Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 Red Hat, Inc.
   4 *
   5 * Author: Mikulas Patocka <mpatocka@redhat.com>
   6 *
   7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
   8 *
 
 
   9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
  10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
  11 * hash device. Setting this greatly improves performance when data and hash
  12 * are on the same disk on different partitions on devices with poor random
  13 * access behavior.
  14 */
  15
  16#include "dm-verity.h"
  17#include "dm-verity-fec.h"
  18#include "dm-verity-verify-sig.h"
  19#include "dm-audit.h"
  20#include <linux/module.h>
  21#include <linux/reboot.h>
  22#include <linux/scatterlist.h>
  23#include <linux/string.h>
  24#include <linux/jump_label.h>
  25
  26#define DM_MSG_PREFIX			"verity"
  27
  28#define DM_VERITY_ENV_LENGTH		42
  29#define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
  30
  31#define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
  32
  33#define DM_VERITY_MAX_CORRUPTED_ERRS	100
  34
  35#define DM_VERITY_OPT_LOGGING		"ignore_corruption"
  36#define DM_VERITY_OPT_RESTART		"restart_on_corruption"
  37#define DM_VERITY_OPT_PANIC		"panic_on_corruption"
  38#define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
  39#define DM_VERITY_OPT_AT_MOST_ONCE	"check_at_most_once"
  40#define DM_VERITY_OPT_TASKLET_VERIFY	"try_verify_in_tasklet"
  41
  42#define DM_VERITY_OPTS_MAX		(4 + DM_VERITY_OPTS_FEC + \
  43					 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
  44
  45static unsigned int dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
  46
  47module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, 0644);
  48
  49static DEFINE_STATIC_KEY_FALSE(use_tasklet_enabled);
  50
  51struct dm_verity_prefetch_work {
  52	struct work_struct work;
  53	struct dm_verity *v;
  54	sector_t block;
  55	unsigned int n_blocks;
  56};
  57
  58/*
  59 * Auxiliary structure appended to each dm-bufio buffer. If the value
  60 * hash_verified is nonzero, hash of the block has been verified.
  61 *
  62 * The variable hash_verified is set to 0 when allocating the buffer, then
  63 * it can be changed to 1 and it is never reset to 0 again.
  64 *
  65 * There is no lock around this value, a race condition can at worst cause
  66 * that multiple processes verify the hash of the same buffer simultaneously
  67 * and write 1 to hash_verified simultaneously.
  68 * This condition is harmless, so we don't need locking.
  69 */
  70struct buffer_aux {
  71	int hash_verified;
  72};
  73
  74/*
  75 * Initialize struct buffer_aux for a freshly created buffer.
  76 */
  77static void dm_bufio_alloc_callback(struct dm_buffer *buf)
  78{
  79	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
  80
  81	aux->hash_verified = 0;
  82}
  83
  84/*
  85 * Translate input sector number to the sector number on the target device.
  86 */
  87static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
  88{
  89	return v->data_start + dm_target_offset(v->ti, bi_sector);
  90}
  91
  92/*
  93 * Return hash position of a specified block at a specified tree level
  94 * (0 is the lowest level).
  95 * The lowest "hash_per_block_bits"-bits of the result denote hash position
  96 * inside a hash block. The remaining bits denote location of the hash block.
  97 */
  98static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
  99					 int level)
 100{
 101	return block >> (level * v->hash_per_block_bits);
 102}
 103
 104static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
 105				const u8 *data, size_t len,
 106				struct crypto_wait *wait)
 107{
 108	struct scatterlist sg;
 109
 110	if (likely(!is_vmalloc_addr(data))) {
 111		sg_init_one(&sg, data, len);
 112		ahash_request_set_crypt(req, &sg, NULL, len);
 113		return crypto_wait_req(crypto_ahash_update(req), wait);
 114	}
 115
 116	do {
 117		int r;
 118		size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
 119
 120		flush_kernel_vmap_range((void *)data, this_step);
 121		sg_init_table(&sg, 1);
 122		sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
 123		ahash_request_set_crypt(req, &sg, NULL, this_step);
 124		r = crypto_wait_req(crypto_ahash_update(req), wait);
 125		if (unlikely(r))
 126			return r;
 127		data += this_step;
 128		len -= this_step;
 129	} while (len);
 130
 131	return 0;
 132}
 133
 134/*
 135 * Wrapper for crypto_ahash_init, which handles verity salting.
 136 */
 137static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
 138				struct crypto_wait *wait, bool may_sleep)
 139{
 140	int r;
 141
 142	ahash_request_set_tfm(req, v->tfm);
 143	ahash_request_set_callback(req,
 144		may_sleep ? CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG : 0,
 145		crypto_req_done, (void *)wait);
 146	crypto_init_wait(wait);
 147
 148	r = crypto_wait_req(crypto_ahash_init(req), wait);
 149
 150	if (unlikely(r < 0)) {
 151		if (r != -ENOMEM)
 152			DMERR("crypto_ahash_init failed: %d", r);
 153		return r;
 154	}
 155
 156	if (likely(v->salt_size && (v->version >= 1)))
 157		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 158
 159	return r;
 160}
 161
 162static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
 163			     u8 *digest, struct crypto_wait *wait)
 164{
 165	int r;
 166
 167	if (unlikely(v->salt_size && (!v->version))) {
 168		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
 169
 170		if (r < 0) {
 171			DMERR("%s failed updating salt: %d", __func__, r);
 172			goto out;
 173		}
 174	}
 175
 176	ahash_request_set_crypt(req, NULL, digest, 0);
 177	r = crypto_wait_req(crypto_ahash_final(req), wait);
 178out:
 
 
 179	return r;
 180}
 181
 182int verity_hash(struct dm_verity *v, struct ahash_request *req,
 183		const u8 *data, size_t len, u8 *digest, bool may_sleep)
 184{
 185	int r;
 186	struct crypto_wait wait;
 187
 188	r = verity_hash_init(v, req, &wait, may_sleep);
 189	if (unlikely(r < 0))
 190		goto out;
 191
 192	r = verity_hash_update(v, req, data, len, &wait);
 193	if (unlikely(r < 0))
 194		goto out;
 195
 196	r = verity_hash_final(v, req, digest, &wait);
 197
 198out:
 199	return r;
 200}
 201
 202static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
 203				 sector_t *hash_block, unsigned int *offset)
 204{
 205	sector_t position = verity_position_at_level(v, block, level);
 206	unsigned int idx;
 207
 208	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
 209
 210	if (!offset)
 211		return;
 212
 213	idx = position & ((1 << v->hash_per_block_bits) - 1);
 214	if (!v->version)
 215		*offset = idx * v->digest_size;
 216	else
 217		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
 218}
 219
 220/*
 221 * Handle verification errors.
 222 */
 223static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
 224			     unsigned long long block)
 225{
 226	char verity_env[DM_VERITY_ENV_LENGTH];
 227	char *envp[] = { verity_env, NULL };
 228	const char *type_str = "";
 229	struct mapped_device *md = dm_table_get_md(v->ti->table);
 230
 231	/* Corruption should be visible in device status in all modes */
 232	v->hash_failed = true;
 233
 234	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
 235		goto out;
 236
 237	v->corrupted_errs++;
 238
 239	switch (type) {
 240	case DM_VERITY_BLOCK_TYPE_DATA:
 241		type_str = "data";
 242		break;
 243	case DM_VERITY_BLOCK_TYPE_METADATA:
 244		type_str = "metadata";
 245		break;
 246	default:
 247		BUG();
 248	}
 249
 250	DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
 251		    type_str, block);
 252
 253	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS) {
 254		DMERR("%s: reached maximum errors", v->data_dev->name);
 255		dm_audit_log_target(DM_MSG_PREFIX, "max-corrupted-errors", v->ti, 0);
 256	}
 257
 258	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
 259		DM_VERITY_ENV_VAR_NAME, type, block);
 260
 261	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
 262
 263out:
 264	if (v->mode == DM_VERITY_MODE_LOGGING)
 265		return 0;
 266
 267	if (v->mode == DM_VERITY_MODE_RESTART)
 268		kernel_restart("dm-verity device corrupted");
 269
 270	if (v->mode == DM_VERITY_MODE_PANIC)
 271		panic("dm-verity device corrupted");
 272
 273	return 1;
 274}
 275
 276/*
 277 * Verify hash of a metadata block pertaining to the specified data block
 278 * ("block" argument) at a specified level ("level" argument).
 279 *
 280 * On successful return, verity_io_want_digest(v, io) contains the hash value
 281 * for a lower tree level or for the data block (if we're at the lowest level).
 282 *
 283 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
 284 * If "skip_unverified" is false, unverified buffer is hashed and verified
 285 * against current value of verity_io_want_digest(v, io).
 286 */
 287static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
 288			       sector_t block, int level, bool skip_unverified,
 289			       u8 *want_digest)
 290{
 291	struct dm_buffer *buf;
 292	struct buffer_aux *aux;
 293	u8 *data;
 294	int r;
 295	sector_t hash_block;
 296	unsigned int offset;
 297
 298	verity_hash_at_level(v, block, level, &hash_block, &offset);
 299
 300	if (static_branch_unlikely(&use_tasklet_enabled) && io->in_tasklet) {
 301		data = dm_bufio_get(v->bufio, hash_block, &buf);
 302		if (data == NULL) {
 303			/*
 304			 * In tasklet and the hash was not in the bufio cache.
 305			 * Return early and resume execution from a work-queue
 306			 * to read the hash from disk.
 307			 */
 308			return -EAGAIN;
 309		}
 310	} else
 311		data = dm_bufio_read(v->bufio, hash_block, &buf);
 312
 313	if (IS_ERR(data))
 314		return PTR_ERR(data);
 315
 316	aux = dm_bufio_get_aux_data(buf);
 317
 318	if (!aux->hash_verified) {
 319		if (skip_unverified) {
 320			r = 1;
 321			goto release_ret_r;
 322		}
 323
 324		r = verity_hash(v, verity_io_hash_req(v, io),
 325				data, 1 << v->hash_dev_block_bits,
 326				verity_io_real_digest(v, io), !io->in_tasklet);
 327		if (unlikely(r < 0))
 328			goto release_ret_r;
 329
 330		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
 331				  v->digest_size) == 0))
 332			aux->hash_verified = 1;
 333		else if (static_branch_unlikely(&use_tasklet_enabled) &&
 334			 io->in_tasklet) {
 335			/*
 336			 * Error handling code (FEC included) cannot be run in a
 337			 * tasklet since it may sleep, so fallback to work-queue.
 338			 */
 339			r = -EAGAIN;
 340			goto release_ret_r;
 341		} else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_METADATA,
 342					     hash_block, data, NULL) == 0)
 343			aux->hash_verified = 1;
 344		else if (verity_handle_err(v,
 345					   DM_VERITY_BLOCK_TYPE_METADATA,
 346					   hash_block)) {
 347			struct bio *bio =
 348				dm_bio_from_per_bio_data(io,
 349							 v->ti->per_io_data_size);
 350			dm_audit_log_bio(DM_MSG_PREFIX, "verify-metadata", bio,
 351					 block, 0);
 352			r = -EIO;
 353			goto release_ret_r;
 354		}
 355	}
 356
 357	data += offset;
 358	memcpy(want_digest, data, v->digest_size);
 359	r = 0;
 360
 361release_ret_r:
 362	dm_bufio_release(buf);
 363	return r;
 364}
 365
 366/*
 367 * Find a hash for a given block, write it to digest and verify the integrity
 368 * of the hash tree if necessary.
 369 */
 370int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
 371			  sector_t block, u8 *digest, bool *is_zero)
 372{
 373	int r = 0, i;
 374
 375	if (likely(v->levels)) {
 376		/*
 377		 * First, we try to get the requested hash for
 378		 * the current block. If the hash block itself is
 379		 * verified, zero is returned. If it isn't, this
 380		 * function returns 1 and we fall back to whole
 381		 * chain verification.
 382		 */
 383		r = verity_verify_level(v, io, block, 0, true, digest);
 384		if (likely(r <= 0))
 385			goto out;
 386	}
 387
 388	memcpy(digest, v->root_digest, v->digest_size);
 389
 390	for (i = v->levels - 1; i >= 0; i--) {
 391		r = verity_verify_level(v, io, block, i, false, digest);
 392		if (unlikely(r))
 393			goto out;
 394	}
 395out:
 396	if (!r && v->zero_digest)
 397		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
 398	else
 399		*is_zero = false;
 400
 401	return r;
 402}
 403
 404/*
 405 * Calculates the digest for the given bio
 406 */
 407static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
 408			       struct bvec_iter *iter, struct crypto_wait *wait)
 409{
 410	unsigned int todo = 1 << v->data_dev_block_bits;
 411	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 412	struct scatterlist sg;
 413	struct ahash_request *req = verity_io_hash_req(v, io);
 414
 415	do {
 416		int r;
 417		unsigned int len;
 418		struct bio_vec bv = bio_iter_iovec(bio, *iter);
 419
 420		sg_init_table(&sg, 1);
 421
 422		len = bv.bv_len;
 423
 424		if (likely(len >= todo))
 425			len = todo;
 426		/*
 427		 * Operating on a single page at a time looks suboptimal
 428		 * until you consider the typical block size is 4,096B.
 429		 * Going through this loops twice should be very rare.
 430		 */
 431		sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
 432		ahash_request_set_crypt(req, &sg, NULL, len);
 433		r = crypto_wait_req(crypto_ahash_update(req), wait);
 434
 435		if (unlikely(r < 0)) {
 436			DMERR("%s crypto op failed: %d", __func__, r);
 437			return r;
 438		}
 439
 440		bio_advance_iter(bio, iter, len);
 441		todo -= len;
 442	} while (todo);
 443
 444	return 0;
 445}
 446
 447/*
 448 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
 449 * starting from iter.
 450 */
 451int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
 452			struct bvec_iter *iter,
 453			int (*process)(struct dm_verity *v,
 454				       struct dm_verity_io *io, u8 *data,
 455				       size_t len))
 456{
 457	unsigned int todo = 1 << v->data_dev_block_bits;
 458	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 459
 460	do {
 461		int r;
 462		u8 *page;
 463		unsigned int len;
 464		struct bio_vec bv = bio_iter_iovec(bio, *iter);
 465
 466		page = bvec_kmap_local(&bv);
 467		len = bv.bv_len;
 468
 469		if (likely(len >= todo))
 470			len = todo;
 471
 472		r = process(v, io, page, len);
 473		kunmap_local(page);
 474
 475		if (r < 0)
 476			return r;
 477
 478		bio_advance_iter(bio, iter, len);
 479		todo -= len;
 480	} while (todo);
 481
 482	return 0;
 483}
 484
 485static int verity_recheck_copy(struct dm_verity *v, struct dm_verity_io *io,
 486			       u8 *data, size_t len)
 487{
 488	memcpy(data, io->recheck_buffer, len);
 489	io->recheck_buffer += len;
 490
 491	return 0;
 492}
 493
 494static noinline int verity_recheck(struct dm_verity *v, struct dm_verity_io *io,
 495				   struct bvec_iter start, sector_t cur_block)
 496{
 497	struct page *page;
 498	void *buffer;
 499	int r;
 500	struct dm_io_request io_req;
 501	struct dm_io_region io_loc;
 502
 503	page = mempool_alloc(&v->recheck_pool, GFP_NOIO);
 504	buffer = page_to_virt(page);
 505
 506	io_req.bi_opf = REQ_OP_READ;
 507	io_req.mem.type = DM_IO_KMEM;
 508	io_req.mem.ptr.addr = buffer;
 509	io_req.notify.fn = NULL;
 510	io_req.client = v->io;
 511	io_loc.bdev = v->data_dev->bdev;
 512	io_loc.sector = cur_block << (v->data_dev_block_bits - SECTOR_SHIFT);
 513	io_loc.count = 1 << (v->data_dev_block_bits - SECTOR_SHIFT);
 514	r = dm_io(&io_req, 1, &io_loc, NULL);
 515	if (unlikely(r))
 516		goto free_ret;
 517
 518	r = verity_hash(v, verity_io_hash_req(v, io), buffer,
 519			1 << v->data_dev_block_bits,
 520			verity_io_real_digest(v, io), true);
 521	if (unlikely(r))
 522		goto free_ret;
 523
 524	if (memcmp(verity_io_real_digest(v, io),
 525		   verity_io_want_digest(v, io), v->digest_size)) {
 526		r = -EIO;
 527		goto free_ret;
 528	}
 529
 530	io->recheck_buffer = buffer;
 531	r = verity_for_bv_block(v, io, &start, verity_recheck_copy);
 532	if (unlikely(r))
 533		goto free_ret;
 534
 535	r = 0;
 536free_ret:
 537	mempool_free(page, &v->recheck_pool);
 538
 539	return r;
 540}
 541
 542static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
 543			  u8 *data, size_t len)
 544{
 545	memset(data, 0, len);
 546	return 0;
 547}
 548
 549/*
 550 * Moves the bio iter one data block forward.
 551 */
 552static inline void verity_bv_skip_block(struct dm_verity *v,
 553					struct dm_verity_io *io,
 554					struct bvec_iter *iter)
 555{
 556	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 557
 558	bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
 559}
 560
 561/*
 562 * Verify one "dm_verity_io" structure.
 563 */
 564static int verity_verify_io(struct dm_verity_io *io)
 565{
 566	bool is_zero;
 567	struct dm_verity *v = io->v;
 568	struct bvec_iter start;
 569	struct bvec_iter iter_copy;
 570	struct bvec_iter *iter;
 571	struct crypto_wait wait;
 572	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 573	unsigned int b;
 574
 575	if (static_branch_unlikely(&use_tasklet_enabled) && io->in_tasklet) {
 576		/*
 577		 * Copy the iterator in case we need to restart
 578		 * verification in a work-queue.
 579		 */
 580		iter_copy = io->iter;
 581		iter = &iter_copy;
 582	} else
 583		iter = &io->iter;
 584
 585	for (b = 0; b < io->n_blocks; b++) {
 586		int r;
 587		sector_t cur_block = io->block + b;
 588		struct ahash_request *req = verity_io_hash_req(v, io);
 589
 590		if (v->validated_blocks && bio->bi_status == BLK_STS_OK &&
 591		    likely(test_bit(cur_block, v->validated_blocks))) {
 592			verity_bv_skip_block(v, io, iter);
 593			continue;
 594		}
 595
 596		r = verity_hash_for_block(v, io, cur_block,
 597					  verity_io_want_digest(v, io),
 598					  &is_zero);
 599		if (unlikely(r < 0))
 600			return r;
 601
 602		if (is_zero) {
 603			/*
 604			 * If we expect a zero block, don't validate, just
 605			 * return zeros.
 606			 */
 607			r = verity_for_bv_block(v, io, iter,
 608						verity_bv_zero);
 609			if (unlikely(r < 0))
 610				return r;
 611
 612			continue;
 613		}
 614
 615		r = verity_hash_init(v, req, &wait, !io->in_tasklet);
 616		if (unlikely(r < 0))
 617			return r;
 618
 619		start = *iter;
 620		r = verity_for_io_block(v, io, iter, &wait);
 621		if (unlikely(r < 0))
 622			return r;
 623
 624		r = verity_hash_final(v, req, verity_io_real_digest(v, io),
 625					&wait);
 626		if (unlikely(r < 0))
 627			return r;
 628
 629		if (likely(memcmp(verity_io_real_digest(v, io),
 630				  verity_io_want_digest(v, io), v->digest_size) == 0)) {
 631			if (v->validated_blocks)
 632				set_bit(cur_block, v->validated_blocks);
 633			continue;
 634		} else if (static_branch_unlikely(&use_tasklet_enabled) &&
 635			   io->in_tasklet) {
 636			/*
 637			 * Error handling code (FEC included) cannot be run in a
 638			 * tasklet since it may sleep, so fallback to work-queue.
 639			 */
 640			return -EAGAIN;
 641		} else if (verity_recheck(v, io, start, cur_block) == 0) {
 642			if (v->validated_blocks)
 643				set_bit(cur_block, v->validated_blocks);
 644			continue;
 645#if defined(CONFIG_DM_VERITY_FEC)
 646		} else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
 647					     cur_block, NULL, &start) == 0) {
 648			continue;
 649#endif
 650		} else {
 651			if (bio->bi_status) {
 652				/*
 653				 * Error correction failed; Just return error
 654				 */
 655				return -EIO;
 656			}
 657			if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
 658					      cur_block)) {
 659				dm_audit_log_bio(DM_MSG_PREFIX, "verify-data",
 660						 bio, cur_block, 0);
 661				return -EIO;
 662			}
 663		}
 664	}
 665
 666	return 0;
 667}
 668
 669/*
 670 * Skip verity work in response to I/O error when system is shutting down.
 671 */
 672static inline bool verity_is_system_shutting_down(void)
 673{
 674	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
 675		|| system_state == SYSTEM_RESTART;
 676}
 677
 678/*
 679 * End one "io" structure with a given error.
 680 */
 681static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
 682{
 683	struct dm_verity *v = io->v;
 684	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 685
 686	bio->bi_end_io = io->orig_bi_end_io;
 687	bio->bi_status = status;
 688
 689	if (!static_branch_unlikely(&use_tasklet_enabled) || !io->in_tasklet)
 690		verity_fec_finish_io(io);
 691
 692	bio_endio(bio);
 693}
 694
 695static void verity_work(struct work_struct *w)
 696{
 697	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
 698
 699	io->in_tasklet = false;
 700
 701	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
 702}
 703
 704static void verity_end_io(struct bio *bio)
 705{
 706	struct dm_verity_io *io = bio->bi_private;
 707
 708	if (bio->bi_status &&
 709	    (!verity_fec_is_enabled(io->v) ||
 710	     verity_is_system_shutting_down() ||
 711	     (bio->bi_opf & REQ_RAHEAD))) {
 712		verity_finish_io(io, bio->bi_status);
 713		return;
 714	}
 715
 716	INIT_WORK(&io->work, verity_work);
 717	queue_work(io->v->verify_wq, &io->work);
 718}
 719
 720/*
 721 * Prefetch buffers for the specified io.
 722 * The root buffer is not prefetched, it is assumed that it will be cached
 723 * all the time.
 724 */
 725static void verity_prefetch_io(struct work_struct *work)
 726{
 727	struct dm_verity_prefetch_work *pw =
 728		container_of(work, struct dm_verity_prefetch_work, work);
 729	struct dm_verity *v = pw->v;
 730	int i;
 731
 732	for (i = v->levels - 2; i >= 0; i--) {
 733		sector_t hash_block_start;
 734		sector_t hash_block_end;
 735
 736		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
 737		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
 738
 739		if (!i) {
 740			unsigned int cluster = READ_ONCE(dm_verity_prefetch_cluster);
 741
 742			cluster >>= v->data_dev_block_bits;
 743			if (unlikely(!cluster))
 744				goto no_prefetch_cluster;
 745
 746			if (unlikely(cluster & (cluster - 1)))
 747				cluster = 1 << __fls(cluster);
 748
 749			hash_block_start &= ~(sector_t)(cluster - 1);
 750			hash_block_end |= cluster - 1;
 751			if (unlikely(hash_block_end >= v->hash_blocks))
 752				hash_block_end = v->hash_blocks - 1;
 753		}
 754no_prefetch_cluster:
 755		dm_bufio_prefetch(v->bufio, hash_block_start,
 756				  hash_block_end - hash_block_start + 1);
 757	}
 758
 759	kfree(pw);
 760}
 761
 762static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
 763{
 764	sector_t block = io->block;
 765	unsigned int n_blocks = io->n_blocks;
 766	struct dm_verity_prefetch_work *pw;
 767
 768	if (v->validated_blocks) {
 769		while (n_blocks && test_bit(block, v->validated_blocks)) {
 770			block++;
 771			n_blocks--;
 772		}
 773		while (n_blocks && test_bit(block + n_blocks - 1,
 774					    v->validated_blocks))
 775			n_blocks--;
 776		if (!n_blocks)
 777			return;
 778	}
 779
 780	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
 781		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 782
 783	if (!pw)
 784		return;
 785
 786	INIT_WORK(&pw->work, verity_prefetch_io);
 787	pw->v = v;
 788	pw->block = block;
 789	pw->n_blocks = n_blocks;
 790	queue_work(v->verify_wq, &pw->work);
 791}
 792
 793/*
 794 * Bio map function. It allocates dm_verity_io structure and bio vector and
 795 * fills them. Then it issues prefetches and the I/O.
 796 */
 797static int verity_map(struct dm_target *ti, struct bio *bio)
 798{
 799	struct dm_verity *v = ti->private;
 800	struct dm_verity_io *io;
 801
 802	bio_set_dev(bio, v->data_dev->bdev);
 803	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
 804
 805	if (((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) &
 806	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
 807		DMERR_LIMIT("unaligned io");
 808		return DM_MAPIO_KILL;
 809	}
 810
 811	if (bio_end_sector(bio) >>
 812	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
 813		DMERR_LIMIT("io out of range");
 814		return DM_MAPIO_KILL;
 815	}
 816
 817	if (bio_data_dir(bio) == WRITE)
 818		return DM_MAPIO_KILL;
 819
 820	io = dm_per_bio_data(bio, ti->per_io_data_size);
 821	io->v = v;
 822	io->orig_bi_end_io = bio->bi_end_io;
 823	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
 824	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
 825
 826	bio->bi_end_io = verity_end_io;
 827	bio->bi_private = io;
 828	io->iter = bio->bi_iter;
 829
 830	verity_fec_init_io(io);
 831
 832	verity_submit_prefetch(v, io);
 833
 834	submit_bio_noacct(bio);
 835
 836	return DM_MAPIO_SUBMITTED;
 837}
 838
 839/*
 840 * Status: V (valid) or C (corruption found)
 841 */
 842static void verity_status(struct dm_target *ti, status_type_t type,
 843			  unsigned int status_flags, char *result, unsigned int maxlen)
 844{
 845	struct dm_verity *v = ti->private;
 846	unsigned int args = 0;
 847	unsigned int sz = 0;
 848	unsigned int x;
 849
 850	switch (type) {
 851	case STATUSTYPE_INFO:
 852		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
 853		break;
 854	case STATUSTYPE_TABLE:
 855		DMEMIT("%u %s %s %u %u %llu %llu %s ",
 856			v->version,
 857			v->data_dev->name,
 858			v->hash_dev->name,
 859			1 << v->data_dev_block_bits,
 860			1 << v->hash_dev_block_bits,
 861			(unsigned long long)v->data_blocks,
 862			(unsigned long long)v->hash_start,
 863			v->alg_name
 864			);
 865		for (x = 0; x < v->digest_size; x++)
 866			DMEMIT("%02x", v->root_digest[x]);
 867		DMEMIT(" ");
 868		if (!v->salt_size)
 869			DMEMIT("-");
 870		else
 871			for (x = 0; x < v->salt_size; x++)
 872				DMEMIT("%02x", v->salt[x]);
 873		if (v->mode != DM_VERITY_MODE_EIO)
 874			args++;
 875		if (verity_fec_is_enabled(v))
 876			args += DM_VERITY_OPTS_FEC;
 877		if (v->zero_digest)
 878			args++;
 879		if (v->validated_blocks)
 880			args++;
 881		if (v->use_tasklet)
 882			args++;
 883		if (v->signature_key_desc)
 884			args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
 885		if (!args)
 886			return;
 887		DMEMIT(" %u", args);
 888		if (v->mode != DM_VERITY_MODE_EIO) {
 889			DMEMIT(" ");
 890			switch (v->mode) {
 891			case DM_VERITY_MODE_LOGGING:
 892				DMEMIT(DM_VERITY_OPT_LOGGING);
 893				break;
 894			case DM_VERITY_MODE_RESTART:
 895				DMEMIT(DM_VERITY_OPT_RESTART);
 896				break;
 897			case DM_VERITY_MODE_PANIC:
 898				DMEMIT(DM_VERITY_OPT_PANIC);
 899				break;
 900			default:
 901				BUG();
 902			}
 903		}
 904		if (v->zero_digest)
 905			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
 906		if (v->validated_blocks)
 907			DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
 908		if (v->use_tasklet)
 909			DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY);
 910		sz = verity_fec_status_table(v, sz, result, maxlen);
 911		if (v->signature_key_desc)
 912			DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
 913				" %s", v->signature_key_desc);
 914		break;
 915
 916	case STATUSTYPE_IMA:
 917		DMEMIT_TARGET_NAME_VERSION(ti->type);
 918		DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
 919		DMEMIT(",verity_version=%u", v->version);
 920		DMEMIT(",data_device_name=%s", v->data_dev->name);
 921		DMEMIT(",hash_device_name=%s", v->hash_dev->name);
 922		DMEMIT(",verity_algorithm=%s", v->alg_name);
 923
 924		DMEMIT(",root_digest=");
 925		for (x = 0; x < v->digest_size; x++)
 926			DMEMIT("%02x", v->root_digest[x]);
 927
 928		DMEMIT(",salt=");
 929		if (!v->salt_size)
 930			DMEMIT("-");
 931		else
 932			for (x = 0; x < v->salt_size; x++)
 933				DMEMIT("%02x", v->salt[x]);
 934
 935		DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
 936		DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
 937		if (v->signature_key_desc)
 938			DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
 939
 940		if (v->mode != DM_VERITY_MODE_EIO) {
 941			DMEMIT(",verity_mode=");
 942			switch (v->mode) {
 943			case DM_VERITY_MODE_LOGGING:
 944				DMEMIT(DM_VERITY_OPT_LOGGING);
 945				break;
 946			case DM_VERITY_MODE_RESTART:
 947				DMEMIT(DM_VERITY_OPT_RESTART);
 948				break;
 949			case DM_VERITY_MODE_PANIC:
 950				DMEMIT(DM_VERITY_OPT_PANIC);
 951				break;
 952			default:
 953				DMEMIT("invalid");
 954			}
 955		}
 956		DMEMIT(";");
 957		break;
 958	}
 959}
 960
 961static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
 
 962{
 963	struct dm_verity *v = ti->private;
 964
 965	*bdev = v->data_dev->bdev;
 966
 967	if (v->data_start || ti->len != bdev_nr_sectors(v->data_dev->bdev))
 
 968		return 1;
 969	return 0;
 970}
 971
 972static int verity_iterate_devices(struct dm_target *ti,
 973				  iterate_devices_callout_fn fn, void *data)
 974{
 975	struct dm_verity *v = ti->private;
 976
 977	return fn(ti, v->data_dev, v->data_start, ti->len, data);
 978}
 979
 980static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
 981{
 982	struct dm_verity *v = ti->private;
 983
 984	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
 985		limits->logical_block_size = 1 << v->data_dev_block_bits;
 986
 987	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
 988		limits->physical_block_size = 1 << v->data_dev_block_bits;
 989
 990	blk_limits_io_min(limits, limits->logical_block_size);
 991}
 992
 993static void verity_dtr(struct dm_target *ti)
 994{
 995	struct dm_verity *v = ti->private;
 996
 997	if (v->verify_wq)
 998		destroy_workqueue(v->verify_wq);
 999
1000	mempool_exit(&v->recheck_pool);
1001	if (v->io)
1002		dm_io_client_destroy(v->io);
1003
1004	if (v->bufio)
1005		dm_bufio_client_destroy(v->bufio);
1006
1007	kvfree(v->validated_blocks);
1008	kfree(v->salt);
1009	kfree(v->root_digest);
1010	kfree(v->zero_digest);
1011
1012	if (v->tfm)
1013		crypto_free_ahash(v->tfm);
1014
1015	kfree(v->alg_name);
1016
1017	if (v->hash_dev)
1018		dm_put_device(ti, v->hash_dev);
1019
1020	if (v->data_dev)
1021		dm_put_device(ti, v->data_dev);
1022
1023	verity_fec_dtr(v);
1024
1025	kfree(v->signature_key_desc);
1026
1027	if (v->use_tasklet)
1028		static_branch_dec(&use_tasklet_enabled);
1029
1030	kfree(v);
1031
1032	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
1033}
1034
1035static int verity_alloc_most_once(struct dm_verity *v)
1036{
1037	struct dm_target *ti = v->ti;
1038
1039	/* the bitset can only handle INT_MAX blocks */
1040	if (v->data_blocks > INT_MAX) {
1041		ti->error = "device too large to use check_at_most_once";
1042		return -E2BIG;
1043	}
1044
1045	v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
1046				       sizeof(unsigned long),
1047				       GFP_KERNEL);
1048	if (!v->validated_blocks) {
1049		ti->error = "failed to allocate bitset for check_at_most_once";
1050		return -ENOMEM;
1051	}
1052
1053	return 0;
1054}
1055
1056static int verity_alloc_zero_digest(struct dm_verity *v)
1057{
1058	int r = -ENOMEM;
1059	struct ahash_request *req;
1060	u8 *zero_data;
1061
1062	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
1063
1064	if (!v->zero_digest)
1065		return r;
1066
1067	req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
1068
1069	if (!req)
1070		return r; /* verity_dtr will free zero_digest */
1071
1072	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
1073
1074	if (!zero_data)
1075		goto out;
1076
1077	r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
1078			v->zero_digest, true);
1079
1080out:
1081	kfree(req);
1082	kfree(zero_data);
1083
1084	return r;
1085}
1086
1087static inline bool verity_is_verity_mode(const char *arg_name)
1088{
1089	return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
1090		!strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
1091		!strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
1092}
1093
1094static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
1095{
1096	if (v->mode)
1097		return -EINVAL;
1098
1099	if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
1100		v->mode = DM_VERITY_MODE_LOGGING;
1101	else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
1102		v->mode = DM_VERITY_MODE_RESTART;
1103	else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
1104		v->mode = DM_VERITY_MODE_PANIC;
1105
1106	return 0;
1107}
1108
1109static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
1110				 struct dm_verity_sig_opts *verify_args,
1111				 bool only_modifier_opts)
1112{
1113	int r = 0;
1114	unsigned int argc;
1115	struct dm_target *ti = v->ti;
1116	const char *arg_name;
1117
1118	static const struct dm_arg _args[] = {
1119		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
1120	};
1121
1122	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1123	if (r)
1124		return -EINVAL;
1125
1126	if (!argc)
1127		return 0;
1128
1129	do {
1130		arg_name = dm_shift_arg(as);
1131		argc--;
1132
1133		if (verity_is_verity_mode(arg_name)) {
1134			if (only_modifier_opts)
1135				continue;
1136			r = verity_parse_verity_mode(v, arg_name);
1137			if (r) {
1138				ti->error = "Conflicting error handling parameters";
1139				return r;
1140			}
1141			continue;
1142
1143		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
1144			if (only_modifier_opts)
1145				continue;
1146			r = verity_alloc_zero_digest(v);
1147			if (r) {
1148				ti->error = "Cannot allocate zero digest";
1149				return r;
1150			}
1151			continue;
1152
1153		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
1154			if (only_modifier_opts)
1155				continue;
1156			r = verity_alloc_most_once(v);
1157			if (r)
1158				return r;
1159			continue;
1160
1161		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) {
1162			v->use_tasklet = true;
1163			static_branch_inc(&use_tasklet_enabled);
1164			continue;
1165
1166		} else if (verity_is_fec_opt_arg(arg_name)) {
1167			if (only_modifier_opts)
1168				continue;
1169			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
1170			if (r)
1171				return r;
1172			continue;
1173
1174		} else if (verity_verify_is_sig_opt_arg(arg_name)) {
1175			if (only_modifier_opts)
1176				continue;
1177			r = verity_verify_sig_parse_opt_args(as, v,
1178							     verify_args,
1179							     &argc, arg_name);
1180			if (r)
1181				return r;
1182			continue;
1183
1184		} else if (only_modifier_opts) {
1185			/*
1186			 * Ignore unrecognized opt, could easily be an extra
1187			 * argument to an option whose parsing was skipped.
1188			 * Normal parsing (@only_modifier_opts=false) will
1189			 * properly parse all options (and their extra args).
1190			 */
1191			continue;
1192		}
1193
1194		DMERR("Unrecognized verity feature request: %s", arg_name);
1195		ti->error = "Unrecognized verity feature request";
1196		return -EINVAL;
1197	} while (argc && !r);
1198
1199	return r;
1200}
1201
1202/*
1203 * Target parameters:
1204 *	<version>	The current format is version 1.
1205 *			Vsn 0 is compatible with original Chromium OS releases.
1206 *	<data device>
1207 *	<hash device>
1208 *	<data block size>
1209 *	<hash block size>
1210 *	<the number of data blocks>
1211 *	<hash start block>
1212 *	<algorithm>
1213 *	<digest>
1214 *	<salt>		Hex string or "-" if no salt.
1215 */
1216static int verity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1217{
1218	struct dm_verity *v;
1219	struct dm_verity_sig_opts verify_args = {0};
1220	struct dm_arg_set as;
1221	unsigned int num;
1222	unsigned long long num_ll;
1223	int r;
1224	int i;
1225	sector_t hash_position;
1226	char dummy;
1227	char *root_hash_digest_to_validate;
1228
1229	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
1230	if (!v) {
1231		ti->error = "Cannot allocate verity structure";
1232		return -ENOMEM;
1233	}
1234	ti->private = v;
1235	v->ti = ti;
1236
1237	r = verity_fec_ctr_alloc(v);
1238	if (r)
1239		goto bad;
1240
1241	if ((dm_table_get_mode(ti->table) & ~BLK_OPEN_READ)) {
1242		ti->error = "Device must be readonly";
1243		r = -EINVAL;
1244		goto bad;
1245	}
1246
1247	if (argc < 10) {
1248		ti->error = "Not enough arguments";
1249		r = -EINVAL;
1250		goto bad;
1251	}
1252
1253	/* Parse optional parameters that modify primary args */
1254	if (argc > 10) {
1255		as.argc = argc - 10;
1256		as.argv = argv + 10;
1257		r = verity_parse_opt_args(&as, v, &verify_args, true);
1258		if (r < 0)
1259			goto bad;
1260	}
1261
1262	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1263	    num > 1) {
1264		ti->error = "Invalid version";
1265		r = -EINVAL;
1266		goto bad;
1267	}
1268	v->version = num;
1269
1270	r = dm_get_device(ti, argv[1], BLK_OPEN_READ, &v->data_dev);
1271	if (r) {
1272		ti->error = "Data device lookup failed";
1273		goto bad;
1274	}
1275
1276	r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &v->hash_dev);
1277	if (r) {
1278		ti->error = "Hash device lookup failed";
1279		goto bad;
1280	}
1281
1282	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1283	    !num || (num & (num - 1)) ||
1284	    num < bdev_logical_block_size(v->data_dev->bdev) ||
1285	    num > PAGE_SIZE) {
1286		ti->error = "Invalid data device block size";
1287		r = -EINVAL;
1288		goto bad;
1289	}
1290	v->data_dev_block_bits = __ffs(num);
1291
1292	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1293	    !num || (num & (num - 1)) ||
1294	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
1295	    num > INT_MAX) {
1296		ti->error = "Invalid hash device block size";
1297		r = -EINVAL;
1298		goto bad;
1299	}
1300	v->hash_dev_block_bits = __ffs(num);
1301
1302	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1303	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1304	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1305		ti->error = "Invalid data blocks";
1306		r = -EINVAL;
1307		goto bad;
1308	}
1309	v->data_blocks = num_ll;
1310
1311	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1312		ti->error = "Data device is too small";
1313		r = -EINVAL;
1314		goto bad;
1315	}
1316
1317	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1318	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1319	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1320		ti->error = "Invalid hash start";
1321		r = -EINVAL;
1322		goto bad;
1323	}
1324	v->hash_start = num_ll;
1325
1326	v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1327	if (!v->alg_name) {
1328		ti->error = "Cannot allocate algorithm name";
1329		r = -ENOMEM;
1330		goto bad;
1331	}
1332
1333	v->tfm = crypto_alloc_ahash(v->alg_name, 0,
1334				    v->use_tasklet ? CRYPTO_ALG_ASYNC : 0);
1335	if (IS_ERR(v->tfm)) {
1336		ti->error = "Cannot initialize hash function";
1337		r = PTR_ERR(v->tfm);
1338		v->tfm = NULL;
1339		goto bad;
1340	}
1341
1342	/*
1343	 * dm-verity performance can vary greatly depending on which hash
1344	 * algorithm implementation is used.  Help people debug performance
1345	 * problems by logging the ->cra_driver_name.
1346	 */
1347	DMINFO("%s using implementation \"%s\"", v->alg_name,
1348	       crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1349
1350	v->digest_size = crypto_ahash_digestsize(v->tfm);
1351	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1352		ti->error = "Digest size too big";
1353		r = -EINVAL;
1354		goto bad;
1355	}
1356	v->ahash_reqsize = sizeof(struct ahash_request) +
1357		crypto_ahash_reqsize(v->tfm);
1358
1359	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1360	if (!v->root_digest) {
1361		ti->error = "Cannot allocate root digest";
1362		r = -ENOMEM;
1363		goto bad;
1364	}
1365	if (strlen(argv[8]) != v->digest_size * 2 ||
1366	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
1367		ti->error = "Invalid root digest";
1368		r = -EINVAL;
1369		goto bad;
1370	}
1371	root_hash_digest_to_validate = argv[8];
1372
1373	if (strcmp(argv[9], "-")) {
1374		v->salt_size = strlen(argv[9]) / 2;
1375		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1376		if (!v->salt) {
1377			ti->error = "Cannot allocate salt";
1378			r = -ENOMEM;
1379			goto bad;
1380		}
1381		if (strlen(argv[9]) != v->salt_size * 2 ||
1382		    hex2bin(v->salt, argv[9], v->salt_size)) {
1383			ti->error = "Invalid salt";
1384			r = -EINVAL;
1385			goto bad;
1386		}
1387	}
1388
1389	argv += 10;
1390	argc -= 10;
1391
1392	/* Optional parameters */
1393	if (argc) {
1394		as.argc = argc;
1395		as.argv = argv;
1396		r = verity_parse_opt_args(&as, v, &verify_args, false);
 
1397		if (r < 0)
1398			goto bad;
1399	}
1400
1401	/* Root hash signature is  a optional parameter*/
1402	r = verity_verify_root_hash(root_hash_digest_to_validate,
1403				    strlen(root_hash_digest_to_validate),
1404				    verify_args.sig,
1405				    verify_args.sig_size);
1406	if (r < 0) {
1407		ti->error = "Root hash verification failed";
1408		goto bad;
1409	}
1410	v->hash_per_block_bits =
1411		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1412
1413	v->levels = 0;
1414	if (v->data_blocks)
1415		while (v->hash_per_block_bits * v->levels < 64 &&
1416		       (unsigned long long)(v->data_blocks - 1) >>
1417		       (v->hash_per_block_bits * v->levels))
1418			v->levels++;
1419
1420	if (v->levels > DM_VERITY_MAX_LEVELS) {
1421		ti->error = "Too many tree levels";
1422		r = -E2BIG;
1423		goto bad;
1424	}
1425
1426	hash_position = v->hash_start;
1427	for (i = v->levels - 1; i >= 0; i--) {
1428		sector_t s;
1429
1430		v->hash_level_block[i] = hash_position;
1431		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1432					>> ((i + 1) * v->hash_per_block_bits);
1433		if (hash_position + s < hash_position) {
1434			ti->error = "Hash device offset overflow";
1435			r = -E2BIG;
1436			goto bad;
1437		}
1438		hash_position += s;
1439	}
1440	v->hash_blocks = hash_position;
1441
1442	r = mempool_init_page_pool(&v->recheck_pool, 1, 0);
1443	if (unlikely(r)) {
1444		ti->error = "Cannot allocate mempool";
1445		goto bad;
1446	}
1447
1448	v->io = dm_io_client_create();
1449	if (IS_ERR(v->io)) {
1450		r = PTR_ERR(v->io);
1451		v->io = NULL;
1452		ti->error = "Cannot allocate dm io";
1453		goto bad;
1454	}
1455
1456	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1457		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1458		dm_bufio_alloc_callback, NULL,
1459		v->use_tasklet ? DM_BUFIO_CLIENT_NO_SLEEP : 0);
1460	if (IS_ERR(v->bufio)) {
1461		ti->error = "Cannot initialize dm-bufio";
1462		r = PTR_ERR(v->bufio);
1463		v->bufio = NULL;
1464		goto bad;
1465	}
1466
1467	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1468		ti->error = "Hash device is too small";
1469		r = -E2BIG;
1470		goto bad;
1471	}
1472
1473	/*
1474	 * Using WQ_HIGHPRI improves throughput and completion latency by
1475	 * reducing wait times when reading from a dm-verity device.
1476	 *
1477	 * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI
1478	 * allows verify_wq to preempt softirq since verification in tasklet
1479	 * will fall-back to using it for error handling (or if the bufio cache
1480	 * doesn't have required hashes).
1481	 */
1482	v->verify_wq = alloc_workqueue("kverityd", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1483	if (!v->verify_wq) {
1484		ti->error = "Cannot allocate workqueue";
1485		r = -ENOMEM;
1486		goto bad;
1487	}
1488
1489	ti->per_io_data_size = sizeof(struct dm_verity_io) +
1490				v->ahash_reqsize + v->digest_size * 2;
1491
1492	r = verity_fec_ctr(v);
1493	if (r)
1494		goto bad;
1495
1496	ti->per_io_data_size = roundup(ti->per_io_data_size,
1497				       __alignof__(struct dm_verity_io));
1498
1499	verity_verify_sig_opts_cleanup(&verify_args);
1500
1501	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
1502
1503	return 0;
1504
1505bad:
1506
1507	verity_verify_sig_opts_cleanup(&verify_args);
1508	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
1509	verity_dtr(ti);
1510
1511	return r;
1512}
1513
1514/*
1515 * Check whether a DM target is a verity target.
1516 */
1517bool dm_is_verity_target(struct dm_target *ti)
1518{
1519	return ti->type->module == THIS_MODULE;
1520}
1521
1522/*
1523 * Get the verity mode (error behavior) of a verity target.
1524 *
1525 * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity
1526 * target.
1527 */
1528int dm_verity_get_mode(struct dm_target *ti)
1529{
1530	struct dm_verity *v = ti->private;
1531
1532	if (!dm_is_verity_target(ti))
1533		return -EINVAL;
1534
1535	return v->mode;
1536}
1537
1538/*
1539 * Get the root digest of a verity target.
1540 *
1541 * Returns a copy of the root digest, the caller is responsible for
1542 * freeing the memory of the digest.
1543 */
1544int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size)
1545{
1546	struct dm_verity *v = ti->private;
1547
1548	if (!dm_is_verity_target(ti))
1549		return -EINVAL;
1550
1551	*root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL);
1552	if (*root_digest == NULL)
1553		return -ENOMEM;
1554
1555	*digest_size = v->digest_size;
1556
1557	return 0;
1558}
1559
1560static struct target_type verity_target = {
1561	.name		= "verity",
1562	.features	= DM_TARGET_IMMUTABLE,
1563	.version	= {1, 10, 0},
1564	.module		= THIS_MODULE,
1565	.ctr		= verity_ctr,
1566	.dtr		= verity_dtr,
1567	.map		= verity_map,
1568	.status		= verity_status,
1569	.prepare_ioctl	= verity_prepare_ioctl,
1570	.iterate_devices = verity_iterate_devices,
1571	.io_hints	= verity_io_hints,
1572};
1573module_dm(verity);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1574
1575MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1576MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1577MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1578MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1579MODULE_LICENSE("GPL");
v4.10.11
 
   1/*
   2 * Copyright (C) 2012 Red Hat, Inc.
   3 *
   4 * Author: Mikulas Patocka <mpatocka@redhat.com>
   5 *
   6 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
   7 *
   8 * This file is released under the GPLv2.
   9 *
  10 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
  11 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
  12 * hash device. Setting this greatly improves performance when data and hash
  13 * are on the same disk on different partitions on devices with poor random
  14 * access behavior.
  15 */
  16
  17#include "dm-verity.h"
  18#include "dm-verity-fec.h"
  19
 
  20#include <linux/module.h>
  21#include <linux/reboot.h>
 
 
 
  22
  23#define DM_MSG_PREFIX			"verity"
  24
  25#define DM_VERITY_ENV_LENGTH		42
  26#define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
  27
  28#define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
  29
  30#define DM_VERITY_MAX_CORRUPTED_ERRS	100
  31
  32#define DM_VERITY_OPT_LOGGING		"ignore_corruption"
  33#define DM_VERITY_OPT_RESTART		"restart_on_corruption"
 
  34#define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
 
 
 
 
 
  35
  36#define DM_VERITY_OPTS_MAX		(2 + DM_VERITY_OPTS_FEC)
  37
  38static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
  39
  40module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
  41
  42struct dm_verity_prefetch_work {
  43	struct work_struct work;
  44	struct dm_verity *v;
  45	sector_t block;
  46	unsigned n_blocks;
  47};
  48
  49/*
  50 * Auxiliary structure appended to each dm-bufio buffer. If the value
  51 * hash_verified is nonzero, hash of the block has been verified.
  52 *
  53 * The variable hash_verified is set to 0 when allocating the buffer, then
  54 * it can be changed to 1 and it is never reset to 0 again.
  55 *
  56 * There is no lock around this value, a race condition can at worst cause
  57 * that multiple processes verify the hash of the same buffer simultaneously
  58 * and write 1 to hash_verified simultaneously.
  59 * This condition is harmless, so we don't need locking.
  60 */
  61struct buffer_aux {
  62	int hash_verified;
  63};
  64
  65/*
  66 * Initialize struct buffer_aux for a freshly created buffer.
  67 */
  68static void dm_bufio_alloc_callback(struct dm_buffer *buf)
  69{
  70	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
  71
  72	aux->hash_verified = 0;
  73}
  74
  75/*
  76 * Translate input sector number to the sector number on the target device.
  77 */
  78static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
  79{
  80	return v->data_start + dm_target_offset(v->ti, bi_sector);
  81}
  82
  83/*
  84 * Return hash position of a specified block at a specified tree level
  85 * (0 is the lowest level).
  86 * The lowest "hash_per_block_bits"-bits of the result denote hash position
  87 * inside a hash block. The remaining bits denote location of the hash block.
  88 */
  89static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
  90					 int level)
  91{
  92	return block >> (level * v->hash_per_block_bits);
  93}
  94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  95/*
  96 * Wrapper for crypto_shash_init, which handles verity salting.
  97 */
  98static int verity_hash_init(struct dm_verity *v, struct shash_desc *desc)
 
  99{
 100	int r;
 101
 102	desc->tfm = v->tfm;
 103	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 
 
 
 104
 105	r = crypto_shash_init(desc);
 106
 107	if (unlikely(r < 0)) {
 108		DMERR("crypto_shash_init failed: %d", r);
 
 109		return r;
 110	}
 111
 112	if (likely(v->version >= 1)) {
 113		r = crypto_shash_update(desc, v->salt, v->salt_size);
 114
 115		if (unlikely(r < 0)) {
 116			DMERR("crypto_shash_update failed: %d", r);
 117			return r;
 118		}
 119	}
 120
 121	return 0;
 122}
 123
 124static int verity_hash_update(struct dm_verity *v, struct shash_desc *desc,
 125			      const u8 *data, size_t len)
 126{
 127	int r = crypto_shash_update(desc, data, len);
 128
 129	if (unlikely(r < 0))
 130		DMERR("crypto_shash_update failed: %d", r);
 131
 132	return r;
 133}
 134
 135static int verity_hash_final(struct dm_verity *v, struct shash_desc *desc,
 136			     u8 *digest)
 137{
 138	int r;
 139
 140	if (unlikely(!v->version)) {
 141		r = crypto_shash_update(desc, v->salt, v->salt_size);
 142
 143		if (r < 0) {
 144			DMERR("crypto_shash_update failed: %d", r);
 145			return r;
 146		}
 147	}
 148
 149	r = crypto_shash_final(desc, digest);
 150
 151	if (unlikely(r < 0))
 152		DMERR("crypto_shash_final failed: %d", r);
 153
 154	return r;
 155}
 156
 157int verity_hash(struct dm_verity *v, struct shash_desc *desc,
 158		const u8 *data, size_t len, u8 *digest)
 159{
 160	int r;
 
 161
 162	r = verity_hash_init(v, desc);
 163	if (unlikely(r < 0))
 164		return r;
 165
 166	r = verity_hash_update(v, desc, data, len);
 167	if (unlikely(r < 0))
 168		return r;
 
 
 169
 170	return verity_hash_final(v, desc, digest);
 
 171}
 172
 173static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
 174				 sector_t *hash_block, unsigned *offset)
 175{
 176	sector_t position = verity_position_at_level(v, block, level);
 177	unsigned idx;
 178
 179	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
 180
 181	if (!offset)
 182		return;
 183
 184	idx = position & ((1 << v->hash_per_block_bits) - 1);
 185	if (!v->version)
 186		*offset = idx * v->digest_size;
 187	else
 188		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
 189}
 190
 191/*
 192 * Handle verification errors.
 193 */
 194static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
 195			     unsigned long long block)
 196{
 197	char verity_env[DM_VERITY_ENV_LENGTH];
 198	char *envp[] = { verity_env, NULL };
 199	const char *type_str = "";
 200	struct mapped_device *md = dm_table_get_md(v->ti->table);
 201
 202	/* Corruption should be visible in device status in all modes */
 203	v->hash_failed = 1;
 204
 205	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
 206		goto out;
 207
 208	v->corrupted_errs++;
 209
 210	switch (type) {
 211	case DM_VERITY_BLOCK_TYPE_DATA:
 212		type_str = "data";
 213		break;
 214	case DM_VERITY_BLOCK_TYPE_METADATA:
 215		type_str = "metadata";
 216		break;
 217	default:
 218		BUG();
 219	}
 220
 221	DMERR("%s: %s block %llu is corrupted", v->data_dev->name, type_str,
 222		block);
 223
 224	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
 225		DMERR("%s: reached maximum errors", v->data_dev->name);
 
 
 226
 227	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
 228		DM_VERITY_ENV_VAR_NAME, type, block);
 229
 230	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
 231
 232out:
 233	if (v->mode == DM_VERITY_MODE_LOGGING)
 234		return 0;
 235
 236	if (v->mode == DM_VERITY_MODE_RESTART)
 237		kernel_restart("dm-verity device corrupted");
 238
 
 
 
 239	return 1;
 240}
 241
 242/*
 243 * Verify hash of a metadata block pertaining to the specified data block
 244 * ("block" argument) at a specified level ("level" argument).
 245 *
 246 * On successful return, verity_io_want_digest(v, io) contains the hash value
 247 * for a lower tree level or for the data block (if we're at the lowest level).
 248 *
 249 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
 250 * If "skip_unverified" is false, unverified buffer is hashed and verified
 251 * against current value of verity_io_want_digest(v, io).
 252 */
 253static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
 254			       sector_t block, int level, bool skip_unverified,
 255			       u8 *want_digest)
 256{
 257	struct dm_buffer *buf;
 258	struct buffer_aux *aux;
 259	u8 *data;
 260	int r;
 261	sector_t hash_block;
 262	unsigned offset;
 263
 264	verity_hash_at_level(v, block, level, &hash_block, &offset);
 265
 266	data = dm_bufio_read(v->bufio, hash_block, &buf);
 
 
 
 
 
 
 
 
 
 
 
 
 267	if (IS_ERR(data))
 268		return PTR_ERR(data);
 269
 270	aux = dm_bufio_get_aux_data(buf);
 271
 272	if (!aux->hash_verified) {
 273		if (skip_unverified) {
 274			r = 1;
 275			goto release_ret_r;
 276		}
 277
 278		r = verity_hash(v, verity_io_hash_desc(v, io),
 279				data, 1 << v->hash_dev_block_bits,
 280				verity_io_real_digest(v, io));
 281		if (unlikely(r < 0))
 282			goto release_ret_r;
 283
 284		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
 285				  v->digest_size) == 0))
 286			aux->hash_verified = 1;
 287		else if (verity_fec_decode(v, io,
 288					   DM_VERITY_BLOCK_TYPE_METADATA,
 289					   hash_block, data, NULL) == 0)
 
 
 
 
 
 
 
 290			aux->hash_verified = 1;
 291		else if (verity_handle_err(v,
 292					   DM_VERITY_BLOCK_TYPE_METADATA,
 293					   hash_block)) {
 
 
 
 
 
 294			r = -EIO;
 295			goto release_ret_r;
 296		}
 297	}
 298
 299	data += offset;
 300	memcpy(want_digest, data, v->digest_size);
 301	r = 0;
 302
 303release_ret_r:
 304	dm_bufio_release(buf);
 305	return r;
 306}
 307
 308/*
 309 * Find a hash for a given block, write it to digest and verify the integrity
 310 * of the hash tree if necessary.
 311 */
 312int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
 313			  sector_t block, u8 *digest, bool *is_zero)
 314{
 315	int r = 0, i;
 316
 317	if (likely(v->levels)) {
 318		/*
 319		 * First, we try to get the requested hash for
 320		 * the current block. If the hash block itself is
 321		 * verified, zero is returned. If it isn't, this
 322		 * function returns 1 and we fall back to whole
 323		 * chain verification.
 324		 */
 325		r = verity_verify_level(v, io, block, 0, true, digest);
 326		if (likely(r <= 0))
 327			goto out;
 328	}
 329
 330	memcpy(digest, v->root_digest, v->digest_size);
 331
 332	for (i = v->levels - 1; i >= 0; i--) {
 333		r = verity_verify_level(v, io, block, i, false, digest);
 334		if (unlikely(r))
 335			goto out;
 336	}
 337out:
 338	if (!r && v->zero_digest)
 339		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
 340	else
 341		*is_zero = false;
 342
 343	return r;
 344}
 345
 346/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 347 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
 348 * starting from iter.
 349 */
 350int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
 351			struct bvec_iter *iter,
 352			int (*process)(struct dm_verity *v,
 353				       struct dm_verity_io *io, u8 *data,
 354				       size_t len))
 355{
 356	unsigned todo = 1 << v->data_dev_block_bits;
 357	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 358
 359	do {
 360		int r;
 361		u8 *page;
 362		unsigned len;
 363		struct bio_vec bv = bio_iter_iovec(bio, *iter);
 364
 365		page = kmap_atomic(bv.bv_page);
 366		len = bv.bv_len;
 367
 368		if (likely(len >= todo))
 369			len = todo;
 370
 371		r = process(v, io, page + bv.bv_offset, len);
 372		kunmap_atomic(page);
 373
 374		if (r < 0)
 375			return r;
 376
 377		bio_advance_iter(bio, iter, len);
 378		todo -= len;
 379	} while (todo);
 380
 381	return 0;
 382}
 383
 384static int verity_bv_hash_update(struct dm_verity *v, struct dm_verity_io *io,
 385				 u8 *data, size_t len)
 
 
 
 
 
 
 
 
 
 386{
 387	return verity_hash_update(v, verity_io_hash_desc(v, io), data, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 388}
 389
 390static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
 391			  u8 *data, size_t len)
 392{
 393	memset(data, 0, len);
 394	return 0;
 395}
 396
 397/*
 
 
 
 
 
 
 
 
 
 
 
 
 398 * Verify one "dm_verity_io" structure.
 399 */
 400static int verity_verify_io(struct dm_verity_io *io)
 401{
 402	bool is_zero;
 403	struct dm_verity *v = io->v;
 404	struct bvec_iter start;
 405	unsigned b;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406
 407	for (b = 0; b < io->n_blocks; b++) {
 408		int r;
 409		struct shash_desc *desc = verity_io_hash_desc(v, io);
 
 
 
 
 
 
 
 410
 411		r = verity_hash_for_block(v, io, io->block + b,
 412					  verity_io_want_digest(v, io),
 413					  &is_zero);
 414		if (unlikely(r < 0))
 415			return r;
 416
 417		if (is_zero) {
 418			/*
 419			 * If we expect a zero block, don't validate, just
 420			 * return zeros.
 421			 */
 422			r = verity_for_bv_block(v, io, &io->iter,
 423						verity_bv_zero);
 424			if (unlikely(r < 0))
 425				return r;
 426
 427			continue;
 428		}
 429
 430		r = verity_hash_init(v, desc);
 431		if (unlikely(r < 0))
 432			return r;
 433
 434		start = io->iter;
 435		r = verity_for_bv_block(v, io, &io->iter, verity_bv_hash_update);
 436		if (unlikely(r < 0))
 437			return r;
 438
 439		r = verity_hash_final(v, desc, verity_io_real_digest(v, io));
 
 440		if (unlikely(r < 0))
 441			return r;
 442
 443		if (likely(memcmp(verity_io_real_digest(v, io),
 444				  verity_io_want_digest(v, io), v->digest_size) == 0))
 
 
 
 
 
 
 
 
 
 
 
 
 
 445			continue;
 446		else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
 447					   io->block + b, NULL, &start) == 0)
 
 448			continue;
 449		else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
 450					   io->block + b))
 451			return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 452	}
 453
 454	return 0;
 455}
 456
 457/*
 
 
 
 
 
 
 
 
 
 458 * End one "io" structure with a given error.
 459 */
 460static void verity_finish_io(struct dm_verity_io *io, int error)
 461{
 462	struct dm_verity *v = io->v;
 463	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 464
 465	bio->bi_end_io = io->orig_bi_end_io;
 466	bio->bi_error = error;
 467
 468	verity_fec_finish_io(io);
 
 469
 470	bio_endio(bio);
 471}
 472
 473static void verity_work(struct work_struct *w)
 474{
 475	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
 476
 477	verity_finish_io(io, verity_verify_io(io));
 
 
 478}
 479
 480static void verity_end_io(struct bio *bio)
 481{
 482	struct dm_verity_io *io = bio->bi_private;
 483
 484	if (bio->bi_error && !verity_fec_is_enabled(io->v)) {
 485		verity_finish_io(io, bio->bi_error);
 
 
 
 486		return;
 487	}
 488
 489	INIT_WORK(&io->work, verity_work);
 490	queue_work(io->v->verify_wq, &io->work);
 491}
 492
 493/*
 494 * Prefetch buffers for the specified io.
 495 * The root buffer is not prefetched, it is assumed that it will be cached
 496 * all the time.
 497 */
 498static void verity_prefetch_io(struct work_struct *work)
 499{
 500	struct dm_verity_prefetch_work *pw =
 501		container_of(work, struct dm_verity_prefetch_work, work);
 502	struct dm_verity *v = pw->v;
 503	int i;
 504
 505	for (i = v->levels - 2; i >= 0; i--) {
 506		sector_t hash_block_start;
 507		sector_t hash_block_end;
 
 508		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
 509		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
 
 510		if (!i) {
 511			unsigned cluster = ACCESS_ONCE(dm_verity_prefetch_cluster);
 512
 513			cluster >>= v->data_dev_block_bits;
 514			if (unlikely(!cluster))
 515				goto no_prefetch_cluster;
 516
 517			if (unlikely(cluster & (cluster - 1)))
 518				cluster = 1 << __fls(cluster);
 519
 520			hash_block_start &= ~(sector_t)(cluster - 1);
 521			hash_block_end |= cluster - 1;
 522			if (unlikely(hash_block_end >= v->hash_blocks))
 523				hash_block_end = v->hash_blocks - 1;
 524		}
 525no_prefetch_cluster:
 526		dm_bufio_prefetch(v->bufio, hash_block_start,
 527				  hash_block_end - hash_block_start + 1);
 528	}
 529
 530	kfree(pw);
 531}
 532
 533static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
 534{
 
 
 535	struct dm_verity_prefetch_work *pw;
 536
 
 
 
 
 
 
 
 
 
 
 
 
 537	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
 538		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 539
 540	if (!pw)
 541		return;
 542
 543	INIT_WORK(&pw->work, verity_prefetch_io);
 544	pw->v = v;
 545	pw->block = io->block;
 546	pw->n_blocks = io->n_blocks;
 547	queue_work(v->verify_wq, &pw->work);
 548}
 549
 550/*
 551 * Bio map function. It allocates dm_verity_io structure and bio vector and
 552 * fills them. Then it issues prefetches and the I/O.
 553 */
 554static int verity_map(struct dm_target *ti, struct bio *bio)
 555{
 556	struct dm_verity *v = ti->private;
 557	struct dm_verity_io *io;
 558
 559	bio->bi_bdev = v->data_dev->bdev;
 560	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
 561
 562	if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
 563	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
 564		DMERR_LIMIT("unaligned io");
 565		return -EIO;
 566	}
 567
 568	if (bio_end_sector(bio) >>
 569	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
 570		DMERR_LIMIT("io out of range");
 571		return -EIO;
 572	}
 573
 574	if (bio_data_dir(bio) == WRITE)
 575		return -EIO;
 576
 577	io = dm_per_bio_data(bio, ti->per_io_data_size);
 578	io->v = v;
 579	io->orig_bi_end_io = bio->bi_end_io;
 580	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
 581	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
 582
 583	bio->bi_end_io = verity_end_io;
 584	bio->bi_private = io;
 585	io->iter = bio->bi_iter;
 586
 587	verity_fec_init_io(io);
 588
 589	verity_submit_prefetch(v, io);
 590
 591	generic_make_request(bio);
 592
 593	return DM_MAPIO_SUBMITTED;
 594}
 595
 596/*
 597 * Status: V (valid) or C (corruption found)
 598 */
 599static void verity_status(struct dm_target *ti, status_type_t type,
 600			  unsigned status_flags, char *result, unsigned maxlen)
 601{
 602	struct dm_verity *v = ti->private;
 603	unsigned args = 0;
 604	unsigned sz = 0;
 605	unsigned x;
 606
 607	switch (type) {
 608	case STATUSTYPE_INFO:
 609		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
 610		break;
 611	case STATUSTYPE_TABLE:
 612		DMEMIT("%u %s %s %u %u %llu %llu %s ",
 613			v->version,
 614			v->data_dev->name,
 615			v->hash_dev->name,
 616			1 << v->data_dev_block_bits,
 617			1 << v->hash_dev_block_bits,
 618			(unsigned long long)v->data_blocks,
 619			(unsigned long long)v->hash_start,
 620			v->alg_name
 621			);
 622		for (x = 0; x < v->digest_size; x++)
 623			DMEMIT("%02x", v->root_digest[x]);
 624		DMEMIT(" ");
 625		if (!v->salt_size)
 626			DMEMIT("-");
 627		else
 628			for (x = 0; x < v->salt_size; x++)
 629				DMEMIT("%02x", v->salt[x]);
 630		if (v->mode != DM_VERITY_MODE_EIO)
 631			args++;
 632		if (verity_fec_is_enabled(v))
 633			args += DM_VERITY_OPTS_FEC;
 634		if (v->zero_digest)
 635			args++;
 
 
 
 
 
 
 636		if (!args)
 637			return;
 638		DMEMIT(" %u", args);
 639		if (v->mode != DM_VERITY_MODE_EIO) {
 640			DMEMIT(" ");
 641			switch (v->mode) {
 642			case DM_VERITY_MODE_LOGGING:
 643				DMEMIT(DM_VERITY_OPT_LOGGING);
 644				break;
 645			case DM_VERITY_MODE_RESTART:
 646				DMEMIT(DM_VERITY_OPT_RESTART);
 647				break;
 
 
 
 648			default:
 649				BUG();
 650			}
 651		}
 652		if (v->zero_digest)
 653			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
 
 
 
 
 654		sz = verity_fec_status_table(v, sz, result, maxlen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 655		break;
 656	}
 657}
 658
 659static int verity_prepare_ioctl(struct dm_target *ti,
 660		struct block_device **bdev, fmode_t *mode)
 661{
 662	struct dm_verity *v = ti->private;
 663
 664	*bdev = v->data_dev->bdev;
 665
 666	if (v->data_start ||
 667	    ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
 668		return 1;
 669	return 0;
 670}
 671
 672static int verity_iterate_devices(struct dm_target *ti,
 673				  iterate_devices_callout_fn fn, void *data)
 674{
 675	struct dm_verity *v = ti->private;
 676
 677	return fn(ti, v->data_dev, v->data_start, ti->len, data);
 678}
 679
 680static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
 681{
 682	struct dm_verity *v = ti->private;
 683
 684	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
 685		limits->logical_block_size = 1 << v->data_dev_block_bits;
 686
 687	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
 688		limits->physical_block_size = 1 << v->data_dev_block_bits;
 689
 690	blk_limits_io_min(limits, limits->logical_block_size);
 691}
 692
 693static void verity_dtr(struct dm_target *ti)
 694{
 695	struct dm_verity *v = ti->private;
 696
 697	if (v->verify_wq)
 698		destroy_workqueue(v->verify_wq);
 699
 
 
 
 
 700	if (v->bufio)
 701		dm_bufio_client_destroy(v->bufio);
 702
 
 703	kfree(v->salt);
 704	kfree(v->root_digest);
 705	kfree(v->zero_digest);
 706
 707	if (v->tfm)
 708		crypto_free_shash(v->tfm);
 709
 710	kfree(v->alg_name);
 711
 712	if (v->hash_dev)
 713		dm_put_device(ti, v->hash_dev);
 714
 715	if (v->data_dev)
 716		dm_put_device(ti, v->data_dev);
 717
 718	verity_fec_dtr(v);
 719
 
 
 
 
 
 720	kfree(v);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 721}
 722
 723static int verity_alloc_zero_digest(struct dm_verity *v)
 724{
 725	int r = -ENOMEM;
 726	struct shash_desc *desc;
 727	u8 *zero_data;
 728
 729	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
 730
 731	if (!v->zero_digest)
 732		return r;
 733
 734	desc = kmalloc(v->shash_descsize, GFP_KERNEL);
 735
 736	if (!desc)
 737		return r; /* verity_dtr will free zero_digest */
 738
 739	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
 740
 741	if (!zero_data)
 742		goto out;
 743
 744	r = verity_hash(v, desc, zero_data, 1 << v->data_dev_block_bits,
 745			v->zero_digest);
 746
 747out:
 748	kfree(desc);
 749	kfree(zero_data);
 750
 751	return r;
 752}
 753
 754static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755{
 756	int r;
 757	unsigned argc;
 758	struct dm_target *ti = v->ti;
 759	const char *arg_name;
 760
 761	static struct dm_arg _args[] = {
 762		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
 763	};
 764
 765	r = dm_read_arg_group(_args, as, &argc, &ti->error);
 766	if (r)
 767		return -EINVAL;
 768
 769	if (!argc)
 770		return 0;
 771
 772	do {
 773		arg_name = dm_shift_arg(as);
 774		argc--;
 775
 776		if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) {
 777			v->mode = DM_VERITY_MODE_LOGGING;
 778			continue;
 779
 780		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) {
 781			v->mode = DM_VERITY_MODE_RESTART;
 
 
 782			continue;
 783
 784		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
 
 
 785			r = verity_alloc_zero_digest(v);
 786			if (r) {
 787				ti->error = "Cannot allocate zero digest";
 788				return r;
 789			}
 790			continue;
 791
 
 
 
 
 
 
 
 
 
 
 
 
 
 792		} else if (verity_is_fec_opt_arg(arg_name)) {
 
 
 793			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
 794			if (r)
 795				return r;
 796			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 797		}
 798
 
 799		ti->error = "Unrecognized verity feature request";
 800		return -EINVAL;
 801	} while (argc && !r);
 802
 803	return r;
 804}
 805
 806/*
 807 * Target parameters:
 808 *	<version>	The current format is version 1.
 809 *			Vsn 0 is compatible with original Chromium OS releases.
 810 *	<data device>
 811 *	<hash device>
 812 *	<data block size>
 813 *	<hash block size>
 814 *	<the number of data blocks>
 815 *	<hash start block>
 816 *	<algorithm>
 817 *	<digest>
 818 *	<salt>		Hex string or "-" if no salt.
 819 */
 820static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
 821{
 822	struct dm_verity *v;
 
 823	struct dm_arg_set as;
 824	unsigned int num;
 825	unsigned long long num_ll;
 826	int r;
 827	int i;
 828	sector_t hash_position;
 829	char dummy;
 
 830
 831	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
 832	if (!v) {
 833		ti->error = "Cannot allocate verity structure";
 834		return -ENOMEM;
 835	}
 836	ti->private = v;
 837	v->ti = ti;
 838
 839	r = verity_fec_ctr_alloc(v);
 840	if (r)
 841		goto bad;
 842
 843	if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
 844		ti->error = "Device must be readonly";
 845		r = -EINVAL;
 846		goto bad;
 847	}
 848
 849	if (argc < 10) {
 850		ti->error = "Not enough arguments";
 851		r = -EINVAL;
 852		goto bad;
 853	}
 854
 
 
 
 
 
 
 
 
 
 855	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
 856	    num > 1) {
 857		ti->error = "Invalid version";
 858		r = -EINVAL;
 859		goto bad;
 860	}
 861	v->version = num;
 862
 863	r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
 864	if (r) {
 865		ti->error = "Data device lookup failed";
 866		goto bad;
 867	}
 868
 869	r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
 870	if (r) {
 871		ti->error = "Hash device lookup failed";
 872		goto bad;
 873	}
 874
 875	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
 876	    !num || (num & (num - 1)) ||
 877	    num < bdev_logical_block_size(v->data_dev->bdev) ||
 878	    num > PAGE_SIZE) {
 879		ti->error = "Invalid data device block size";
 880		r = -EINVAL;
 881		goto bad;
 882	}
 883	v->data_dev_block_bits = __ffs(num);
 884
 885	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
 886	    !num || (num & (num - 1)) ||
 887	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
 888	    num > INT_MAX) {
 889		ti->error = "Invalid hash device block size";
 890		r = -EINVAL;
 891		goto bad;
 892	}
 893	v->hash_dev_block_bits = __ffs(num);
 894
 895	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
 896	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
 897	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
 898		ti->error = "Invalid data blocks";
 899		r = -EINVAL;
 900		goto bad;
 901	}
 902	v->data_blocks = num_ll;
 903
 904	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
 905		ti->error = "Data device is too small";
 906		r = -EINVAL;
 907		goto bad;
 908	}
 909
 910	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
 911	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
 912	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
 913		ti->error = "Invalid hash start";
 914		r = -EINVAL;
 915		goto bad;
 916	}
 917	v->hash_start = num_ll;
 918
 919	v->alg_name = kstrdup(argv[7], GFP_KERNEL);
 920	if (!v->alg_name) {
 921		ti->error = "Cannot allocate algorithm name";
 922		r = -ENOMEM;
 923		goto bad;
 924	}
 925
 926	v->tfm = crypto_alloc_shash(v->alg_name, 0, 0);
 
 927	if (IS_ERR(v->tfm)) {
 928		ti->error = "Cannot initialize hash function";
 929		r = PTR_ERR(v->tfm);
 930		v->tfm = NULL;
 931		goto bad;
 932	}
 933	v->digest_size = crypto_shash_digestsize(v->tfm);
 
 
 
 
 
 
 
 
 
 934	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
 935		ti->error = "Digest size too big";
 936		r = -EINVAL;
 937		goto bad;
 938	}
 939	v->shash_descsize =
 940		sizeof(struct shash_desc) + crypto_shash_descsize(v->tfm);
 941
 942	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
 943	if (!v->root_digest) {
 944		ti->error = "Cannot allocate root digest";
 945		r = -ENOMEM;
 946		goto bad;
 947	}
 948	if (strlen(argv[8]) != v->digest_size * 2 ||
 949	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
 950		ti->error = "Invalid root digest";
 951		r = -EINVAL;
 952		goto bad;
 953	}
 
 954
 955	if (strcmp(argv[9], "-")) {
 956		v->salt_size = strlen(argv[9]) / 2;
 957		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
 958		if (!v->salt) {
 959			ti->error = "Cannot allocate salt";
 960			r = -ENOMEM;
 961			goto bad;
 962		}
 963		if (strlen(argv[9]) != v->salt_size * 2 ||
 964		    hex2bin(v->salt, argv[9], v->salt_size)) {
 965			ti->error = "Invalid salt";
 966			r = -EINVAL;
 967			goto bad;
 968		}
 969	}
 970
 971	argv += 10;
 972	argc -= 10;
 973
 974	/* Optional parameters */
 975	if (argc) {
 976		as.argc = argc;
 977		as.argv = argv;
 978
 979		r = verity_parse_opt_args(&as, v);
 980		if (r < 0)
 981			goto bad;
 982	}
 983
 
 
 
 
 
 
 
 
 
 984	v->hash_per_block_bits =
 985		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
 986
 987	v->levels = 0;
 988	if (v->data_blocks)
 989		while (v->hash_per_block_bits * v->levels < 64 &&
 990		       (unsigned long long)(v->data_blocks - 1) >>
 991		       (v->hash_per_block_bits * v->levels))
 992			v->levels++;
 993
 994	if (v->levels > DM_VERITY_MAX_LEVELS) {
 995		ti->error = "Too many tree levels";
 996		r = -E2BIG;
 997		goto bad;
 998	}
 999
1000	hash_position = v->hash_start;
1001	for (i = v->levels - 1; i >= 0; i--) {
1002		sector_t s;
 
1003		v->hash_level_block[i] = hash_position;
1004		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1005					>> ((i + 1) * v->hash_per_block_bits);
1006		if (hash_position + s < hash_position) {
1007			ti->error = "Hash device offset overflow";
1008			r = -E2BIG;
1009			goto bad;
1010		}
1011		hash_position += s;
1012	}
1013	v->hash_blocks = hash_position;
1014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1016		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1017		dm_bufio_alloc_callback, NULL);
 
1018	if (IS_ERR(v->bufio)) {
1019		ti->error = "Cannot initialize dm-bufio";
1020		r = PTR_ERR(v->bufio);
1021		v->bufio = NULL;
1022		goto bad;
1023	}
1024
1025	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1026		ti->error = "Hash device is too small";
1027		r = -E2BIG;
1028		goto bad;
1029	}
1030
1031	/* WQ_UNBOUND greatly improves performance when running on ramdisk */
1032	v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
 
 
 
 
 
 
 
 
1033	if (!v->verify_wq) {
1034		ti->error = "Cannot allocate workqueue";
1035		r = -ENOMEM;
1036		goto bad;
1037	}
1038
1039	ti->per_io_data_size = sizeof(struct dm_verity_io) +
1040				v->shash_descsize + v->digest_size * 2;
1041
1042	r = verity_fec_ctr(v);
1043	if (r)
1044		goto bad;
1045
1046	ti->per_io_data_size = roundup(ti->per_io_data_size,
1047				       __alignof__(struct dm_verity_io));
1048
 
 
 
 
1049	return 0;
1050
1051bad:
 
 
 
1052	verity_dtr(ti);
1053
1054	return r;
1055}
1056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057static struct target_type verity_target = {
1058	.name		= "verity",
1059	.version	= {1, 3, 0},
 
1060	.module		= THIS_MODULE,
1061	.ctr		= verity_ctr,
1062	.dtr		= verity_dtr,
1063	.map		= verity_map,
1064	.status		= verity_status,
1065	.prepare_ioctl	= verity_prepare_ioctl,
1066	.iterate_devices = verity_iterate_devices,
1067	.io_hints	= verity_io_hints,
1068};
1069
1070static int __init dm_verity_init(void)
1071{
1072	int r;
1073
1074	r = dm_register_target(&verity_target);
1075	if (r < 0)
1076		DMERR("register failed %d", r);
1077
1078	return r;
1079}
1080
1081static void __exit dm_verity_exit(void)
1082{
1083	dm_unregister_target(&verity_target);
1084}
1085
1086module_init(dm_verity_init);
1087module_exit(dm_verity_exit);
1088
1089MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1090MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1091MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1092MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1093MODULE_LICENSE("GPL");