Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 Red Hat, Inc.
   4 *
   5 * Author: Mikulas Patocka <mpatocka@redhat.com>
   6 *
   7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
   8 *
   9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
  10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
  11 * hash device. Setting this greatly improves performance when data and hash
  12 * are on the same disk on different partitions on devices with poor random
  13 * access behavior.
  14 */
  15
  16#include "dm-verity.h"
  17#include "dm-verity-fec.h"
  18#include "dm-verity-verify-sig.h"
  19#include "dm-audit.h"
  20#include <linux/module.h>
  21#include <linux/reboot.h>
  22#include <linux/scatterlist.h>
  23#include <linux/string.h>
  24#include <linux/jump_label.h>
  25
  26#define DM_MSG_PREFIX			"verity"
  27
  28#define DM_VERITY_ENV_LENGTH		42
  29#define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
  30
  31#define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
  32
  33#define DM_VERITY_MAX_CORRUPTED_ERRS	100
  34
  35#define DM_VERITY_OPT_LOGGING		"ignore_corruption"
  36#define DM_VERITY_OPT_RESTART		"restart_on_corruption"
  37#define DM_VERITY_OPT_PANIC		"panic_on_corruption"
  38#define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
  39#define DM_VERITY_OPT_AT_MOST_ONCE	"check_at_most_once"
  40#define DM_VERITY_OPT_TASKLET_VERIFY	"try_verify_in_tasklet"
  41
  42#define DM_VERITY_OPTS_MAX		(4 + DM_VERITY_OPTS_FEC + \
  43					 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
  44
  45static unsigned int dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
  46
  47module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, 0644);
  48
  49static DEFINE_STATIC_KEY_FALSE(use_tasklet_enabled);
  50
  51struct dm_verity_prefetch_work {
  52	struct work_struct work;
  53	struct dm_verity *v;
  54	sector_t block;
  55	unsigned int n_blocks;
  56};
  57
  58/*
  59 * Auxiliary structure appended to each dm-bufio buffer. If the value
  60 * hash_verified is nonzero, hash of the block has been verified.
  61 *
  62 * The variable hash_verified is set to 0 when allocating the buffer, then
  63 * it can be changed to 1 and it is never reset to 0 again.
  64 *
  65 * There is no lock around this value, a race condition can at worst cause
  66 * that multiple processes verify the hash of the same buffer simultaneously
  67 * and write 1 to hash_verified simultaneously.
  68 * This condition is harmless, so we don't need locking.
  69 */
  70struct buffer_aux {
  71	int hash_verified;
  72};
  73
  74/*
  75 * Initialize struct buffer_aux for a freshly created buffer.
  76 */
  77static void dm_bufio_alloc_callback(struct dm_buffer *buf)
  78{
  79	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
  80
  81	aux->hash_verified = 0;
  82}
  83
  84/*
  85 * Translate input sector number to the sector number on the target device.
  86 */
  87static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
  88{
  89	return v->data_start + dm_target_offset(v->ti, bi_sector);
  90}
  91
  92/*
  93 * Return hash position of a specified block at a specified tree level
  94 * (0 is the lowest level).
  95 * The lowest "hash_per_block_bits"-bits of the result denote hash position
  96 * inside a hash block. The remaining bits denote location of the hash block.
  97 */
  98static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
  99					 int level)
 100{
 101	return block >> (level * v->hash_per_block_bits);
 102}
 103
 104static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
 105				const u8 *data, size_t len,
 106				struct crypto_wait *wait)
 107{
 108	struct scatterlist sg;
 109
 110	if (likely(!is_vmalloc_addr(data))) {
 111		sg_init_one(&sg, data, len);
 112		ahash_request_set_crypt(req, &sg, NULL, len);
 113		return crypto_wait_req(crypto_ahash_update(req), wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114	}
 115
 116	do {
 117		int r;
 118		size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
 119
 120		flush_kernel_vmap_range((void *)data, this_step);
 121		sg_init_table(&sg, 1);
 122		sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
 123		ahash_request_set_crypt(req, &sg, NULL, this_step);
 124		r = crypto_wait_req(crypto_ahash_update(req), wait);
 125		if (unlikely(r))
 126			return r;
 127		data += this_step;
 128		len -= this_step;
 129	} while (len);
 130
 131	return 0;
 132}
 133
 134/*
 135 * Wrapper for crypto_ahash_init, which handles verity salting.
 136 */
 137static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
 138				struct crypto_wait *wait, bool may_sleep)
 139{
 140	int r;
 141
 142	ahash_request_set_tfm(req, v->tfm);
 143	ahash_request_set_callback(req,
 144		may_sleep ? CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG : 0,
 145		crypto_req_done, (void *)wait);
 146	crypto_init_wait(wait);
 147
 148	r = crypto_wait_req(crypto_ahash_init(req), wait);
 149
 150	if (unlikely(r < 0)) {
 151		if (r != -ENOMEM)
 152			DMERR("crypto_ahash_init failed: %d", r);
 153		return r;
 154	}
 155
 156	if (likely(v->salt_size && (v->version >= 1)))
 157		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
 158
 159	return r;
 160}
 161
 162static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
 163			     u8 *digest, struct crypto_wait *wait)
 164{
 165	int r;
 166
 167	if (unlikely(v->salt_size && (!v->version))) {
 168		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
 169
 170		if (r < 0) {
 171			DMERR("%s failed updating salt: %d", __func__, r);
 172			goto out;
 173		}
 174	}
 175
 176	ahash_request_set_crypt(req, NULL, digest, 0);
 177	r = crypto_wait_req(crypto_ahash_final(req), wait);
 178out:
 179	return r;
 180}
 181
 182int verity_hash(struct dm_verity *v, struct ahash_request *req,
 183		const u8 *data, size_t len, u8 *digest, bool may_sleep)
 184{
 185	int r;
 186	struct crypto_wait wait;
 187
 188	r = verity_hash_init(v, req, &wait, may_sleep);
 189	if (unlikely(r < 0))
 190		goto out;
 191
 192	r = verity_hash_update(v, req, data, len, &wait);
 193	if (unlikely(r < 0))
 194		goto out;
 195
 196	r = verity_hash_final(v, req, digest, &wait);
 197
 198out:
 199	return r;
 200}
 201
 202static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
 203				 sector_t *hash_block, unsigned int *offset)
 204{
 205	sector_t position = verity_position_at_level(v, block, level);
 206	unsigned int idx;
 207
 208	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
 209
 210	if (!offset)
 211		return;
 212
 213	idx = position & ((1 << v->hash_per_block_bits) - 1);
 214	if (!v->version)
 215		*offset = idx * v->digest_size;
 216	else
 217		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
 218}
 219
 220/*
 221 * Handle verification errors.
 222 */
 223static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
 224			     unsigned long long block)
 225{
 226	char verity_env[DM_VERITY_ENV_LENGTH];
 227	char *envp[] = { verity_env, NULL };
 228	const char *type_str = "";
 229	struct mapped_device *md = dm_table_get_md(v->ti->table);
 230
 231	/* Corruption should be visible in device status in all modes */
 232	v->hash_failed = true;
 233
 234	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
 235		goto out;
 236
 237	v->corrupted_errs++;
 238
 239	switch (type) {
 240	case DM_VERITY_BLOCK_TYPE_DATA:
 241		type_str = "data";
 242		break;
 243	case DM_VERITY_BLOCK_TYPE_METADATA:
 244		type_str = "metadata";
 245		break;
 246	default:
 247		BUG();
 248	}
 249
 250	DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
 251		    type_str, block);
 252
 253	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS) {
 254		DMERR("%s: reached maximum errors", v->data_dev->name);
 255		dm_audit_log_target(DM_MSG_PREFIX, "max-corrupted-errors", v->ti, 0);
 256	}
 257
 258	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
 259		DM_VERITY_ENV_VAR_NAME, type, block);
 260
 261	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
 262
 263out:
 264	if (v->mode == DM_VERITY_MODE_LOGGING)
 265		return 0;
 266
 267	if (v->mode == DM_VERITY_MODE_RESTART)
 268		kernel_restart("dm-verity device corrupted");
 269
 270	if (v->mode == DM_VERITY_MODE_PANIC)
 271		panic("dm-verity device corrupted");
 272
 273	return 1;
 274}
 275
 276/*
 277 * Verify hash of a metadata block pertaining to the specified data block
 278 * ("block" argument) at a specified level ("level" argument).
 279 *
 280 * On successful return, verity_io_want_digest(v, io) contains the hash value
 281 * for a lower tree level or for the data block (if we're at the lowest level).
 282 *
 283 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
 284 * If "skip_unverified" is false, unverified buffer is hashed and verified
 285 * against current value of verity_io_want_digest(v, io).
 286 */
 287static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
 288			       sector_t block, int level, bool skip_unverified,
 289			       u8 *want_digest)
 290{
 291	struct dm_buffer *buf;
 292	struct buffer_aux *aux;
 293	u8 *data;
 294	int r;
 295	sector_t hash_block;
 296	unsigned int offset;
 297
 298	verity_hash_at_level(v, block, level, &hash_block, &offset);
 299
 300	if (static_branch_unlikely(&use_tasklet_enabled) && io->in_tasklet) {
 301		data = dm_bufio_get(v->bufio, hash_block, &buf);
 302		if (data == NULL) {
 303			/*
 304			 * In tasklet and the hash was not in the bufio cache.
 305			 * Return early and resume execution from a work-queue
 306			 * to read the hash from disk.
 307			 */
 308			return -EAGAIN;
 309		}
 310	} else
 311		data = dm_bufio_read(v->bufio, hash_block, &buf);
 312
 313	if (IS_ERR(data))
 314		return PTR_ERR(data);
 315
 316	aux = dm_bufio_get_aux_data(buf);
 317
 318	if (!aux->hash_verified) {
 319		if (skip_unverified) {
 320			r = 1;
 321			goto release_ret_r;
 322		}
 323
 324		r = verity_hash(v, verity_io_hash_req(v, io),
 325				data, 1 << v->hash_dev_block_bits,
 326				verity_io_real_digest(v, io), !io->in_tasklet);
 327		if (unlikely(r < 0))
 328			goto release_ret_r;
 329
 330		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
 331				  v->digest_size) == 0))
 332			aux->hash_verified = 1;
 333		else if (static_branch_unlikely(&use_tasklet_enabled) &&
 334			 io->in_tasklet) {
 335			/*
 336			 * Error handling code (FEC included) cannot be run in a
 337			 * tasklet since it may sleep, so fallback to work-queue.
 338			 */
 339			r = -EAGAIN;
 340			goto release_ret_r;
 341		} else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_METADATA,
 342					     hash_block, data, NULL) == 0)
 343			aux->hash_verified = 1;
 344		else if (verity_handle_err(v,
 345					   DM_VERITY_BLOCK_TYPE_METADATA,
 346					   hash_block)) {
 347			struct bio *bio =
 348				dm_bio_from_per_bio_data(io,
 349							 v->ti->per_io_data_size);
 350			dm_audit_log_bio(DM_MSG_PREFIX, "verify-metadata", bio,
 351					 block, 0);
 352			r = -EIO;
 353			goto release_ret_r;
 354		}
 355	}
 356
 357	data += offset;
 358	memcpy(want_digest, data, v->digest_size);
 359	r = 0;
 360
 361release_ret_r:
 362	dm_bufio_release(buf);
 363	return r;
 364}
 365
 366/*
 367 * Find a hash for a given block, write it to digest and verify the integrity
 368 * of the hash tree if necessary.
 369 */
 370int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
 371			  sector_t block, u8 *digest, bool *is_zero)
 372{
 373	int r = 0, i;
 374
 375	if (likely(v->levels)) {
 376		/*
 377		 * First, we try to get the requested hash for
 378		 * the current block. If the hash block itself is
 379		 * verified, zero is returned. If it isn't, this
 380		 * function returns 1 and we fall back to whole
 381		 * chain verification.
 382		 */
 383		r = verity_verify_level(v, io, block, 0, true, digest);
 384		if (likely(r <= 0))
 385			goto out;
 386	}
 387
 388	memcpy(digest, v->root_digest, v->digest_size);
 389
 390	for (i = v->levels - 1; i >= 0; i--) {
 391		r = verity_verify_level(v, io, block, i, false, digest);
 392		if (unlikely(r))
 393			goto out;
 394	}
 395out:
 396	if (!r && v->zero_digest)
 397		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
 398	else
 399		*is_zero = false;
 400
 401	return r;
 402}
 403
 404/*
 405 * Calculates the digest for the given bio
 406 */
 407static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
 408			       struct bvec_iter *iter, struct crypto_wait *wait)
 409{
 410	unsigned int todo = 1 << v->data_dev_block_bits;
 411	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 412	struct scatterlist sg;
 413	struct ahash_request *req = verity_io_hash_req(v, io);
 414
 415	do {
 416		int r;
 417		unsigned int len;
 418		struct bio_vec bv = bio_iter_iovec(bio, *iter);
 419
 420		sg_init_table(&sg, 1);
 421
 422		len = bv.bv_len;
 423
 424		if (likely(len >= todo))
 425			len = todo;
 426		/*
 427		 * Operating on a single page at a time looks suboptimal
 428		 * until you consider the typical block size is 4,096B.
 429		 * Going through this loops twice should be very rare.
 430		 */
 431		sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
 432		ahash_request_set_crypt(req, &sg, NULL, len);
 433		r = crypto_wait_req(crypto_ahash_update(req), wait);
 434
 435		if (unlikely(r < 0)) {
 436			DMERR("%s crypto op failed: %d", __func__, r);
 437			return r;
 438		}
 439
 440		bio_advance_iter(bio, iter, len);
 441		todo -= len;
 442	} while (todo);
 443
 444	return 0;
 445}
 446
 447/*
 448 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
 449 * starting from iter.
 450 */
 451int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
 452			struct bvec_iter *iter,
 453			int (*process)(struct dm_verity *v,
 454				       struct dm_verity_io *io, u8 *data,
 455				       size_t len))
 456{
 457	unsigned int todo = 1 << v->data_dev_block_bits;
 458	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 459
 460	do {
 461		int r;
 462		u8 *page;
 463		unsigned int len;
 464		struct bio_vec bv = bio_iter_iovec(bio, *iter);
 465
 466		page = bvec_kmap_local(&bv);
 467		len = bv.bv_len;
 468
 469		if (likely(len >= todo))
 470			len = todo;
 471
 472		r = process(v, io, page, len);
 473		kunmap_local(page);
 474
 475		if (r < 0)
 476			return r;
 477
 478		bio_advance_iter(bio, iter, len);
 479		todo -= len;
 480	} while (todo);
 481
 482	return 0;
 483}
 484
 485static int verity_recheck_copy(struct dm_verity *v, struct dm_verity_io *io,
 486			       u8 *data, size_t len)
 487{
 488	memcpy(data, io->recheck_buffer, len);
 489	io->recheck_buffer += len;
 490
 491	return 0;
 492}
 493
 494static noinline int verity_recheck(struct dm_verity *v, struct dm_verity_io *io,
 495				   struct bvec_iter start, sector_t cur_block)
 496{
 497	struct page *page;
 498	void *buffer;
 499	int r;
 500	struct dm_io_request io_req;
 501	struct dm_io_region io_loc;
 502
 503	page = mempool_alloc(&v->recheck_pool, GFP_NOIO);
 504	buffer = page_to_virt(page);
 505
 506	io_req.bi_opf = REQ_OP_READ;
 507	io_req.mem.type = DM_IO_KMEM;
 508	io_req.mem.ptr.addr = buffer;
 509	io_req.notify.fn = NULL;
 510	io_req.client = v->io;
 511	io_loc.bdev = v->data_dev->bdev;
 512	io_loc.sector = cur_block << (v->data_dev_block_bits - SECTOR_SHIFT);
 513	io_loc.count = 1 << (v->data_dev_block_bits - SECTOR_SHIFT);
 514	r = dm_io(&io_req, 1, &io_loc, NULL);
 515	if (unlikely(r))
 516		goto free_ret;
 517
 518	r = verity_hash(v, verity_io_hash_req(v, io), buffer,
 519			1 << v->data_dev_block_bits,
 520			verity_io_real_digest(v, io), true);
 521	if (unlikely(r))
 522		goto free_ret;
 523
 524	if (memcmp(verity_io_real_digest(v, io),
 525		   verity_io_want_digest(v, io), v->digest_size)) {
 526		r = -EIO;
 527		goto free_ret;
 528	}
 529
 530	io->recheck_buffer = buffer;
 531	r = verity_for_bv_block(v, io, &start, verity_recheck_copy);
 532	if (unlikely(r))
 533		goto free_ret;
 534
 535	r = 0;
 536free_ret:
 537	mempool_free(page, &v->recheck_pool);
 538
 539	return r;
 540}
 541
 542static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
 543			  u8 *data, size_t len)
 544{
 545	memset(data, 0, len);
 546	return 0;
 547}
 548
 549/*
 550 * Moves the bio iter one data block forward.
 551 */
 552static inline void verity_bv_skip_block(struct dm_verity *v,
 553					struct dm_verity_io *io,
 554					struct bvec_iter *iter)
 555{
 556	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 557
 558	bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
 559}
 560
 561/*
 562 * Verify one "dm_verity_io" structure.
 563 */
 564static int verity_verify_io(struct dm_verity_io *io)
 565{
 566	bool is_zero;
 567	struct dm_verity *v = io->v;
 568	struct bvec_iter start;
 569	struct bvec_iter iter_copy;
 570	struct bvec_iter *iter;
 571	struct crypto_wait wait;
 572	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 573	unsigned int b;
 574
 575	if (static_branch_unlikely(&use_tasklet_enabled) && io->in_tasklet) {
 576		/*
 577		 * Copy the iterator in case we need to restart
 578		 * verification in a work-queue.
 579		 */
 580		iter_copy = io->iter;
 581		iter = &iter_copy;
 582	} else
 583		iter = &io->iter;
 584
 585	for (b = 0; b < io->n_blocks; b++) {
 586		int r;
 587		sector_t cur_block = io->block + b;
 588		struct ahash_request *req = verity_io_hash_req(v, io);
 589
 590		if (v->validated_blocks && bio->bi_status == BLK_STS_OK &&
 591		    likely(test_bit(cur_block, v->validated_blocks))) {
 592			verity_bv_skip_block(v, io, iter);
 593			continue;
 594		}
 595
 596		r = verity_hash_for_block(v, io, cur_block,
 597					  verity_io_want_digest(v, io),
 598					  &is_zero);
 599		if (unlikely(r < 0))
 600			return r;
 601
 602		if (is_zero) {
 603			/*
 604			 * If we expect a zero block, don't validate, just
 605			 * return zeros.
 606			 */
 607			r = verity_for_bv_block(v, io, iter,
 608						verity_bv_zero);
 609			if (unlikely(r < 0))
 610				return r;
 611
 612			continue;
 613		}
 614
 615		r = verity_hash_init(v, req, &wait, !io->in_tasklet);
 616		if (unlikely(r < 0))
 617			return r;
 618
 619		start = *iter;
 620		r = verity_for_io_block(v, io, iter, &wait);
 621		if (unlikely(r < 0))
 622			return r;
 623
 624		r = verity_hash_final(v, req, verity_io_real_digest(v, io),
 625					&wait);
 626		if (unlikely(r < 0))
 627			return r;
 628
 629		if (likely(memcmp(verity_io_real_digest(v, io),
 630				  verity_io_want_digest(v, io), v->digest_size) == 0)) {
 631			if (v->validated_blocks)
 632				set_bit(cur_block, v->validated_blocks);
 633			continue;
 634		} else if (static_branch_unlikely(&use_tasklet_enabled) &&
 635			   io->in_tasklet) {
 636			/*
 637			 * Error handling code (FEC included) cannot be run in a
 638			 * tasklet since it may sleep, so fallback to work-queue.
 639			 */
 640			return -EAGAIN;
 641		} else if (verity_recheck(v, io, start, cur_block) == 0) {
 642			if (v->validated_blocks)
 643				set_bit(cur_block, v->validated_blocks);
 644			continue;
 645#if defined(CONFIG_DM_VERITY_FEC)
 646		} else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
 647					     cur_block, NULL, &start) == 0) {
 648			continue;
 649#endif
 650		} else {
 651			if (bio->bi_status) {
 652				/*
 653				 * Error correction failed; Just return error
 654				 */
 655				return -EIO;
 656			}
 657			if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
 658					      cur_block)) {
 659				dm_audit_log_bio(DM_MSG_PREFIX, "verify-data",
 660						 bio, cur_block, 0);
 661				return -EIO;
 662			}
 663		}
 
 
 
 
 
 
 664	}
 665
 666	return 0;
 667}
 668
 669/*
 670 * Skip verity work in response to I/O error when system is shutting down.
 671 */
 672static inline bool verity_is_system_shutting_down(void)
 673{
 674	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
 675		|| system_state == SYSTEM_RESTART;
 676}
 677
 678/*
 679 * End one "io" structure with a given error.
 680 */
 681static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
 682{
 683	struct dm_verity *v = io->v;
 684	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 685
 686	bio->bi_end_io = io->orig_bi_end_io;
 687	bio->bi_status = status;
 688
 689	if (!static_branch_unlikely(&use_tasklet_enabled) || !io->in_tasklet)
 690		verity_fec_finish_io(io);
 691
 692	bio_endio(bio);
 693}
 694
 695static void verity_work(struct work_struct *w)
 696{
 697	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
 698
 699	io->in_tasklet = false;
 700
 701	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
 702}
 703
 704static void verity_end_io(struct bio *bio)
 705{
 706	struct dm_verity_io *io = bio->bi_private;
 707
 708	if (bio->bi_status &&
 709	    (!verity_fec_is_enabled(io->v) ||
 710	     verity_is_system_shutting_down() ||
 711	     (bio->bi_opf & REQ_RAHEAD))) {
 712		verity_finish_io(io, bio->bi_status);
 713		return;
 714	}
 715
 716	INIT_WORK(&io->work, verity_work);
 717	queue_work(io->v->verify_wq, &io->work);
 718}
 719
 720/*
 721 * Prefetch buffers for the specified io.
 722 * The root buffer is not prefetched, it is assumed that it will be cached
 723 * all the time.
 724 */
 725static void verity_prefetch_io(struct work_struct *work)
 726{
 727	struct dm_verity_prefetch_work *pw =
 728		container_of(work, struct dm_verity_prefetch_work, work);
 729	struct dm_verity *v = pw->v;
 730	int i;
 731
 732	for (i = v->levels - 2; i >= 0; i--) {
 733		sector_t hash_block_start;
 734		sector_t hash_block_end;
 735
 736		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
 737		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
 738
 739		if (!i) {
 740			unsigned int cluster = READ_ONCE(dm_verity_prefetch_cluster);
 741
 742			cluster >>= v->data_dev_block_bits;
 743			if (unlikely(!cluster))
 744				goto no_prefetch_cluster;
 745
 746			if (unlikely(cluster & (cluster - 1)))
 747				cluster = 1 << __fls(cluster);
 748
 749			hash_block_start &= ~(sector_t)(cluster - 1);
 750			hash_block_end |= cluster - 1;
 751			if (unlikely(hash_block_end >= v->hash_blocks))
 752				hash_block_end = v->hash_blocks - 1;
 753		}
 754no_prefetch_cluster:
 755		dm_bufio_prefetch(v->bufio, hash_block_start,
 756				  hash_block_end - hash_block_start + 1);
 757	}
 758
 759	kfree(pw);
 760}
 761
 762static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
 763{
 764	sector_t block = io->block;
 765	unsigned int n_blocks = io->n_blocks;
 766	struct dm_verity_prefetch_work *pw;
 767
 768	if (v->validated_blocks) {
 769		while (n_blocks && test_bit(block, v->validated_blocks)) {
 770			block++;
 771			n_blocks--;
 772		}
 773		while (n_blocks && test_bit(block + n_blocks - 1,
 774					    v->validated_blocks))
 775			n_blocks--;
 776		if (!n_blocks)
 777			return;
 778	}
 779
 780	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
 781		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 782
 783	if (!pw)
 784		return;
 785
 786	INIT_WORK(&pw->work, verity_prefetch_io);
 787	pw->v = v;
 788	pw->block = block;
 789	pw->n_blocks = n_blocks;
 790	queue_work(v->verify_wq, &pw->work);
 791}
 792
 793/*
 794 * Bio map function. It allocates dm_verity_io structure and bio vector and
 795 * fills them. Then it issues prefetches and the I/O.
 796 */
 797static int verity_map(struct dm_target *ti, struct bio *bio)
 798{
 799	struct dm_verity *v = ti->private;
 800	struct dm_verity_io *io;
 801
 802	bio_set_dev(bio, v->data_dev->bdev);
 803	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
 804
 805	if (((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) &
 806	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
 807		DMERR_LIMIT("unaligned io");
 808		return DM_MAPIO_KILL;
 809	}
 810
 811	if (bio_end_sector(bio) >>
 812	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
 813		DMERR_LIMIT("io out of range");
 814		return DM_MAPIO_KILL;
 815	}
 816
 817	if (bio_data_dir(bio) == WRITE)
 818		return DM_MAPIO_KILL;
 819
 820	io = dm_per_bio_data(bio, ti->per_io_data_size);
 821	io->v = v;
 822	io->orig_bi_end_io = bio->bi_end_io;
 823	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
 824	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
 825
 826	bio->bi_end_io = verity_end_io;
 827	bio->bi_private = io;
 828	io->iter = bio->bi_iter;
 829
 830	verity_fec_init_io(io);
 831
 832	verity_submit_prefetch(v, io);
 833
 834	submit_bio_noacct(bio);
 835
 836	return DM_MAPIO_SUBMITTED;
 837}
 838
 839/*
 840 * Status: V (valid) or C (corruption found)
 841 */
 842static void verity_status(struct dm_target *ti, status_type_t type,
 843			  unsigned int status_flags, char *result, unsigned int maxlen)
 844{
 845	struct dm_verity *v = ti->private;
 846	unsigned int args = 0;
 847	unsigned int sz = 0;
 848	unsigned int x;
 849
 850	switch (type) {
 851	case STATUSTYPE_INFO:
 852		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
 853		break;
 854	case STATUSTYPE_TABLE:
 855		DMEMIT("%u %s %s %u %u %llu %llu %s ",
 856			v->version,
 857			v->data_dev->name,
 858			v->hash_dev->name,
 859			1 << v->data_dev_block_bits,
 860			1 << v->hash_dev_block_bits,
 861			(unsigned long long)v->data_blocks,
 862			(unsigned long long)v->hash_start,
 863			v->alg_name
 864			);
 865		for (x = 0; x < v->digest_size; x++)
 866			DMEMIT("%02x", v->root_digest[x]);
 867		DMEMIT(" ");
 868		if (!v->salt_size)
 869			DMEMIT("-");
 870		else
 871			for (x = 0; x < v->salt_size; x++)
 872				DMEMIT("%02x", v->salt[x]);
 873		if (v->mode != DM_VERITY_MODE_EIO)
 874			args++;
 875		if (verity_fec_is_enabled(v))
 876			args += DM_VERITY_OPTS_FEC;
 877		if (v->zero_digest)
 878			args++;
 879		if (v->validated_blocks)
 880			args++;
 881		if (v->use_tasklet)
 882			args++;
 883		if (v->signature_key_desc)
 884			args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
 885		if (!args)
 886			return;
 887		DMEMIT(" %u", args);
 888		if (v->mode != DM_VERITY_MODE_EIO) {
 889			DMEMIT(" ");
 890			switch (v->mode) {
 891			case DM_VERITY_MODE_LOGGING:
 892				DMEMIT(DM_VERITY_OPT_LOGGING);
 893				break;
 894			case DM_VERITY_MODE_RESTART:
 895				DMEMIT(DM_VERITY_OPT_RESTART);
 896				break;
 897			case DM_VERITY_MODE_PANIC:
 898				DMEMIT(DM_VERITY_OPT_PANIC);
 899				break;
 900			default:
 901				BUG();
 902			}
 903		}
 904		if (v->zero_digest)
 905			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
 906		if (v->validated_blocks)
 907			DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
 908		if (v->use_tasklet)
 909			DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY);
 910		sz = verity_fec_status_table(v, sz, result, maxlen);
 911		if (v->signature_key_desc)
 912			DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
 913				" %s", v->signature_key_desc);
 914		break;
 915
 916	case STATUSTYPE_IMA:
 917		DMEMIT_TARGET_NAME_VERSION(ti->type);
 918		DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
 919		DMEMIT(",verity_version=%u", v->version);
 920		DMEMIT(",data_device_name=%s", v->data_dev->name);
 921		DMEMIT(",hash_device_name=%s", v->hash_dev->name);
 922		DMEMIT(",verity_algorithm=%s", v->alg_name);
 923
 924		DMEMIT(",root_digest=");
 925		for (x = 0; x < v->digest_size; x++)
 926			DMEMIT("%02x", v->root_digest[x]);
 927
 928		DMEMIT(",salt=");
 929		if (!v->salt_size)
 930			DMEMIT("-");
 931		else
 932			for (x = 0; x < v->salt_size; x++)
 933				DMEMIT("%02x", v->salt[x]);
 934
 935		DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
 936		DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
 937		if (v->signature_key_desc)
 938			DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
 939
 940		if (v->mode != DM_VERITY_MODE_EIO) {
 941			DMEMIT(",verity_mode=");
 942			switch (v->mode) {
 943			case DM_VERITY_MODE_LOGGING:
 944				DMEMIT(DM_VERITY_OPT_LOGGING);
 945				break;
 946			case DM_VERITY_MODE_RESTART:
 947				DMEMIT(DM_VERITY_OPT_RESTART);
 948				break;
 949			case DM_VERITY_MODE_PANIC:
 950				DMEMIT(DM_VERITY_OPT_PANIC);
 951				break;
 952			default:
 953				DMEMIT("invalid");
 954			}
 955		}
 956		DMEMIT(";");
 957		break;
 958	}
 959}
 960
 961static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
 962{
 963	struct dm_verity *v = ti->private;
 964
 965	*bdev = v->data_dev->bdev;
 966
 967	if (v->data_start || ti->len != bdev_nr_sectors(v->data_dev->bdev))
 
 968		return 1;
 969	return 0;
 970}
 971
 972static int verity_iterate_devices(struct dm_target *ti,
 973				  iterate_devices_callout_fn fn, void *data)
 974{
 975	struct dm_verity *v = ti->private;
 976
 977	return fn(ti, v->data_dev, v->data_start, ti->len, data);
 978}
 979
 980static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
 981{
 982	struct dm_verity *v = ti->private;
 983
 984	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
 985		limits->logical_block_size = 1 << v->data_dev_block_bits;
 986
 987	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
 988		limits->physical_block_size = 1 << v->data_dev_block_bits;
 989
 990	blk_limits_io_min(limits, limits->logical_block_size);
 991}
 992
 993static void verity_dtr(struct dm_target *ti)
 994{
 995	struct dm_verity *v = ti->private;
 996
 997	if (v->verify_wq)
 998		destroy_workqueue(v->verify_wq);
 999
1000	mempool_exit(&v->recheck_pool);
1001	if (v->io)
1002		dm_io_client_destroy(v->io);
1003
1004	if (v->bufio)
1005		dm_bufio_client_destroy(v->bufio);
1006
1007	kvfree(v->validated_blocks);
1008	kfree(v->salt);
1009	kfree(v->root_digest);
1010	kfree(v->zero_digest);
1011
1012	if (v->tfm)
1013		crypto_free_ahash(v->tfm);
1014
1015	kfree(v->alg_name);
1016
1017	if (v->hash_dev)
1018		dm_put_device(ti, v->hash_dev);
1019
1020	if (v->data_dev)
1021		dm_put_device(ti, v->data_dev);
1022
1023	verity_fec_dtr(v);
1024
1025	kfree(v->signature_key_desc);
1026
1027	if (v->use_tasklet)
1028		static_branch_dec(&use_tasklet_enabled);
1029
1030	kfree(v);
1031
1032	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
1033}
1034
1035static int verity_alloc_most_once(struct dm_verity *v)
1036{
1037	struct dm_target *ti = v->ti;
1038
1039	/* the bitset can only handle INT_MAX blocks */
1040	if (v->data_blocks > INT_MAX) {
1041		ti->error = "device too large to use check_at_most_once";
1042		return -E2BIG;
1043	}
1044
1045	v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
1046				       sizeof(unsigned long),
1047				       GFP_KERNEL);
1048	if (!v->validated_blocks) {
1049		ti->error = "failed to allocate bitset for check_at_most_once";
1050		return -ENOMEM;
1051	}
1052
1053	return 0;
1054}
1055
1056static int verity_alloc_zero_digest(struct dm_verity *v)
1057{
1058	int r = -ENOMEM;
1059	struct ahash_request *req;
1060	u8 *zero_data;
1061
1062	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
1063
1064	if (!v->zero_digest)
1065		return r;
1066
1067	req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
1068
1069	if (!req)
1070		return r; /* verity_dtr will free zero_digest */
1071
1072	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
1073
1074	if (!zero_data)
1075		goto out;
1076
1077	r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
1078			v->zero_digest, true);
1079
1080out:
1081	kfree(req);
1082	kfree(zero_data);
1083
1084	return r;
1085}
1086
1087static inline bool verity_is_verity_mode(const char *arg_name)
1088{
1089	return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
1090		!strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
1091		!strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
1092}
1093
1094static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
1095{
1096	if (v->mode)
1097		return -EINVAL;
1098
1099	if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
1100		v->mode = DM_VERITY_MODE_LOGGING;
1101	else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
1102		v->mode = DM_VERITY_MODE_RESTART;
1103	else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
1104		v->mode = DM_VERITY_MODE_PANIC;
1105
1106	return 0;
1107}
1108
1109static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
1110				 struct dm_verity_sig_opts *verify_args,
1111				 bool only_modifier_opts)
1112{
1113	int r = 0;
1114	unsigned int argc;
1115	struct dm_target *ti = v->ti;
1116	const char *arg_name;
1117
1118	static const struct dm_arg _args[] = {
1119		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
1120	};
1121
1122	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1123	if (r)
1124		return -EINVAL;
1125
1126	if (!argc)
1127		return 0;
1128
1129	do {
1130		arg_name = dm_shift_arg(as);
1131		argc--;
1132
1133		if (verity_is_verity_mode(arg_name)) {
1134			if (only_modifier_opts)
1135				continue;
1136			r = verity_parse_verity_mode(v, arg_name);
1137			if (r) {
1138				ti->error = "Conflicting error handling parameters";
1139				return r;
1140			}
1141			continue;
1142
1143		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
1144			if (only_modifier_opts)
1145				continue;
1146			r = verity_alloc_zero_digest(v);
1147			if (r) {
1148				ti->error = "Cannot allocate zero digest";
1149				return r;
1150			}
1151			continue;
1152
1153		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
1154			if (only_modifier_opts)
1155				continue;
1156			r = verity_alloc_most_once(v);
1157			if (r)
1158				return r;
1159			continue;
1160
1161		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) {
1162			v->use_tasklet = true;
1163			static_branch_inc(&use_tasklet_enabled);
1164			continue;
1165
1166		} else if (verity_is_fec_opt_arg(arg_name)) {
1167			if (only_modifier_opts)
1168				continue;
1169			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
1170			if (r)
1171				return r;
1172			continue;
1173
1174		} else if (verity_verify_is_sig_opt_arg(arg_name)) {
1175			if (only_modifier_opts)
1176				continue;
1177			r = verity_verify_sig_parse_opt_args(as, v,
1178							     verify_args,
1179							     &argc, arg_name);
1180			if (r)
1181				return r;
1182			continue;
1183
1184		} else if (only_modifier_opts) {
1185			/*
1186			 * Ignore unrecognized opt, could easily be an extra
1187			 * argument to an option whose parsing was skipped.
1188			 * Normal parsing (@only_modifier_opts=false) will
1189			 * properly parse all options (and their extra args).
1190			 */
1191			continue;
1192		}
1193
1194		DMERR("Unrecognized verity feature request: %s", arg_name);
1195		ti->error = "Unrecognized verity feature request";
1196		return -EINVAL;
1197	} while (argc && !r);
1198
1199	return r;
1200}
1201
1202/*
1203 * Target parameters:
1204 *	<version>	The current format is version 1.
1205 *			Vsn 0 is compatible with original Chromium OS releases.
1206 *	<data device>
1207 *	<hash device>
1208 *	<data block size>
1209 *	<hash block size>
1210 *	<the number of data blocks>
1211 *	<hash start block>
1212 *	<algorithm>
1213 *	<digest>
1214 *	<salt>		Hex string or "-" if no salt.
1215 */
1216static int verity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1217{
1218	struct dm_verity *v;
1219	struct dm_verity_sig_opts verify_args = {0};
1220	struct dm_arg_set as;
1221	unsigned int num;
1222	unsigned long long num_ll;
1223	int r;
1224	int i;
1225	sector_t hash_position;
1226	char dummy;
1227	char *root_hash_digest_to_validate;
1228
1229	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
1230	if (!v) {
1231		ti->error = "Cannot allocate verity structure";
1232		return -ENOMEM;
1233	}
1234	ti->private = v;
1235	v->ti = ti;
1236
1237	r = verity_fec_ctr_alloc(v);
1238	if (r)
1239		goto bad;
1240
1241	if ((dm_table_get_mode(ti->table) & ~BLK_OPEN_READ)) {
1242		ti->error = "Device must be readonly";
1243		r = -EINVAL;
1244		goto bad;
1245	}
1246
1247	if (argc < 10) {
1248		ti->error = "Not enough arguments";
1249		r = -EINVAL;
1250		goto bad;
1251	}
1252
1253	/* Parse optional parameters that modify primary args */
1254	if (argc > 10) {
1255		as.argc = argc - 10;
1256		as.argv = argv + 10;
1257		r = verity_parse_opt_args(&as, v, &verify_args, true);
1258		if (r < 0)
1259			goto bad;
1260	}
1261
1262	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1263	    num > 1) {
1264		ti->error = "Invalid version";
1265		r = -EINVAL;
1266		goto bad;
1267	}
1268	v->version = num;
1269
1270	r = dm_get_device(ti, argv[1], BLK_OPEN_READ, &v->data_dev);
1271	if (r) {
1272		ti->error = "Data device lookup failed";
1273		goto bad;
1274	}
1275
1276	r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &v->hash_dev);
1277	if (r) {
1278		ti->error = "Hash device lookup failed";
1279		goto bad;
1280	}
1281
1282	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1283	    !num || (num & (num - 1)) ||
1284	    num < bdev_logical_block_size(v->data_dev->bdev) ||
1285	    num > PAGE_SIZE) {
1286		ti->error = "Invalid data device block size";
1287		r = -EINVAL;
1288		goto bad;
1289	}
1290	v->data_dev_block_bits = __ffs(num);
1291
1292	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1293	    !num || (num & (num - 1)) ||
1294	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
1295	    num > INT_MAX) {
1296		ti->error = "Invalid hash device block size";
1297		r = -EINVAL;
1298		goto bad;
1299	}
1300	v->hash_dev_block_bits = __ffs(num);
1301
1302	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1303	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1304	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1305		ti->error = "Invalid data blocks";
1306		r = -EINVAL;
1307		goto bad;
1308	}
1309	v->data_blocks = num_ll;
1310
1311	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1312		ti->error = "Data device is too small";
1313		r = -EINVAL;
1314		goto bad;
1315	}
1316
1317	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1318	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1319	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1320		ti->error = "Invalid hash start";
1321		r = -EINVAL;
1322		goto bad;
1323	}
1324	v->hash_start = num_ll;
1325
1326	v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1327	if (!v->alg_name) {
1328		ti->error = "Cannot allocate algorithm name";
1329		r = -ENOMEM;
1330		goto bad;
1331	}
1332
1333	v->tfm = crypto_alloc_ahash(v->alg_name, 0,
1334				    v->use_tasklet ? CRYPTO_ALG_ASYNC : 0);
1335	if (IS_ERR(v->tfm)) {
1336		ti->error = "Cannot initialize hash function";
1337		r = PTR_ERR(v->tfm);
1338		v->tfm = NULL;
1339		goto bad;
1340	}
1341
1342	/*
1343	 * dm-verity performance can vary greatly depending on which hash
1344	 * algorithm implementation is used.  Help people debug performance
1345	 * problems by logging the ->cra_driver_name.
1346	 */
1347	DMINFO("%s using implementation \"%s\"", v->alg_name,
1348	       crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1349
1350	v->digest_size = crypto_ahash_digestsize(v->tfm);
1351	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1352		ti->error = "Digest size too big";
1353		r = -EINVAL;
1354		goto bad;
1355	}
1356	v->ahash_reqsize = sizeof(struct ahash_request) +
1357		crypto_ahash_reqsize(v->tfm);
1358
1359	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1360	if (!v->root_digest) {
1361		ti->error = "Cannot allocate root digest";
1362		r = -ENOMEM;
1363		goto bad;
1364	}
1365	if (strlen(argv[8]) != v->digest_size * 2 ||
1366	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
1367		ti->error = "Invalid root digest";
1368		r = -EINVAL;
1369		goto bad;
1370	}
1371	root_hash_digest_to_validate = argv[8];
1372
1373	if (strcmp(argv[9], "-")) {
1374		v->salt_size = strlen(argv[9]) / 2;
1375		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1376		if (!v->salt) {
1377			ti->error = "Cannot allocate salt";
1378			r = -ENOMEM;
1379			goto bad;
1380		}
1381		if (strlen(argv[9]) != v->salt_size * 2 ||
1382		    hex2bin(v->salt, argv[9], v->salt_size)) {
1383			ti->error = "Invalid salt";
1384			r = -EINVAL;
1385			goto bad;
1386		}
1387	}
1388
1389	argv += 10;
1390	argc -= 10;
1391
1392	/* Optional parameters */
1393	if (argc) {
1394		as.argc = argc;
1395		as.argv = argv;
1396		r = verity_parse_opt_args(&as, v, &verify_args, false);
 
1397		if (r < 0)
1398			goto bad;
1399	}
1400
1401	/* Root hash signature is  a optional parameter*/
1402	r = verity_verify_root_hash(root_hash_digest_to_validate,
1403				    strlen(root_hash_digest_to_validate),
1404				    verify_args.sig,
1405				    verify_args.sig_size);
1406	if (r < 0) {
1407		ti->error = "Root hash verification failed";
1408		goto bad;
1409	}
1410	v->hash_per_block_bits =
1411		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1412
1413	v->levels = 0;
1414	if (v->data_blocks)
1415		while (v->hash_per_block_bits * v->levels < 64 &&
1416		       (unsigned long long)(v->data_blocks - 1) >>
1417		       (v->hash_per_block_bits * v->levels))
1418			v->levels++;
1419
1420	if (v->levels > DM_VERITY_MAX_LEVELS) {
1421		ti->error = "Too many tree levels";
1422		r = -E2BIG;
1423		goto bad;
1424	}
1425
1426	hash_position = v->hash_start;
1427	for (i = v->levels - 1; i >= 0; i--) {
1428		sector_t s;
1429
1430		v->hash_level_block[i] = hash_position;
1431		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1432					>> ((i + 1) * v->hash_per_block_bits);
1433		if (hash_position + s < hash_position) {
1434			ti->error = "Hash device offset overflow";
1435			r = -E2BIG;
1436			goto bad;
1437		}
1438		hash_position += s;
1439	}
1440	v->hash_blocks = hash_position;
1441
1442	r = mempool_init_page_pool(&v->recheck_pool, 1, 0);
1443	if (unlikely(r)) {
1444		ti->error = "Cannot allocate mempool";
1445		goto bad;
1446	}
1447
1448	v->io = dm_io_client_create();
1449	if (IS_ERR(v->io)) {
1450		r = PTR_ERR(v->io);
1451		v->io = NULL;
1452		ti->error = "Cannot allocate dm io";
1453		goto bad;
1454	}
1455
1456	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1457		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1458		dm_bufio_alloc_callback, NULL,
1459		v->use_tasklet ? DM_BUFIO_CLIENT_NO_SLEEP : 0);
1460	if (IS_ERR(v->bufio)) {
1461		ti->error = "Cannot initialize dm-bufio";
1462		r = PTR_ERR(v->bufio);
1463		v->bufio = NULL;
1464		goto bad;
1465	}
1466
1467	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1468		ti->error = "Hash device is too small";
1469		r = -E2BIG;
1470		goto bad;
1471	}
1472
1473	/*
1474	 * Using WQ_HIGHPRI improves throughput and completion latency by
1475	 * reducing wait times when reading from a dm-verity device.
1476	 *
1477	 * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI
1478	 * allows verify_wq to preempt softirq since verification in tasklet
1479	 * will fall-back to using it for error handling (or if the bufio cache
1480	 * doesn't have required hashes).
1481	 */
1482	v->verify_wq = alloc_workqueue("kverityd", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1483	if (!v->verify_wq) {
1484		ti->error = "Cannot allocate workqueue";
1485		r = -ENOMEM;
1486		goto bad;
1487	}
1488
1489	ti->per_io_data_size = sizeof(struct dm_verity_io) +
1490				v->ahash_reqsize + v->digest_size * 2;
1491
1492	r = verity_fec_ctr(v);
1493	if (r)
1494		goto bad;
1495
1496	ti->per_io_data_size = roundup(ti->per_io_data_size,
1497				       __alignof__(struct dm_verity_io));
1498
1499	verity_verify_sig_opts_cleanup(&verify_args);
1500
1501	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
1502
1503	return 0;
1504
1505bad:
1506
1507	verity_verify_sig_opts_cleanup(&verify_args);
1508	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
1509	verity_dtr(ti);
1510
1511	return r;
1512}
1513
1514/*
1515 * Check whether a DM target is a verity target.
1516 */
1517bool dm_is_verity_target(struct dm_target *ti)
1518{
1519	return ti->type->module == THIS_MODULE;
1520}
1521
1522/*
1523 * Get the verity mode (error behavior) of a verity target.
1524 *
1525 * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity
1526 * target.
1527 */
1528int dm_verity_get_mode(struct dm_target *ti)
1529{
1530	struct dm_verity *v = ti->private;
1531
1532	if (!dm_is_verity_target(ti))
1533		return -EINVAL;
1534
1535	return v->mode;
1536}
1537
1538/*
1539 * Get the root digest of a verity target.
1540 *
1541 * Returns a copy of the root digest, the caller is responsible for
1542 * freeing the memory of the digest.
1543 */
1544int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size)
1545{
1546	struct dm_verity *v = ti->private;
1547
1548	if (!dm_is_verity_target(ti))
1549		return -EINVAL;
1550
1551	*root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL);
1552	if (*root_digest == NULL)
1553		return -ENOMEM;
1554
1555	*digest_size = v->digest_size;
1556
1557	return 0;
1558}
1559
1560static struct target_type verity_target = {
1561	.name		= "verity",
1562	.features	= DM_TARGET_IMMUTABLE,
1563	.version	= {1, 10, 0},
1564	.module		= THIS_MODULE,
1565	.ctr		= verity_ctr,
1566	.dtr		= verity_dtr,
1567	.map		= verity_map,
1568	.status		= verity_status,
1569	.prepare_ioctl	= verity_prepare_ioctl,
1570	.iterate_devices = verity_iterate_devices,
1571	.io_hints	= verity_io_hints,
1572};
1573module_dm(verity);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1574
1575MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1576MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1577MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1578MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1579MODULE_LICENSE("GPL");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 Red Hat, Inc.
   4 *
   5 * Author: Mikulas Patocka <mpatocka@redhat.com>
   6 *
   7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
   8 *
   9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
  10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
  11 * hash device. Setting this greatly improves performance when data and hash
  12 * are on the same disk on different partitions on devices with poor random
  13 * access behavior.
  14 */
  15
  16#include "dm-verity.h"
  17#include "dm-verity-fec.h"
  18#include "dm-verity-verify-sig.h"
 
  19#include <linux/module.h>
  20#include <linux/reboot.h>
 
 
 
  21
  22#define DM_MSG_PREFIX			"verity"
  23
  24#define DM_VERITY_ENV_LENGTH		42
  25#define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
  26
  27#define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
  28
  29#define DM_VERITY_MAX_CORRUPTED_ERRS	100
  30
  31#define DM_VERITY_OPT_LOGGING		"ignore_corruption"
  32#define DM_VERITY_OPT_RESTART		"restart_on_corruption"
 
  33#define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
  34#define DM_VERITY_OPT_AT_MOST_ONCE	"check_at_most_once"
 
  35
  36#define DM_VERITY_OPTS_MAX		(2 + DM_VERITY_OPTS_FEC + \
  37					 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
  38
  39static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
  40
  41module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
 
 
  42
  43struct dm_verity_prefetch_work {
  44	struct work_struct work;
  45	struct dm_verity *v;
  46	sector_t block;
  47	unsigned n_blocks;
  48};
  49
  50/*
  51 * Auxiliary structure appended to each dm-bufio buffer. If the value
  52 * hash_verified is nonzero, hash of the block has been verified.
  53 *
  54 * The variable hash_verified is set to 0 when allocating the buffer, then
  55 * it can be changed to 1 and it is never reset to 0 again.
  56 *
  57 * There is no lock around this value, a race condition can at worst cause
  58 * that multiple processes verify the hash of the same buffer simultaneously
  59 * and write 1 to hash_verified simultaneously.
  60 * This condition is harmless, so we don't need locking.
  61 */
  62struct buffer_aux {
  63	int hash_verified;
  64};
  65
  66/*
  67 * Initialize struct buffer_aux for a freshly created buffer.
  68 */
  69static void dm_bufio_alloc_callback(struct dm_buffer *buf)
  70{
  71	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
  72
  73	aux->hash_verified = 0;
  74}
  75
  76/*
  77 * Translate input sector number to the sector number on the target device.
  78 */
  79static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
  80{
  81	return v->data_start + dm_target_offset(v->ti, bi_sector);
  82}
  83
  84/*
  85 * Return hash position of a specified block at a specified tree level
  86 * (0 is the lowest level).
  87 * The lowest "hash_per_block_bits"-bits of the result denote hash position
  88 * inside a hash block. The remaining bits denote location of the hash block.
  89 */
  90static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
  91					 int level)
  92{
  93	return block >> (level * v->hash_per_block_bits);
  94}
  95
  96static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
  97				const u8 *data, size_t len,
  98				struct crypto_wait *wait)
  99{
 100	struct scatterlist sg;
 101
 102	if (likely(!is_vmalloc_addr(data))) {
 103		sg_init_one(&sg, data, len);
 104		ahash_request_set_crypt(req, &sg, NULL, len);
 105		return crypto_wait_req(crypto_ahash_update(req), wait);
 106	} else {
 107		do {
 108			int r;
 109			size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
 110			flush_kernel_vmap_range((void *)data, this_step);
 111			sg_init_table(&sg, 1);
 112			sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
 113			ahash_request_set_crypt(req, &sg, NULL, this_step);
 114			r = crypto_wait_req(crypto_ahash_update(req), wait);
 115			if (unlikely(r))
 116				return r;
 117			data += this_step;
 118			len -= this_step;
 119		} while (len);
 120		return 0;
 121	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122}
 123
 124/*
 125 * Wrapper for crypto_ahash_init, which handles verity salting.
 126 */
 127static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
 128				struct crypto_wait *wait)
 129{
 130	int r;
 131
 132	ahash_request_set_tfm(req, v->tfm);
 133	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
 134					CRYPTO_TFM_REQ_MAY_BACKLOG,
 135					crypto_req_done, (void *)wait);
 136	crypto_init_wait(wait);
 137
 138	r = crypto_wait_req(crypto_ahash_init(req), wait);
 139
 140	if (unlikely(r < 0)) {
 141		DMERR("crypto_ahash_init failed: %d", r);
 
 142		return r;
 143	}
 144
 145	if (likely(v->salt_size && (v->version >= 1)))
 146		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
 147
 148	return r;
 149}
 150
 151static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
 152			     u8 *digest, struct crypto_wait *wait)
 153{
 154	int r;
 155
 156	if (unlikely(v->salt_size && (!v->version))) {
 157		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
 158
 159		if (r < 0) {
 160			DMERR("verity_hash_final failed updating salt: %d", r);
 161			goto out;
 162		}
 163	}
 164
 165	ahash_request_set_crypt(req, NULL, digest, 0);
 166	r = crypto_wait_req(crypto_ahash_final(req), wait);
 167out:
 168	return r;
 169}
 170
 171int verity_hash(struct dm_verity *v, struct ahash_request *req,
 172		const u8 *data, size_t len, u8 *digest)
 173{
 174	int r;
 175	struct crypto_wait wait;
 176
 177	r = verity_hash_init(v, req, &wait);
 178	if (unlikely(r < 0))
 179		goto out;
 180
 181	r = verity_hash_update(v, req, data, len, &wait);
 182	if (unlikely(r < 0))
 183		goto out;
 184
 185	r = verity_hash_final(v, req, digest, &wait);
 186
 187out:
 188	return r;
 189}
 190
 191static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
 192				 sector_t *hash_block, unsigned *offset)
 193{
 194	sector_t position = verity_position_at_level(v, block, level);
 195	unsigned idx;
 196
 197	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
 198
 199	if (!offset)
 200		return;
 201
 202	idx = position & ((1 << v->hash_per_block_bits) - 1);
 203	if (!v->version)
 204		*offset = idx * v->digest_size;
 205	else
 206		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
 207}
 208
 209/*
 210 * Handle verification errors.
 211 */
 212static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
 213			     unsigned long long block)
 214{
 215	char verity_env[DM_VERITY_ENV_LENGTH];
 216	char *envp[] = { verity_env, NULL };
 217	const char *type_str = "";
 218	struct mapped_device *md = dm_table_get_md(v->ti->table);
 219
 220	/* Corruption should be visible in device status in all modes */
 221	v->hash_failed = 1;
 222
 223	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
 224		goto out;
 225
 226	v->corrupted_errs++;
 227
 228	switch (type) {
 229	case DM_VERITY_BLOCK_TYPE_DATA:
 230		type_str = "data";
 231		break;
 232	case DM_VERITY_BLOCK_TYPE_METADATA:
 233		type_str = "metadata";
 234		break;
 235	default:
 236		BUG();
 237	}
 238
 239	DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
 240		    type_str, block);
 241
 242	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
 243		DMERR("%s: reached maximum errors", v->data_dev->name);
 
 
 244
 245	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
 246		DM_VERITY_ENV_VAR_NAME, type, block);
 247
 248	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
 249
 250out:
 251	if (v->mode == DM_VERITY_MODE_LOGGING)
 252		return 0;
 253
 254	if (v->mode == DM_VERITY_MODE_RESTART)
 255		kernel_restart("dm-verity device corrupted");
 256
 
 
 
 257	return 1;
 258}
 259
 260/*
 261 * Verify hash of a metadata block pertaining to the specified data block
 262 * ("block" argument) at a specified level ("level" argument).
 263 *
 264 * On successful return, verity_io_want_digest(v, io) contains the hash value
 265 * for a lower tree level or for the data block (if we're at the lowest level).
 266 *
 267 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
 268 * If "skip_unverified" is false, unverified buffer is hashed and verified
 269 * against current value of verity_io_want_digest(v, io).
 270 */
 271static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
 272			       sector_t block, int level, bool skip_unverified,
 273			       u8 *want_digest)
 274{
 275	struct dm_buffer *buf;
 276	struct buffer_aux *aux;
 277	u8 *data;
 278	int r;
 279	sector_t hash_block;
 280	unsigned offset;
 281
 282	verity_hash_at_level(v, block, level, &hash_block, &offset);
 283
 284	data = dm_bufio_read(v->bufio, hash_block, &buf);
 
 
 
 
 
 
 
 
 
 
 
 
 285	if (IS_ERR(data))
 286		return PTR_ERR(data);
 287
 288	aux = dm_bufio_get_aux_data(buf);
 289
 290	if (!aux->hash_verified) {
 291		if (skip_unverified) {
 292			r = 1;
 293			goto release_ret_r;
 294		}
 295
 296		r = verity_hash(v, verity_io_hash_req(v, io),
 297				data, 1 << v->hash_dev_block_bits,
 298				verity_io_real_digest(v, io));
 299		if (unlikely(r < 0))
 300			goto release_ret_r;
 301
 302		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
 303				  v->digest_size) == 0))
 304			aux->hash_verified = 1;
 305		else if (verity_fec_decode(v, io,
 306					   DM_VERITY_BLOCK_TYPE_METADATA,
 307					   hash_block, data, NULL) == 0)
 
 
 
 
 
 
 
 308			aux->hash_verified = 1;
 309		else if (verity_handle_err(v,
 310					   DM_VERITY_BLOCK_TYPE_METADATA,
 311					   hash_block)) {
 
 
 
 
 
 312			r = -EIO;
 313			goto release_ret_r;
 314		}
 315	}
 316
 317	data += offset;
 318	memcpy(want_digest, data, v->digest_size);
 319	r = 0;
 320
 321release_ret_r:
 322	dm_bufio_release(buf);
 323	return r;
 324}
 325
 326/*
 327 * Find a hash for a given block, write it to digest and verify the integrity
 328 * of the hash tree if necessary.
 329 */
 330int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
 331			  sector_t block, u8 *digest, bool *is_zero)
 332{
 333	int r = 0, i;
 334
 335	if (likely(v->levels)) {
 336		/*
 337		 * First, we try to get the requested hash for
 338		 * the current block. If the hash block itself is
 339		 * verified, zero is returned. If it isn't, this
 340		 * function returns 1 and we fall back to whole
 341		 * chain verification.
 342		 */
 343		r = verity_verify_level(v, io, block, 0, true, digest);
 344		if (likely(r <= 0))
 345			goto out;
 346	}
 347
 348	memcpy(digest, v->root_digest, v->digest_size);
 349
 350	for (i = v->levels - 1; i >= 0; i--) {
 351		r = verity_verify_level(v, io, block, i, false, digest);
 352		if (unlikely(r))
 353			goto out;
 354	}
 355out:
 356	if (!r && v->zero_digest)
 357		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
 358	else
 359		*is_zero = false;
 360
 361	return r;
 362}
 363
 364/*
 365 * Calculates the digest for the given bio
 366 */
 367static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
 368			       struct bvec_iter *iter, struct crypto_wait *wait)
 369{
 370	unsigned int todo = 1 << v->data_dev_block_bits;
 371	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 372	struct scatterlist sg;
 373	struct ahash_request *req = verity_io_hash_req(v, io);
 374
 375	do {
 376		int r;
 377		unsigned int len;
 378		struct bio_vec bv = bio_iter_iovec(bio, *iter);
 379
 380		sg_init_table(&sg, 1);
 381
 382		len = bv.bv_len;
 383
 384		if (likely(len >= todo))
 385			len = todo;
 386		/*
 387		 * Operating on a single page at a time looks suboptimal
 388		 * until you consider the typical block size is 4,096B.
 389		 * Going through this loops twice should be very rare.
 390		 */
 391		sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
 392		ahash_request_set_crypt(req, &sg, NULL, len);
 393		r = crypto_wait_req(crypto_ahash_update(req), wait);
 394
 395		if (unlikely(r < 0)) {
 396			DMERR("verity_for_io_block crypto op failed: %d", r);
 397			return r;
 398		}
 399
 400		bio_advance_iter(bio, iter, len);
 401		todo -= len;
 402	} while (todo);
 403
 404	return 0;
 405}
 406
 407/*
 408 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
 409 * starting from iter.
 410 */
 411int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
 412			struct bvec_iter *iter,
 413			int (*process)(struct dm_verity *v,
 414				       struct dm_verity_io *io, u8 *data,
 415				       size_t len))
 416{
 417	unsigned todo = 1 << v->data_dev_block_bits;
 418	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 419
 420	do {
 421		int r;
 422		u8 *page;
 423		unsigned len;
 424		struct bio_vec bv = bio_iter_iovec(bio, *iter);
 425
 426		page = kmap_atomic(bv.bv_page);
 427		len = bv.bv_len;
 428
 429		if (likely(len >= todo))
 430			len = todo;
 431
 432		r = process(v, io, page + bv.bv_offset, len);
 433		kunmap_atomic(page);
 434
 435		if (r < 0)
 436			return r;
 437
 438		bio_advance_iter(bio, iter, len);
 439		todo -= len;
 440	} while (todo);
 441
 442	return 0;
 443}
 444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 445static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
 446			  u8 *data, size_t len)
 447{
 448	memset(data, 0, len);
 449	return 0;
 450}
 451
 452/*
 453 * Moves the bio iter one data block forward.
 454 */
 455static inline void verity_bv_skip_block(struct dm_verity *v,
 456					struct dm_verity_io *io,
 457					struct bvec_iter *iter)
 458{
 459	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 460
 461	bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
 462}
 463
 464/*
 465 * Verify one "dm_verity_io" structure.
 466 */
 467static int verity_verify_io(struct dm_verity_io *io)
 468{
 469	bool is_zero;
 470	struct dm_verity *v = io->v;
 471	struct bvec_iter start;
 472	unsigned b;
 
 473	struct crypto_wait wait;
 
 
 
 
 
 
 
 
 
 
 
 
 474
 475	for (b = 0; b < io->n_blocks; b++) {
 476		int r;
 477		sector_t cur_block = io->block + b;
 478		struct ahash_request *req = verity_io_hash_req(v, io);
 479
 480		if (v->validated_blocks &&
 481		    likely(test_bit(cur_block, v->validated_blocks))) {
 482			verity_bv_skip_block(v, io, &io->iter);
 483			continue;
 484		}
 485
 486		r = verity_hash_for_block(v, io, cur_block,
 487					  verity_io_want_digest(v, io),
 488					  &is_zero);
 489		if (unlikely(r < 0))
 490			return r;
 491
 492		if (is_zero) {
 493			/*
 494			 * If we expect a zero block, don't validate, just
 495			 * return zeros.
 496			 */
 497			r = verity_for_bv_block(v, io, &io->iter,
 498						verity_bv_zero);
 499			if (unlikely(r < 0))
 500				return r;
 501
 502			continue;
 503		}
 504
 505		r = verity_hash_init(v, req, &wait);
 506		if (unlikely(r < 0))
 507			return r;
 508
 509		start = io->iter;
 510		r = verity_for_io_block(v, io, &io->iter, &wait);
 511		if (unlikely(r < 0))
 512			return r;
 513
 514		r = verity_hash_final(v, req, verity_io_real_digest(v, io),
 515					&wait);
 516		if (unlikely(r < 0))
 517			return r;
 518
 519		if (likely(memcmp(verity_io_real_digest(v, io),
 520				  verity_io_want_digest(v, io), v->digest_size) == 0)) {
 521			if (v->validated_blocks)
 522				set_bit(cur_block, v->validated_blocks);
 523			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 524		}
 525		else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
 526					   cur_block, NULL, &start) == 0)
 527			continue;
 528		else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
 529					   cur_block))
 530			return -EIO;
 531	}
 532
 533	return 0;
 534}
 535
 536/*
 
 
 
 
 
 
 
 
 
 537 * End one "io" structure with a given error.
 538 */
 539static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
 540{
 541	struct dm_verity *v = io->v;
 542	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 543
 544	bio->bi_end_io = io->orig_bi_end_io;
 545	bio->bi_status = status;
 546
 547	verity_fec_finish_io(io);
 
 548
 549	bio_endio(bio);
 550}
 551
 552static void verity_work(struct work_struct *w)
 553{
 554	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
 555
 
 
 556	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
 557}
 558
 559static void verity_end_io(struct bio *bio)
 560{
 561	struct dm_verity_io *io = bio->bi_private;
 562
 563	if (bio->bi_status && !verity_fec_is_enabled(io->v)) {
 
 
 
 564		verity_finish_io(io, bio->bi_status);
 565		return;
 566	}
 567
 568	INIT_WORK(&io->work, verity_work);
 569	queue_work(io->v->verify_wq, &io->work);
 570}
 571
 572/*
 573 * Prefetch buffers for the specified io.
 574 * The root buffer is not prefetched, it is assumed that it will be cached
 575 * all the time.
 576 */
 577static void verity_prefetch_io(struct work_struct *work)
 578{
 579	struct dm_verity_prefetch_work *pw =
 580		container_of(work, struct dm_verity_prefetch_work, work);
 581	struct dm_verity *v = pw->v;
 582	int i;
 583
 584	for (i = v->levels - 2; i >= 0; i--) {
 585		sector_t hash_block_start;
 586		sector_t hash_block_end;
 
 587		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
 588		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
 
 589		if (!i) {
 590			unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster);
 591
 592			cluster >>= v->data_dev_block_bits;
 593			if (unlikely(!cluster))
 594				goto no_prefetch_cluster;
 595
 596			if (unlikely(cluster & (cluster - 1)))
 597				cluster = 1 << __fls(cluster);
 598
 599			hash_block_start &= ~(sector_t)(cluster - 1);
 600			hash_block_end |= cluster - 1;
 601			if (unlikely(hash_block_end >= v->hash_blocks))
 602				hash_block_end = v->hash_blocks - 1;
 603		}
 604no_prefetch_cluster:
 605		dm_bufio_prefetch(v->bufio, hash_block_start,
 606				  hash_block_end - hash_block_start + 1);
 607	}
 608
 609	kfree(pw);
 610}
 611
 612static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
 613{
 
 
 614	struct dm_verity_prefetch_work *pw;
 615
 
 
 
 
 
 
 
 
 
 
 
 
 616	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
 617		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 618
 619	if (!pw)
 620		return;
 621
 622	INIT_WORK(&pw->work, verity_prefetch_io);
 623	pw->v = v;
 624	pw->block = io->block;
 625	pw->n_blocks = io->n_blocks;
 626	queue_work(v->verify_wq, &pw->work);
 627}
 628
 629/*
 630 * Bio map function. It allocates dm_verity_io structure and bio vector and
 631 * fills them. Then it issues prefetches and the I/O.
 632 */
 633static int verity_map(struct dm_target *ti, struct bio *bio)
 634{
 635	struct dm_verity *v = ti->private;
 636	struct dm_verity_io *io;
 637
 638	bio_set_dev(bio, v->data_dev->bdev);
 639	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
 640
 641	if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
 642	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
 643		DMERR_LIMIT("unaligned io");
 644		return DM_MAPIO_KILL;
 645	}
 646
 647	if (bio_end_sector(bio) >>
 648	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
 649		DMERR_LIMIT("io out of range");
 650		return DM_MAPIO_KILL;
 651	}
 652
 653	if (bio_data_dir(bio) == WRITE)
 654		return DM_MAPIO_KILL;
 655
 656	io = dm_per_bio_data(bio, ti->per_io_data_size);
 657	io->v = v;
 658	io->orig_bi_end_io = bio->bi_end_io;
 659	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
 660	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
 661
 662	bio->bi_end_io = verity_end_io;
 663	bio->bi_private = io;
 664	io->iter = bio->bi_iter;
 665
 666	verity_fec_init_io(io);
 667
 668	verity_submit_prefetch(v, io);
 669
 670	generic_make_request(bio);
 671
 672	return DM_MAPIO_SUBMITTED;
 673}
 674
 675/*
 676 * Status: V (valid) or C (corruption found)
 677 */
 678static void verity_status(struct dm_target *ti, status_type_t type,
 679			  unsigned status_flags, char *result, unsigned maxlen)
 680{
 681	struct dm_verity *v = ti->private;
 682	unsigned args = 0;
 683	unsigned sz = 0;
 684	unsigned x;
 685
 686	switch (type) {
 687	case STATUSTYPE_INFO:
 688		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
 689		break;
 690	case STATUSTYPE_TABLE:
 691		DMEMIT("%u %s %s %u %u %llu %llu %s ",
 692			v->version,
 693			v->data_dev->name,
 694			v->hash_dev->name,
 695			1 << v->data_dev_block_bits,
 696			1 << v->hash_dev_block_bits,
 697			(unsigned long long)v->data_blocks,
 698			(unsigned long long)v->hash_start,
 699			v->alg_name
 700			);
 701		for (x = 0; x < v->digest_size; x++)
 702			DMEMIT("%02x", v->root_digest[x]);
 703		DMEMIT(" ");
 704		if (!v->salt_size)
 705			DMEMIT("-");
 706		else
 707			for (x = 0; x < v->salt_size; x++)
 708				DMEMIT("%02x", v->salt[x]);
 709		if (v->mode != DM_VERITY_MODE_EIO)
 710			args++;
 711		if (verity_fec_is_enabled(v))
 712			args += DM_VERITY_OPTS_FEC;
 713		if (v->zero_digest)
 714			args++;
 715		if (v->validated_blocks)
 716			args++;
 
 
 717		if (v->signature_key_desc)
 718			args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
 719		if (!args)
 720			return;
 721		DMEMIT(" %u", args);
 722		if (v->mode != DM_VERITY_MODE_EIO) {
 723			DMEMIT(" ");
 724			switch (v->mode) {
 725			case DM_VERITY_MODE_LOGGING:
 726				DMEMIT(DM_VERITY_OPT_LOGGING);
 727				break;
 728			case DM_VERITY_MODE_RESTART:
 729				DMEMIT(DM_VERITY_OPT_RESTART);
 730				break;
 
 
 
 731			default:
 732				BUG();
 733			}
 734		}
 735		if (v->zero_digest)
 736			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
 737		if (v->validated_blocks)
 738			DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
 
 
 739		sz = verity_fec_status_table(v, sz, result, maxlen);
 740		if (v->signature_key_desc)
 741			DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
 742				" %s", v->signature_key_desc);
 743		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 744	}
 745}
 746
 747static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
 748{
 749	struct dm_verity *v = ti->private;
 750
 751	*bdev = v->data_dev->bdev;
 752
 753	if (v->data_start ||
 754	    ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
 755		return 1;
 756	return 0;
 757}
 758
 759static int verity_iterate_devices(struct dm_target *ti,
 760				  iterate_devices_callout_fn fn, void *data)
 761{
 762	struct dm_verity *v = ti->private;
 763
 764	return fn(ti, v->data_dev, v->data_start, ti->len, data);
 765}
 766
 767static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
 768{
 769	struct dm_verity *v = ti->private;
 770
 771	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
 772		limits->logical_block_size = 1 << v->data_dev_block_bits;
 773
 774	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
 775		limits->physical_block_size = 1 << v->data_dev_block_bits;
 776
 777	blk_limits_io_min(limits, limits->logical_block_size);
 778}
 779
 780static void verity_dtr(struct dm_target *ti)
 781{
 782	struct dm_verity *v = ti->private;
 783
 784	if (v->verify_wq)
 785		destroy_workqueue(v->verify_wq);
 786
 
 
 
 
 787	if (v->bufio)
 788		dm_bufio_client_destroy(v->bufio);
 789
 790	kvfree(v->validated_blocks);
 791	kfree(v->salt);
 792	kfree(v->root_digest);
 793	kfree(v->zero_digest);
 794
 795	if (v->tfm)
 796		crypto_free_ahash(v->tfm);
 797
 798	kfree(v->alg_name);
 799
 800	if (v->hash_dev)
 801		dm_put_device(ti, v->hash_dev);
 802
 803	if (v->data_dev)
 804		dm_put_device(ti, v->data_dev);
 805
 806	verity_fec_dtr(v);
 807
 808	kfree(v->signature_key_desc);
 809
 
 
 
 810	kfree(v);
 
 
 811}
 812
 813static int verity_alloc_most_once(struct dm_verity *v)
 814{
 815	struct dm_target *ti = v->ti;
 816
 817	/* the bitset can only handle INT_MAX blocks */
 818	if (v->data_blocks > INT_MAX) {
 819		ti->error = "device too large to use check_at_most_once";
 820		return -E2BIG;
 821	}
 822
 823	v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
 824				       sizeof(unsigned long),
 825				       GFP_KERNEL);
 826	if (!v->validated_blocks) {
 827		ti->error = "failed to allocate bitset for check_at_most_once";
 828		return -ENOMEM;
 829	}
 830
 831	return 0;
 832}
 833
 834static int verity_alloc_zero_digest(struct dm_verity *v)
 835{
 836	int r = -ENOMEM;
 837	struct ahash_request *req;
 838	u8 *zero_data;
 839
 840	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
 841
 842	if (!v->zero_digest)
 843		return r;
 844
 845	req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
 846
 847	if (!req)
 848		return r; /* verity_dtr will free zero_digest */
 849
 850	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
 851
 852	if (!zero_data)
 853		goto out;
 854
 855	r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
 856			v->zero_digest);
 857
 858out:
 859	kfree(req);
 860	kfree(zero_data);
 861
 862	return r;
 863}
 864
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 865static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
 866				 struct dm_verity_sig_opts *verify_args)
 
 867{
 868	int r;
 869	unsigned argc;
 870	struct dm_target *ti = v->ti;
 871	const char *arg_name;
 872
 873	static const struct dm_arg _args[] = {
 874		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
 875	};
 876
 877	r = dm_read_arg_group(_args, as, &argc, &ti->error);
 878	if (r)
 879		return -EINVAL;
 880
 881	if (!argc)
 882		return 0;
 883
 884	do {
 885		arg_name = dm_shift_arg(as);
 886		argc--;
 887
 888		if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) {
 889			v->mode = DM_VERITY_MODE_LOGGING;
 890			continue;
 891
 892		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) {
 893			v->mode = DM_VERITY_MODE_RESTART;
 
 
 894			continue;
 895
 896		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
 
 
 897			r = verity_alloc_zero_digest(v);
 898			if (r) {
 899				ti->error = "Cannot allocate zero digest";
 900				return r;
 901			}
 902			continue;
 903
 904		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
 
 
 905			r = verity_alloc_most_once(v);
 906			if (r)
 907				return r;
 908			continue;
 909
 
 
 
 
 
 910		} else if (verity_is_fec_opt_arg(arg_name)) {
 
 
 911			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
 912			if (r)
 913				return r;
 914			continue;
 
 915		} else if (verity_verify_is_sig_opt_arg(arg_name)) {
 
 
 916			r = verity_verify_sig_parse_opt_args(as, v,
 917							     verify_args,
 918							     &argc, arg_name);
 919			if (r)
 920				return r;
 921			continue;
 922
 
 
 
 
 
 
 
 
 923		}
 924
 
 925		ti->error = "Unrecognized verity feature request";
 926		return -EINVAL;
 927	} while (argc && !r);
 928
 929	return r;
 930}
 931
 932/*
 933 * Target parameters:
 934 *	<version>	The current format is version 1.
 935 *			Vsn 0 is compatible with original Chromium OS releases.
 936 *	<data device>
 937 *	<hash device>
 938 *	<data block size>
 939 *	<hash block size>
 940 *	<the number of data blocks>
 941 *	<hash start block>
 942 *	<algorithm>
 943 *	<digest>
 944 *	<salt>		Hex string or "-" if no salt.
 945 */
 946static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
 947{
 948	struct dm_verity *v;
 949	struct dm_verity_sig_opts verify_args = {0};
 950	struct dm_arg_set as;
 951	unsigned int num;
 952	unsigned long long num_ll;
 953	int r;
 954	int i;
 955	sector_t hash_position;
 956	char dummy;
 957	char *root_hash_digest_to_validate;
 958
 959	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
 960	if (!v) {
 961		ti->error = "Cannot allocate verity structure";
 962		return -ENOMEM;
 963	}
 964	ti->private = v;
 965	v->ti = ti;
 966
 967	r = verity_fec_ctr_alloc(v);
 968	if (r)
 969		goto bad;
 970
 971	if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
 972		ti->error = "Device must be readonly";
 973		r = -EINVAL;
 974		goto bad;
 975	}
 976
 977	if (argc < 10) {
 978		ti->error = "Not enough arguments";
 979		r = -EINVAL;
 980		goto bad;
 981	}
 982
 
 
 
 
 
 
 
 
 
 983	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
 984	    num > 1) {
 985		ti->error = "Invalid version";
 986		r = -EINVAL;
 987		goto bad;
 988	}
 989	v->version = num;
 990
 991	r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
 992	if (r) {
 993		ti->error = "Data device lookup failed";
 994		goto bad;
 995	}
 996
 997	r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
 998	if (r) {
 999		ti->error = "Hash device lookup failed";
1000		goto bad;
1001	}
1002
1003	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1004	    !num || (num & (num - 1)) ||
1005	    num < bdev_logical_block_size(v->data_dev->bdev) ||
1006	    num > PAGE_SIZE) {
1007		ti->error = "Invalid data device block size";
1008		r = -EINVAL;
1009		goto bad;
1010	}
1011	v->data_dev_block_bits = __ffs(num);
1012
1013	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1014	    !num || (num & (num - 1)) ||
1015	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
1016	    num > INT_MAX) {
1017		ti->error = "Invalid hash device block size";
1018		r = -EINVAL;
1019		goto bad;
1020	}
1021	v->hash_dev_block_bits = __ffs(num);
1022
1023	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1024	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1025	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1026		ti->error = "Invalid data blocks";
1027		r = -EINVAL;
1028		goto bad;
1029	}
1030	v->data_blocks = num_ll;
1031
1032	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1033		ti->error = "Data device is too small";
1034		r = -EINVAL;
1035		goto bad;
1036	}
1037
1038	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1039	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1040	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1041		ti->error = "Invalid hash start";
1042		r = -EINVAL;
1043		goto bad;
1044	}
1045	v->hash_start = num_ll;
1046
1047	v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1048	if (!v->alg_name) {
1049		ti->error = "Cannot allocate algorithm name";
1050		r = -ENOMEM;
1051		goto bad;
1052	}
1053
1054	v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0);
 
1055	if (IS_ERR(v->tfm)) {
1056		ti->error = "Cannot initialize hash function";
1057		r = PTR_ERR(v->tfm);
1058		v->tfm = NULL;
1059		goto bad;
1060	}
1061
1062	/*
1063	 * dm-verity performance can vary greatly depending on which hash
1064	 * algorithm implementation is used.  Help people debug performance
1065	 * problems by logging the ->cra_driver_name.
1066	 */
1067	DMINFO("%s using implementation \"%s\"", v->alg_name,
1068	       crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1069
1070	v->digest_size = crypto_ahash_digestsize(v->tfm);
1071	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1072		ti->error = "Digest size too big";
1073		r = -EINVAL;
1074		goto bad;
1075	}
1076	v->ahash_reqsize = sizeof(struct ahash_request) +
1077		crypto_ahash_reqsize(v->tfm);
1078
1079	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1080	if (!v->root_digest) {
1081		ti->error = "Cannot allocate root digest";
1082		r = -ENOMEM;
1083		goto bad;
1084	}
1085	if (strlen(argv[8]) != v->digest_size * 2 ||
1086	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
1087		ti->error = "Invalid root digest";
1088		r = -EINVAL;
1089		goto bad;
1090	}
1091	root_hash_digest_to_validate = argv[8];
1092
1093	if (strcmp(argv[9], "-")) {
1094		v->salt_size = strlen(argv[9]) / 2;
1095		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1096		if (!v->salt) {
1097			ti->error = "Cannot allocate salt";
1098			r = -ENOMEM;
1099			goto bad;
1100		}
1101		if (strlen(argv[9]) != v->salt_size * 2 ||
1102		    hex2bin(v->salt, argv[9], v->salt_size)) {
1103			ti->error = "Invalid salt";
1104			r = -EINVAL;
1105			goto bad;
1106		}
1107	}
1108
1109	argv += 10;
1110	argc -= 10;
1111
1112	/* Optional parameters */
1113	if (argc) {
1114		as.argc = argc;
1115		as.argv = argv;
1116
1117		r = verity_parse_opt_args(&as, v, &verify_args);
1118		if (r < 0)
1119			goto bad;
1120	}
1121
1122	/* Root hash signature is  a optional parameter*/
1123	r = verity_verify_root_hash(root_hash_digest_to_validate,
1124				    strlen(root_hash_digest_to_validate),
1125				    verify_args.sig,
1126				    verify_args.sig_size);
1127	if (r < 0) {
1128		ti->error = "Root hash verification failed";
1129		goto bad;
1130	}
1131	v->hash_per_block_bits =
1132		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1133
1134	v->levels = 0;
1135	if (v->data_blocks)
1136		while (v->hash_per_block_bits * v->levels < 64 &&
1137		       (unsigned long long)(v->data_blocks - 1) >>
1138		       (v->hash_per_block_bits * v->levels))
1139			v->levels++;
1140
1141	if (v->levels > DM_VERITY_MAX_LEVELS) {
1142		ti->error = "Too many tree levels";
1143		r = -E2BIG;
1144		goto bad;
1145	}
1146
1147	hash_position = v->hash_start;
1148	for (i = v->levels - 1; i >= 0; i--) {
1149		sector_t s;
 
1150		v->hash_level_block[i] = hash_position;
1151		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1152					>> ((i + 1) * v->hash_per_block_bits);
1153		if (hash_position + s < hash_position) {
1154			ti->error = "Hash device offset overflow";
1155			r = -E2BIG;
1156			goto bad;
1157		}
1158		hash_position += s;
1159	}
1160	v->hash_blocks = hash_position;
1161
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1162	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1163		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1164		dm_bufio_alloc_callback, NULL);
 
1165	if (IS_ERR(v->bufio)) {
1166		ti->error = "Cannot initialize dm-bufio";
1167		r = PTR_ERR(v->bufio);
1168		v->bufio = NULL;
1169		goto bad;
1170	}
1171
1172	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1173		ti->error = "Hash device is too small";
1174		r = -E2BIG;
1175		goto bad;
1176	}
1177
1178	/* WQ_UNBOUND greatly improves performance when running on ramdisk */
1179	v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
 
 
 
 
 
 
 
 
1180	if (!v->verify_wq) {
1181		ti->error = "Cannot allocate workqueue";
1182		r = -ENOMEM;
1183		goto bad;
1184	}
1185
1186	ti->per_io_data_size = sizeof(struct dm_verity_io) +
1187				v->ahash_reqsize + v->digest_size * 2;
1188
1189	r = verity_fec_ctr(v);
1190	if (r)
1191		goto bad;
1192
1193	ti->per_io_data_size = roundup(ti->per_io_data_size,
1194				       __alignof__(struct dm_verity_io));
1195
1196	verity_verify_sig_opts_cleanup(&verify_args);
1197
 
 
1198	return 0;
1199
1200bad:
1201
1202	verity_verify_sig_opts_cleanup(&verify_args);
 
1203	verity_dtr(ti);
1204
1205	return r;
1206}
1207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1208static struct target_type verity_target = {
1209	.name		= "verity",
1210	.version	= {1, 5, 0},
 
1211	.module		= THIS_MODULE,
1212	.ctr		= verity_ctr,
1213	.dtr		= verity_dtr,
1214	.map		= verity_map,
1215	.status		= verity_status,
1216	.prepare_ioctl	= verity_prepare_ioctl,
1217	.iterate_devices = verity_iterate_devices,
1218	.io_hints	= verity_io_hints,
1219};
1220
1221static int __init dm_verity_init(void)
1222{
1223	int r;
1224
1225	r = dm_register_target(&verity_target);
1226	if (r < 0)
1227		DMERR("register failed %d", r);
1228
1229	return r;
1230}
1231
1232static void __exit dm_verity_exit(void)
1233{
1234	dm_unregister_target(&verity_target);
1235}
1236
1237module_init(dm_verity_init);
1238module_exit(dm_verity_exit);
1239
1240MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1241MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1242MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1243MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1244MODULE_LICENSE("GPL");