1;
 765	u32 first_desc:1;
 766	u32 last_desc:1;
 767	u32 csum_err_ip:1;
 768	u32 csum_err_tcp:1;
 769	u32 csum_err_udp:1;
 770	u32 error:1;
 771	u32 multicast:1;
 772	u32 src_port:4;
 773	u32 err_phy:1;
 774	u32 err_too_long:1;
 775	u32 err_runt:1;
 776	u32 err_crc:1;
 777	u32 frame_type:1;
 778	u32 reserved1:4;
 779	u32 frame_len:11;
 780#else
 781	u32 frame_len:11;
 782	u32 reserved1:4;
 783	u32 frame_type:1;
 784	u32 err_crc:1;
 785	u32 err_runt:1;
 786	u32 err_too_long:1;
 787	u32 err_phy:1;
 788	u32 src_port:4;
 789	u32 multicast:1;
 790	u32 error:1;
 791	u32 csum_err_udp:1;
 792	u32 csum_err_tcp:1;
 793	u32 csum_err_ip:1;
 794	u32 last_desc:1;
 795	u32 first_desc:1;
 796	u32 hw_owned:1;
 797#endif
 798};
 799
 800struct ksz_desc_tx_stat {
 801#ifdef __BIG_ENDIAN_BITFIELD
 802	u32 hw_owned:1;
 803	u32 reserved1:31;
 804#else
 805	u32 reserved1:31;
 806	u32 hw_owned:1;
 807#endif
 808};
 809
 810struct ksz_desc_rx_buf {
 811#ifdef __BIG_ENDIAN_BITFIELD
 812	u32 reserved4:6;
 813	u32 end_of_ring:1;
 814	u32 reserved3:14;
 815	u32 buf_size:11;
 816#else
 817	u32 buf_size:11;
 818	u32 reserved3:14;
 819	u32 end_of_ring:1;
 820	u32 reserved4:6;
 821#endif
 822};
 823
 824struct ksz_desc_tx_buf {
 825#ifdef __BIG_ENDIAN_BITFIELD
 826	u32 intr:1;
 827	u32 first_seg:1;
 828	u32 last_seg:1;
 829	u32 csum_gen_ip:1;
 830	u32 csum_gen_tcp:1;
 831	u32 csum_gen_udp:1;
 832	u32 end_of_ring:1;
 833	u32 reserved4:1;
 834	u32 dest_port:4;
 835	u32 reserved3:9;
 836	u32 buf_size:11;
 837#else
 838	u32 buf_size:11;
 839	u32 reserved3:9;
 840	u32 dest_port:4;
 841	u32 reserved4:1;
 842	u32 end_of_ring:1;
 843	u32 csum_gen_udp:1;
 844	u32 csum_gen_tcp:1;
 845	u32 csum_gen_ip:1;
 846	u32 last_seg:1;
 847	u32 first_seg:1;
 848	u32 intr:1;
 849#endif
 850};
 851
 852union desc_stat {
 853	struct ksz_desc_rx_stat rx;
 854	struct ksz_desc_tx_stat tx;
 855	u32 data;
 856};
 857
 858union desc_buf {
 859	struct ksz_desc_rx_buf rx;
 860	struct ksz_desc_tx_buf tx;
 861	u32 data;
 862};
 863
 864/**
 865 * struct ksz_hw_desc - Hardware descriptor data structure
 866 * @ctrl:	Descriptor control value.
 867 * @buf:	Descriptor buffer value.
 868 * @addr:	Physical address of memory buffer.
 869 * @next:	Pointer to next hardware descriptor.
 870 */
 871struct ksz_hw_desc {
 872	union desc_stat ctrl;
 873	union desc_buf buf;
 874	u32 addr;
 875	u32 next;
 876};
 877
 878/**
 879 * struct ksz_sw_desc - Software descriptor data structure
 880 * @ctrl:	Descriptor control value.
 881 * @buf:	Descriptor buffer value.
 882 * @buf_size:	Current buffers size value in hardware descriptor.
 883 */
 884struct ksz_sw_desc {
 885	union desc_stat ctrl;
 886	union desc_buf buf;
 887	u32 buf_size;
 888};
 889
 890/**
 891 * struct ksz_dma_buf - OS dependent DMA buffer data structure
 892 * @skb:	Associated socket buffer.
 893 * @dma:	Associated physical DMA address.
 894 * @len:	Actual len used.
 895 */
 896struct ksz_dma_buf {
 897	struct sk_buff *skb;
 898	dma_addr_t dma;
 899	int len;
 900};
 901
 902/**
 903 * struct ksz_desc - Descriptor structure
 904 * @phw:	Hardware descriptor pointer to uncached physical memory.
 905 * @sw:		Cached memory to hold hardware descriptor values for
 906 * 		manipulation.
 907 * @dma_buf:	Operating system dependent data structure to hold physical
 908 * 		memory buffer allocation information.
 909 */
 910struct ksz_desc {
 911	struct ksz_hw_desc *phw;
 912	struct ksz_sw_desc sw;
 913	struct ksz_dma_buf dma_buf;
 914};
 915
 916#define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
 917
 918/**
 919 * struct ksz_desc_info - Descriptor information data structure
 920 * @ring:	First descriptor in the ring.
 921 * @cur:	Current descriptor being manipulated.
 922 * @ring_virt:	First hardware descriptor in the ring.
 923 * @ring_phys:	The physical address of the first descriptor of the ring.
 924 * @size:	Size of hardware descriptor.
 925 * @alloc:	Number of descriptors allocated.
 926 * @avail:	Number of descriptors available for use.
 927 * @last:	Index for last descriptor released to hardware.
 928 * @next:	Index for next descriptor available for use.
 929 * @mask:	Mask for index wrapping.
 930 */
 931struct ksz_desc_info {
 932	struct ksz_desc *ring;
 933	struct ksz_desc *cur;
 934	struct ksz_hw_desc *ring_virt;
 935	u32 ring_phys;
 936	int size;
 937	int alloc;
 938	int avail;
 939	int last;
 940	int next;
 941	int mask;
 942};
 943
 944/*
 945 * KSZ8842 switch definitions
 946 */
 947
 948enum {
 949	TABLE_STATIC_MAC = 0,
 950	TABLE_VLAN,
 951	TABLE_DYNAMIC_MAC,
 952	TABLE_MIB
 953};
 954
 955#define LEARNED_MAC_TABLE_ENTRIES	1024
 956#define STATIC_MAC_TABLE_ENTRIES	8
 957
 958/**
 959 * struct ksz_mac_table - Static MAC table data structure
 960 * @mac_addr:	MAC address to filter.
 961 * @vid:	VID value.
 962 * @fid:	FID value.
 963 * @ports:	Port membership.
 964 * @override:	Override setting.
 965 * @use_fid:	FID use setting.
 966 * @valid:	Valid setting indicating the entry is being used.
 967 */
 968struct ksz_mac_table {
 969	u8 mac_addr[ETH_ALEN];
 970	u16 vid;
 971	u8 fid;
 972	u8 ports;
 973	u8 override:1;
 974	u8 use_fid:1;
 975	u8 valid:1;
 976};
 977
 978#define VLAN_TABLE_ENTRIES		16
 979
 980/**
 981 * struct ksz_vlan_table - VLAN table data structure
 982 * @vid:	VID value.
 983 * @fid:	FID value.
 984 * @member:	Port membership.
 985 */
 986struct ksz_vlan_table {
 987	u16 vid;
 988	u8 fid;
 989	u8 member;
 990};
 991
 992#define DIFFSERV_ENTRIES		64
 993#define PRIO_802_1P_ENTRIES		8
 994#define PRIO_QUEUES			4
 995
 996#define SWITCH_PORT_NUM			2
 997#define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
 998#define HOST_MASK			(1 << SWITCH_PORT_NUM)
 999#define PORT_MASK			7
1000
1001#define MAIN_PORT			0
1002#define OTHER_PORT			1
1003#define HOST_PORT			SWITCH_PORT_NUM
1004
1005#define PORT_COUNTER_NUM		0x20
1006#define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)
1007
1008#define MIB_COUNTER_RX_LO_PRIORITY	0x00
1009#define MIB_COUNTER_RX_HI_PRIORITY	0x01
1010#define MIB_COUNTER_RX_UNDERSIZE	0x02
1011#define MIB_COUNTER_RX_FRAGMENT		0x03
1012#define MIB_COUNTER_RX_OVERSIZE		0x04
1013#define MIB_COUNTER_RX_JABBER		0x05
1014#define MIB_COUNTER_RX_SYMBOL_ERR	0x06
1015#define MIB_COUNTER_RX_CRC_ERR		0x07
1016#define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
1017#define MIB_COUNTER_RX_CTRL_8808	0x09
1018#define MIB_COUNTER_RX_PAUSE		0x0A
1019#define MIB_COUNTER_RX_BROADCAST	0x0B
1020#define MIB_COUNTER_RX_MULTICAST	0x0C
1021#define MIB_COUNTER_RX_UNICAST		0x0D
1022#define MIB_COUNTER_RX_OCTET_64		0x0E
1023#define MIB_COUNTER_RX_OCTET_65_127	0x0F
1024#define MIB_COUNTER_RX_OCTET_128_255	0x10
1025#define MIB_COUNTER_RX_OCTET_256_511	0x11
1026#define MIB_COUNTER_RX_OCTET_512_1023	0x12
1027#define MIB_COUNTER_RX_OCTET_1024_1522	0x13
1028#define MIB_COUNTER_TX_LO_PRIORITY	0x14
1029#define MIB_COUNTER_TX_HI_PRIORITY	0x15
1030#define MIB_COUNTER_TX_LATE_COLLISION	0x16
1031#define MIB_COUNTER_TX_PAUSE		0x17
1032#define MIB_COUNTER_TX_BROADCAST	0x18
1033#define MIB_COUNTER_TX_MULTICAST	0x19
1034#define MIB_COUNTER_TX_UNICAST		0x1A
1035#define MIB_COUNTER_TX_DEFERRED		0x1B
1036#define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
1037#define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
1038#define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
1039#define MIB_COUNTER_TX_MULTI_COLLISION	0x1F
1040
1041#define MIB_COUNTER_RX_DROPPED_PACKET	0x20
1042#define MIB_COUNTER_TX_DROPPED_PACKET	0x21
1043
1044/**
1045 * struct ksz_port_mib - Port MIB data structure
1046 * @cnt_ptr:	Current pointer to MIB counter index.
1047 * @link_down:	Indication the link has just gone down.
1048 * @state:	Connection status of the port.
1049 * @mib_start:	The starting counter index.  Some ports do not start at 0.
1050 * @counter:	64-bit MIB counter value.
1051 * @dropped:	Temporary buffer to remember last read packet dropped values.
1052 *
1053 * MIB counters needs to be read periodically so that counters do not get
1054 * overflowed and give incorrect values.  A right balance is needed to
1055 * satisfy this condition and not waste too much CPU time.
1056 *
1057 * It is pointless to read MIB counters when the port is disconnected.  The
1058 * @state provides the connection status so that MIB counters are read only
1059 * when the port is connected.  The @link_down indicates the port is just
1060 * disconnected so that all MIB counters are read one last time to update the
1061 * information.
1062 */
1063struct ksz_port_mib {
1064	u8 cnt_ptr;
1065	u8 link_down;
1066	u8 state;
1067	u8 mib_start;
1068
1069	u64 counter[TOTAL_PORT_COUNTER_NUM];
1070	u32 dropped[2];
1071};
1072
1073/**
1074 * struct ksz_port_cfg - Port configuration data structure
1075 * @vid:	VID value.
1076 * @member:	Port membership.
1077 * @port_prio:	Port priority.
1078 * @rx_rate:	Receive priority rate.
1079 * @tx_rate:	Transmit priority rate.
1080 * @stp_state:	Current Spanning Tree Protocol state.
1081 */
1082struct ksz_port_cfg {
1083	u16 vid;
1084	u8 member;
1085	u8 port_prio;
1086	u32 rx_rate[PRIO_QUEUES];
1087	u32 tx_rate[PRIO_QUEUES];
1088	int stp_state;
1089};
1090
1091/**
1092 * struct ksz_switch - KSZ8842 switch data structure
1093 * @mac_table:	MAC table entries information.
1094 * @vlan_table:	VLAN table entries information.
1095 * @port_cfg:	Port configuration information.
1096 * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
1097 * 		(bit7 ~ bit2) field.
1098 * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
1099 * 		Tag priority field.
1100 * @br_addr:	Bridge address.  Used for STP.
1101 * @other_addr:	Other MAC address.  Used for multiple network device mode.
1102 * @broad_per:	Broadcast storm percentage.
1103 * @member:	Current port membership.  Used for STP.
1104 */
1105struct ksz_switch {
1106	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1107	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1108	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1109
1110	u8 diffserv[DIFFSERV_ENTRIES];
1111	u8 p_802_1p[PRIO_802_1P_ENTRIES];
1112
1113	u8 br_addr[ETH_ALEN];
1114	u8 other_addr[ETH_ALEN];
1115
1116	u8 broad_per;
1117	u8 member;
1118};
1119
1120#define TX_RATE_UNIT			10000
1121
1122/**
1123 * struct ksz_port_info - Port information data structure
1124 * @state:	Connection status of the port.
1125 * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
1126 * @duplex:	Duplex mode.
1127 * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
1128 * @partner:	Auto-negotiation partner setting.  Used to determine link.
1129 * @port_id:	Port index to access actual hardware register.
1130 * @pdev:	Pointer to OS dependent network device.
1131 */
1132struct ksz_port_info {
1133	uint state;
1134	uint tx_rate;
1135	u8 duplex;
1136	u8 advertised;
1137	u8 partner;
1138	u8 port_id;
1139	void *pdev;
1140};
1141
1142#define MAX_TX_HELD_SIZE		52000
1143
1144/* Hardware features and bug fixes. */
1145#define LINK_INT_WORKING		(1 << 0)
1146#define SMALL_PACKET_TX_BUG		(1 << 1)
1147#define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
1148#define RX_HUGE_FRAME			(1 << 4)
1149#define STP_SUPPORT			(1 << 8)
1150
1151/* Software overrides. */
1152#define PAUSE_FLOW_CTRL			(1 << 0)
1153#define FAST_AGING			(1 << 1)
1154
1155/**
1156 * struct ksz_hw - KSZ884X hardware data structure
1157 * @io:			Virtual address assigned.
1158 * @ksz_switch:		Pointer to KSZ8842 switch.
1159 * @port_info:		Port information.
1160 * @port_mib:		Port MIB information.
1161 * @dev_count:		Number of network devices this hardware supports.
1162 * @dst_ports:		Destination ports in switch for transmission.
1163 * @id:			Hardware ID.  Used for display only.
1164 * @mib_cnt:		Number of MIB counters this hardware has.
1165 * @mib_port_cnt:	Number of ports with MIB counters.
1166 * @tx_cfg:		Cached transmit control settings.
1167 * @rx_cfg:		Cached receive control settings.
1168 * @intr_mask:		Current interrupt mask.
1169 * @intr_set:		Current interrup set.
1170 * @intr_blocked:	Interrupt blocked.
1171 * @rx_desc_info:	Receive descriptor information.
1172 * @tx_desc_info:	Transmit descriptor information.
1173 * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
1174 * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
1175 * @tx_size:		Transmit data size.  Used for TX optimization.
1176 * 			The maximum is defined by MAX_TX_HELD_SIZE.
1177 * @perm_addr:		Permanent MAC address.
1178 * @override_addr:	Overridden MAC address.
1179 * @address:		Additional MAC address entries.
1180 * @addr_list_size:	Additional MAC address list size.
1181 * @mac_override:	Indication of MAC address overridden.
1182 * @promiscuous:	Counter to keep track of promiscuous mode set.
1183 * @all_multi:		Counter to keep track of all multicast mode set.
1184 * @multi_list:		Multicast address entries.
1185 * @multi_bits:		Cached multicast hash table settings.
1186 * @multi_list_size:	Multicast address list size.
1187 * @enabled:		Indication of hardware enabled.
1188 * @rx_stop:		Indication of receive process stop.
1189 * @reserved2:		none
1190 * @features:		Hardware features to enable.
1191 * @overrides:		Hardware features to override.
1192 * @parent:		Pointer to parent, network device private structure.
1193 */
1194struct ksz_hw {
1195	void __iomem *io;
1196
1197	struct ksz_switch *ksz_switch;
1198	struct ksz_port_info port_info[SWITCH_PORT_NUM];
1199	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1200	int dev_count;
1201	int dst_ports;
1202	int id;
1203	int mib_cnt;
1204	int mib_port_cnt;
1205
1206	u32 tx_cfg;
1207	u32 rx_cfg;
1208	u32 intr_mask;
1209	u32 intr_set;
1210	uint intr_blocked;
1211
1212	struct ksz_desc_info rx_desc_info;
1213	struct ksz_desc_info tx_desc_info;
1214
1215	int tx_int_cnt;
1216	int tx_int_mask;
1217	int tx_size;
1218
1219	u8 perm_addr[ETH_ALEN];
1220	u8 override_addr[ETH_ALEN];
1221	u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1222	u8 addr_list_size;
1223	u8 mac_override;
1224	u8 promiscuous;
1225	u8 all_multi;
1226	u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1227	u8 multi_bits[HW_MULTICAST_SIZE];
1228	u8 multi_list_size;
1229
1230	u8 enabled;
1231	u8 rx_stop;
1232	u8 reserved2[1];
1233
1234	uint features;
1235	uint overrides;
1236
1237	void *parent;
1238};
1239
1240enum {
1241	PHY_NO_FLOW_CTRL,
1242	PHY_FLOW_CTRL,
1243	PHY_TX_ONLY,
1244	PHY_RX_ONLY
1245};
1246
1247/**
1248 * struct ksz_port - Virtual port data structure
1249 * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
1250 * 			duplex, and 0 for auto, which normally results in full
1251 * 			duplex.
1252 * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1253 * 			0 for auto, which normally results in 100 Mbit.
1254 * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
1255 * 			force.
1256 * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1257 * 			control, and PHY_FLOW_CTRL for flow control.
1258 * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1259 * 			Mbit PHY.
1260 * @first_port:		Index of first port this port supports.
1261 * @mib_port_cnt:	Number of ports with MIB counters.
1262 * @port_cnt:		Number of ports this port supports.
1263 * @counter:		Port statistics counter.
1264 * @hw:			Pointer to hardware structure.
1265 * @linked:		Pointer to port information linked to this port.
1266 */
1267struct ksz_port {
1268	u8 duplex;
1269	u8 speed;
1270	u8 force_link;
1271	u8 flow_ctrl;
1272
1273	int first_port;
1274	int mib_port_cnt;
1275	int port_cnt;
1276	u64 counter[OID_COUNTER_LAST];
1277
1278	struct ksz_hw *hw;
1279	struct ksz_port_info *linked;
1280};
1281
1282/**
1283 * struct ksz_timer_info - Timer information data structure
1284 * @timer:	Kernel timer.
1285 * @cnt:	Running timer counter.
1286 * @max:	Number of times to run timer; -1 for infinity.
1287 * @period:	Timer period in jiffies.
1288 */
1289struct ksz_timer_info {
1290	struct timer_list timer;
1291	int cnt;
1292	int max;
1293	int period;
1294};
1295
1296/**
1297 * struct ksz_shared_mem - OS dependent shared memory data structure
1298 * @dma_addr:	Physical DMA address allocated.
1299 * @alloc_size:	Allocation size.
1300 * @phys:	Actual physical address used.
1301 * @alloc_virt:	Virtual address allocated.
1302 * @virt:	Actual virtual address used.
1303 */
1304struct ksz_shared_mem {
1305	dma_addr_t dma_addr;
1306	uint alloc_size;
1307	uint phys;
1308	u8 *alloc_virt;
1309	u8 *virt;
1310};
1311
1312/**
1313 * struct ksz_counter_info - OS dependent counter information data structure
1314 * @counter:	Wait queue to wakeup after counters are read.
1315 * @time:	Next time in jiffies to read counter.
1316 * @read:	Indication of counters read in full or not.
1317 */
1318struct ksz_counter_info {
1319	wait_queue_head_t counter;
1320	unsigned long time;
1321	int read;
1322};
1323
1324/**
1325 * struct dev_info - Network device information data structure
1326 * @dev:		Pointer to network device.
1327 * @pdev:		Pointer to PCI device.
1328 * @hw:			Hardware structure.
1329 * @desc_pool:		Physical memory used for descriptor pool.
1330 * @hwlock:		Spinlock to prevent hardware from accessing.
1331 * @lock:		Mutex lock to prevent device from accessing.
1332 * @dev_rcv:		Receive process function used.
1333 * @last_skb:		Socket buffer allocated for descriptor rx fragments.
1334 * @skb_index:		Buffer index for receiving fragments.
1335 * @skb_len:		Buffer length for receiving fragments.
1336 * @mib_read:		Workqueue to read MIB counters.
1337 * @mib_timer_info:	Timer to read MIB counters.
1338 * @counter:		Used for MIB reading.
1339 * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1340 * 			the maximum is MAX_RX_BUF_SIZE.
1341 * @opened:		Counter to keep track of device open.
1342 * @rx_tasklet:		Receive processing tasklet.
1343 * @tx_tasklet:		Transmit processing tasklet.
1344 * @wol_enable:		Wake-on-LAN enable set by ethtool.
1345 * @wol_support:	Wake-on-LAN support used by ethtool.
1346 * @pme_wait:		Used for KSZ8841 power management.
1347 */
1348struct dev_info {
1349	struct net_device *dev;
1350	struct pci_dev *pdev;
1351
1352	struct ksz_hw hw;
1353	struct ksz_shared_mem desc_pool;
1354
1355	spinlock_t hwlock;
1356	struct mutex lock;
1357
1358	int (*dev_rcv)(struct dev_info *);
1359
1360	struct sk_buff *last_skb;
1361	int skb_index;
1362	int skb_len;
1363
1364	struct work_struct mib_read;
1365	struct ksz_timer_info mib_timer_info;
1366	struct ksz_counter_info counter[TOTAL_PORT_NUM];
1367
1368	int mtu;
1369	int opened;
1370
1371	struct tasklet_struct rx_tasklet;
1372	struct tasklet_struct tx_tasklet;
1373
1374	int wol_enable;
1375	int wol_support;
1376	unsigned long pme_wait;
1377};
1378
1379/**
1380 * struct dev_priv - Network device private data structure
1381 * @adapter:		Adapter device information.
1382 * @port:		Port information.
1383 * @monitor_timer_info:	Timer to monitor ports.
1384 * @proc_sem:		Semaphore for proc accessing.
1385 * @id:			Device ID.
1386 * @mii_if:		MII interface information.
1387 * @advertising:	Temporary variable to store advertised settings.
1388 * @msg_enable:		The message flags controlling driver output.
1389 * @media_state:	The connection status of the device.
1390 * @multicast:		The all multicast state of the device.
1391 * @promiscuous:	The promiscuous state of the device.
1392 */
1393struct dev_priv {
1394	struct dev_info *adapter;
1395	struct ksz_port port;
1396	struct ksz_timer_info monitor_timer_info;
1397
1398	struct semaphore proc_sem;
1399	int id;
1400
1401	struct mii_if_info mii_if;
1402	u32 advertising;
1403
1404	u32 msg_enable;
1405	int media_state;
1406	int multicast;
1407	int promiscuous;
1408};
1409
1410#define DRV_NAME		"KSZ884X PCI"
1411#define DEVICE_NAME		"KSZ884x PCI"
1412#define DRV_VERSION		"1.0.0"
1413#define DRV_RELDATE		"Feb 8, 2010"
1414
1415static char version[] =
1416	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1417
1418static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1419
1420/*
1421 * Interrupt processing primary routines
1422 */
1423
1424static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1425{
1426	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1427}
1428
1429static inline void hw_dis_intr(struct ksz_hw *hw)
1430{
1431	hw->intr_blocked = hw->intr_mask;
1432	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1433	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1434}
1435
1436static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1437{
1438	hw->intr_set = interrupt;
1439	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1440}
1441
1442static inline void hw_ena_intr(struct ksz_hw *hw)
1443{
1444	hw->intr_blocked = 0;
1445	hw_set_intr(hw, hw->intr_mask);
1446}
1447
1448static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1449{
1450	hw->intr_mask &= ~(bit);
1451}
1452
1453static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1454{
1455	u32 read_intr;
1456
1457	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1458	hw->intr_set = read_intr & ~interrupt;
1459	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1460	hw_dis_intr_bit(hw, interrupt);
1461}
1462
1463/**
1464 * hw_turn_on_intr - turn on specified interrupts
1465 * @hw: 	The hardware instance.
1466 * @bit:	The interrupt bits to be on.
1467 *
1468 * This routine turns on the specified interrupts in the interrupt mask so that
1469 * those interrupts will be enabled.
1470 */
1471static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1472{
1473	hw->intr_mask |= bit;
1474
1475	if (!hw->intr_blocked)
1476		hw_set_intr(hw, hw->intr_mask);
1477}
1478
 
 
 
 
 
 
 
 
 
1479static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1480{
1481	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1482	*status = *status & hw->intr_set;
1483}
1484
1485static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1486{
1487	if (interrupt)
1488		hw_ena_intr(hw);
1489}
1490
1491/**
1492 * hw_block_intr - block hardware interrupts
1493 * @hw: The hardware instance.
1494 *
1495 * This function blocks all interrupts of the hardware and returns the current
1496 * interrupt enable mask so that interrupts can be restored later.
1497 *
1498 * Return the current interrupt enable mask.
1499 */
1500static uint hw_block_intr(struct ksz_hw *hw)
1501{
1502	uint interrupt = 0;
1503
1504	if (!hw->intr_blocked) {
1505		hw_dis_intr(hw);
1506		interrupt = hw->intr_blocked;
1507	}
1508	return interrupt;
1509}
1510
1511/*
1512 * Hardware descriptor routines
1513 */
1514
1515static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1516{
1517	status.rx.hw_owned = 0;
1518	desc->phw->ctrl.data = cpu_to_le32(status.data);
1519}
1520
1521static inline void release_desc(struct ksz_desc *desc)
1522{
1523	desc->sw.ctrl.tx.hw_owned = 1;
1524	if (desc->sw.buf_size != desc->sw.buf.data) {
1525		desc->sw.buf_size = desc->sw.buf.data;
1526		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1527	}
1528	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1529}
1530
1531static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1532{
1533	*desc = &info->ring[info->last];
1534	info->last++;
1535	info->last &= info->mask;
1536	info->avail--;
1537	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1538}
1539
1540static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1541{
1542	desc->phw->addr = cpu_to_le32(addr);
1543}
1544
1545static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1546{
1547	desc->sw.buf.rx.buf_size = len;
1548}
1549
1550static inline void get_tx_pkt(struct ksz_desc_info *info,
1551	struct ksz_desc **desc)
1552{
1553	*desc = &info->ring[info->next];
1554	info->next++;
1555	info->next &= info->mask;
1556	info->avail--;
1557	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1558}
1559
1560static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1561{
1562	desc->phw->addr = cpu_to_le32(addr);
1563}
1564
1565static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1566{
1567	desc->sw.buf.tx.buf_size = len;
1568}
1569
1570/* Switch functions */
1571
1572#define TABLE_READ			0x10
1573#define TABLE_SEL_SHIFT			2
1574
1575#define HW_DELAY(hw, reg)			\
1576	do {					\
1577		readw(hw->io + reg);		\
 
1578	} while (0)
1579
1580/**
1581 * sw_r_table - read 4 bytes of data from switch table
1582 * @hw:		The hardware instance.
1583 * @table:	The table selector.
1584 * @addr:	The address of the table entry.
1585 * @data:	Buffer to store the read data.
1586 *
1587 * This routine reads 4 bytes of data from the table of the switch.
1588 * Hardware interrupts are disabled to minimize corruption of read data.
1589 */
1590static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1591{
1592	u16 ctrl_addr;
1593	uint interrupt;
1594
1595	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1596
1597	interrupt = hw_block_intr(hw);
1598
1599	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1600	HW_DELAY(hw, KS884X_IACR_OFFSET);
1601	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1602
1603	hw_restore_intr(hw, interrupt);
1604}
1605
1606/**
1607 * sw_w_table_64 - write 8 bytes of data to the switch table
1608 * @hw:		The hardware instance.
1609 * @table:	The table selector.
1610 * @addr:	The address of the table entry.
1611 * @data_hi:	The high part of data to be written (bit63 ~ bit32).
1612 * @data_lo:	The low part of data to be written (bit31 ~ bit0).
1613 *
1614 * This routine writes 8 bytes of data to the table of the switch.
1615 * Hardware interrupts are disabled to minimize corruption of written data.
1616 */
1617static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1618	u32 data_lo)
1619{
1620	u16 ctrl_addr;
1621	uint interrupt;
1622
1623	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1624
1625	interrupt = hw_block_intr(hw);
1626
1627	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1628	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1629
1630	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1631	HW_DELAY(hw, KS884X_IACR_OFFSET);
1632
1633	hw_restore_intr(hw, interrupt);
1634}
1635
1636/**
1637 * sw_w_sta_mac_table - write to the static MAC table
1638 * @hw: 	The hardware instance.
1639 * @addr:	The address of the table entry.
1640 * @mac_addr:	The MAC address.
1641 * @ports:	The port members.
1642 * @override:	The flag to override the port receive/transmit settings.
1643 * @valid:	The flag to indicate entry is valid.
1644 * @use_fid:	The flag to indicate the FID is valid.
1645 * @fid:	The FID value.
1646 *
1647 * This routine writes an entry of the static MAC table of the switch.  It
1648 * calls sw_w_table_64() to write the data.
1649 */
1650static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1651	u8 ports, int override, int valid, int use_fid, u8 fid)
1652{
1653	u32 data_hi;
1654	u32 data_lo;
1655
1656	data_lo = ((u32) mac_addr[2] << 24) |
1657		((u32) mac_addr[3] << 16) |
1658		((u32) mac_addr[4] << 8) | mac_addr[5];
1659	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1660	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1661
1662	if (override)
1663		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1664	if (use_fid) {
1665		data_hi |= STATIC_MAC_TABLE_USE_FID;
1666		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1667	}
1668	if (valid)
1669		data_hi |= STATIC_MAC_TABLE_VALID;
1670
1671	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1672}
1673
1674/**
1675 * sw_r_vlan_table - read from the VLAN table
1676 * @hw: 	The hardware instance.
1677 * @addr:	The address of the table entry.
1678 * @vid:	Buffer to store the VID.
1679 * @fid:	Buffer to store the VID.
1680 * @member:	Buffer to store the port membership.
1681 *
1682 * This function reads an entry of the VLAN table of the switch.  It calls
1683 * sw_r_table() to get the data.
1684 *
1685 * Return 0 if the entry is valid; otherwise -1.
1686 */
1687static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1688	u8 *member)
1689{
1690	u32 data;
1691
1692	sw_r_table(hw, TABLE_VLAN, addr, &data);
1693	if (data & VLAN_TABLE_VALID) {
1694		*vid = (u16)(data & VLAN_TABLE_VID);
1695		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1696		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1697			VLAN_TABLE_MEMBERSHIP_SHIFT);
1698		return 0;
1699	}
1700	return -1;
1701}
1702
1703/**
1704 * port_r_mib_cnt - read MIB counter
1705 * @hw: 	The hardware instance.
1706 * @port:	The port index.
1707 * @addr:	The address of the counter.
1708 * @cnt:	Buffer to store the counter.
1709 *
1710 * This routine reads a MIB counter of the port.
1711 * Hardware interrupts are disabled to minimize corruption of read data.
1712 */
1713static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1714{
1715	u32 data;
1716	u16 ctrl_addr;
1717	uint interrupt;
1718	int timeout;
1719
1720	ctrl_addr = addr + PORT_COUNTER_NUM * port;
1721
1722	interrupt = hw_block_intr(hw);
1723
1724	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1725	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1726	HW_DELAY(hw, KS884X_IACR_OFFSET);
1727
1728	for (timeout = 100; timeout > 0; timeout--) {
1729		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1730
1731		if (data & MIB_COUNTER_VALID) {
1732			if (data & MIB_COUNTER_OVERFLOW)
1733				*cnt += MIB_COUNTER_VALUE + 1;
1734			*cnt += data & MIB_COUNTER_VALUE;
1735			break;
1736		}
1737	}
1738
1739	hw_restore_intr(hw, interrupt);
1740}
1741
1742/**
1743 * port_r_mib_pkt - read dropped packet counts
1744 * @hw: 	The hardware instance.
1745 * @port:	The port index.
1746 * @last:	last one
1747 * @cnt:	Buffer to store the receive and transmit dropped packet counts.
1748 *
1749 * This routine reads the dropped packet counts of the port.
1750 * Hardware interrupts are disabled to minimize corruption of read data.
1751 */
1752static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1753{
1754	u32 cur;
1755	u32 data;
1756	u16 ctrl_addr;
1757	uint interrupt;
1758	int index;
1759
1760	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1761	do {
1762		interrupt = hw_block_intr(hw);
1763
1764		ctrl_addr = (u16) index;
1765		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1766			<< 8);
1767		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1768		HW_DELAY(hw, KS884X_IACR_OFFSET);
1769		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1770
1771		hw_restore_intr(hw, interrupt);
1772
1773		data &= MIB_PACKET_DROPPED;
1774		cur = *last;
1775		if (data != cur) {
1776			*last = data;
1777			if (data < cur)
1778				data += MIB_PACKET_DROPPED + 1;
1779			data -= cur;
1780			*cnt += data;
1781		}
1782		++last;
1783		++cnt;
1784		index -= KS_MIB_PACKET_DROPPED_TX -
1785			KS_MIB_PACKET_DROPPED_TX_0 + 1;
1786	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1787}
1788
1789/**
1790 * port_r_cnt - read MIB counters periodically
1791 * @hw: 	The hardware instance.
1792 * @port:	The port index.
1793 *
1794 * This routine is used to read the counters of the port periodically to avoid
1795 * counter overflow.  The hardware should be acquired first before calling this
1796 * routine.
1797 *
1798 * Return non-zero when not all counters not read.
1799 */
1800static int port_r_cnt(struct ksz_hw *hw, int port)
1801{
1802	struct ksz_port_mib *mib = &hw->port_mib[port];
1803
1804	if (mib->mib_start < PORT_COUNTER_NUM)
1805		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1806			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1807				&mib->counter[mib->cnt_ptr]);
1808			++mib->cnt_ptr;
1809		}
1810	if (hw->mib_cnt > PORT_COUNTER_NUM)
1811		port_r_mib_pkt(hw, port, mib->dropped,
1812			&mib->counter[PORT_COUNTER_NUM]);
1813	mib->cnt_ptr = 0;
1814	return 0;
1815}
1816
1817/**
1818 * port_init_cnt - initialize MIB counter values
1819 * @hw: 	The hardware instance.
1820 * @port:	The port index.
1821 *
1822 * This routine is used to initialize all counters to zero if the hardware
1823 * cannot do it after reset.
1824 */
1825static void port_init_cnt(struct ksz_hw *hw, int port)
1826{
1827	struct ksz_port_mib *mib = &hw->port_mib[port];
1828
1829	mib->cnt_ptr = 0;
1830	if (mib->mib_start < PORT_COUNTER_NUM)
1831		do {
1832			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1833				&mib->counter[mib->cnt_ptr]);
1834			++mib->cnt_ptr;
1835		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
1836	if (hw->mib_cnt > PORT_COUNTER_NUM)
1837		port_r_mib_pkt(hw, port, mib->dropped,
1838			&mib->counter[PORT_COUNTER_NUM]);
1839	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1840	mib->cnt_ptr = 0;
1841}
1842
1843/*
1844 * Port functions
1845 */
1846
1847/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1848 * port_cfg - set port register bits
1849 * @hw: 	The hardware instance.
1850 * @port:	The port index.
1851 * @offset:	The offset of the port register.
1852 * @bits:	The data bits to set.
1853 * @set:	The flag indicating whether the bits are to be set or not.
1854 *
1855 * This routine sets or resets the specified bits of the port register.
1856 */
1857static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1858	int set)
1859{
1860	u32 addr;
1861	u16 data;
1862
1863	PORT_CTRL_ADDR(port, addr);
1864	addr += offset;
1865	data = readw(hw->io + addr);
1866	if (set)
1867		data |= bits;
1868	else
1869		data &= ~bits;
1870	writew(data, hw->io + addr);
1871}
1872
1873/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1874 * port_r8 - read byte from port register
1875 * @hw: 	The hardware instance.
1876 * @port:	The port index.
1877 * @offset:	The offset of the port register.
1878 * @data:	Buffer to store the data.
1879 *
1880 * This routine reads a byte from the port register.
1881 */
1882static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
1883{
1884	u32 addr;
1885
1886	PORT_CTRL_ADDR(port, addr);
1887	addr += offset;
1888	*data = readb(hw->io + addr);
1889}
1890
1891/**
1892 * port_r16 - read word from port register.
1893 * @hw: 	The hardware instance.
1894 * @port:	The port index.
1895 * @offset:	The offset of the port register.
1896 * @data:	Buffer to store the data.
1897 *
1898 * This routine reads a word from the port register.
1899 */
1900static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
1901{
1902	u32 addr;
1903
1904	PORT_CTRL_ADDR(port, addr);
1905	addr += offset;
1906	*data = readw(hw->io + addr);
1907}
1908
1909/**
1910 * port_w16 - write word to port register.
1911 * @hw: 	The hardware instance.
1912 * @port:	The port index.
1913 * @offset:	The offset of the port register.
1914 * @data:	Data to write.
1915 *
1916 * This routine writes a word to the port register.
1917 */
1918static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
1919{
1920	u32 addr;
1921
1922	PORT_CTRL_ADDR(port, addr);
1923	addr += offset;
1924	writew(data, hw->io + addr);
1925}
1926
1927/**
1928 * sw_chk - check switch register bits
1929 * @hw: 	The hardware instance.
1930 * @addr:	The address of the switch register.
1931 * @bits:	The data bits to check.
1932 *
1933 * This function checks whether the specified bits of the switch register are
1934 * set or not.
1935 *
1936 * Return 0 if the bits are not set.
1937 */
1938static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
1939{
1940	u16 data;
1941
1942	data = readw(hw->io + addr);
1943	return (data & bits) == bits;
1944}
1945
1946/**
1947 * sw_cfg - set switch register bits
1948 * @hw: 	The hardware instance.
1949 * @addr:	The address of the switch register.
1950 * @bits:	The data bits to set.
1951 * @set:	The flag indicating whether the bits are to be set or not.
1952 *
1953 * This function sets or resets the specified bits of the switch register.
1954 */
1955static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
1956{
1957	u16 data;
1958
1959	data = readw(hw->io + addr);
1960	if (set)
1961		data |= bits;
1962	else
1963		data &= ~bits;
1964	writew(data, hw->io + addr);
1965}
1966
1967/* Bandwidth */
1968
1969static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
1970{
1971	port_cfg(hw, p,
1972		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
1973}
1974
 
 
 
 
 
 
1975/* Driver set switch broadcast storm protection at 10% rate. */
1976#define BROADCAST_STORM_PROTECTION_RATE	10
1977
1978/* 148,800 frames * 67 ms / 100 */
1979#define BROADCAST_STORM_VALUE		9969
1980
1981/**
1982 * sw_cfg_broad_storm - configure broadcast storm threshold
1983 * @hw: 	The hardware instance.
1984 * @percent:	Broadcast storm threshold in percent of transmit rate.
1985 *
1986 * This routine configures the broadcast storm threshold of the switch.
1987 */
1988static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
1989{
1990	u16 data;
1991	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
1992
1993	if (value > BROADCAST_STORM_RATE)
1994		value = BROADCAST_STORM_RATE;
1995
1996	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
1997	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
1998	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
1999	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2000}
2001
2002/**
2003 * sw_get_broad_storm - get broadcast storm threshold
2004 * @hw: 	The hardware instance.
2005 * @percent:	Buffer to store the broadcast storm threshold percentage.
2006 *
2007 * This routine retrieves the broadcast storm threshold of the switch.
2008 */
2009static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2010{
2011	int num;
2012	u16 data;
2013
2014	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2015	num = (data & BROADCAST_STORM_RATE_HI);
2016	num <<= 8;
2017	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2018	num = DIV_ROUND_CLOSEST(num * 100, BROADCAST_STORM_VALUE);
2019	*percent = (u8) num;
2020}
2021
2022/**
2023 * sw_dis_broad_storm - disable broadstorm
2024 * @hw: 	The hardware instance.
2025 * @port:	The port index.
2026 *
2027 * This routine disables the broadcast storm limit function of the switch.
2028 */
2029static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2030{
2031	port_cfg_broad_storm(hw, port, 0);
2032}
2033
2034/**
2035 * sw_ena_broad_storm - enable broadcast storm
2036 * @hw: 	The hardware instance.
2037 * @port:	The port index.
2038 *
2039 * This routine enables the broadcast storm limit function of the switch.
2040 */
2041static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2042{
2043	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2044	port_cfg_broad_storm(hw, port, 1);
2045}
2046
2047/**
2048 * sw_init_broad_storm - initialize broadcast storm
2049 * @hw: 	The hardware instance.
2050 *
2051 * This routine initializes the broadcast storm limit function of the switch.
2052 */
2053static void sw_init_broad_storm(struct ksz_hw *hw)
2054{
2055	int port;
2056
2057	hw->ksz_switch->broad_per = 1;
2058	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2059	for (port = 0; port < TOTAL_PORT_NUM; port++)
2060		sw_dis_broad_storm(hw, port);
2061	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2062}
2063
2064/**
2065 * hw_cfg_broad_storm - configure broadcast storm
2066 * @hw: 	The hardware instance.
2067 * @percent:	Broadcast storm threshold in percent of transmit rate.
2068 *
2069 * This routine configures the broadcast storm threshold of the switch.
2070 * It is called by user functions.  The hardware should be acquired first.
2071 */
2072static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2073{
2074	if (percent > 100)
2075		percent = 100;
2076
2077	sw_cfg_broad_storm(hw, percent);
2078	sw_get_broad_storm(hw, &percent);
2079	hw->ksz_switch->broad_per = percent;
2080}
2081
2082/**
2083 * sw_dis_prio_rate - disable switch priority rate
2084 * @hw: 	The hardware instance.
2085 * @port:	The port index.
2086 *
2087 * This routine disables the priority rate function of the switch.
2088 */
2089static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2090{
2091	u32 addr;
2092
2093	PORT_CTRL_ADDR(port, addr);
2094	addr += KS8842_PORT_IN_RATE_OFFSET;
2095	writel(0, hw->io + addr);
2096}
2097
2098/**
2099 * sw_init_prio_rate - initialize switch prioirty rate
2100 * @hw: 	The hardware instance.
2101 *
2102 * This routine initializes the priority rate function of the switch.
2103 */
2104static void sw_init_prio_rate(struct ksz_hw *hw)
2105{
2106	int port;
2107	int prio;
2108	struct ksz_switch *sw = hw->ksz_switch;
2109
2110	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2111		for (prio = 0; prio < PRIO_QUEUES; prio++) {
2112			sw->port_cfg[port].rx_rate[prio] =
2113			sw->port_cfg[port].tx_rate[prio] = 0;
2114		}
2115		sw_dis_prio_rate(hw, port);
2116	}
2117}
2118
2119/* Communication */
2120
2121static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2122{
2123	port_cfg(hw, p,
2124		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2125}
2126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2127/* Mirroring */
2128
2129static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2130{
2131	port_cfg(hw, p,
2132		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2133}
2134
2135static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2136{
2137	port_cfg(hw, p,
2138		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2139}
2140
2141static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2142{
2143	port_cfg(hw, p,
2144		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2145}
2146
2147static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2148{
2149	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2150}
2151
2152static void sw_init_mirror(struct ksz_hw *hw)
2153{
2154	int port;
2155
2156	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2157		port_cfg_mirror_sniffer(hw, port, 0);
2158		port_cfg_mirror_rx(hw, port, 0);
2159		port_cfg_mirror_tx(hw, port, 0);
2160	}
2161	sw_cfg_mirror_rx_tx(hw, 0);
2162}
2163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2164/* Priority */
2165
2166static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2167{
2168	port_cfg(hw, p,
2169		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2170}
2171
2172static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2173{
2174	port_cfg(hw, p,
2175		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2176}
2177
2178static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2179{
2180	port_cfg(hw, p,
2181		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2182}
2183
2184static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2185{
2186	port_cfg(hw, p,
2187		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2188}
2189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2190/**
2191 * sw_dis_diffserv - disable switch DiffServ priority
2192 * @hw: 	The hardware instance.
2193 * @port:	The port index.
2194 *
2195 * This routine disables the DiffServ priority function of the switch.
2196 */
2197static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2198{
2199	port_cfg_diffserv(hw, port, 0);
2200}
2201
2202/**
2203 * sw_dis_802_1p - disable switch 802.1p priority
2204 * @hw: 	The hardware instance.
2205 * @port:	The port index.
2206 *
2207 * This routine disables the 802.1p priority function of the switch.
2208 */
2209static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2210{
2211	port_cfg_802_1p(hw, port, 0);
2212}
2213
2214/**
2215 * sw_cfg_replace_null_vid -
2216 * @hw: 	The hardware instance.
2217 * @set:	The flag to disable or enable.
2218 *
2219 */
2220static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2221{
2222	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2223}
2224
2225/**
2226 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2227 * @hw: 	The hardware instance.
2228 * @port:	The port index.
2229 * @set:	The flag to disable or enable.
2230 *
2231 * This routine enables the 802.1p priority re-mapping function of the switch.
2232 * That allows 802.1p priority field to be replaced with the port's default
2233 * tag's priority value if the ingress packet's 802.1p priority has a higher
2234 * priority than port's default tag's priority.
2235 */
2236static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2237{
2238	port_cfg_replace_vid(hw, port, set);
2239}
2240
2241/**
2242 * sw_cfg_port_based - configure switch port based priority
2243 * @hw: 	The hardware instance.
2244 * @port:	The port index.
2245 * @prio:	The priority to set.
2246 *
2247 * This routine configures the port based priority of the switch.
2248 */
2249static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2250{
2251	u16 data;
2252
2253	if (prio > PORT_BASED_PRIORITY_BASE)
2254		prio = PORT_BASED_PRIORITY_BASE;
2255
2256	hw->ksz_switch->port_cfg[port].port_prio = prio;
2257
2258	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2259	data &= ~PORT_BASED_PRIORITY_MASK;
2260	data |= prio << PORT_BASED_PRIORITY_SHIFT;
2261	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2262}
2263
2264/**
2265 * sw_dis_multi_queue - disable transmit multiple queues
2266 * @hw: 	The hardware instance.
2267 * @port:	The port index.
2268 *
2269 * This routine disables the transmit multiple queues selection of the switch
2270 * port.  Only single transmit queue on the port.
2271 */
2272static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2273{
2274	port_cfg_prio(hw, port, 0);
2275}
2276
2277/**
2278 * sw_init_prio - initialize switch priority
2279 * @hw: 	The hardware instance.
2280 *
2281 * This routine initializes the switch QoS priority functions.
2282 */
2283static void sw_init_prio(struct ksz_hw *hw)
2284{
2285	int port;
2286	int tos;
2287	struct ksz_switch *sw = hw->ksz_switch;
2288
2289	/*
2290	 * Init all the 802.1p tag priority value to be assigned to different
2291	 * priority queue.
2292	 */
2293	sw->p_802_1p[0] = 0;
2294	sw->p_802_1p[1] = 0;
2295	sw->p_802_1p[2] = 1;
2296	sw->p_802_1p[3] = 1;
2297	sw->p_802_1p[4] = 2;
2298	sw->p_802_1p[5] = 2;
2299	sw->p_802_1p[6] = 3;
2300	sw->p_802_1p[7] = 3;
2301
2302	/*
2303	 * Init all the DiffServ priority value to be assigned to priority
2304	 * queue 0.
2305	 */
2306	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2307		sw->diffserv[tos] = 0;
2308
2309	/* All QoS functions disabled. */
2310	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2311		sw_dis_multi_queue(hw, port);
2312		sw_dis_diffserv(hw, port);
2313		sw_dis_802_1p(hw, port);
2314		sw_cfg_replace_vid(hw, port, 0);
2315
2316		sw->port_cfg[port].port_prio = 0;
2317		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2318	}
2319	sw_cfg_replace_null_vid(hw, 0);
2320}
2321
2322/**
2323 * port_get_def_vid - get port default VID.
2324 * @hw: 	The hardware instance.
2325 * @port:	The port index.
2326 * @vid:	Buffer to store the VID.
2327 *
2328 * This routine retrieves the default VID of the port.
2329 */
2330static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2331{
2332	u32 addr;
2333
2334	PORT_CTRL_ADDR(port, addr);
2335	addr += KS8842_PORT_CTRL_VID_OFFSET;
2336	*vid = readw(hw->io + addr);
2337}
2338
2339/**
2340 * sw_init_vlan - initialize switch VLAN
2341 * @hw: 	The hardware instance.
2342 *
2343 * This routine initializes the VLAN function of the switch.
2344 */
2345static void sw_init_vlan(struct ksz_hw *hw)
2346{
2347	int port;
2348	int entry;
2349	struct ksz_switch *sw = hw->ksz_switch;
2350
2351	/* Read 16 VLAN entries from device's VLAN table. */
2352	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2353		sw_r_vlan_table(hw, entry,
2354			&sw->vlan_table[entry].vid,
2355			&sw->vlan_table[entry].fid,
2356			&sw->vlan_table[entry].member);
2357	}
2358
2359	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2360		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2361		sw->port_cfg[port].member = PORT_MASK;
2362	}
2363}
2364
2365/**
2366 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2367 * @hw: 	The hardware instance.
2368 * @port:	The port index.
2369 * @member:	The port-based VLAN membership.
2370 *
2371 * This routine configures the port-based VLAN membership of the port.
2372 */
2373static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2374{
2375	u32 addr;
2376	u8 data;
2377
2378	PORT_CTRL_ADDR(port, addr);
2379	addr += KS8842_PORT_CTRL_2_OFFSET;
2380
2381	data = readb(hw->io + addr);
2382	data &= ~PORT_VLAN_MEMBERSHIP;
2383	data |= (member & PORT_MASK);
2384	writeb(data, hw->io + addr);
2385
2386	hw->ksz_switch->port_cfg[port].member = member;
2387}
2388
2389/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2390 * sw_set_addr - configure switch MAC address
2391 * @hw: 	The hardware instance.
2392 * @mac_addr:	The MAC address.
2393 *
2394 * This function configures the MAC address of the switch.
2395 */
2396static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2397{
2398	int i;
2399
2400	for (i = 0; i < 6; i += 2) {
2401		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2402		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2403	}
2404}
2405
2406/**
2407 * sw_set_global_ctrl - set switch global control
2408 * @hw: 	The hardware instance.
2409 *
2410 * This routine sets the global control of the switch function.
2411 */
2412static void sw_set_global_ctrl(struct ksz_hw *hw)
2413{
2414	u16 data;
2415
2416	/* Enable switch MII flow control. */
2417	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2418	data |= SWITCH_FLOW_CTRL;
2419	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2420
2421	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2422
2423	/* Enable aggressive back off algorithm in half duplex mode. */
2424	data |= SWITCH_AGGR_BACKOFF;
2425
2426	/* Enable automatic fast aging when link changed detected. */
2427	data |= SWITCH_AGING_ENABLE;
2428	data |= SWITCH_LINK_AUTO_AGING;
2429
2430	if (hw->overrides & FAST_AGING)
2431		data |= SWITCH_FAST_AGING;
2432	else
2433		data &= ~SWITCH_FAST_AGING;
2434	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2435
2436	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2437
2438	/* Enable no excessive collision drop. */
2439	data |= NO_EXC_COLLISION_DROP;
2440	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2441}
2442
2443enum {
2444	STP_STATE_DISABLED = 0,
2445	STP_STATE_LISTENING,
2446	STP_STATE_LEARNING,
2447	STP_STATE_FORWARDING,
2448	STP_STATE_BLOCKED,
2449	STP_STATE_SIMPLE
2450};
2451
2452/**
2453 * port_set_stp_state - configure port spanning tree state
2454 * @hw: 	The hardware instance.
2455 * @port:	The port index.
2456 * @state:	The spanning tree state.
2457 *
2458 * This routine configures the spanning tree state of the port.
2459 */
2460static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2461{
2462	u16 data;
2463
2464	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2465	switch (state) {
2466	case STP_STATE_DISABLED:
2467		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2468		data |= PORT_LEARN_DISABLE;
2469		break;
2470	case STP_STATE_LISTENING:
2471/*
2472 * No need to turn on transmit because of port direct mode.
2473 * Turning on receive is required if static MAC table is not setup.
2474 */
2475		data &= ~PORT_TX_ENABLE;
2476		data |= PORT_RX_ENABLE;
2477		data |= PORT_LEARN_DISABLE;
2478		break;
2479	case STP_STATE_LEARNING:
2480		data &= ~PORT_TX_ENABLE;
2481		data |= PORT_RX_ENABLE;
2482		data &= ~PORT_LEARN_DISABLE;
2483		break;
2484	case STP_STATE_FORWARDING:
2485		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2486		data &= ~PORT_LEARN_DISABLE;
2487		break;
2488	case STP_STATE_BLOCKED:
2489/*
2490 * Need to setup static MAC table with override to keep receiving BPDU
2491 * messages.  See sw_init_stp routine.
2492 */
2493		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2494		data |= PORT_LEARN_DISABLE;
2495		break;
2496	case STP_STATE_SIMPLE:
2497		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2498		data |= PORT_LEARN_DISABLE;
2499		break;
2500	}
2501	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2502	hw->ksz_switch->port_cfg[port].stp_state = state;
2503}
2504
2505#define STP_ENTRY			0
2506#define BROADCAST_ENTRY			1
2507#define BRIDGE_ADDR_ENTRY		2
2508#define IPV6_ADDR_ENTRY			3
2509
2510/**
2511 * sw_clr_sta_mac_table - clear static MAC table
2512 * @hw: 	The hardware instance.
2513 *
2514 * This routine clears the static MAC table.
2515 */
2516static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2517{
2518	struct ksz_mac_table *entry;
2519	int i;
2520
2521	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2522		entry = &hw->ksz_switch->mac_table[i];
2523		sw_w_sta_mac_table(hw, i,
2524			entry->mac_addr, entry->ports,
2525			entry->override, 0,
2526			entry->use_fid, entry->fid);
2527	}
2528}
2529
2530/**
2531 * sw_init_stp - initialize switch spanning tree support
2532 * @hw: 	The hardware instance.
2533 *
2534 * This routine initializes the spanning tree support of the switch.
2535 */
2536static void sw_init_stp(struct ksz_hw *hw)
2537{
2538	struct ksz_mac_table *entry;
2539
2540	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2541	entry->mac_addr[0] = 0x01;
2542	entry->mac_addr[1] = 0x80;
2543	entry->mac_addr[2] = 0xC2;
2544	entry->mac_addr[3] = 0x00;
2545	entry->mac_addr[4] = 0x00;
2546	entry->mac_addr[5] = 0x00;
2547	entry->ports = HOST_MASK;
2548	entry->override = 1;
2549	entry->valid = 1;
2550	sw_w_sta_mac_table(hw, STP_ENTRY,
2551		entry->mac_addr, entry->ports,
2552		entry->override, entry->valid,
2553		entry->use_fid, entry->fid);
2554}
2555
2556/**
2557 * sw_block_addr - block certain packets from the host port
2558 * @hw: 	The hardware instance.
2559 *
2560 * This routine blocks certain packets from reaching to the host port.
2561 */
2562static void sw_block_addr(struct ksz_hw *hw)
2563{
2564	struct ksz_mac_table *entry;
2565	int i;
2566
2567	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2568		entry = &hw->ksz_switch->mac_table[i];
2569		entry->valid = 0;
2570		sw_w_sta_mac_table(hw, i,
2571			entry->mac_addr, entry->ports,
2572			entry->override, entry->valid,
2573			entry->use_fid, entry->fid);
2574	}
2575}
2576
 
 
 
 
 
 
 
 
 
2577static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2578{
2579	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2580}
2581
2582static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2583{
2584	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2585}
2586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2587/**
2588 * hw_r_phy - read data from PHY register
2589 * @hw: 	The hardware instance.
2590 * @port:	Port to read.
2591 * @reg:	PHY register to read.
2592 * @val:	Buffer to store the read data.
2593 *
2594 * This routine reads data from the PHY register.
2595 */
2596static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2597{
2598	int phy;
2599
2600	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2601	*val = readw(hw->io + phy);
2602}
2603
2604/**
2605 * hw_w_phy - write data to PHY register
2606 * @hw: 	The hardware instance.
2607 * @port:	Port to write.
2608 * @reg:	PHY register to write.
2609 * @val:	Word data to write.
2610 *
2611 * This routine writes data to the PHY register.
2612 */
2613static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2614{
2615	int phy;
2616
2617	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2618	writew(val, hw->io + phy);
2619}
2620
2621/*
2622 * EEPROM access functions
2623 */
2624
2625#define AT93C_CODE			0
2626#define AT93C_WR_OFF			0x00
2627#define AT93C_WR_ALL			0x10
2628#define AT93C_ER_ALL			0x20
2629#define AT93C_WR_ON			0x30
2630
2631#define AT93C_WRITE			1
2632#define AT93C_READ			2
2633#define AT93C_ERASE			3
2634
2635#define EEPROM_DELAY			4
2636
2637static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
2638{
2639	u16 data;
2640
2641	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2642	data &= ~gpio;
2643	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
2644}
2645
2646static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
2647{
2648	u16 data;
2649
2650	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2651	data |= gpio;
2652	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
2653}
2654
2655static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
2656{
2657	u16 data;
2658
2659	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
2660	return (u8)(data & gpio);
2661}
2662
2663static void eeprom_clk(struct ksz_hw *hw)
2664{
2665	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
2666	udelay(EEPROM_DELAY);
2667	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
2668	udelay(EEPROM_DELAY);
2669}
2670
2671static u16 spi_r(struct ksz_hw *hw)
2672{
2673	int i;
2674	u16 temp = 0;
2675
2676	for (i = 15; i >= 0; i--) {
2677		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
2678		udelay(EEPROM_DELAY);
2679
2680		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
2681
2682		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
2683		udelay(EEPROM_DELAY);
2684	}
2685	return temp;
2686}
2687
2688static void spi_w(struct ksz_hw *hw, u16 data)
2689{
2690	int i;
2691
2692	for (i = 15; i >= 0; i--) {
2693		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
2694			drop_gpio(hw, EEPROM_DATA_OUT);
2695		eeprom_clk(hw);
2696	}
2697}
2698
2699static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
2700{
2701	int i;
2702
2703	/* Initial start bit */
2704	raise_gpio(hw, EEPROM_DATA_OUT);
2705	eeprom_clk(hw);
2706
2707	/* AT93C operation */
2708	for (i = 1; i >= 0; i--) {
2709		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
2710			drop_gpio(hw, EEPROM_DATA_OUT);
2711		eeprom_clk(hw);
2712	}
2713
2714	/* Address location */
2715	for (i = 5; i >= 0; i--) {
2716		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
2717			drop_gpio(hw, EEPROM_DATA_OUT);
2718		eeprom_clk(hw);
2719	}
2720}
2721
2722#define EEPROM_DATA_RESERVED		0
2723#define EEPROM_DATA_MAC_ADDR_0		1
2724#define EEPROM_DATA_MAC_ADDR_1		2
2725#define EEPROM_DATA_MAC_ADDR_2		3
2726#define EEPROM_DATA_SUBSYS_ID		4
2727#define EEPROM_DATA_SUBSYS_VEN_ID	5
2728#define EEPROM_DATA_PM_CAP		6
2729
2730/* User defined EEPROM data */
2731#define EEPROM_DATA_OTHER_MAC_ADDR	9
2732
2733/**
2734 * eeprom_read - read from AT93C46 EEPROM
2735 * @hw: 	The hardware instance.
2736 * @reg:	The register offset.
2737 *
2738 * This function reads a word from the AT93C46 EEPROM.
2739 *
2740 * Return the data value.
2741 */
2742static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
2743{
2744	u16 data;
2745
2746	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
2747
2748	spi_reg(hw, AT93C_READ, reg);
2749	data = spi_r(hw);
2750
2751	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
2752
2753	return data;
2754}
2755
2756/**
2757 * eeprom_write - write to AT93C46 EEPROM
2758 * @hw: 	The hardware instance.
2759 * @reg:	The register offset.
2760 * @data:	The data value.
2761 *
2762 * This procedure writes a word to the AT93C46 EEPROM.
2763 */
2764static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
2765{
2766	int timeout;
2767
2768	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
2769
2770	/* Enable write. */
2771	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
2772	drop_gpio(hw, EEPROM_CHIP_SELECT);
2773	udelay(1);
2774
2775	/* Erase the register. */
2776	raise_gpio(hw, EEPROM_CHIP_SELECT);
2777	spi_reg(hw, AT93C_ERASE, reg);
2778	drop_gpio(hw, EEPROM_CHIP_SELECT);
2779	udelay(1);
2780
2781	/* Check operation complete. */
2782	raise_gpio(hw, EEPROM_CHIP_SELECT);
2783	timeout = 8;
2784	mdelay(2);
2785	do {
2786		mdelay(1);
2787	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
2788	drop_gpio(hw, EEPROM_CHIP_SELECT);
2789	udelay(1);
2790
2791	/* Write the register. */
2792	raise_gpio(hw, EEPROM_CHIP_SELECT);
2793	spi_reg(hw, AT93C_WRITE, reg);
2794	spi_w(hw, data);
2795	drop_gpio(hw, EEPROM_CHIP_SELECT);
2796	udelay(1);
2797
2798	/* Check operation complete. */
2799	raise_gpio(hw, EEPROM_CHIP_SELECT);
2800	timeout = 8;
2801	mdelay(2);
2802	do {
2803		mdelay(1);
2804	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
2805	drop_gpio(hw, EEPROM_CHIP_SELECT);
2806	udelay(1);
2807
2808	/* Disable write. */
2809	raise_gpio(hw, EEPROM_CHIP_SELECT);
2810	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
2811
2812	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
2813}
2814
2815/*
2816 * Link detection routines
2817 */
2818
2819static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
2820{
2821	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
2822	switch (port->flow_ctrl) {
2823	case PHY_FLOW_CTRL:
2824		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
2825		break;
2826	/* Not supported. */
2827	case PHY_TX_ONLY:
2828	case PHY_RX_ONLY:
2829	default:
2830		break;
2831	}
2832	return ctrl;
2833}
2834
2835static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
2836{
2837	u32 rx_cfg;
2838	u32 tx_cfg;
2839
2840	rx_cfg = hw->rx_cfg;
2841	tx_cfg = hw->tx_cfg;
2842	if (rx)
2843		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
2844	else
2845		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
2846	if (tx)
2847		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
2848	else
2849		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
2850	if (hw->enabled) {
2851		if (rx_cfg != hw->rx_cfg)
2852			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
2853		if (tx_cfg != hw->tx_cfg)
2854			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
2855	}
2856}
2857
2858static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
2859	u16 local, u16 remote)
2860{
2861	int rx;
2862	int tx;
2863
2864	if (hw->overrides & PAUSE_FLOW_CTRL)
2865		return;
2866
2867	rx = tx = 0;
2868	if (port->force_link)
2869		rx = tx = 1;
2870	if (remote & LPA_PAUSE_CAP) {
2871		if (local & ADVERTISE_PAUSE_CAP) {
2872			rx = tx = 1;
2873		} else if ((remote & LPA_PAUSE_ASYM) &&
2874			   (local &
2875			    (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM)) ==
2876			   ADVERTISE_PAUSE_ASYM) {
2877			tx = 1;
2878		}
2879	} else if (remote & LPA_PAUSE_ASYM) {
2880		if ((local & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM))
2881		    == (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM))
2882			rx = 1;
2883	}
2884	if (!hw->ksz_switch)
2885		set_flow_ctrl(hw, rx, tx);
2886}
2887
2888static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
2889	struct ksz_port_info *info, u16 link_status)
2890{
2891	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
2892			!(hw->overrides & PAUSE_FLOW_CTRL)) {
2893		u32 cfg = hw->tx_cfg;
2894
2895		/* Disable flow control in the half duplex mode. */
2896		if (1 == info->duplex)
2897			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
2898		if (hw->enabled && cfg != hw->tx_cfg)
2899			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
2900	}
2901}
2902
2903/**
2904 * port_get_link_speed - get current link status
2905 * @port: 	The port instance.
2906 *
2907 * This routine reads PHY registers to determine the current link status of the
2908 * switch ports.
2909 */
2910static void port_get_link_speed(struct ksz_port *port)
2911{
2912	uint interrupt;
2913	struct ksz_port_info *info;
2914	struct ksz_port_info *linked = NULL;
2915	struct ksz_hw *hw = port->hw;
2916	u16 data;
2917	u16 status;
2918	u8 local;
2919	u8 remote;
2920	int i;
2921	int p;
 
2922
2923	interrupt = hw_block_intr(hw);
2924
2925	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
2926		info = &hw->port_info[p];
2927		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
2928		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
2929
2930		/*
2931		 * Link status is changing all the time even when there is no
2932		 * cable connection!
2933		 */
2934		remote = status & (PORT_AUTO_NEG_COMPLETE |
2935			PORT_STATUS_LINK_GOOD);
2936		local = (u8) data;
2937
2938		/* No change to status. */
2939		if (local == info->advertised && remote == info->partner)
2940			continue;
2941
2942		info->advertised = local;
2943		info->partner = remote;
2944		if (status & PORT_STATUS_LINK_GOOD) {
2945
2946			/* Remember the first linked port. */
2947			if (!linked)
2948				linked = info;
2949
2950			info->tx_rate = 10 * TX_RATE_UNIT;
2951			if (status & PORT_STATUS_SPEED_100MBIT)
2952				info->tx_rate = 100 * TX_RATE_UNIT;
2953
2954			info->duplex = 1;
2955			if (status & PORT_STATUS_FULL_DUPLEX)
2956				info->duplex = 2;
2957
2958			if (media_connected != info->state) {
2959				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
2960					&data);
2961				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
2962					&status);
2963				determine_flow_ctrl(hw, port, data, status);
2964				if (hw->ksz_switch) {
2965					port_cfg_back_pressure(hw, p,
2966						(1 == info->duplex));
2967				}
 
2968				port_cfg_change(hw, port, info, status);
2969			}
2970			info->state = media_connected;
2971		} else {
2972			/* Indicate the link just goes down. */
2973			if (media_disconnected != info->state)
2974				hw->port_mib[p].link_down = 1;
2975
 
 
 
2976			info->state = media_disconnected;
2977		}
2978		hw->port_mib[p].state = (u8) info->state;
2979	}
2980
2981	if (linked && media_disconnected == port->linked->state)
2982		port->linked = linked;
2983
2984	hw_restore_intr(hw, interrupt);
2985}
2986
2987#define PHY_RESET_TIMEOUT		10
2988
2989/**
2990 * port_set_link_speed - set port speed
2991 * @port: 	The port instance.
2992 *
2993 * This routine sets the link speed of the switch ports.
2994 */
2995static void port_set_link_speed(struct ksz_port *port)
2996{
 
2997	struct ksz_hw *hw = port->hw;
2998	u16 data;
2999	u16 cfg;
3000	u8 status;
3001	int i;
3002	int p;
3003
3004	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
 
 
3005		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3006		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3007
3008		cfg = 0;
3009		if (status & PORT_STATUS_LINK_GOOD)
3010			cfg = data;
3011
3012		data |= PORT_AUTO_NEG_ENABLE;
3013		data = advertised_flow_ctrl(port, data);
3014
3015		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3016			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3017
3018		/* Check if manual configuration is specified by the user. */
3019		if (port->speed || port->duplex) {
3020			if (10 == port->speed)
3021				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3022					PORT_AUTO_NEG_100BTX);
3023			else if (100 == port->speed)
3024				data &= ~(PORT_AUTO_NEG_10BT_FD |
3025					PORT_AUTO_NEG_10BT);
3026			if (1 == port->duplex)
3027				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3028					PORT_AUTO_NEG_10BT_FD);
3029			else if (2 == port->duplex)
3030				data &= ~(PORT_AUTO_NEG_100BTX |
3031					PORT_AUTO_NEG_10BT);
3032		}
3033		if (data != cfg) {
3034			data |= PORT_AUTO_NEG_RESTART;
3035			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3036		}
3037	}
3038}
3039
3040/**
3041 * port_force_link_speed - force port speed
3042 * @port: 	The port instance.
3043 *
3044 * This routine forces the link speed of the switch ports.
3045 */
3046static void port_force_link_speed(struct ksz_port *port)
3047{
3048	struct ksz_hw *hw = port->hw;
3049	u16 data;
3050	int i;
3051	int phy;
3052	int p;
3053
3054	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3055		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3056		hw_r_phy_ctrl(hw, phy, &data);
3057
3058		data &= ~BMCR_ANENABLE;
3059
3060		if (10 == port->speed)
3061			data &= ~BMCR_SPEED100;
3062		else if (100 == port->speed)
3063			data |= BMCR_SPEED100;
3064		if (1 == port->duplex)
3065			data &= ~BMCR_FULLDPLX;
3066		else if (2 == port->duplex)
3067			data |= BMCR_FULLDPLX;
3068		hw_w_phy_ctrl(hw, phy, data);
3069	}
3070}
3071
3072static void port_set_power_saving(struct ksz_port *port, int enable)
3073{
3074	struct ksz_hw *hw = port->hw;
3075	int i;
3076	int p;
3077
3078	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3079		port_cfg(hw, p,
3080			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3081}
3082
3083/*
3084 * KSZ8841 power management functions
3085 */
3086
3087/**
3088 * hw_chk_wol_pme_status - check PMEN pin
3089 * @hw: 	The hardware instance.
3090 *
3091 * This function is used to check PMEN pin is asserted.
3092 *
3093 * Return 1 if PMEN pin is asserted; otherwise, 0.
3094 */
3095static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3096{
3097	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3098	struct pci_dev *pdev = hw_priv->pdev;
3099	u16 data;
3100
3101	if (!pdev->pm_cap)
3102		return 0;
3103	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3104	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3105}
3106
3107/**
3108 * hw_clr_wol_pme_status - clear PMEN pin
3109 * @hw: 	The hardware instance.
3110 *
3111 * This routine is used to clear PME_Status to deassert PMEN pin.
3112 */
3113static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3114{
3115	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3116	struct pci_dev *pdev = hw_priv->pdev;
3117	u16 data;
3118
3119	if (!pdev->pm_cap)
3120		return;
3121
3122	/* Clear PME_Status to deassert PMEN pin. */
3123	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3124	data |= PCI_PM_CTRL_PME_STATUS;
3125	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3126}
3127
3128/**
3129 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3130 * @hw: 	The hardware instance.
3131 * @set:	The flag indicating whether to enable or disable.
3132 *
3133 * This routine is used to enable or disable Wake-on-LAN.
3134 */
3135static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3136{
3137	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3138	struct pci_dev *pdev = hw_priv->pdev;
3139	u16 data;
3140
3141	if (!pdev->pm_cap)
3142		return;
3143	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3144	data &= ~PCI_PM_CTRL_STATE_MASK;
3145	if (set)
3146		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3147	else
3148		data &= ~PCI_PM_CTRL_PME_ENABLE;
3149	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3150}
3151
3152/**
3153 * hw_cfg_wol - configure Wake-on-LAN features
3154 * @hw: 	The hardware instance.
3155 * @frame:	The pattern frame bit.
3156 * @set:	The flag indicating whether to enable or disable.
3157 *
3158 * This routine is used to enable or disable certain Wake-on-LAN features.
3159 */
3160static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3161{
3162	u16 data;
3163
3164	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3165	if (set)
3166		data |= frame;
3167	else
3168		data &= ~frame;
3169	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3170}
3171
3172/**
3173 * hw_set_wol_frame - program Wake-on-LAN pattern
3174 * @hw: 	The hardware instance.
3175 * @i:		The frame index.
3176 * @mask_size:	The size of the mask.
3177 * @mask:	Mask to ignore certain bytes in the pattern.
3178 * @frame_size:	The size of the frame.
3179 * @pattern:	The frame data.
3180 *
3181 * This routine is used to program Wake-on-LAN pattern.
3182 */
3183static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3184	const u8 *mask, uint frame_size, const u8 *pattern)
3185{
3186	int bits;
3187	int from;
3188	int len;
3189	int to;
3190	u32 crc;
3191	u8 data[64];
3192	u8 val = 0;
3193
3194	if (frame_size > mask_size * 8)
3195		frame_size = mask_size * 8;
3196	if (frame_size > 64)
3197		frame_size = 64;
3198
3199	i *= 0x10;
3200	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3201	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3202
3203	bits = len = from = to = 0;
3204	do {
3205		if (bits) {
3206			if ((val & 1))
3207				data[to++] = pattern[from];
3208			val >>= 1;
3209			++from;
3210			--bits;
3211		} else {
3212			val = mask[len];
3213			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3214				+ len);
3215			++len;
3216			if (val)
3217				bits = 8;
3218			else
3219				from += 8;
3220		}
3221	} while (from < (int) frame_size);
3222	if (val) {
3223		bits = mask[len - 1];
3224		val <<= (from % 8);
3225		bits &= ~val;
3226		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3227			1);
3228	}
3229	crc = ether_crc(to, data);
3230	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3231}
3232
3233/**
3234 * hw_add_wol_arp - add ARP pattern
3235 * @hw: 	The hardware instance.
3236 * @ip_addr:	The IPv4 address assigned to the device.
3237 *
3238 * This routine is used to add ARP pattern for waking up the host.
3239 */
3240static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3241{
3242	static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3243	u8 pattern[42] = {
3244		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3245		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3246		0x08, 0x06,
3247		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3248		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3249		0x00, 0x00, 0x00, 0x00,
3250		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3251		0x00, 0x00, 0x00, 0x00 };
3252
3253	memcpy(&pattern[38], ip_addr, 4);
3254	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3255}
3256
3257/**
3258 * hw_add_wol_bcast - add broadcast pattern
3259 * @hw: 	The hardware instance.
3260 *
3261 * This routine is used to add broadcast pattern for waking up the host.
3262 */
3263static void hw_add_wol_bcast(struct ksz_hw *hw)
3264{
3265	static const u8 mask[] = { 0x3F };
3266	static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3267
3268	hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3269}
3270
3271/**
3272 * hw_add_wol_mcast - add multicast pattern
3273 * @hw: 	The hardware instance.
3274 *
3275 * This routine is used to add multicast pattern for waking up the host.
3276 *
3277 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3278 * by IPv6 ping command.  Note that multicast packets are filtred through the
3279 * multicast hash table, so not all multicast packets can wake up the host.
3280 */
3281static void hw_add_wol_mcast(struct ksz_hw *hw)
3282{
3283	static const u8 mask[] = { 0x3F };
3284	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3285
3286	memcpy(&pattern[3], &hw->override_addr[3], 3);
3287	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3288}
3289
3290/**
3291 * hw_add_wol_ucast - add unicast pattern
3292 * @hw: 	The hardware instance.
3293 *
3294 * This routine is used to add unicast pattern to wakeup the host.
3295 *
3296 * It is assumed the unicast packet is directed to the device, as the hardware
3297 * can only receive them in normal case.
3298 */
3299static void hw_add_wol_ucast(struct ksz_hw *hw)
3300{
3301	static const u8 mask[] = { 0x3F };
3302
3303	hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3304}
3305
3306/**
3307 * hw_enable_wol - enable Wake-on-LAN
3308 * @hw: 	The hardware instance.
3309 * @wol_enable:	The Wake-on-LAN settings.
3310 * @net_addr:	The IPv4 address assigned to the device.
3311 *
3312 * This routine is used to enable Wake-on-LAN depending on driver settings.
3313 */
3314static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3315{
3316	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3317	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3318	hw_add_wol_ucast(hw);
3319	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3320	hw_add_wol_mcast(hw);
3321	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3322	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3323	hw_add_wol_arp(hw, net_addr);
3324}
3325
3326/**
3327 * hw_init - check driver is correct for the hardware
3328 * @hw: 	The hardware instance.
3329 *
3330 * This function checks the hardware is correct for this driver and sets the
3331 * hardware up for proper initialization.
3332 *
3333 * Return number of ports or 0 if not right.
3334 */
3335static int hw_init(struct ksz_hw *hw)
3336{
3337	int rc = 0;
3338	u16 data;
3339	u16 revision;
3340
3341	/* Set bus speed to 125MHz. */
3342	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3343
3344	/* Check KSZ884x chip ID. */
3345	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3346
3347	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3348	data &= KS884X_CHIP_ID_MASK_41;
3349	if (REG_CHIP_ID_41 == data)
3350		rc = 1;
3351	else if (REG_CHIP_ID_42 == data)
3352		rc = 2;
3353	else
3354		return 0;
3355
3356	/* Setup hardware features or bug workarounds. */
3357	if (revision <= 1) {
3358		hw->features |= SMALL_PACKET_TX_BUG;
3359		if (1 == rc)
3360			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3361	}
3362	return rc;
3363}
3364
3365/**
3366 * hw_reset - reset the hardware
3367 * @hw: 	The hardware instance.
3368 *
3369 * This routine resets the hardware.
3370 */
3371static void hw_reset(struct ksz_hw *hw)
3372{
3373	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3374
3375	/* Wait for device to reset. */
3376	mdelay(10);
3377
3378	/* Write 0 to clear device reset. */
3379	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3380}
3381
3382/**
3383 * hw_setup - setup the hardware
3384 * @hw: 	The hardware instance.
3385 *
3386 * This routine setup the hardware for proper operation.
3387 */
3388static void hw_setup(struct ksz_hw *hw)
3389{
3390#if SET_DEFAULT_LED
3391	u16 data;
3392
3393	/* Change default LED mode. */
3394	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3395	data &= ~LED_MODE;
3396	data |= SET_DEFAULT_LED;
3397	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3398#endif
3399
3400	/* Setup transmit control. */
3401	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3402		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3403
3404	/* Setup receive control. */
3405	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3406		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3407	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3408
3409	/* Hardware cannot handle UDP packet in IP fragments. */
3410	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3411
3412	if (hw->all_multi)
3413		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3414	if (hw->promiscuous)
3415		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3416}
3417
3418/**
3419 * hw_setup_intr - setup interrupt mask
3420 * @hw: 	The hardware instance.
3421 *
3422 * This routine setup the interrupt mask for proper operation.
3423 */
3424static void hw_setup_intr(struct ksz_hw *hw)
3425{
3426	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3427}
3428
3429static void ksz_check_desc_num(struct ksz_desc_info *info)
3430{
3431#define MIN_DESC_SHIFT  2
3432
3433	int alloc = info->alloc;
3434	int shift;
3435
3436	shift = 0;
3437	while (!(alloc & 1)) {
3438		shift++;
3439		alloc >>= 1;
3440	}
3441	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3442		pr_alert("Hardware descriptor numbers not right!\n");
3443		while (alloc) {
3444			shift++;
3445			alloc >>= 1;
3446		}
3447		if (shift < MIN_DESC_SHIFT)
3448			shift = MIN_DESC_SHIFT;
3449		alloc = 1 << shift;
3450		info->alloc = alloc;
3451	}
3452	info->mask = info->alloc - 1;
3453}
3454
3455static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3456{
3457	int i;
3458	u32 phys = desc_info->ring_phys;
3459	struct ksz_hw_desc *desc = desc_info->ring_virt;
3460	struct ksz_desc *cur = desc_info->ring;
3461	struct ksz_desc *previous = NULL;
3462
3463	for (i = 0; i < desc_info->alloc; i++) {
3464		cur->phw = desc++;
3465		phys += desc_info->size;
3466		previous = cur++;
3467		previous->phw->next = cpu_to_le32(phys);
3468	}
3469	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3470	previous->sw.buf.rx.end_of_ring = 1;
3471	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3472
3473	desc_info->avail = desc_info->alloc;
3474	desc_info->last = desc_info->next = 0;
3475
3476	desc_info->cur = desc_info->ring;
3477}
3478
3479/**
3480 * hw_set_desc_base - set descriptor base addresses
3481 * @hw: 	The hardware instance.
3482 * @tx_addr:	The transmit descriptor base.
3483 * @rx_addr:	The receive descriptor base.
3484 *
3485 * This routine programs the descriptor base addresses after reset.
3486 */
3487static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3488{
3489	/* Set base address of Tx/Rx descriptors. */
3490	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3491	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3492}
3493
3494static void hw_reset_pkts(struct ksz_desc_info *info)
3495{
3496	info->cur = info->ring;
3497	info->avail = info->alloc;
3498	info->last = info->next = 0;
3499}
3500
3501static inline void hw_resume_rx(struct ksz_hw *hw)
3502{
3503	writel(DMA_START, hw->io + KS_DMA_RX_START);
3504}
3505
3506/**
3507 * hw_start_rx - start receiving
3508 * @hw: 	The hardware instance.
3509 *
3510 * This routine starts the receive function of the hardware.
3511 */
3512static void hw_start_rx(struct ksz_hw *hw)
3513{
3514	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3515
3516	/* Notify when the receive stops. */
3517	hw->intr_mask |= KS884X_INT_RX_STOPPED;
3518
3519	writel(DMA_START, hw->io + KS_DMA_RX_START);
3520	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3521	hw->rx_stop++;
3522
3523	/* Variable overflows. */
3524	if (0 == hw->rx_stop)
3525		hw->rx_stop = 2;
3526}
3527
3528/**
3529 * hw_stop_rx - stop receiving
3530 * @hw: 	The hardware instance.
3531 *
3532 * This routine stops the receive function of the hardware.
3533 */
3534static void hw_stop_rx(struct ksz_hw *hw)
3535{
3536	hw->rx_stop = 0;
3537	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3538	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3539}
3540
3541/**
3542 * hw_start_tx - start transmitting
3543 * @hw: 	The hardware instance.
3544 *
3545 * This routine starts the transmit function of the hardware.
3546 */
3547static void hw_start_tx(struct ksz_hw *hw)
3548{
3549	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3550}
3551
3552/**
3553 * hw_stop_tx - stop transmitting
3554 * @hw: 	The hardware instance.
3555 *
3556 * This routine stops the transmit function of the hardware.
3557 */
3558static void hw_stop_tx(struct ksz_hw *hw)
3559{
3560	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3561}
3562
3563/**
3564 * hw_disable - disable hardware
3565 * @hw: 	The hardware instance.
3566 *
3567 * This routine disables the hardware.
3568 */
3569static void hw_disable(struct ksz_hw *hw)
3570{
3571	hw_stop_rx(hw);
3572	hw_stop_tx(hw);
3573	hw->enabled = 0;
3574}
3575
3576/**
3577 * hw_enable - enable hardware
3578 * @hw: 	The hardware instance.
3579 *
3580 * This routine enables the hardware.
3581 */
3582static void hw_enable(struct ksz_hw *hw)
3583{
3584	hw_start_tx(hw);
3585	hw_start_rx(hw);
3586	hw->enabled = 1;
3587}
3588
3589/**
3590 * hw_alloc_pkt - allocate enough descriptors for transmission
3591 * @hw: 	The hardware instance.
3592 * @length:	The length of the packet.
3593 * @physical:	Number of descriptors required.
3594 *
3595 * This function allocates descriptors for transmission.
3596 *
3597 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3598 */
3599static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3600{
3601	/* Always leave one descriptor free. */
3602	if (hw->tx_desc_info.avail <= 1)
3603		return 0;
3604
3605	/* Allocate a descriptor for transmission and mark it current. */
3606	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3607	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3608
3609	/* Keep track of number of transmit descriptors used so far. */
3610	++hw->tx_int_cnt;
3611	hw->tx_size += length;
3612
3613	/* Cannot hold on too much data. */
3614	if (hw->tx_size >= MAX_TX_HELD_SIZE)
3615		hw->tx_int_cnt = hw->tx_int_mask + 1;
3616
3617	if (physical > hw->tx_desc_info.avail)
3618		return 1;
3619
3620	return hw->tx_desc_info.avail;
3621}
3622
3623/**
3624 * hw_send_pkt - mark packet for transmission
3625 * @hw: 	The hardware instance.
3626 *
3627 * This routine marks the packet for transmission in PCI version.
3628 */
3629static void hw_send_pkt(struct ksz_hw *hw)
3630{
3631	struct ksz_desc *cur = hw->tx_desc_info.cur;
3632
3633	cur->sw.buf.tx.last_seg = 1;
3634
3635	/* Interrupt only after specified number of descriptors used. */
3636	if (hw->tx_int_cnt > hw->tx_int_mask) {
3637		cur->sw.buf.tx.intr = 1;
3638		hw->tx_int_cnt = 0;
3639		hw->tx_size = 0;
3640	}
3641
3642	/* KSZ8842 supports port directed transmission. */
3643	cur->sw.buf.tx.dest_port = hw->dst_ports;
3644
3645	release_desc(cur);
3646
3647	writel(0, hw->io + KS_DMA_TX_START);
3648}
3649
3650static int empty_addr(u8 *addr)
3651{
3652	u32 *addr1 = (u32 *) addr;
3653	u16 *addr2 = (u16 *) &addr[4];
3654
3655	return 0 == *addr1 && 0 == *addr2;
3656}
3657
3658/**
3659 * hw_set_addr - set MAC address
3660 * @hw: 	The hardware instance.
3661 *
3662 * This routine programs the MAC address of the hardware when the address is
3663 * overridden.
3664 */
3665static void hw_set_addr(struct ksz_hw *hw)
3666{
3667	int i;
3668
3669	for (i = 0; i < ETH_ALEN; i++)
3670		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
3671			hw->io + KS884X_ADDR_0_OFFSET + i);
3672
3673	sw_set_addr(hw, hw->override_addr);
3674}
3675
3676/**
3677 * hw_read_addr - read MAC address
3678 * @hw: 	The hardware instance.
3679 *
3680 * This routine retrieves the MAC address of the hardware.
3681 */
3682static void hw_read_addr(struct ksz_hw *hw)
3683{
3684	int i;
3685
3686	for (i = 0; i < ETH_ALEN; i++)
3687		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
3688			KS884X_ADDR_0_OFFSET + i);
3689
3690	if (!hw->mac_override) {
3691		memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
3692		if (empty_addr(hw->override_addr)) {
3693			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
3694			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
3695			       ETH_ALEN);
3696			hw->override_addr[5] += hw->id;
3697			hw_set_addr(hw);
3698		}
3699	}
3700}
3701
3702static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
3703{
3704	int i;
3705	u32 mac_addr_lo;
3706	u32 mac_addr_hi;
3707
3708	mac_addr_hi = 0;
3709	for (i = 0; i < 2; i++) {
3710		mac_addr_hi <<= 8;
3711		mac_addr_hi |= mac_addr[i];
3712	}
3713	mac_addr_hi |= ADD_ADDR_ENABLE;
3714	mac_addr_lo = 0;
3715	for (i = 2; i < 6; i++) {
3716		mac_addr_lo <<= 8;
3717		mac_addr_lo |= mac_addr[i];
3718	}
3719	index *= ADD_ADDR_INCR;
3720
3721	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
3722	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
3723}
3724
3725static void hw_set_add_addr(struct ksz_hw *hw)
3726{
3727	int i;
3728
3729	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
3730		if (empty_addr(hw->address[i]))
3731			writel(0, hw->io + ADD_ADDR_INCR * i +
3732				KS_ADD_ADDR_0_HI);
3733		else
3734			hw_ena_add_addr(hw, i, hw->address[i]);
3735	}
3736}
3737
3738static int hw_add_addr(struct ksz_hw *hw, const u8 *mac_addr)
3739{
3740	int i;
3741	int j = ADDITIONAL_ENTRIES;
3742
3743	if (ether_addr_equal(hw->override_addr, mac_addr))
3744		return 0;
3745	for (i = 0; i < hw->addr_list_size; i++) {
3746		if (ether_addr_equal(hw->address[i], mac_addr))
3747			return 0;
3748		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
3749			j = i;
3750	}
3751	if (j < ADDITIONAL_ENTRIES) {
3752		memcpy(hw->address[j], mac_addr, ETH_ALEN);
3753		hw_ena_add_addr(hw, j, hw->address[j]);
3754		return 0;
3755	}
3756	return -1;
3757}
3758
3759static int hw_del_addr(struct ksz_hw *hw, const u8 *mac_addr)
3760{
3761	int i;
3762
3763	for (i = 0; i < hw->addr_list_size; i++) {
3764		if (ether_addr_equal(hw->address[i], mac_addr)) {
3765			eth_zero_addr(hw->address[i]);
3766			writel(0, hw->io + ADD_ADDR_INCR * i +
3767				KS_ADD_ADDR_0_HI);
3768			return 0;
3769		}
3770	}
3771	return -1;
3772}
3773
3774/**
3775 * hw_clr_multicast - clear multicast addresses
3776 * @hw: 	The hardware instance.
3777 *
3778 * This routine removes all multicast addresses set in the hardware.
3779 */
3780static void hw_clr_multicast(struct ksz_hw *hw)
3781{
3782	int i;
3783
3784	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
3785		hw->multi_bits[i] = 0;
3786
3787		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
3788	}
3789}
3790
3791/**
3792 * hw_set_grp_addr - set multicast addresses
3793 * @hw: 	The hardware instance.
3794 *
3795 * This routine programs multicast addresses for the hardware to accept those
3796 * addresses.
3797 */
3798static void hw_set_grp_addr(struct ksz_hw *hw)
3799{
3800	int i;
3801	int index;
3802	int position;
3803	int value;
3804
3805	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
3806
3807	for (i = 0; i < hw->multi_list_size; i++) {
3808		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
3809		index = position >> 3;
3810		value = 1 << (position & 7);
3811		hw->multi_bits[index] |= (u8) value;
3812	}
3813
3814	for (i = 0; i < HW_MULTICAST_SIZE; i++)
3815		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
3816			i);
3817}
3818
3819/**
3820 * hw_set_multicast - enable or disable all multicast receiving
3821 * @hw: 	The hardware instance.
3822 * @multicast:	To turn on or off the all multicast feature.
3823 *
3824 * This routine enables/disables the hardware to accept all multicast packets.
3825 */
3826static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
3827{
3828	/* Stop receiving for reconfiguration. */
3829	hw_stop_rx(hw);
3830
3831	if (multicast)
3832		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3833	else
3834		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
3835
3836	if (hw->enabled)
3837		hw_start_rx(hw);
3838}
3839
3840/**
3841 * hw_set_promiscuous - enable or disable promiscuous receiving
3842 * @hw: 	The hardware instance.
3843 * @prom:	To turn on or off the promiscuous feature.
3844 *
3845 * This routine enables/disables the hardware to accept all packets.
3846 */
3847static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
3848{
3849	/* Stop receiving for reconfiguration. */
3850	hw_stop_rx(hw);
3851
3852	if (prom)
3853		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3854	else
3855		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
3856
3857	if (hw->enabled)
3858		hw_start_rx(hw);
3859}
3860
3861/**
3862 * sw_enable - enable the switch
3863 * @hw: 	The hardware instance.
3864 * @enable:	The flag to enable or disable the switch
3865 *
3866 * This routine is used to enable/disable the switch in KSZ8842.
3867 */
3868static void sw_enable(struct ksz_hw *hw, int enable)
3869{
3870	int port;
3871
3872	for (port = 0; port < SWITCH_PORT_NUM; port++) {
3873		if (hw->dev_count > 1) {
3874			/* Set port-base vlan membership with host port. */
3875			sw_cfg_port_base_vlan(hw, port,
3876				HOST_MASK | (1 << port));
3877			port_set_stp_state(hw, port, STP_STATE_DISABLED);
3878		} else {
3879			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
3880			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
3881		}
3882	}
3883	if (hw->dev_count > 1)
3884		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
3885	else
3886		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
3887
3888	if (enable)
3889		enable = KS8842_START;
3890	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
3891}
3892
3893/**
3894 * sw_setup - setup the switch
3895 * @hw: 	The hardware instance.
3896 *
3897 * This routine setup the hardware switch engine for default operation.
3898 */
3899static void sw_setup(struct ksz_hw *hw)
3900{
3901	int port;
3902
3903	sw_set_global_ctrl(hw);
3904
3905	/* Enable switch broadcast storm protection at 10% percent rate. */
3906	sw_init_broad_storm(hw);
3907	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
3908	for (port = 0; port < SWITCH_PORT_NUM; port++)
3909		sw_ena_broad_storm(hw, port);
3910
3911	sw_init_prio(hw);
3912
3913	sw_init_mirror(hw);
3914
3915	sw_init_prio_rate(hw);
3916
3917	sw_init_vlan(hw);
3918
3919	if (hw->features & STP_SUPPORT)
3920		sw_init_stp(hw);
3921	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
3922			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
3923		hw->overrides |= PAUSE_FLOW_CTRL;
3924	sw_enable(hw, 1);
3925}
3926
3927/**
3928 * ksz_start_timer - start kernel timer
3929 * @info:	Kernel timer information.
3930 * @time:	The time tick.
3931 *
3932 * This routine starts the kernel timer after the specified time tick.
3933 */
3934static void ksz_start_timer(struct ksz_timer_info *info, int time)
3935{
3936	info->cnt = 0;
3937	info->timer.expires = jiffies + time;
3938	add_timer(&info->timer);
3939
3940	/* infinity */
3941	info->max = -1;
3942}
3943
3944/**
3945 * ksz_stop_timer - stop kernel timer
3946 * @info:	Kernel timer information.
3947 *
3948 * This routine stops the kernel timer.
3949 */
3950static void ksz_stop_timer(struct ksz_timer_info *info)
3951{
3952	if (info->max) {
3953		info->max = 0;
3954		del_timer_sync(&info->timer);
3955	}
3956}
3957
3958static void ksz_init_timer(struct ksz_timer_info *info, int period,
3959	void (*function)(struct timer_list *))
3960{
3961	info->max = 0;
3962	info->period = period;
3963	timer_setup(&info->timer, function, 0);
 
 
3964}
3965
3966static void ksz_update_timer(struct ksz_timer_info *info)
3967{
3968	++info->cnt;
3969	if (info->max > 0) {
3970		if (info->cnt < info->max) {
3971			info->timer.expires = jiffies + info->period;
3972			add_timer(&info->timer);
3973		} else
3974			info->max = 0;
3975	} else if (info->max < 0) {
3976		info->timer.expires = jiffies + info->period;
3977		add_timer(&info->timer);
3978	}
3979}
3980
3981/**
3982 * ksz_alloc_soft_desc - allocate software descriptors
3983 * @desc_info:	Descriptor information structure.
3984 * @transmit:	Indication that descriptors are for transmit.
3985 *
3986 * This local function allocates software descriptors for manipulation in
3987 * memory.
3988 *
3989 * Return 0 if successful.
3990 */
3991static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
3992{
3993	desc_info->ring = kcalloc(desc_info->alloc, sizeof(struct ksz_desc),
3994				  GFP_KERNEL);
3995	if (!desc_info->ring)
3996		return 1;
3997	hw_init_desc(desc_info, transmit);
3998	return 0;
3999}
4000
4001/**
4002 * ksz_alloc_desc - allocate hardware descriptors
4003 * @adapter:	Adapter information structure.
4004 *
4005 * This local function allocates hardware descriptors for receiving and
4006 * transmitting.
4007 *
4008 * Return 0 if successful.
4009 */
4010static int ksz_alloc_desc(struct dev_info *adapter)
4011{
4012	struct ksz_hw *hw = &adapter->hw;
4013	int offset;
4014
4015	/* Allocate memory for RX & TX descriptors. */
4016	adapter->desc_pool.alloc_size =
4017		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4018		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4019		DESC_ALIGNMENT;
4020
4021	adapter->desc_pool.alloc_virt =
4022		dma_alloc_coherent(&adapter->pdev->dev,
4023				   adapter->desc_pool.alloc_size,
4024				   &adapter->desc_pool.dma_addr, GFP_KERNEL);
4025	if (adapter->desc_pool.alloc_virt == NULL) {
4026		adapter->desc_pool.alloc_size = 0;
4027		return 1;
4028	}
 
4029
4030	/* Align to the next cache line boundary. */
4031	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4032		(DESC_ALIGNMENT -
4033		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4034	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4035	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4036
4037	/* Allocate receive/transmit descriptors. */
4038	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4039		adapter->desc_pool.virt;
4040	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4041	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4042	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4043		(adapter->desc_pool.virt + offset);
4044	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4045
4046	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4047		return 1;
4048	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4049		return 1;
4050
4051	return 0;
4052}
4053
4054/**
4055 * free_dma_buf - release DMA buffer resources
4056 * @adapter:	Adapter information structure.
4057 * @dma_buf:	pointer to buf
4058 * @direction:	to or from device
4059 *
4060 * This routine is just a helper function to release the DMA buffer resources.
4061 */
4062static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4063	int direction)
4064{
4065	dma_unmap_single(&adapter->pdev->dev, dma_buf->dma, dma_buf->len,
4066			 direction);
4067	dev_kfree_skb(dma_buf->skb);
4068	dma_buf->skb = NULL;
4069	dma_buf->dma = 0;
4070}
4071
4072/**
4073 * ksz_init_rx_buffers - initialize receive descriptors
4074 * @adapter:	Adapter information structure.
4075 *
4076 * This routine initializes DMA buffers for receiving.
4077 */
4078static void ksz_init_rx_buffers(struct dev_info *adapter)
4079{
4080	int i;
4081	struct ksz_desc *desc;
4082	struct ksz_dma_buf *dma_buf;
4083	struct ksz_hw *hw = &adapter->hw;
4084	struct ksz_desc_info *info = &hw->rx_desc_info;
4085
4086	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4087		get_rx_pkt(info, &desc);
4088
4089		dma_buf = DMA_BUFFER(desc);
4090		if (dma_buf->skb && dma_buf->len != adapter->mtu)
4091			free_dma_buf(adapter, dma_buf, DMA_FROM_DEVICE);
4092		dma_buf->len = adapter->mtu;
4093		if (!dma_buf->skb)
4094			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4095		if (dma_buf->skb && !dma_buf->dma)
4096			dma_buf->dma = dma_map_single(&adapter->pdev->dev,
4097						skb_tail_pointer(dma_buf->skb),
4098						dma_buf->len,
4099						DMA_FROM_DEVICE);
 
4100
4101		/* Set descriptor. */
4102		set_rx_buf(desc, dma_buf->dma);
4103		set_rx_len(desc, dma_buf->len);
4104		release_desc(desc);
4105	}
4106}
4107
4108/**
4109 * ksz_alloc_mem - allocate memory for hardware descriptors
4110 * @adapter:	Adapter information structure.
4111 *
4112 * This function allocates memory for use by hardware descriptors for receiving
4113 * and transmitting.
4114 *
4115 * Return 0 if successful.
4116 */
4117static int ksz_alloc_mem(struct dev_info *adapter)
4118{
4119	struct ksz_hw *hw = &adapter->hw;
4120
4121	/* Determine the number of receive and transmit descriptors. */
4122	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4123	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4124
4125	/* Determine how many descriptors to skip transmit interrupt. */
4126	hw->tx_int_cnt = 0;
4127	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4128	if (hw->tx_int_mask > 8)
4129		hw->tx_int_mask = 8;
4130	while (hw->tx_int_mask) {
4131		hw->tx_int_cnt++;
4132		hw->tx_int_mask >>= 1;
4133	}
4134	if (hw->tx_int_cnt) {
4135		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4136		hw->tx_int_cnt = 0;
4137	}
4138
4139	/* Determine the descriptor size. */
4140	hw->rx_desc_info.size =
4141		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4142		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4143	hw->tx_desc_info.size =
4144		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4145		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4146	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4147		pr_alert("Hardware descriptor size not right!\n");
4148	ksz_check_desc_num(&hw->rx_desc_info);
4149	ksz_check_desc_num(&hw->tx_desc_info);
4150
4151	/* Allocate descriptors. */
4152	if (ksz_alloc_desc(adapter))
4153		return 1;
4154
4155	return 0;
4156}
4157
4158/**
4159 * ksz_free_desc - free software and hardware descriptors
4160 * @adapter:	Adapter information structure.
4161 *
4162 * This local routine frees the software and hardware descriptors allocated by
4163 * ksz_alloc_desc().
4164 */
4165static void ksz_free_desc(struct dev_info *adapter)
4166{
4167	struct ksz_hw *hw = &adapter->hw;
4168
4169	/* Reset descriptor. */
4170	hw->rx_desc_info.ring_virt = NULL;
4171	hw->tx_desc_info.ring_virt = NULL;
4172	hw->rx_desc_info.ring_phys = 0;
4173	hw->tx_desc_info.ring_phys = 0;
4174
4175	/* Free memory. */
4176	if (adapter->desc_pool.alloc_virt)
4177		dma_free_coherent(&adapter->pdev->dev,
4178				  adapter->desc_pool.alloc_size,
4179				  adapter->desc_pool.alloc_virt,
4180				  adapter->desc_pool.dma_addr);
 
4181
4182	/* Reset resource pool. */
4183	adapter->desc_pool.alloc_size = 0;
4184	adapter->desc_pool.alloc_virt = NULL;
4185
4186	kfree(hw->rx_desc_info.ring);
4187	hw->rx_desc_info.ring = NULL;
4188	kfree(hw->tx_desc_info.ring);
4189	hw->tx_desc_info.ring = NULL;
4190}
4191
4192/**
4193 * ksz_free_buffers - free buffers used in the descriptors
4194 * @adapter:	Adapter information structure.
4195 * @desc_info:	Descriptor information structure.
4196 * @direction:	to or from device
4197 *
4198 * This local routine frees buffers used in the DMA buffers.
4199 */
4200static void ksz_free_buffers(struct dev_info *adapter,
4201	struct ksz_desc_info *desc_info, int direction)
4202{
4203	int i;
4204	struct ksz_dma_buf *dma_buf;
4205	struct ksz_desc *desc = desc_info->ring;
4206
4207	for (i = 0; i < desc_info->alloc; i++) {
4208		dma_buf = DMA_BUFFER(desc);
4209		if (dma_buf->skb)
4210			free_dma_buf(adapter, dma_buf, direction);
4211		desc++;
4212	}
4213}
4214
4215/**
4216 * ksz_free_mem - free all resources used by descriptors
4217 * @adapter:	Adapter information structure.
4218 *
4219 * This local routine frees all the resources allocated by ksz_alloc_mem().
4220 */
4221static void ksz_free_mem(struct dev_info *adapter)
4222{
4223	/* Free transmit buffers. */
4224	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info, DMA_TO_DEVICE);
 
4225
4226	/* Free receive buffers. */
4227	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info, DMA_FROM_DEVICE);
 
4228
4229	/* Free descriptors. */
4230	ksz_free_desc(adapter);
4231}
4232
4233static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4234	u64 *counter)
4235{
4236	int i;
4237	int mib;
4238	int port;
4239	struct ksz_port_mib *port_mib;
4240
4241	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4242	for (i = 0, port = first; i < cnt; i++, port++) {
4243		port_mib = &hw->port_mib[port];
4244		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4245			counter[mib] += port_mib->counter[mib];
4246	}
4247}
4248
4249/**
4250 * send_packet - send packet
4251 * @skb:	Socket buffer.
4252 * @dev:	Network device.
4253 *
4254 * This routine is used to send a packet out to the network.
4255 */
4256static void send_packet(struct sk_buff *skb, struct net_device *dev)
4257{
4258	struct ksz_desc *desc;
4259	struct ksz_desc *first;
4260	struct dev_priv *priv = netdev_priv(dev);
4261	struct dev_info *hw_priv = priv->adapter;
4262	struct ksz_hw *hw = &hw_priv->hw;
4263	struct ksz_desc_info *info = &hw->tx_desc_info;
4264	struct ksz_dma_buf *dma_buf;
4265	int len;
4266	int last_frag = skb_shinfo(skb)->nr_frags;
4267
4268	/*
4269	 * KSZ8842 with multiple device interfaces needs to be told which port
4270	 * to send.
4271	 */
4272	if (hw->dev_count > 1)
4273		hw->dst_ports = 1 << priv->port.first_port;
4274
4275	/* Hardware will pad the length to 60. */
4276	len = skb->len;
4277
4278	/* Remember the very first descriptor. */
4279	first = info->cur;
4280	desc = first;
4281
4282	dma_buf = DMA_BUFFER(desc);
4283	if (last_frag) {
4284		int frag;
4285		skb_frag_t *this_frag;
4286
4287		dma_buf->len = skb_headlen(skb);
4288
4289		dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
4290					      dma_buf->len, DMA_TO_DEVICE);
 
4291		set_tx_buf(desc, dma_buf->dma);
4292		set_tx_len(desc, dma_buf->len);
4293
4294		frag = 0;
4295		do {
4296			this_frag = &skb_shinfo(skb)->frags[frag];
4297
4298			/* Get a new descriptor. */
4299			get_tx_pkt(info, &desc);
4300
4301			/* Keep track of descriptors used so far. */
4302			++hw->tx_int_cnt;
4303
4304			dma_buf = DMA_BUFFER(desc);
4305			dma_buf->len = skb_frag_size(this_frag);
4306
4307			dma_buf->dma = dma_map_single(&hw_priv->pdev->dev,
4308						      skb_frag_address(this_frag),
4309						      dma_buf->len,
4310						      DMA_TO_DEVICE);
 
4311			set_tx_buf(desc, dma_buf->dma);
4312			set_tx_len(desc, dma_buf->len);
4313
4314			frag++;
4315			if (frag == last_frag)
4316				break;
4317
4318			/* Do not release the last descriptor here. */
4319			release_desc(desc);
4320		} while (1);
4321
4322		/* current points to the last descriptor. */
4323		info->cur = desc;
4324
4325		/* Release the first descriptor. */
4326		release_desc(first);
4327	} else {
4328		dma_buf->len = len;
4329
4330		dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
4331					      dma_buf->len, DMA_TO_DEVICE);
 
4332		set_tx_buf(desc, dma_buf->dma);
4333		set_tx_len(desc, dma_buf->len);
4334	}
4335
4336	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4337		(desc)->sw.buf.tx.csum_gen_tcp = 1;
4338		(desc)->sw.buf.tx.csum_gen_udp = 1;
4339	}
4340
4341	/*
4342	 * The last descriptor holds the packet so that it can be returned to
4343	 * network subsystem after all descriptors are transmitted.
4344	 */
4345	dma_buf->skb = skb;
4346
4347	hw_send_pkt(hw);
4348
4349	/* Update transmit statistics. */
4350	dev->stats.tx_packets++;
4351	dev->stats.tx_bytes += len;
4352}
4353
4354/**
4355 * transmit_cleanup - clean up transmit descriptors
4356 * @hw_priv:	Network device.
4357 * @normal:	break if owned
4358 *
4359 * This routine is called to clean up the transmitted buffers.
4360 */
4361static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4362{
4363	int last;
4364	union desc_stat status;
4365	struct ksz_hw *hw = &hw_priv->hw;
4366	struct ksz_desc_info *info = &hw->tx_desc_info;
4367	struct ksz_desc *desc;
4368	struct ksz_dma_buf *dma_buf;
4369	struct net_device *dev = NULL;
4370
4371	spin_lock_irq(&hw_priv->hwlock);
4372	last = info->last;
4373
4374	while (info->avail < info->alloc) {
4375		/* Get next descriptor which is not hardware owned. */
4376		desc = &info->ring[last];
4377		status.data = le32_to_cpu(desc->phw->ctrl.data);
4378		if (status.tx.hw_owned) {
4379			if (normal)
4380				break;
4381			else
4382				reset_desc(desc, status);
4383		}
4384
4385		dma_buf = DMA_BUFFER(desc);
4386		dma_unmap_single(&hw_priv->pdev->dev, dma_buf->dma,
4387				 dma_buf->len, DMA_TO_DEVICE);
 
4388
4389		/* This descriptor contains the last buffer in the packet. */
4390		if (dma_buf->skb) {
4391			dev = dma_buf->skb->dev;
4392
4393			/* Release the packet back to network subsystem. */
4394			dev_kfree_skb_irq(dma_buf->skb);
4395			dma_buf->skb = NULL;
4396		}
4397
4398		/* Free the transmitted descriptor. */
4399		last++;
4400		last &= info->mask;
4401		info->avail++;
4402	}
4403	info->last = last;
4404	spin_unlock_irq(&hw_priv->hwlock);
4405
4406	/* Notify the network subsystem that the packet has been sent. */
4407	if (dev)
4408		netif_trans_update(dev);
4409}
4410
4411/**
4412 * tx_done - transmit done processing
4413 * @hw_priv:	Network device.
4414 *
4415 * This routine is called when the transmit interrupt is triggered, indicating
4416 * either a packet is sent successfully or there are transmit errors.
4417 */
4418static void tx_done(struct dev_info *hw_priv)
4419{
4420	struct ksz_hw *hw = &hw_priv->hw;
4421	int port;
4422
4423	transmit_cleanup(hw_priv, 1);
4424
4425	for (port = 0; port < hw->dev_count; port++) {
4426		struct net_device *dev = hw->port_info[port].pdev;
4427
4428		if (netif_running(dev) && netif_queue_stopped(dev))
4429			netif_wake_queue(dev);
4430	}
4431}
4432
4433static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4434{
4435	skb->dev = old->dev;
4436	skb->protocol = old->protocol;
4437	skb->ip_summed = old->ip_summed;
4438	skb->csum = old->csum;
4439	skb_set_network_header(skb, ETH_HLEN);
4440
4441	dev_consume_skb_any(old);
4442}
4443
4444/**
4445 * netdev_tx - send out packet
4446 * @skb:	Socket buffer.
4447 * @dev:	Network device.
4448 *
4449 * This function is used by the upper network layer to send out a packet.
4450 *
4451 * Return 0 if successful; otherwise an error code indicating failure.
4452 */
4453static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4454{
4455	struct dev_priv *priv = netdev_priv(dev);
4456	struct dev_info *hw_priv = priv->adapter;
4457	struct ksz_hw *hw = &hw_priv->hw;
4458	int left;
4459	int num = 1;
4460	int rc = 0;
4461
4462	if (hw->features & SMALL_PACKET_TX_BUG) {
4463		struct sk_buff *org_skb = skb;
4464
4465		if (skb->len <= 48) {
4466			if (skb_end_pointer(skb) - skb->data >= 50) {
4467				memset(&skb->data[skb->len], 0, 50 - skb->len);
4468				skb->len = 50;
4469			} else {
4470				skb = netdev_alloc_skb(dev, 50);
4471				if (!skb)
4472					return NETDEV_TX_BUSY;
4473				memcpy(skb->data, org_skb->data, org_skb->len);
4474				memset(&skb->data[org_skb->len], 0,
4475					50 - org_skb->len);
4476				skb->len = 50;
4477				copy_old_skb(org_skb, skb);
4478			}
4479		}
4480	}
4481
4482	spin_lock_irq(&hw_priv->hwlock);
4483
4484	num = skb_shinfo(skb)->nr_frags + 1;
4485	left = hw_alloc_pkt(hw, skb->len, num);
4486	if (left) {
4487		if (left < num ||
4488		    (CHECKSUM_PARTIAL == skb->ip_summed &&
4489		     skb->protocol == htons(ETH_P_IPV6))) {
4490			struct sk_buff *org_skb = skb;
4491
4492			skb = netdev_alloc_skb(dev, org_skb->len);
4493			if (!skb) {
4494				rc = NETDEV_TX_BUSY;
4495				goto unlock;
4496			}
4497			skb_copy_and_csum_dev(org_skb, skb->data);
4498			org_skb->ip_summed = CHECKSUM_NONE;
4499			skb->len = org_skb->len;
4500			copy_old_skb(org_skb, skb);
4501		}
4502		send_packet(skb, dev);
4503		if (left <= num)
4504			netif_stop_queue(dev);
4505	} else {
4506		/* Stop the transmit queue until packet is allocated. */
4507		netif_stop_queue(dev);
4508		rc = NETDEV_TX_BUSY;
4509	}
4510unlock:
4511	spin_unlock_irq(&hw_priv->hwlock);
4512
4513	return rc;
4514}
4515
4516/**
4517 * netdev_tx_timeout - transmit timeout processing
4518 * @dev:	Network device.
4519 * @txqueue:	index of hanging queue
4520 *
4521 * This routine is called when the transmit timer expires.  That indicates the
4522 * hardware is not running correctly because transmit interrupts are not
4523 * triggered to free up resources so that the transmit routine can continue
4524 * sending out packets.  The hardware is reset to correct the problem.
4525 */
4526static void netdev_tx_timeout(struct net_device *dev, unsigned int txqueue)
4527{
4528	static unsigned long last_reset;
4529
4530	struct dev_priv *priv = netdev_priv(dev);
4531	struct dev_info *hw_priv = priv->adapter;
4532	struct ksz_hw *hw = &hw_priv->hw;
4533	int port;
4534
4535	if (hw->dev_count > 1) {
4536		/*
4537		 * Only reset the hardware if time between calls is long
4538		 * enough.
4539		 */
4540		if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4541			hw_priv = NULL;
4542	}
4543
4544	last_reset = jiffies;
4545	if (hw_priv) {
4546		hw_dis_intr(hw);
4547		hw_disable(hw);
4548
4549		transmit_cleanup(hw_priv, 0);
4550		hw_reset_pkts(&hw->rx_desc_info);
4551		hw_reset_pkts(&hw->tx_desc_info);
4552		ksz_init_rx_buffers(hw_priv);
4553
4554		hw_reset(hw);
4555
4556		hw_set_desc_base(hw,
4557			hw->tx_desc_info.ring_phys,
4558			hw->rx_desc_info.ring_phys);
4559		hw_set_addr(hw);
4560		if (hw->all_multi)
4561			hw_set_multicast(hw, hw->all_multi);
4562		else if (hw->multi_list_size)
4563			hw_set_grp_addr(hw);
4564
4565		if (hw->dev_count > 1) {
4566			hw_set_add_addr(hw);
4567			for (port = 0; port < SWITCH_PORT_NUM; port++) {
4568				struct net_device *port_dev;
4569
4570				port_set_stp_state(hw, port,
4571					STP_STATE_DISABLED);
4572
4573				port_dev = hw->port_info[port].pdev;
4574				if (netif_running(port_dev))
4575					port_set_stp_state(hw, port,
4576						STP_STATE_SIMPLE);
4577			}
4578		}
4579
4580		hw_enable(hw);
4581		hw_ena_intr(hw);
4582	}
4583
4584	netif_trans_update(dev);
4585	netif_wake_queue(dev);
4586}
4587
4588static inline void csum_verified(struct sk_buff *skb)
4589{
4590	unsigned short protocol;
4591	struct iphdr *iph;
4592
4593	protocol = skb->protocol;
4594	skb_reset_network_header(skb);
4595	iph = (struct iphdr *) skb_network_header(skb);
4596	if (protocol == htons(ETH_P_8021Q)) {
4597		protocol = iph->tot_len;
4598		skb_set_network_header(skb, VLAN_HLEN);
4599		iph = (struct iphdr *) skb_network_header(skb);
4600	}
4601	if (protocol == htons(ETH_P_IP)) {
4602		if (iph->protocol == IPPROTO_TCP)
4603			skb->ip_summed = CHECKSUM_UNNECESSARY;
4604	}
4605}
4606
4607static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4608	struct ksz_desc *desc, union desc_stat status)
4609{
4610	int packet_len;
4611	struct dev_priv *priv = netdev_priv(dev);
4612	struct dev_info *hw_priv = priv->adapter;
4613	struct ksz_dma_buf *dma_buf;
4614	struct sk_buff *skb;
 
4615
4616	/* Received length includes 4-byte CRC. */
4617	packet_len = status.rx.frame_len - 4;
4618
4619	dma_buf = DMA_BUFFER(desc);
4620	dma_sync_single_for_cpu(&hw_priv->pdev->dev, dma_buf->dma,
4621				packet_len + 4, DMA_FROM_DEVICE);
 
4622
4623	do {
4624		/* skb->data != skb->head */
4625		skb = netdev_alloc_skb(dev, packet_len + 2);
4626		if (!skb) {
4627			dev->stats.rx_dropped++;
4628			return -ENOMEM;
4629		}
4630
4631		/*
4632		 * Align socket buffer in 4-byte boundary for better
4633		 * performance.
4634		 */
4635		skb_reserve(skb, 2);
4636
4637		skb_put_data(skb, dma_buf->skb->data, packet_len);
 
4638	} while (0);
4639
4640	skb->protocol = eth_type_trans(skb, dev);
4641
4642	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
4643		csum_verified(skb);
4644
4645	/* Update receive statistics. */
4646	dev->stats.rx_packets++;
4647	dev->stats.rx_bytes += packet_len;
4648
4649	/* Notify upper layer for received packet. */
4650	netif_rx(skb);
4651
4652	return 0;
4653}
4654
4655static int dev_rcv_packets(struct dev_info *hw_priv)
4656{
4657	int next;
4658	union desc_stat status;
4659	struct ksz_hw *hw = &hw_priv->hw;
4660	struct net_device *dev = hw->port_info[0].pdev;
4661	struct ksz_desc_info *info = &hw->rx_desc_info;
4662	int left = info->alloc;
4663	struct ksz_desc *desc;
4664	int received = 0;
4665
4666	next = info->next;
4667	while (left--) {
4668		/* Get next descriptor which is not hardware owned. */
4669		desc = &info->ring[next];
4670		status.data = le32_to_cpu(desc->phw->ctrl.data);
4671		if (status.rx.hw_owned)
4672			break;
4673
4674		/* Status valid only when last descriptor bit is set. */
4675		if (status.rx.last_desc && status.rx.first_desc) {
4676			if (rx_proc(dev, hw, desc, status))
4677				goto release_packet;
4678			received++;
4679		}
4680
4681release_packet:
4682		release_desc(desc);
4683		next++;
4684		next &= info->mask;
4685	}
4686	info->next = next;
4687
4688	return received;
4689}
4690
4691static int port_rcv_packets(struct dev_info *hw_priv)
4692{
4693	int next;
4694	union desc_stat status;
4695	struct ksz_hw *hw = &hw_priv->hw;
4696	struct net_device *dev = hw->port_info[0].pdev;
4697	struct ksz_desc_info *info = &hw->rx_desc_info;
4698	int left = info->alloc;
4699	struct ksz_desc *desc;
4700	int received = 0;
4701
4702	next = info->next;
4703	while (left--) {
4704		/* Get next descriptor which is not hardware owned. */
4705		desc = &info->ring[next];
4706		status.data = le32_to_cpu(desc->phw->ctrl.data);
4707		if (status.rx.hw_owned)
4708			break;
4709
4710		if (hw->dev_count > 1) {
4711			/* Get received port number. */
4712			int p = HW_TO_DEV_PORT(status.rx.src_port);
4713
4714			dev = hw->port_info[p].pdev;
4715			if (!netif_running(dev))
4716				goto release_packet;
4717		}
4718
4719		/* Status valid only when last descriptor bit is set. */
4720		if (status.rx.last_desc && status.rx.first_desc) {
4721			if (rx_proc(dev, hw, desc, status))
4722				goto release_packet;
4723			received++;
4724		}
4725
4726release_packet:
4727		release_desc(desc);
4728		next++;
4729		next &= info->mask;
4730	}
4731	info->next = next;
4732
4733	return received;
4734}
4735
4736static int dev_rcv_special(struct dev_info *hw_priv)
4737{
4738	int next;
4739	union desc_stat status;
4740	struct ksz_hw *hw = &hw_priv->hw;
4741	struct net_device *dev = hw->port_info[0].pdev;
4742	struct ksz_desc_info *info = &hw->rx_desc_info;
4743	int left = info->alloc;
4744	struct ksz_desc *desc;
4745	int received = 0;
4746
4747	next = info->next;
4748	while (left--) {
4749		/* Get next descriptor which is not hardware owned. */
4750		desc = &info->ring[next];
4751		status.data = le32_to_cpu(desc->phw->ctrl.data);
4752		if (status.rx.hw_owned)
4753			break;
4754
4755		if (hw->dev_count > 1) {
4756			/* Get received port number. */
4757			int p = HW_TO_DEV_PORT(status.rx.src_port);
4758
4759			dev = hw->port_info[p].pdev;
4760			if (!netif_running(dev))
4761				goto release_packet;
4762		}
4763
4764		/* Status valid only when last descriptor bit is set. */
4765		if (status.rx.last_desc && status.rx.first_desc) {
4766			/*
4767			 * Receive without error.  With receive errors
4768			 * disabled, packets with receive errors will be
4769			 * dropped, so no need to check the error bit.
4770			 */
4771			if (!status.rx.error || (status.data &
4772					KS_DESC_RX_ERROR_COND) ==
4773					KS_DESC_RX_ERROR_TOO_LONG) {
4774				if (rx_proc(dev, hw, desc, status))
4775					goto release_packet;
4776				received++;
4777			} else {
4778				struct dev_priv *priv = netdev_priv(dev);
4779
4780				/* Update receive error statistics. */
4781				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
4782			}
4783		}
4784
4785release_packet:
4786		release_desc(desc);
4787		next++;
4788		next &= info->mask;
4789	}
4790	info->next = next;
4791
4792	return received;
4793}
4794
4795static void rx_proc_task(struct tasklet_struct *t)
4796{
4797	struct dev_info *hw_priv = from_tasklet(hw_priv, t, rx_tasklet);
4798	struct ksz_hw *hw = &hw_priv->hw;
4799
4800	if (!hw->enabled)
4801		return;
4802	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
4803
4804		/* In case receive process is suspended because of overrun. */
4805		hw_resume_rx(hw);
4806
4807		/* tasklets are interruptible. */
4808		spin_lock_irq(&hw_priv->hwlock);
4809		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
4810		spin_unlock_irq(&hw_priv->hwlock);
4811	} else {
4812		hw_ack_intr(hw, KS884X_INT_RX);
4813		tasklet_schedule(&hw_priv->rx_tasklet);
4814	}
4815}
4816
4817static void tx_proc_task(struct tasklet_struct *t)
4818{
4819	struct dev_info *hw_priv = from_tasklet(hw_priv, t, tx_tasklet);
4820	struct ksz_hw *hw = &hw_priv->hw;
4821
4822	hw_ack_intr(hw, KS884X_INT_TX_MASK);
4823
4824	tx_done(hw_priv);
4825
4826	/* tasklets are interruptible. */
4827	spin_lock_irq(&hw_priv->hwlock);
4828	hw_turn_on_intr(hw, KS884X_INT_TX);
4829	spin_unlock_irq(&hw_priv->hwlock);
4830}
4831
4832static inline void handle_rx_stop(struct ksz_hw *hw)
4833{
4834	/* Receive just has been stopped. */
4835	if (0 == hw->rx_stop)
4836		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
4837	else if (hw->rx_stop > 1) {
4838		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
4839			hw_start_rx(hw);
4840		} else {
4841			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
4842			hw->rx_stop = 0;
4843		}
4844	} else
4845		/* Receive just has been started. */
4846		hw->rx_stop++;
4847}
4848
4849/**
4850 * netdev_intr - interrupt handling
4851 * @irq:	Interrupt number.
4852 * @dev_id:	Network device.
4853 *
4854 * This function is called by upper network layer to signal interrupt.
4855 *
4856 * Return IRQ_HANDLED if interrupt is handled.
4857 */
4858static irqreturn_t netdev_intr(int irq, void *dev_id)
4859{
4860	uint int_enable = 0;
4861	struct net_device *dev = (struct net_device *) dev_id;
4862	struct dev_priv *priv = netdev_priv(dev);
4863	struct dev_info *hw_priv = priv->adapter;
4864	struct ksz_hw *hw = &hw_priv->hw;
4865
4866	spin_lock(&hw_priv->hwlock);
4867
4868	hw_read_intr(hw, &int_enable);
4869
4870	/* Not our interrupt! */
4871	if (!int_enable) {
4872		spin_unlock(&hw_priv->hwlock);
4873		return IRQ_NONE;
4874	}
4875
4876	do {
4877		hw_ack_intr(hw, int_enable);
4878		int_enable &= hw->intr_mask;
4879
4880		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
4881			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
4882			tasklet_schedule(&hw_priv->tx_tasklet);
4883		}
4884
4885		if (likely(int_enable & KS884X_INT_RX)) {
4886			hw_dis_intr_bit(hw, KS884X_INT_RX);
4887			tasklet_schedule(&hw_priv->rx_tasklet);
4888		}
4889
4890		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
4891			dev->stats.rx_fifo_errors++;
4892			hw_resume_rx(hw);
4893		}
4894
4895		if (unlikely(int_enable & KS884X_INT_PHY)) {
4896			struct ksz_port *port = &priv->port;
4897
4898			hw->features |= LINK_INT_WORKING;
4899			port_get_link_speed(port);
4900		}
4901
4902		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
4903			handle_rx_stop(hw);
4904			break;
4905		}
4906
4907		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
4908			u32 data;
4909
4910			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
4911			pr_info("Tx stopped\n");
4912			data = readl(hw->io + KS_DMA_TX_CTRL);
4913			if (!(data & DMA_TX_ENABLE))
4914				pr_info("Tx disabled\n");
4915			break;
4916		}
4917	} while (0);
4918
4919	hw_ena_intr(hw);
4920
4921	spin_unlock(&hw_priv->hwlock);
4922
4923	return IRQ_HANDLED;
4924}
4925
4926/*
4927 * Linux network device functions
4928 */
4929
 
4930
4931#ifdef CONFIG_NET_POLL_CONTROLLER
4932static void netdev_netpoll(struct net_device *dev)
4933{
4934	struct dev_priv *priv = netdev_priv(dev);
4935	struct dev_info *hw_priv = priv->adapter;
4936
4937	hw_dis_intr(&hw_priv->hw);
4938	netdev_intr(dev->irq, dev);
4939}
4940#endif
4941
4942static void bridge_change(struct ksz_hw *hw)
4943{
4944	int port;
4945	u8  member;
4946	struct ksz_switch *sw = hw->ksz_switch;
4947
4948	/* No ports in forwarding state. */
4949	if (!sw->member) {
4950		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4951		sw_block_addr(hw);
4952	}
4953	for (port = 0; port < SWITCH_PORT_NUM; port++) {
4954		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
4955			member = HOST_MASK | sw->member;
4956		else
4957			member = HOST_MASK | (1 << port);
4958		if (member != sw->port_cfg[port].member)
4959			sw_cfg_port_base_vlan(hw, port, member);
4960	}
4961}
4962
4963/**
4964 * netdev_close - close network device
4965 * @dev:	Network device.
4966 *
4967 * This function process the close operation of network device.  This is caused
4968 * by the user command "ifconfig ethX down."
4969 *
4970 * Return 0 if successful; otherwise an error code indicating failure.
4971 */
4972static int netdev_close(struct net_device *dev)
4973{
4974	struct dev_priv *priv = netdev_priv(dev);
4975	struct dev_info *hw_priv = priv->adapter;
4976	struct ksz_port *port = &priv->port;
4977	struct ksz_hw *hw = &hw_priv->hw;
4978	int pi;
4979
4980	netif_stop_queue(dev);
4981
4982	ksz_stop_timer(&priv->monitor_timer_info);
4983
4984	/* Need to shut the port manually in multiple device interfaces mode. */
4985	if (hw->dev_count > 1) {
4986		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
4987
4988		/* Port is closed.  Need to change bridge setting. */
4989		if (hw->features & STP_SUPPORT) {
4990			pi = 1 << port->first_port;
4991			if (hw->ksz_switch->member & pi) {
4992				hw->ksz_switch->member &= ~pi;
4993				bridge_change(hw);
4994			}
4995		}
4996	}
4997	if (port->first_port > 0)
4998		hw_del_addr(hw, dev->dev_addr);
4999	if (!hw_priv->wol_enable)
5000		port_set_power_saving(port, true);
5001
5002	if (priv->multicast)
5003		--hw->all_multi;
5004	if (priv->promiscuous)
5005		--hw->promiscuous;
5006
5007	hw_priv->opened--;
5008	if (!(hw_priv->opened)) {
5009		ksz_stop_timer(&hw_priv->mib_timer_info);
5010		flush_work(&hw_priv->mib_read);
5011
5012		hw_dis_intr(hw);
5013		hw_disable(hw);
5014		hw_clr_multicast(hw);
5015
5016		/* Delay for receive task to stop scheduling itself. */
5017		msleep(2000 / HZ);
5018
5019		tasklet_kill(&hw_priv->rx_tasklet);
5020		tasklet_kill(&hw_priv->tx_tasklet);
5021		free_irq(dev->irq, hw_priv->dev);
5022
5023		transmit_cleanup(hw_priv, 0);
5024		hw_reset_pkts(&hw->rx_desc_info);
5025		hw_reset_pkts(&hw->tx_desc_info);
5026
5027		/* Clean out static MAC table when the switch is shutdown. */
5028		if (hw->features & STP_SUPPORT)
5029			sw_clr_sta_mac_table(hw);
5030	}
5031
5032	return 0;
5033}
5034
5035static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5036{
5037	if (hw->ksz_switch) {
5038		u32 data;
5039
5040		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5041		if (hw->features & RX_HUGE_FRAME)
5042			data |= SWITCH_HUGE_PACKET;
5043		else
5044			data &= ~SWITCH_HUGE_PACKET;
5045		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5046	}
5047	if (hw->features & RX_HUGE_FRAME) {
5048		hw->rx_cfg |= DMA_RX_ERROR;
5049		hw_priv->dev_rcv = dev_rcv_special;
5050	} else {
5051		hw->rx_cfg &= ~DMA_RX_ERROR;
5052		if (hw->dev_count > 1)
5053			hw_priv->dev_rcv = port_rcv_packets;
5054		else
5055			hw_priv->dev_rcv = dev_rcv_packets;
5056	}
5057}
5058
5059static int prepare_hardware(struct net_device *dev)
5060{
5061	struct dev_priv *priv = netdev_priv(dev);
5062	struct dev_info *hw_priv = priv->adapter;
5063	struct ksz_hw *hw = &hw_priv->hw;
5064	int rc = 0;
5065
5066	/* Remember the network device that requests interrupts. */
5067	hw_priv->dev = dev;
5068	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5069	if (rc)
5070		return rc;
5071	tasklet_setup(&hw_priv->rx_tasklet, rx_proc_task);
5072	tasklet_setup(&hw_priv->tx_tasklet, tx_proc_task);
 
 
5073
5074	hw->promiscuous = 0;
5075	hw->all_multi = 0;
5076	hw->multi_list_size = 0;
5077
5078	hw_reset(hw);
5079
5080	hw_set_desc_base(hw,
5081		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5082	hw_set_addr(hw);
5083	hw_cfg_huge_frame(hw_priv, hw);
5084	ksz_init_rx_buffers(hw_priv);
5085	return 0;
5086}
5087
5088static void set_media_state(struct net_device *dev, int media_state)
5089{
5090	struct dev_priv *priv = netdev_priv(dev);
5091
5092	if (media_state == priv->media_state)
5093		netif_carrier_on(dev);
5094	else
5095		netif_carrier_off(dev);
5096	netif_info(priv, link, dev, "link %s\n",
5097		   media_state == priv->media_state ? "on" : "off");
5098}
5099
5100/**
5101 * netdev_open - open network device
5102 * @dev:	Network device.
5103 *
5104 * This function process the open operation of network device.  This is caused
5105 * by the user command "ifconfig ethX up."
5106 *
5107 * Return 0 if successful; otherwise an error code indicating failure.
5108 */
5109static int netdev_open(struct net_device *dev)
5110{
5111	struct dev_priv *priv = netdev_priv(dev);
5112	struct dev_info *hw_priv = priv->adapter;
5113	struct ksz_hw *hw = &hw_priv->hw;
5114	struct ksz_port *port = &priv->port;
5115	unsigned long next_jiffies;
5116	int i;
5117	int p;
5118	int rc = 0;
5119
5120	next_jiffies = jiffies + HZ * 2;
5121	priv->multicast = 0;
5122	priv->promiscuous = 0;
5123
5124	/* Reset device statistics. */
5125	memset(&dev->stats, 0, sizeof(struct net_device_stats));
5126	memset((void *) port->counter, 0,
5127		(sizeof(u64) * OID_COUNTER_LAST));
5128
5129	if (!(hw_priv->opened)) {
5130		rc = prepare_hardware(dev);
5131		if (rc)
5132			return rc;
5133		for (i = 0; i < hw->mib_port_cnt; i++) {
5134			next_jiffies += HZ * 1;
 
 
 
5135			hw_priv->counter[i].time = next_jiffies;
5136			hw->port_mib[i].state = media_disconnected;
5137			port_init_cnt(hw, i);
5138		}
5139		if (hw->ksz_switch)
5140			hw->port_mib[HOST_PORT].state = media_connected;
5141		else {
5142			hw_add_wol_bcast(hw);
5143			hw_cfg_wol_pme(hw, 0);
5144			hw_clr_wol_pme_status(&hw_priv->hw);
5145		}
5146	}
5147	port_set_power_saving(port, false);
5148
5149	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5150		/*
5151		 * Initialize to invalid value so that link detection
5152		 * is done.
5153		 */
5154		hw->port_info[p].partner = 0xFF;
5155		hw->port_info[p].state = media_disconnected;
5156	}
5157
5158	/* Need to open the port in multiple device interfaces mode. */
5159	if (hw->dev_count > 1) {
5160		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5161		if (port->first_port > 0)
5162			hw_add_addr(hw, dev->dev_addr);
5163	}
5164
5165	port_get_link_speed(port);
5166	if (port->force_link)
5167		port_force_link_speed(port);
5168	else
5169		port_set_link_speed(port);
5170
5171	if (!(hw_priv->opened)) {
5172		hw_setup_intr(hw);
5173		hw_enable(hw);
5174		hw_ena_intr(hw);
5175
5176		if (hw->mib_port_cnt)
5177			ksz_start_timer(&hw_priv->mib_timer_info,
5178				hw_priv->mib_timer_info.period);
5179	}
5180
5181	hw_priv->opened++;
5182
5183	ksz_start_timer(&priv->monitor_timer_info,
5184		priv->monitor_timer_info.period);
5185
5186	priv->media_state = port->linked->state;
5187
5188	set_media_state(dev, media_connected);
5189	netif_start_queue(dev);
5190
5191	return 0;
5192}
5193
5194/* RX errors = rx_errors */
5195/* RX dropped = rx_dropped */
5196/* RX overruns = rx_fifo_errors */
5197/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5198/* TX errors = tx_errors */
5199/* TX dropped = tx_dropped */
5200/* TX overruns = tx_fifo_errors */
5201/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5202/* collisions = collisions */
5203
5204/**
5205 * netdev_query_statistics - query network device statistics
5206 * @dev:	Network device.
5207 *
5208 * This function returns the statistics of the network device.  The device
5209 * needs not be opened.
5210 *
5211 * Return network device statistics.
5212 */
5213static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5214{
5215	struct dev_priv *priv = netdev_priv(dev);
5216	struct ksz_port *port = &priv->port;
5217	struct ksz_hw *hw = &priv->adapter->hw;
5218	struct ksz_port_mib *mib;
5219	int i;
5220	int p;
5221
5222	dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5223	dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5224
5225	/* Reset to zero to add count later. */
5226	dev->stats.multicast = 0;
5227	dev->stats.collisions = 0;
5228	dev->stats.rx_length_errors = 0;
5229	dev->stats.rx_crc_errors = 0;
5230	dev->stats.rx_frame_errors = 0;
5231	dev->stats.tx_window_errors = 0;
5232
5233	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5234		mib = &hw->port_mib[p];
5235
5236		dev->stats.multicast += (unsigned long)
5237			mib->counter[MIB_COUNTER_RX_MULTICAST];
5238
5239		dev->stats.collisions += (unsigned long)
5240			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5241
5242		dev->stats.rx_length_errors += (unsigned long)(
5243			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5244			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5245			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5246			mib->counter[MIB_COUNTER_RX_JABBER]);
5247		dev->stats.rx_crc_errors += (unsigned long)
5248			mib->counter[MIB_COUNTER_RX_CRC_ERR];
5249		dev->stats.rx_frame_errors += (unsigned long)(
5250			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5251			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5252
5253		dev->stats.tx_window_errors += (unsigned long)
5254			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5255	}
5256
5257	return &dev->stats;
5258}
5259
5260/**
5261 * netdev_set_mac_address - set network device MAC address
5262 * @dev:	Network device.
5263 * @addr:	Buffer of MAC address.
5264 *
5265 * This function is used to set the MAC address of the network device.
5266 *
5267 * Return 0 to indicate success.
5268 */
5269static int netdev_set_mac_address(struct net_device *dev, void *addr)
5270{
5271	struct dev_priv *priv = netdev_priv(dev);
5272	struct dev_info *hw_priv = priv->adapter;
5273	struct ksz_hw *hw = &hw_priv->hw;
5274	struct sockaddr *mac = addr;
5275	uint interrupt;
5276
5277	if (priv->port.first_port > 0)
5278		hw_del_addr(hw, dev->dev_addr);
5279	else {
5280		hw->mac_override = 1;
5281		memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5282	}
5283
5284	eth_hw_addr_set(dev, mac->sa_data);
5285
5286	interrupt = hw_block_intr(hw);
5287
5288	if (priv->port.first_port > 0)
5289		hw_add_addr(hw, dev->dev_addr);
5290	else
5291		hw_set_addr(hw);
5292	hw_restore_intr(hw, interrupt);
5293
5294	return 0;
5295}
5296
5297static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5298	struct ksz_hw *hw, int promiscuous)
5299{
5300	if (promiscuous != priv->promiscuous) {
5301		u8 prev_state = hw->promiscuous;
5302
5303		if (promiscuous)
5304			++hw->promiscuous;
5305		else
5306			--hw->promiscuous;
5307		priv->promiscuous = promiscuous;
5308
5309		/* Turn on/off promiscuous mode. */
5310		if (hw->promiscuous <= 1 && prev_state <= 1)
5311			hw_set_promiscuous(hw, hw->promiscuous);
5312
5313		/*
5314		 * Port is not in promiscuous mode, meaning it is released
5315		 * from the bridge.
5316		 */
5317		if ((hw->features & STP_SUPPORT) && !promiscuous &&
5318		    netif_is_bridge_port(dev)) {
5319			struct ksz_switch *sw = hw->ksz_switch;
5320			int port = priv->port.first_port;
5321
5322			port_set_stp_state(hw, port, STP_STATE_DISABLED);
5323			port = 1 << port;
5324			if (sw->member & port) {
5325				sw->member &= ~port;
5326				bridge_change(hw);
5327			}
5328		}
5329	}
5330}
5331
5332static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5333	int multicast)
5334{
5335	if (multicast != priv->multicast) {
5336		u8 all_multi = hw->all_multi;
5337
5338		if (multicast)
5339			++hw->all_multi;
5340		else
5341			--hw->all_multi;
5342		priv->multicast = multicast;
5343
5344		/* Turn on/off all multicast mode. */
5345		if (hw->all_multi <= 1 && all_multi <= 1)
5346			hw_set_multicast(hw, hw->all_multi);
5347	}
5348}
5349
5350/**
5351 * netdev_set_rx_mode
5352 * @dev:	Network device.
5353 *
5354 * This routine is used to set multicast addresses or put the network device
5355 * into promiscuous mode.
5356 */
5357static void netdev_set_rx_mode(struct net_device *dev)
5358{
5359	struct dev_priv *priv = netdev_priv(dev);
5360	struct dev_info *hw_priv = priv->adapter;
5361	struct ksz_hw *hw = &hw_priv->hw;
5362	struct netdev_hw_addr *ha;
5363	int multicast = (dev->flags & IFF_ALLMULTI);
5364
5365	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5366
5367	if (hw_priv->hw.dev_count > 1)
5368		multicast |= (dev->flags & IFF_MULTICAST);
5369	dev_set_multicast(priv, hw, multicast);
5370
5371	/* Cannot use different hashes in multiple device interfaces mode. */
5372	if (hw_priv->hw.dev_count > 1)
5373		return;
5374
5375	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5376		int i = 0;
5377
5378		/* List too big to support so turn on all multicast mode. */
5379		if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5380			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5381				hw->multi_list_size = MAX_MULTICAST_LIST;
5382				++hw->all_multi;
5383				hw_set_multicast(hw, hw->all_multi);
5384			}
5385			return;
5386		}
5387
5388		netdev_for_each_mc_addr(ha, dev) {
5389			if (i >= MAX_MULTICAST_LIST)
5390				break;
5391			memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5392		}
5393		hw->multi_list_size = (u8) i;
5394		hw_set_grp_addr(hw);
5395	} else {
5396		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5397			--hw->all_multi;
5398			hw_set_multicast(hw, hw->all_multi);
5399		}
5400		hw->multi_list_size = 0;
5401		hw_clr_multicast(hw);
5402	}
5403}
5404
5405static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5406{
5407	struct dev_priv *priv = netdev_priv(dev);
5408	struct dev_info *hw_priv = priv->adapter;
5409	struct ksz_hw *hw = &hw_priv->hw;
5410	int hw_mtu;
5411
5412	if (netif_running(dev))
5413		return -EBUSY;
5414
5415	/* Cannot use different MTU in multiple device interfaces mode. */
5416	if (hw->dev_count > 1)
5417		if (dev != hw_priv->dev)
5418			return 0;
 
 
5419
5420	hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5421	if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5422		hw->features |= RX_HUGE_FRAME;
5423		hw_mtu = MAX_RX_BUF_SIZE;
5424	} else {
5425		hw->features &= ~RX_HUGE_FRAME;
5426		hw_mtu = REGULAR_RX_BUF_SIZE;
 
 
 
 
 
 
 
5427	}
5428	hw_mtu = (hw_mtu + 3) & ~3;
5429	hw_priv->mtu = hw_mtu;
5430	dev->mtu = new_mtu;
5431
5432	return 0;
5433}
5434
5435/**
5436 * netdev_ioctl - I/O control processing
5437 * @dev:	Network device.
5438 * @ifr:	Interface request structure.
5439 * @cmd:	I/O control code.
5440 *
5441 * This function is used to process I/O control calls.
5442 *
5443 * Return 0 to indicate success.
5444 */
5445static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5446{
5447	struct dev_priv *priv = netdev_priv(dev);
5448	struct dev_info *hw_priv = priv->adapter;
5449	struct ksz_hw *hw = &hw_priv->hw;
5450	struct ksz_port *port = &priv->port;
5451	int result = 0;
5452	struct mii_ioctl_data *data = if_mii(ifr);
5453
5454	if (down_interruptible(&priv->proc_sem))
5455		return -ERESTARTSYS;
5456
5457	switch (cmd) {
5458	/* Get address of MII PHY in use. */
5459	case SIOCGMIIPHY:
5460		data->phy_id = priv->id;
5461		fallthrough;
 
5462
5463	/* Read MII PHY register. */
5464	case SIOCGMIIREG:
5465		if (data->phy_id != priv->id || data->reg_num >= 6)
5466			result = -EIO;
5467		else
5468			hw_r_phy(hw, port->linked->port_id, data->reg_num,
5469				&data->val_out);
5470		break;
5471
5472	/* Write MII PHY register. */
5473	case SIOCSMIIREG:
5474		if (!capable(CAP_NET_ADMIN))
5475			result = -EPERM;
5476		else if (data->phy_id != priv->id || data->reg_num >= 6)
5477			result = -EIO;
5478		else
5479			hw_w_phy(hw, port->linked->port_id, data->reg_num,
5480				data->val_in);
5481		break;
5482
5483	default:
5484		result = -EOPNOTSUPP;
5485	}
5486
5487	up(&priv->proc_sem);
5488
5489	return result;
5490}
5491
5492/*
5493 * MII support
5494 */
5495
5496/**
5497 * mdio_read - read PHY register
5498 * @dev:	Network device.
5499 * @phy_id:	The PHY id.
5500 * @reg_num:	The register number.
5501 *
5502 * This function returns the PHY register value.
5503 *
5504 * Return the register value.
5505 */
5506static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5507{
5508	struct dev_priv *priv = netdev_priv(dev);
5509	struct ksz_port *port = &priv->port;
5510	struct ksz_hw *hw = port->hw;
5511	u16 val_out;
5512
5513	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5514	return val_out;
5515}
5516
5517/**
5518 * mdio_write - set PHY register
5519 * @dev:	Network device.
5520 * @phy_id:	The PHY id.
5521 * @reg_num:	The register number.
5522 * @val:	The register value.
5523 *
5524 * This procedure sets the PHY register value.
5525 */
5526static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5527{
5528	struct dev_priv *priv = netdev_priv(dev);
5529	struct ksz_port *port = &priv->port;
5530	struct ksz_hw *hw = port->hw;
5531	int i;
5532	int pi;
5533
5534	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5535		hw_w_phy(hw, pi, reg_num << 1, val);
5536}
5537
5538/*
5539 * ethtool support
5540 */
5541
5542#define EEPROM_SIZE			0x40
5543
5544static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5545
5546#define ADVERTISED_ALL			\
5547	(ADVERTISED_10baseT_Half |	\
5548	ADVERTISED_10baseT_Full |	\
5549	ADVERTISED_100baseT_Half |	\
5550	ADVERTISED_100baseT_Full)
5551
5552/* These functions use the MII functions in mii.c. */
5553
5554/**
5555 * netdev_get_link_ksettings - get network device settings
5556 * @dev:	Network device.
5557 * @cmd:	Ethtool command.
5558 *
5559 * This function queries the PHY and returns its state in the ethtool command.
5560 *
5561 * Return 0 if successful; otherwise an error code.
5562 */
5563static int netdev_get_link_ksettings(struct net_device *dev,
5564				     struct ethtool_link_ksettings *cmd)
5565{
5566	struct dev_priv *priv = netdev_priv(dev);
5567	struct dev_info *hw_priv = priv->adapter;
5568
5569	mutex_lock(&hw_priv->lock);
5570	mii_ethtool_get_link_ksettings(&priv->mii_if, cmd);
5571	ethtool_link_ksettings_add_link_mode(cmd, advertising, TP);
5572	mutex_unlock(&hw_priv->lock);
5573
5574	/* Save advertised settings for workaround in next function. */
5575	ethtool_convert_link_mode_to_legacy_u32(&priv->advertising,
5576						cmd->link_modes.advertising);
5577
5578	return 0;
5579}
5580
5581/**
5582 * netdev_set_link_ksettings - set network device settings
5583 * @dev:	Network device.
5584 * @cmd:	Ethtool command.
5585 *
5586 * This function sets the PHY according to the ethtool command.
5587 *
5588 * Return 0 if successful; otherwise an error code.
5589 */
5590static int netdev_set_link_ksettings(struct net_device *dev,
5591				     const struct ethtool_link_ksettings *cmd)
5592{
5593	struct dev_priv *priv = netdev_priv(dev);
5594	struct dev_info *hw_priv = priv->adapter;
5595	struct ksz_port *port = &priv->port;
5596	struct ethtool_link_ksettings copy_cmd;
5597	u32 speed = cmd->base.speed;
5598	u32 advertising;
5599	int rc;
5600
5601	ethtool_convert_link_mode_to_legacy_u32(&advertising,
5602						cmd->link_modes.advertising);
5603
5604	/*
5605	 * ethtool utility does not change advertised setting if auto
5606	 * negotiation is not specified explicitly.
5607	 */
5608	if (cmd->base.autoneg && priv->advertising == advertising) {
5609		advertising |= ADVERTISED_ALL;
5610		if (10 == speed)
5611			advertising &=
5612				~(ADVERTISED_100baseT_Full |
5613				ADVERTISED_100baseT_Half);
5614		else if (100 == speed)
5615			advertising &=
5616				~(ADVERTISED_10baseT_Full |
5617				ADVERTISED_10baseT_Half);
5618		if (0 == cmd->base.duplex)
5619			advertising &=
5620				~(ADVERTISED_100baseT_Full |
5621				ADVERTISED_10baseT_Full);
5622		else if (1 == cmd->base.duplex)
5623			advertising &=
5624				~(ADVERTISED_100baseT_Half |
5625				ADVERTISED_10baseT_Half);
5626	}
5627	mutex_lock(&hw_priv->lock);
5628	if (cmd->base.autoneg &&
5629	    (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) {
 
5630		port->duplex = 0;
5631		port->speed = 0;
5632		port->force_link = 0;
5633	} else {
5634		port->duplex = cmd->base.duplex + 1;
5635		if (1000 != speed)
5636			port->speed = speed;
5637		if (cmd->base.autoneg)
5638			port->force_link = 0;
5639		else
5640			port->force_link = 1;
5641	}
5642
5643	memcpy(&copy_cmd, cmd, sizeof(copy_cmd));
5644	ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising,
5645						advertising);
5646	rc = mii_ethtool_set_link_ksettings(
5647		&priv->mii_if,
5648		(const struct ethtool_link_ksettings *)&copy_cmd);
5649	mutex_unlock(&hw_priv->lock);
5650	return rc;
5651}
5652
5653/**
5654 * netdev_nway_reset - restart auto-negotiation
5655 * @dev:	Network device.
5656 *
5657 * This function restarts the PHY for auto-negotiation.
5658 *
5659 * Return 0 if successful; otherwise an error code.
5660 */
5661static int netdev_nway_reset(struct net_device *dev)
5662{
5663	struct dev_priv *priv = netdev_priv(dev);
5664	struct dev_info *hw_priv = priv->adapter;
5665	int rc;
5666
5667	mutex_lock(&hw_priv->lock);
5668	rc = mii_nway_restart(&priv->mii_if);
5669	mutex_unlock(&hw_priv->lock);
5670	return rc;
5671}
5672
5673/**
5674 * netdev_get_link - get network device link status
5675 * @dev:	Network device.
5676 *
5677 * This function gets the link status from the PHY.
5678 *
5679 * Return true if PHY is linked and false otherwise.
5680 */
5681static u32 netdev_get_link(struct net_device *dev)
5682{
5683	struct dev_priv *priv = netdev_priv(dev);
5684	int rc;
5685
5686	rc = mii_link_ok(&priv->mii_if);
5687	return rc;
5688}
5689
5690/**
5691 * netdev_get_drvinfo - get network driver information
5692 * @dev:	Network device.
5693 * @info:	Ethtool driver info data structure.
5694 *
5695 * This procedure returns the driver information.
5696 */
5697static void netdev_get_drvinfo(struct net_device *dev,
5698	struct ethtool_drvinfo *info)
5699{
5700	struct dev_priv *priv = netdev_priv(dev);
5701	struct dev_info *hw_priv = priv->adapter;
5702
5703	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
5704	strscpy(info->version, DRV_VERSION, sizeof(info->version));
5705	strscpy(info->bus_info, pci_name(hw_priv->pdev),
5706		sizeof(info->bus_info));
5707}
5708
 
 
 
 
 
 
 
 
5709static struct hw_regs {
5710	int start;
5711	int end;
5712} hw_regs_range[] = {
5713	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
5714	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
5715	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
5716	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
5717	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
5718	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
5719	{ 0, 0 }
5720};
5721
5722/**
5723 * netdev_get_regs_len - get length of register dump
5724 * @dev:	Network device.
5725 *
5726 * This function returns the length of the register dump.
5727 *
5728 * Return length of the register dump.
5729 */
5730static int netdev_get_regs_len(struct net_device *dev)
5731{
5732	struct hw_regs *range = hw_regs_range;
5733	int regs_len = 0x10 * sizeof(u32);
5734
5735	while (range->end > range->start) {
5736		regs_len += (range->end - range->start + 3) / 4 * 4;
5737		range++;
5738	}
5739	return regs_len;
5740}
5741
5742/**
5743 * netdev_get_regs - get register dump
5744 * @dev:	Network device.
5745 * @regs:	Ethtool registers data structure.
5746 * @ptr:	Buffer to store the register values.
5747 *
5748 * This procedure dumps the register values in the provided buffer.
5749 */
5750static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
5751	void *ptr)
5752{
5753	struct dev_priv *priv = netdev_priv(dev);
5754	struct dev_info *hw_priv = priv->adapter;
5755	struct ksz_hw *hw = &hw_priv->hw;
5756	int *buf = (int *) ptr;
5757	struct hw_regs *range = hw_regs_range;
5758	int len;
5759
5760	mutex_lock(&hw_priv->lock);
5761	regs->version = 0;
5762	for (len = 0; len < 0x40; len += 4) {
5763		pci_read_config_dword(hw_priv->pdev, len, buf);
5764		buf++;
5765	}
5766	while (range->end > range->start) {
5767		for (len = range->start; len < range->end; len += 4) {
5768			*buf = readl(hw->io + len);
5769			buf++;
5770		}
5771		range++;
5772	}
5773	mutex_unlock(&hw_priv->lock);
5774}
5775
5776#define WOL_SUPPORT			\
5777	(WAKE_PHY | WAKE_MAGIC |	\
5778	WAKE_UCAST | WAKE_MCAST |	\
5779	WAKE_BCAST | WAKE_ARP)
5780
5781/**
5782 * netdev_get_wol - get Wake-on-LAN support
5783 * @dev:	Network device.
5784 * @wol:	Ethtool Wake-on-LAN data structure.
5785 *
5786 * This procedure returns Wake-on-LAN support.
5787 */
5788static void netdev_get_wol(struct net_device *dev,
5789	struct ethtool_wolinfo *wol)
5790{
5791	struct dev_priv *priv = netdev_priv(dev);
5792	struct dev_info *hw_priv = priv->adapter;
5793
5794	wol->supported = hw_priv->wol_support;
5795	wol->wolopts = hw_priv->wol_enable;
5796	memset(&wol->sopass, 0, sizeof(wol->sopass));
5797}
5798
5799/**
5800 * netdev_set_wol - set Wake-on-LAN support
5801 * @dev:	Network device.
5802 * @wol:	Ethtool Wake-on-LAN data structure.
5803 *
5804 * This function sets Wake-on-LAN support.
5805 *
5806 * Return 0 if successful; otherwise an error code.
5807 */
5808static int netdev_set_wol(struct net_device *dev,
5809	struct ethtool_wolinfo *wol)
5810{
5811	struct dev_priv *priv = netdev_priv(dev);
5812	struct dev_info *hw_priv = priv->adapter;
5813
5814	/* Need to find a way to retrieve the device IP address. */
5815	static const u8 net_addr[] = { 192, 168, 1, 1 };
5816
5817	if (wol->wolopts & ~hw_priv->wol_support)
5818		return -EINVAL;
5819
5820	hw_priv->wol_enable = wol->wolopts;
5821
5822	/* Link wakeup cannot really be disabled. */
5823	if (wol->wolopts)
5824		hw_priv->wol_enable |= WAKE_PHY;
5825	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
5826	return 0;
5827}
5828
5829/**
5830 * netdev_get_msglevel - get debug message level
5831 * @dev:	Network device.
5832 *
5833 * This function returns current debug message level.
5834 *
5835 * Return current debug message flags.
5836 */
5837static u32 netdev_get_msglevel(struct net_device *dev)
5838{
5839	struct dev_priv *priv = netdev_priv(dev);
5840
5841	return priv->msg_enable;
5842}
5843
5844/**
5845 * netdev_set_msglevel - set debug message level
5846 * @dev:	Network device.
5847 * @value:	Debug message flags.
5848 *
5849 * This procedure sets debug message level.
5850 */
5851static void netdev_set_msglevel(struct net_device *dev, u32 value)
5852{
5853	struct dev_priv *priv = netdev_priv(dev);
5854
5855	priv->msg_enable = value;
5856}
5857
5858/**
5859 * netdev_get_eeprom_len - get EEPROM length
5860 * @dev:	Network device.
5861 *
5862 * This function returns the length of the EEPROM.
5863 *
5864 * Return length of the EEPROM.
5865 */
5866static int netdev_get_eeprom_len(struct net_device *dev)
5867{
5868	return EEPROM_SIZE * 2;
5869}
5870
5871#define EEPROM_MAGIC			0x10A18842
5872
5873/**
5874 * netdev_get_eeprom - get EEPROM data
5875 * @dev:	Network device.
5876 * @eeprom:	Ethtool EEPROM data structure.
5877 * @data:	Buffer to store the EEPROM data.
5878 *
5879 * This function dumps the EEPROM data in the provided buffer.
5880 *
5881 * Return 0 if successful; otherwise an error code.
5882 */
 
 
5883static int netdev_get_eeprom(struct net_device *dev,
5884	struct ethtool_eeprom *eeprom, u8 *data)
5885{
5886	struct dev_priv *priv = netdev_priv(dev);
5887	struct dev_info *hw_priv = priv->adapter;
5888	u8 *eeprom_byte = (u8 *) eeprom_data;
5889	int i;
5890	int len;
5891
5892	len = (eeprom->offset + eeprom->len + 1) / 2;
5893	for (i = eeprom->offset / 2; i < len; i++)
5894		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
5895	eeprom->magic = EEPROM_MAGIC;
5896	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
5897
5898	return 0;
5899}
5900
5901/**
5902 * netdev_set_eeprom - write EEPROM data
5903 * @dev:	Network device.
5904 * @eeprom:	Ethtool EEPROM data structure.
5905 * @data:	Data buffer.
5906 *
5907 * This function modifies the EEPROM data one byte at a time.
5908 *
5909 * Return 0 if successful; otherwise an error code.
5910 */
5911static int netdev_set_eeprom(struct net_device *dev,
5912	struct ethtool_eeprom *eeprom, u8 *data)
5913{
5914	struct dev_priv *priv = netdev_priv(dev);
5915	struct dev_info *hw_priv = priv->adapter;
5916	u16 eeprom_word[EEPROM_SIZE];
5917	u8 *eeprom_byte = (u8 *) eeprom_word;
5918	int i;
5919	int len;
5920
5921	if (eeprom->magic != EEPROM_MAGIC)
5922		return -EINVAL;
5923
5924	len = (eeprom->offset + eeprom->len + 1) / 2;
5925	for (i = eeprom->offset / 2; i < len; i++)
5926		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
5927	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
5928	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
5929	for (i = 0; i < EEPROM_SIZE; i++)
5930		if (eeprom_word[i] != eeprom_data[i]) {
5931			eeprom_data[i] = eeprom_word[i];
5932			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
5933	}
5934
5935	return 0;
5936}
5937
5938/**
5939 * netdev_get_pauseparam - get flow control parameters
5940 * @dev:	Network device.
5941 * @pause:	Ethtool PAUSE settings data structure.
5942 *
5943 * This procedure returns the PAUSE control flow settings.
5944 */
5945static void netdev_get_pauseparam(struct net_device *dev,
5946	struct ethtool_pauseparam *pause)
5947{
5948	struct dev_priv *priv = netdev_priv(dev);
5949	struct dev_info *hw_priv = priv->adapter;
5950	struct ksz_hw *hw = &hw_priv->hw;
5951
5952	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
5953	if (!hw->ksz_switch) {
5954		pause->rx_pause =
5955			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
5956		pause->tx_pause =
5957			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
5958	} else {
5959		pause->rx_pause =
5960			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
5961				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
5962		pause->tx_pause =
5963			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
5964				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
5965	}
5966}
5967
5968/**
5969 * netdev_set_pauseparam - set flow control parameters
5970 * @dev:	Network device.
5971 * @pause:	Ethtool PAUSE settings data structure.
5972 *
5973 * This function sets the PAUSE control flow settings.
5974 * Not implemented yet.
5975 *
5976 * Return 0 if successful; otherwise an error code.
5977 */
5978static int netdev_set_pauseparam(struct net_device *dev,
5979	struct ethtool_pauseparam *pause)
5980{
5981	struct dev_priv *priv = netdev_priv(dev);
5982	struct dev_info *hw_priv = priv->adapter;
5983	struct ksz_hw *hw = &hw_priv->hw;
5984	struct ksz_port *port = &priv->port;
5985
5986	mutex_lock(&hw_priv->lock);
5987	if (pause->autoneg) {
5988		if (!pause->rx_pause && !pause->tx_pause)
5989			port->flow_ctrl = PHY_NO_FLOW_CTRL;
5990		else
5991			port->flow_ctrl = PHY_FLOW_CTRL;
5992		hw->overrides &= ~PAUSE_FLOW_CTRL;
5993		port->force_link = 0;
5994		if (hw->ksz_switch) {
5995			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
5996				SWITCH_RX_FLOW_CTRL, 1);
5997			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
5998				SWITCH_TX_FLOW_CTRL, 1);
5999		}
6000		port_set_link_speed(port);
6001	} else {
6002		hw->overrides |= PAUSE_FLOW_CTRL;
6003		if (hw->ksz_switch) {
6004			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6005				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6006			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6007				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6008		} else
6009			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6010	}
6011	mutex_unlock(&hw_priv->lock);
6012
6013	return 0;
6014}
6015
6016/**
6017 * netdev_get_ringparam - get tx/rx ring parameters
6018 * @dev:	Network device.
6019 * @ring:	Ethtool RING settings data structure.
6020 * @kernel_ring:	Ethtool external RING settings data structure.
6021 * @extack:	Netlink handle.
6022 *
6023 * This procedure returns the TX/RX ring settings.
6024 */
6025static void netdev_get_ringparam(struct net_device *dev,
6026				 struct ethtool_ringparam *ring,
6027				 struct kernel_ethtool_ringparam *kernel_ring,
6028				 struct netlink_ext_ack *extack)
6029{
6030	struct dev_priv *priv = netdev_priv(dev);
6031	struct dev_info *hw_priv = priv->adapter;
6032	struct ksz_hw *hw = &hw_priv->hw;
6033
6034	ring->tx_max_pending = (1 << 9);
6035	ring->tx_pending = hw->tx_desc_info.alloc;
6036	ring->rx_max_pending = (1 << 9);
6037	ring->rx_pending = hw->rx_desc_info.alloc;
6038}
6039
6040#define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)
6041
6042static struct {
6043	char string[ETH_GSTRING_LEN];
6044} ethtool_stats_keys[STATS_LEN] = {
6045	{ "rx_lo_priority_octets" },
6046	{ "rx_hi_priority_octets" },
6047	{ "rx_undersize_packets" },
6048	{ "rx_fragments" },
6049	{ "rx_oversize_packets" },
6050	{ "rx_jabbers" },
6051	{ "rx_symbol_errors" },
6052	{ "rx_crc_errors" },
6053	{ "rx_align_errors" },
6054	{ "rx_mac_ctrl_packets" },
6055	{ "rx_pause_packets" },
6056	{ "rx_bcast_packets" },
6057	{ "rx_mcast_packets" },
6058	{ "rx_ucast_packets" },
6059	{ "rx_64_or_less_octet_packets" },
6060	{ "rx_65_to_127_octet_packets" },
6061	{ "rx_128_to_255_octet_packets" },
6062	{ "rx_256_to_511_octet_packets" },
6063	{ "rx_512_to_1023_octet_packets" },
6064	{ "rx_1024_to_1522_octet_packets" },
6065
6066	{ "tx_lo_priority_octets" },
6067	{ "tx_hi_priority_octets" },
6068	{ "tx_late_collisions" },
6069	{ "tx_pause_packets" },
6070	{ "tx_bcast_packets" },
6071	{ "tx_mcast_packets" },
6072	{ "tx_ucast_packets" },
6073	{ "tx_deferred" },
6074	{ "tx_total_collisions" },
6075	{ "tx_excessive_collisions" },
6076	{ "tx_single_collisions" },
6077	{ "tx_mult_collisions" },
6078
6079	{ "rx_discards" },
6080	{ "tx_discards" },
6081};
6082
6083/**
6084 * netdev_get_strings - get statistics identity strings
6085 * @dev:	Network device.
6086 * @stringset:	String set identifier.
6087 * @buf:	Buffer to store the strings.
6088 *
6089 * This procedure returns the strings used to identify the statistics.
6090 */
6091static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6092{
6093	struct dev_priv *priv = netdev_priv(dev);
6094	struct dev_info *hw_priv = priv->adapter;
6095	struct ksz_hw *hw = &hw_priv->hw;
6096
6097	if (ETH_SS_STATS == stringset)
6098		memcpy(buf, &ethtool_stats_keys,
6099			ETH_GSTRING_LEN * hw->mib_cnt);
6100}
6101
6102/**
6103 * netdev_get_sset_count - get statistics size
6104 * @dev:	Network device.
6105 * @sset:	The statistics set number.
6106 *
6107 * This function returns the size of the statistics to be reported.
6108 *
6109 * Return size of the statistics to be reported.
6110 */
6111static int netdev_get_sset_count(struct net_device *dev, int sset)
6112{
6113	struct dev_priv *priv = netdev_priv(dev);
6114	struct dev_info *hw_priv = priv->adapter;
6115	struct ksz_hw *hw = &hw_priv->hw;
6116
6117	switch (sset) {
6118	case ETH_SS_STATS:
6119		return hw->mib_cnt;
6120	default:
6121		return -EOPNOTSUPP;
6122	}
6123}
6124
6125/**
6126 * netdev_get_ethtool_stats - get network device statistics
6127 * @dev:	Network device.
6128 * @stats:	Ethtool statistics data structure.
6129 * @data:	Buffer to store the statistics.
6130 *
6131 * This procedure returns the statistics.
6132 */
6133static void netdev_get_ethtool_stats(struct net_device *dev,
6134	struct ethtool_stats *stats, u64 *data)
6135{
6136	struct dev_priv *priv = netdev_priv(dev);
6137	struct dev_info *hw_priv = priv->adapter;
6138	struct ksz_hw *hw = &hw_priv->hw;
6139	struct ksz_port *port = &priv->port;
6140	int n_stats = stats->n_stats;
6141	int i;
6142	int n;
6143	int p;
 
6144	u64 counter[TOTAL_PORT_COUNTER_NUM];
6145
6146	mutex_lock(&hw_priv->lock);
6147	n = SWITCH_PORT_NUM;
6148	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6149		if (media_connected == hw->port_mib[p].state) {
6150			hw_priv->counter[p].read = 1;
6151
6152			/* Remember first port that requests read. */
6153			if (n == SWITCH_PORT_NUM)
6154				n = p;
6155		}
6156	}
6157	mutex_unlock(&hw_priv->lock);
6158
6159	if (n < SWITCH_PORT_NUM)
6160		schedule_work(&hw_priv->mib_read);
6161
6162	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6163		p = n;
6164		wait_event_interruptible_timeout(
6165			hw_priv->counter[p].counter,
6166			2 == hw_priv->counter[p].read,
6167			HZ * 1);
6168	} else
6169		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6170			if (0 == i) {
6171				wait_event_interruptible_timeout(
6172					hw_priv->counter[p].counter,
6173					2 == hw_priv->counter[p].read,
6174					HZ * 2);
6175			} else if (hw->port_mib[p].cnt_ptr) {
6176				wait_event_interruptible_timeout(
6177					hw_priv->counter[p].counter,
6178					2 == hw_priv->counter[p].read,
6179					HZ * 1);
6180			}
6181		}
6182
6183	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6184	n = hw->mib_cnt;
6185	if (n > n_stats)
6186		n = n_stats;
6187	n_stats -= n;
6188	for (i = 0; i < n; i++)
6189		*data++ = counter[i];
6190}
6191
6192/**
6193 * netdev_set_features - set receive checksum support
6194 * @dev:	Network device.
6195 * @features:	New device features (offloads).
6196 *
6197 * This function sets receive checksum support setting.
6198 *
6199 * Return 0 if successful; otherwise an error code.
6200 */
6201static int netdev_set_features(struct net_device *dev,
6202	netdev_features_t features)
6203{
6204	struct dev_priv *priv = netdev_priv(dev);
6205	struct dev_info *hw_priv = priv->adapter;
6206	struct ksz_hw *hw = &hw_priv->hw;
6207
6208	mutex_lock(&hw_priv->lock);
6209
6210	/* see note in hw_setup() */
6211	if (features & NETIF_F_RXCSUM)
6212		hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6213	else
6214		hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6215
6216	if (hw->enabled)
6217		writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6218
6219	mutex_unlock(&hw_priv->lock);
6220
6221	return 0;
6222}
6223
6224static const struct ethtool_ops netdev_ethtool_ops = {
 
 
6225	.nway_reset		= netdev_nway_reset,
6226	.get_link		= netdev_get_link,
6227	.get_drvinfo		= netdev_get_drvinfo,
6228	.get_regs_len		= netdev_get_regs_len,
6229	.get_regs		= netdev_get_regs,
6230	.get_wol		= netdev_get_wol,
6231	.set_wol		= netdev_set_wol,
6232	.get_msglevel		= netdev_get_msglevel,
6233	.set_msglevel		= netdev_set_msglevel,
6234	.get_eeprom_len		= netdev_get_eeprom_len,
6235	.get_eeprom		= netdev_get_eeprom,
6236	.set_eeprom		= netdev_set_eeprom,
6237	.get_pauseparam		= netdev_get_pauseparam,
6238	.set_pauseparam		= netdev_set_pauseparam,
6239	.get_ringparam		= netdev_get_ringparam,
6240	.get_strings		= netdev_get_strings,
6241	.get_sset_count		= netdev_get_sset_count,
6242	.get_ethtool_stats	= netdev_get_ethtool_stats,
6243	.get_link_ksettings	= netdev_get_link_ksettings,
6244	.set_link_ksettings	= netdev_set_link_ksettings,
6245};
6246
6247/*
6248 * Hardware monitoring
6249 */
6250
6251static void update_link(struct net_device *dev, struct dev_priv *priv,
6252	struct ksz_port *port)
6253{
6254	if (priv->media_state != port->linked->state) {
6255		priv->media_state = port->linked->state;
6256		if (netif_running(dev))
6257			set_media_state(dev, media_connected);
6258	}
6259}
6260
6261static void mib_read_work(struct work_struct *work)
6262{
6263	struct dev_info *hw_priv =
6264		container_of(work, struct dev_info, mib_read);
6265	struct ksz_hw *hw = &hw_priv->hw;
6266	unsigned long next_jiffies;
6267	struct ksz_port_mib *mib;
6268	int i;
6269
6270	next_jiffies = jiffies;
6271	for (i = 0; i < hw->mib_port_cnt; i++) {
6272		mib = &hw->port_mib[i];
6273
6274		/* Reading MIB counters or requested to read. */
6275		if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6276
6277			/* Need to process receive interrupt. */
6278			if (port_r_cnt(hw, i))
6279				break;
6280			hw_priv->counter[i].read = 0;
6281
6282			/* Finish reading counters. */
6283			if (0 == mib->cnt_ptr) {
6284				hw_priv->counter[i].read = 2;
6285				wake_up_interruptible(
6286					&hw_priv->counter[i].counter);
6287			}
6288		} else if (time_after_eq(jiffies, hw_priv->counter[i].time)) {
6289			/* Only read MIB counters when the port is connected. */
6290			if (media_connected == mib->state)
6291				hw_priv->counter[i].read = 1;
6292			next_jiffies += HZ * 1 * hw->mib_port_cnt;
6293			hw_priv->counter[i].time = next_jiffies;
6294
6295		/* Port is just disconnected. */
6296		} else if (mib->link_down) {
6297			mib->link_down = 0;
6298
6299			/* Read counters one last time after link is lost. */
6300			hw_priv->counter[i].read = 1;
6301		}
6302	}
6303}
6304
6305static void mib_monitor(struct timer_list *t)
6306{
6307	struct dev_info *hw_priv = from_timer(hw_priv, t, mib_timer_info.timer);
6308
6309	mib_read_work(&hw_priv->mib_read);
6310
6311	/* This is used to verify Wake-on-LAN is working. */
6312	if (hw_priv->pme_wait) {
6313		if (time_is_before_eq_jiffies(hw_priv->pme_wait)) {
6314			hw_clr_wol_pme_status(&hw_priv->hw);
6315			hw_priv->pme_wait = 0;
6316		}
6317	} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6318
6319		/* PME is asserted.  Wait 2 seconds to clear it. */
6320		hw_priv->pme_wait = jiffies + HZ * 2;
6321	}
6322
6323	ksz_update_timer(&hw_priv->mib_timer_info);
6324}
6325
6326/**
6327 * dev_monitor - periodic monitoring
6328 * @t:	timer list containing a network device pointer.
6329 *
6330 * This routine is run in a kernel timer to monitor the network device.
6331 */
6332static void dev_monitor(struct timer_list *t)
6333{
6334	struct dev_priv *priv = from_timer(priv, t, monitor_timer_info.timer);
6335	struct net_device *dev = priv->mii_if.dev;
6336	struct dev_info *hw_priv = priv->adapter;
6337	struct ksz_hw *hw = &hw_priv->hw;
6338	struct ksz_port *port = &priv->port;
6339
6340	if (!(hw->features & LINK_INT_WORKING))
6341		port_get_link_speed(port);
6342	update_link(dev, priv, port);
6343
6344	ksz_update_timer(&priv->monitor_timer_info);
6345}
6346
6347/*
6348 * Linux network device interface functions
6349 */
6350
6351/* Driver exported variables */
6352
6353static int msg_enable;
6354
6355static char *macaddr = ":";
6356static char *mac1addr = ":";
6357
6358/*
6359 * This enables multiple network device mode for KSZ8842, which contains a
6360 * switch with two physical ports.  Some users like to take control of the
6361 * ports for running Spanning Tree Protocol.  The driver will create an
6362 * additional eth? device for the other port.
6363 *
6364 * Some limitations are the network devices cannot have different MTU and
6365 * multicast hash tables.
6366 */
6367static int multi_dev;
6368
6369/*
6370 * As most users select multiple network device mode to use Spanning Tree
6371 * Protocol, this enables a feature in which most unicast and multicast packets
6372 * are forwarded inside the switch and not passed to the host.  Only packets
6373 * that need the host's attention are passed to it.  This prevents the host
6374 * wasting CPU time to examine each and every incoming packets and do the
6375 * forwarding itself.
6376 *
6377 * As the hack requires the private bridge header, the driver cannot compile
6378 * with just the kernel headers.
6379 *
6380 * Enabling STP support also turns on multiple network device mode.
6381 */
6382static int stp;
6383
6384/*
6385 * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6386 * needs that.  However, fast aging is used to flush the dynamic MAC table when
6387 * STP support is enabled.
6388 */
6389static int fast_aging;
6390
6391/**
6392 * netdev_init - initialize network device.
6393 * @dev:	Network device.
6394 *
6395 * This function initializes the network device.
6396 *
6397 * Return 0 if successful; otherwise an error code indicating failure.
6398 */
6399static int __init netdev_init(struct net_device *dev)
6400{
6401	struct dev_priv *priv = netdev_priv(dev);
6402
6403	/* 500 ms timeout */
6404	ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6405		dev_monitor);
6406
6407	/* 500 ms timeout */
6408	dev->watchdog_timeo = HZ / 2;
6409
6410	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6411
6412	/*
6413	 * Hardware does not really support IPv6 checksum generation, but
6414	 * driver actually runs faster with this on.
6415	 */
6416	dev->hw_features |= NETIF_F_IPV6_CSUM;
6417
6418	dev->features |= dev->hw_features;
6419
6420	sema_init(&priv->proc_sem, 1);
6421
6422	priv->mii_if.phy_id_mask = 0x1;
6423	priv->mii_if.reg_num_mask = 0x7;
6424	priv->mii_if.dev = dev;
6425	priv->mii_if.mdio_read = mdio_read;
6426	priv->mii_if.mdio_write = mdio_write;
6427	priv->mii_if.phy_id = priv->port.first_port + 1;
6428
6429	priv->msg_enable = netif_msg_init(msg_enable,
6430		(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6431
6432	return 0;
6433}
6434
6435static const struct net_device_ops netdev_ops = {
6436	.ndo_init		= netdev_init,
6437	.ndo_open		= netdev_open,
6438	.ndo_stop		= netdev_close,
6439	.ndo_get_stats		= netdev_query_statistics,
6440	.ndo_start_xmit		= netdev_tx,
6441	.ndo_tx_timeout		= netdev_tx_timeout,
6442	.ndo_change_mtu		= netdev_change_mtu,
6443	.ndo_set_features	= netdev_set_features,
6444	.ndo_set_mac_address	= netdev_set_mac_address,
6445	.ndo_validate_addr	= eth_validate_addr,
6446	.ndo_eth_ioctl		= netdev_ioctl,
6447	.ndo_set_rx_mode	= netdev_set_rx_mode,
6448#ifdef CONFIG_NET_POLL_CONTROLLER
6449	.ndo_poll_controller	= netdev_netpoll,
6450#endif
6451};
6452
6453static void netdev_free(struct net_device *dev)
6454{
6455	if (dev->watchdog_timeo)
6456		unregister_netdev(dev);
6457
6458	free_netdev(dev);
6459}
6460
6461struct platform_info {
6462	struct dev_info dev_info;
6463	struct net_device *netdev[SWITCH_PORT_NUM];
6464};
6465
6466static int net_device_present;
6467
6468static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6469{
6470	int i;
6471	int j;
6472	int got_num;
6473	int num;
6474
6475	i = j = num = got_num = 0;
6476	while (j < ETH_ALEN) {
6477		if (macaddr[i]) {
6478			int digit;
6479
6480			got_num = 1;
6481			digit = hex_to_bin(macaddr[i]);
6482			if (digit >= 0)
6483				num = num * 16 + digit;
6484			else if (':' == macaddr[i])
6485				got_num = 2;
6486			else
6487				break;
6488		} else if (got_num)
6489			got_num = 2;
6490		else
6491			break;
6492		if (2 == got_num) {
6493			if (MAIN_PORT == port) {
6494				hw_priv->hw.override_addr[j++] = (u8) num;
6495				hw_priv->hw.override_addr[5] +=
6496					hw_priv->hw.id;
6497			} else {
6498				hw_priv->hw.ksz_switch->other_addr[j++] =
6499					(u8) num;
6500				hw_priv->hw.ksz_switch->other_addr[5] +=
6501					hw_priv->hw.id;
6502			}
6503			num = got_num = 0;
6504		}
6505		i++;
6506	}
6507	if (ETH_ALEN == j) {
6508		if (MAIN_PORT == port)
6509			hw_priv->hw.mac_override = 1;
6510	}
6511}
6512
6513#define KS884X_DMA_MASK			(~0x0UL)
6514
6515static void read_other_addr(struct ksz_hw *hw)
6516{
6517	int i;
6518	u16 data[3];
6519	struct ksz_switch *sw = hw->ksz_switch;
6520
6521	for (i = 0; i < 3; i++)
6522		data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6523	if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6524		sw->other_addr[5] = (u8) data[0];
6525		sw->other_addr[4] = (u8)(data[0] >> 8);
6526		sw->other_addr[3] = (u8) data[1];
6527		sw->other_addr[2] = (u8)(data[1] >> 8);
6528		sw->other_addr[1] = (u8) data[2];
6529		sw->other_addr[0] = (u8)(data[2] >> 8);
6530	}
6531}
6532
6533#ifndef PCI_VENDOR_ID_MICREL_KS
6534#define PCI_VENDOR_ID_MICREL_KS		0x16c6
6535#endif
6536
6537static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6538{
6539	struct net_device *dev;
6540	struct dev_priv *priv;
6541	struct dev_info *hw_priv;
6542	struct ksz_hw *hw;
6543	struct platform_info *info;
6544	struct ksz_port *port;
6545	unsigned long reg_base;
6546	unsigned long reg_len;
6547	int cnt;
6548	int i;
6549	int mib_port_count;
6550	int pi;
6551	int port_count;
6552	int result;
6553	char banner[sizeof(version)];
6554	struct ksz_switch *sw = NULL;
6555
6556	result = pcim_enable_device(pdev);
6557	if (result)
6558		return result;
6559
6560	result = -ENODEV;
6561
6562	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)) ||
6563	    dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)))
6564		return result;
6565
6566	reg_base = pci_resource_start(pdev, 0);
6567	reg_len = pci_resource_len(pdev, 0);
6568	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6569		return result;
6570
6571	if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6572		return result;
6573	pci_set_master(pdev);
6574
6575	result = -ENOMEM;
6576
6577	info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6578	if (!info)
6579		goto pcidev_init_dev_err;
6580
6581	hw_priv = &info->dev_info;
6582	hw_priv->pdev = pdev;
6583
6584	hw = &hw_priv->hw;
6585
6586	hw->io = ioremap(reg_base, reg_len);
6587	if (!hw->io)
6588		goto pcidev_init_io_err;
6589
6590	cnt = hw_init(hw);
6591	if (!cnt) {
6592		if (msg_enable & NETIF_MSG_PROBE)
6593			pr_alert("chip not detected\n");
6594		result = -ENODEV;
6595		goto pcidev_init_alloc_err;
6596	}
6597
6598	snprintf(banner, sizeof(banner), "%s", version);
6599	banner[13] = cnt + '0';		/* Replace x in "Micrel KSZ884x" */
6600	dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6601	dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6602
6603	/* Assume device is KSZ8841. */
6604	hw->dev_count = 1;
6605	port_count = 1;
6606	mib_port_count = 1;
6607	hw->addr_list_size = 0;
6608	hw->mib_cnt = PORT_COUNTER_NUM;
6609	hw->mib_port_cnt = 1;
6610
6611	/* KSZ8842 has a switch with multiple ports. */
6612	if (2 == cnt) {
6613		if (fast_aging)
6614			hw->overrides |= FAST_AGING;
6615
6616		hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
6617
6618		/* Multiple network device interfaces are required. */
6619		if (multi_dev) {
6620			hw->dev_count = SWITCH_PORT_NUM;
6621			hw->addr_list_size = SWITCH_PORT_NUM - 1;
6622		}
6623
6624		/* Single network device has multiple ports. */
6625		if (1 == hw->dev_count) {
6626			port_count = SWITCH_PORT_NUM;
6627			mib_port_count = SWITCH_PORT_NUM;
6628		}
6629		hw->mib_port_cnt = TOTAL_PORT_NUM;
6630		hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
6631		if (!hw->ksz_switch)
6632			goto pcidev_init_alloc_err;
6633
6634		sw = hw->ksz_switch;
6635	}
6636	for (i = 0; i < hw->mib_port_cnt; i++)
6637		hw->port_mib[i].mib_start = 0;
6638
6639	hw->parent = hw_priv;
6640
6641	/* Default MTU is 1500. */
6642	hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
6643
6644	if (ksz_alloc_mem(hw_priv))
6645		goto pcidev_init_mem_err;
6646
6647	hw_priv->hw.id = net_device_present;
6648
6649	spin_lock_init(&hw_priv->hwlock);
6650	mutex_init(&hw_priv->lock);
6651
6652	for (i = 0; i < TOTAL_PORT_NUM; i++)
6653		init_waitqueue_head(&hw_priv->counter[i].counter);
6654
6655	if (macaddr[0] != ':')
6656		get_mac_addr(hw_priv, macaddr, MAIN_PORT);
6657
6658	/* Read MAC address and initialize override address if not overridden. */
6659	hw_read_addr(hw);
6660
6661	/* Multiple device interfaces mode requires a second MAC address. */
6662	if (hw->dev_count > 1) {
6663		memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
6664		read_other_addr(hw);
6665		if (mac1addr[0] != ':')
6666			get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
6667	}
6668
6669	hw_setup(hw);
6670	if (hw->ksz_switch)
6671		sw_setup(hw);
6672	else {
6673		hw_priv->wol_support = WOL_SUPPORT;
6674		hw_priv->wol_enable = 0;
6675	}
6676
6677	INIT_WORK(&hw_priv->mib_read, mib_read_work);
6678
6679	/* 500 ms timeout */
6680	ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
6681		mib_monitor);
6682
6683	for (i = 0; i < hw->dev_count; i++) {
6684		dev = alloc_etherdev(sizeof(struct dev_priv));
6685		if (!dev)
6686			goto pcidev_init_reg_err;
6687		SET_NETDEV_DEV(dev, &pdev->dev);
6688		info->netdev[i] = dev;
6689
6690		priv = netdev_priv(dev);
6691		priv->adapter = hw_priv;
6692		priv->id = net_device_present++;
6693
6694		port = &priv->port;
6695		port->port_cnt = port_count;
6696		port->mib_port_cnt = mib_port_count;
6697		port->first_port = i;
6698		port->flow_ctrl = PHY_FLOW_CTRL;
6699
6700		port->hw = hw;
6701		port->linked = &hw->port_info[port->first_port];
6702
6703		for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
6704			hw->port_info[pi].port_id = pi;
6705			hw->port_info[pi].pdev = dev;
6706			hw->port_info[pi].state = media_disconnected;
6707		}
6708
6709		dev->mem_start = (unsigned long) hw->io;
6710		dev->mem_end = dev->mem_start + reg_len - 1;
6711		dev->irq = pdev->irq;
6712		if (MAIN_PORT == i)
6713			eth_hw_addr_set(dev, hw_priv->hw.override_addr);
 
6714		else {
6715			u8 addr[ETH_ALEN];
6716
6717			ether_addr_copy(addr, sw->other_addr);
6718			if (ether_addr_equal(sw->other_addr, hw->override_addr))
6719				addr[5] += port->first_port;
6720			eth_hw_addr_set(dev, addr);
6721		}
6722
6723		dev->netdev_ops = &netdev_ops;
6724		dev->ethtool_ops = &netdev_ethtool_ops;
6725
6726		/* MTU range: 60 - 1894 */
6727		dev->min_mtu = ETH_ZLEN;
6728		dev->max_mtu = MAX_RX_BUF_SIZE -
6729			       (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
6730
6731		if (register_netdev(dev))
6732			goto pcidev_init_reg_err;
6733		port_set_power_saving(port, true);
6734	}
6735
6736	pci_dev_get(hw_priv->pdev);
6737	pci_set_drvdata(pdev, info);
6738	return 0;
6739
6740pcidev_init_reg_err:
6741	for (i = 0; i < hw->dev_count; i++) {
6742		if (info->netdev[i]) {
6743			netdev_free(info->netdev[i]);
6744			info->netdev[i] = NULL;
6745		}
6746	}
6747
6748pcidev_init_mem_err:
6749	ksz_free_mem(hw_priv);
6750	kfree(hw->ksz_switch);
6751
6752pcidev_init_alloc_err:
6753	iounmap(hw->io);
6754
6755pcidev_init_io_err:
6756	kfree(info);
6757
6758pcidev_init_dev_err:
6759	release_mem_region(reg_base, reg_len);
6760
6761	return result;
6762}
6763
6764static void pcidev_exit(struct pci_dev *pdev)
6765{
6766	int i;
6767	struct platform_info *info = pci_get_drvdata(pdev);
6768	struct dev_info *hw_priv = &info->dev_info;
6769
6770	release_mem_region(pci_resource_start(pdev, 0),
6771		pci_resource_len(pdev, 0));
6772	for (i = 0; i < hw_priv->hw.dev_count; i++) {
6773		if (info->netdev[i])
6774			netdev_free(info->netdev[i]);
6775	}
6776	if (hw_priv->hw.io)
6777		iounmap(hw_priv->hw.io);
6778	ksz_free_mem(hw_priv);
6779	kfree(hw_priv->hw.ksz_switch);
6780	pci_dev_put(hw_priv->pdev);
6781	kfree(info);
6782}
6783
6784static int __maybe_unused pcidev_resume(struct device *dev_d)
 
6785{
6786	int i;
6787	struct platform_info *info = dev_get_drvdata(dev_d);
6788	struct dev_info *hw_priv = &info->dev_info;
6789	struct ksz_hw *hw = &hw_priv->hw;
6790
6791	device_wakeup_disable(dev_d);
 
 
6792
6793	if (hw_priv->wol_enable)
6794		hw_cfg_wol_pme(hw, 0);
6795	for (i = 0; i < hw->dev_count; i++) {
6796		if (info->netdev[i]) {
6797			struct net_device *dev = info->netdev[i];
6798
6799			if (netif_running(dev)) {
6800				netdev_open(dev);
6801				netif_device_attach(dev);
6802			}
6803		}
6804	}
6805	return 0;
6806}
6807
6808static int __maybe_unused pcidev_suspend(struct device *dev_d)
6809{
6810	int i;
6811	struct platform_info *info = dev_get_drvdata(dev_d);
6812	struct dev_info *hw_priv = &info->dev_info;
6813	struct ksz_hw *hw = &hw_priv->hw;
6814
6815	/* Need to find a way to retrieve the device IP address. */
6816	static const u8 net_addr[] = { 192, 168, 1, 1 };
6817
6818	for (i = 0; i < hw->dev_count; i++) {
6819		if (info->netdev[i]) {
6820			struct net_device *dev = info->netdev[i];
6821
6822			if (netif_running(dev)) {
6823				netif_device_detach(dev);
6824				netdev_close(dev);
6825			}
6826		}
6827	}
6828	if (hw_priv->wol_enable) {
6829		hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
6830		hw_cfg_wol_pme(hw, 1);
6831	}
6832
6833	device_wakeup_enable(dev_d);
 
 
6834	return 0;
6835}
 
6836
6837static char pcidev_name[] = "ksz884xp";
6838
6839static const struct pci_device_id pcidev_table[] = {
6840	{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
6841		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
6842	{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
6843		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
6844	{ 0 }
6845};
6846
6847MODULE_DEVICE_TABLE(pci, pcidev_table);
6848
6849static SIMPLE_DEV_PM_OPS(pcidev_pm_ops, pcidev_suspend, pcidev_resume);
6850
6851static struct pci_driver pci_device_driver = {
6852	.driver.pm	= &pcidev_pm_ops,
 
 
 
6853	.name		= pcidev_name,
6854	.id_table	= pcidev_table,
6855	.probe		= pcidev_init,
6856	.remove		= pcidev_exit
6857};
6858
6859module_pci_driver(pci_device_driver);
6860
6861MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
6862MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
6863MODULE_LICENSE("GPL");
6864
6865module_param_named(message, msg_enable, int, 0);
6866MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
6867
6868module_param(macaddr, charp, 0);
6869module_param(mac1addr, charp, 0);
6870module_param(fast_aging, int, 0);
6871module_param(multi_dev, int, 0);
6872module_param(stp, int, 0);
6873MODULE_PARM_DESC(macaddr, "MAC address");
6874MODULE_PARM_DESC(mac1addr, "Second MAC address");
6875MODULE_PARM_DESC(fast_aging, "Fast aging");
6876MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
6877MODULE_PARM_DESC(stp, "STP support");
v3.15
   1/**
 
   2 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
   3 *
   4 * Copyright (c) 2009-2010 Micrel, Inc.
   5 * 	Tristram Ha <Tristram.Ha@micrel.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 */
  16
  17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18
  19#include <linux/init.h>
  20#include <linux/interrupt.h>
  21#include <linux/kernel.h>
  22#include <linux/module.h>
  23#include <linux/ioport.h>
  24#include <linux/pci.h>
  25#include <linux/proc_fs.h>
  26#include <linux/mii.h>
  27#include <linux/platform_device.h>
  28#include <linux/ethtool.h>
  29#include <linux/etherdevice.h>
  30#include <linux/in.h>
  31#include <linux/ip.h>
  32#include <linux/if_vlan.h>
  33#include <linux/crc32.h>
  34#include <linux/sched.h>
  35#include <linux/slab.h>
 
  36
  37
  38/* DMA Registers */
  39
  40#define KS_DMA_TX_CTRL			0x0000
  41#define DMA_TX_ENABLE			0x00000001
  42#define DMA_TX_CRC_ENABLE		0x00000002
  43#define DMA_TX_PAD_ENABLE		0x00000004
  44#define DMA_TX_LOOPBACK			0x00000100
  45#define DMA_TX_FLOW_ENABLE		0x00000200
  46#define DMA_TX_CSUM_IP			0x00010000
  47#define DMA_TX_CSUM_TCP			0x00020000
  48#define DMA_TX_CSUM_UDP			0x00040000
  49#define DMA_TX_BURST_SIZE		0x3F000000
  50
  51#define KS_DMA_RX_CTRL			0x0004
  52#define DMA_RX_ENABLE			0x00000001
  53#define KS884X_DMA_RX_MULTICAST		0x00000002
  54#define DMA_RX_PROMISCUOUS		0x00000004
  55#define DMA_RX_ERROR			0x00000008
  56#define DMA_RX_UNICAST			0x00000010
  57#define DMA_RX_ALL_MULTICAST		0x00000020
  58#define DMA_RX_BROADCAST		0x00000040
  59#define DMA_RX_FLOW_ENABLE		0x00000200
  60#define DMA_RX_CSUM_IP			0x00010000
  61#define DMA_RX_CSUM_TCP			0x00020000
  62#define DMA_RX_CSUM_UDP			0x00040000
  63#define DMA_RX_BURST_SIZE		0x3F000000
  64
  65#define DMA_BURST_SHIFT			24
  66#define DMA_BURST_DEFAULT		8
  67
  68#define KS_DMA_TX_START			0x0008
  69#define KS_DMA_RX_START			0x000C
  70#define DMA_START			0x00000001
  71
  72#define KS_DMA_TX_ADDR			0x0010
  73#define KS_DMA_RX_ADDR			0x0014
  74
  75#define DMA_ADDR_LIST_MASK		0xFFFFFFFC
  76#define DMA_ADDR_LIST_SHIFT		2
  77
  78/* MTR0 */
  79#define KS884X_MULTICAST_0_OFFSET	0x0020
  80#define KS884X_MULTICAST_1_OFFSET	0x0021
  81#define KS884X_MULTICAST_2_OFFSET	0x0022
  82#define KS884x_MULTICAST_3_OFFSET	0x0023
  83/* MTR1 */
  84#define KS884X_MULTICAST_4_OFFSET	0x0024
  85#define KS884X_MULTICAST_5_OFFSET	0x0025
  86#define KS884X_MULTICAST_6_OFFSET	0x0026
  87#define KS884X_MULTICAST_7_OFFSET	0x0027
  88
  89/* Interrupt Registers */
  90
  91/* INTEN */
  92#define KS884X_INTERRUPTS_ENABLE	0x0028
  93/* INTST */
  94#define KS884X_INTERRUPTS_STATUS	0x002C
  95
  96#define KS884X_INT_RX_STOPPED		0x02000000
  97#define KS884X_INT_TX_STOPPED		0x04000000
  98#define KS884X_INT_RX_OVERRUN		0x08000000
  99#define KS884X_INT_TX_EMPTY		0x10000000
 100#define KS884X_INT_RX			0x20000000
 101#define KS884X_INT_TX			0x40000000
 102#define KS884X_INT_PHY			0x80000000
 103
 104#define KS884X_INT_RX_MASK		\
 105	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
 106#define KS884X_INT_TX_MASK		\
 107	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
 108#define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
 109
 110/* MAC Additional Station Address */
 111
 112/* MAAL0 */
 113#define KS_ADD_ADDR_0_LO		0x0080
 114/* MAAH0 */
 115#define KS_ADD_ADDR_0_HI		0x0084
 116/* MAAL1 */
 117#define KS_ADD_ADDR_1_LO		0x0088
 118/* MAAH1 */
 119#define KS_ADD_ADDR_1_HI		0x008C
 120/* MAAL2 */
 121#define KS_ADD_ADDR_2_LO		0x0090
 122/* MAAH2 */
 123#define KS_ADD_ADDR_2_HI		0x0094
 124/* MAAL3 */
 125#define KS_ADD_ADDR_3_LO		0x0098
 126/* MAAH3 */
 127#define KS_ADD_ADDR_3_HI		0x009C
 128/* MAAL4 */
 129#define KS_ADD_ADDR_4_LO		0x00A0
 130/* MAAH4 */
 131#define KS_ADD_ADDR_4_HI		0x00A4
 132/* MAAL5 */
 133#define KS_ADD_ADDR_5_LO		0x00A8
 134/* MAAH5 */
 135#define KS_ADD_ADDR_5_HI		0x00AC
 136/* MAAL6 */
 137#define KS_ADD_ADDR_6_LO		0x00B0
 138/* MAAH6 */
 139#define KS_ADD_ADDR_6_HI		0x00B4
 140/* MAAL7 */
 141#define KS_ADD_ADDR_7_LO		0x00B8
 142/* MAAH7 */
 143#define KS_ADD_ADDR_7_HI		0x00BC
 144/* MAAL8 */
 145#define KS_ADD_ADDR_8_LO		0x00C0
 146/* MAAH8 */
 147#define KS_ADD_ADDR_8_HI		0x00C4
 148/* MAAL9 */
 149#define KS_ADD_ADDR_9_LO		0x00C8
 150/* MAAH9 */
 151#define KS_ADD_ADDR_9_HI		0x00CC
 152/* MAAL10 */
 153#define KS_ADD_ADDR_A_LO		0x00D0
 154/* MAAH10 */
 155#define KS_ADD_ADDR_A_HI		0x00D4
 156/* MAAL11 */
 157#define KS_ADD_ADDR_B_LO		0x00D8
 158/* MAAH11 */
 159#define KS_ADD_ADDR_B_HI		0x00DC
 160/* MAAL12 */
 161#define KS_ADD_ADDR_C_LO		0x00E0
 162/* MAAH12 */
 163#define KS_ADD_ADDR_C_HI		0x00E4
 164/* MAAL13 */
 165#define KS_ADD_ADDR_D_LO		0x00E8
 166/* MAAH13 */
 167#define KS_ADD_ADDR_D_HI		0x00EC
 168/* MAAL14 */
 169#define KS_ADD_ADDR_E_LO		0x00F0
 170/* MAAH14 */
 171#define KS_ADD_ADDR_E_HI		0x00F4
 172/* MAAL15 */
 173#define KS_ADD_ADDR_F_LO		0x00F8
 174/* MAAH15 */
 175#define KS_ADD_ADDR_F_HI		0x00FC
 176
 177#define ADD_ADDR_HI_MASK		0x0000FFFF
 178#define ADD_ADDR_ENABLE			0x80000000
 179#define ADD_ADDR_INCR			8
 180
 181/* Miscellaneous Registers */
 182
 183/* MARL */
 184#define KS884X_ADDR_0_OFFSET		0x0200
 185#define KS884X_ADDR_1_OFFSET		0x0201
 186/* MARM */
 187#define KS884X_ADDR_2_OFFSET		0x0202
 188#define KS884X_ADDR_3_OFFSET		0x0203
 189/* MARH */
 190#define KS884X_ADDR_4_OFFSET		0x0204
 191#define KS884X_ADDR_5_OFFSET		0x0205
 192
 193/* OBCR */
 194#define KS884X_BUS_CTRL_OFFSET		0x0210
 195
 196#define BUS_SPEED_125_MHZ		0x0000
 197#define BUS_SPEED_62_5_MHZ		0x0001
 198#define BUS_SPEED_41_66_MHZ		0x0002
 199#define BUS_SPEED_25_MHZ		0x0003
 200
 201/* EEPCR */
 202#define KS884X_EEPROM_CTRL_OFFSET	0x0212
 203
 204#define EEPROM_CHIP_SELECT		0x0001
 205#define EEPROM_SERIAL_CLOCK		0x0002
 206#define EEPROM_DATA_OUT			0x0004
 207#define EEPROM_DATA_IN			0x0008
 208#define EEPROM_ACCESS_ENABLE		0x0010
 209
 210/* MBIR */
 211#define KS884X_MEM_INFO_OFFSET		0x0214
 212
 213#define RX_MEM_TEST_FAILED		0x0008
 214#define RX_MEM_TEST_FINISHED		0x0010
 215#define TX_MEM_TEST_FAILED		0x0800
 216#define TX_MEM_TEST_FINISHED		0x1000
 217
 218/* GCR */
 219#define KS884X_GLOBAL_CTRL_OFFSET	0x0216
 220#define GLOBAL_SOFTWARE_RESET		0x0001
 221
 222#define KS8841_POWER_MANAGE_OFFSET	0x0218
 223
 224/* WFCR */
 225#define KS8841_WOL_CTRL_OFFSET		0x021A
 226#define KS8841_WOL_MAGIC_ENABLE		0x0080
 227#define KS8841_WOL_FRAME3_ENABLE	0x0008
 228#define KS8841_WOL_FRAME2_ENABLE	0x0004
 229#define KS8841_WOL_FRAME1_ENABLE	0x0002
 230#define KS8841_WOL_FRAME0_ENABLE	0x0001
 231
 232/* WF0 */
 233#define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
 234#define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
 235#define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228
 236
 237/* IACR */
 238#define KS884X_IACR_P			0x04A0
 239#define KS884X_IACR_OFFSET		KS884X_IACR_P
 240
 241/* IADR1 */
 242#define KS884X_IADR1_P			0x04A2
 243#define KS884X_IADR2_P			0x04A4
 244#define KS884X_IADR3_P			0x04A6
 245#define KS884X_IADR4_P			0x04A8
 246#define KS884X_IADR5_P			0x04AA
 247
 248#define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
 249#define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)
 250
 251#define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
 252#define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
 253#define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
 254#define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
 255#define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
 256#define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
 257#define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
 258#define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
 259#define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P
 260
 261/* P1MBCR */
 262#define KS884X_P1MBCR_P			0x04D0
 263#define KS884X_P1MBSR_P			0x04D2
 264#define KS884X_PHY1ILR_P		0x04D4
 265#define KS884X_PHY1IHR_P		0x04D6
 266#define KS884X_P1ANAR_P			0x04D8
 267#define KS884X_P1ANLPR_P		0x04DA
 268
 269/* P2MBCR */
 270#define KS884X_P2MBCR_P			0x04E0
 271#define KS884X_P2MBSR_P			0x04E2
 272#define KS884X_PHY2ILR_P		0x04E4
 273#define KS884X_PHY2IHR_P		0x04E6
 274#define KS884X_P2ANAR_P			0x04E8
 275#define KS884X_P2ANLPR_P		0x04EA
 276
 277#define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
 278#define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)
 279
 280#define KS884X_PHY_CTRL_OFFSET		0x00
 281
 282/* Mode Control Register */
 283#define PHY_REG_CTRL			0
 284
 285#define PHY_RESET			0x8000
 286#define PHY_LOOPBACK			0x4000
 287#define PHY_SPEED_100MBIT		0x2000
 288#define PHY_AUTO_NEG_ENABLE		0x1000
 289#define PHY_POWER_DOWN			0x0800
 290#define PHY_MII_DISABLE			0x0400
 291#define PHY_AUTO_NEG_RESTART		0x0200
 292#define PHY_FULL_DUPLEX			0x0100
 293#define PHY_COLLISION_TEST		0x0080
 294#define PHY_HP_MDIX			0x0020
 295#define PHY_FORCE_MDIX			0x0010
 296#define PHY_AUTO_MDIX_DISABLE		0x0008
 297#define PHY_REMOTE_FAULT_DISABLE	0x0004
 298#define PHY_TRANSMIT_DISABLE		0x0002
 299#define PHY_LED_DISABLE			0x0001
 300
 301#define KS884X_PHY_STATUS_OFFSET	0x02
 302
 303/* Mode Status Register */
 304#define PHY_REG_STATUS			1
 305
 306#define PHY_100BT4_CAPABLE		0x8000
 307#define PHY_100BTX_FD_CAPABLE		0x4000
 308#define PHY_100BTX_CAPABLE		0x2000
 309#define PHY_10BT_FD_CAPABLE		0x1000
 310#define PHY_10BT_CAPABLE		0x0800
 311#define PHY_MII_SUPPRESS_CAPABLE	0x0040
 312#define PHY_AUTO_NEG_ACKNOWLEDGE	0x0020
 313#define PHY_REMOTE_FAULT		0x0010
 314#define PHY_AUTO_NEG_CAPABLE		0x0008
 315#define PHY_LINK_STATUS			0x0004
 316#define PHY_JABBER_DETECT		0x0002
 317#define PHY_EXTENDED_CAPABILITY		0x0001
 318
 319#define KS884X_PHY_ID_1_OFFSET		0x04
 320#define KS884X_PHY_ID_2_OFFSET		0x06
 321
 322/* PHY Identifier Registers */
 323#define PHY_REG_ID_1			2
 324#define PHY_REG_ID_2			3
 325
 326#define KS884X_PHY_AUTO_NEG_OFFSET	0x08
 327
 328/* Auto-Negotiation Advertisement Register */
 329#define PHY_REG_AUTO_NEGOTIATION	4
 330
 331#define PHY_AUTO_NEG_NEXT_PAGE		0x8000
 332#define PHY_AUTO_NEG_REMOTE_FAULT	0x2000
 333/* Not supported. */
 334#define PHY_AUTO_NEG_ASYM_PAUSE		0x0800
 335#define PHY_AUTO_NEG_SYM_PAUSE		0x0400
 336#define PHY_AUTO_NEG_100BT4		0x0200
 337#define PHY_AUTO_NEG_100BTX_FD		0x0100
 338#define PHY_AUTO_NEG_100BTX		0x0080
 339#define PHY_AUTO_NEG_10BT_FD		0x0040
 340#define PHY_AUTO_NEG_10BT		0x0020
 341#define PHY_AUTO_NEG_SELECTOR		0x001F
 342#define PHY_AUTO_NEG_802_3		0x0001
 343
 344#define PHY_AUTO_NEG_PAUSE  (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
 345
 346#define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A
 347
 348/* Auto-Negotiation Link Partner Ability Register */
 349#define PHY_REG_REMOTE_CAPABILITY	5
 350
 351#define PHY_REMOTE_NEXT_PAGE		0x8000
 352#define PHY_REMOTE_ACKNOWLEDGE		0x4000
 353#define PHY_REMOTE_REMOTE_FAULT		0x2000
 354#define PHY_REMOTE_SYM_PAUSE		0x0400
 355#define PHY_REMOTE_100BTX_FD		0x0100
 356#define PHY_REMOTE_100BTX		0x0080
 357#define PHY_REMOTE_10BT_FD		0x0040
 358#define PHY_REMOTE_10BT			0x0020
 359
 360/* P1VCT */
 361#define KS884X_P1VCT_P			0x04F0
 362#define KS884X_P1PHYCTRL_P		0x04F2
 363
 364/* P2VCT */
 365#define KS884X_P2VCT_P			0x04F4
 366#define KS884X_P2PHYCTRL_P		0x04F6
 367
 368#define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
 369#define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)
 370
 371#define KS884X_PHY_LINK_MD_OFFSET	0x00
 372
 373#define PHY_START_CABLE_DIAG		0x8000
 374#define PHY_CABLE_DIAG_RESULT		0x6000
 375#define PHY_CABLE_STAT_NORMAL		0x0000
 376#define PHY_CABLE_STAT_OPEN		0x2000
 377#define PHY_CABLE_STAT_SHORT		0x4000
 378#define PHY_CABLE_STAT_FAILED		0x6000
 379#define PHY_CABLE_10M_SHORT		0x1000
 380#define PHY_CABLE_FAULT_COUNTER		0x01FF
 381
 382#define KS884X_PHY_PHY_CTRL_OFFSET	0x02
 383
 384#define PHY_STAT_REVERSED_POLARITY	0x0020
 385#define PHY_STAT_MDIX			0x0010
 386#define PHY_FORCE_LINK			0x0008
 387#define PHY_POWER_SAVING_DISABLE	0x0004
 388#define PHY_REMOTE_LOOPBACK		0x0002
 389
 390/* SIDER */
 391#define KS884X_SIDER_P			0x0400
 392#define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
 393#define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)
 394
 395#define REG_FAMILY_ID			0x88
 396
 397#define REG_CHIP_ID_41			0x8810
 398#define REG_CHIP_ID_42			0x8800
 399
 400#define KS884X_CHIP_ID_MASK_41		0xFF10
 401#define KS884X_CHIP_ID_MASK		0xFFF0
 402#define KS884X_CHIP_ID_SHIFT		4
 403#define KS884X_REVISION_MASK		0x000E
 404#define KS884X_REVISION_SHIFT		1
 405#define KS8842_START			0x0001
 406
 407#define CHIP_IP_41_M			0x8810
 408#define CHIP_IP_42_M			0x8800
 409#define CHIP_IP_61_M			0x8890
 410#define CHIP_IP_62_M			0x8880
 411
 412#define CHIP_IP_41_P			0x8850
 413#define CHIP_IP_42_P			0x8840
 414#define CHIP_IP_61_P			0x88D0
 415#define CHIP_IP_62_P			0x88C0
 416
 417/* SGCR1 */
 418#define KS8842_SGCR1_P			0x0402
 419#define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P
 420
 421#define SWITCH_PASS_ALL			0x8000
 422#define SWITCH_TX_FLOW_CTRL		0x2000
 423#define SWITCH_RX_FLOW_CTRL		0x1000
 424#define SWITCH_CHECK_LENGTH		0x0800
 425#define SWITCH_AGING_ENABLE		0x0400
 426#define SWITCH_FAST_AGING		0x0200
 427#define SWITCH_AGGR_BACKOFF		0x0100
 428#define SWITCH_PASS_PAUSE		0x0008
 429#define SWITCH_LINK_AUTO_AGING		0x0001
 430
 431/* SGCR2 */
 432#define KS8842_SGCR2_P			0x0404
 433#define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P
 434
 435#define SWITCH_VLAN_ENABLE		0x8000
 436#define SWITCH_IGMP_SNOOP		0x4000
 437#define IPV6_MLD_SNOOP_ENABLE		0x2000
 438#define IPV6_MLD_SNOOP_OPTION		0x1000
 439#define PRIORITY_SCHEME_SELECT		0x0800
 440#define SWITCH_MIRROR_RX_TX		0x0100
 441#define UNICAST_VLAN_BOUNDARY		0x0080
 442#define MULTICAST_STORM_DISABLE		0x0040
 443#define SWITCH_BACK_PRESSURE		0x0020
 444#define FAIR_FLOW_CTRL			0x0010
 445#define NO_EXC_COLLISION_DROP		0x0008
 446#define SWITCH_HUGE_PACKET		0x0004
 447#define SWITCH_LEGAL_PACKET		0x0002
 448#define SWITCH_BUF_RESERVE		0x0001
 449
 450/* SGCR3 */
 451#define KS8842_SGCR3_P			0x0406
 452#define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P
 453
 454#define BROADCAST_STORM_RATE_LO		0xFF00
 455#define SWITCH_REPEATER			0x0080
 456#define SWITCH_HALF_DUPLEX		0x0040
 457#define SWITCH_FLOW_CTRL		0x0020
 458#define SWITCH_10_MBIT			0x0010
 459#define SWITCH_REPLACE_NULL_VID		0x0008
 460#define BROADCAST_STORM_RATE_HI		0x0007
 461
 462#define BROADCAST_STORM_RATE		0x07FF
 463
 464/* SGCR4 */
 465#define KS8842_SGCR4_P			0x0408
 466
 467/* SGCR5 */
 468#define KS8842_SGCR5_P			0x040A
 469#define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P
 470
 471#define LED_MODE			0x8200
 472#define LED_SPEED_DUPLEX_ACT		0x0000
 473#define LED_SPEED_DUPLEX_LINK_ACT	0x8000
 474#define LED_DUPLEX_10_100		0x0200
 475
 476/* SGCR6 */
 477#define KS8842_SGCR6_P			0x0410
 478#define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P
 479
 480#define KS8842_PRIORITY_MASK		3
 481#define KS8842_PRIORITY_SHIFT		2
 482
 483/* SGCR7 */
 484#define KS8842_SGCR7_P			0x0412
 485#define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P
 486
 487#define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
 488#define SWITCH_UNK_DEF_PORT_3		0x0004
 489#define SWITCH_UNK_DEF_PORT_2		0x0002
 490#define SWITCH_UNK_DEF_PORT_1		0x0001
 491
 492/* MACAR1 */
 493#define KS8842_MACAR1_P			0x0470
 494#define KS8842_MACAR2_P			0x0472
 495#define KS8842_MACAR3_P			0x0474
 496#define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
 497#define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
 498#define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
 499#define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
 500#define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
 501#define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)
 502
 503/* TOSR1 */
 504#define KS8842_TOSR1_P			0x0480
 505#define KS8842_TOSR2_P			0x0482
 506#define KS8842_TOSR3_P			0x0484
 507#define KS8842_TOSR4_P			0x0486
 508#define KS8842_TOSR5_P			0x0488
 509#define KS8842_TOSR6_P			0x048A
 510#define KS8842_TOSR7_P			0x0490
 511#define KS8842_TOSR8_P			0x0492
 512#define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
 513#define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
 514#define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
 515#define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
 516#define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
 517#define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P
 518
 519#define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
 520#define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P
 521
 522/* P1CR1 */
 523#define KS8842_P1CR1_P			0x0500
 524#define KS8842_P1CR2_P			0x0502
 525#define KS8842_P1VIDR_P			0x0504
 526#define KS8842_P1CR3_P			0x0506
 527#define KS8842_P1IRCR_P			0x0508
 528#define KS8842_P1ERCR_P			0x050A
 529#define KS884X_P1SCSLMD_P		0x0510
 530#define KS884X_P1CR4_P			0x0512
 531#define KS884X_P1SR_P			0x0514
 532
 533/* P2CR1 */
 534#define KS8842_P2CR1_P			0x0520
 535#define KS8842_P2CR2_P			0x0522
 536#define KS8842_P2VIDR_P			0x0524
 537#define KS8842_P2CR3_P			0x0526
 538#define KS8842_P2IRCR_P			0x0528
 539#define KS8842_P2ERCR_P			0x052A
 540#define KS884X_P2SCSLMD_P		0x0530
 541#define KS884X_P2CR4_P			0x0532
 542#define KS884X_P2SR_P			0x0534
 543
 544/* P3CR1 */
 545#define KS8842_P3CR1_P			0x0540
 546#define KS8842_P3CR2_P			0x0542
 547#define KS8842_P3VIDR_P			0x0544
 548#define KS8842_P3CR3_P			0x0546
 549#define KS8842_P3IRCR_P			0x0548
 550#define KS8842_P3ERCR_P			0x054A
 551
 552#define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
 553#define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
 554#define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P
 555
 556#define PORT_CTRL_ADDR(port, addr)		\
 557	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
 558		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
 559
 560#define KS8842_PORT_CTRL_1_OFFSET	0x00
 561
 562#define PORT_BROADCAST_STORM		0x0080
 563#define PORT_DIFFSERV_ENABLE		0x0040
 564#define PORT_802_1P_ENABLE		0x0020
 565#define PORT_BASED_PRIORITY_MASK	0x0018
 566#define PORT_BASED_PRIORITY_BASE	0x0003
 567#define PORT_BASED_PRIORITY_SHIFT	3
 568#define PORT_BASED_PRIORITY_0		0x0000
 569#define PORT_BASED_PRIORITY_1		0x0008
 570#define PORT_BASED_PRIORITY_2		0x0010
 571#define PORT_BASED_PRIORITY_3		0x0018
 572#define PORT_INSERT_TAG			0x0004
 573#define PORT_REMOVE_TAG			0x0002
 574#define PORT_PRIO_QUEUE_ENABLE		0x0001
 575
 576#define KS8842_PORT_CTRL_2_OFFSET	0x02
 577
 578#define PORT_INGRESS_VLAN_FILTER	0x4000
 579#define PORT_DISCARD_NON_VID		0x2000
 580#define PORT_FORCE_FLOW_CTRL		0x1000
 581#define PORT_BACK_PRESSURE		0x0800
 582#define PORT_TX_ENABLE			0x0400
 583#define PORT_RX_ENABLE			0x0200
 584#define PORT_LEARN_DISABLE		0x0100
 585#define PORT_MIRROR_SNIFFER		0x0080
 586#define PORT_MIRROR_RX			0x0040
 587#define PORT_MIRROR_TX			0x0020
 588#define PORT_USER_PRIORITY_CEILING	0x0008
 589#define PORT_VLAN_MEMBERSHIP		0x0007
 590
 591#define KS8842_PORT_CTRL_VID_OFFSET	0x04
 592
 593#define PORT_DEFAULT_VID		0x0001
 594
 595#define KS8842_PORT_CTRL_3_OFFSET	0x06
 596
 597#define PORT_INGRESS_LIMIT_MODE		0x000C
 598#define PORT_INGRESS_ALL		0x0000
 599#define PORT_INGRESS_UNICAST		0x0004
 600#define PORT_INGRESS_MULTICAST		0x0008
 601#define PORT_INGRESS_BROADCAST		0x000C
 602#define PORT_COUNT_IFG			0x0002
 603#define PORT_COUNT_PREAMBLE		0x0001
 604
 605#define KS8842_PORT_IN_RATE_OFFSET	0x08
 606#define KS8842_PORT_OUT_RATE_OFFSET	0x0A
 607
 608#define PORT_PRIORITY_RATE		0x0F
 609#define PORT_PRIORITY_RATE_SHIFT	4
 610
 611#define KS884X_PORT_LINK_MD		0x10
 612
 613#define PORT_CABLE_10M_SHORT		0x8000
 614#define PORT_CABLE_DIAG_RESULT		0x6000
 615#define PORT_CABLE_STAT_NORMAL		0x0000
 616#define PORT_CABLE_STAT_OPEN		0x2000
 617#define PORT_CABLE_STAT_SHORT		0x4000
 618#define PORT_CABLE_STAT_FAILED		0x6000
 619#define PORT_START_CABLE_DIAG		0x1000
 620#define PORT_FORCE_LINK			0x0800
 621#define PORT_POWER_SAVING_DISABLE	0x0400
 622#define PORT_PHY_REMOTE_LOOPBACK	0x0200
 623#define PORT_CABLE_FAULT_COUNTER	0x01FF
 624
 625#define KS884X_PORT_CTRL_4_OFFSET	0x12
 626
 627#define PORT_LED_OFF			0x8000
 628#define PORT_TX_DISABLE			0x4000
 629#define PORT_AUTO_NEG_RESTART		0x2000
 630#define PORT_REMOTE_FAULT_DISABLE	0x1000
 631#define PORT_POWER_DOWN			0x0800
 632#define PORT_AUTO_MDIX_DISABLE		0x0400
 633#define PORT_FORCE_MDIX			0x0200
 634#define PORT_LOOPBACK			0x0100
 635#define PORT_AUTO_NEG_ENABLE		0x0080
 636#define PORT_FORCE_100_MBIT		0x0040
 637#define PORT_FORCE_FULL_DUPLEX		0x0020
 638#define PORT_AUTO_NEG_SYM_PAUSE		0x0010
 639#define PORT_AUTO_NEG_100BTX_FD		0x0008
 640#define PORT_AUTO_NEG_100BTX		0x0004
 641#define PORT_AUTO_NEG_10BT_FD		0x0002
 642#define PORT_AUTO_NEG_10BT		0x0001
 643
 644#define KS884X_PORT_STATUS_OFFSET	0x14
 645
 646#define PORT_HP_MDIX			0x8000
 647#define PORT_REVERSED_POLARITY		0x2000
 648#define PORT_RX_FLOW_CTRL		0x0800
 649#define PORT_TX_FLOW_CTRL		0x1000
 650#define PORT_STATUS_SPEED_100MBIT	0x0400
 651#define PORT_STATUS_FULL_DUPLEX		0x0200
 652#define PORT_REMOTE_FAULT		0x0100
 653#define PORT_MDIX_STATUS		0x0080
 654#define PORT_AUTO_NEG_COMPLETE		0x0040
 655#define PORT_STATUS_LINK_GOOD		0x0020
 656#define PORT_REMOTE_SYM_PAUSE		0x0010
 657#define PORT_REMOTE_100BTX_FD		0x0008
 658#define PORT_REMOTE_100BTX		0x0004
 659#define PORT_REMOTE_10BT_FD		0x0002
 660#define PORT_REMOTE_10BT		0x0001
 661
 662/*
 663#define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 664#define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
 665#define STATIC_MAC_TABLE_VALID		00-00080000-00000000
 666#define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
 667#define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
 668#define STATIC_MAC_TABLE_FID		00-03C00000-00000000
 669*/
 670
 671#define STATIC_MAC_TABLE_ADDR		0x0000FFFF
 672#define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
 673#define STATIC_MAC_TABLE_VALID		0x00080000
 674#define STATIC_MAC_TABLE_OVERRIDE	0x00100000
 675#define STATIC_MAC_TABLE_USE_FID	0x00200000
 676#define STATIC_MAC_TABLE_FID		0x03C00000
 677
 678#define STATIC_MAC_FWD_PORTS_SHIFT	16
 679#define STATIC_MAC_FID_SHIFT		22
 680
 681/*
 682#define VLAN_TABLE_VID			00-00000000-00000FFF
 683#define VLAN_TABLE_FID			00-00000000-0000F000
 684#define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
 685#define VLAN_TABLE_VALID		00-00000000-00080000
 686*/
 687
 688#define VLAN_TABLE_VID			0x00000FFF
 689#define VLAN_TABLE_FID			0x0000F000
 690#define VLAN_TABLE_MEMBERSHIP		0x00070000
 691#define VLAN_TABLE_VALID		0x00080000
 692
 693#define VLAN_TABLE_FID_SHIFT		12
 694#define VLAN_TABLE_MEMBERSHIP_SHIFT	16
 695
 696/*
 697#define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 698#define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
 699#define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
 700#define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
 701#define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
 702#define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
 703#define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
 704#define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
 705*/
 706
 707#define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
 708#define DYNAMIC_MAC_TABLE_FID		0x000F0000
 709#define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
 710#define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
 711#define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000
 712
 713#define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
 714#define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
 715#define DYNAMIC_MAC_TABLE_RESERVED	0x78
 716#define DYNAMIC_MAC_TABLE_NOT_READY	0x80
 717
 718#define DYNAMIC_MAC_FID_SHIFT		16
 719#define DYNAMIC_MAC_SRC_PORT_SHIFT	20
 720#define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
 721#define DYNAMIC_MAC_ENTRIES_SHIFT	24
 722#define DYNAMIC_MAC_ENTRIES_H_SHIFT	8
 723
 724/*
 725#define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
 726#define MIB_COUNTER_VALID		00-00000000-40000000
 727#define MIB_COUNTER_OVERFLOW		00-00000000-80000000
 728*/
 729
 730#define MIB_COUNTER_VALUE		0x3FFFFFFF
 731#define MIB_COUNTER_VALID		0x40000000
 732#define MIB_COUNTER_OVERFLOW		0x80000000
 733
 734#define MIB_PACKET_DROPPED		0x0000FFFF
 735
 736#define KS_MIB_PACKET_DROPPED_TX_0	0x100
 737#define KS_MIB_PACKET_DROPPED_TX_1	0x101
 738#define KS_MIB_PACKET_DROPPED_TX	0x102
 739#define KS_MIB_PACKET_DROPPED_RX_0	0x103
 740#define KS_MIB_PACKET_DROPPED_RX_1	0x104
 741#define KS_MIB_PACKET_DROPPED_RX	0x105
 742
 743/* Change default LED mode. */
 744#define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT
 745
 746#define MAC_ADDR_ORDER(i)		(ETH_ALEN - 1 - (i))
 747
 748#define MAX_ETHERNET_BODY_SIZE		1500
 749#define ETHERNET_HEADER_SIZE		(14 + VLAN_HLEN)
 750
 751#define MAX_ETHERNET_PACKET_SIZE	\
 752	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
 753
 754#define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
 755#define MAX_RX_BUF_SIZE			(1912 + 4)
 756
 757#define ADDITIONAL_ENTRIES		16
 758#define MAX_MULTICAST_LIST		32
 759
 760#define HW_MULTICAST_SIZE		8
 761
 762#define HW_TO_DEV_PORT(port)		(port - 1)
 763
 764enum {
 765	media_connected,
 766	media_disconnected
 767};
 768
 769enum {
 770	OID_COUNTER_UNKOWN,
 771
 772	OID_COUNTER_FIRST,
 773
 774	/* total transmit errors */
 775	OID_COUNTER_XMIT_ERROR,
 776
 777	/* total receive errors */
 778	OID_COUNTER_RCV_ERROR,
 779
 780	OID_COUNTER_LAST
 781};
 782
 783/*
 784 * Hardware descriptor definitions
 785 */
 786
 787#define DESC_ALIGNMENT			16
 788#define BUFFER_ALIGNMENT		8
 789
 790#define NUM_OF_RX_DESC			64
 791#define NUM_OF_TX_DESC			64
 792
 793#define KS_DESC_RX_FRAME_LEN		0x000007FF
 794#define KS_DESC_RX_FRAME_TYPE		0x00008000
 795#define KS_DESC_RX_ERROR_CRC		0x00010000
 796#define KS_DESC_RX_ERROR_RUNT		0x00020000
 797#define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
 798#define KS_DESC_RX_ERROR_PHY		0x00080000
 799#define KS884X_DESC_RX_PORT_MASK	0x00300000
 800#define KS_DESC_RX_MULTICAST		0x01000000
 801#define KS_DESC_RX_ERROR		0x02000000
 802#define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
 803#define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
 804#define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
 805#define KS_DESC_RX_LAST			0x20000000
 806#define KS_DESC_RX_FIRST		0x40000000
 807#define KS_DESC_RX_ERROR_COND		\
 808	(KS_DESC_RX_ERROR_CRC |		\
 809	KS_DESC_RX_ERROR_RUNT |		\
 810	KS_DESC_RX_ERROR_PHY |		\
 811	KS_DESC_RX_ERROR_TOO_LONG)
 812
 813#define KS_DESC_HW_OWNED		0x80000000
 814
 815#define KS_DESC_BUF_SIZE		0x000007FF
 816#define KS884X_DESC_TX_PORT_MASK	0x00300000
 817#define KS_DESC_END_OF_RING		0x02000000
 818#define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
 819#define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
 820#define KS_DESC_TX_CSUM_GEN_IP		0x10000000
 821#define KS_DESC_TX_LAST			0x20000000
 822#define KS_DESC_TX_FIRST		0x40000000
 823#define KS_DESC_TX_INTERRUPT		0x80000000
 824
 825#define KS_DESC_PORT_SHIFT		20
 826
 827#define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)
 828
 829#define KS_DESC_TX_MASK			\
 830	(KS_DESC_TX_INTERRUPT |		\
 831	KS_DESC_TX_FIRST |		\
 832	KS_DESC_TX_LAST |		\
 833	KS_DESC_TX_CSUM_GEN_IP |	\
 834	KS_DESC_TX_CSUM_GEN_TCP |	\
 835	KS_DESC_TX_CSUM_GEN_UDP |	\
 836	KS_DESC_BUF_SIZE)
 837
 838struct ksz_desc_rx_stat {
 839#ifdef __BIG_ENDIAN_BITFIELD
 840	u32 hw_owned:1;
 841	u32 first_desc:1;
 842	u32 last_desc:1;
 843	u32 csum_err_ip:1;
 844	u32 csum_err_tcp:1;
 845	u32 csum_err_udp:1;
 846	u32 error:1;
 847	u32 multicast:1;
 848	u32 src_port:4;
 849	u32 err_phy:1;
 850	u32 err_too_long:1;
 851	u32 err_runt:1;
 852	u32 err_crc:1;
 853	u32 frame_type:1;
 854	u32 reserved1:4;
 855	u32 frame_len:11;
 856#else
 857	u32 frame_len:11;
 858	u32 reserved1:4;
 859	u32 frame_type:1;
 860	u32 err_crc:1;
 861	u32 err_runt:1;
 862	u32 err_too_long:1;
 863	u32 err_phy:1;
 864	u32 src_port:4;
 865	u32 multicast:1;
 866	u32 error:1;
 867	u32 csum_err_udp:1;
 868	u32 csum_err_tcp:1;
 869	u32 csum_err_ip:1;
 870	u32 last_desc:1;
 871	u32 first_desc:1;
 872	u32 hw_owned:1;
 873#endif
 874};
 875
 876struct ksz_desc_tx_stat {
 877#ifdef __BIG_ENDIAN_BITFIELD
 878	u32 hw_owned:1;
 879	u32 reserved1:31;
 880#else
 881	u32 reserved1:31;
 882	u32 hw_owned:1;
 883#endif
 884};
 885
 886struct ksz_desc_rx_buf {
 887#ifdef __BIG_ENDIAN_BITFIELD
 888	u32 reserved4:6;
 889	u32 end_of_ring:1;
 890	u32 reserved3:14;
 891	u32 buf_size:11;
 892#else
 893	u32 buf_size:11;
 894	u32 reserved3:14;
 895	u32 end_of_ring:1;
 896	u32 reserved4:6;
 897#endif
 898};
 899
 900struct ksz_desc_tx_buf {
 901#ifdef __BIG_ENDIAN_BITFIELD
 902	u32 intr:1;
 903	u32 first_seg:1;
 904	u32 last_seg:1;
 905	u32 csum_gen_ip:1;
 906	u32 csum_gen_tcp:1;
 907	u32 csum_gen_udp:1;
 908	u32 end_of_ring:1;
 909	u32 reserved4:1;
 910	u32 dest_port:4;
 911	u32 reserved3:9;
 912	u32 buf_size:11;
 913#else
 914	u32 buf_size:11;
 915	u32 reserved3:9;
 916	u32 dest_port:4;
 917	u32 reserved4:1;
 918	u32 end_of_ring:1;
 919	u32 csum_gen_udp:1;
 920	u32 csum_gen_tcp:1;
 921	u32 csum_gen_ip:1;
 922	u32 last_seg:1;
 923	u32 first_seg:1;
 924	u32 intr:1;
 925#endif
 926};
 927
 928union desc_stat {
 929	struct ksz_desc_rx_stat rx;
 930	struct ksz_desc_tx_stat tx;
 931	u32 data;
 932};
 933
 934union desc_buf {
 935	struct ksz_desc_rx_buf rx;
 936	struct ksz_desc_tx_buf tx;
 937	u32 data;
 938};
 939
 940/**
 941 * struct ksz_hw_desc - Hardware descriptor data structure
 942 * @ctrl:	Descriptor control value.
 943 * @buf:	Descriptor buffer value.
 944 * @addr:	Physical address of memory buffer.
 945 * @next:	Pointer to next hardware descriptor.
 946 */
 947struct ksz_hw_desc {
 948	union desc_stat ctrl;
 949	union desc_buf buf;
 950	u32 addr;
 951	u32 next;
 952};
 953
 954/**
 955 * struct ksz_sw_desc - Software descriptor data structure
 956 * @ctrl:	Descriptor control value.
 957 * @buf:	Descriptor buffer value.
 958 * @buf_size:	Current buffers size value in hardware descriptor.
 959 */
 960struct ksz_sw_desc {
 961	union desc_stat ctrl;
 962	union desc_buf buf;
 963	u32 buf_size;
 964};
 965
 966/**
 967 * struct ksz_dma_buf - OS dependent DMA buffer data structure
 968 * @skb:	Associated socket buffer.
 969 * @dma:	Associated physical DMA address.
 970 * len:		Actual len used.
 971 */
 972struct ksz_dma_buf {
 973	struct sk_buff *skb;
 974	dma_addr_t dma;
 975	int len;
 976};
 977
 978/**
 979 * struct ksz_desc - Descriptor structure
 980 * @phw:	Hardware descriptor pointer to uncached physical memory.
 981 * @sw:		Cached memory to hold hardware descriptor values for
 982 * 		manipulation.
 983 * @dma_buf:	Operating system dependent data structure to hold physical
 984 * 		memory buffer allocation information.
 985 */
 986struct ksz_desc {
 987	struct ksz_hw_desc *phw;
 988	struct ksz_sw_desc sw;
 989	struct ksz_dma_buf dma_buf;
 990};
 991
 992#define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
 993
 994/**
 995 * struct ksz_desc_info - Descriptor information data structure
 996 * @ring:	First descriptor in the ring.
 997 * @cur:	Current descriptor being manipulated.
 998 * @ring_virt:	First hardware descriptor in the ring.
 999 * @ring_phys:	The physical address of the first descriptor of the ring.
1000 * @size:	Size of hardware descriptor.
1001 * @alloc:	Number of descriptors allocated.
1002 * @avail:	Number of descriptors available for use.
1003 * @last:	Index for last descriptor released to hardware.
1004 * @next:	Index for next descriptor available for use.
1005 * @mask:	Mask for index wrapping.
1006 */
1007struct ksz_desc_info {
1008	struct ksz_desc *ring;
1009	struct ksz_desc *cur;
1010	struct ksz_hw_desc *ring_virt;
1011	u32 ring_phys;
1012	int size;
1013	int alloc;
1014	int avail;
1015	int last;
1016	int next;
1017	int mask;
1018};
1019
1020/*
1021 * KSZ8842 switch definitions
1022 */
1023
1024enum {
1025	TABLE_STATIC_MAC = 0,
1026	TABLE_VLAN,
1027	TABLE_DYNAMIC_MAC,
1028	TABLE_MIB
1029};
1030
1031#define LEARNED_MAC_TABLE_ENTRIES	1024
1032#define STATIC_MAC_TABLE_ENTRIES	8
1033
1034/**
1035 * struct ksz_mac_table - Static MAC table data structure
1036 * @mac_addr:	MAC address to filter.
1037 * @vid:	VID value.
1038 * @fid:	FID value.
1039 * @ports:	Port membership.
1040 * @override:	Override setting.
1041 * @use_fid:	FID use setting.
1042 * @valid:	Valid setting indicating the entry is being used.
1043 */
1044struct ksz_mac_table {
1045	u8 mac_addr[ETH_ALEN];
1046	u16 vid;
1047	u8 fid;
1048	u8 ports;
1049	u8 override:1;
1050	u8 use_fid:1;
1051	u8 valid:1;
1052};
1053
1054#define VLAN_TABLE_ENTRIES		16
1055
1056/**
1057 * struct ksz_vlan_table - VLAN table data structure
1058 * @vid:	VID value.
1059 * @fid:	FID value.
1060 * @member:	Port membership.
1061 */
1062struct ksz_vlan_table {
1063	u16 vid;
1064	u8 fid;
1065	u8 member;
1066};
1067
1068#define DIFFSERV_ENTRIES		64
1069#define PRIO_802_1P_ENTRIES		8
1070#define PRIO_QUEUES			4
1071
1072#define SWITCH_PORT_NUM			2
1073#define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
1074#define HOST_MASK			(1 << SWITCH_PORT_NUM)
1075#define PORT_MASK			7
1076
1077#define MAIN_PORT			0
1078#define OTHER_PORT			1
1079#define HOST_PORT			SWITCH_PORT_NUM
1080
1081#define PORT_COUNTER_NUM		0x20
1082#define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)
1083
1084#define MIB_COUNTER_RX_LO_PRIORITY	0x00
1085#define MIB_COUNTER_RX_HI_PRIORITY	0x01
1086#define MIB_COUNTER_RX_UNDERSIZE	0x02
1087#define MIB_COUNTER_RX_FRAGMENT		0x03
1088#define MIB_COUNTER_RX_OVERSIZE		0x04
1089#define MIB_COUNTER_RX_JABBER		0x05
1090#define MIB_COUNTER_RX_SYMBOL_ERR	0x06
1091#define MIB_COUNTER_RX_CRC_ERR		0x07
1092#define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
1093#define MIB_COUNTER_RX_CTRL_8808	0x09
1094#define MIB_COUNTER_RX_PAUSE		0x0A
1095#define MIB_COUNTER_RX_BROADCAST	0x0B
1096#define MIB_COUNTER_RX_MULTICAST	0x0C
1097#define MIB_COUNTER_RX_UNICAST		0x0D
1098#define MIB_COUNTER_RX_OCTET_64		0x0E
1099#define MIB_COUNTER_RX_OCTET_65_127	0x0F
1100#define MIB_COUNTER_RX_OCTET_128_255	0x10
1101#define MIB_COUNTER_RX_OCTET_256_511	0x11
1102#define MIB_COUNTER_RX_OCTET_512_1023	0x12
1103#define MIB_COUNTER_RX_OCTET_1024_1522	0x13
1104#define MIB_COUNTER_TX_LO_PRIORITY	0x14
1105#define MIB_COUNTER_TX_HI_PRIORITY	0x15
1106#define MIB_COUNTER_TX_LATE_COLLISION	0x16
1107#define MIB_COUNTER_TX_PAUSE		0x17
1108#define MIB_COUNTER_TX_BROADCAST	0x18
1109#define MIB_COUNTER_TX_MULTICAST	0x19
1110#define MIB_COUNTER_TX_UNICAST		0x1A
1111#define MIB_COUNTER_TX_DEFERRED		0x1B
1112#define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
1113#define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
1114#define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
1115#define MIB_COUNTER_TX_MULTI_COLLISION	0x1F
1116
1117#define MIB_COUNTER_RX_DROPPED_PACKET	0x20
1118#define MIB_COUNTER_TX_DROPPED_PACKET	0x21
1119
1120/**
1121 * struct ksz_port_mib - Port MIB data structure
1122 * @cnt_ptr:	Current pointer to MIB counter index.
1123 * @link_down:	Indication the link has just gone down.
1124 * @state:	Connection status of the port.
1125 * @mib_start:	The starting counter index.  Some ports do not start at 0.
1126 * @counter:	64-bit MIB counter value.
1127 * @dropped:	Temporary buffer to remember last read packet dropped values.
1128 *
1129 * MIB counters needs to be read periodically so that counters do not get
1130 * overflowed and give incorrect values.  A right balance is needed to
1131 * satisfy this condition and not waste too much CPU time.
1132 *
1133 * It is pointless to read MIB counters when the port is disconnected.  The
1134 * @state provides the connection status so that MIB counters are read only
1135 * when the port is connected.  The @link_down indicates the port is just
1136 * disconnected so that all MIB counters are read one last time to update the
1137 * information.
1138 */
1139struct ksz_port_mib {
1140	u8 cnt_ptr;
1141	u8 link_down;
1142	u8 state;
1143	u8 mib_start;
1144
1145	u64 counter[TOTAL_PORT_COUNTER_NUM];
1146	u32 dropped[2];
1147};
1148
1149/**
1150 * struct ksz_port_cfg - Port configuration data structure
1151 * @vid:	VID value.
1152 * @member:	Port membership.
1153 * @port_prio:	Port priority.
1154 * @rx_rate:	Receive priority rate.
1155 * @tx_rate:	Transmit priority rate.
1156 * @stp_state:	Current Spanning Tree Protocol state.
1157 */
1158struct ksz_port_cfg {
1159	u16 vid;
1160	u8 member;
1161	u8 port_prio;
1162	u32 rx_rate[PRIO_QUEUES];
1163	u32 tx_rate[PRIO_QUEUES];
1164	int stp_state;
1165};
1166
1167/**
1168 * struct ksz_switch - KSZ8842 switch data structure
1169 * @mac_table:	MAC table entries information.
1170 * @vlan_table:	VLAN table entries information.
1171 * @port_cfg:	Port configuration information.
1172 * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
1173 * 		(bit7 ~ bit2) field.
1174 * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
1175 * 		Tag priority field.
1176 * @br_addr:	Bridge address.  Used for STP.
1177 * @other_addr:	Other MAC address.  Used for multiple network device mode.
1178 * @broad_per:	Broadcast storm percentage.
1179 * @member:	Current port membership.  Used for STP.
1180 */
1181struct ksz_switch {
1182	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1183	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1184	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1185
1186	u8 diffserv[DIFFSERV_ENTRIES];
1187	u8 p_802_1p[PRIO_802_1P_ENTRIES];
1188
1189	u8 br_addr[ETH_ALEN];
1190	u8 other_addr[ETH_ALEN];
1191
1192	u8 broad_per;
1193	u8 member;
1194};
1195
1196#define TX_RATE_UNIT			10000
1197
1198/**
1199 * struct ksz_port_info - Port information data structure
1200 * @state:	Connection status of the port.
1201 * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
1202 * @duplex:	Duplex mode.
1203 * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
1204 * @partner:	Auto-negotiation partner setting.  Used to determine link.
1205 * @port_id:	Port index to access actual hardware register.
1206 * @pdev:	Pointer to OS dependent network device.
1207 */
1208struct ksz_port_info {
1209	uint state;
1210	uint tx_rate;
1211	u8 duplex;
1212	u8 advertised;
1213	u8 partner;
1214	u8 port_id;
1215	void *pdev;
1216};
1217
1218#define MAX_TX_HELD_SIZE		52000
1219
1220/* Hardware features and bug fixes. */
1221#define LINK_INT_WORKING		(1 << 0)
1222#define SMALL_PACKET_TX_BUG		(1 << 1)
1223#define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
1224#define RX_HUGE_FRAME			(1 << 4)
1225#define STP_SUPPORT			(1 << 8)
1226
1227/* Software overrides. */
1228#define PAUSE_FLOW_CTRL			(1 << 0)
1229#define FAST_AGING			(1 << 1)
1230
1231/**
1232 * struct ksz_hw - KSZ884X hardware data structure
1233 * @io:			Virtual address assigned.
1234 * @ksz_switch:		Pointer to KSZ8842 switch.
1235 * @port_info:		Port information.
1236 * @port_mib:		Port MIB information.
1237 * @dev_count:		Number of network devices this hardware supports.
1238 * @dst_ports:		Destination ports in switch for transmission.
1239 * @id:			Hardware ID.  Used for display only.
1240 * @mib_cnt:		Number of MIB counters this hardware has.
1241 * @mib_port_cnt:	Number of ports with MIB counters.
1242 * @tx_cfg:		Cached transmit control settings.
1243 * @rx_cfg:		Cached receive control settings.
1244 * @intr_mask:		Current interrupt mask.
1245 * @intr_set:		Current interrup set.
1246 * @intr_blocked:	Interrupt blocked.
1247 * @rx_desc_info:	Receive descriptor information.
1248 * @tx_desc_info:	Transmit descriptor information.
1249 * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
1250 * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
1251 * @tx_size:		Transmit data size.  Used for TX optimization.
1252 * 			The maximum is defined by MAX_TX_HELD_SIZE.
1253 * @perm_addr:		Permanent MAC address.
1254 * @override_addr:	Overrided MAC address.
1255 * @address:		Additional MAC address entries.
1256 * @addr_list_size:	Additional MAC address list size.
1257 * @mac_override:	Indication of MAC address overrided.
1258 * @promiscuous:	Counter to keep track of promiscuous mode set.
1259 * @all_multi:		Counter to keep track of all multicast mode set.
1260 * @multi_list:		Multicast address entries.
1261 * @multi_bits:		Cached multicast hash table settings.
1262 * @multi_list_size:	Multicast address list size.
1263 * @enabled:		Indication of hardware enabled.
1264 * @rx_stop:		Indication of receive process stop.
 
1265 * @features:		Hardware features to enable.
1266 * @overrides:		Hardware features to override.
1267 * @parent:		Pointer to parent, network device private structure.
1268 */
1269struct ksz_hw {
1270	void __iomem *io;
1271
1272	struct ksz_switch *ksz_switch;
1273	struct ksz_port_info port_info[SWITCH_PORT_NUM];
1274	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1275	int dev_count;
1276	int dst_ports;
1277	int id;
1278	int mib_cnt;
1279	int mib_port_cnt;
1280
1281	u32 tx_cfg;
1282	u32 rx_cfg;
1283	u32 intr_mask;
1284	u32 intr_set;
1285	uint intr_blocked;
1286
1287	struct ksz_desc_info rx_desc_info;
1288	struct ksz_desc_info tx_desc_info;
1289
1290	int tx_int_cnt;
1291	int tx_int_mask;
1292	int tx_size;
1293
1294	u8 perm_addr[ETH_ALEN];
1295	u8 override_addr[ETH_ALEN];
1296	u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1297	u8 addr_list_size;
1298	u8 mac_override;
1299	u8 promiscuous;
1300	u8 all_multi;
1301	u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1302	u8 multi_bits[HW_MULTICAST_SIZE];
1303	u8 multi_list_size;
1304
1305	u8 enabled;
1306	u8 rx_stop;
1307	u8 reserved2[1];
1308
1309	uint features;
1310	uint overrides;
1311
1312	void *parent;
1313};
1314
1315enum {
1316	PHY_NO_FLOW_CTRL,
1317	PHY_FLOW_CTRL,
1318	PHY_TX_ONLY,
1319	PHY_RX_ONLY
1320};
1321
1322/**
1323 * struct ksz_port - Virtual port data structure
1324 * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
1325 * 			duplex, and 0 for auto, which normally results in full
1326 * 			duplex.
1327 * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1328 * 			0 for auto, which normally results in 100 Mbit.
1329 * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
1330 * 			force.
1331 * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1332 * 			control, and PHY_FLOW_CTRL for flow control.
1333 * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1334 * 			Mbit PHY.
1335 * @first_port:		Index of first port this port supports.
1336 * @mib_port_cnt:	Number of ports with MIB counters.
1337 * @port_cnt:		Number of ports this port supports.
1338 * @counter:		Port statistics counter.
1339 * @hw:			Pointer to hardware structure.
1340 * @linked:		Pointer to port information linked to this port.
1341 */
1342struct ksz_port {
1343	u8 duplex;
1344	u8 speed;
1345	u8 force_link;
1346	u8 flow_ctrl;
1347
1348	int first_port;
1349	int mib_port_cnt;
1350	int port_cnt;
1351	u64 counter[OID_COUNTER_LAST];
1352
1353	struct ksz_hw *hw;
1354	struct ksz_port_info *linked;
1355};
1356
1357/**
1358 * struct ksz_timer_info - Timer information data structure
1359 * @timer:	Kernel timer.
1360 * @cnt:	Running timer counter.
1361 * @max:	Number of times to run timer; -1 for infinity.
1362 * @period:	Timer period in jiffies.
1363 */
1364struct ksz_timer_info {
1365	struct timer_list timer;
1366	int cnt;
1367	int max;
1368	int period;
1369};
1370
1371/**
1372 * struct ksz_shared_mem - OS dependent shared memory data structure
1373 * @dma_addr:	Physical DMA address allocated.
1374 * @alloc_size:	Allocation size.
1375 * @phys:	Actual physical address used.
1376 * @alloc_virt:	Virtual address allocated.
1377 * @virt:	Actual virtual address used.
1378 */
1379struct ksz_shared_mem {
1380	dma_addr_t dma_addr;
1381	uint alloc_size;
1382	uint phys;
1383	u8 *alloc_virt;
1384	u8 *virt;
1385};
1386
1387/**
1388 * struct ksz_counter_info - OS dependent counter information data structure
1389 * @counter:	Wait queue to wakeup after counters are read.
1390 * @time:	Next time in jiffies to read counter.
1391 * @read:	Indication of counters read in full or not.
1392 */
1393struct ksz_counter_info {
1394	wait_queue_head_t counter;
1395	unsigned long time;
1396	int read;
1397};
1398
1399/**
1400 * struct dev_info - Network device information data structure
1401 * @dev:		Pointer to network device.
1402 * @pdev:		Pointer to PCI device.
1403 * @hw:			Hardware structure.
1404 * @desc_pool:		Physical memory used for descriptor pool.
1405 * @hwlock:		Spinlock to prevent hardware from accessing.
1406 * @lock:		Mutex lock to prevent device from accessing.
1407 * @dev_rcv:		Receive process function used.
1408 * @last_skb:		Socket buffer allocated for descriptor rx fragments.
1409 * @skb_index:		Buffer index for receiving fragments.
1410 * @skb_len:		Buffer length for receiving fragments.
1411 * @mib_read:		Workqueue to read MIB counters.
1412 * @mib_timer_info:	Timer to read MIB counters.
1413 * @counter:		Used for MIB reading.
1414 * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1415 * 			the maximum is MAX_RX_BUF_SIZE.
1416 * @opened:		Counter to keep track of device open.
1417 * @rx_tasklet:		Receive processing tasklet.
1418 * @tx_tasklet:		Transmit processing tasklet.
1419 * @wol_enable:		Wake-on-LAN enable set by ethtool.
1420 * @wol_support:	Wake-on-LAN support used by ethtool.
1421 * @pme_wait:		Used for KSZ8841 power management.
1422 */
1423struct dev_info {
1424	struct net_device *dev;
1425	struct pci_dev *pdev;
1426
1427	struct ksz_hw hw;
1428	struct ksz_shared_mem desc_pool;
1429
1430	spinlock_t hwlock;
1431	struct mutex lock;
1432
1433	int (*dev_rcv)(struct dev_info *);
1434
1435	struct sk_buff *last_skb;
1436	int skb_index;
1437	int skb_len;
1438
1439	struct work_struct mib_read;
1440	struct ksz_timer_info mib_timer_info;
1441	struct ksz_counter_info counter[TOTAL_PORT_NUM];
1442
1443	int mtu;
1444	int opened;
1445
1446	struct tasklet_struct rx_tasklet;
1447	struct tasklet_struct tx_tasklet;
1448
1449	int wol_enable;
1450	int wol_support;
1451	unsigned long pme_wait;
1452};
1453
1454/**
1455 * struct dev_priv - Network device private data structure
1456 * @adapter:		Adapter device information.
1457 * @port:		Port information.
1458 * @monitor_time_info:	Timer to monitor ports.
1459 * @proc_sem:		Semaphore for proc accessing.
1460 * @id:			Device ID.
1461 * @mii_if:		MII interface information.
1462 * @advertising:	Temporary variable to store advertised settings.
1463 * @msg_enable:		The message flags controlling driver output.
1464 * @media_state:	The connection status of the device.
1465 * @multicast:		The all multicast state of the device.
1466 * @promiscuous:	The promiscuous state of the device.
1467 */
1468struct dev_priv {
1469	struct dev_info *adapter;
1470	struct ksz_port port;
1471	struct ksz_timer_info monitor_timer_info;
1472
1473	struct semaphore proc_sem;
1474	int id;
1475
1476	struct mii_if_info mii_if;
1477	u32 advertising;
1478
1479	u32 msg_enable;
1480	int media_state;
1481	int multicast;
1482	int promiscuous;
1483};
1484
1485#define DRV_NAME		"KSZ884X PCI"
1486#define DEVICE_NAME		"KSZ884x PCI"
1487#define DRV_VERSION		"1.0.0"
1488#define DRV_RELDATE		"Feb 8, 2010"
1489
1490static char version[] =
1491	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1492
1493static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1494
1495/*
1496 * Interrupt processing primary routines
1497 */
1498
1499static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1500{
1501	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1502}
1503
1504static inline void hw_dis_intr(struct ksz_hw *hw)
1505{
1506	hw->intr_blocked = hw->intr_mask;
1507	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1508	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1509}
1510
1511static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1512{
1513	hw->intr_set = interrupt;
1514	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1515}
1516
1517static inline void hw_ena_intr(struct ksz_hw *hw)
1518{
1519	hw->intr_blocked = 0;
1520	hw_set_intr(hw, hw->intr_mask);
1521}
1522
1523static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1524{
1525	hw->intr_mask &= ~(bit);
1526}
1527
1528static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1529{
1530	u32 read_intr;
1531
1532	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1533	hw->intr_set = read_intr & ~interrupt;
1534	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1535	hw_dis_intr_bit(hw, interrupt);
1536}
1537
1538/**
1539 * hw_turn_on_intr - turn on specified interrupts
1540 * @hw: 	The hardware instance.
1541 * @bit:	The interrupt bits to be on.
1542 *
1543 * This routine turns on the specified interrupts in the interrupt mask so that
1544 * those interrupts will be enabled.
1545 */
1546static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1547{
1548	hw->intr_mask |= bit;
1549
1550	if (!hw->intr_blocked)
1551		hw_set_intr(hw, hw->intr_mask);
1552}
1553
1554static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1555{
1556	u32 read_intr;
1557
1558	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1559	hw->intr_set = read_intr | interrupt;
1560	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1561}
1562
1563static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1564{
1565	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1566	*status = *status & hw->intr_set;
1567}
1568
1569static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1570{
1571	if (interrupt)
1572		hw_ena_intr(hw);
1573}
1574
1575/**
1576 * hw_block_intr - block hardware interrupts
 
1577 *
1578 * This function blocks all interrupts of the hardware and returns the current
1579 * interrupt enable mask so that interrupts can be restored later.
1580 *
1581 * Return the current interrupt enable mask.
1582 */
1583static uint hw_block_intr(struct ksz_hw *hw)
1584{
1585	uint interrupt = 0;
1586
1587	if (!hw->intr_blocked) {
1588		hw_dis_intr(hw);
1589		interrupt = hw->intr_blocked;
1590	}
1591	return interrupt;
1592}
1593
1594/*
1595 * Hardware descriptor routines
1596 */
1597
1598static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1599{
1600	status.rx.hw_owned = 0;
1601	desc->phw->ctrl.data = cpu_to_le32(status.data);
1602}
1603
1604static inline void release_desc(struct ksz_desc *desc)
1605{
1606	desc->sw.ctrl.tx.hw_owned = 1;
1607	if (desc->sw.buf_size != desc->sw.buf.data) {
1608		desc->sw.buf_size = desc->sw.buf.data;
1609		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1610	}
1611	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1612}
1613
1614static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1615{
1616	*desc = &info->ring[info->last];
1617	info->last++;
1618	info->last &= info->mask;
1619	info->avail--;
1620	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1621}
1622
1623static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1624{
1625	desc->phw->addr = cpu_to_le32(addr);
1626}
1627
1628static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1629{
1630	desc->sw.buf.rx.buf_size = len;
1631}
1632
1633static inline void get_tx_pkt(struct ksz_desc_info *info,
1634	struct ksz_desc **desc)
1635{
1636	*desc = &info->ring[info->next];
1637	info->next++;
1638	info->next &= info->mask;
1639	info->avail--;
1640	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1641}
1642
1643static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1644{
1645	desc->phw->addr = cpu_to_le32(addr);
1646}
1647
1648static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1649{
1650	desc->sw.buf.tx.buf_size = len;
1651}
1652
1653/* Switch functions */
1654
1655#define TABLE_READ			0x10
1656#define TABLE_SEL_SHIFT			2
1657
1658#define HW_DELAY(hw, reg)			\
1659	do {					\
1660		u16 dummy;			\
1661		dummy = readw(hw->io + reg);	\
1662	} while (0)
1663
1664/**
1665 * sw_r_table - read 4 bytes of data from switch table
1666 * @hw:		The hardware instance.
1667 * @table:	The table selector.
1668 * @addr:	The address of the table entry.
1669 * @data:	Buffer to store the read data.
1670 *
1671 * This routine reads 4 bytes of data from the table of the switch.
1672 * Hardware interrupts are disabled to minimize corruption of read data.
1673 */
1674static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1675{
1676	u16 ctrl_addr;
1677	uint interrupt;
1678
1679	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1680
1681	interrupt = hw_block_intr(hw);
1682
1683	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1684	HW_DELAY(hw, KS884X_IACR_OFFSET);
1685	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1686
1687	hw_restore_intr(hw, interrupt);
1688}
1689
1690/**
1691 * sw_w_table_64 - write 8 bytes of data to the switch table
1692 * @hw:		The hardware instance.
1693 * @table:	The table selector.
1694 * @addr:	The address of the table entry.
1695 * @data_hi:	The high part of data to be written (bit63 ~ bit32).
1696 * @data_lo:	The low part of data to be written (bit31 ~ bit0).
1697 *
1698 * This routine writes 8 bytes of data to the table of the switch.
1699 * Hardware interrupts are disabled to minimize corruption of written data.
1700 */
1701static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1702	u32 data_lo)
1703{
1704	u16 ctrl_addr;
1705	uint interrupt;
1706
1707	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1708
1709	interrupt = hw_block_intr(hw);
1710
1711	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1712	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1713
1714	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1715	HW_DELAY(hw, KS884X_IACR_OFFSET);
1716
1717	hw_restore_intr(hw, interrupt);
1718}
1719
1720/**
1721 * sw_w_sta_mac_table - write to the static MAC table
1722 * @hw: 	The hardware instance.
1723 * @addr:	The address of the table entry.
1724 * @mac_addr:	The MAC address.
1725 * @ports:	The port members.
1726 * @override:	The flag to override the port receive/transmit settings.
1727 * @valid:	The flag to indicate entry is valid.
1728 * @use_fid:	The flag to indicate the FID is valid.
1729 * @fid:	The FID value.
1730 *
1731 * This routine writes an entry of the static MAC table of the switch.  It
1732 * calls sw_w_table_64() to write the data.
1733 */
1734static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1735	u8 ports, int override, int valid, int use_fid, u8 fid)
1736{
1737	u32 data_hi;
1738	u32 data_lo;
1739
1740	data_lo = ((u32) mac_addr[2] << 24) |
1741		((u32) mac_addr[3] << 16) |
1742		((u32) mac_addr[4] << 8) | mac_addr[5];
1743	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1744	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1745
1746	if (override)
1747		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1748	if (use_fid) {
1749		data_hi |= STATIC_MAC_TABLE_USE_FID;
1750		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1751	}
1752	if (valid)
1753		data_hi |= STATIC_MAC_TABLE_VALID;
1754
1755	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1756}
1757
1758/**
1759 * sw_r_vlan_table - read from the VLAN table
1760 * @hw: 	The hardware instance.
1761 * @addr:	The address of the table entry.
1762 * @vid:	Buffer to store the VID.
1763 * @fid:	Buffer to store the VID.
1764 * @member:	Buffer to store the port membership.
1765 *
1766 * This function reads an entry of the VLAN table of the switch.  It calls
1767 * sw_r_table() to get the data.
1768 *
1769 * Return 0 if the entry is valid; otherwise -1.
1770 */
1771static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1772	u8 *member)
1773{
1774	u32 data;
1775
1776	sw_r_table(hw, TABLE_VLAN, addr, &data);
1777	if (data & VLAN_TABLE_VALID) {
1778		*vid = (u16)(data & VLAN_TABLE_VID);
1779		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1780		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1781			VLAN_TABLE_MEMBERSHIP_SHIFT);
1782		return 0;
1783	}
1784	return -1;
1785}
1786
1787/**
1788 * port_r_mib_cnt - read MIB counter
1789 * @hw: 	The hardware instance.
1790 * @port:	The port index.
1791 * @addr:	The address of the counter.
1792 * @cnt:	Buffer to store the counter.
1793 *
1794 * This routine reads a MIB counter of the port.
1795 * Hardware interrupts are disabled to minimize corruption of read data.
1796 */
1797static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1798{
1799	u32 data;
1800	u16 ctrl_addr;
1801	uint interrupt;
1802	int timeout;
1803
1804	ctrl_addr = addr + PORT_COUNTER_NUM * port;
1805
1806	interrupt = hw_block_intr(hw);
1807
1808	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1809	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1810	HW_DELAY(hw, KS884X_IACR_OFFSET);
1811
1812	for (timeout = 100; timeout > 0; timeout--) {
1813		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1814
1815		if (data & MIB_COUNTER_VALID) {
1816			if (data & MIB_COUNTER_OVERFLOW)
1817				*cnt += MIB_COUNTER_VALUE + 1;
1818			*cnt += data & MIB_COUNTER_VALUE;
1819			break;
1820		}
1821	}
1822
1823	hw_restore_intr(hw, interrupt);
1824}
1825
1826/**
1827 * port_r_mib_pkt - read dropped packet counts
1828 * @hw: 	The hardware instance.
1829 * @port:	The port index.
 
1830 * @cnt:	Buffer to store the receive and transmit dropped packet counts.
1831 *
1832 * This routine reads the dropped packet counts of the port.
1833 * Hardware interrupts are disabled to minimize corruption of read data.
1834 */
1835static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1836{
1837	u32 cur;
1838	u32 data;
1839	u16 ctrl_addr;
1840	uint interrupt;
1841	int index;
1842
1843	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1844	do {
1845		interrupt = hw_block_intr(hw);
1846
1847		ctrl_addr = (u16) index;
1848		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1849			<< 8);
1850		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1851		HW_DELAY(hw, KS884X_IACR_OFFSET);
1852		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1853
1854		hw_restore_intr(hw, interrupt);
1855
1856		data &= MIB_PACKET_DROPPED;
1857		cur = *last;
1858		if (data != cur) {
1859			*last = data;
1860			if (data < cur)
1861				data += MIB_PACKET_DROPPED + 1;
1862			data -= cur;
1863			*cnt += data;
1864		}
1865		++last;
1866		++cnt;
1867		index -= KS_MIB_PACKET_DROPPED_TX -
1868			KS_MIB_PACKET_DROPPED_TX_0 + 1;
1869	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1870}
1871
1872/**
1873 * port_r_cnt - read MIB counters periodically
1874 * @hw: 	The hardware instance.
1875 * @port:	The port index.
1876 *
1877 * This routine is used to read the counters of the port periodically to avoid
1878 * counter overflow.  The hardware should be acquired first before calling this
1879 * routine.
1880 *
1881 * Return non-zero when not all counters not read.
1882 */
1883static int port_r_cnt(struct ksz_hw *hw, int port)
1884{
1885	struct ksz_port_mib *mib = &hw->port_mib[port];
1886
1887	if (mib->mib_start < PORT_COUNTER_NUM)
1888		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1889			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1890				&mib->counter[mib->cnt_ptr]);
1891			++mib->cnt_ptr;
1892		}
1893	if (hw->mib_cnt > PORT_COUNTER_NUM)
1894		port_r_mib_pkt(hw, port, mib->dropped,
1895			&mib->counter[PORT_COUNTER_NUM]);
1896	mib->cnt_ptr = 0;
1897	return 0;
1898}
1899
1900/**
1901 * port_init_cnt - initialize MIB counter values
1902 * @hw: 	The hardware instance.
1903 * @port:	The port index.
1904 *
1905 * This routine is used to initialize all counters to zero if the hardware
1906 * cannot do it after reset.
1907 */
1908static void port_init_cnt(struct ksz_hw *hw, int port)
1909{
1910	struct ksz_port_mib *mib = &hw->port_mib[port];
1911
1912	mib->cnt_ptr = 0;
1913	if (mib->mib_start < PORT_COUNTER_NUM)
1914		do {
1915			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1916				&mib->counter[mib->cnt_ptr]);
1917			++mib->cnt_ptr;
1918		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
1919	if (hw->mib_cnt > PORT_COUNTER_NUM)
1920		port_r_mib_pkt(hw, port, mib->dropped,
1921			&mib->counter[PORT_COUNTER_NUM]);
1922	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1923	mib->cnt_ptr = 0;
1924}
1925
1926/*
1927 * Port functions
1928 */
1929
1930/**
1931 * port_chk - check port register bits
1932 * @hw: 	The hardware instance.
1933 * @port:	The port index.
1934 * @offset:	The offset of the port register.
1935 * @bits:	The data bits to check.
1936 *
1937 * This function checks whether the specified bits of the port register are set
1938 * or not.
1939 *
1940 * Return 0 if the bits are not set.
1941 */
1942static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1943{
1944	u32 addr;
1945	u16 data;
1946
1947	PORT_CTRL_ADDR(port, addr);
1948	addr += offset;
1949	data = readw(hw->io + addr);
1950	return (data & bits) == bits;
1951}
1952
1953/**
1954 * port_cfg - set port register bits
1955 * @hw: 	The hardware instance.
1956 * @port:	The port index.
1957 * @offset:	The offset of the port register.
1958 * @bits:	The data bits to set.
1959 * @set:	The flag indicating whether the bits are to be set or not.
1960 *
1961 * This routine sets or resets the specified bits of the port register.
1962 */
1963static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1964	int set)
1965{
1966	u32 addr;
1967	u16 data;
1968
1969	PORT_CTRL_ADDR(port, addr);
1970	addr += offset;
1971	data = readw(hw->io + addr);
1972	if (set)
1973		data |= bits;
1974	else
1975		data &= ~bits;
1976	writew(data, hw->io + addr);
1977}
1978
1979/**
1980 * port_chk_shift - check port bit
1981 * @hw: 	The hardware instance.
1982 * @port:	The port index.
1983 * @offset:	The offset of the register.
1984 * @shift:	Number of bits to shift.
1985 *
1986 * This function checks whether the specified port is set in the register or
1987 * not.
1988 *
1989 * Return 0 if the port is not set.
1990 */
1991static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1992{
1993	u16 data;
1994	u16 bit = 1 << port;
1995
1996	data = readw(hw->io + addr);
1997	data >>= shift;
1998	return (data & bit) == bit;
1999}
2000
2001/**
2002 * port_cfg_shift - set port bit
2003 * @hw: 	The hardware instance.
2004 * @port:	The port index.
2005 * @offset:	The offset of the register.
2006 * @shift:	Number of bits to shift.
2007 * @set:	The flag indicating whether the port is to be set or not.
2008 *
2009 * This routine sets or resets the specified port in the register.
2010 */
2011static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2012	int set)
2013{
2014	u16 data;
2015	u16 bits = 1 << port;
2016
2017	data = readw(hw->io + addr);
2018	bits <<= shift;
2019	if (set)
2020		data |= bits;
2021	else
2022		data &= ~bits;
2023	writew(data, hw->io + addr);
2024}
2025
2026/**
2027 * port_r8 - read byte from port register
2028 * @hw: 	The hardware instance.
2029 * @port:	The port index.
2030 * @offset:	The offset of the port register.
2031 * @data:	Buffer to store the data.
2032 *
2033 * This routine reads a byte from the port register.
2034 */
2035static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2036{
2037	u32 addr;
2038
2039	PORT_CTRL_ADDR(port, addr);
2040	addr += offset;
2041	*data = readb(hw->io + addr);
2042}
2043
2044/**
2045 * port_r16 - read word from port register.
2046 * @hw: 	The hardware instance.
2047 * @port:	The port index.
2048 * @offset:	The offset of the port register.
2049 * @data:	Buffer to store the data.
2050 *
2051 * This routine reads a word from the port register.
2052 */
2053static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2054{
2055	u32 addr;
2056
2057	PORT_CTRL_ADDR(port, addr);
2058	addr += offset;
2059	*data = readw(hw->io + addr);
2060}
2061
2062/**
2063 * port_w16 - write word to port register.
2064 * @hw: 	The hardware instance.
2065 * @port:	The port index.
2066 * @offset:	The offset of the port register.
2067 * @data:	Data to write.
2068 *
2069 * This routine writes a word to the port register.
2070 */
2071static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2072{
2073	u32 addr;
2074
2075	PORT_CTRL_ADDR(port, addr);
2076	addr += offset;
2077	writew(data, hw->io + addr);
2078}
2079
2080/**
2081 * sw_chk - check switch register bits
2082 * @hw: 	The hardware instance.
2083 * @addr:	The address of the switch register.
2084 * @bits:	The data bits to check.
2085 *
2086 * This function checks whether the specified bits of the switch register are
2087 * set or not.
2088 *
2089 * Return 0 if the bits are not set.
2090 */
2091static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2092{
2093	u16 data;
2094
2095	data = readw(hw->io + addr);
2096	return (data & bits) == bits;
2097}
2098
2099/**
2100 * sw_cfg - set switch register bits
2101 * @hw: 	The hardware instance.
2102 * @addr:	The address of the switch register.
2103 * @bits:	The data bits to set.
2104 * @set:	The flag indicating whether the bits are to be set or not.
2105 *
2106 * This function sets or resets the specified bits of the switch register.
2107 */
2108static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2109{
2110	u16 data;
2111
2112	data = readw(hw->io + addr);
2113	if (set)
2114		data |= bits;
2115	else
2116		data &= ~bits;
2117	writew(data, hw->io + addr);
2118}
2119
2120/* Bandwidth */
2121
2122static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2123{
2124	port_cfg(hw, p,
2125		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2126}
2127
2128static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2129{
2130	return port_chk(hw, p,
2131		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2132}
2133
2134/* Driver set switch broadcast storm protection at 10% rate. */
2135#define BROADCAST_STORM_PROTECTION_RATE	10
2136
2137/* 148,800 frames * 67 ms / 100 */
2138#define BROADCAST_STORM_VALUE		9969
2139
2140/**
2141 * sw_cfg_broad_storm - configure broadcast storm threshold
2142 * @hw: 	The hardware instance.
2143 * @percent:	Broadcast storm threshold in percent of transmit rate.
2144 *
2145 * This routine configures the broadcast storm threshold of the switch.
2146 */
2147static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2148{
2149	u16 data;
2150	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2151
2152	if (value > BROADCAST_STORM_RATE)
2153		value = BROADCAST_STORM_RATE;
2154
2155	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2156	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2157	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2158	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2159}
2160
2161/**
2162 * sw_get_board_storm - get broadcast storm threshold
2163 * @hw: 	The hardware instance.
2164 * @percent:	Buffer to store the broadcast storm threshold percentage.
2165 *
2166 * This routine retrieves the broadcast storm threshold of the switch.
2167 */
2168static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2169{
2170	int num;
2171	u16 data;
2172
2173	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2174	num = (data & BROADCAST_STORM_RATE_HI);
2175	num <<= 8;
2176	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2177	num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
2178	*percent = (u8) num;
2179}
2180
2181/**
2182 * sw_dis_broad_storm - disable broadstorm
2183 * @hw: 	The hardware instance.
2184 * @port:	The port index.
2185 *
2186 * This routine disables the broadcast storm limit function of the switch.
2187 */
2188static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2189{
2190	port_cfg_broad_storm(hw, port, 0);
2191}
2192
2193/**
2194 * sw_ena_broad_storm - enable broadcast storm
2195 * @hw: 	The hardware instance.
2196 * @port:	The port index.
2197 *
2198 * This routine enables the broadcast storm limit function of the switch.
2199 */
2200static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2201{
2202	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2203	port_cfg_broad_storm(hw, port, 1);
2204}
2205
2206/**
2207 * sw_init_broad_storm - initialize broadcast storm
2208 * @hw: 	The hardware instance.
2209 *
2210 * This routine initializes the broadcast storm limit function of the switch.
2211 */
2212static void sw_init_broad_storm(struct ksz_hw *hw)
2213{
2214	int port;
2215
2216	hw->ksz_switch->broad_per = 1;
2217	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2218	for (port = 0; port < TOTAL_PORT_NUM; port++)
2219		sw_dis_broad_storm(hw, port);
2220	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2221}
2222
2223/**
2224 * hw_cfg_broad_storm - configure broadcast storm
2225 * @hw: 	The hardware instance.
2226 * @percent:	Broadcast storm threshold in percent of transmit rate.
2227 *
2228 * This routine configures the broadcast storm threshold of the switch.
2229 * It is called by user functions.  The hardware should be acquired first.
2230 */
2231static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2232{
2233	if (percent > 100)
2234		percent = 100;
2235
2236	sw_cfg_broad_storm(hw, percent);
2237	sw_get_broad_storm(hw, &percent);
2238	hw->ksz_switch->broad_per = percent;
2239}
2240
2241/**
2242 * sw_dis_prio_rate - disable switch priority rate
2243 * @hw: 	The hardware instance.
2244 * @port:	The port index.
2245 *
2246 * This routine disables the priority rate function of the switch.
2247 */
2248static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2249{
2250	u32 addr;
2251
2252	PORT_CTRL_ADDR(port, addr);
2253	addr += KS8842_PORT_IN_RATE_OFFSET;
2254	writel(0, hw->io + addr);
2255}
2256
2257/**
2258 * sw_init_prio_rate - initialize switch prioirty rate
2259 * @hw: 	The hardware instance.
2260 *
2261 * This routine initializes the priority rate function of the switch.
2262 */
2263static void sw_init_prio_rate(struct ksz_hw *hw)
2264{
2265	int port;
2266	int prio;
2267	struct ksz_switch *sw = hw->ksz_switch;
2268
2269	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2270		for (prio = 0; prio < PRIO_QUEUES; prio++) {
2271			sw->port_cfg[port].rx_rate[prio] =
2272			sw->port_cfg[port].tx_rate[prio] = 0;
2273		}
2274		sw_dis_prio_rate(hw, port);
2275	}
2276}
2277
2278/* Communication */
2279
2280static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2281{
2282	port_cfg(hw, p,
2283		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2284}
2285
2286static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2287{
2288	port_cfg(hw, p,
2289		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2290}
2291
2292static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2293{
2294	return port_chk(hw, p,
2295		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2296}
2297
2298static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2299{
2300	return port_chk(hw, p,
2301		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2302}
2303
2304/* Spanning Tree */
2305
2306static inline void port_cfg_dis_learn(struct ksz_hw *hw, int p, int set)
2307{
2308	port_cfg(hw, p,
2309		KS8842_PORT_CTRL_2_OFFSET, PORT_LEARN_DISABLE, set);
2310}
2311
2312static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2313{
2314	port_cfg(hw, p,
2315		KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2316}
2317
2318static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2319{
2320	port_cfg(hw, p,
2321		KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2322}
2323
2324static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2325{
2326	sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2327}
2328
2329static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2330{
2331	if (!(hw->overrides & FAST_AGING)) {
2332		sw_cfg_fast_aging(hw, 1);
2333		mdelay(1);
2334		sw_cfg_fast_aging(hw, 0);
2335	}
2336}
2337
2338/* VLAN */
2339
2340static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2341{
2342	port_cfg(hw, p,
2343		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2344}
2345
2346static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2347{
2348	port_cfg(hw, p,
2349		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2350}
2351
2352static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2353{
2354	return port_chk(hw, p,
2355		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2356}
2357
2358static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2359{
2360	return port_chk(hw, p,
2361		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2362}
2363
2364static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2365{
2366	port_cfg(hw, p,
2367		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2368}
2369
2370static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2371{
2372	port_cfg(hw, p,
2373		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2374}
2375
2376static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2377{
2378	return port_chk(hw, p,
2379		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2380}
2381
2382static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2383{
2384	return port_chk(hw, p,
2385		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2386}
2387
2388/* Mirroring */
2389
2390static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2391{
2392	port_cfg(hw, p,
2393		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2394}
2395
2396static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2397{
2398	port_cfg(hw, p,
2399		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2400}
2401
2402static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2403{
2404	port_cfg(hw, p,
2405		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2406}
2407
2408static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2409{
2410	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2411}
2412
2413static void sw_init_mirror(struct ksz_hw *hw)
2414{
2415	int port;
2416
2417	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2418		port_cfg_mirror_sniffer(hw, port, 0);
2419		port_cfg_mirror_rx(hw, port, 0);
2420		port_cfg_mirror_tx(hw, port, 0);
2421	}
2422	sw_cfg_mirror_rx_tx(hw, 0);
2423}
2424
2425static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2426{
2427	sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2428		SWITCH_UNK_DEF_PORT_ENABLE, set);
2429}
2430
2431static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2432{
2433	return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2434		SWITCH_UNK_DEF_PORT_ENABLE);
2435}
2436
2437static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2438{
2439	port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2440}
2441
2442static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2443{
2444	return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2445}
2446
2447/* Priority */
2448
2449static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2450{
2451	port_cfg(hw, p,
2452		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2453}
2454
2455static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2456{
2457	port_cfg(hw, p,
2458		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2459}
2460
2461static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2462{
2463	port_cfg(hw, p,
2464		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2465}
2466
2467static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2468{
2469	port_cfg(hw, p,
2470		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2471}
2472
2473static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2474{
2475	return port_chk(hw, p,
2476		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2477}
2478
2479static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2480{
2481	return port_chk(hw, p,
2482		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2483}
2484
2485static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2486{
2487	return port_chk(hw, p,
2488		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2489}
2490
2491static inline int port_chk_prio(struct ksz_hw *hw, int p)
2492{
2493	return port_chk(hw, p,
2494		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2495}
2496
2497/**
2498 * sw_dis_diffserv - disable switch DiffServ priority
2499 * @hw: 	The hardware instance.
2500 * @port:	The port index.
2501 *
2502 * This routine disables the DiffServ priority function of the switch.
2503 */
2504static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2505{
2506	port_cfg_diffserv(hw, port, 0);
2507}
2508
2509/**
2510 * sw_dis_802_1p - disable switch 802.1p priority
2511 * @hw: 	The hardware instance.
2512 * @port:	The port index.
2513 *
2514 * This routine disables the 802.1p priority function of the switch.
2515 */
2516static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2517{
2518	port_cfg_802_1p(hw, port, 0);
2519}
2520
2521/**
2522 * sw_cfg_replace_null_vid -
2523 * @hw: 	The hardware instance.
2524 * @set:	The flag to disable or enable.
2525 *
2526 */
2527static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2528{
2529	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2530}
2531
2532/**
2533 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2534 * @hw: 	The hardware instance.
2535 * @port:	The port index.
2536 * @set:	The flag to disable or enable.
2537 *
2538 * This routine enables the 802.1p priority re-mapping function of the switch.
2539 * That allows 802.1p priority field to be replaced with the port's default
2540 * tag's priority value if the ingress packet's 802.1p priority has a higher
2541 * priority than port's default tag's priority.
2542 */
2543static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2544{
2545	port_cfg_replace_vid(hw, port, set);
2546}
2547
2548/**
2549 * sw_cfg_port_based - configure switch port based priority
2550 * @hw: 	The hardware instance.
2551 * @port:	The port index.
2552 * @prio:	The priority to set.
2553 *
2554 * This routine configures the port based priority of the switch.
2555 */
2556static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2557{
2558	u16 data;
2559
2560	if (prio > PORT_BASED_PRIORITY_BASE)
2561		prio = PORT_BASED_PRIORITY_BASE;
2562
2563	hw->ksz_switch->port_cfg[port].port_prio = prio;
2564
2565	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2566	data &= ~PORT_BASED_PRIORITY_MASK;
2567	data |= prio << PORT_BASED_PRIORITY_SHIFT;
2568	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2569}
2570
2571/**
2572 * sw_dis_multi_queue - disable transmit multiple queues
2573 * @hw: 	The hardware instance.
2574 * @port:	The port index.
2575 *
2576 * This routine disables the transmit multiple queues selection of the switch
2577 * port.  Only single transmit queue on the port.
2578 */
2579static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2580{
2581	port_cfg_prio(hw, port, 0);
2582}
2583
2584/**
2585 * sw_init_prio - initialize switch priority
2586 * @hw: 	The hardware instance.
2587 *
2588 * This routine initializes the switch QoS priority functions.
2589 */
2590static void sw_init_prio(struct ksz_hw *hw)
2591{
2592	int port;
2593	int tos;
2594	struct ksz_switch *sw = hw->ksz_switch;
2595
2596	/*
2597	 * Init all the 802.1p tag priority value to be assigned to different
2598	 * priority queue.
2599	 */
2600	sw->p_802_1p[0] = 0;
2601	sw->p_802_1p[1] = 0;
2602	sw->p_802_1p[2] = 1;
2603	sw->p_802_1p[3] = 1;
2604	sw->p_802_1p[4] = 2;
2605	sw->p_802_1p[5] = 2;
2606	sw->p_802_1p[6] = 3;
2607	sw->p_802_1p[7] = 3;
2608
2609	/*
2610	 * Init all the DiffServ priority value to be assigned to priority
2611	 * queue 0.
2612	 */
2613	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2614		sw->diffserv[tos] = 0;
2615
2616	/* All QoS functions disabled. */
2617	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2618		sw_dis_multi_queue(hw, port);
2619		sw_dis_diffserv(hw, port);
2620		sw_dis_802_1p(hw, port);
2621		sw_cfg_replace_vid(hw, port, 0);
2622
2623		sw->port_cfg[port].port_prio = 0;
2624		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2625	}
2626	sw_cfg_replace_null_vid(hw, 0);
2627}
2628
2629/**
2630 * port_get_def_vid - get port default VID.
2631 * @hw: 	The hardware instance.
2632 * @port:	The port index.
2633 * @vid:	Buffer to store the VID.
2634 *
2635 * This routine retrieves the default VID of the port.
2636 */
2637static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2638{
2639	u32 addr;
2640
2641	PORT_CTRL_ADDR(port, addr);
2642	addr += KS8842_PORT_CTRL_VID_OFFSET;
2643	*vid = readw(hw->io + addr);
2644}
2645
2646/**
2647 * sw_init_vlan - initialize switch VLAN
2648 * @hw: 	The hardware instance.
2649 *
2650 * This routine initializes the VLAN function of the switch.
2651 */
2652static void sw_init_vlan(struct ksz_hw *hw)
2653{
2654	int port;
2655	int entry;
2656	struct ksz_switch *sw = hw->ksz_switch;
2657
2658	/* Read 16 VLAN entries from device's VLAN table. */
2659	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2660		sw_r_vlan_table(hw, entry,
2661			&sw->vlan_table[entry].vid,
2662			&sw->vlan_table[entry].fid,
2663			&sw->vlan_table[entry].member);
2664	}
2665
2666	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2667		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2668		sw->port_cfg[port].member = PORT_MASK;
2669	}
2670}
2671
2672/**
2673 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2674 * @hw: 	The hardware instance.
2675 * @port:	The port index.
2676 * @member:	The port-based VLAN membership.
2677 *
2678 * This routine configures the port-based VLAN membership of the port.
2679 */
2680static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2681{
2682	u32 addr;
2683	u8 data;
2684
2685	PORT_CTRL_ADDR(port, addr);
2686	addr += KS8842_PORT_CTRL_2_OFFSET;
2687
2688	data = readb(hw->io + addr);
2689	data &= ~PORT_VLAN_MEMBERSHIP;
2690	data |= (member & PORT_MASK);
2691	writeb(data, hw->io + addr);
2692
2693	hw->ksz_switch->port_cfg[port].member = member;
2694}
2695
2696/**
2697 * sw_get_addr - get the switch MAC address.
2698 * @hw: 	The hardware instance.
2699 * @mac_addr:	Buffer to store the MAC address.
2700 *
2701 * This function retrieves the MAC address of the switch.
2702 */
2703static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2704{
2705	int i;
2706
2707	for (i = 0; i < 6; i += 2) {
2708		mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2709		mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2710	}
2711}
2712
2713/**
2714 * sw_set_addr - configure switch MAC address
2715 * @hw: 	The hardware instance.
2716 * @mac_addr:	The MAC address.
2717 *
2718 * This function configures the MAC address of the switch.
2719 */
2720static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2721{
2722	int i;
2723
2724	for (i = 0; i < 6; i += 2) {
2725		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2726		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2727	}
2728}
2729
2730/**
2731 * sw_set_global_ctrl - set switch global control
2732 * @hw: 	The hardware instance.
2733 *
2734 * This routine sets the global control of the switch function.
2735 */
2736static void sw_set_global_ctrl(struct ksz_hw *hw)
2737{
2738	u16 data;
2739
2740	/* Enable switch MII flow control. */
2741	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2742	data |= SWITCH_FLOW_CTRL;
2743	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2744
2745	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2746
2747	/* Enable aggressive back off algorithm in half duplex mode. */
2748	data |= SWITCH_AGGR_BACKOFF;
2749
2750	/* Enable automatic fast aging when link changed detected. */
2751	data |= SWITCH_AGING_ENABLE;
2752	data |= SWITCH_LINK_AUTO_AGING;
2753
2754	if (hw->overrides & FAST_AGING)
2755		data |= SWITCH_FAST_AGING;
2756	else
2757		data &= ~SWITCH_FAST_AGING;
2758	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2759
2760	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2761
2762	/* Enable no excessive collision drop. */
2763	data |= NO_EXC_COLLISION_DROP;
2764	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2765}
2766
2767enum {
2768	STP_STATE_DISABLED = 0,
2769	STP_STATE_LISTENING,
2770	STP_STATE_LEARNING,
2771	STP_STATE_FORWARDING,
2772	STP_STATE_BLOCKED,
2773	STP_STATE_SIMPLE
2774};
2775
2776/**
2777 * port_set_stp_state - configure port spanning tree state
2778 * @hw: 	The hardware instance.
2779 * @port:	The port index.
2780 * @state:	The spanning tree state.
2781 *
2782 * This routine configures the spanning tree state of the port.
2783 */
2784static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2785{
2786	u16 data;
2787
2788	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2789	switch (state) {
2790	case STP_STATE_DISABLED:
2791		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2792		data |= PORT_LEARN_DISABLE;
2793		break;
2794	case STP_STATE_LISTENING:
2795/*
2796 * No need to turn on transmit because of port direct mode.
2797 * Turning on receive is required if static MAC table is not setup.
2798 */
2799		data &= ~PORT_TX_ENABLE;
2800		data |= PORT_RX_ENABLE;
2801		data |= PORT_LEARN_DISABLE;
2802		break;
2803	case STP_STATE_LEARNING:
2804		data &= ~PORT_TX_ENABLE;
2805		data |= PORT_RX_ENABLE;
2806		data &= ~PORT_LEARN_DISABLE;
2807		break;
2808	case STP_STATE_FORWARDING:
2809		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2810		data &= ~PORT_LEARN_DISABLE;
2811		break;
2812	case STP_STATE_BLOCKED:
2813/*
2814 * Need to setup static MAC table with override to keep receiving BPDU
2815 * messages.  See sw_init_stp routine.
2816 */
2817		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2818		data |= PORT_LEARN_DISABLE;
2819		break;
2820	case STP_STATE_SIMPLE:
2821		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2822		data |= PORT_LEARN_DISABLE;
2823		break;
2824	}
2825	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2826	hw->ksz_switch->port_cfg[port].stp_state = state;
2827}
2828
2829#define STP_ENTRY			0
2830#define BROADCAST_ENTRY			1
2831#define BRIDGE_ADDR_ENTRY		2
2832#define IPV6_ADDR_ENTRY			3
2833
2834/**
2835 * sw_clr_sta_mac_table - clear static MAC table
2836 * @hw: 	The hardware instance.
2837 *
2838 * This routine clears the static MAC table.
2839 */
2840static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2841{
2842	struct ksz_mac_table *entry;
2843	int i;
2844
2845	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2846		entry = &hw->ksz_switch->mac_table[i];
2847		sw_w_sta_mac_table(hw, i,
2848			entry->mac_addr, entry->ports,
2849			entry->override, 0,
2850			entry->use_fid, entry->fid);
2851	}
2852}
2853
2854/**
2855 * sw_init_stp - initialize switch spanning tree support
2856 * @hw: 	The hardware instance.
2857 *
2858 * This routine initializes the spanning tree support of the switch.
2859 */
2860static void sw_init_stp(struct ksz_hw *hw)
2861{
2862	struct ksz_mac_table *entry;
2863
2864	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2865	entry->mac_addr[0] = 0x01;
2866	entry->mac_addr[1] = 0x80;
2867	entry->mac_addr[2] = 0xC2;
2868	entry->mac_addr[3] = 0x00;
2869	entry->mac_addr[4] = 0x00;
2870	entry->mac_addr[5] = 0x00;
2871	entry->ports = HOST_MASK;
2872	entry->override = 1;
2873	entry->valid = 1;
2874	sw_w_sta_mac_table(hw, STP_ENTRY,
2875		entry->mac_addr, entry->ports,
2876		entry->override, entry->valid,
2877		entry->use_fid, entry->fid);
2878}
2879
2880/**
2881 * sw_block_addr - block certain packets from the host port
2882 * @hw: 	The hardware instance.
2883 *
2884 * This routine blocks certain packets from reaching to the host port.
2885 */
2886static void sw_block_addr(struct ksz_hw *hw)
2887{
2888	struct ksz_mac_table *entry;
2889	int i;
2890
2891	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2892		entry = &hw->ksz_switch->mac_table[i];
2893		entry->valid = 0;
2894		sw_w_sta_mac_table(hw, i,
2895			entry->mac_addr, entry->ports,
2896			entry->override, entry->valid,
2897			entry->use_fid, entry->fid);
2898	}
2899}
2900
2901#define PHY_LINK_SUPPORT		\
2902	(PHY_AUTO_NEG_ASYM_PAUSE |	\
2903	PHY_AUTO_NEG_SYM_PAUSE |	\
2904	PHY_AUTO_NEG_100BT4 |		\
2905	PHY_AUTO_NEG_100BTX_FD |	\
2906	PHY_AUTO_NEG_100BTX |		\
2907	PHY_AUTO_NEG_10BT_FD |		\
2908	PHY_AUTO_NEG_10BT)
2909
2910static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2911{
2912	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2913}
2914
2915static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2916{
2917	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2918}
2919
2920static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2921{
2922	*data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2923}
2924
2925static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2926{
2927	*data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2928}
2929
2930static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2931{
2932	writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2933}
2934
2935static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2936{
2937	*data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2938}
2939
2940static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2941{
2942	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2943}
2944
2945static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2946{
2947	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2948}
2949
2950static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2951{
2952	*data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2953}
2954
2955static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2956{
2957	writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2958}
2959
2960static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2961{
2962	*data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2963}
2964
2965static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2966{
2967	writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2968}
2969
2970/**
2971 * hw_r_phy - read data from PHY register
2972 * @hw: 	The hardware instance.
2973 * @port:	Port to read.
2974 * @reg:	PHY register to read.
2975 * @val:	Buffer to store the read data.
2976 *
2977 * This routine reads data from the PHY register.
2978 */
2979static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2980{
2981	int phy;
2982
2983	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2984	*val = readw(hw->io + phy);
2985}
2986
2987/**
2988 * port_w_phy - write data to PHY register
2989 * @hw: 	The hardware instance.
2990 * @port:	Port to write.
2991 * @reg:	PHY register to write.
2992 * @val:	Word data to write.
2993 *
2994 * This routine writes data to the PHY register.
2995 */
2996static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2997{
2998	int phy;
2999
3000	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
3001	writew(val, hw->io + phy);
3002}
3003
3004/*
3005 * EEPROM access functions
3006 */
3007
3008#define AT93C_CODE			0
3009#define AT93C_WR_OFF			0x00
3010#define AT93C_WR_ALL			0x10
3011#define AT93C_ER_ALL			0x20
3012#define AT93C_WR_ON			0x30
3013
3014#define AT93C_WRITE			1
3015#define AT93C_READ			2
3016#define AT93C_ERASE			3
3017
3018#define EEPROM_DELAY			4
3019
3020static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3021{
3022	u16 data;
3023
3024	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3025	data &= ~gpio;
3026	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3027}
3028
3029static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3030{
3031	u16 data;
3032
3033	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3034	data |= gpio;
3035	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3036}
3037
3038static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3039{
3040	u16 data;
3041
3042	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3043	return (u8)(data & gpio);
3044}
3045
3046static void eeprom_clk(struct ksz_hw *hw)
3047{
3048	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3049	udelay(EEPROM_DELAY);
3050	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3051	udelay(EEPROM_DELAY);
3052}
3053
3054static u16 spi_r(struct ksz_hw *hw)
3055{
3056	int i;
3057	u16 temp = 0;
3058
3059	for (i = 15; i >= 0; i--) {
3060		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3061		udelay(EEPROM_DELAY);
3062
3063		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3064
3065		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3066		udelay(EEPROM_DELAY);
3067	}
3068	return temp;
3069}
3070
3071static void spi_w(struct ksz_hw *hw, u16 data)
3072{
3073	int i;
3074
3075	for (i = 15; i >= 0; i--) {
3076		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3077			drop_gpio(hw, EEPROM_DATA_OUT);
3078		eeprom_clk(hw);
3079	}
3080}
3081
3082static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3083{
3084	int i;
3085
3086	/* Initial start bit */
3087	raise_gpio(hw, EEPROM_DATA_OUT);
3088	eeprom_clk(hw);
3089
3090	/* AT93C operation */
3091	for (i = 1; i >= 0; i--) {
3092		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3093			drop_gpio(hw, EEPROM_DATA_OUT);
3094		eeprom_clk(hw);
3095	}
3096
3097	/* Address location */
3098	for (i = 5; i >= 0; i--) {
3099		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3100			drop_gpio(hw, EEPROM_DATA_OUT);
3101		eeprom_clk(hw);
3102	}
3103}
3104
3105#define EEPROM_DATA_RESERVED		0
3106#define EEPROM_DATA_MAC_ADDR_0		1
3107#define EEPROM_DATA_MAC_ADDR_1		2
3108#define EEPROM_DATA_MAC_ADDR_2		3
3109#define EEPROM_DATA_SUBSYS_ID		4
3110#define EEPROM_DATA_SUBSYS_VEN_ID	5
3111#define EEPROM_DATA_PM_CAP		6
3112
3113/* User defined EEPROM data */
3114#define EEPROM_DATA_OTHER_MAC_ADDR	9
3115
3116/**
3117 * eeprom_read - read from AT93C46 EEPROM
3118 * @hw: 	The hardware instance.
3119 * @reg:	The register offset.
3120 *
3121 * This function reads a word from the AT93C46 EEPROM.
3122 *
3123 * Return the data value.
3124 */
3125static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3126{
3127	u16 data;
3128
3129	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3130
3131	spi_reg(hw, AT93C_READ, reg);
3132	data = spi_r(hw);
3133
3134	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3135
3136	return data;
3137}
3138
3139/**
3140 * eeprom_write - write to AT93C46 EEPROM
3141 * @hw: 	The hardware instance.
3142 * @reg:	The register offset.
3143 * @data:	The data value.
3144 *
3145 * This procedure writes a word to the AT93C46 EEPROM.
3146 */
3147static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3148{
3149	int timeout;
3150
3151	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3152
3153	/* Enable write. */
3154	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3155	drop_gpio(hw, EEPROM_CHIP_SELECT);
3156	udelay(1);
3157
3158	/* Erase the register. */
3159	raise_gpio(hw, EEPROM_CHIP_SELECT);
3160	spi_reg(hw, AT93C_ERASE, reg);
3161	drop_gpio(hw, EEPROM_CHIP_SELECT);
3162	udelay(1);
3163
3164	/* Check operation complete. */
3165	raise_gpio(hw, EEPROM_CHIP_SELECT);
3166	timeout = 8;
3167	mdelay(2);
3168	do {
3169		mdelay(1);
3170	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3171	drop_gpio(hw, EEPROM_CHIP_SELECT);
3172	udelay(1);
3173
3174	/* Write the register. */
3175	raise_gpio(hw, EEPROM_CHIP_SELECT);
3176	spi_reg(hw, AT93C_WRITE, reg);
3177	spi_w(hw, data);
3178	drop_gpio(hw, EEPROM_CHIP_SELECT);
3179	udelay(1);
3180
3181	/* Check operation complete. */
3182	raise_gpio(hw, EEPROM_CHIP_SELECT);
3183	timeout = 8;
3184	mdelay(2);
3185	do {
3186		mdelay(1);
3187	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3188	drop_gpio(hw, EEPROM_CHIP_SELECT);
3189	udelay(1);
3190
3191	/* Disable write. */
3192	raise_gpio(hw, EEPROM_CHIP_SELECT);
3193	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3194
3195	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3196}
3197
3198/*
3199 * Link detection routines
3200 */
3201
3202static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3203{
3204	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3205	switch (port->flow_ctrl) {
3206	case PHY_FLOW_CTRL:
3207		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3208		break;
3209	/* Not supported. */
3210	case PHY_TX_ONLY:
3211	case PHY_RX_ONLY:
3212	default:
3213		break;
3214	}
3215	return ctrl;
3216}
3217
3218static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3219{
3220	u32 rx_cfg;
3221	u32 tx_cfg;
3222
3223	rx_cfg = hw->rx_cfg;
3224	tx_cfg = hw->tx_cfg;
3225	if (rx)
3226		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3227	else
3228		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3229	if (tx)
3230		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3231	else
3232		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3233	if (hw->enabled) {
3234		if (rx_cfg != hw->rx_cfg)
3235			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3236		if (tx_cfg != hw->tx_cfg)
3237			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3238	}
3239}
3240
3241static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3242	u16 local, u16 remote)
3243{
3244	int rx;
3245	int tx;
3246
3247	if (hw->overrides & PAUSE_FLOW_CTRL)
3248		return;
3249
3250	rx = tx = 0;
3251	if (port->force_link)
3252		rx = tx = 1;
3253	if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3254		if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3255			rx = tx = 1;
3256		} else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3257				(local & PHY_AUTO_NEG_PAUSE) ==
3258				PHY_AUTO_NEG_ASYM_PAUSE) {
 
3259			tx = 1;
3260		}
3261	} else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3262		if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
 
3263			rx = 1;
3264	}
3265	if (!hw->ksz_switch)
3266		set_flow_ctrl(hw, rx, tx);
3267}
3268
3269static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3270	struct ksz_port_info *info, u16 link_status)
3271{
3272	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3273			!(hw->overrides & PAUSE_FLOW_CTRL)) {
3274		u32 cfg = hw->tx_cfg;
3275
3276		/* Disable flow control in the half duplex mode. */
3277		if (1 == info->duplex)
3278			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3279		if (hw->enabled && cfg != hw->tx_cfg)
3280			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3281	}
3282}
3283
3284/**
3285 * port_get_link_speed - get current link status
3286 * @port: 	The port instance.
3287 *
3288 * This routine reads PHY registers to determine the current link status of the
3289 * switch ports.
3290 */
3291static void port_get_link_speed(struct ksz_port *port)
3292{
3293	uint interrupt;
3294	struct ksz_port_info *info;
3295	struct ksz_port_info *linked = NULL;
3296	struct ksz_hw *hw = port->hw;
3297	u16 data;
3298	u16 status;
3299	u8 local;
3300	u8 remote;
3301	int i;
3302	int p;
3303	int change = 0;
3304
3305	interrupt = hw_block_intr(hw);
3306
3307	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3308		info = &hw->port_info[p];
3309		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3310		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3311
3312		/*
3313		 * Link status is changing all the time even when there is no
3314		 * cable connection!
3315		 */
3316		remote = status & (PORT_AUTO_NEG_COMPLETE |
3317			PORT_STATUS_LINK_GOOD);
3318		local = (u8) data;
3319
3320		/* No change to status. */
3321		if (local == info->advertised && remote == info->partner)
3322			continue;
3323
3324		info->advertised = local;
3325		info->partner = remote;
3326		if (status & PORT_STATUS_LINK_GOOD) {
3327
3328			/* Remember the first linked port. */
3329			if (!linked)
3330				linked = info;
3331
3332			info->tx_rate = 10 * TX_RATE_UNIT;
3333			if (status & PORT_STATUS_SPEED_100MBIT)
3334				info->tx_rate = 100 * TX_RATE_UNIT;
3335
3336			info->duplex = 1;
3337			if (status & PORT_STATUS_FULL_DUPLEX)
3338				info->duplex = 2;
3339
3340			if (media_connected != info->state) {
3341				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3342					&data);
3343				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3344					&status);
3345				determine_flow_ctrl(hw, port, data, status);
3346				if (hw->ksz_switch) {
3347					port_cfg_back_pressure(hw, p,
3348						(1 == info->duplex));
3349				}
3350				change |= 1 << i;
3351				port_cfg_change(hw, port, info, status);
3352			}
3353			info->state = media_connected;
3354		} else {
3355			if (media_disconnected != info->state) {
3356				change |= 1 << i;
 
3357
3358				/* Indicate the link just goes down. */
3359				hw->port_mib[p].link_down = 1;
3360			}
3361			info->state = media_disconnected;
3362		}
3363		hw->port_mib[p].state = (u8) info->state;
3364	}
3365
3366	if (linked && media_disconnected == port->linked->state)
3367		port->linked = linked;
3368
3369	hw_restore_intr(hw, interrupt);
3370}
3371
3372#define PHY_RESET_TIMEOUT		10
3373
3374/**
3375 * port_set_link_speed - set port speed
3376 * @port: 	The port instance.
3377 *
3378 * This routine sets the link speed of the switch ports.
3379 */
3380static void port_set_link_speed(struct ksz_port *port)
3381{
3382	struct ksz_port_info *info;
3383	struct ksz_hw *hw = port->hw;
3384	u16 data;
3385	u16 cfg;
3386	u8 status;
3387	int i;
3388	int p;
3389
3390	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3391		info = &hw->port_info[p];
3392
3393		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3394		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3395
3396		cfg = 0;
3397		if (status & PORT_STATUS_LINK_GOOD)
3398			cfg = data;
3399
3400		data |= PORT_AUTO_NEG_ENABLE;
3401		data = advertised_flow_ctrl(port, data);
3402
3403		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3404			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3405
3406		/* Check if manual configuration is specified by the user. */
3407		if (port->speed || port->duplex) {
3408			if (10 == port->speed)
3409				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3410					PORT_AUTO_NEG_100BTX);
3411			else if (100 == port->speed)
3412				data &= ~(PORT_AUTO_NEG_10BT_FD |
3413					PORT_AUTO_NEG_10BT);
3414			if (1 == port->duplex)
3415				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3416					PORT_AUTO_NEG_10BT_FD);
3417			else if (2 == port->duplex)
3418				data &= ~(PORT_AUTO_NEG_100BTX |
3419					PORT_AUTO_NEG_10BT);
3420		}
3421		if (data != cfg) {
3422			data |= PORT_AUTO_NEG_RESTART;
3423			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3424		}
3425	}
3426}
3427
3428/**
3429 * port_force_link_speed - force port speed
3430 * @port: 	The port instance.
3431 *
3432 * This routine forces the link speed of the switch ports.
3433 */
3434static void port_force_link_speed(struct ksz_port *port)
3435{
3436	struct ksz_hw *hw = port->hw;
3437	u16 data;
3438	int i;
3439	int phy;
3440	int p;
3441
3442	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3443		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3444		hw_r_phy_ctrl(hw, phy, &data);
3445
3446		data &= ~PHY_AUTO_NEG_ENABLE;
3447
3448		if (10 == port->speed)
3449			data &= ~PHY_SPEED_100MBIT;
3450		else if (100 == port->speed)
3451			data |= PHY_SPEED_100MBIT;
3452		if (1 == port->duplex)
3453			data &= ~PHY_FULL_DUPLEX;
3454		else if (2 == port->duplex)
3455			data |= PHY_FULL_DUPLEX;
3456		hw_w_phy_ctrl(hw, phy, data);
3457	}
3458}
3459
3460static void port_set_power_saving(struct ksz_port *port, int enable)
3461{
3462	struct ksz_hw *hw = port->hw;
3463	int i;
3464	int p;
3465
3466	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3467		port_cfg(hw, p,
3468			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3469}
3470
3471/*
3472 * KSZ8841 power management functions
3473 */
3474
3475/**
3476 * hw_chk_wol_pme_status - check PMEN pin
3477 * @hw: 	The hardware instance.
3478 *
3479 * This function is used to check PMEN pin is asserted.
3480 *
3481 * Return 1 if PMEN pin is asserted; otherwise, 0.
3482 */
3483static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3484{
3485	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3486	struct pci_dev *pdev = hw_priv->pdev;
3487	u16 data;
3488
3489	if (!pdev->pm_cap)
3490		return 0;
3491	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3492	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3493}
3494
3495/**
3496 * hw_clr_wol_pme_status - clear PMEN pin
3497 * @hw: 	The hardware instance.
3498 *
3499 * This routine is used to clear PME_Status to deassert PMEN pin.
3500 */
3501static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3502{
3503	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3504	struct pci_dev *pdev = hw_priv->pdev;
3505	u16 data;
3506
3507	if (!pdev->pm_cap)
3508		return;
3509
3510	/* Clear PME_Status to deassert PMEN pin. */
3511	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3512	data |= PCI_PM_CTRL_PME_STATUS;
3513	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3514}
3515
3516/**
3517 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3518 * @hw: 	The hardware instance.
3519 * @set:	The flag indicating whether to enable or disable.
3520 *
3521 * This routine is used to enable or disable Wake-on-LAN.
3522 */
3523static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3524{
3525	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3526	struct pci_dev *pdev = hw_priv->pdev;
3527	u16 data;
3528
3529	if (!pdev->pm_cap)
3530		return;
3531	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3532	data &= ~PCI_PM_CTRL_STATE_MASK;
3533	if (set)
3534		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3535	else
3536		data &= ~PCI_PM_CTRL_PME_ENABLE;
3537	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3538}
3539
3540/**
3541 * hw_cfg_wol - configure Wake-on-LAN features
3542 * @hw: 	The hardware instance.
3543 * @frame:	The pattern frame bit.
3544 * @set:	The flag indicating whether to enable or disable.
3545 *
3546 * This routine is used to enable or disable certain Wake-on-LAN features.
3547 */
3548static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3549{
3550	u16 data;
3551
3552	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3553	if (set)
3554		data |= frame;
3555	else
3556		data &= ~frame;
3557	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3558}
3559
3560/**
3561 * hw_set_wol_frame - program Wake-on-LAN pattern
3562 * @hw: 	The hardware instance.
3563 * @i:		The frame index.
3564 * @mask_size:	The size of the mask.
3565 * @mask:	Mask to ignore certain bytes in the pattern.
3566 * @frame_size:	The size of the frame.
3567 * @pattern:	The frame data.
3568 *
3569 * This routine is used to program Wake-on-LAN pattern.
3570 */
3571static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3572	const u8 *mask, uint frame_size, const u8 *pattern)
3573{
3574	int bits;
3575	int from;
3576	int len;
3577	int to;
3578	u32 crc;
3579	u8 data[64];
3580	u8 val = 0;
3581
3582	if (frame_size > mask_size * 8)
3583		frame_size = mask_size * 8;
3584	if (frame_size > 64)
3585		frame_size = 64;
3586
3587	i *= 0x10;
3588	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3589	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3590
3591	bits = len = from = to = 0;
3592	do {
3593		if (bits) {
3594			if ((val & 1))
3595				data[to++] = pattern[from];
3596			val >>= 1;
3597			++from;
3598			--bits;
3599		} else {
3600			val = mask[len];
3601			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3602				+ len);
3603			++len;
3604			if (val)
3605				bits = 8;
3606			else
3607				from += 8;
3608		}
3609	} while (from < (int) frame_size);
3610	if (val) {
3611		bits = mask[len - 1];
3612		val <<= (from % 8);
3613		bits &= ~val;
3614		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3615			1);
3616	}
3617	crc = ether_crc(to, data);
3618	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3619}
3620
3621/**
3622 * hw_add_wol_arp - add ARP pattern
3623 * @hw: 	The hardware instance.
3624 * @ip_addr:	The IPv4 address assigned to the device.
3625 *
3626 * This routine is used to add ARP pattern for waking up the host.
3627 */
3628static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3629{
3630	static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3631	u8 pattern[42] = {
3632		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3633		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3634		0x08, 0x06,
3635		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3636		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3637		0x00, 0x00, 0x00, 0x00,
3638		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3639		0x00, 0x00, 0x00, 0x00 };
3640
3641	memcpy(&pattern[38], ip_addr, 4);
3642	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3643}
3644
3645/**
3646 * hw_add_wol_bcast - add broadcast pattern
3647 * @hw: 	The hardware instance.
3648 *
3649 * This routine is used to add broadcast pattern for waking up the host.
3650 */
3651static void hw_add_wol_bcast(struct ksz_hw *hw)
3652{
3653	static const u8 mask[] = { 0x3F };
3654	static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3655
3656	hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3657}
3658
3659/**
3660 * hw_add_wol_mcast - add multicast pattern
3661 * @hw: 	The hardware instance.
3662 *
3663 * This routine is used to add multicast pattern for waking up the host.
3664 *
3665 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3666 * by IPv6 ping command.  Note that multicast packets are filtred through the
3667 * multicast hash table, so not all multicast packets can wake up the host.
3668 */
3669static void hw_add_wol_mcast(struct ksz_hw *hw)
3670{
3671	static const u8 mask[] = { 0x3F };
3672	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3673
3674	memcpy(&pattern[3], &hw->override_addr[3], 3);
3675	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3676}
3677
3678/**
3679 * hw_add_wol_ucast - add unicast pattern
3680 * @hw: 	The hardware instance.
3681 *
3682 * This routine is used to add unicast pattern to wakeup the host.
3683 *
3684 * It is assumed the unicast packet is directed to the device, as the hardware
3685 * can only receive them in normal case.
3686 */
3687static void hw_add_wol_ucast(struct ksz_hw *hw)
3688{
3689	static const u8 mask[] = { 0x3F };
3690
3691	hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3692}
3693
3694/**
3695 * hw_enable_wol - enable Wake-on-LAN
3696 * @hw: 	The hardware instance.
3697 * @wol_enable:	The Wake-on-LAN settings.
3698 * @net_addr:	The IPv4 address assigned to the device.
3699 *
3700 * This routine is used to enable Wake-on-LAN depending on driver settings.
3701 */
3702static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3703{
3704	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3705	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3706	hw_add_wol_ucast(hw);
3707	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3708	hw_add_wol_mcast(hw);
3709	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3710	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3711	hw_add_wol_arp(hw, net_addr);
3712}
3713
3714/**
3715 * hw_init - check driver is correct for the hardware
3716 * @hw: 	The hardware instance.
3717 *
3718 * This function checks the hardware is correct for this driver and sets the
3719 * hardware up for proper initialization.
3720 *
3721 * Return number of ports or 0 if not right.
3722 */
3723static int hw_init(struct ksz_hw *hw)
3724{
3725	int rc = 0;
3726	u16 data;
3727	u16 revision;
3728
3729	/* Set bus speed to 125MHz. */
3730	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3731
3732	/* Check KSZ884x chip ID. */
3733	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3734
3735	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3736	data &= KS884X_CHIP_ID_MASK_41;
3737	if (REG_CHIP_ID_41 == data)
3738		rc = 1;
3739	else if (REG_CHIP_ID_42 == data)
3740		rc = 2;
3741	else
3742		return 0;
3743
3744	/* Setup hardware features or bug workarounds. */
3745	if (revision <= 1) {
3746		hw->features |= SMALL_PACKET_TX_BUG;
3747		if (1 == rc)
3748			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3749	}
3750	return rc;
3751}
3752
3753/**
3754 * hw_reset - reset the hardware
3755 * @hw: 	The hardware instance.
3756 *
3757 * This routine resets the hardware.
3758 */
3759static void hw_reset(struct ksz_hw *hw)
3760{
3761	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3762
3763	/* Wait for device to reset. */
3764	mdelay(10);
3765
3766	/* Write 0 to clear device reset. */
3767	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3768}
3769
3770/**
3771 * hw_setup - setup the hardware
3772 * @hw: 	The hardware instance.
3773 *
3774 * This routine setup the hardware for proper operation.
3775 */
3776static void hw_setup(struct ksz_hw *hw)
3777{
3778#if SET_DEFAULT_LED
3779	u16 data;
3780
3781	/* Change default LED mode. */
3782	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3783	data &= ~LED_MODE;
3784	data |= SET_DEFAULT_LED;
3785	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3786#endif
3787
3788	/* Setup transmit control. */
3789	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3790		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3791
3792	/* Setup receive control. */
3793	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3794		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3795	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3796
3797	/* Hardware cannot handle UDP packet in IP fragments. */
3798	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3799
3800	if (hw->all_multi)
3801		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3802	if (hw->promiscuous)
3803		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3804}
3805
3806/**
3807 * hw_setup_intr - setup interrupt mask
3808 * @hw: 	The hardware instance.
3809 *
3810 * This routine setup the interrupt mask for proper operation.
3811 */
3812static void hw_setup_intr(struct ksz_hw *hw)
3813{
3814	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3815}
3816
3817static void ksz_check_desc_num(struct ksz_desc_info *info)
3818{
3819#define MIN_DESC_SHIFT  2
3820
3821	int alloc = info->alloc;
3822	int shift;
3823
3824	shift = 0;
3825	while (!(alloc & 1)) {
3826		shift++;
3827		alloc >>= 1;
3828	}
3829	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3830		pr_alert("Hardware descriptor numbers not right!\n");
3831		while (alloc) {
3832			shift++;
3833			alloc >>= 1;
3834		}
3835		if (shift < MIN_DESC_SHIFT)
3836			shift = MIN_DESC_SHIFT;
3837		alloc = 1 << shift;
3838		info->alloc = alloc;
3839	}
3840	info->mask = info->alloc - 1;
3841}
3842
3843static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3844{
3845	int i;
3846	u32 phys = desc_info->ring_phys;
3847	struct ksz_hw_desc *desc = desc_info->ring_virt;
3848	struct ksz_desc *cur = desc_info->ring;
3849	struct ksz_desc *previous = NULL;
3850
3851	for (i = 0; i < desc_info->alloc; i++) {
3852		cur->phw = desc++;
3853		phys += desc_info->size;
3854		previous = cur++;
3855		previous->phw->next = cpu_to_le32(phys);
3856	}
3857	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3858	previous->sw.buf.rx.end_of_ring = 1;
3859	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3860
3861	desc_info->avail = desc_info->alloc;
3862	desc_info->last = desc_info->next = 0;
3863
3864	desc_info->cur = desc_info->ring;
3865}
3866
3867/**
3868 * hw_set_desc_base - set descriptor base addresses
3869 * @hw: 	The hardware instance.
3870 * @tx_addr:	The transmit descriptor base.
3871 * @rx_addr:	The receive descriptor base.
3872 *
3873 * This routine programs the descriptor base addresses after reset.
3874 */
3875static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3876{
3877	/* Set base address of Tx/Rx descriptors. */
3878	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3879	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3880}
3881
3882static void hw_reset_pkts(struct ksz_desc_info *info)
3883{
3884	info->cur = info->ring;
3885	info->avail = info->alloc;
3886	info->last = info->next = 0;
3887}
3888
3889static inline void hw_resume_rx(struct ksz_hw *hw)
3890{
3891	writel(DMA_START, hw->io + KS_DMA_RX_START);
3892}
3893
3894/**
3895 * hw_start_rx - start receiving
3896 * @hw: 	The hardware instance.
3897 *
3898 * This routine starts the receive function of the hardware.
3899 */
3900static void hw_start_rx(struct ksz_hw *hw)
3901{
3902	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3903
3904	/* Notify when the receive stops. */
3905	hw->intr_mask |= KS884X_INT_RX_STOPPED;
3906
3907	writel(DMA_START, hw->io + KS_DMA_RX_START);
3908	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3909	hw->rx_stop++;
3910
3911	/* Variable overflows. */
3912	if (0 == hw->rx_stop)
3913		hw->rx_stop = 2;
3914}
3915
3916/**
3917 * hw_stop_rx - stop receiving
3918 * @hw: 	The hardware instance.
3919 *
3920 * This routine stops the receive function of the hardware.
3921 */
3922static void hw_stop_rx(struct ksz_hw *hw)
3923{
3924	hw->rx_stop = 0;
3925	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3926	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3927}
3928
3929/**
3930 * hw_start_tx - start transmitting
3931 * @hw: 	The hardware instance.
3932 *
3933 * This routine starts the transmit function of the hardware.
3934 */
3935static void hw_start_tx(struct ksz_hw *hw)
3936{
3937	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3938}
3939
3940/**
3941 * hw_stop_tx - stop transmitting
3942 * @hw: 	The hardware instance.
3943 *
3944 * This routine stops the transmit function of the hardware.
3945 */
3946static void hw_stop_tx(struct ksz_hw *hw)
3947{
3948	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3949}
3950
3951/**
3952 * hw_disable - disable hardware
3953 * @hw: 	The hardware instance.
3954 *
3955 * This routine disables the hardware.
3956 */
3957static void hw_disable(struct ksz_hw *hw)
3958{
3959	hw_stop_rx(hw);
3960	hw_stop_tx(hw);
3961	hw->enabled = 0;
3962}
3963
3964/**
3965 * hw_enable - enable hardware
3966 * @hw: 	The hardware instance.
3967 *
3968 * This routine enables the hardware.
3969 */
3970static void hw_enable(struct ksz_hw *hw)
3971{
3972	hw_start_tx(hw);
3973	hw_start_rx(hw);
3974	hw->enabled = 1;
3975}
3976
3977/**
3978 * hw_alloc_pkt - allocate enough descriptors for transmission
3979 * @hw: 	The hardware instance.
3980 * @length:	The length of the packet.
3981 * @physical:	Number of descriptors required.
3982 *
3983 * This function allocates descriptors for transmission.
3984 *
3985 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3986 */
3987static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3988{
3989	/* Always leave one descriptor free. */
3990	if (hw->tx_desc_info.avail <= 1)
3991		return 0;
3992
3993	/* Allocate a descriptor for transmission and mark it current. */
3994	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3995	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3996
3997	/* Keep track of number of transmit descriptors used so far. */
3998	++hw->tx_int_cnt;
3999	hw->tx_size += length;
4000
4001	/* Cannot hold on too much data. */
4002	if (hw->tx_size >= MAX_TX_HELD_SIZE)
4003		hw->tx_int_cnt = hw->tx_int_mask + 1;
4004
4005	if (physical > hw->tx_desc_info.avail)
4006		return 1;
4007
4008	return hw->tx_desc_info.avail;
4009}
4010
4011/**
4012 * hw_send_pkt - mark packet for transmission
4013 * @hw: 	The hardware instance.
4014 *
4015 * This routine marks the packet for transmission in PCI version.
4016 */
4017static void hw_send_pkt(struct ksz_hw *hw)
4018{
4019	struct ksz_desc *cur = hw->tx_desc_info.cur;
4020
4021	cur->sw.buf.tx.last_seg = 1;
4022
4023	/* Interrupt only after specified number of descriptors used. */
4024	if (hw->tx_int_cnt > hw->tx_int_mask) {
4025		cur->sw.buf.tx.intr = 1;
4026		hw->tx_int_cnt = 0;
4027		hw->tx_size = 0;
4028	}
4029
4030	/* KSZ8842 supports port directed transmission. */
4031	cur->sw.buf.tx.dest_port = hw->dst_ports;
4032
4033	release_desc(cur);
4034
4035	writel(0, hw->io + KS_DMA_TX_START);
4036}
4037
4038static int empty_addr(u8 *addr)
4039{
4040	u32 *addr1 = (u32 *) addr;
4041	u16 *addr2 = (u16 *) &addr[4];
4042
4043	return 0 == *addr1 && 0 == *addr2;
4044}
4045
4046/**
4047 * hw_set_addr - set MAC address
4048 * @hw: 	The hardware instance.
4049 *
4050 * This routine programs the MAC address of the hardware when the address is
4051 * overrided.
4052 */
4053static void hw_set_addr(struct ksz_hw *hw)
4054{
4055	int i;
4056
4057	for (i = 0; i < ETH_ALEN; i++)
4058		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4059			hw->io + KS884X_ADDR_0_OFFSET + i);
4060
4061	sw_set_addr(hw, hw->override_addr);
4062}
4063
4064/**
4065 * hw_read_addr - read MAC address
4066 * @hw: 	The hardware instance.
4067 *
4068 * This routine retrieves the MAC address of the hardware.
4069 */
4070static void hw_read_addr(struct ksz_hw *hw)
4071{
4072	int i;
4073
4074	for (i = 0; i < ETH_ALEN; i++)
4075		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4076			KS884X_ADDR_0_OFFSET + i);
4077
4078	if (!hw->mac_override) {
4079		memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
4080		if (empty_addr(hw->override_addr)) {
4081			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
4082			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4083			       ETH_ALEN);
4084			hw->override_addr[5] += hw->id;
4085			hw_set_addr(hw);
4086		}
4087	}
4088}
4089
4090static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4091{
4092	int i;
4093	u32 mac_addr_lo;
4094	u32 mac_addr_hi;
4095
4096	mac_addr_hi = 0;
4097	for (i = 0; i < 2; i++) {
4098		mac_addr_hi <<= 8;
4099		mac_addr_hi |= mac_addr[i];
4100	}
4101	mac_addr_hi |= ADD_ADDR_ENABLE;
4102	mac_addr_lo = 0;
4103	for (i = 2; i < 6; i++) {
4104		mac_addr_lo <<= 8;
4105		mac_addr_lo |= mac_addr[i];
4106	}
4107	index *= ADD_ADDR_INCR;
4108
4109	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4110	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4111}
4112
4113static void hw_set_add_addr(struct ksz_hw *hw)
4114{
4115	int i;
4116
4117	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4118		if (empty_addr(hw->address[i]))
4119			writel(0, hw->io + ADD_ADDR_INCR * i +
4120				KS_ADD_ADDR_0_HI);
4121		else
4122			hw_ena_add_addr(hw, i, hw->address[i]);
4123	}
4124}
4125
4126static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4127{
4128	int i;
4129	int j = ADDITIONAL_ENTRIES;
4130
4131	if (ether_addr_equal(hw->override_addr, mac_addr))
4132		return 0;
4133	for (i = 0; i < hw->addr_list_size; i++) {
4134		if (ether_addr_equal(hw->address[i], mac_addr))
4135			return 0;
4136		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4137			j = i;
4138	}
4139	if (j < ADDITIONAL_ENTRIES) {
4140		memcpy(hw->address[j], mac_addr, ETH_ALEN);
4141		hw_ena_add_addr(hw, j, hw->address[j]);
4142		return 0;
4143	}
4144	return -1;
4145}
4146
4147static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4148{
4149	int i;
4150
4151	for (i = 0; i < hw->addr_list_size; i++) {
4152		if (ether_addr_equal(hw->address[i], mac_addr)) {
4153			memset(hw->address[i], 0, ETH_ALEN);
4154			writel(0, hw->io + ADD_ADDR_INCR * i +
4155				KS_ADD_ADDR_0_HI);
4156			return 0;
4157		}
4158	}
4159	return -1;
4160}
4161
4162/**
4163 * hw_clr_multicast - clear multicast addresses
4164 * @hw: 	The hardware instance.
4165 *
4166 * This routine removes all multicast addresses set in the hardware.
4167 */
4168static void hw_clr_multicast(struct ksz_hw *hw)
4169{
4170	int i;
4171
4172	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4173		hw->multi_bits[i] = 0;
4174
4175		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4176	}
4177}
4178
4179/**
4180 * hw_set_grp_addr - set multicast addresses
4181 * @hw: 	The hardware instance.
4182 *
4183 * This routine programs multicast addresses for the hardware to accept those
4184 * addresses.
4185 */
4186static void hw_set_grp_addr(struct ksz_hw *hw)
4187{
4188	int i;
4189	int index;
4190	int position;
4191	int value;
4192
4193	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4194
4195	for (i = 0; i < hw->multi_list_size; i++) {
4196		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4197		index = position >> 3;
4198		value = 1 << (position & 7);
4199		hw->multi_bits[index] |= (u8) value;
4200	}
4201
4202	for (i = 0; i < HW_MULTICAST_SIZE; i++)
4203		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4204			i);
4205}
4206
4207/**
4208 * hw_set_multicast - enable or disable all multicast receiving
4209 * @hw: 	The hardware instance.
4210 * @multicast:	To turn on or off the all multicast feature.
4211 *
4212 * This routine enables/disables the hardware to accept all multicast packets.
4213 */
4214static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4215{
4216	/* Stop receiving for reconfiguration. */
4217	hw_stop_rx(hw);
4218
4219	if (multicast)
4220		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4221	else
4222		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4223
4224	if (hw->enabled)
4225		hw_start_rx(hw);
4226}
4227
4228/**
4229 * hw_set_promiscuous - enable or disable promiscuous receiving
4230 * @hw: 	The hardware instance.
4231 * @prom:	To turn on or off the promiscuous feature.
4232 *
4233 * This routine enables/disables the hardware to accept all packets.
4234 */
4235static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4236{
4237	/* Stop receiving for reconfiguration. */
4238	hw_stop_rx(hw);
4239
4240	if (prom)
4241		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4242	else
4243		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4244
4245	if (hw->enabled)
4246		hw_start_rx(hw);
4247}
4248
4249/**
4250 * sw_enable - enable the switch
4251 * @hw: 	The hardware instance.
4252 * @enable:	The flag to enable or disable the switch
4253 *
4254 * This routine is used to enable/disable the switch in KSZ8842.
4255 */
4256static void sw_enable(struct ksz_hw *hw, int enable)
4257{
4258	int port;
4259
4260	for (port = 0; port < SWITCH_PORT_NUM; port++) {
4261		if (hw->dev_count > 1) {
4262			/* Set port-base vlan membership with host port. */
4263			sw_cfg_port_base_vlan(hw, port,
4264				HOST_MASK | (1 << port));
4265			port_set_stp_state(hw, port, STP_STATE_DISABLED);
4266		} else {
4267			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4268			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4269		}
4270	}
4271	if (hw->dev_count > 1)
4272		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4273	else
4274		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4275
4276	if (enable)
4277		enable = KS8842_START;
4278	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4279}
4280
4281/**
4282 * sw_setup - setup the switch
4283 * @hw: 	The hardware instance.
4284 *
4285 * This routine setup the hardware switch engine for default operation.
4286 */
4287static void sw_setup(struct ksz_hw *hw)
4288{
4289	int port;
4290
4291	sw_set_global_ctrl(hw);
4292
4293	/* Enable switch broadcast storm protection at 10% percent rate. */
4294	sw_init_broad_storm(hw);
4295	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4296	for (port = 0; port < SWITCH_PORT_NUM; port++)
4297		sw_ena_broad_storm(hw, port);
4298
4299	sw_init_prio(hw);
4300
4301	sw_init_mirror(hw);
4302
4303	sw_init_prio_rate(hw);
4304
4305	sw_init_vlan(hw);
4306
4307	if (hw->features & STP_SUPPORT)
4308		sw_init_stp(hw);
4309	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4310			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4311		hw->overrides |= PAUSE_FLOW_CTRL;
4312	sw_enable(hw, 1);
4313}
4314
4315/**
4316 * ksz_start_timer - start kernel timer
4317 * @info:	Kernel timer information.
4318 * @time:	The time tick.
4319 *
4320 * This routine starts the kernel timer after the specified time tick.
4321 */
4322static void ksz_start_timer(struct ksz_timer_info *info, int time)
4323{
4324	info->cnt = 0;
4325	info->timer.expires = jiffies + time;
4326	add_timer(&info->timer);
4327
4328	/* infinity */
4329	info->max = -1;
4330}
4331
4332/**
4333 * ksz_stop_timer - stop kernel timer
4334 * @info:	Kernel timer information.
4335 *
4336 * This routine stops the kernel timer.
4337 */
4338static void ksz_stop_timer(struct ksz_timer_info *info)
4339{
4340	if (info->max) {
4341		info->max = 0;
4342		del_timer_sync(&info->timer);
4343	}
4344}
4345
4346static void ksz_init_timer(struct ksz_timer_info *info, int period,
4347	void (*function)(unsigned long), void *data)
4348{
4349	info->max = 0;
4350	info->period = period;
4351	init_timer(&info->timer);
4352	info->timer.function = function;
4353	info->timer.data = (unsigned long) data;
4354}
4355
4356static void ksz_update_timer(struct ksz_timer_info *info)
4357{
4358	++info->cnt;
4359	if (info->max > 0) {
4360		if (info->cnt < info->max) {
4361			info->timer.expires = jiffies + info->period;
4362			add_timer(&info->timer);
4363		} else
4364			info->max = 0;
4365	} else if (info->max < 0) {
4366		info->timer.expires = jiffies + info->period;
4367		add_timer(&info->timer);
4368	}
4369}
4370
4371/**
4372 * ksz_alloc_soft_desc - allocate software descriptors
4373 * @desc_info:	Descriptor information structure.
4374 * @transmit:	Indication that descriptors are for transmit.
4375 *
4376 * This local function allocates software descriptors for manipulation in
4377 * memory.
4378 *
4379 * Return 0 if successful.
4380 */
4381static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4382{
4383	desc_info->ring = kzalloc(sizeof(struct ksz_desc) * desc_info->alloc,
4384				  GFP_KERNEL);
4385	if (!desc_info->ring)
4386		return 1;
4387	hw_init_desc(desc_info, transmit);
4388	return 0;
4389}
4390
4391/**
4392 * ksz_alloc_desc - allocate hardware descriptors
4393 * @adapter:	Adapter information structure.
4394 *
4395 * This local function allocates hardware descriptors for receiving and
4396 * transmitting.
4397 *
4398 * Return 0 if successful.
4399 */
4400static int ksz_alloc_desc(struct dev_info *adapter)
4401{
4402	struct ksz_hw *hw = &adapter->hw;
4403	int offset;
4404
4405	/* Allocate memory for RX & TX descriptors. */
4406	adapter->desc_pool.alloc_size =
4407		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4408		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4409		DESC_ALIGNMENT;
4410
4411	adapter->desc_pool.alloc_virt =
4412		pci_alloc_consistent(
4413			adapter->pdev, adapter->desc_pool.alloc_size,
4414			&adapter->desc_pool.dma_addr);
4415	if (adapter->desc_pool.alloc_virt == NULL) {
4416		adapter->desc_pool.alloc_size = 0;
4417		return 1;
4418	}
4419	memset(adapter->desc_pool.alloc_virt, 0, adapter->desc_pool.alloc_size);
4420
4421	/* Align to the next cache line boundary. */
4422	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4423		(DESC_ALIGNMENT -
4424		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4425	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4426	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4427
4428	/* Allocate receive/transmit descriptors. */
4429	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4430		adapter->desc_pool.virt;
4431	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4432	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4433	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4434		(adapter->desc_pool.virt + offset);
4435	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4436
4437	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4438		return 1;
4439	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4440		return 1;
4441
4442	return 0;
4443}
4444
4445/**
4446 * free_dma_buf - release DMA buffer resources
4447 * @adapter:	Adapter information structure.
 
 
4448 *
4449 * This routine is just a helper function to release the DMA buffer resources.
4450 */
4451static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4452	int direction)
4453{
4454	pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
 
4455	dev_kfree_skb(dma_buf->skb);
4456	dma_buf->skb = NULL;
4457	dma_buf->dma = 0;
4458}
4459
4460/**
4461 * ksz_init_rx_buffers - initialize receive descriptors
4462 * @adapter:	Adapter information structure.
4463 *
4464 * This routine initializes DMA buffers for receiving.
4465 */
4466static void ksz_init_rx_buffers(struct dev_info *adapter)
4467{
4468	int i;
4469	struct ksz_desc *desc;
4470	struct ksz_dma_buf *dma_buf;
4471	struct ksz_hw *hw = &adapter->hw;
4472	struct ksz_desc_info *info = &hw->rx_desc_info;
4473
4474	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4475		get_rx_pkt(info, &desc);
4476
4477		dma_buf = DMA_BUFFER(desc);
4478		if (dma_buf->skb && dma_buf->len != adapter->mtu)
4479			free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4480		dma_buf->len = adapter->mtu;
4481		if (!dma_buf->skb)
4482			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4483		if (dma_buf->skb && !dma_buf->dma)
4484			dma_buf->dma = pci_map_single(
4485				adapter->pdev,
4486				skb_tail_pointer(dma_buf->skb),
4487				dma_buf->len,
4488				PCI_DMA_FROMDEVICE);
4489
4490		/* Set descriptor. */
4491		set_rx_buf(desc, dma_buf->dma);
4492		set_rx_len(desc, dma_buf->len);
4493		release_desc(desc);
4494	}
4495}
4496
4497/**
4498 * ksz_alloc_mem - allocate memory for hardware descriptors
4499 * @adapter:	Adapter information structure.
4500 *
4501 * This function allocates memory for use by hardware descriptors for receiving
4502 * and transmitting.
4503 *
4504 * Return 0 if successful.
4505 */
4506static int ksz_alloc_mem(struct dev_info *adapter)
4507{
4508	struct ksz_hw *hw = &adapter->hw;
4509
4510	/* Determine the number of receive and transmit descriptors. */
4511	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4512	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4513
4514	/* Determine how many descriptors to skip transmit interrupt. */
4515	hw->tx_int_cnt = 0;
4516	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4517	if (hw->tx_int_mask > 8)
4518		hw->tx_int_mask = 8;
4519	while (hw->tx_int_mask) {
4520		hw->tx_int_cnt++;
4521		hw->tx_int_mask >>= 1;
4522	}
4523	if (hw->tx_int_cnt) {
4524		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4525		hw->tx_int_cnt = 0;
4526	}
4527
4528	/* Determine the descriptor size. */
4529	hw->rx_desc_info.size =
4530		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4531		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4532	hw->tx_desc_info.size =
4533		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4534		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4535	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4536		pr_alert("Hardware descriptor size not right!\n");
4537	ksz_check_desc_num(&hw->rx_desc_info);
4538	ksz_check_desc_num(&hw->tx_desc_info);
4539
4540	/* Allocate descriptors. */
4541	if (ksz_alloc_desc(adapter))
4542		return 1;
4543
4544	return 0;
4545}
4546
4547/**
4548 * ksz_free_desc - free software and hardware descriptors
4549 * @adapter:	Adapter information structure.
4550 *
4551 * This local routine frees the software and hardware descriptors allocated by
4552 * ksz_alloc_desc().
4553 */
4554static void ksz_free_desc(struct dev_info *adapter)
4555{
4556	struct ksz_hw *hw = &adapter->hw;
4557
4558	/* Reset descriptor. */
4559	hw->rx_desc_info.ring_virt = NULL;
4560	hw->tx_desc_info.ring_virt = NULL;
4561	hw->rx_desc_info.ring_phys = 0;
4562	hw->tx_desc_info.ring_phys = 0;
4563
4564	/* Free memory. */
4565	if (adapter->desc_pool.alloc_virt)
4566		pci_free_consistent(
4567			adapter->pdev,
4568			adapter->desc_pool.alloc_size,
4569			adapter->desc_pool.alloc_virt,
4570			adapter->desc_pool.dma_addr);
4571
4572	/* Reset resource pool. */
4573	adapter->desc_pool.alloc_size = 0;
4574	adapter->desc_pool.alloc_virt = NULL;
4575
4576	kfree(hw->rx_desc_info.ring);
4577	hw->rx_desc_info.ring = NULL;
4578	kfree(hw->tx_desc_info.ring);
4579	hw->tx_desc_info.ring = NULL;
4580}
4581
4582/**
4583 * ksz_free_buffers - free buffers used in the descriptors
4584 * @adapter:	Adapter information structure.
4585 * @desc_info:	Descriptor information structure.
 
4586 *
4587 * This local routine frees buffers used in the DMA buffers.
4588 */
4589static void ksz_free_buffers(struct dev_info *adapter,
4590	struct ksz_desc_info *desc_info, int direction)
4591{
4592	int i;
4593	struct ksz_dma_buf *dma_buf;
4594	struct ksz_desc *desc = desc_info->ring;
4595
4596	for (i = 0; i < desc_info->alloc; i++) {
4597		dma_buf = DMA_BUFFER(desc);
4598		if (dma_buf->skb)
4599			free_dma_buf(adapter, dma_buf, direction);
4600		desc++;
4601	}
4602}
4603
4604/**
4605 * ksz_free_mem - free all resources used by descriptors
4606 * @adapter:	Adapter information structure.
4607 *
4608 * This local routine frees all the resources allocated by ksz_alloc_mem().
4609 */
4610static void ksz_free_mem(struct dev_info *adapter)
4611{
4612	/* Free transmit buffers. */
4613	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4614		PCI_DMA_TODEVICE);
4615
4616	/* Free receive buffers. */
4617	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4618		PCI_DMA_FROMDEVICE);
4619
4620	/* Free descriptors. */
4621	ksz_free_desc(adapter);
4622}
4623
4624static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4625	u64 *counter)
4626{
4627	int i;
4628	int mib;
4629	int port;
4630	struct ksz_port_mib *port_mib;
4631
4632	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4633	for (i = 0, port = first; i < cnt; i++, port++) {
4634		port_mib = &hw->port_mib[port];
4635		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4636			counter[mib] += port_mib->counter[mib];
4637	}
4638}
4639
4640/**
4641 * send_packet - send packet
4642 * @skb:	Socket buffer.
4643 * @dev:	Network device.
4644 *
4645 * This routine is used to send a packet out to the network.
4646 */
4647static void send_packet(struct sk_buff *skb, struct net_device *dev)
4648{
4649	struct ksz_desc *desc;
4650	struct ksz_desc *first;
4651	struct dev_priv *priv = netdev_priv(dev);
4652	struct dev_info *hw_priv = priv->adapter;
4653	struct ksz_hw *hw = &hw_priv->hw;
4654	struct ksz_desc_info *info = &hw->tx_desc_info;
4655	struct ksz_dma_buf *dma_buf;
4656	int len;
4657	int last_frag = skb_shinfo(skb)->nr_frags;
4658
4659	/*
4660	 * KSZ8842 with multiple device interfaces needs to be told which port
4661	 * to send.
4662	 */
4663	if (hw->dev_count > 1)
4664		hw->dst_ports = 1 << priv->port.first_port;
4665
4666	/* Hardware will pad the length to 60. */
4667	len = skb->len;
4668
4669	/* Remember the very first descriptor. */
4670	first = info->cur;
4671	desc = first;
4672
4673	dma_buf = DMA_BUFFER(desc);
4674	if (last_frag) {
4675		int frag;
4676		skb_frag_t *this_frag;
4677
4678		dma_buf->len = skb_headlen(skb);
4679
4680		dma_buf->dma = pci_map_single(
4681			hw_priv->pdev, skb->data, dma_buf->len,
4682			PCI_DMA_TODEVICE);
4683		set_tx_buf(desc, dma_buf->dma);
4684		set_tx_len(desc, dma_buf->len);
4685
4686		frag = 0;
4687		do {
4688			this_frag = &skb_shinfo(skb)->frags[frag];
4689
4690			/* Get a new descriptor. */
4691			get_tx_pkt(info, &desc);
4692
4693			/* Keep track of descriptors used so far. */
4694			++hw->tx_int_cnt;
4695
4696			dma_buf = DMA_BUFFER(desc);
4697			dma_buf->len = skb_frag_size(this_frag);
4698
4699			dma_buf->dma = pci_map_single(
4700				hw_priv->pdev,
4701				skb_frag_address(this_frag),
4702				dma_buf->len,
4703				PCI_DMA_TODEVICE);
4704			set_tx_buf(desc, dma_buf->dma);
4705			set_tx_len(desc, dma_buf->len);
4706
4707			frag++;
4708			if (frag == last_frag)
4709				break;
4710
4711			/* Do not release the last descriptor here. */
4712			release_desc(desc);
4713		} while (1);
4714
4715		/* current points to the last descriptor. */
4716		info->cur = desc;
4717
4718		/* Release the first descriptor. */
4719		release_desc(first);
4720	} else {
4721		dma_buf->len = len;
4722
4723		dma_buf->dma = pci_map_single(
4724			hw_priv->pdev, skb->data, dma_buf->len,
4725			PCI_DMA_TODEVICE);
4726		set_tx_buf(desc, dma_buf->dma);
4727		set_tx_len(desc, dma_buf->len);
4728	}
4729
4730	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4731		(desc)->sw.buf.tx.csum_gen_tcp = 1;
4732		(desc)->sw.buf.tx.csum_gen_udp = 1;
4733	}
4734
4735	/*
4736	 * The last descriptor holds the packet so that it can be returned to
4737	 * network subsystem after all descriptors are transmitted.
4738	 */
4739	dma_buf->skb = skb;
4740
4741	hw_send_pkt(hw);
4742
4743	/* Update transmit statistics. */
4744	dev->stats.tx_packets++;
4745	dev->stats.tx_bytes += len;
4746}
4747
4748/**
4749 * transmit_cleanup - clean up transmit descriptors
4750 * @dev:	Network device.
 
4751 *
4752 * This routine is called to clean up the transmitted buffers.
4753 */
4754static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4755{
4756	int last;
4757	union desc_stat status;
4758	struct ksz_hw *hw = &hw_priv->hw;
4759	struct ksz_desc_info *info = &hw->tx_desc_info;
4760	struct ksz_desc *desc;
4761	struct ksz_dma_buf *dma_buf;
4762	struct net_device *dev = NULL;
4763
4764	spin_lock_irq(&hw_priv->hwlock);
4765	last = info->last;
4766
4767	while (info->avail < info->alloc) {
4768		/* Get next descriptor which is not hardware owned. */
4769		desc = &info->ring[last];
4770		status.data = le32_to_cpu(desc->phw->ctrl.data);
4771		if (status.tx.hw_owned) {
4772			if (normal)
4773				break;
4774			else
4775				reset_desc(desc, status);
4776		}
4777
4778		dma_buf = DMA_BUFFER(desc);
4779		pci_unmap_single(
4780			hw_priv->pdev, dma_buf->dma, dma_buf->len,
4781			PCI_DMA_TODEVICE);
4782
4783		/* This descriptor contains the last buffer in the packet. */
4784		if (dma_buf->skb) {
4785			dev = dma_buf->skb->dev;
4786
4787			/* Release the packet back to network subsystem. */
4788			dev_kfree_skb_irq(dma_buf->skb);
4789			dma_buf->skb = NULL;
4790		}
4791
4792		/* Free the transmitted descriptor. */
4793		last++;
4794		last &= info->mask;
4795		info->avail++;
4796	}
4797	info->last = last;
4798	spin_unlock_irq(&hw_priv->hwlock);
4799
4800	/* Notify the network subsystem that the packet has been sent. */
4801	if (dev)
4802		dev->trans_start = jiffies;
4803}
4804
4805/**
4806 * transmit_done - transmit done processing
4807 * @dev:	Network device.
4808 *
4809 * This routine is called when the transmit interrupt is triggered, indicating
4810 * either a packet is sent successfully or there are transmit errors.
4811 */
4812static void tx_done(struct dev_info *hw_priv)
4813{
4814	struct ksz_hw *hw = &hw_priv->hw;
4815	int port;
4816
4817	transmit_cleanup(hw_priv, 1);
4818
4819	for (port = 0; port < hw->dev_count; port++) {
4820		struct net_device *dev = hw->port_info[port].pdev;
4821
4822		if (netif_running(dev) && netif_queue_stopped(dev))
4823			netif_wake_queue(dev);
4824	}
4825}
4826
4827static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4828{
4829	skb->dev = old->dev;
4830	skb->protocol = old->protocol;
4831	skb->ip_summed = old->ip_summed;
4832	skb->csum = old->csum;
4833	skb_set_network_header(skb, ETH_HLEN);
4834
4835	dev_consume_skb_any(old);
4836}
4837
4838/**
4839 * netdev_tx - send out packet
4840 * @skb:	Socket buffer.
4841 * @dev:	Network device.
4842 *
4843 * This function is used by the upper network layer to send out a packet.
4844 *
4845 * Return 0 if successful; otherwise an error code indicating failure.
4846 */
4847static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4848{
4849	struct dev_priv *priv = netdev_priv(dev);
4850	struct dev_info *hw_priv = priv->adapter;
4851	struct ksz_hw *hw = &hw_priv->hw;
4852	int left;
4853	int num = 1;
4854	int rc = 0;
4855
4856	if (hw->features & SMALL_PACKET_TX_BUG) {
4857		struct sk_buff *org_skb = skb;
4858
4859		if (skb->len <= 48) {
4860			if (skb_end_pointer(skb) - skb->data >= 50) {
4861				memset(&skb->data[skb->len], 0, 50 - skb->len);
4862				skb->len = 50;
4863			} else {
4864				skb = netdev_alloc_skb(dev, 50);
4865				if (!skb)
4866					return NETDEV_TX_BUSY;
4867				memcpy(skb->data, org_skb->data, org_skb->len);
4868				memset(&skb->data[org_skb->len], 0,
4869					50 - org_skb->len);
4870				skb->len = 50;
4871				copy_old_skb(org_skb, skb);
4872			}
4873		}
4874	}
4875
4876	spin_lock_irq(&hw_priv->hwlock);
4877
4878	num = skb_shinfo(skb)->nr_frags + 1;
4879	left = hw_alloc_pkt(hw, skb->len, num);
4880	if (left) {
4881		if (left < num ||
4882		    (CHECKSUM_PARTIAL == skb->ip_summed &&
4883		     skb->protocol == htons(ETH_P_IPV6))) {
4884			struct sk_buff *org_skb = skb;
4885
4886			skb = netdev_alloc_skb(dev, org_skb->len);
4887			if (!skb) {
4888				rc = NETDEV_TX_BUSY;
4889				goto unlock;
4890			}
4891			skb_copy_and_csum_dev(org_skb, skb->data);
4892			org_skb->ip_summed = CHECKSUM_NONE;
4893			skb->len = org_skb->len;
4894			copy_old_skb(org_skb, skb);
4895		}
4896		send_packet(skb, dev);
4897		if (left <= num)
4898			netif_stop_queue(dev);
4899	} else {
4900		/* Stop the transmit queue until packet is allocated. */
4901		netif_stop_queue(dev);
4902		rc = NETDEV_TX_BUSY;
4903	}
4904unlock:
4905	spin_unlock_irq(&hw_priv->hwlock);
4906
4907	return rc;
4908}
4909
4910/**
4911 * netdev_tx_timeout - transmit timeout processing
4912 * @dev:	Network device.
 
4913 *
4914 * This routine is called when the transmit timer expires.  That indicates the
4915 * hardware is not running correctly because transmit interrupts are not
4916 * triggered to free up resources so that the transmit routine can continue
4917 * sending out packets.  The hardware is reset to correct the problem.
4918 */
4919static void netdev_tx_timeout(struct net_device *dev)
4920{
4921	static unsigned long last_reset;
4922
4923	struct dev_priv *priv = netdev_priv(dev);
4924	struct dev_info *hw_priv = priv->adapter;
4925	struct ksz_hw *hw = &hw_priv->hw;
4926	int port;
4927
4928	if (hw->dev_count > 1) {
4929		/*
4930		 * Only reset the hardware if time between calls is long
4931		 * enough.
4932		 */
4933		if (jiffies - last_reset <= dev->watchdog_timeo)
4934			hw_priv = NULL;
4935	}
4936
4937	last_reset = jiffies;
4938	if (hw_priv) {
4939		hw_dis_intr(hw);
4940		hw_disable(hw);
4941
4942		transmit_cleanup(hw_priv, 0);
4943		hw_reset_pkts(&hw->rx_desc_info);
4944		hw_reset_pkts(&hw->tx_desc_info);
4945		ksz_init_rx_buffers(hw_priv);
4946
4947		hw_reset(hw);
4948
4949		hw_set_desc_base(hw,
4950			hw->tx_desc_info.ring_phys,
4951			hw->rx_desc_info.ring_phys);
4952		hw_set_addr(hw);
4953		if (hw->all_multi)
4954			hw_set_multicast(hw, hw->all_multi);
4955		else if (hw->multi_list_size)
4956			hw_set_grp_addr(hw);
4957
4958		if (hw->dev_count > 1) {
4959			hw_set_add_addr(hw);
4960			for (port = 0; port < SWITCH_PORT_NUM; port++) {
4961				struct net_device *port_dev;
4962
4963				port_set_stp_state(hw, port,
4964					STP_STATE_DISABLED);
4965
4966				port_dev = hw->port_info[port].pdev;
4967				if (netif_running(port_dev))
4968					port_set_stp_state(hw, port,
4969						STP_STATE_SIMPLE);
4970			}
4971		}
4972
4973		hw_enable(hw);
4974		hw_ena_intr(hw);
4975	}
4976
4977	dev->trans_start = jiffies;
4978	netif_wake_queue(dev);
4979}
4980
4981static inline void csum_verified(struct sk_buff *skb)
4982{
4983	unsigned short protocol;
4984	struct iphdr *iph;
4985
4986	protocol = skb->protocol;
4987	skb_reset_network_header(skb);
4988	iph = (struct iphdr *) skb_network_header(skb);
4989	if (protocol == htons(ETH_P_8021Q)) {
4990		protocol = iph->tot_len;
4991		skb_set_network_header(skb, VLAN_HLEN);
4992		iph = (struct iphdr *) skb_network_header(skb);
4993	}
4994	if (protocol == htons(ETH_P_IP)) {
4995		if (iph->protocol == IPPROTO_TCP)
4996			skb->ip_summed = CHECKSUM_UNNECESSARY;
4997	}
4998}
4999
5000static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
5001	struct ksz_desc *desc, union desc_stat status)
5002{
5003	int packet_len;
5004	struct dev_priv *priv = netdev_priv(dev);
5005	struct dev_info *hw_priv = priv->adapter;
5006	struct ksz_dma_buf *dma_buf;
5007	struct sk_buff *skb;
5008	int rx_status;
5009
5010	/* Received length includes 4-byte CRC. */
5011	packet_len = status.rx.frame_len - 4;
5012
5013	dma_buf = DMA_BUFFER(desc);
5014	pci_dma_sync_single_for_cpu(
5015		hw_priv->pdev, dma_buf->dma, packet_len + 4,
5016		PCI_DMA_FROMDEVICE);
5017
5018	do {
5019		/* skb->data != skb->head */
5020		skb = netdev_alloc_skb(dev, packet_len + 2);
5021		if (!skb) {
5022			dev->stats.rx_dropped++;
5023			return -ENOMEM;
5024		}
5025
5026		/*
5027		 * Align socket buffer in 4-byte boundary for better
5028		 * performance.
5029		 */
5030		skb_reserve(skb, 2);
5031
5032		memcpy(skb_put(skb, packet_len),
5033			dma_buf->skb->data, packet_len);
5034	} while (0);
5035
5036	skb->protocol = eth_type_trans(skb, dev);
5037
5038	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5039		csum_verified(skb);
5040
5041	/* Update receive statistics. */
5042	dev->stats.rx_packets++;
5043	dev->stats.rx_bytes += packet_len;
5044
5045	/* Notify upper layer for received packet. */
5046	rx_status = netif_rx(skb);
5047
5048	return 0;
5049}
5050
5051static int dev_rcv_packets(struct dev_info *hw_priv)
5052{
5053	int next;
5054	union desc_stat status;
5055	struct ksz_hw *hw = &hw_priv->hw;
5056	struct net_device *dev = hw->port_info[0].pdev;
5057	struct ksz_desc_info *info = &hw->rx_desc_info;
5058	int left = info->alloc;
5059	struct ksz_desc *desc;
5060	int received = 0;
5061
5062	next = info->next;
5063	while (left--) {
5064		/* Get next descriptor which is not hardware owned. */
5065		desc = &info->ring[next];
5066		status.data = le32_to_cpu(desc->phw->ctrl.data);
5067		if (status.rx.hw_owned)
5068			break;
5069
5070		/* Status valid only when last descriptor bit is set. */
5071		if (status.rx.last_desc && status.rx.first_desc) {
5072			if (rx_proc(dev, hw, desc, status))
5073				goto release_packet;
5074			received++;
5075		}
5076
5077release_packet:
5078		release_desc(desc);
5079		next++;
5080		next &= info->mask;
5081	}
5082	info->next = next;
5083
5084	return received;
5085}
5086
5087static int port_rcv_packets(struct dev_info *hw_priv)
5088{
5089	int next;
5090	union desc_stat status;
5091	struct ksz_hw *hw = &hw_priv->hw;
5092	struct net_device *dev = hw->port_info[0].pdev;
5093	struct ksz_desc_info *info = &hw->rx_desc_info;
5094	int left = info->alloc;
5095	struct ksz_desc *desc;
5096	int received = 0;
5097
5098	next = info->next;
5099	while (left--) {
5100		/* Get next descriptor which is not hardware owned. */
5101		desc = &info->ring[next];
5102		status.data = le32_to_cpu(desc->phw->ctrl.data);
5103		if (status.rx.hw_owned)
5104			break;
5105
5106		if (hw->dev_count > 1) {
5107			/* Get received port number. */
5108			int p = HW_TO_DEV_PORT(status.rx.src_port);
5109
5110			dev = hw->port_info[p].pdev;
5111			if (!netif_running(dev))
5112				goto release_packet;
5113		}
5114
5115		/* Status valid only when last descriptor bit is set. */
5116		if (status.rx.last_desc && status.rx.first_desc) {
5117			if (rx_proc(dev, hw, desc, status))
5118				goto release_packet;
5119			received++;
5120		}
5121
5122release_packet:
5123		release_desc(desc);
5124		next++;
5125		next &= info->mask;
5126	}
5127	info->next = next;
5128
5129	return received;
5130}
5131
5132static int dev_rcv_special(struct dev_info *hw_priv)
5133{
5134	int next;
5135	union desc_stat status;
5136	struct ksz_hw *hw = &hw_priv->hw;
5137	struct net_device *dev = hw->port_info[0].pdev;
5138	struct ksz_desc_info *info = &hw->rx_desc_info;
5139	int left = info->alloc;
5140	struct ksz_desc *desc;
5141	int received = 0;
5142
5143	next = info->next;
5144	while (left--) {
5145		/* Get next descriptor which is not hardware owned. */
5146		desc = &info->ring[next];
5147		status.data = le32_to_cpu(desc->phw->ctrl.data);
5148		if (status.rx.hw_owned)
5149			break;
5150
5151		if (hw->dev_count > 1) {
5152			/* Get received port number. */
5153			int p = HW_TO_DEV_PORT(status.rx.src_port);
5154
5155			dev = hw->port_info[p].pdev;
5156			if (!netif_running(dev))
5157				goto release_packet;
5158		}
5159
5160		/* Status valid only when last descriptor bit is set. */
5161		if (status.rx.last_desc && status.rx.first_desc) {
5162			/*
5163			 * Receive without error.  With receive errors
5164			 * disabled, packets with receive errors will be
5165			 * dropped, so no need to check the error bit.
5166			 */
5167			if (!status.rx.error || (status.data &
5168					KS_DESC_RX_ERROR_COND) ==
5169					KS_DESC_RX_ERROR_TOO_LONG) {
5170				if (rx_proc(dev, hw, desc, status))
5171					goto release_packet;
5172				received++;
5173			} else {
5174				struct dev_priv *priv = netdev_priv(dev);
5175
5176				/* Update receive error statistics. */
5177				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5178			}
5179		}
5180
5181release_packet:
5182		release_desc(desc);
5183		next++;
5184		next &= info->mask;
5185	}
5186	info->next = next;
5187
5188	return received;
5189}
5190
5191static void rx_proc_task(unsigned long data)
5192{
5193	struct dev_info *hw_priv = (struct dev_info *) data;
5194	struct ksz_hw *hw = &hw_priv->hw;
5195
5196	if (!hw->enabled)
5197		return;
5198	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5199
5200		/* In case receive process is suspended because of overrun. */
5201		hw_resume_rx(hw);
5202
5203		/* tasklets are interruptible. */
5204		spin_lock_irq(&hw_priv->hwlock);
5205		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5206		spin_unlock_irq(&hw_priv->hwlock);
5207	} else {
5208		hw_ack_intr(hw, KS884X_INT_RX);
5209		tasklet_schedule(&hw_priv->rx_tasklet);
5210	}
5211}
5212
5213static void tx_proc_task(unsigned long data)
5214{
5215	struct dev_info *hw_priv = (struct dev_info *) data;
5216	struct ksz_hw *hw = &hw_priv->hw;
5217
5218	hw_ack_intr(hw, KS884X_INT_TX_MASK);
5219
5220	tx_done(hw_priv);
5221
5222	/* tasklets are interruptible. */
5223	spin_lock_irq(&hw_priv->hwlock);
5224	hw_turn_on_intr(hw, KS884X_INT_TX);
5225	spin_unlock_irq(&hw_priv->hwlock);
5226}
5227
5228static inline void handle_rx_stop(struct ksz_hw *hw)
5229{
5230	/* Receive just has been stopped. */
5231	if (0 == hw->rx_stop)
5232		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5233	else if (hw->rx_stop > 1) {
5234		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5235			hw_start_rx(hw);
5236		} else {
5237			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5238			hw->rx_stop = 0;
5239		}
5240	} else
5241		/* Receive just has been started. */
5242		hw->rx_stop++;
5243}
5244
5245/**
5246 * netdev_intr - interrupt handling
5247 * @irq:	Interrupt number.
5248 * @dev_id:	Network device.
5249 *
5250 * This function is called by upper network layer to signal interrupt.
5251 *
5252 * Return IRQ_HANDLED if interrupt is handled.
5253 */
5254static irqreturn_t netdev_intr(int irq, void *dev_id)
5255{
5256	uint int_enable = 0;
5257	struct net_device *dev = (struct net_device *) dev_id;
5258	struct dev_priv *priv = netdev_priv(dev);
5259	struct dev_info *hw_priv = priv->adapter;
5260	struct ksz_hw *hw = &hw_priv->hw;
5261
5262	spin_lock(&hw_priv->hwlock);
5263
5264	hw_read_intr(hw, &int_enable);
5265
5266	/* Not our interrupt! */
5267	if (!int_enable) {
5268		spin_unlock(&hw_priv->hwlock);
5269		return IRQ_NONE;
5270	}
5271
5272	do {
5273		hw_ack_intr(hw, int_enable);
5274		int_enable &= hw->intr_mask;
5275
5276		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5277			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5278			tasklet_schedule(&hw_priv->tx_tasklet);
5279		}
5280
5281		if (likely(int_enable & KS884X_INT_RX)) {
5282			hw_dis_intr_bit(hw, KS884X_INT_RX);
5283			tasklet_schedule(&hw_priv->rx_tasklet);
5284		}
5285
5286		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5287			dev->stats.rx_fifo_errors++;
5288			hw_resume_rx(hw);
5289		}
5290
5291		if (unlikely(int_enable & KS884X_INT_PHY)) {
5292			struct ksz_port *port = &priv->port;
5293
5294			hw->features |= LINK_INT_WORKING;
5295			port_get_link_speed(port);
5296		}
5297
5298		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5299			handle_rx_stop(hw);
5300			break;
5301		}
5302
5303		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5304			u32 data;
5305
5306			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5307			pr_info("Tx stopped\n");
5308			data = readl(hw->io + KS_DMA_TX_CTRL);
5309			if (!(data & DMA_TX_ENABLE))
5310				pr_info("Tx disabled\n");
5311			break;
5312		}
5313	} while (0);
5314
5315	hw_ena_intr(hw);
5316
5317	spin_unlock(&hw_priv->hwlock);
5318
5319	return IRQ_HANDLED;
5320}
5321
5322/*
5323 * Linux network device functions
5324 */
5325
5326static unsigned long next_jiffies;
5327
5328#ifdef CONFIG_NET_POLL_CONTROLLER
5329static void netdev_netpoll(struct net_device *dev)
5330{
5331	struct dev_priv *priv = netdev_priv(dev);
5332	struct dev_info *hw_priv = priv->adapter;
5333
5334	hw_dis_intr(&hw_priv->hw);
5335	netdev_intr(dev->irq, dev);
5336}
5337#endif
5338
5339static void bridge_change(struct ksz_hw *hw)
5340{
5341	int port;
5342	u8  member;
5343	struct ksz_switch *sw = hw->ksz_switch;
5344
5345	/* No ports in forwarding state. */
5346	if (!sw->member) {
5347		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5348		sw_block_addr(hw);
5349	}
5350	for (port = 0; port < SWITCH_PORT_NUM; port++) {
5351		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5352			member = HOST_MASK | sw->member;
5353		else
5354			member = HOST_MASK | (1 << port);
5355		if (member != sw->port_cfg[port].member)
5356			sw_cfg_port_base_vlan(hw, port, member);
5357	}
5358}
5359
5360/**
5361 * netdev_close - close network device
5362 * @dev:	Network device.
5363 *
5364 * This function process the close operation of network device.  This is caused
5365 * by the user command "ifconfig ethX down."
5366 *
5367 * Return 0 if successful; otherwise an error code indicating failure.
5368 */
5369static int netdev_close(struct net_device *dev)
5370{
5371	struct dev_priv *priv = netdev_priv(dev);
5372	struct dev_info *hw_priv = priv->adapter;
5373	struct ksz_port *port = &priv->port;
5374	struct ksz_hw *hw = &hw_priv->hw;
5375	int pi;
5376
5377	netif_stop_queue(dev);
5378
5379	ksz_stop_timer(&priv->monitor_timer_info);
5380
5381	/* Need to shut the port manually in multiple device interfaces mode. */
5382	if (hw->dev_count > 1) {
5383		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5384
5385		/* Port is closed.  Need to change bridge setting. */
5386		if (hw->features & STP_SUPPORT) {
5387			pi = 1 << port->first_port;
5388			if (hw->ksz_switch->member & pi) {
5389				hw->ksz_switch->member &= ~pi;
5390				bridge_change(hw);
5391			}
5392		}
5393	}
5394	if (port->first_port > 0)
5395		hw_del_addr(hw, dev->dev_addr);
5396	if (!hw_priv->wol_enable)
5397		port_set_power_saving(port, true);
5398
5399	if (priv->multicast)
5400		--hw->all_multi;
5401	if (priv->promiscuous)
5402		--hw->promiscuous;
5403
5404	hw_priv->opened--;
5405	if (!(hw_priv->opened)) {
5406		ksz_stop_timer(&hw_priv->mib_timer_info);
5407		flush_work(&hw_priv->mib_read);
5408
5409		hw_dis_intr(hw);
5410		hw_disable(hw);
5411		hw_clr_multicast(hw);
5412
5413		/* Delay for receive task to stop scheduling itself. */
5414		msleep(2000 / HZ);
5415
5416		tasklet_kill(&hw_priv->rx_tasklet);
5417		tasklet_kill(&hw_priv->tx_tasklet);
5418		free_irq(dev->irq, hw_priv->dev);
5419
5420		transmit_cleanup(hw_priv, 0);
5421		hw_reset_pkts(&hw->rx_desc_info);
5422		hw_reset_pkts(&hw->tx_desc_info);
5423
5424		/* Clean out static MAC table when the switch is shutdown. */
5425		if (hw->features & STP_SUPPORT)
5426			sw_clr_sta_mac_table(hw);
5427	}
5428
5429	return 0;
5430}
5431
5432static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5433{
5434	if (hw->ksz_switch) {
5435		u32 data;
5436
5437		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5438		if (hw->features & RX_HUGE_FRAME)
5439			data |= SWITCH_HUGE_PACKET;
5440		else
5441			data &= ~SWITCH_HUGE_PACKET;
5442		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5443	}
5444	if (hw->features & RX_HUGE_FRAME) {
5445		hw->rx_cfg |= DMA_RX_ERROR;
5446		hw_priv->dev_rcv = dev_rcv_special;
5447	} else {
5448		hw->rx_cfg &= ~DMA_RX_ERROR;
5449		if (hw->dev_count > 1)
5450			hw_priv->dev_rcv = port_rcv_packets;
5451		else
5452			hw_priv->dev_rcv = dev_rcv_packets;
5453	}
5454}
5455
5456static int prepare_hardware(struct net_device *dev)
5457{
5458	struct dev_priv *priv = netdev_priv(dev);
5459	struct dev_info *hw_priv = priv->adapter;
5460	struct ksz_hw *hw = &hw_priv->hw;
5461	int rc = 0;
5462
5463	/* Remember the network device that requests interrupts. */
5464	hw_priv->dev = dev;
5465	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5466	if (rc)
5467		return rc;
5468	tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
5469		     (unsigned long) hw_priv);
5470	tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
5471		     (unsigned long) hw_priv);
5472
5473	hw->promiscuous = 0;
5474	hw->all_multi = 0;
5475	hw->multi_list_size = 0;
5476
5477	hw_reset(hw);
5478
5479	hw_set_desc_base(hw,
5480		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5481	hw_set_addr(hw);
5482	hw_cfg_huge_frame(hw_priv, hw);
5483	ksz_init_rx_buffers(hw_priv);
5484	return 0;
5485}
5486
5487static void set_media_state(struct net_device *dev, int media_state)
5488{
5489	struct dev_priv *priv = netdev_priv(dev);
5490
5491	if (media_state == priv->media_state)
5492		netif_carrier_on(dev);
5493	else
5494		netif_carrier_off(dev);
5495	netif_info(priv, link, dev, "link %s\n",
5496		   media_state == priv->media_state ? "on" : "off");
5497}
5498
5499/**
5500 * netdev_open - open network device
5501 * @dev:	Network device.
5502 *
5503 * This function process the open operation of network device.  This is caused
5504 * by the user command "ifconfig ethX up."
5505 *
5506 * Return 0 if successful; otherwise an error code indicating failure.
5507 */
5508static int netdev_open(struct net_device *dev)
5509{
5510	struct dev_priv *priv = netdev_priv(dev);
5511	struct dev_info *hw_priv = priv->adapter;
5512	struct ksz_hw *hw = &hw_priv->hw;
5513	struct ksz_port *port = &priv->port;
 
5514	int i;
5515	int p;
5516	int rc = 0;
5517
 
5518	priv->multicast = 0;
5519	priv->promiscuous = 0;
5520
5521	/* Reset device statistics. */
5522	memset(&dev->stats, 0, sizeof(struct net_device_stats));
5523	memset((void *) port->counter, 0,
5524		(sizeof(u64) * OID_COUNTER_LAST));
5525
5526	if (!(hw_priv->opened)) {
5527		rc = prepare_hardware(dev);
5528		if (rc)
5529			return rc;
5530		for (i = 0; i < hw->mib_port_cnt; i++) {
5531			if (next_jiffies < jiffies)
5532				next_jiffies = jiffies + HZ * 2;
5533			else
5534				next_jiffies += HZ * 1;
5535			hw_priv->counter[i].time = next_jiffies;
5536			hw->port_mib[i].state = media_disconnected;
5537			port_init_cnt(hw, i);
5538		}
5539		if (hw->ksz_switch)
5540			hw->port_mib[HOST_PORT].state = media_connected;
5541		else {
5542			hw_add_wol_bcast(hw);
5543			hw_cfg_wol_pme(hw, 0);
5544			hw_clr_wol_pme_status(&hw_priv->hw);
5545		}
5546	}
5547	port_set_power_saving(port, false);
5548
5549	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5550		/*
5551		 * Initialize to invalid value so that link detection
5552		 * is done.
5553		 */
5554		hw->port_info[p].partner = 0xFF;
5555		hw->port_info[p].state = media_disconnected;
5556	}
5557
5558	/* Need to open the port in multiple device interfaces mode. */
5559	if (hw->dev_count > 1) {
5560		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5561		if (port->first_port > 0)
5562			hw_add_addr(hw, dev->dev_addr);
5563	}
5564
5565	port_get_link_speed(port);
5566	if (port->force_link)
5567		port_force_link_speed(port);
5568	else
5569		port_set_link_speed(port);
5570
5571	if (!(hw_priv->opened)) {
5572		hw_setup_intr(hw);
5573		hw_enable(hw);
5574		hw_ena_intr(hw);
5575
5576		if (hw->mib_port_cnt)
5577			ksz_start_timer(&hw_priv->mib_timer_info,
5578				hw_priv->mib_timer_info.period);
5579	}
5580
5581	hw_priv->opened++;
5582
5583	ksz_start_timer(&priv->monitor_timer_info,
5584		priv->monitor_timer_info.period);
5585
5586	priv->media_state = port->linked->state;
5587
5588	set_media_state(dev, media_connected);
5589	netif_start_queue(dev);
5590
5591	return 0;
5592}
5593
5594/* RX errors = rx_errors */
5595/* RX dropped = rx_dropped */
5596/* RX overruns = rx_fifo_errors */
5597/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5598/* TX errors = tx_errors */
5599/* TX dropped = tx_dropped */
5600/* TX overruns = tx_fifo_errors */
5601/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5602/* collisions = collisions */
5603
5604/**
5605 * netdev_query_statistics - query network device statistics
5606 * @dev:	Network device.
5607 *
5608 * This function returns the statistics of the network device.  The device
5609 * needs not be opened.
5610 *
5611 * Return network device statistics.
5612 */
5613static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5614{
5615	struct dev_priv *priv = netdev_priv(dev);
5616	struct ksz_port *port = &priv->port;
5617	struct ksz_hw *hw = &priv->adapter->hw;
5618	struct ksz_port_mib *mib;
5619	int i;
5620	int p;
5621
5622	dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5623	dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5624
5625	/* Reset to zero to add count later. */
5626	dev->stats.multicast = 0;
5627	dev->stats.collisions = 0;
5628	dev->stats.rx_length_errors = 0;
5629	dev->stats.rx_crc_errors = 0;
5630	dev->stats.rx_frame_errors = 0;
5631	dev->stats.tx_window_errors = 0;
5632
5633	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5634		mib = &hw->port_mib[p];
5635
5636		dev->stats.multicast += (unsigned long)
5637			mib->counter[MIB_COUNTER_RX_MULTICAST];
5638
5639		dev->stats.collisions += (unsigned long)
5640			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5641
5642		dev->stats.rx_length_errors += (unsigned long)(
5643			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5644			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5645			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5646			mib->counter[MIB_COUNTER_RX_JABBER]);
5647		dev->stats.rx_crc_errors += (unsigned long)
5648			mib->counter[MIB_COUNTER_RX_CRC_ERR];
5649		dev->stats.rx_frame_errors += (unsigned long)(
5650			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5651			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5652
5653		dev->stats.tx_window_errors += (unsigned long)
5654			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5655	}
5656
5657	return &dev->stats;
5658}
5659
5660/**
5661 * netdev_set_mac_address - set network device MAC address
5662 * @dev:	Network device.
5663 * @addr:	Buffer of MAC address.
5664 *
5665 * This function is used to set the MAC address of the network device.
5666 *
5667 * Return 0 to indicate success.
5668 */
5669static int netdev_set_mac_address(struct net_device *dev, void *addr)
5670{
5671	struct dev_priv *priv = netdev_priv(dev);
5672	struct dev_info *hw_priv = priv->adapter;
5673	struct ksz_hw *hw = &hw_priv->hw;
5674	struct sockaddr *mac = addr;
5675	uint interrupt;
5676
5677	if (priv->port.first_port > 0)
5678		hw_del_addr(hw, dev->dev_addr);
5679	else {
5680		hw->mac_override = 1;
5681		memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5682	}
5683
5684	memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN);
5685
5686	interrupt = hw_block_intr(hw);
5687
5688	if (priv->port.first_port > 0)
5689		hw_add_addr(hw, dev->dev_addr);
5690	else
5691		hw_set_addr(hw);
5692	hw_restore_intr(hw, interrupt);
5693
5694	return 0;
5695}
5696
5697static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5698	struct ksz_hw *hw, int promiscuous)
5699{
5700	if (promiscuous != priv->promiscuous) {
5701		u8 prev_state = hw->promiscuous;
5702
5703		if (promiscuous)
5704			++hw->promiscuous;
5705		else
5706			--hw->promiscuous;
5707		priv->promiscuous = promiscuous;
5708
5709		/* Turn on/off promiscuous mode. */
5710		if (hw->promiscuous <= 1 && prev_state <= 1)
5711			hw_set_promiscuous(hw, hw->promiscuous);
5712
5713		/*
5714		 * Port is not in promiscuous mode, meaning it is released
5715		 * from the bridge.
5716		 */
5717		if ((hw->features & STP_SUPPORT) && !promiscuous &&
5718		    (dev->priv_flags & IFF_BRIDGE_PORT)) {
5719			struct ksz_switch *sw = hw->ksz_switch;
5720			int port = priv->port.first_port;
5721
5722			port_set_stp_state(hw, port, STP_STATE_DISABLED);
5723			port = 1 << port;
5724			if (sw->member & port) {
5725				sw->member &= ~port;
5726				bridge_change(hw);
5727			}
5728		}
5729	}
5730}
5731
5732static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5733	int multicast)
5734{
5735	if (multicast != priv->multicast) {
5736		u8 all_multi = hw->all_multi;
5737
5738		if (multicast)
5739			++hw->all_multi;
5740		else
5741			--hw->all_multi;
5742		priv->multicast = multicast;
5743
5744		/* Turn on/off all multicast mode. */
5745		if (hw->all_multi <= 1 && all_multi <= 1)
5746			hw_set_multicast(hw, hw->all_multi);
5747	}
5748}
5749
5750/**
5751 * netdev_set_rx_mode
5752 * @dev:	Network device.
5753 *
5754 * This routine is used to set multicast addresses or put the network device
5755 * into promiscuous mode.
5756 */
5757static void netdev_set_rx_mode(struct net_device *dev)
5758{
5759	struct dev_priv *priv = netdev_priv(dev);
5760	struct dev_info *hw_priv = priv->adapter;
5761	struct ksz_hw *hw = &hw_priv->hw;
5762	struct netdev_hw_addr *ha;
5763	int multicast = (dev->flags & IFF_ALLMULTI);
5764
5765	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5766
5767	if (hw_priv->hw.dev_count > 1)
5768		multicast |= (dev->flags & IFF_MULTICAST);
5769	dev_set_multicast(priv, hw, multicast);
5770
5771	/* Cannot use different hashes in multiple device interfaces mode. */
5772	if (hw_priv->hw.dev_count > 1)
5773		return;
5774
5775	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5776		int i = 0;
5777
5778		/* List too big to support so turn on all multicast mode. */
5779		if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5780			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5781				hw->multi_list_size = MAX_MULTICAST_LIST;
5782				++hw->all_multi;
5783				hw_set_multicast(hw, hw->all_multi);
5784			}
5785			return;
5786		}
5787
5788		netdev_for_each_mc_addr(ha, dev) {
5789			if (i >= MAX_MULTICAST_LIST)
5790				break;
5791			memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5792		}
5793		hw->multi_list_size = (u8) i;
5794		hw_set_grp_addr(hw);
5795	} else {
5796		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5797			--hw->all_multi;
5798			hw_set_multicast(hw, hw->all_multi);
5799		}
5800		hw->multi_list_size = 0;
5801		hw_clr_multicast(hw);
5802	}
5803}
5804
5805static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5806{
5807	struct dev_priv *priv = netdev_priv(dev);
5808	struct dev_info *hw_priv = priv->adapter;
5809	struct ksz_hw *hw = &hw_priv->hw;
5810	int hw_mtu;
5811
5812	if (netif_running(dev))
5813		return -EBUSY;
5814
5815	/* Cannot use different MTU in multiple device interfaces mode. */
5816	if (hw->dev_count > 1)
5817		if (dev != hw_priv->dev)
5818			return 0;
5819	if (new_mtu < 60)
5820		return -EINVAL;
5821
5822	if (dev->mtu != new_mtu) {
5823		hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5824		if (hw_mtu > MAX_RX_BUF_SIZE)
5825			return -EINVAL;
5826		if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5827			hw->features |= RX_HUGE_FRAME;
5828			hw_mtu = MAX_RX_BUF_SIZE;
5829		} else {
5830			hw->features &= ~RX_HUGE_FRAME;
5831			hw_mtu = REGULAR_RX_BUF_SIZE;
5832		}
5833		hw_mtu = (hw_mtu + 3) & ~3;
5834		hw_priv->mtu = hw_mtu;
5835		dev->mtu = new_mtu;
5836	}
 
 
 
 
5837	return 0;
5838}
5839
5840/**
5841 * netdev_ioctl - I/O control processing
5842 * @dev:	Network device.
5843 * @ifr:	Interface request structure.
5844 * @cmd:	I/O control code.
5845 *
5846 * This function is used to process I/O control calls.
5847 *
5848 * Return 0 to indicate success.
5849 */
5850static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5851{
5852	struct dev_priv *priv = netdev_priv(dev);
5853	struct dev_info *hw_priv = priv->adapter;
5854	struct ksz_hw *hw = &hw_priv->hw;
5855	struct ksz_port *port = &priv->port;
5856	int result = 0;
5857	struct mii_ioctl_data *data = if_mii(ifr);
5858
5859	if (down_interruptible(&priv->proc_sem))
5860		return -ERESTARTSYS;
5861
5862	switch (cmd) {
5863	/* Get address of MII PHY in use. */
5864	case SIOCGMIIPHY:
5865		data->phy_id = priv->id;
5866
5867		/* Fallthrough... */
5868
5869	/* Read MII PHY register. */
5870	case SIOCGMIIREG:
5871		if (data->phy_id != priv->id || data->reg_num >= 6)
5872			result = -EIO;
5873		else
5874			hw_r_phy(hw, port->linked->port_id, data->reg_num,
5875				&data->val_out);
5876		break;
5877
5878	/* Write MII PHY register. */
5879	case SIOCSMIIREG:
5880		if (!capable(CAP_NET_ADMIN))
5881			result = -EPERM;
5882		else if (data->phy_id != priv->id || data->reg_num >= 6)
5883			result = -EIO;
5884		else
5885			hw_w_phy(hw, port->linked->port_id, data->reg_num,
5886				data->val_in);
5887		break;
5888
5889	default:
5890		result = -EOPNOTSUPP;
5891	}
5892
5893	up(&priv->proc_sem);
5894
5895	return result;
5896}
5897
5898/*
5899 * MII support
5900 */
5901
5902/**
5903 * mdio_read - read PHY register
5904 * @dev:	Network device.
5905 * @phy_id:	The PHY id.
5906 * @reg_num:	The register number.
5907 *
5908 * This function returns the PHY register value.
5909 *
5910 * Return the register value.
5911 */
5912static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5913{
5914	struct dev_priv *priv = netdev_priv(dev);
5915	struct ksz_port *port = &priv->port;
5916	struct ksz_hw *hw = port->hw;
5917	u16 val_out;
5918
5919	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5920	return val_out;
5921}
5922
5923/**
5924 * mdio_write - set PHY register
5925 * @dev:	Network device.
5926 * @phy_id:	The PHY id.
5927 * @reg_num:	The register number.
5928 * @val:	The register value.
5929 *
5930 * This procedure sets the PHY register value.
5931 */
5932static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5933{
5934	struct dev_priv *priv = netdev_priv(dev);
5935	struct ksz_port *port = &priv->port;
5936	struct ksz_hw *hw = port->hw;
5937	int i;
5938	int pi;
5939
5940	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5941		hw_w_phy(hw, pi, reg_num << 1, val);
5942}
5943
5944/*
5945 * ethtool support
5946 */
5947
5948#define EEPROM_SIZE			0x40
5949
5950static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5951
5952#define ADVERTISED_ALL			\
5953	(ADVERTISED_10baseT_Half |	\
5954	ADVERTISED_10baseT_Full |	\
5955	ADVERTISED_100baseT_Half |	\
5956	ADVERTISED_100baseT_Full)
5957
5958/* These functions use the MII functions in mii.c. */
5959
5960/**
5961 * netdev_get_settings - get network device settings
5962 * @dev:	Network device.
5963 * @cmd:	Ethtool command.
5964 *
5965 * This function queries the PHY and returns its state in the ethtool command.
5966 *
5967 * Return 0 if successful; otherwise an error code.
5968 */
5969static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 
5970{
5971	struct dev_priv *priv = netdev_priv(dev);
5972	struct dev_info *hw_priv = priv->adapter;
5973
5974	mutex_lock(&hw_priv->lock);
5975	mii_ethtool_gset(&priv->mii_if, cmd);
5976	cmd->advertising |= SUPPORTED_TP;
5977	mutex_unlock(&hw_priv->lock);
5978
5979	/* Save advertised settings for workaround in next function. */
5980	priv->advertising = cmd->advertising;
 
 
5981	return 0;
5982}
5983
5984/**
5985 * netdev_set_settings - set network device settings
5986 * @dev:	Network device.
5987 * @cmd:	Ethtool command.
5988 *
5989 * This function sets the PHY according to the ethtool command.
5990 *
5991 * Return 0 if successful; otherwise an error code.
5992 */
5993static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 
5994{
5995	struct dev_priv *priv = netdev_priv(dev);
5996	struct dev_info *hw_priv = priv->adapter;
5997	struct ksz_port *port = &priv->port;
5998	u32 speed = ethtool_cmd_speed(cmd);
 
 
5999	int rc;
6000
 
 
 
6001	/*
6002	 * ethtool utility does not change advertised setting if auto
6003	 * negotiation is not specified explicitly.
6004	 */
6005	if (cmd->autoneg && priv->advertising == cmd->advertising) {
6006		cmd->advertising |= ADVERTISED_ALL;
6007		if (10 == speed)
6008			cmd->advertising &=
6009				~(ADVERTISED_100baseT_Full |
6010				ADVERTISED_100baseT_Half);
6011		else if (100 == speed)
6012			cmd->advertising &=
6013				~(ADVERTISED_10baseT_Full |
6014				ADVERTISED_10baseT_Half);
6015		if (0 == cmd->duplex)
6016			cmd->advertising &=
6017				~(ADVERTISED_100baseT_Full |
6018				ADVERTISED_10baseT_Full);
6019		else if (1 == cmd->duplex)
6020			cmd->advertising &=
6021				~(ADVERTISED_100baseT_Half |
6022				ADVERTISED_10baseT_Half);
6023	}
6024	mutex_lock(&hw_priv->lock);
6025	if (cmd->autoneg &&
6026			(cmd->advertising & ADVERTISED_ALL) ==
6027			ADVERTISED_ALL) {
6028		port->duplex = 0;
6029		port->speed = 0;
6030		port->force_link = 0;
6031	} else {
6032		port->duplex = cmd->duplex + 1;
6033		if (1000 != speed)
6034			port->speed = speed;
6035		if (cmd->autoneg)
6036			port->force_link = 0;
6037		else
6038			port->force_link = 1;
6039	}
6040	rc = mii_ethtool_sset(&priv->mii_if, cmd);
 
 
 
 
 
 
6041	mutex_unlock(&hw_priv->lock);
6042	return rc;
6043}
6044
6045/**
6046 * netdev_nway_reset - restart auto-negotiation
6047 * @dev:	Network device.
6048 *
6049 * This function restarts the PHY for auto-negotiation.
6050 *
6051 * Return 0 if successful; otherwise an error code.
6052 */
6053static int netdev_nway_reset(struct net_device *dev)
6054{
6055	struct dev_priv *priv = netdev_priv(dev);
6056	struct dev_info *hw_priv = priv->adapter;
6057	int rc;
6058
6059	mutex_lock(&hw_priv->lock);
6060	rc = mii_nway_restart(&priv->mii_if);
6061	mutex_unlock(&hw_priv->lock);
6062	return rc;
6063}
6064
6065/**
6066 * netdev_get_link - get network device link status
6067 * @dev:	Network device.
6068 *
6069 * This function gets the link status from the PHY.
6070 *
6071 * Return true if PHY is linked and false otherwise.
6072 */
6073static u32 netdev_get_link(struct net_device *dev)
6074{
6075	struct dev_priv *priv = netdev_priv(dev);
6076	int rc;
6077
6078	rc = mii_link_ok(&priv->mii_if);
6079	return rc;
6080}
6081
6082/**
6083 * netdev_get_drvinfo - get network driver information
6084 * @dev:	Network device.
6085 * @info:	Ethtool driver info data structure.
6086 *
6087 * This procedure returns the driver information.
6088 */
6089static void netdev_get_drvinfo(struct net_device *dev,
6090	struct ethtool_drvinfo *info)
6091{
6092	struct dev_priv *priv = netdev_priv(dev);
6093	struct dev_info *hw_priv = priv->adapter;
6094
6095	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6096	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6097	strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6098		sizeof(info->bus_info));
6099}
6100
6101/**
6102 * netdev_get_regs_len - get length of register dump
6103 * @dev:	Network device.
6104 *
6105 * This function returns the length of the register dump.
6106 *
6107 * Return length of the register dump.
6108 */
6109static struct hw_regs {
6110	int start;
6111	int end;
6112} hw_regs_range[] = {
6113	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
6114	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
6115	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
6116	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
6117	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
6118	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
6119	{ 0, 0 }
6120};
6121
 
 
 
 
 
 
 
 
6122static int netdev_get_regs_len(struct net_device *dev)
6123{
6124	struct hw_regs *range = hw_regs_range;
6125	int regs_len = 0x10 * sizeof(u32);
6126
6127	while (range->end > range->start) {
6128		regs_len += (range->end - range->start + 3) / 4 * 4;
6129		range++;
6130	}
6131	return regs_len;
6132}
6133
6134/**
6135 * netdev_get_regs - get register dump
6136 * @dev:	Network device.
6137 * @regs:	Ethtool registers data structure.
6138 * @ptr:	Buffer to store the register values.
6139 *
6140 * This procedure dumps the register values in the provided buffer.
6141 */
6142static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6143	void *ptr)
6144{
6145	struct dev_priv *priv = netdev_priv(dev);
6146	struct dev_info *hw_priv = priv->adapter;
6147	struct ksz_hw *hw = &hw_priv->hw;
6148	int *buf = (int *) ptr;
6149	struct hw_regs *range = hw_regs_range;
6150	int len;
6151
6152	mutex_lock(&hw_priv->lock);
6153	regs->version = 0;
6154	for (len = 0; len < 0x40; len += 4) {
6155		pci_read_config_dword(hw_priv->pdev, len, buf);
6156		buf++;
6157	}
6158	while (range->end > range->start) {
6159		for (len = range->start; len < range->end; len += 4) {
6160			*buf = readl(hw->io + len);
6161			buf++;
6162		}
6163		range++;
6164	}
6165	mutex_unlock(&hw_priv->lock);
6166}
6167
6168#define WOL_SUPPORT			\
6169	(WAKE_PHY | WAKE_MAGIC |	\
6170	WAKE_UCAST | WAKE_MCAST |	\
6171	WAKE_BCAST | WAKE_ARP)
6172
6173/**
6174 * netdev_get_wol - get Wake-on-LAN support
6175 * @dev:	Network device.
6176 * @wol:	Ethtool Wake-on-LAN data structure.
6177 *
6178 * This procedure returns Wake-on-LAN support.
6179 */
6180static void netdev_get_wol(struct net_device *dev,
6181	struct ethtool_wolinfo *wol)
6182{
6183	struct dev_priv *priv = netdev_priv(dev);
6184	struct dev_info *hw_priv = priv->adapter;
6185
6186	wol->supported = hw_priv->wol_support;
6187	wol->wolopts = hw_priv->wol_enable;
6188	memset(&wol->sopass, 0, sizeof(wol->sopass));
6189}
6190
6191/**
6192 * netdev_set_wol - set Wake-on-LAN support
6193 * @dev:	Network device.
6194 * @wol:	Ethtool Wake-on-LAN data structure.
6195 *
6196 * This function sets Wake-on-LAN support.
6197 *
6198 * Return 0 if successful; otherwise an error code.
6199 */
6200static int netdev_set_wol(struct net_device *dev,
6201	struct ethtool_wolinfo *wol)
6202{
6203	struct dev_priv *priv = netdev_priv(dev);
6204	struct dev_info *hw_priv = priv->adapter;
6205
6206	/* Need to find a way to retrieve the device IP address. */
6207	static const u8 net_addr[] = { 192, 168, 1, 1 };
6208
6209	if (wol->wolopts & ~hw_priv->wol_support)
6210		return -EINVAL;
6211
6212	hw_priv->wol_enable = wol->wolopts;
6213
6214	/* Link wakeup cannot really be disabled. */
6215	if (wol->wolopts)
6216		hw_priv->wol_enable |= WAKE_PHY;
6217	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6218	return 0;
6219}
6220
6221/**
6222 * netdev_get_msglevel - get debug message level
6223 * @dev:	Network device.
6224 *
6225 * This function returns current debug message level.
6226 *
6227 * Return current debug message flags.
6228 */
6229static u32 netdev_get_msglevel(struct net_device *dev)
6230{
6231	struct dev_priv *priv = netdev_priv(dev);
6232
6233	return priv->msg_enable;
6234}
6235
6236/**
6237 * netdev_set_msglevel - set debug message level
6238 * @dev:	Network device.
6239 * @value:	Debug message flags.
6240 *
6241 * This procedure sets debug message level.
6242 */
6243static void netdev_set_msglevel(struct net_device *dev, u32 value)
6244{
6245	struct dev_priv *priv = netdev_priv(dev);
6246
6247	priv->msg_enable = value;
6248}
6249
6250/**
6251 * netdev_get_eeprom_len - get EEPROM length
6252 * @dev:	Network device.
6253 *
6254 * This function returns the length of the EEPROM.
6255 *
6256 * Return length of the EEPROM.
6257 */
6258static int netdev_get_eeprom_len(struct net_device *dev)
6259{
6260	return EEPROM_SIZE * 2;
6261}
6262
 
 
6263/**
6264 * netdev_get_eeprom - get EEPROM data
6265 * @dev:	Network device.
6266 * @eeprom:	Ethtool EEPROM data structure.
6267 * @data:	Buffer to store the EEPROM data.
6268 *
6269 * This function dumps the EEPROM data in the provided buffer.
6270 *
6271 * Return 0 if successful; otherwise an error code.
6272 */
6273#define EEPROM_MAGIC			0x10A18842
6274
6275static int netdev_get_eeprom(struct net_device *dev,
6276	struct ethtool_eeprom *eeprom, u8 *data)
6277{
6278	struct dev_priv *priv = netdev_priv(dev);
6279	struct dev_info *hw_priv = priv->adapter;
6280	u8 *eeprom_byte = (u8 *) eeprom_data;
6281	int i;
6282	int len;
6283
6284	len = (eeprom->offset + eeprom->len + 1) / 2;
6285	for (i = eeprom->offset / 2; i < len; i++)
6286		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6287	eeprom->magic = EEPROM_MAGIC;
6288	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6289
6290	return 0;
6291}
6292
6293/**
6294 * netdev_set_eeprom - write EEPROM data
6295 * @dev:	Network device.
6296 * @eeprom:	Ethtool EEPROM data structure.
6297 * @data:	Data buffer.
6298 *
6299 * This function modifies the EEPROM data one byte at a time.
6300 *
6301 * Return 0 if successful; otherwise an error code.
6302 */
6303static int netdev_set_eeprom(struct net_device *dev,
6304	struct ethtool_eeprom *eeprom, u8 *data)
6305{
6306	struct dev_priv *priv = netdev_priv(dev);
6307	struct dev_info *hw_priv = priv->adapter;
6308	u16 eeprom_word[EEPROM_SIZE];
6309	u8 *eeprom_byte = (u8 *) eeprom_word;
6310	int i;
6311	int len;
6312
6313	if (eeprom->magic != EEPROM_MAGIC)
6314		return -EINVAL;
6315
6316	len = (eeprom->offset + eeprom->len + 1) / 2;
6317	for (i = eeprom->offset / 2; i < len; i++)
6318		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6319	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6320	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6321	for (i = 0; i < EEPROM_SIZE; i++)
6322		if (eeprom_word[i] != eeprom_data[i]) {
6323			eeprom_data[i] = eeprom_word[i];
6324			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6325	}
6326
6327	return 0;
6328}
6329
6330/**
6331 * netdev_get_pauseparam - get flow control parameters
6332 * @dev:	Network device.
6333 * @pause:	Ethtool PAUSE settings data structure.
6334 *
6335 * This procedure returns the PAUSE control flow settings.
6336 */
6337static void netdev_get_pauseparam(struct net_device *dev,
6338	struct ethtool_pauseparam *pause)
6339{
6340	struct dev_priv *priv = netdev_priv(dev);
6341	struct dev_info *hw_priv = priv->adapter;
6342	struct ksz_hw *hw = &hw_priv->hw;
6343
6344	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6345	if (!hw->ksz_switch) {
6346		pause->rx_pause =
6347			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6348		pause->tx_pause =
6349			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6350	} else {
6351		pause->rx_pause =
6352			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6353				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6354		pause->tx_pause =
6355			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6356				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6357	}
6358}
6359
6360/**
6361 * netdev_set_pauseparam - set flow control parameters
6362 * @dev:	Network device.
6363 * @pause:	Ethtool PAUSE settings data structure.
6364 *
6365 * This function sets the PAUSE control flow settings.
6366 * Not implemented yet.
6367 *
6368 * Return 0 if successful; otherwise an error code.
6369 */
6370static int netdev_set_pauseparam(struct net_device *dev,
6371	struct ethtool_pauseparam *pause)
6372{
6373	struct dev_priv *priv = netdev_priv(dev);
6374	struct dev_info *hw_priv = priv->adapter;
6375	struct ksz_hw *hw = &hw_priv->hw;
6376	struct ksz_port *port = &priv->port;
6377
6378	mutex_lock(&hw_priv->lock);
6379	if (pause->autoneg) {
6380		if (!pause->rx_pause && !pause->tx_pause)
6381			port->flow_ctrl = PHY_NO_FLOW_CTRL;
6382		else
6383			port->flow_ctrl = PHY_FLOW_CTRL;
6384		hw->overrides &= ~PAUSE_FLOW_CTRL;
6385		port->force_link = 0;
6386		if (hw->ksz_switch) {
6387			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6388				SWITCH_RX_FLOW_CTRL, 1);
6389			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6390				SWITCH_TX_FLOW_CTRL, 1);
6391		}
6392		port_set_link_speed(port);
6393	} else {
6394		hw->overrides |= PAUSE_FLOW_CTRL;
6395		if (hw->ksz_switch) {
6396			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6397				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6398			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6399				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6400		} else
6401			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6402	}
6403	mutex_unlock(&hw_priv->lock);
6404
6405	return 0;
6406}
6407
6408/**
6409 * netdev_get_ringparam - get tx/rx ring parameters
6410 * @dev:	Network device.
6411 * @pause:	Ethtool RING settings data structure.
 
 
6412 *
6413 * This procedure returns the TX/RX ring settings.
6414 */
6415static void netdev_get_ringparam(struct net_device *dev,
6416	struct ethtool_ringparam *ring)
 
 
6417{
6418	struct dev_priv *priv = netdev_priv(dev);
6419	struct dev_info *hw_priv = priv->adapter;
6420	struct ksz_hw *hw = &hw_priv->hw;
6421
6422	ring->tx_max_pending = (1 << 9);
6423	ring->tx_pending = hw->tx_desc_info.alloc;
6424	ring->rx_max_pending = (1 << 9);
6425	ring->rx_pending = hw->rx_desc_info.alloc;
6426}
6427
6428#define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)
6429
6430static struct {
6431	char string[ETH_GSTRING_LEN];
6432} ethtool_stats_keys[STATS_LEN] = {
6433	{ "rx_lo_priority_octets" },
6434	{ "rx_hi_priority_octets" },
6435	{ "rx_undersize_packets" },
6436	{ "rx_fragments" },
6437	{ "rx_oversize_packets" },
6438	{ "rx_jabbers" },
6439	{ "rx_symbol_errors" },
6440	{ "rx_crc_errors" },
6441	{ "rx_align_errors" },
6442	{ "rx_mac_ctrl_packets" },
6443	{ "rx_pause_packets" },
6444	{ "rx_bcast_packets" },
6445	{ "rx_mcast_packets" },
6446	{ "rx_ucast_packets" },
6447	{ "rx_64_or_less_octet_packets" },
6448	{ "rx_65_to_127_octet_packets" },
6449	{ "rx_128_to_255_octet_packets" },
6450	{ "rx_256_to_511_octet_packets" },
6451	{ "rx_512_to_1023_octet_packets" },
6452	{ "rx_1024_to_1522_octet_packets" },
6453
6454	{ "tx_lo_priority_octets" },
6455	{ "tx_hi_priority_octets" },
6456	{ "tx_late_collisions" },
6457	{ "tx_pause_packets" },
6458	{ "tx_bcast_packets" },
6459	{ "tx_mcast_packets" },
6460	{ "tx_ucast_packets" },
6461	{ "tx_deferred" },
6462	{ "tx_total_collisions" },
6463	{ "tx_excessive_collisions" },
6464	{ "tx_single_collisions" },
6465	{ "tx_mult_collisions" },
6466
6467	{ "rx_discards" },
6468	{ "tx_discards" },
6469};
6470
6471/**
6472 * netdev_get_strings - get statistics identity strings
6473 * @dev:	Network device.
6474 * @stringset:	String set identifier.
6475 * @buf:	Buffer to store the strings.
6476 *
6477 * This procedure returns the strings used to identify the statistics.
6478 */
6479static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6480{
6481	struct dev_priv *priv = netdev_priv(dev);
6482	struct dev_info *hw_priv = priv->adapter;
6483	struct ksz_hw *hw = &hw_priv->hw;
6484
6485	if (ETH_SS_STATS == stringset)
6486		memcpy(buf, &ethtool_stats_keys,
6487			ETH_GSTRING_LEN * hw->mib_cnt);
6488}
6489
6490/**
6491 * netdev_get_sset_count - get statistics size
6492 * @dev:	Network device.
6493 * @sset:	The statistics set number.
6494 *
6495 * This function returns the size of the statistics to be reported.
6496 *
6497 * Return size of the statistics to be reported.
6498 */
6499static int netdev_get_sset_count(struct net_device *dev, int sset)
6500{
6501	struct dev_priv *priv = netdev_priv(dev);
6502	struct dev_info *hw_priv = priv->adapter;
6503	struct ksz_hw *hw = &hw_priv->hw;
6504
6505	switch (sset) {
6506	case ETH_SS_STATS:
6507		return hw->mib_cnt;
6508	default:
6509		return -EOPNOTSUPP;
6510	}
6511}
6512
6513/**
6514 * netdev_get_ethtool_stats - get network device statistics
6515 * @dev:	Network device.
6516 * @stats:	Ethtool statistics data structure.
6517 * @data:	Buffer to store the statistics.
6518 *
6519 * This procedure returns the statistics.
6520 */
6521static void netdev_get_ethtool_stats(struct net_device *dev,
6522	struct ethtool_stats *stats, u64 *data)
6523{
6524	struct dev_priv *priv = netdev_priv(dev);
6525	struct dev_info *hw_priv = priv->adapter;
6526	struct ksz_hw *hw = &hw_priv->hw;
6527	struct ksz_port *port = &priv->port;
6528	int n_stats = stats->n_stats;
6529	int i;
6530	int n;
6531	int p;
6532	int rc;
6533	u64 counter[TOTAL_PORT_COUNTER_NUM];
6534
6535	mutex_lock(&hw_priv->lock);
6536	n = SWITCH_PORT_NUM;
6537	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6538		if (media_connected == hw->port_mib[p].state) {
6539			hw_priv->counter[p].read = 1;
6540
6541			/* Remember first port that requests read. */
6542			if (n == SWITCH_PORT_NUM)
6543				n = p;
6544		}
6545	}
6546	mutex_unlock(&hw_priv->lock);
6547
6548	if (n < SWITCH_PORT_NUM)
6549		schedule_work(&hw_priv->mib_read);
6550
6551	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6552		p = n;
6553		rc = wait_event_interruptible_timeout(
6554			hw_priv->counter[p].counter,
6555			2 == hw_priv->counter[p].read,
6556			HZ * 1);
6557	} else
6558		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6559			if (0 == i) {
6560				rc = wait_event_interruptible_timeout(
6561					hw_priv->counter[p].counter,
6562					2 == hw_priv->counter[p].read,
6563					HZ * 2);
6564			} else if (hw->port_mib[p].cnt_ptr) {
6565				rc = wait_event_interruptible_timeout(
6566					hw_priv->counter[p].counter,
6567					2 == hw_priv->counter[p].read,
6568					HZ * 1);
6569			}
6570		}
6571
6572	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6573	n = hw->mib_cnt;
6574	if (n > n_stats)
6575		n = n_stats;
6576	n_stats -= n;
6577	for (i = 0; i < n; i++)
6578		*data++ = counter[i];
6579}
6580
6581/**
6582 * netdev_set_features - set receive checksum support
6583 * @dev:	Network device.
6584 * @features:	New device features (offloads).
6585 *
6586 * This function sets receive checksum support setting.
6587 *
6588 * Return 0 if successful; otherwise an error code.
6589 */
6590static int netdev_set_features(struct net_device *dev,
6591	netdev_features_t features)
6592{
6593	struct dev_priv *priv = netdev_priv(dev);
6594	struct dev_info *hw_priv = priv->adapter;
6595	struct ksz_hw *hw = &hw_priv->hw;
6596
6597	mutex_lock(&hw_priv->lock);
6598
6599	/* see note in hw_setup() */
6600	if (features & NETIF_F_RXCSUM)
6601		hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6602	else
6603		hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6604
6605	if (hw->enabled)
6606		writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6607
6608	mutex_unlock(&hw_priv->lock);
6609
6610	return 0;
6611}
6612
6613static const struct ethtool_ops netdev_ethtool_ops = {
6614	.get_settings		= netdev_get_settings,
6615	.set_settings		= netdev_set_settings,
6616	.nway_reset		= netdev_nway_reset,
6617	.get_link		= netdev_get_link,
6618	.get_drvinfo		= netdev_get_drvinfo,
6619	.get_regs_len		= netdev_get_regs_len,
6620	.get_regs		= netdev_get_regs,
6621	.get_wol		= netdev_get_wol,
6622	.set_wol		= netdev_set_wol,
6623	.get_msglevel		= netdev_get_msglevel,
6624	.set_msglevel		= netdev_set_msglevel,
6625	.get_eeprom_len		= netdev_get_eeprom_len,
6626	.get_eeprom		= netdev_get_eeprom,
6627	.set_eeprom		= netdev_set_eeprom,
6628	.get_pauseparam		= netdev_get_pauseparam,
6629	.set_pauseparam		= netdev_set_pauseparam,
6630	.get_ringparam		= netdev_get_ringparam,
6631	.get_strings		= netdev_get_strings,
6632	.get_sset_count		= netdev_get_sset_count,
6633	.get_ethtool_stats	= netdev_get_ethtool_stats,
 
 
6634};
6635
6636/*
6637 * Hardware monitoring
6638 */
6639
6640static void update_link(struct net_device *dev, struct dev_priv *priv,
6641	struct ksz_port *port)
6642{
6643	if (priv->media_state != port->linked->state) {
6644		priv->media_state = port->linked->state;
6645		if (netif_running(dev))
6646			set_media_state(dev, media_connected);
6647	}
6648}
6649
6650static void mib_read_work(struct work_struct *work)
6651{
6652	struct dev_info *hw_priv =
6653		container_of(work, struct dev_info, mib_read);
6654	struct ksz_hw *hw = &hw_priv->hw;
 
6655	struct ksz_port_mib *mib;
6656	int i;
6657
6658	next_jiffies = jiffies;
6659	for (i = 0; i < hw->mib_port_cnt; i++) {
6660		mib = &hw->port_mib[i];
6661
6662		/* Reading MIB counters or requested to read. */
6663		if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6664
6665			/* Need to process receive interrupt. */
6666			if (port_r_cnt(hw, i))
6667				break;
6668			hw_priv->counter[i].read = 0;
6669
6670			/* Finish reading counters. */
6671			if (0 == mib->cnt_ptr) {
6672				hw_priv->counter[i].read = 2;
6673				wake_up_interruptible(
6674					&hw_priv->counter[i].counter);
6675			}
6676		} else if (jiffies >= hw_priv->counter[i].time) {
6677			/* Only read MIB counters when the port is connected. */
6678			if (media_connected == mib->state)
6679				hw_priv->counter[i].read = 1;
6680			next_jiffies += HZ * 1 * hw->mib_port_cnt;
6681			hw_priv->counter[i].time = next_jiffies;
6682
6683		/* Port is just disconnected. */
6684		} else if (mib->link_down) {
6685			mib->link_down = 0;
6686
6687			/* Read counters one last time after link is lost. */
6688			hw_priv->counter[i].read = 1;
6689		}
6690	}
6691}
6692
6693static void mib_monitor(unsigned long ptr)
6694{
6695	struct dev_info *hw_priv = (struct dev_info *) ptr;
6696
6697	mib_read_work(&hw_priv->mib_read);
6698
6699	/* This is used to verify Wake-on-LAN is working. */
6700	if (hw_priv->pme_wait) {
6701		if (hw_priv->pme_wait <= jiffies) {
6702			hw_clr_wol_pme_status(&hw_priv->hw);
6703			hw_priv->pme_wait = 0;
6704		}
6705	} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6706
6707		/* PME is asserted.  Wait 2 seconds to clear it. */
6708		hw_priv->pme_wait = jiffies + HZ * 2;
6709	}
6710
6711	ksz_update_timer(&hw_priv->mib_timer_info);
6712}
6713
6714/**
6715 * dev_monitor - periodic monitoring
6716 * @ptr:	Network device pointer.
6717 *
6718 * This routine is run in a kernel timer to monitor the network device.
6719 */
6720static void dev_monitor(unsigned long ptr)
6721{
6722	struct net_device *dev = (struct net_device *) ptr;
6723	struct dev_priv *priv = netdev_priv(dev);
6724	struct dev_info *hw_priv = priv->adapter;
6725	struct ksz_hw *hw = &hw_priv->hw;
6726	struct ksz_port *port = &priv->port;
6727
6728	if (!(hw->features & LINK_INT_WORKING))
6729		port_get_link_speed(port);
6730	update_link(dev, priv, port);
6731
6732	ksz_update_timer(&priv->monitor_timer_info);
6733}
6734
6735/*
6736 * Linux network device interface functions
6737 */
6738
6739/* Driver exported variables */
6740
6741static int msg_enable;
6742
6743static char *macaddr = ":";
6744static char *mac1addr = ":";
6745
6746/*
6747 * This enables multiple network device mode for KSZ8842, which contains a
6748 * switch with two physical ports.  Some users like to take control of the
6749 * ports for running Spanning Tree Protocol.  The driver will create an
6750 * additional eth? device for the other port.
6751 *
6752 * Some limitations are the network devices cannot have different MTU and
6753 * multicast hash tables.
6754 */
6755static int multi_dev;
6756
6757/*
6758 * As most users select multiple network device mode to use Spanning Tree
6759 * Protocol, this enables a feature in which most unicast and multicast packets
6760 * are forwarded inside the switch and not passed to the host.  Only packets
6761 * that need the host's attention are passed to it.  This prevents the host
6762 * wasting CPU time to examine each and every incoming packets and do the
6763 * forwarding itself.
6764 *
6765 * As the hack requires the private bridge header, the driver cannot compile
6766 * with just the kernel headers.
6767 *
6768 * Enabling STP support also turns on multiple network device mode.
6769 */
6770static int stp;
6771
6772/*
6773 * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6774 * needs that.  However, fast aging is used to flush the dynamic MAC table when
6775 * STP support is enabled.
6776 */
6777static int fast_aging;
6778
6779/**
6780 * netdev_init - initialize network device.
6781 * @dev:	Network device.
6782 *
6783 * This function initializes the network device.
6784 *
6785 * Return 0 if successful; otherwise an error code indicating failure.
6786 */
6787static int __init netdev_init(struct net_device *dev)
6788{
6789	struct dev_priv *priv = netdev_priv(dev);
6790
6791	/* 500 ms timeout */
6792	ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6793		dev_monitor, dev);
6794
6795	/* 500 ms timeout */
6796	dev->watchdog_timeo = HZ / 2;
6797
6798	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6799
6800	/*
6801	 * Hardware does not really support IPv6 checksum generation, but
6802	 * driver actually runs faster with this on.
6803	 */
6804	dev->hw_features |= NETIF_F_IPV6_CSUM;
6805
6806	dev->features |= dev->hw_features;
6807
6808	sema_init(&priv->proc_sem, 1);
6809
6810	priv->mii_if.phy_id_mask = 0x1;
6811	priv->mii_if.reg_num_mask = 0x7;
6812	priv->mii_if.dev = dev;
6813	priv->mii_if.mdio_read = mdio_read;
6814	priv->mii_if.mdio_write = mdio_write;
6815	priv->mii_if.phy_id = priv->port.first_port + 1;
6816
6817	priv->msg_enable = netif_msg_init(msg_enable,
6818		(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6819
6820	return 0;
6821}
6822
6823static const struct net_device_ops netdev_ops = {
6824	.ndo_init		= netdev_init,
6825	.ndo_open		= netdev_open,
6826	.ndo_stop		= netdev_close,
6827	.ndo_get_stats		= netdev_query_statistics,
6828	.ndo_start_xmit		= netdev_tx,
6829	.ndo_tx_timeout		= netdev_tx_timeout,
6830	.ndo_change_mtu		= netdev_change_mtu,
6831	.ndo_set_features	= netdev_set_features,
6832	.ndo_set_mac_address	= netdev_set_mac_address,
6833	.ndo_validate_addr	= eth_validate_addr,
6834	.ndo_do_ioctl		= netdev_ioctl,
6835	.ndo_set_rx_mode	= netdev_set_rx_mode,
6836#ifdef CONFIG_NET_POLL_CONTROLLER
6837	.ndo_poll_controller	= netdev_netpoll,
6838#endif
6839};
6840
6841static void netdev_free(struct net_device *dev)
6842{
6843	if (dev->watchdog_timeo)
6844		unregister_netdev(dev);
6845
6846	free_netdev(dev);
6847}
6848
6849struct platform_info {
6850	struct dev_info dev_info;
6851	struct net_device *netdev[SWITCH_PORT_NUM];
6852};
6853
6854static int net_device_present;
6855
6856static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6857{
6858	int i;
6859	int j;
6860	int got_num;
6861	int num;
6862
6863	i = j = num = got_num = 0;
6864	while (j < ETH_ALEN) {
6865		if (macaddr[i]) {
6866			int digit;
6867
6868			got_num = 1;
6869			digit = hex_to_bin(macaddr[i]);
6870			if (digit >= 0)
6871				num = num * 16 + digit;
6872			else if (':' == macaddr[i])
6873				got_num = 2;
6874			else
6875				break;
6876		} else if (got_num)
6877			got_num = 2;
6878		else
6879			break;
6880		if (2 == got_num) {
6881			if (MAIN_PORT == port) {
6882				hw_priv->hw.override_addr[j++] = (u8) num;
6883				hw_priv->hw.override_addr[5] +=
6884					hw_priv->hw.id;
6885			} else {
6886				hw_priv->hw.ksz_switch->other_addr[j++] =
6887					(u8) num;
6888				hw_priv->hw.ksz_switch->other_addr[5] +=
6889					hw_priv->hw.id;
6890			}
6891			num = got_num = 0;
6892		}
6893		i++;
6894	}
6895	if (ETH_ALEN == j) {
6896		if (MAIN_PORT == port)
6897			hw_priv->hw.mac_override = 1;
6898	}
6899}
6900
6901#define KS884X_DMA_MASK			(~0x0UL)
6902
6903static void read_other_addr(struct ksz_hw *hw)
6904{
6905	int i;
6906	u16 data[3];
6907	struct ksz_switch *sw = hw->ksz_switch;
6908
6909	for (i = 0; i < 3; i++)
6910		data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6911	if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6912		sw->other_addr[5] = (u8) data[0];
6913		sw->other_addr[4] = (u8)(data[0] >> 8);
6914		sw->other_addr[3] = (u8) data[1];
6915		sw->other_addr[2] = (u8)(data[1] >> 8);
6916		sw->other_addr[1] = (u8) data[2];
6917		sw->other_addr[0] = (u8)(data[2] >> 8);
6918	}
6919}
6920
6921#ifndef PCI_VENDOR_ID_MICREL_KS
6922#define PCI_VENDOR_ID_MICREL_KS		0x16c6
6923#endif
6924
6925static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6926{
6927	struct net_device *dev;
6928	struct dev_priv *priv;
6929	struct dev_info *hw_priv;
6930	struct ksz_hw *hw;
6931	struct platform_info *info;
6932	struct ksz_port *port;
6933	unsigned long reg_base;
6934	unsigned long reg_len;
6935	int cnt;
6936	int i;
6937	int mib_port_count;
6938	int pi;
6939	int port_count;
6940	int result;
6941	char banner[sizeof(version)];
6942	struct ksz_switch *sw = NULL;
6943
6944	result = pci_enable_device(pdev);
6945	if (result)
6946		return result;
6947
6948	result = -ENODEV;
6949
6950	if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6951			pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6952		return result;
6953
6954	reg_base = pci_resource_start(pdev, 0);
6955	reg_len = pci_resource_len(pdev, 0);
6956	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6957		return result;
6958
6959	if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6960		return result;
6961	pci_set_master(pdev);
6962
6963	result = -ENOMEM;
6964
6965	info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6966	if (!info)
6967		goto pcidev_init_dev_err;
6968
6969	hw_priv = &info->dev_info;
6970	hw_priv->pdev = pdev;
6971
6972	hw = &hw_priv->hw;
6973
6974	hw->io = ioremap(reg_base, reg_len);
6975	if (!hw->io)
6976		goto pcidev_init_io_err;
6977
6978	cnt = hw_init(hw);
6979	if (!cnt) {
6980		if (msg_enable & NETIF_MSG_PROBE)
6981			pr_alert("chip not detected\n");
6982		result = -ENODEV;
6983		goto pcidev_init_alloc_err;
6984	}
6985
6986	snprintf(banner, sizeof(banner), "%s", version);
6987	banner[13] = cnt + '0';		/* Replace x in "Micrel KSZ884x" */
6988	dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6989	dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6990
6991	/* Assume device is KSZ8841. */
6992	hw->dev_count = 1;
6993	port_count = 1;
6994	mib_port_count = 1;
6995	hw->addr_list_size = 0;
6996	hw->mib_cnt = PORT_COUNTER_NUM;
6997	hw->mib_port_cnt = 1;
6998
6999	/* KSZ8842 has a switch with multiple ports. */
7000	if (2 == cnt) {
7001		if (fast_aging)
7002			hw->overrides |= FAST_AGING;
7003
7004		hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
7005
7006		/* Multiple network device interfaces are required. */
7007		if (multi_dev) {
7008			hw->dev_count = SWITCH_PORT_NUM;
7009			hw->addr_list_size = SWITCH_PORT_NUM - 1;
7010		}
7011
7012		/* Single network device has multiple ports. */
7013		if (1 == hw->dev_count) {
7014			port_count = SWITCH_PORT_NUM;
7015			mib_port_count = SWITCH_PORT_NUM;
7016		}
7017		hw->mib_port_cnt = TOTAL_PORT_NUM;
7018		hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7019		if (!hw->ksz_switch)
7020			goto pcidev_init_alloc_err;
7021
7022		sw = hw->ksz_switch;
7023	}
7024	for (i = 0; i < hw->mib_port_cnt; i++)
7025		hw->port_mib[i].mib_start = 0;
7026
7027	hw->parent = hw_priv;
7028
7029	/* Default MTU is 1500. */
7030	hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7031
7032	if (ksz_alloc_mem(hw_priv))
7033		goto pcidev_init_mem_err;
7034
7035	hw_priv->hw.id = net_device_present;
7036
7037	spin_lock_init(&hw_priv->hwlock);
7038	mutex_init(&hw_priv->lock);
7039
7040	for (i = 0; i < TOTAL_PORT_NUM; i++)
7041		init_waitqueue_head(&hw_priv->counter[i].counter);
7042
7043	if (macaddr[0] != ':')
7044		get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7045
7046	/* Read MAC address and initialize override address if not overrided. */
7047	hw_read_addr(hw);
7048
7049	/* Multiple device interfaces mode requires a second MAC address. */
7050	if (hw->dev_count > 1) {
7051		memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
7052		read_other_addr(hw);
7053		if (mac1addr[0] != ':')
7054			get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7055	}
7056
7057	hw_setup(hw);
7058	if (hw->ksz_switch)
7059		sw_setup(hw);
7060	else {
7061		hw_priv->wol_support = WOL_SUPPORT;
7062		hw_priv->wol_enable = 0;
7063	}
7064
7065	INIT_WORK(&hw_priv->mib_read, mib_read_work);
7066
7067	/* 500 ms timeout */
7068	ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7069		mib_monitor, hw_priv);
7070
7071	for (i = 0; i < hw->dev_count; i++) {
7072		dev = alloc_etherdev(sizeof(struct dev_priv));
7073		if (!dev)
7074			goto pcidev_init_reg_err;
 
7075		info->netdev[i] = dev;
7076
7077		priv = netdev_priv(dev);
7078		priv->adapter = hw_priv;
7079		priv->id = net_device_present++;
7080
7081		port = &priv->port;
7082		port->port_cnt = port_count;
7083		port->mib_port_cnt = mib_port_count;
7084		port->first_port = i;
7085		port->flow_ctrl = PHY_FLOW_CTRL;
7086
7087		port->hw = hw;
7088		port->linked = &hw->port_info[port->first_port];
7089
7090		for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7091			hw->port_info[pi].port_id = pi;
7092			hw->port_info[pi].pdev = dev;
7093			hw->port_info[pi].state = media_disconnected;
7094		}
7095
7096		dev->mem_start = (unsigned long) hw->io;
7097		dev->mem_end = dev->mem_start + reg_len - 1;
7098		dev->irq = pdev->irq;
7099		if (MAIN_PORT == i)
7100			memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7101			       ETH_ALEN);
7102		else {
7103			memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN);
 
 
7104			if (ether_addr_equal(sw->other_addr, hw->override_addr))
7105				dev->dev_addr[5] += port->first_port;
 
7106		}
7107
7108		dev->netdev_ops = &netdev_ops;
7109		SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
 
 
 
 
 
 
7110		if (register_netdev(dev))
7111			goto pcidev_init_reg_err;
7112		port_set_power_saving(port, true);
7113	}
7114
7115	pci_dev_get(hw_priv->pdev);
7116	pci_set_drvdata(pdev, info);
7117	return 0;
7118
7119pcidev_init_reg_err:
7120	for (i = 0; i < hw->dev_count; i++) {
7121		if (info->netdev[i]) {
7122			netdev_free(info->netdev[i]);
7123			info->netdev[i] = NULL;
7124		}
7125	}
7126
7127pcidev_init_mem_err:
7128	ksz_free_mem(hw_priv);
7129	kfree(hw->ksz_switch);
7130
7131pcidev_init_alloc_err:
7132	iounmap(hw->io);
7133
7134pcidev_init_io_err:
7135	kfree(info);
7136
7137pcidev_init_dev_err:
7138	release_mem_region(reg_base, reg_len);
7139
7140	return result;
7141}
7142
7143static void pcidev_exit(struct pci_dev *pdev)
7144{
7145	int i;
7146	struct platform_info *info = pci_get_drvdata(pdev);
7147	struct dev_info *hw_priv = &info->dev_info;
7148
7149	release_mem_region(pci_resource_start(pdev, 0),
7150		pci_resource_len(pdev, 0));
7151	for (i = 0; i < hw_priv->hw.dev_count; i++) {
7152		if (info->netdev[i])
7153			netdev_free(info->netdev[i]);
7154	}
7155	if (hw_priv->hw.io)
7156		iounmap(hw_priv->hw.io);
7157	ksz_free_mem(hw_priv);
7158	kfree(hw_priv->hw.ksz_switch);
7159	pci_dev_put(hw_priv->pdev);
7160	kfree(info);
7161}
7162
7163#ifdef CONFIG_PM
7164static int pcidev_resume(struct pci_dev *pdev)
7165{
7166	int i;
7167	struct platform_info *info = pci_get_drvdata(pdev);
7168	struct dev_info *hw_priv = &info->dev_info;
7169	struct ksz_hw *hw = &hw_priv->hw;
7170
7171	pci_set_power_state(pdev, PCI_D0);
7172	pci_restore_state(pdev);
7173	pci_enable_wake(pdev, PCI_D0, 0);
7174
7175	if (hw_priv->wol_enable)
7176		hw_cfg_wol_pme(hw, 0);
7177	for (i = 0; i < hw->dev_count; i++) {
7178		if (info->netdev[i]) {
7179			struct net_device *dev = info->netdev[i];
7180
7181			if (netif_running(dev)) {
7182				netdev_open(dev);
7183				netif_device_attach(dev);
7184			}
7185		}
7186	}
7187	return 0;
7188}
7189
7190static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7191{
7192	int i;
7193	struct platform_info *info = pci_get_drvdata(pdev);
7194	struct dev_info *hw_priv = &info->dev_info;
7195	struct ksz_hw *hw = &hw_priv->hw;
7196
7197	/* Need to find a way to retrieve the device IP address. */
7198	static const u8 net_addr[] = { 192, 168, 1, 1 };
7199
7200	for (i = 0; i < hw->dev_count; i++) {
7201		if (info->netdev[i]) {
7202			struct net_device *dev = info->netdev[i];
7203
7204			if (netif_running(dev)) {
7205				netif_device_detach(dev);
7206				netdev_close(dev);
7207			}
7208		}
7209	}
7210	if (hw_priv->wol_enable) {
7211		hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7212		hw_cfg_wol_pme(hw, 1);
7213	}
7214
7215	pci_save_state(pdev);
7216	pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7217	pci_set_power_state(pdev, pci_choose_state(pdev, state));
7218	return 0;
7219}
7220#endif
7221
7222static char pcidev_name[] = "ksz884xp";
7223
7224static DEFINE_PCI_DEVICE_TABLE(pcidev_table) = {
7225	{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
7226		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7227	{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
7228		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7229	{ 0 }
7230};
7231
7232MODULE_DEVICE_TABLE(pci, pcidev_table);
7233
 
 
7234static struct pci_driver pci_device_driver = {
7235#ifdef CONFIG_PM
7236	.suspend	= pcidev_suspend,
7237	.resume		= pcidev_resume,
7238#endif
7239	.name		= pcidev_name,
7240	.id_table	= pcidev_table,
7241	.probe		= pcidev_init,
7242	.remove		= pcidev_exit
7243};
7244
7245module_pci_driver(pci_device_driver);
7246
7247MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7248MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7249MODULE_LICENSE("GPL");
7250
7251module_param_named(message, msg_enable, int, 0);
7252MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7253
7254module_param(macaddr, charp, 0);
7255module_param(mac1addr, charp, 0);
7256module_param(fast_aging, int, 0);
7257module_param(multi_dev, int, 0);
7258module_param(stp, int, 0);
7259MODULE_PARM_DESC(macaddr, "MAC address");
7260MODULE_PARM_DESC(mac1addr, "Second MAC address");
7261MODULE_PARM_DESC(fast_aging, "Fast aging");
7262MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7263MODULE_PARM_DESC(stp, "STP support");