Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 Red Hat. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
   9#include "dm-bio-prison-v2.h"
  10#include "dm-bio-record.h"
  11#include "dm-cache-metadata.h"
  12#include "dm-io-tracker.h"
  13
  14#include <linux/dm-io.h>
  15#include <linux/dm-kcopyd.h>
  16#include <linux/jiffies.h>
  17#include <linux/init.h>
  18#include <linux/mempool.h>
  19#include <linux/module.h>
  20#include <linux/rwsem.h>
  21#include <linux/slab.h>
  22#include <linux/vmalloc.h>
  23
  24#define DM_MSG_PREFIX "cache"
  25
  26DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
  27	"A percentage of time allocated for copying to and/or from cache");
  28
  29/*----------------------------------------------------------------*/
  30
  31/*
  32 * Glossary:
  33 *
  34 * oblock: index of an origin block
  35 * cblock: index of a cache block
  36 * promotion: movement of a block from origin to cache
  37 * demotion: movement of a block from cache to origin
  38 * migration: movement of a block between the origin and cache device,
  39 *	      either direction
  40 */
  41
  42/*----------------------------------------------------------------*/
  43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  44/*
  45 * Represents a chunk of future work.  'input' allows continuations to pass
  46 * values between themselves, typically error values.
  47 */
  48struct continuation {
  49	struct work_struct ws;
  50	blk_status_t input;
  51};
  52
  53static inline void init_continuation(struct continuation *k,
  54				     void (*fn)(struct work_struct *))
  55{
  56	INIT_WORK(&k->ws, fn);
  57	k->input = 0;
  58}
  59
  60static inline void queue_continuation(struct workqueue_struct *wq,
  61				      struct continuation *k)
  62{
  63	queue_work(wq, &k->ws);
  64}
  65
  66/*----------------------------------------------------------------*/
  67
  68/*
  69 * The batcher collects together pieces of work that need a particular
  70 * operation to occur before they can proceed (typically a commit).
  71 */
  72struct batcher {
  73	/*
  74	 * The operation that everyone is waiting for.
  75	 */
  76	blk_status_t (*commit_op)(void *context);
  77	void *commit_context;
  78
  79	/*
  80	 * This is how bios should be issued once the commit op is complete
  81	 * (accounted_request).
  82	 */
  83	void (*issue_op)(struct bio *bio, void *context);
  84	void *issue_context;
  85
  86	/*
  87	 * Queued work gets put on here after commit.
  88	 */
  89	struct workqueue_struct *wq;
  90
  91	spinlock_t lock;
  92	struct list_head work_items;
  93	struct bio_list bios;
  94	struct work_struct commit_work;
  95
  96	bool commit_scheduled;
  97};
  98
  99static void __commit(struct work_struct *_ws)
 100{
 101	struct batcher *b = container_of(_ws, struct batcher, commit_work);
 102	blk_status_t r;
 
 103	struct list_head work_items;
 104	struct work_struct *ws, *tmp;
 105	struct continuation *k;
 106	struct bio *bio;
 107	struct bio_list bios;
 108
 109	INIT_LIST_HEAD(&work_items);
 110	bio_list_init(&bios);
 111
 112	/*
 113	 * We have to grab these before the commit_op to avoid a race
 114	 * condition.
 115	 */
 116	spin_lock_irq(&b->lock);
 117	list_splice_init(&b->work_items, &work_items);
 118	bio_list_merge(&bios, &b->bios);
 119	bio_list_init(&b->bios);
 120	b->commit_scheduled = false;
 121	spin_unlock_irq(&b->lock);
 122
 123	r = b->commit_op(b->commit_context);
 124
 125	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
 126		k = container_of(ws, struct continuation, ws);
 127		k->input = r;
 128		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
 129		queue_work(b->wq, ws);
 130	}
 131
 132	while ((bio = bio_list_pop(&bios))) {
 133		if (r) {
 134			bio->bi_status = r;
 135			bio_endio(bio);
 136		} else
 137			b->issue_op(bio, b->issue_context);
 138	}
 139}
 140
 141static void batcher_init(struct batcher *b,
 142			 blk_status_t (*commit_op)(void *),
 143			 void *commit_context,
 144			 void (*issue_op)(struct bio *bio, void *),
 145			 void *issue_context,
 146			 struct workqueue_struct *wq)
 147{
 148	b->commit_op = commit_op;
 149	b->commit_context = commit_context;
 150	b->issue_op = issue_op;
 151	b->issue_context = issue_context;
 152	b->wq = wq;
 153
 154	spin_lock_init(&b->lock);
 155	INIT_LIST_HEAD(&b->work_items);
 156	bio_list_init(&b->bios);
 157	INIT_WORK(&b->commit_work, __commit);
 158	b->commit_scheduled = false;
 159}
 160
 161static void async_commit(struct batcher *b)
 162{
 163	queue_work(b->wq, &b->commit_work);
 164}
 165
 166static void continue_after_commit(struct batcher *b, struct continuation *k)
 167{
 
 168	bool commit_scheduled;
 169
 170	spin_lock_irq(&b->lock);
 171	commit_scheduled = b->commit_scheduled;
 172	list_add_tail(&k->ws.entry, &b->work_items);
 173	spin_unlock_irq(&b->lock);
 174
 175	if (commit_scheduled)
 176		async_commit(b);
 177}
 178
 179/*
 180 * Bios are errored if commit failed.
 181 */
 182static void issue_after_commit(struct batcher *b, struct bio *bio)
 183{
 184	bool commit_scheduled;
 
 185
 186	spin_lock_irq(&b->lock);
 187	commit_scheduled = b->commit_scheduled;
 188	bio_list_add(&b->bios, bio);
 189	spin_unlock_irq(&b->lock);
 190
 191	if (commit_scheduled)
 192		async_commit(b);
 193}
 194
 195/*
 196 * Call this if some urgent work is waiting for the commit to complete.
 197 */
 198static void schedule_commit(struct batcher *b)
 199{
 200	bool immediate;
 
 201
 202	spin_lock_irq(&b->lock);
 203	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
 204	b->commit_scheduled = true;
 205	spin_unlock_irq(&b->lock);
 206
 207	if (immediate)
 208		async_commit(b);
 209}
 210
 211/*
 212 * There are a couple of places where we let a bio run, but want to do some
 213 * work before calling its endio function.  We do this by temporarily
 214 * changing the endio fn.
 215 */
 216struct dm_hook_info {
 217	bio_end_io_t *bi_end_io;
 218};
 219
 220static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
 221			bio_end_io_t *bi_end_io, void *bi_private)
 222{
 223	h->bi_end_io = bio->bi_end_io;
 224
 225	bio->bi_end_io = bi_end_io;
 226	bio->bi_private = bi_private;
 227}
 228
 229static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
 230{
 231	bio->bi_end_io = h->bi_end_io;
 232}
 233
 234/*----------------------------------------------------------------*/
 235
 236#define MIGRATION_POOL_SIZE 128
 237#define COMMIT_PERIOD HZ
 238#define MIGRATION_COUNT_WINDOW 10
 239
 240/*
 241 * The block size of the device holding cache data must be
 242 * between 32KB and 1GB.
 243 */
 244#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
 245#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
 246
 247enum cache_metadata_mode {
 248	CM_WRITE,		/* metadata may be changed */
 249	CM_READ_ONLY,		/* metadata may not be changed */
 250	CM_FAIL
 251};
 252
 253enum cache_io_mode {
 254	/*
 255	 * Data is written to cached blocks only.  These blocks are marked
 256	 * dirty.  If you lose the cache device you will lose data.
 257	 * Potential performance increase for both reads and writes.
 258	 */
 259	CM_IO_WRITEBACK,
 260
 261	/*
 262	 * Data is written to both cache and origin.  Blocks are never
 263	 * dirty.  Potential performance benfit for reads only.
 264	 */
 265	CM_IO_WRITETHROUGH,
 266
 267	/*
 268	 * A degraded mode useful for various cache coherency situations
 269	 * (eg, rolling back snapshots).  Reads and writes always go to the
 270	 * origin.  If a write goes to a cached oblock, then the cache
 271	 * block is invalidated.
 272	 */
 273	CM_IO_PASSTHROUGH
 274};
 275
 276struct cache_features {
 277	enum cache_metadata_mode mode;
 278	enum cache_io_mode io_mode;
 279	unsigned int metadata_version;
 280	bool discard_passdown:1;
 281};
 282
 283struct cache_stats {
 284	atomic_t read_hit;
 285	atomic_t read_miss;
 286	atomic_t write_hit;
 287	atomic_t write_miss;
 288	atomic_t demotion;
 289	atomic_t promotion;
 290	atomic_t writeback;
 291	atomic_t copies_avoided;
 292	atomic_t cache_cell_clash;
 293	atomic_t commit_count;
 294	atomic_t discard_count;
 295};
 296
 297struct cache {
 298	struct dm_target *ti;
 299	spinlock_t lock;
 300
 301	/*
 302	 * Fields for converting from sectors to blocks.
 303	 */
 304	int sectors_per_block_shift;
 305	sector_t sectors_per_block;
 306
 307	struct dm_cache_metadata *cmd;
 308
 309	/*
 310	 * Metadata is written to this device.
 311	 */
 312	struct dm_dev *metadata_dev;
 313
 314	/*
 315	 * The slower of the two data devices.  Typically a spindle.
 316	 */
 317	struct dm_dev *origin_dev;
 318
 319	/*
 320	 * The faster of the two data devices.  Typically an SSD.
 321	 */
 322	struct dm_dev *cache_dev;
 323
 324	/*
 325	 * Size of the origin device in _complete_ blocks and native sectors.
 326	 */
 327	dm_oblock_t origin_blocks;
 328	sector_t origin_sectors;
 329
 330	/*
 331	 * Size of the cache device in blocks.
 332	 */
 333	dm_cblock_t cache_size;
 334
 335	/*
 336	 * Invalidation fields.
 337	 */
 338	spinlock_t invalidation_lock;
 339	struct list_head invalidation_requests;
 340
 341	sector_t migration_threshold;
 342	wait_queue_head_t migration_wait;
 343	atomic_t nr_allocated_migrations;
 344
 345	/*
 346	 * The number of in flight migrations that are performing
 347	 * background io. eg, promotion, writeback.
 348	 */
 349	atomic_t nr_io_migrations;
 350
 351	struct bio_list deferred_bios;
 352
 353	struct rw_semaphore quiesce_lock;
 354
 
 
 355	/*
 356	 * origin_blocks entries, discarded if set.
 357	 */
 358	dm_dblock_t discard_nr_blocks;
 359	unsigned long *discard_bitset;
 360	uint32_t discard_block_size; /* a power of 2 times sectors per block */
 361
 362	/*
 363	 * Rather than reconstructing the table line for the status we just
 364	 * save it and regurgitate.
 365	 */
 366	unsigned int nr_ctr_args;
 367	const char **ctr_args;
 368
 369	struct dm_kcopyd_client *copier;
 370	struct work_struct deferred_bio_worker;
 371	struct work_struct migration_worker;
 372	struct workqueue_struct *wq;
 373	struct delayed_work waker;
 374	struct dm_bio_prison_v2 *prison;
 375
 376	/*
 377	 * cache_size entries, dirty if set
 378	 */
 379	unsigned long *dirty_bitset;
 380	atomic_t nr_dirty;
 381
 382	unsigned int policy_nr_args;
 383	struct dm_cache_policy *policy;
 384
 385	/*
 386	 * Cache features such as write-through.
 387	 */
 388	struct cache_features features;
 389
 390	struct cache_stats stats;
 391
 392	bool need_tick_bio:1;
 393	bool sized:1;
 394	bool invalidate:1;
 395	bool commit_requested:1;
 396	bool loaded_mappings:1;
 397	bool loaded_discards:1;
 398
 399	struct rw_semaphore background_work_lock;
 400
 401	struct batcher committer;
 402	struct work_struct commit_ws;
 403
 404	struct dm_io_tracker tracker;
 405
 406	mempool_t migration_pool;
 407
 408	struct bio_set bs;
 409};
 410
 411struct per_bio_data {
 412	bool tick:1;
 413	unsigned int req_nr:2;
 414	struct dm_bio_prison_cell_v2 *cell;
 415	struct dm_hook_info hook_info;
 416	sector_t len;
 417};
 418
 419struct dm_cache_migration {
 420	struct continuation k;
 421	struct cache *cache;
 422
 423	struct policy_work *op;
 424	struct bio *overwrite_bio;
 425	struct dm_bio_prison_cell_v2 *cell;
 426
 427	dm_cblock_t invalidate_cblock;
 428	dm_oblock_t invalidate_oblock;
 429};
 430
 431/*----------------------------------------------------------------*/
 432
 433static bool writethrough_mode(struct cache *cache)
 434{
 435	return cache->features.io_mode == CM_IO_WRITETHROUGH;
 436}
 437
 438static bool writeback_mode(struct cache *cache)
 439{
 440	return cache->features.io_mode == CM_IO_WRITEBACK;
 441}
 442
 443static inline bool passthrough_mode(struct cache *cache)
 444{
 445	return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
 446}
 447
 448/*----------------------------------------------------------------*/
 449
 450static void wake_deferred_bio_worker(struct cache *cache)
 451{
 452	queue_work(cache->wq, &cache->deferred_bio_worker);
 453}
 454
 455static void wake_migration_worker(struct cache *cache)
 456{
 457	if (passthrough_mode(cache))
 458		return;
 459
 460	queue_work(cache->wq, &cache->migration_worker);
 461}
 462
 463/*----------------------------------------------------------------*/
 464
 465static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
 466{
 467	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
 468}
 469
 470static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
 471{
 472	dm_bio_prison_free_cell_v2(cache->prison, cell);
 473}
 474
 475static struct dm_cache_migration *alloc_migration(struct cache *cache)
 476{
 477	struct dm_cache_migration *mg;
 478
 479	mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
 480
 481	memset(mg, 0, sizeof(*mg));
 482
 483	mg->cache = cache;
 484	atomic_inc(&cache->nr_allocated_migrations);
 485
 486	return mg;
 487}
 488
 489static void free_migration(struct dm_cache_migration *mg)
 490{
 491	struct cache *cache = mg->cache;
 492
 493	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
 494		wake_up(&cache->migration_wait);
 495
 496	mempool_free(mg, &cache->migration_pool);
 497}
 498
 499/*----------------------------------------------------------------*/
 500
 501static inline dm_oblock_t oblock_succ(dm_oblock_t b)
 502{
 503	return to_oblock(from_oblock(b) + 1ull);
 504}
 505
 506static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
 507{
 508	key->virtual = 0;
 509	key->dev = 0;
 510	key->block_begin = from_oblock(begin);
 511	key->block_end = from_oblock(end);
 512}
 513
 514/*
 515 * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
 516 * level 1 which prevents *both* READs and WRITEs.
 517 */
 518#define WRITE_LOCK_LEVEL 0
 519#define READ_WRITE_LOCK_LEVEL 1
 520
 521static unsigned int lock_level(struct bio *bio)
 522{
 523	return bio_data_dir(bio) == WRITE ?
 524		WRITE_LOCK_LEVEL :
 525		READ_WRITE_LOCK_LEVEL;
 526}
 527
 528/*
 529 *--------------------------------------------------------------
 530 * Per bio data
 531 *--------------------------------------------------------------
 532 */
 533
 534static struct per_bio_data *get_per_bio_data(struct bio *bio)
 535{
 536	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
 537
 538	BUG_ON(!pb);
 539	return pb;
 540}
 541
 542static struct per_bio_data *init_per_bio_data(struct bio *bio)
 543{
 544	struct per_bio_data *pb = get_per_bio_data(bio);
 545
 546	pb->tick = false;
 547	pb->req_nr = dm_bio_get_target_bio_nr(bio);
 548	pb->cell = NULL;
 549	pb->len = 0;
 550
 551	return pb;
 552}
 553
 554/*----------------------------------------------------------------*/
 555
 556static void defer_bio(struct cache *cache, struct bio *bio)
 557{
 558	spin_lock_irq(&cache->lock);
 
 
 559	bio_list_add(&cache->deferred_bios, bio);
 560	spin_unlock_irq(&cache->lock);
 561
 562	wake_deferred_bio_worker(cache);
 563}
 564
 565static void defer_bios(struct cache *cache, struct bio_list *bios)
 566{
 567	spin_lock_irq(&cache->lock);
 
 
 568	bio_list_merge(&cache->deferred_bios, bios);
 569	bio_list_init(bios);
 570	spin_unlock_irq(&cache->lock);
 571
 572	wake_deferred_bio_worker(cache);
 573}
 574
 575/*----------------------------------------------------------------*/
 576
 577static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
 578{
 579	bool r;
 580	struct per_bio_data *pb;
 581	struct dm_cell_key_v2 key;
 582	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
 583	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
 584
 585	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
 586
 587	build_key(oblock, end, &key);
 588	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
 589	if (!r) {
 590		/*
 591		 * Failed to get the lock.
 592		 */
 593		free_prison_cell(cache, cell_prealloc);
 594		return r;
 595	}
 596
 597	if (cell != cell_prealloc)
 598		free_prison_cell(cache, cell_prealloc);
 599
 600	pb = get_per_bio_data(bio);
 601	pb->cell = cell;
 602
 603	return r;
 604}
 605
 606/*----------------------------------------------------------------*/
 607
 608static bool is_dirty(struct cache *cache, dm_cblock_t b)
 609{
 610	return test_bit(from_cblock(b), cache->dirty_bitset);
 611}
 612
 613static void set_dirty(struct cache *cache, dm_cblock_t cblock)
 614{
 615	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
 616		atomic_inc(&cache->nr_dirty);
 617		policy_set_dirty(cache->policy, cblock);
 618	}
 619}
 620
 621/*
 622 * These two are called when setting after migrations to force the policy
 623 * and dirty bitset to be in sync.
 624 */
 625static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
 626{
 627	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
 628		atomic_inc(&cache->nr_dirty);
 629	policy_set_dirty(cache->policy, cblock);
 630}
 631
 632static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
 633{
 634	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
 635		if (atomic_dec_return(&cache->nr_dirty) == 0)
 636			dm_table_event(cache->ti->table);
 637	}
 638
 639	policy_clear_dirty(cache->policy, cblock);
 640}
 641
 642/*----------------------------------------------------------------*/
 643
 644static bool block_size_is_power_of_two(struct cache *cache)
 645{
 646	return cache->sectors_per_block_shift >= 0;
 647}
 648
 
 
 
 
 649static dm_block_t block_div(dm_block_t b, uint32_t n)
 650{
 651	do_div(b, n);
 652
 653	return b;
 654}
 655
 656static dm_block_t oblocks_per_dblock(struct cache *cache)
 657{
 658	dm_block_t oblocks = cache->discard_block_size;
 659
 660	if (block_size_is_power_of_two(cache))
 661		oblocks >>= cache->sectors_per_block_shift;
 662	else
 663		oblocks = block_div(oblocks, cache->sectors_per_block);
 664
 665	return oblocks;
 666}
 667
 668static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
 669{
 670	return to_dblock(block_div(from_oblock(oblock),
 671				   oblocks_per_dblock(cache)));
 672}
 673
 674static void set_discard(struct cache *cache, dm_dblock_t b)
 675{
 
 
 676	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
 677	atomic_inc(&cache->stats.discard_count);
 678
 679	spin_lock_irq(&cache->lock);
 680	set_bit(from_dblock(b), cache->discard_bitset);
 681	spin_unlock_irq(&cache->lock);
 682}
 683
 684static void clear_discard(struct cache *cache, dm_dblock_t b)
 685{
 686	spin_lock_irq(&cache->lock);
 
 
 687	clear_bit(from_dblock(b), cache->discard_bitset);
 688	spin_unlock_irq(&cache->lock);
 689}
 690
 691static bool is_discarded(struct cache *cache, dm_dblock_t b)
 692{
 693	int r;
 
 694
 695	spin_lock_irq(&cache->lock);
 696	r = test_bit(from_dblock(b), cache->discard_bitset);
 697	spin_unlock_irq(&cache->lock);
 698
 699	return r;
 700}
 701
 702static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
 703{
 704	int r;
 
 705
 706	spin_lock_irq(&cache->lock);
 707	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
 708		     cache->discard_bitset);
 709	spin_unlock_irq(&cache->lock);
 710
 711	return r;
 712}
 713
 714/*
 715 * -------------------------------------------------------------
 716 * Remapping
 717 *--------------------------------------------------------------
 718 */
 719static void remap_to_origin(struct cache *cache, struct bio *bio)
 720{
 721	bio_set_dev(bio, cache->origin_dev->bdev);
 722}
 723
 724static void remap_to_cache(struct cache *cache, struct bio *bio,
 725			   dm_cblock_t cblock)
 726{
 727	sector_t bi_sector = bio->bi_iter.bi_sector;
 728	sector_t block = from_cblock(cblock);
 729
 730	bio_set_dev(bio, cache->cache_dev->bdev);
 731	if (!block_size_is_power_of_two(cache))
 732		bio->bi_iter.bi_sector =
 733			(block * cache->sectors_per_block) +
 734			sector_div(bi_sector, cache->sectors_per_block);
 735	else
 736		bio->bi_iter.bi_sector =
 737			(block << cache->sectors_per_block_shift) |
 738			(bi_sector & (cache->sectors_per_block - 1));
 739}
 740
 741static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
 742{
 
 743	struct per_bio_data *pb;
 744
 745	spin_lock_irq(&cache->lock);
 746	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
 747	    bio_op(bio) != REQ_OP_DISCARD) {
 748		pb = get_per_bio_data(bio);
 749		pb->tick = true;
 750		cache->need_tick_bio = false;
 751	}
 752	spin_unlock_irq(&cache->lock);
 753}
 754
 755static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 756					  dm_oblock_t oblock)
 757{
 758	// FIXME: check_if_tick_bio_needed() is called way too much through this interface
 759	check_if_tick_bio_needed(cache, bio);
 760	remap_to_origin(cache, bio);
 761	if (bio_data_dir(bio) == WRITE)
 762		clear_discard(cache, oblock_to_dblock(cache, oblock));
 763}
 764
 
 
 
 
 
 
 
 765static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
 766				 dm_oblock_t oblock, dm_cblock_t cblock)
 767{
 768	check_if_tick_bio_needed(cache, bio);
 769	remap_to_cache(cache, bio, cblock);
 770	if (bio_data_dir(bio) == WRITE) {
 771		set_dirty(cache, cblock);
 772		clear_discard(cache, oblock_to_dblock(cache, oblock));
 773	}
 774}
 775
 776static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
 777{
 778	sector_t block_nr = bio->bi_iter.bi_sector;
 779
 780	if (!block_size_is_power_of_two(cache))
 781		(void) sector_div(block_nr, cache->sectors_per_block);
 782	else
 783		block_nr >>= cache->sectors_per_block_shift;
 784
 785	return to_oblock(block_nr);
 786}
 787
 788static bool accountable_bio(struct cache *cache, struct bio *bio)
 789{
 790	return bio_op(bio) != REQ_OP_DISCARD;
 791}
 792
 793static void accounted_begin(struct cache *cache, struct bio *bio)
 794{
 795	struct per_bio_data *pb;
 796
 797	if (accountable_bio(cache, bio)) {
 798		pb = get_per_bio_data(bio);
 799		pb->len = bio_sectors(bio);
 800		dm_iot_io_begin(&cache->tracker, pb->len);
 801	}
 802}
 803
 804static void accounted_complete(struct cache *cache, struct bio *bio)
 805{
 806	struct per_bio_data *pb = get_per_bio_data(bio);
 807
 808	dm_iot_io_end(&cache->tracker, pb->len);
 809}
 810
 811static void accounted_request(struct cache *cache, struct bio *bio)
 812{
 813	accounted_begin(cache, bio);
 814	dm_submit_bio_remap(bio, NULL);
 815}
 816
 817static void issue_op(struct bio *bio, void *context)
 818{
 819	struct cache *cache = context;
 820
 821	accounted_request(cache, bio);
 822}
 823
 824/*
 825 * When running in writethrough mode we need to send writes to clean blocks
 826 * to both the cache and origin devices.  Clone the bio and send them in parallel.
 827 */
 828static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
 829				      dm_oblock_t oblock, dm_cblock_t cblock)
 830{
 831	struct bio *origin_bio = bio_alloc_clone(cache->origin_dev->bdev, bio,
 832						 GFP_NOIO, &cache->bs);
 833
 834	BUG_ON(!origin_bio);
 835
 836	bio_chain(origin_bio, bio);
 837
 838	if (bio_data_dir(origin_bio) == WRITE)
 839		clear_discard(cache, oblock_to_dblock(cache, oblock));
 
 
 840	submit_bio(origin_bio);
 841
 842	remap_to_cache(cache, bio, cblock);
 843}
 844
 845/*
 846 *--------------------------------------------------------------
 847 * Failure modes
 848 *--------------------------------------------------------------
 849 */
 850static enum cache_metadata_mode get_cache_mode(struct cache *cache)
 851{
 852	return cache->features.mode;
 853}
 854
 855static const char *cache_device_name(struct cache *cache)
 856{
 857	return dm_table_device_name(cache->ti->table);
 858}
 859
 860static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
 861{
 862	static const char *descs[] = {
 863		"write",
 864		"read-only",
 865		"fail"
 866	};
 867
 868	dm_table_event(cache->ti->table);
 869	DMINFO("%s: switching cache to %s mode",
 870	       cache_device_name(cache), descs[(int)mode]);
 871}
 872
 873static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
 874{
 875	bool needs_check;
 876	enum cache_metadata_mode old_mode = get_cache_mode(cache);
 877
 878	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
 879		DMERR("%s: unable to read needs_check flag, setting failure mode.",
 880		      cache_device_name(cache));
 881		new_mode = CM_FAIL;
 882	}
 883
 884	if (new_mode == CM_WRITE && needs_check) {
 885		DMERR("%s: unable to switch cache to write mode until repaired.",
 886		      cache_device_name(cache));
 887		if (old_mode != new_mode)
 888			new_mode = old_mode;
 889		else
 890			new_mode = CM_READ_ONLY;
 891	}
 892
 893	/* Never move out of fail mode */
 894	if (old_mode == CM_FAIL)
 895		new_mode = CM_FAIL;
 896
 897	switch (new_mode) {
 898	case CM_FAIL:
 899	case CM_READ_ONLY:
 900		dm_cache_metadata_set_read_only(cache->cmd);
 901		break;
 902
 903	case CM_WRITE:
 904		dm_cache_metadata_set_read_write(cache->cmd);
 905		break;
 906	}
 907
 908	cache->features.mode = new_mode;
 909
 910	if (new_mode != old_mode)
 911		notify_mode_switch(cache, new_mode);
 912}
 913
 914static void abort_transaction(struct cache *cache)
 915{
 916	const char *dev_name = cache_device_name(cache);
 917
 918	if (get_cache_mode(cache) >= CM_READ_ONLY)
 919		return;
 920
 921	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
 922	if (dm_cache_metadata_abort(cache->cmd)) {
 923		DMERR("%s: failed to abort metadata transaction", dev_name);
 924		set_cache_mode(cache, CM_FAIL);
 925	}
 926
 927	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
 928		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
 
 929		set_cache_mode(cache, CM_FAIL);
 930	}
 931}
 932
 933static void metadata_operation_failed(struct cache *cache, const char *op, int r)
 934{
 935	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
 936		    cache_device_name(cache), op, r);
 937	abort_transaction(cache);
 938	set_cache_mode(cache, CM_READ_ONLY);
 939}
 940
 941/*----------------------------------------------------------------*/
 942
 943static void load_stats(struct cache *cache)
 944{
 945	struct dm_cache_statistics stats;
 946
 947	dm_cache_metadata_get_stats(cache->cmd, &stats);
 948	atomic_set(&cache->stats.read_hit, stats.read_hits);
 949	atomic_set(&cache->stats.read_miss, stats.read_misses);
 950	atomic_set(&cache->stats.write_hit, stats.write_hits);
 951	atomic_set(&cache->stats.write_miss, stats.write_misses);
 952}
 953
 954static void save_stats(struct cache *cache)
 955{
 956	struct dm_cache_statistics stats;
 957
 958	if (get_cache_mode(cache) >= CM_READ_ONLY)
 959		return;
 960
 961	stats.read_hits = atomic_read(&cache->stats.read_hit);
 962	stats.read_misses = atomic_read(&cache->stats.read_miss);
 963	stats.write_hits = atomic_read(&cache->stats.write_hit);
 964	stats.write_misses = atomic_read(&cache->stats.write_miss);
 965
 966	dm_cache_metadata_set_stats(cache->cmd, &stats);
 967}
 968
 969static void update_stats(struct cache_stats *stats, enum policy_operation op)
 970{
 971	switch (op) {
 972	case POLICY_PROMOTE:
 973		atomic_inc(&stats->promotion);
 974		break;
 975
 976	case POLICY_DEMOTE:
 977		atomic_inc(&stats->demotion);
 978		break;
 979
 980	case POLICY_WRITEBACK:
 981		atomic_inc(&stats->writeback);
 982		break;
 983	}
 984}
 985
 986/*
 987 *---------------------------------------------------------------------
 988 * Migration processing
 989 *
 990 * Migration covers moving data from the origin device to the cache, or
 991 * vice versa.
 992 *---------------------------------------------------------------------
 993 */
 994static void inc_io_migrations(struct cache *cache)
 995{
 996	atomic_inc(&cache->nr_io_migrations);
 997}
 998
 999static void dec_io_migrations(struct cache *cache)
1000{
1001	atomic_dec(&cache->nr_io_migrations);
1002}
1003
1004static bool discard_or_flush(struct bio *bio)
1005{
1006	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1007}
1008
1009static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1010				     dm_dblock_t *b, dm_dblock_t *e)
1011{
1012	sector_t sb = bio->bi_iter.bi_sector;
1013	sector_t se = bio_end_sector(bio);
1014
1015	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1016
1017	if (se - sb < cache->discard_block_size)
1018		*e = *b;
1019	else
1020		*e = to_dblock(block_div(se, cache->discard_block_size));
1021}
1022
1023/*----------------------------------------------------------------*/
1024
1025static void prevent_background_work(struct cache *cache)
1026{
1027	lockdep_off();
1028	down_write(&cache->background_work_lock);
1029	lockdep_on();
1030}
1031
1032static void allow_background_work(struct cache *cache)
1033{
1034	lockdep_off();
1035	up_write(&cache->background_work_lock);
1036	lockdep_on();
1037}
1038
1039static bool background_work_begin(struct cache *cache)
1040{
1041	bool r;
1042
1043	lockdep_off();
1044	r = down_read_trylock(&cache->background_work_lock);
1045	lockdep_on();
1046
1047	return r;
1048}
1049
1050static void background_work_end(struct cache *cache)
1051{
1052	lockdep_off();
1053	up_read(&cache->background_work_lock);
1054	lockdep_on();
1055}
1056
1057/*----------------------------------------------------------------*/
1058
1059static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1060{
1061	return (bio_data_dir(bio) == WRITE) &&
1062		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1063}
1064
1065static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1066{
1067	return writeback_mode(cache) &&
1068		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1069}
1070
1071static void quiesce(struct dm_cache_migration *mg,
1072		    void (*continuation)(struct work_struct *))
1073{
1074	init_continuation(&mg->k, continuation);
1075	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1076}
1077
1078static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1079{
1080	struct continuation *k = container_of(ws, struct continuation, ws);
1081
1082	return container_of(k, struct dm_cache_migration, k);
1083}
1084
1085static void copy_complete(int read_err, unsigned long write_err, void *context)
1086{
1087	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1088
1089	if (read_err || write_err)
1090		mg->k.input = BLK_STS_IOERR;
1091
1092	queue_continuation(mg->cache->wq, &mg->k);
1093}
1094
1095static void copy(struct dm_cache_migration *mg, bool promote)
1096{
1097	struct dm_io_region o_region, c_region;
1098	struct cache *cache = mg->cache;
1099
1100	o_region.bdev = cache->origin_dev->bdev;
1101	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1102	o_region.count = cache->sectors_per_block;
1103
1104	c_region.bdev = cache->cache_dev->bdev;
1105	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1106	c_region.count = cache->sectors_per_block;
1107
1108	if (promote)
1109		dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1110	else
1111		dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1112}
1113
1114static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1115{
1116	struct per_bio_data *pb = get_per_bio_data(bio);
1117
1118	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1119		free_prison_cell(cache, pb->cell);
1120	pb->cell = NULL;
1121}
1122
1123static void overwrite_endio(struct bio *bio)
1124{
1125	struct dm_cache_migration *mg = bio->bi_private;
1126	struct cache *cache = mg->cache;
1127	struct per_bio_data *pb = get_per_bio_data(bio);
1128
1129	dm_unhook_bio(&pb->hook_info, bio);
1130
1131	if (bio->bi_status)
1132		mg->k.input = bio->bi_status;
1133
1134	queue_continuation(cache->wq, &mg->k);
1135}
1136
1137static void overwrite(struct dm_cache_migration *mg,
1138		      void (*continuation)(struct work_struct *))
1139{
1140	struct bio *bio = mg->overwrite_bio;
1141	struct per_bio_data *pb = get_per_bio_data(bio);
1142
1143	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1144
1145	/*
1146	 * The overwrite bio is part of the copy operation, as such it does
1147	 * not set/clear discard or dirty flags.
1148	 */
1149	if (mg->op->op == POLICY_PROMOTE)
1150		remap_to_cache(mg->cache, bio, mg->op->cblock);
1151	else
1152		remap_to_origin(mg->cache, bio);
1153
1154	init_continuation(&mg->k, continuation);
1155	accounted_request(mg->cache, bio);
1156}
1157
1158/*
1159 * Migration steps:
1160 *
1161 * 1) exclusive lock preventing WRITEs
1162 * 2) quiesce
1163 * 3) copy or issue overwrite bio
1164 * 4) upgrade to exclusive lock preventing READs and WRITEs
1165 * 5) quiesce
1166 * 6) update metadata and commit
1167 * 7) unlock
1168 */
1169static void mg_complete(struct dm_cache_migration *mg, bool success)
1170{
1171	struct bio_list bios;
1172	struct cache *cache = mg->cache;
1173	struct policy_work *op = mg->op;
1174	dm_cblock_t cblock = op->cblock;
1175
1176	if (success)
1177		update_stats(&cache->stats, op->op);
1178
1179	switch (op->op) {
1180	case POLICY_PROMOTE:
1181		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1182		policy_complete_background_work(cache->policy, op, success);
1183
1184		if (mg->overwrite_bio) {
1185			if (success)
1186				force_set_dirty(cache, cblock);
1187			else if (mg->k.input)
1188				mg->overwrite_bio->bi_status = mg->k.input;
1189			else
1190				mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1191			bio_endio(mg->overwrite_bio);
1192		} else {
1193			if (success)
1194				force_clear_dirty(cache, cblock);
1195			dec_io_migrations(cache);
1196		}
1197		break;
1198
1199	case POLICY_DEMOTE:
1200		/*
1201		 * We clear dirty here to update the nr_dirty counter.
1202		 */
1203		if (success)
1204			force_clear_dirty(cache, cblock);
1205		policy_complete_background_work(cache->policy, op, success);
1206		dec_io_migrations(cache);
1207		break;
1208
1209	case POLICY_WRITEBACK:
1210		if (success)
1211			force_clear_dirty(cache, cblock);
1212		policy_complete_background_work(cache->policy, op, success);
1213		dec_io_migrations(cache);
1214		break;
1215	}
1216
1217	bio_list_init(&bios);
1218	if (mg->cell) {
1219		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1220			free_prison_cell(cache, mg->cell);
1221	}
1222
1223	free_migration(mg);
1224	defer_bios(cache, &bios);
1225	wake_migration_worker(cache);
1226
1227	background_work_end(cache);
1228}
1229
1230static void mg_success(struct work_struct *ws)
1231{
1232	struct dm_cache_migration *mg = ws_to_mg(ws);
1233
1234	mg_complete(mg, mg->k.input == 0);
1235}
1236
1237static void mg_update_metadata(struct work_struct *ws)
1238{
1239	int r;
1240	struct dm_cache_migration *mg = ws_to_mg(ws);
1241	struct cache *cache = mg->cache;
1242	struct policy_work *op = mg->op;
1243
1244	switch (op->op) {
1245	case POLICY_PROMOTE:
1246		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1247		if (r) {
1248			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1249				    cache_device_name(cache));
1250			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1251
1252			mg_complete(mg, false);
1253			return;
1254		}
1255		mg_complete(mg, true);
1256		break;
1257
1258	case POLICY_DEMOTE:
1259		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1260		if (r) {
1261			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1262				    cache_device_name(cache));
1263			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1264
1265			mg_complete(mg, false);
1266			return;
1267		}
1268
1269		/*
1270		 * It would be nice if we only had to commit when a REQ_FLUSH
1271		 * comes through.  But there's one scenario that we have to
1272		 * look out for:
1273		 *
1274		 * - vblock x in a cache block
1275		 * - domotion occurs
1276		 * - cache block gets reallocated and over written
1277		 * - crash
1278		 *
1279		 * When we recover, because there was no commit the cache will
1280		 * rollback to having the data for vblock x in the cache block.
1281		 * But the cache block has since been overwritten, so it'll end
1282		 * up pointing to data that was never in 'x' during the history
1283		 * of the device.
1284		 *
1285		 * To avoid this issue we require a commit as part of the
1286		 * demotion operation.
1287		 */
1288		init_continuation(&mg->k, mg_success);
1289		continue_after_commit(&cache->committer, &mg->k);
1290		schedule_commit(&cache->committer);
1291		break;
1292
1293	case POLICY_WRITEBACK:
1294		mg_complete(mg, true);
1295		break;
1296	}
1297}
1298
1299static void mg_update_metadata_after_copy(struct work_struct *ws)
1300{
1301	struct dm_cache_migration *mg = ws_to_mg(ws);
1302
1303	/*
1304	 * Did the copy succeed?
1305	 */
1306	if (mg->k.input)
1307		mg_complete(mg, false);
1308	else
1309		mg_update_metadata(ws);
1310}
1311
1312static void mg_upgrade_lock(struct work_struct *ws)
1313{
1314	int r;
1315	struct dm_cache_migration *mg = ws_to_mg(ws);
1316
1317	/*
1318	 * Did the copy succeed?
1319	 */
1320	if (mg->k.input)
1321		mg_complete(mg, false);
1322
1323	else {
1324		/*
1325		 * Now we want the lock to prevent both reads and writes.
1326		 */
1327		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1328					    READ_WRITE_LOCK_LEVEL);
1329		if (r < 0)
1330			mg_complete(mg, false);
1331
1332		else if (r)
1333			quiesce(mg, mg_update_metadata);
1334
1335		else
1336			mg_update_metadata(ws);
1337	}
1338}
1339
1340static void mg_full_copy(struct work_struct *ws)
1341{
1342	struct dm_cache_migration *mg = ws_to_mg(ws);
1343	struct cache *cache = mg->cache;
1344	struct policy_work *op = mg->op;
1345	bool is_policy_promote = (op->op == POLICY_PROMOTE);
1346
1347	if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1348	    is_discarded_oblock(cache, op->oblock)) {
1349		mg_upgrade_lock(ws);
1350		return;
1351	}
1352
1353	init_continuation(&mg->k, mg_upgrade_lock);
1354	copy(mg, is_policy_promote);
1355}
1356
1357static void mg_copy(struct work_struct *ws)
1358{
1359	struct dm_cache_migration *mg = ws_to_mg(ws);
1360
1361	if (mg->overwrite_bio) {
1362		/*
1363		 * No exclusive lock was held when we last checked if the bio
1364		 * was optimisable.  So we have to check again in case things
1365		 * have changed (eg, the block may no longer be discarded).
1366		 */
1367		if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1368			/*
1369			 * Fallback to a real full copy after doing some tidying up.
1370			 */
1371			bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1372
1373			BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1374			mg->overwrite_bio = NULL;
1375			inc_io_migrations(mg->cache);
1376			mg_full_copy(ws);
1377			return;
1378		}
1379
1380		/*
1381		 * It's safe to do this here, even though it's new data
1382		 * because all IO has been locked out of the block.
1383		 *
1384		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1385		 * so _not_ using mg_upgrade_lock() as continutation.
1386		 */
1387		overwrite(mg, mg_update_metadata_after_copy);
1388
1389	} else
1390		mg_full_copy(ws);
1391}
1392
1393static int mg_lock_writes(struct dm_cache_migration *mg)
1394{
1395	int r;
1396	struct dm_cell_key_v2 key;
1397	struct cache *cache = mg->cache;
1398	struct dm_bio_prison_cell_v2 *prealloc;
1399
1400	prealloc = alloc_prison_cell(cache);
1401
1402	/*
1403	 * Prevent writes to the block, but allow reads to continue.
1404	 * Unless we're using an overwrite bio, in which case we lock
1405	 * everything.
1406	 */
1407	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1408	r = dm_cell_lock_v2(cache->prison, &key,
1409			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1410			    prealloc, &mg->cell);
1411	if (r < 0) {
1412		free_prison_cell(cache, prealloc);
1413		mg_complete(mg, false);
1414		return r;
1415	}
1416
1417	if (mg->cell != prealloc)
1418		free_prison_cell(cache, prealloc);
1419
1420	if (r == 0)
1421		mg_copy(&mg->k.ws);
1422	else
1423		quiesce(mg, mg_copy);
1424
1425	return 0;
1426}
1427
1428static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1429{
1430	struct dm_cache_migration *mg;
1431
1432	if (!background_work_begin(cache)) {
1433		policy_complete_background_work(cache->policy, op, false);
1434		return -EPERM;
1435	}
1436
1437	mg = alloc_migration(cache);
1438
1439	mg->op = op;
1440	mg->overwrite_bio = bio;
1441
1442	if (!bio)
1443		inc_io_migrations(cache);
1444
1445	return mg_lock_writes(mg);
1446}
1447
1448/*
1449 *--------------------------------------------------------------
1450 * invalidation processing
1451 *--------------------------------------------------------------
1452 */
1453
1454static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1455{
1456	struct bio_list bios;
1457	struct cache *cache = mg->cache;
1458
1459	bio_list_init(&bios);
1460	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1461		free_prison_cell(cache, mg->cell);
1462
1463	if (!success && mg->overwrite_bio)
1464		bio_io_error(mg->overwrite_bio);
1465
1466	free_migration(mg);
1467	defer_bios(cache, &bios);
1468
1469	background_work_end(cache);
1470}
1471
1472static void invalidate_completed(struct work_struct *ws)
1473{
1474	struct dm_cache_migration *mg = ws_to_mg(ws);
1475
1476	invalidate_complete(mg, !mg->k.input);
1477}
1478
1479static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1480{
1481	int r;
1482
1483	r = policy_invalidate_mapping(cache->policy, cblock);
1484	if (!r) {
1485		r = dm_cache_remove_mapping(cache->cmd, cblock);
1486		if (r) {
1487			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1488				    cache_device_name(cache));
1489			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1490		}
1491
1492	} else if (r == -ENODATA) {
1493		/*
1494		 * Harmless, already unmapped.
1495		 */
1496		r = 0;
1497
1498	} else
1499		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1500
1501	return r;
1502}
1503
1504static void invalidate_remove(struct work_struct *ws)
1505{
1506	int r;
1507	struct dm_cache_migration *mg = ws_to_mg(ws);
1508	struct cache *cache = mg->cache;
1509
1510	r = invalidate_cblock(cache, mg->invalidate_cblock);
1511	if (r) {
1512		invalidate_complete(mg, false);
1513		return;
1514	}
1515
1516	init_continuation(&mg->k, invalidate_completed);
1517	continue_after_commit(&cache->committer, &mg->k);
1518	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1519	mg->overwrite_bio = NULL;
1520	schedule_commit(&cache->committer);
1521}
1522
1523static int invalidate_lock(struct dm_cache_migration *mg)
1524{
1525	int r;
1526	struct dm_cell_key_v2 key;
1527	struct cache *cache = mg->cache;
1528	struct dm_bio_prison_cell_v2 *prealloc;
1529
1530	prealloc = alloc_prison_cell(cache);
1531
1532	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1533	r = dm_cell_lock_v2(cache->prison, &key,
1534			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1535	if (r < 0) {
1536		free_prison_cell(cache, prealloc);
1537		invalidate_complete(mg, false);
1538		return r;
1539	}
1540
1541	if (mg->cell != prealloc)
1542		free_prison_cell(cache, prealloc);
1543
1544	if (r)
1545		quiesce(mg, invalidate_remove);
1546
1547	else {
1548		/*
1549		 * We can't call invalidate_remove() directly here because we
1550		 * might still be in request context.
1551		 */
1552		init_continuation(&mg->k, invalidate_remove);
1553		queue_work(cache->wq, &mg->k.ws);
1554	}
1555
1556	return 0;
1557}
1558
1559static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1560			    dm_oblock_t oblock, struct bio *bio)
1561{
1562	struct dm_cache_migration *mg;
1563
1564	if (!background_work_begin(cache))
1565		return -EPERM;
1566
1567	mg = alloc_migration(cache);
1568
1569	mg->overwrite_bio = bio;
1570	mg->invalidate_cblock = cblock;
1571	mg->invalidate_oblock = oblock;
1572
1573	return invalidate_lock(mg);
1574}
1575
1576/*
1577 *--------------------------------------------------------------
1578 * bio processing
1579 *--------------------------------------------------------------
1580 */
1581
1582enum busy {
1583	IDLE,
1584	BUSY
1585};
1586
1587static enum busy spare_migration_bandwidth(struct cache *cache)
1588{
1589	bool idle = dm_iot_idle_for(&cache->tracker, HZ);
1590	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1591		cache->sectors_per_block;
1592
1593	if (idle && current_volume <= cache->migration_threshold)
1594		return IDLE;
1595	else
1596		return BUSY;
1597}
1598
1599static void inc_hit_counter(struct cache *cache, struct bio *bio)
1600{
1601	atomic_inc(bio_data_dir(bio) == READ ?
1602		   &cache->stats.read_hit : &cache->stats.write_hit);
1603}
1604
1605static void inc_miss_counter(struct cache *cache, struct bio *bio)
1606{
1607	atomic_inc(bio_data_dir(bio) == READ ?
1608		   &cache->stats.read_miss : &cache->stats.write_miss);
1609}
1610
1611/*----------------------------------------------------------------*/
1612
1613static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1614		   bool *commit_needed)
1615{
1616	int r, data_dir;
1617	bool rb, background_queued;
1618	dm_cblock_t cblock;
1619
1620	*commit_needed = false;
1621
1622	rb = bio_detain_shared(cache, block, bio);
1623	if (!rb) {
1624		/*
1625		 * An exclusive lock is held for this block, so we have to
1626		 * wait.  We set the commit_needed flag so the current
1627		 * transaction will be committed asap, allowing this lock
1628		 * to be dropped.
1629		 */
1630		*commit_needed = true;
1631		return DM_MAPIO_SUBMITTED;
1632	}
1633
1634	data_dir = bio_data_dir(bio);
1635
1636	if (optimisable_bio(cache, bio, block)) {
1637		struct policy_work *op = NULL;
1638
1639		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1640		if (unlikely(r && r != -ENOENT)) {
1641			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1642				    cache_device_name(cache), r);
1643			bio_io_error(bio);
1644			return DM_MAPIO_SUBMITTED;
1645		}
1646
1647		if (r == -ENOENT && op) {
1648			bio_drop_shared_lock(cache, bio);
1649			BUG_ON(op->op != POLICY_PROMOTE);
1650			mg_start(cache, op, bio);
1651			return DM_MAPIO_SUBMITTED;
1652		}
1653	} else {
1654		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1655		if (unlikely(r && r != -ENOENT)) {
1656			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1657				    cache_device_name(cache), r);
1658			bio_io_error(bio);
1659			return DM_MAPIO_SUBMITTED;
1660		}
1661
1662		if (background_queued)
1663			wake_migration_worker(cache);
1664	}
1665
1666	if (r == -ENOENT) {
1667		struct per_bio_data *pb = get_per_bio_data(bio);
1668
1669		/*
1670		 * Miss.
1671		 */
1672		inc_miss_counter(cache, bio);
1673		if (pb->req_nr == 0) {
1674			accounted_begin(cache, bio);
1675			remap_to_origin_clear_discard(cache, bio, block);
1676		} else {
1677			/*
1678			 * This is a duplicate writethrough io that is no
1679			 * longer needed because the block has been demoted.
1680			 */
1681			bio_endio(bio);
1682			return DM_MAPIO_SUBMITTED;
1683		}
1684	} else {
1685		/*
1686		 * Hit.
1687		 */
1688		inc_hit_counter(cache, bio);
1689
1690		/*
1691		 * Passthrough always maps to the origin, invalidating any
1692		 * cache blocks that are written to.
1693		 */
1694		if (passthrough_mode(cache)) {
1695			if (bio_data_dir(bio) == WRITE) {
1696				bio_drop_shared_lock(cache, bio);
1697				atomic_inc(&cache->stats.demotion);
1698				invalidate_start(cache, cblock, block, bio);
1699			} else
1700				remap_to_origin_clear_discard(cache, bio, block);
1701		} else {
1702			if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1703			    !is_dirty(cache, cblock)) {
1704				remap_to_origin_and_cache(cache, bio, block, cblock);
1705				accounted_begin(cache, bio);
1706			} else
1707				remap_to_cache_dirty(cache, bio, block, cblock);
1708		}
1709	}
1710
1711	/*
1712	 * dm core turns FUA requests into a separate payload and FLUSH req.
1713	 */
1714	if (bio->bi_opf & REQ_FUA) {
1715		/*
1716		 * issue_after_commit will call accounted_begin a second time.  So
1717		 * we call accounted_complete() to avoid double accounting.
1718		 */
1719		accounted_complete(cache, bio);
1720		issue_after_commit(&cache->committer, bio);
1721		*commit_needed = true;
1722		return DM_MAPIO_SUBMITTED;
1723	}
1724
1725	return DM_MAPIO_REMAPPED;
1726}
1727
1728static bool process_bio(struct cache *cache, struct bio *bio)
1729{
1730	bool commit_needed;
1731
1732	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1733		dm_submit_bio_remap(bio, NULL);
1734
1735	return commit_needed;
1736}
1737
1738/*
1739 * A non-zero return indicates read_only or fail_io mode.
1740 */
1741static int commit(struct cache *cache, bool clean_shutdown)
1742{
1743	int r;
1744
1745	if (get_cache_mode(cache) >= CM_READ_ONLY)
1746		return -EINVAL;
1747
1748	atomic_inc(&cache->stats.commit_count);
1749	r = dm_cache_commit(cache->cmd, clean_shutdown);
1750	if (r)
1751		metadata_operation_failed(cache, "dm_cache_commit", r);
1752
1753	return r;
1754}
1755
1756/*
1757 * Used by the batcher.
1758 */
1759static blk_status_t commit_op(void *context)
1760{
1761	struct cache *cache = context;
1762
1763	if (dm_cache_changed_this_transaction(cache->cmd))
1764		return errno_to_blk_status(commit(cache, false));
1765
1766	return 0;
1767}
1768
1769/*----------------------------------------------------------------*/
1770
1771static bool process_flush_bio(struct cache *cache, struct bio *bio)
1772{
1773	struct per_bio_data *pb = get_per_bio_data(bio);
1774
1775	if (!pb->req_nr)
1776		remap_to_origin(cache, bio);
1777	else
1778		remap_to_cache(cache, bio, 0);
1779
1780	issue_after_commit(&cache->committer, bio);
1781	return true;
1782}
1783
1784static bool process_discard_bio(struct cache *cache, struct bio *bio)
1785{
1786	dm_dblock_t b, e;
1787
1788	/*
1789	 * FIXME: do we need to lock the region?  Or can we just assume the
1790	 * user wont be so foolish as to issue discard concurrently with
1791	 * other IO?
1792	 */
1793	calc_discard_block_range(cache, bio, &b, &e);
1794	while (b != e) {
1795		set_discard(cache, b);
1796		b = to_dblock(from_dblock(b) + 1);
1797	}
1798
1799	if (cache->features.discard_passdown) {
1800		remap_to_origin(cache, bio);
1801		dm_submit_bio_remap(bio, NULL);
1802	} else
1803		bio_endio(bio);
1804
1805	return false;
1806}
1807
1808static void process_deferred_bios(struct work_struct *ws)
1809{
1810	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1811
 
1812	bool commit_needed = false;
1813	struct bio_list bios;
1814	struct bio *bio;
1815
1816	bio_list_init(&bios);
1817
1818	spin_lock_irq(&cache->lock);
1819	bio_list_merge(&bios, &cache->deferred_bios);
1820	bio_list_init(&cache->deferred_bios);
1821	spin_unlock_irq(&cache->lock);
1822
1823	while ((bio = bio_list_pop(&bios))) {
1824		if (bio->bi_opf & REQ_PREFLUSH)
1825			commit_needed = process_flush_bio(cache, bio) || commit_needed;
1826
1827		else if (bio_op(bio) == REQ_OP_DISCARD)
1828			commit_needed = process_discard_bio(cache, bio) || commit_needed;
1829
1830		else
1831			commit_needed = process_bio(cache, bio) || commit_needed;
1832		cond_resched();
1833	}
1834
1835	if (commit_needed)
1836		schedule_commit(&cache->committer);
1837}
1838
1839/*
1840 *--------------------------------------------------------------
1841 * Main worker loop
1842 *--------------------------------------------------------------
1843 */
1844static void requeue_deferred_bios(struct cache *cache)
1845{
1846	struct bio *bio;
1847	struct bio_list bios;
1848
1849	bio_list_init(&bios);
1850	bio_list_merge(&bios, &cache->deferred_bios);
1851	bio_list_init(&cache->deferred_bios);
1852
1853	while ((bio = bio_list_pop(&bios))) {
1854		bio->bi_status = BLK_STS_DM_REQUEUE;
1855		bio_endio(bio);
1856		cond_resched();
1857	}
1858}
1859
1860/*
1861 * We want to commit periodically so that not too much
1862 * unwritten metadata builds up.
1863 */
1864static void do_waker(struct work_struct *ws)
1865{
1866	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1867
1868	policy_tick(cache->policy, true);
1869	wake_migration_worker(cache);
1870	schedule_commit(&cache->committer);
1871	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1872}
1873
1874static void check_migrations(struct work_struct *ws)
1875{
1876	int r;
1877	struct policy_work *op;
1878	struct cache *cache = container_of(ws, struct cache, migration_worker);
1879	enum busy b;
1880
1881	for (;;) {
1882		b = spare_migration_bandwidth(cache);
1883
1884		r = policy_get_background_work(cache->policy, b == IDLE, &op);
1885		if (r == -ENODATA)
1886			break;
1887
1888		if (r) {
1889			DMERR_LIMIT("%s: policy_background_work failed",
1890				    cache_device_name(cache));
1891			break;
1892		}
1893
1894		r = mg_start(cache, op, NULL);
1895		if (r)
1896			break;
1897
1898		cond_resched();
1899	}
1900}
1901
1902/*
1903 *--------------------------------------------------------------
1904 * Target methods
1905 *--------------------------------------------------------------
1906 */
1907
1908/*
1909 * This function gets called on the error paths of the constructor, so we
1910 * have to cope with a partially initialised struct.
1911 */
1912static void destroy(struct cache *cache)
1913{
1914	unsigned int i;
1915
1916	mempool_exit(&cache->migration_pool);
1917
1918	if (cache->prison)
1919		dm_bio_prison_destroy_v2(cache->prison);
1920
1921	cancel_delayed_work_sync(&cache->waker);
1922	if (cache->wq)
1923		destroy_workqueue(cache->wq);
1924
1925	if (cache->dirty_bitset)
1926		free_bitset(cache->dirty_bitset);
1927
1928	if (cache->discard_bitset)
1929		free_bitset(cache->discard_bitset);
1930
1931	if (cache->copier)
1932		dm_kcopyd_client_destroy(cache->copier);
1933
1934	if (cache->cmd)
1935		dm_cache_metadata_close(cache->cmd);
1936
1937	if (cache->metadata_dev)
1938		dm_put_device(cache->ti, cache->metadata_dev);
1939
1940	if (cache->origin_dev)
1941		dm_put_device(cache->ti, cache->origin_dev);
1942
1943	if (cache->cache_dev)
1944		dm_put_device(cache->ti, cache->cache_dev);
1945
1946	if (cache->policy)
1947		dm_cache_policy_destroy(cache->policy);
1948
1949	for (i = 0; i < cache->nr_ctr_args ; i++)
1950		kfree(cache->ctr_args[i]);
1951	kfree(cache->ctr_args);
1952
1953	bioset_exit(&cache->bs);
1954
1955	kfree(cache);
1956}
1957
1958static void cache_dtr(struct dm_target *ti)
1959{
1960	struct cache *cache = ti->private;
1961
1962	destroy(cache);
1963}
1964
1965static sector_t get_dev_size(struct dm_dev *dev)
1966{
1967	return bdev_nr_sectors(dev->bdev);
1968}
1969
1970/*----------------------------------------------------------------*/
1971
1972/*
1973 * Construct a cache device mapping.
1974 *
1975 * cache <metadata dev> <cache dev> <origin dev> <block size>
1976 *       <#feature args> [<feature arg>]*
1977 *       <policy> <#policy args> [<policy arg>]*
1978 *
1979 * metadata dev    : fast device holding the persistent metadata
1980 * cache dev	   : fast device holding cached data blocks
1981 * origin dev	   : slow device holding original data blocks
1982 * block size	   : cache unit size in sectors
1983 *
1984 * #feature args   : number of feature arguments passed
1985 * feature args    : writethrough.  (The default is writeback.)
1986 *
1987 * policy	   : the replacement policy to use
1988 * #policy args    : an even number of policy arguments corresponding
1989 *		     to key/value pairs passed to the policy
1990 * policy args	   : key/value pairs passed to the policy
1991 *		     E.g. 'sequential_threshold 1024'
1992 *		     See cache-policies.txt for details.
1993 *
1994 * Optional feature arguments are:
1995 *   writethrough  : write through caching that prohibits cache block
1996 *		     content from being different from origin block content.
1997 *		     Without this argument, the default behaviour is to write
1998 *		     back cache block contents later for performance reasons,
1999 *		     so they may differ from the corresponding origin blocks.
2000 */
2001struct cache_args {
2002	struct dm_target *ti;
2003
2004	struct dm_dev *metadata_dev;
2005
2006	struct dm_dev *cache_dev;
2007	sector_t cache_sectors;
2008
2009	struct dm_dev *origin_dev;
2010	sector_t origin_sectors;
2011
2012	uint32_t block_size;
2013
2014	const char *policy_name;
2015	int policy_argc;
2016	const char **policy_argv;
2017
2018	struct cache_features features;
2019};
2020
2021static void destroy_cache_args(struct cache_args *ca)
2022{
2023	if (ca->metadata_dev)
2024		dm_put_device(ca->ti, ca->metadata_dev);
2025
2026	if (ca->cache_dev)
2027		dm_put_device(ca->ti, ca->cache_dev);
2028
2029	if (ca->origin_dev)
2030		dm_put_device(ca->ti, ca->origin_dev);
2031
2032	kfree(ca);
2033}
2034
2035static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2036{
2037	if (!as->argc) {
2038		*error = "Insufficient args";
2039		return false;
2040	}
2041
2042	return true;
2043}
2044
2045static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2046			      char **error)
2047{
2048	int r;
2049	sector_t metadata_dev_size;
 
2050
2051	if (!at_least_one_arg(as, error))
2052		return -EINVAL;
2053
2054	r = dm_get_device(ca->ti, dm_shift_arg(as),
2055			  BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->metadata_dev);
2056	if (r) {
2057		*error = "Error opening metadata device";
2058		return r;
2059	}
2060
2061	metadata_dev_size = get_dev_size(ca->metadata_dev);
2062	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2063		DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
2064		       ca->metadata_dev->bdev, THIN_METADATA_MAX_SECTORS);
2065
2066	return 0;
2067}
2068
2069static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2070			   char **error)
2071{
2072	int r;
2073
2074	if (!at_least_one_arg(as, error))
2075		return -EINVAL;
2076
2077	r = dm_get_device(ca->ti, dm_shift_arg(as),
2078			  BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->cache_dev);
2079	if (r) {
2080		*error = "Error opening cache device";
2081		return r;
2082	}
2083	ca->cache_sectors = get_dev_size(ca->cache_dev);
2084
2085	return 0;
2086}
2087
2088static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2089			    char **error)
2090{
2091	int r;
2092
2093	if (!at_least_one_arg(as, error))
2094		return -EINVAL;
2095
2096	r = dm_get_device(ca->ti, dm_shift_arg(as),
2097			  BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->origin_dev);
2098	if (r) {
2099		*error = "Error opening origin device";
2100		return r;
2101	}
2102
2103	ca->origin_sectors = get_dev_size(ca->origin_dev);
2104	if (ca->ti->len > ca->origin_sectors) {
2105		*error = "Device size larger than cached device";
2106		return -EINVAL;
2107	}
2108
2109	return 0;
2110}
2111
2112static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2113			    char **error)
2114{
2115	unsigned long block_size;
2116
2117	if (!at_least_one_arg(as, error))
2118		return -EINVAL;
2119
2120	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2121	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2122	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2123	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2124		*error = "Invalid data block size";
2125		return -EINVAL;
2126	}
2127
2128	if (block_size > ca->cache_sectors) {
2129		*error = "Data block size is larger than the cache device";
2130		return -EINVAL;
2131	}
2132
2133	ca->block_size = block_size;
2134
2135	return 0;
2136}
2137
2138static void init_features(struct cache_features *cf)
2139{
2140	cf->mode = CM_WRITE;
2141	cf->io_mode = CM_IO_WRITEBACK;
2142	cf->metadata_version = 1;
2143	cf->discard_passdown = true;
2144}
2145
2146static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2147			  char **error)
2148{
2149	static const struct dm_arg _args[] = {
2150		{0, 3, "Invalid number of cache feature arguments"},
2151	};
2152
2153	int r, mode_ctr = 0;
2154	unsigned int argc;
2155	const char *arg;
2156	struct cache_features *cf = &ca->features;
2157
2158	init_features(cf);
2159
2160	r = dm_read_arg_group(_args, as, &argc, error);
2161	if (r)
2162		return -EINVAL;
2163
2164	while (argc--) {
2165		arg = dm_shift_arg(as);
2166
2167		if (!strcasecmp(arg, "writeback")) {
2168			cf->io_mode = CM_IO_WRITEBACK;
2169			mode_ctr++;
2170		}
2171
2172		else if (!strcasecmp(arg, "writethrough")) {
2173			cf->io_mode = CM_IO_WRITETHROUGH;
2174			mode_ctr++;
2175		}
2176
2177		else if (!strcasecmp(arg, "passthrough")) {
2178			cf->io_mode = CM_IO_PASSTHROUGH;
2179			mode_ctr++;
2180		}
2181
2182		else if (!strcasecmp(arg, "metadata2"))
2183			cf->metadata_version = 2;
2184
2185		else if (!strcasecmp(arg, "no_discard_passdown"))
2186			cf->discard_passdown = false;
2187
2188		else {
2189			*error = "Unrecognised cache feature requested";
2190			return -EINVAL;
2191		}
2192	}
2193
2194	if (mode_ctr > 1) {
2195		*error = "Duplicate cache io_mode features requested";
2196		return -EINVAL;
2197	}
2198
2199	return 0;
2200}
2201
2202static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2203			char **error)
2204{
2205	static const struct dm_arg _args[] = {
2206		{0, 1024, "Invalid number of policy arguments"},
2207	};
2208
2209	int r;
2210
2211	if (!at_least_one_arg(as, error))
2212		return -EINVAL;
2213
2214	ca->policy_name = dm_shift_arg(as);
2215
2216	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2217	if (r)
2218		return -EINVAL;
2219
2220	ca->policy_argv = (const char **)as->argv;
2221	dm_consume_args(as, ca->policy_argc);
2222
2223	return 0;
2224}
2225
2226static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2227			    char **error)
2228{
2229	int r;
2230	struct dm_arg_set as;
2231
2232	as.argc = argc;
2233	as.argv = argv;
2234
2235	r = parse_metadata_dev(ca, &as, error);
2236	if (r)
2237		return r;
2238
2239	r = parse_cache_dev(ca, &as, error);
2240	if (r)
2241		return r;
2242
2243	r = parse_origin_dev(ca, &as, error);
2244	if (r)
2245		return r;
2246
2247	r = parse_block_size(ca, &as, error);
2248	if (r)
2249		return r;
2250
2251	r = parse_features(ca, &as, error);
2252	if (r)
2253		return r;
2254
2255	r = parse_policy(ca, &as, error);
2256	if (r)
2257		return r;
2258
2259	return 0;
2260}
2261
2262/*----------------------------------------------------------------*/
2263
2264static struct kmem_cache *migration_cache;
2265
2266#define NOT_CORE_OPTION 1
2267
2268static int process_config_option(struct cache *cache, const char *key, const char *value)
2269{
2270	unsigned long tmp;
2271
2272	if (!strcasecmp(key, "migration_threshold")) {
2273		if (kstrtoul(value, 10, &tmp))
2274			return -EINVAL;
2275
2276		cache->migration_threshold = tmp;
2277		return 0;
2278	}
2279
2280	return NOT_CORE_OPTION;
2281}
2282
2283static int set_config_value(struct cache *cache, const char *key, const char *value)
2284{
2285	int r = process_config_option(cache, key, value);
2286
2287	if (r == NOT_CORE_OPTION)
2288		r = policy_set_config_value(cache->policy, key, value);
2289
2290	if (r)
2291		DMWARN("bad config value for %s: %s", key, value);
2292
2293	return r;
2294}
2295
2296static int set_config_values(struct cache *cache, int argc, const char **argv)
2297{
2298	int r = 0;
2299
2300	if (argc & 1) {
2301		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2302		return -EINVAL;
2303	}
2304
2305	while (argc) {
2306		r = set_config_value(cache, argv[0], argv[1]);
2307		if (r)
2308			break;
2309
2310		argc -= 2;
2311		argv += 2;
2312	}
2313
2314	return r;
2315}
2316
2317static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2318			       char **error)
2319{
2320	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2321							   cache->cache_size,
2322							   cache->origin_sectors,
2323							   cache->sectors_per_block);
2324	if (IS_ERR(p)) {
2325		*error = "Error creating cache's policy";
2326		return PTR_ERR(p);
2327	}
2328	cache->policy = p;
2329	BUG_ON(!cache->policy);
2330
2331	return 0;
2332}
2333
2334/*
2335 * We want the discard block size to be at least the size of the cache
2336 * block size and have no more than 2^14 discard blocks across the origin.
2337 */
2338#define MAX_DISCARD_BLOCKS (1 << 14)
2339
2340static bool too_many_discard_blocks(sector_t discard_block_size,
2341				    sector_t origin_size)
2342{
2343	(void) sector_div(origin_size, discard_block_size);
2344
2345	return origin_size > MAX_DISCARD_BLOCKS;
2346}
2347
2348static sector_t calculate_discard_block_size(sector_t cache_block_size,
2349					     sector_t origin_size)
2350{
2351	sector_t discard_block_size = cache_block_size;
2352
2353	if (origin_size)
2354		while (too_many_discard_blocks(discard_block_size, origin_size))
2355			discard_block_size *= 2;
2356
2357	return discard_block_size;
2358}
2359
2360static void set_cache_size(struct cache *cache, dm_cblock_t size)
2361{
2362	dm_block_t nr_blocks = from_cblock(size);
2363
2364	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2365		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2366			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2367			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2368			     (unsigned long long) nr_blocks);
2369
2370	cache->cache_size = size;
2371}
2372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2373#define DEFAULT_MIGRATION_THRESHOLD 2048
2374
2375static int cache_create(struct cache_args *ca, struct cache **result)
2376{
2377	int r = 0;
2378	char **error = &ca->ti->error;
2379	struct cache *cache;
2380	struct dm_target *ti = ca->ti;
2381	dm_block_t origin_blocks;
2382	struct dm_cache_metadata *cmd;
2383	bool may_format = ca->features.mode == CM_WRITE;
2384
2385	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2386	if (!cache)
2387		return -ENOMEM;
2388
2389	cache->ti = ca->ti;
2390	ti->private = cache;
2391	ti->accounts_remapped_io = true;
2392	ti->num_flush_bios = 2;
2393	ti->flush_supported = true;
2394
2395	ti->num_discard_bios = 1;
2396	ti->discards_supported = true;
2397
2398	ti->per_io_data_size = sizeof(struct per_bio_data);
2399
2400	cache->features = ca->features;
2401	if (writethrough_mode(cache)) {
2402		/* Create bioset for writethrough bios issued to origin */
2403		r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2404		if (r)
2405			goto bad;
2406	}
2407
 
 
 
2408	cache->metadata_dev = ca->metadata_dev;
2409	cache->origin_dev = ca->origin_dev;
2410	cache->cache_dev = ca->cache_dev;
2411
2412	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2413
2414	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2415	origin_blocks = block_div(origin_blocks, ca->block_size);
2416	cache->origin_blocks = to_oblock(origin_blocks);
2417
2418	cache->sectors_per_block = ca->block_size;
2419	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2420		r = -EINVAL;
2421		goto bad;
2422	}
2423
2424	if (ca->block_size & (ca->block_size - 1)) {
2425		dm_block_t cache_size = ca->cache_sectors;
2426
2427		cache->sectors_per_block_shift = -1;
2428		cache_size = block_div(cache_size, ca->block_size);
2429		set_cache_size(cache, to_cblock(cache_size));
2430	} else {
2431		cache->sectors_per_block_shift = __ffs(ca->block_size);
2432		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2433	}
2434
2435	r = create_cache_policy(cache, ca, error);
2436	if (r)
2437		goto bad;
2438
2439	cache->policy_nr_args = ca->policy_argc;
2440	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2441
2442	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2443	if (r) {
2444		*error = "Error setting cache policy's config values";
2445		goto bad;
2446	}
2447
2448	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2449				     ca->block_size, may_format,
2450				     dm_cache_policy_get_hint_size(cache->policy),
2451				     ca->features.metadata_version);
2452	if (IS_ERR(cmd)) {
2453		*error = "Error creating metadata object";
2454		r = PTR_ERR(cmd);
2455		goto bad;
2456	}
2457	cache->cmd = cmd;
2458	set_cache_mode(cache, CM_WRITE);
2459	if (get_cache_mode(cache) != CM_WRITE) {
2460		*error = "Unable to get write access to metadata, please check/repair metadata.";
2461		r = -EINVAL;
2462		goto bad;
2463	}
2464
2465	if (passthrough_mode(cache)) {
2466		bool all_clean;
2467
2468		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2469		if (r) {
2470			*error = "dm_cache_metadata_all_clean() failed";
2471			goto bad;
2472		}
2473
2474		if (!all_clean) {
2475			*error = "Cannot enter passthrough mode unless all blocks are clean";
2476			r = -EINVAL;
2477			goto bad;
2478		}
2479
2480		policy_allow_migrations(cache->policy, false);
2481	}
2482
2483	spin_lock_init(&cache->lock);
2484	bio_list_init(&cache->deferred_bios);
2485	atomic_set(&cache->nr_allocated_migrations, 0);
2486	atomic_set(&cache->nr_io_migrations, 0);
2487	init_waitqueue_head(&cache->migration_wait);
2488
2489	r = -ENOMEM;
2490	atomic_set(&cache->nr_dirty, 0);
2491	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2492	if (!cache->dirty_bitset) {
2493		*error = "could not allocate dirty bitset";
2494		goto bad;
2495	}
2496	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2497
2498	cache->discard_block_size =
2499		calculate_discard_block_size(cache->sectors_per_block,
2500					     cache->origin_sectors);
2501	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2502							      cache->discard_block_size));
2503	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2504	if (!cache->discard_bitset) {
2505		*error = "could not allocate discard bitset";
2506		goto bad;
2507	}
2508	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2509
2510	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2511	if (IS_ERR(cache->copier)) {
2512		*error = "could not create kcopyd client";
2513		r = PTR_ERR(cache->copier);
2514		goto bad;
2515	}
2516
2517	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2518	if (!cache->wq) {
2519		*error = "could not create workqueue for metadata object";
2520		goto bad;
2521	}
2522	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2523	INIT_WORK(&cache->migration_worker, check_migrations);
2524	INIT_DELAYED_WORK(&cache->waker, do_waker);
2525
2526	cache->prison = dm_bio_prison_create_v2(cache->wq);
2527	if (!cache->prison) {
2528		*error = "could not create bio prison";
2529		goto bad;
2530	}
2531
2532	r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2533				   migration_cache);
2534	if (r) {
2535		*error = "Error creating cache's migration mempool";
2536		goto bad;
2537	}
2538
2539	cache->need_tick_bio = true;
2540	cache->sized = false;
2541	cache->invalidate = false;
2542	cache->commit_requested = false;
2543	cache->loaded_mappings = false;
2544	cache->loaded_discards = false;
2545
2546	load_stats(cache);
2547
2548	atomic_set(&cache->stats.demotion, 0);
2549	atomic_set(&cache->stats.promotion, 0);
2550	atomic_set(&cache->stats.copies_avoided, 0);
2551	atomic_set(&cache->stats.cache_cell_clash, 0);
2552	atomic_set(&cache->stats.commit_count, 0);
2553	atomic_set(&cache->stats.discard_count, 0);
2554
2555	spin_lock_init(&cache->invalidation_lock);
2556	INIT_LIST_HEAD(&cache->invalidation_requests);
2557
2558	batcher_init(&cache->committer, commit_op, cache,
2559		     issue_op, cache, cache->wq);
2560	dm_iot_init(&cache->tracker);
2561
2562	init_rwsem(&cache->background_work_lock);
2563	prevent_background_work(cache);
2564
2565	*result = cache;
2566	return 0;
2567bad:
2568	destroy(cache);
2569	return r;
2570}
2571
2572static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2573{
2574	unsigned int i;
2575	const char **copy;
2576
2577	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2578	if (!copy)
2579		return -ENOMEM;
2580	for (i = 0; i < argc; i++) {
2581		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2582		if (!copy[i]) {
2583			while (i--)
2584				kfree(copy[i]);
2585			kfree(copy);
2586			return -ENOMEM;
2587		}
2588	}
2589
2590	cache->nr_ctr_args = argc;
2591	cache->ctr_args = copy;
2592
2593	return 0;
2594}
2595
2596static int cache_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2597{
2598	int r = -EINVAL;
2599	struct cache_args *ca;
2600	struct cache *cache = NULL;
2601
2602	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2603	if (!ca) {
2604		ti->error = "Error allocating memory for cache";
2605		return -ENOMEM;
2606	}
2607	ca->ti = ti;
2608
2609	r = parse_cache_args(ca, argc, argv, &ti->error);
2610	if (r)
2611		goto out;
2612
2613	r = cache_create(ca, &cache);
2614	if (r)
2615		goto out;
2616
2617	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2618	if (r) {
2619		destroy(cache);
2620		goto out;
2621	}
2622
2623	ti->private = cache;
2624out:
2625	destroy_cache_args(ca);
2626	return r;
2627}
2628
2629/*----------------------------------------------------------------*/
2630
2631static int cache_map(struct dm_target *ti, struct bio *bio)
2632{
2633	struct cache *cache = ti->private;
2634
2635	int r;
2636	bool commit_needed;
2637	dm_oblock_t block = get_bio_block(cache, bio);
2638
2639	init_per_bio_data(bio);
2640	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2641		/*
2642		 * This can only occur if the io goes to a partial block at
2643		 * the end of the origin device.  We don't cache these.
2644		 * Just remap to the origin and carry on.
2645		 */
2646		remap_to_origin(cache, bio);
2647		accounted_begin(cache, bio);
2648		return DM_MAPIO_REMAPPED;
2649	}
2650
2651	if (discard_or_flush(bio)) {
2652		defer_bio(cache, bio);
2653		return DM_MAPIO_SUBMITTED;
2654	}
2655
2656	r = map_bio(cache, bio, block, &commit_needed);
2657	if (commit_needed)
2658		schedule_commit(&cache->committer);
2659
2660	return r;
2661}
2662
2663static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2664{
2665	struct cache *cache = ti->private;
2666	unsigned long flags;
2667	struct per_bio_data *pb = get_per_bio_data(bio);
2668
2669	if (pb->tick) {
2670		policy_tick(cache->policy, false);
2671
2672		spin_lock_irqsave(&cache->lock, flags);
2673		cache->need_tick_bio = true;
2674		spin_unlock_irqrestore(&cache->lock, flags);
2675	}
2676
2677	bio_drop_shared_lock(cache, bio);
2678	accounted_complete(cache, bio);
2679
2680	return DM_ENDIO_DONE;
2681}
2682
2683static int write_dirty_bitset(struct cache *cache)
2684{
2685	int r;
2686
2687	if (get_cache_mode(cache) >= CM_READ_ONLY)
2688		return -EINVAL;
2689
2690	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2691	if (r)
2692		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2693
2694	return r;
2695}
2696
2697static int write_discard_bitset(struct cache *cache)
2698{
2699	unsigned int i, r;
2700
2701	if (get_cache_mode(cache) >= CM_READ_ONLY)
2702		return -EINVAL;
2703
2704	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2705					   cache->discard_nr_blocks);
2706	if (r) {
2707		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2708		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2709		return r;
2710	}
2711
2712	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2713		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2714					 is_discarded(cache, to_dblock(i)));
2715		if (r) {
2716			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2717			return r;
2718		}
2719	}
2720
2721	return 0;
2722}
2723
2724static int write_hints(struct cache *cache)
2725{
2726	int r;
2727
2728	if (get_cache_mode(cache) >= CM_READ_ONLY)
2729		return -EINVAL;
2730
2731	r = dm_cache_write_hints(cache->cmd, cache->policy);
2732	if (r) {
2733		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2734		return r;
2735	}
2736
2737	return 0;
2738}
2739
2740/*
2741 * returns true on success
2742 */
2743static bool sync_metadata(struct cache *cache)
2744{
2745	int r1, r2, r3, r4;
2746
2747	r1 = write_dirty_bitset(cache);
2748	if (r1)
2749		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2750
2751	r2 = write_discard_bitset(cache);
2752	if (r2)
2753		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2754
2755	save_stats(cache);
2756
2757	r3 = write_hints(cache);
2758	if (r3)
2759		DMERR("%s: could not write hints", cache_device_name(cache));
2760
2761	/*
2762	 * If writing the above metadata failed, we still commit, but don't
2763	 * set the clean shutdown flag.  This will effectively force every
2764	 * dirty bit to be set on reload.
2765	 */
2766	r4 = commit(cache, !r1 && !r2 && !r3);
2767	if (r4)
2768		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2769
2770	return !r1 && !r2 && !r3 && !r4;
2771}
2772
2773static void cache_postsuspend(struct dm_target *ti)
2774{
2775	struct cache *cache = ti->private;
2776
2777	prevent_background_work(cache);
2778	BUG_ON(atomic_read(&cache->nr_io_migrations));
2779
2780	cancel_delayed_work_sync(&cache->waker);
2781	drain_workqueue(cache->wq);
2782	WARN_ON(cache->tracker.in_flight);
2783
2784	/*
2785	 * If it's a flush suspend there won't be any deferred bios, so this
2786	 * call is harmless.
2787	 */
2788	requeue_deferred_bios(cache);
2789
2790	if (get_cache_mode(cache) == CM_WRITE)
2791		(void) sync_metadata(cache);
2792}
2793
2794static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2795			bool dirty, uint32_t hint, bool hint_valid)
2796{
 
2797	struct cache *cache = context;
2798
2799	if (dirty) {
2800		set_bit(from_cblock(cblock), cache->dirty_bitset);
2801		atomic_inc(&cache->nr_dirty);
2802	} else
2803		clear_bit(from_cblock(cblock), cache->dirty_bitset);
2804
2805	return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
 
 
 
 
2806}
2807
2808/*
2809 * The discard block size in the on disk metadata is not
2810 * necessarily the same as we're currently using.  So we have to
2811 * be careful to only set the discarded attribute if we know it
2812 * covers a complete block of the new size.
2813 */
2814struct discard_load_info {
2815	struct cache *cache;
2816
2817	/*
2818	 * These blocks are sized using the on disk dblock size, rather
2819	 * than the current one.
2820	 */
2821	dm_block_t block_size;
2822	dm_block_t discard_begin, discard_end;
2823};
2824
2825static void discard_load_info_init(struct cache *cache,
2826				   struct discard_load_info *li)
2827{
2828	li->cache = cache;
2829	li->discard_begin = li->discard_end = 0;
2830}
2831
2832static void set_discard_range(struct discard_load_info *li)
2833{
2834	sector_t b, e;
2835
2836	if (li->discard_begin == li->discard_end)
2837		return;
2838
2839	/*
2840	 * Convert to sectors.
2841	 */
2842	b = li->discard_begin * li->block_size;
2843	e = li->discard_end * li->block_size;
2844
2845	/*
2846	 * Then convert back to the current dblock size.
2847	 */
2848	b = dm_sector_div_up(b, li->cache->discard_block_size);
2849	sector_div(e, li->cache->discard_block_size);
2850
2851	/*
2852	 * The origin may have shrunk, so we need to check we're still in
2853	 * bounds.
2854	 */
2855	if (e > from_dblock(li->cache->discard_nr_blocks))
2856		e = from_dblock(li->cache->discard_nr_blocks);
2857
2858	for (; b < e; b++)
2859		set_discard(li->cache, to_dblock(b));
2860}
2861
2862static int load_discard(void *context, sector_t discard_block_size,
2863			dm_dblock_t dblock, bool discard)
2864{
2865	struct discard_load_info *li = context;
2866
2867	li->block_size = discard_block_size;
2868
2869	if (discard) {
2870		if (from_dblock(dblock) == li->discard_end)
2871			/*
2872			 * We're already in a discard range, just extend it.
2873			 */
2874			li->discard_end = li->discard_end + 1ULL;
2875
2876		else {
2877			/*
2878			 * Emit the old range and start a new one.
2879			 */
2880			set_discard_range(li);
2881			li->discard_begin = from_dblock(dblock);
2882			li->discard_end = li->discard_begin + 1ULL;
2883		}
2884	} else {
2885		set_discard_range(li);
2886		li->discard_begin = li->discard_end = 0;
2887	}
2888
2889	return 0;
2890}
2891
2892static dm_cblock_t get_cache_dev_size(struct cache *cache)
2893{
2894	sector_t size = get_dev_size(cache->cache_dev);
2895	(void) sector_div(size, cache->sectors_per_block);
2896	return to_cblock(size);
2897}
2898
2899static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2900{
2901	if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2902		if (cache->sized) {
2903			DMERR("%s: unable to extend cache due to missing cache table reload",
2904			      cache_device_name(cache));
2905			return false;
2906		}
2907	}
2908
2909	/*
2910	 * We can't drop a dirty block when shrinking the cache.
2911	 */
2912	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2913		new_size = to_cblock(from_cblock(new_size) + 1);
2914		if (is_dirty(cache, new_size)) {
2915			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2916			      cache_device_name(cache),
2917			      (unsigned long long) from_cblock(new_size));
2918			return false;
2919		}
2920	}
2921
2922	return true;
2923}
2924
2925static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2926{
2927	int r;
2928
2929	r = dm_cache_resize(cache->cmd, new_size);
2930	if (r) {
2931		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2932		metadata_operation_failed(cache, "dm_cache_resize", r);
2933		return r;
2934	}
2935
2936	set_cache_size(cache, new_size);
2937
2938	return 0;
2939}
2940
2941static int cache_preresume(struct dm_target *ti)
2942{
2943	int r = 0;
2944	struct cache *cache = ti->private;
2945	dm_cblock_t csize = get_cache_dev_size(cache);
2946
2947	/*
2948	 * Check to see if the cache has resized.
2949	 */
2950	if (!cache->sized) {
2951		r = resize_cache_dev(cache, csize);
2952		if (r)
2953			return r;
2954
2955		cache->sized = true;
2956
2957	} else if (csize != cache->cache_size) {
2958		if (!can_resize(cache, csize))
2959			return -EINVAL;
2960
2961		r = resize_cache_dev(cache, csize);
2962		if (r)
2963			return r;
2964	}
2965
2966	if (!cache->loaded_mappings) {
2967		r = dm_cache_load_mappings(cache->cmd, cache->policy,
2968					   load_mapping, cache);
2969		if (r) {
2970			DMERR("%s: could not load cache mappings", cache_device_name(cache));
2971			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
2972			return r;
2973		}
2974
2975		cache->loaded_mappings = true;
2976	}
2977
2978	if (!cache->loaded_discards) {
2979		struct discard_load_info li;
2980
2981		/*
2982		 * The discard bitset could have been resized, or the
2983		 * discard block size changed.  To be safe we start by
2984		 * setting every dblock to not discarded.
2985		 */
2986		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2987
2988		discard_load_info_init(cache, &li);
2989		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
2990		if (r) {
2991			DMERR("%s: could not load origin discards", cache_device_name(cache));
2992			metadata_operation_failed(cache, "dm_cache_load_discards", r);
2993			return r;
2994		}
2995		set_discard_range(&li);
2996
2997		cache->loaded_discards = true;
2998	}
2999
3000	return r;
3001}
3002
3003static void cache_resume(struct dm_target *ti)
3004{
3005	struct cache *cache = ti->private;
3006
3007	cache->need_tick_bio = true;
3008	allow_background_work(cache);
3009	do_waker(&cache->waker.work);
3010}
3011
3012static void emit_flags(struct cache *cache, char *result,
3013		       unsigned int maxlen, ssize_t *sz_ptr)
3014{
3015	ssize_t sz = *sz_ptr;
3016	struct cache_features *cf = &cache->features;
3017	unsigned int count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
3018
3019	DMEMIT("%u ", count);
3020
3021	if (cf->metadata_version == 2)
3022		DMEMIT("metadata2 ");
3023
3024	if (writethrough_mode(cache))
3025		DMEMIT("writethrough ");
3026
3027	else if (passthrough_mode(cache))
3028		DMEMIT("passthrough ");
3029
3030	else if (writeback_mode(cache))
3031		DMEMIT("writeback ");
3032
3033	else {
3034		DMEMIT("unknown ");
3035		DMERR("%s: internal error: unknown io mode: %d",
3036		      cache_device_name(cache), (int) cf->io_mode);
3037	}
3038
3039	if (!cf->discard_passdown)
3040		DMEMIT("no_discard_passdown ");
3041
3042	*sz_ptr = sz;
3043}
3044
3045/*
3046 * Status format:
3047 *
3048 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3049 * <cache block size> <#used cache blocks>/<#total cache blocks>
3050 * <#read hits> <#read misses> <#write hits> <#write misses>
3051 * <#demotions> <#promotions> <#dirty>
3052 * <#features> <features>*
3053 * <#core args> <core args>
3054 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3055 */
3056static void cache_status(struct dm_target *ti, status_type_t type,
3057			 unsigned int status_flags, char *result, unsigned int maxlen)
3058{
3059	int r = 0;
3060	unsigned int i;
3061	ssize_t sz = 0;
3062	dm_block_t nr_free_blocks_metadata = 0;
3063	dm_block_t nr_blocks_metadata = 0;
3064	char buf[BDEVNAME_SIZE];
3065	struct cache *cache = ti->private;
3066	dm_cblock_t residency;
3067	bool needs_check;
3068
3069	switch (type) {
3070	case STATUSTYPE_INFO:
3071		if (get_cache_mode(cache) == CM_FAIL) {
3072			DMEMIT("Fail");
3073			break;
3074		}
3075
3076		/* Commit to ensure statistics aren't out-of-date */
3077		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3078			(void) commit(cache, false);
3079
3080		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3081		if (r) {
3082			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3083			      cache_device_name(cache), r);
3084			goto err;
3085		}
3086
3087		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3088		if (r) {
3089			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3090			      cache_device_name(cache), r);
3091			goto err;
3092		}
3093
3094		residency = policy_residency(cache->policy);
3095
3096		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3097		       (unsigned int)DM_CACHE_METADATA_BLOCK_SIZE,
3098		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3099		       (unsigned long long)nr_blocks_metadata,
3100		       (unsigned long long)cache->sectors_per_block,
3101		       (unsigned long long) from_cblock(residency),
3102		       (unsigned long long) from_cblock(cache->cache_size),
3103		       (unsigned int) atomic_read(&cache->stats.read_hit),
3104		       (unsigned int) atomic_read(&cache->stats.read_miss),
3105		       (unsigned int) atomic_read(&cache->stats.write_hit),
3106		       (unsigned int) atomic_read(&cache->stats.write_miss),
3107		       (unsigned int) atomic_read(&cache->stats.demotion),
3108		       (unsigned int) atomic_read(&cache->stats.promotion),
3109		       (unsigned long) atomic_read(&cache->nr_dirty));
3110
3111		emit_flags(cache, result, maxlen, &sz);
3112
3113		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3114
3115		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3116		if (sz < maxlen) {
3117			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3118			if (r)
3119				DMERR("%s: policy_emit_config_values returned %d",
3120				      cache_device_name(cache), r);
3121		}
3122
3123		if (get_cache_mode(cache) == CM_READ_ONLY)
3124			DMEMIT("ro ");
3125		else
3126			DMEMIT("rw ");
3127
3128		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3129
3130		if (r || needs_check)
3131			DMEMIT("needs_check ");
3132		else
3133			DMEMIT("- ");
3134
3135		break;
3136
3137	case STATUSTYPE_TABLE:
3138		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3139		DMEMIT("%s ", buf);
3140		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3141		DMEMIT("%s ", buf);
3142		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3143		DMEMIT("%s", buf);
3144
3145		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3146			DMEMIT(" %s", cache->ctr_args[i]);
3147		if (cache->nr_ctr_args)
3148			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3149		break;
3150
3151	case STATUSTYPE_IMA:
3152		DMEMIT_TARGET_NAME_VERSION(ti->type);
3153		if (get_cache_mode(cache) == CM_FAIL)
3154			DMEMIT(",metadata_mode=fail");
3155		else if (get_cache_mode(cache) == CM_READ_ONLY)
3156			DMEMIT(",metadata_mode=ro");
3157		else
3158			DMEMIT(",metadata_mode=rw");
3159
3160		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3161		DMEMIT(",cache_metadata_device=%s", buf);
3162		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3163		DMEMIT(",cache_device=%s", buf);
3164		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3165		DMEMIT(",cache_origin_device=%s", buf);
3166		DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n');
3167		DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n');
3168		DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n');
3169		DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n');
3170		DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y');
3171		DMEMIT(";");
3172		break;
3173	}
3174
3175	return;
3176
3177err:
3178	DMEMIT("Error");
3179}
3180
3181/*
3182 * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3183 * the one-past-the-end value.
3184 */
3185struct cblock_range {
3186	dm_cblock_t begin;
3187	dm_cblock_t end;
3188};
3189
3190/*
3191 * A cache block range can take two forms:
3192 *
3193 * i) A single cblock, eg. '3456'
3194 * ii) A begin and end cblock with a dash between, eg. 123-234
3195 */
3196static int parse_cblock_range(struct cache *cache, const char *str,
3197			      struct cblock_range *result)
3198{
3199	char dummy;
3200	uint64_t b, e;
3201	int r;
3202
3203	/*
3204	 * Try and parse form (ii) first.
3205	 */
3206	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3207	if (r < 0)
3208		return r;
3209
3210	if (r == 2) {
3211		result->begin = to_cblock(b);
3212		result->end = to_cblock(e);
3213		return 0;
3214	}
3215
3216	/*
3217	 * That didn't work, try form (i).
3218	 */
3219	r = sscanf(str, "%llu%c", &b, &dummy);
3220	if (r < 0)
3221		return r;
3222
3223	if (r == 1) {
3224		result->begin = to_cblock(b);
3225		result->end = to_cblock(from_cblock(result->begin) + 1u);
3226		return 0;
3227	}
3228
3229	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3230	return -EINVAL;
3231}
3232
3233static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3234{
3235	uint64_t b = from_cblock(range->begin);
3236	uint64_t e = from_cblock(range->end);
3237	uint64_t n = from_cblock(cache->cache_size);
3238
3239	if (b >= n) {
3240		DMERR("%s: begin cblock out of range: %llu >= %llu",
3241		      cache_device_name(cache), b, n);
3242		return -EINVAL;
3243	}
3244
3245	if (e > n) {
3246		DMERR("%s: end cblock out of range: %llu > %llu",
3247		      cache_device_name(cache), e, n);
3248		return -EINVAL;
3249	}
3250
3251	if (b >= e) {
3252		DMERR("%s: invalid cblock range: %llu >= %llu",
3253		      cache_device_name(cache), b, e);
3254		return -EINVAL;
3255	}
3256
3257	return 0;
3258}
3259
3260static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3261{
3262	return to_cblock(from_cblock(b) + 1);
3263}
3264
3265static int request_invalidation(struct cache *cache, struct cblock_range *range)
3266{
3267	int r = 0;
3268
3269	/*
3270	 * We don't need to do any locking here because we know we're in
3271	 * passthrough mode.  There's is potential for a race between an
3272	 * invalidation triggered by an io and an invalidation message.  This
3273	 * is harmless, we must not worry if the policy call fails.
3274	 */
3275	while (range->begin != range->end) {
3276		r = invalidate_cblock(cache, range->begin);
3277		if (r)
3278			return r;
3279
3280		range->begin = cblock_succ(range->begin);
3281	}
3282
3283	cache->commit_requested = true;
3284	return r;
3285}
3286
3287static int process_invalidate_cblocks_message(struct cache *cache, unsigned int count,
3288					      const char **cblock_ranges)
3289{
3290	int r = 0;
3291	unsigned int i;
3292	struct cblock_range range;
3293
3294	if (!passthrough_mode(cache)) {
3295		DMERR("%s: cache has to be in passthrough mode for invalidation",
3296		      cache_device_name(cache));
3297		return -EPERM;
3298	}
3299
3300	for (i = 0; i < count; i++) {
3301		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3302		if (r)
3303			break;
3304
3305		r = validate_cblock_range(cache, &range);
3306		if (r)
3307			break;
3308
3309		/*
3310		 * Pass begin and end origin blocks to the worker and wake it.
3311		 */
3312		r = request_invalidation(cache, &range);
3313		if (r)
3314			break;
3315	}
3316
3317	return r;
3318}
3319
3320/*
3321 * Supports
3322 *	"<key> <value>"
3323 * and
3324 *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3325 *
3326 * The key migration_threshold is supported by the cache target core.
3327 */
3328static int cache_message(struct dm_target *ti, unsigned int argc, char **argv,
3329			 char *result, unsigned int maxlen)
3330{
3331	struct cache *cache = ti->private;
3332
3333	if (!argc)
3334		return -EINVAL;
3335
3336	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3337		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3338		      cache_device_name(cache));
3339		return -EOPNOTSUPP;
3340	}
3341
3342	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3343		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3344
3345	if (argc != 2)
3346		return -EINVAL;
3347
3348	return set_config_value(cache, argv[0], argv[1]);
3349}
3350
3351static int cache_iterate_devices(struct dm_target *ti,
3352				 iterate_devices_callout_fn fn, void *data)
3353{
3354	int r = 0;
3355	struct cache *cache = ti->private;
3356
3357	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3358	if (!r)
3359		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3360
3361	return r;
3362}
3363
 
 
 
 
 
 
 
3364/*
3365 * If discard_passdown was enabled verify that the origin device
3366 * supports discards.  Disable discard_passdown if not.
3367 */
3368static void disable_passdown_if_not_supported(struct cache *cache)
3369{
3370	struct block_device *origin_bdev = cache->origin_dev->bdev;
3371	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3372	const char *reason = NULL;
 
3373
3374	if (!cache->features.discard_passdown)
3375		return;
3376
3377	if (!bdev_max_discard_sectors(origin_bdev))
3378		reason = "discard unsupported";
3379
3380	else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3381		reason = "max discard sectors smaller than a block";
3382
3383	if (reason) {
3384		DMWARN("Origin device (%pg) %s: Disabling discard passdown.",
3385		       origin_bdev, reason);
3386		cache->features.discard_passdown = false;
3387	}
3388}
3389
3390static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3391{
3392	struct block_device *origin_bdev = cache->origin_dev->bdev;
3393	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3394
3395	if (!cache->features.discard_passdown) {
3396		/* No passdown is done so setting own virtual limits */
3397		limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3398						    cache->origin_sectors);
3399		limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3400		return;
3401	}
3402
3403	/*
3404	 * cache_iterate_devices() is stacking both origin and fast device limits
3405	 * but discards aren't passed to fast device, so inherit origin's limits.
3406	 */
3407	limits->max_discard_sectors = origin_limits->max_discard_sectors;
3408	limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3409	limits->discard_granularity = origin_limits->discard_granularity;
3410	limits->discard_alignment = origin_limits->discard_alignment;
3411	limits->discard_misaligned = origin_limits->discard_misaligned;
3412}
3413
3414static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3415{
3416	struct cache *cache = ti->private;
3417	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3418
3419	/*
3420	 * If the system-determined stacked limits are compatible with the
3421	 * cache's blocksize (io_opt is a factor) do not override them.
3422	 */
3423	if (io_opt_sectors < cache->sectors_per_block ||
3424	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3425		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3426		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3427	}
3428
3429	disable_passdown_if_not_supported(cache);
3430	set_discard_limits(cache, limits);
3431}
3432
3433/*----------------------------------------------------------------*/
3434
3435static struct target_type cache_target = {
3436	.name = "cache",
3437	.version = {2, 2, 0},
3438	.module = THIS_MODULE,
3439	.ctr = cache_ctr,
3440	.dtr = cache_dtr,
3441	.map = cache_map,
3442	.end_io = cache_end_io,
3443	.postsuspend = cache_postsuspend,
3444	.preresume = cache_preresume,
3445	.resume = cache_resume,
3446	.status = cache_status,
3447	.message = cache_message,
3448	.iterate_devices = cache_iterate_devices,
3449	.io_hints = cache_io_hints,
3450};
3451
3452static int __init dm_cache_init(void)
3453{
3454	int r;
3455
3456	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3457	if (!migration_cache)
3458		return -ENOMEM;
3459
3460	r = dm_register_target(&cache_target);
3461	if (r) {
 
3462		kmem_cache_destroy(migration_cache);
3463		return r;
3464	}
3465
3466	return 0;
3467}
3468
3469static void __exit dm_cache_exit(void)
3470{
3471	dm_unregister_target(&cache_target);
3472	kmem_cache_destroy(migration_cache);
3473}
3474
3475module_init(dm_cache_init);
3476module_exit(dm_cache_exit);
3477
3478MODULE_DESCRIPTION(DM_NAME " cache target");
3479MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3480MODULE_LICENSE("GPL");
v5.4
 
   1/*
   2 * Copyright (C) 2012 Red Hat. All rights reserved.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm.h"
   8#include "dm-bio-prison-v2.h"
   9#include "dm-bio-record.h"
  10#include "dm-cache-metadata.h"
 
  11
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/init.h>
  16#include <linux/mempool.h>
  17#include <linux/module.h>
  18#include <linux/rwsem.h>
  19#include <linux/slab.h>
  20#include <linux/vmalloc.h>
  21
  22#define DM_MSG_PREFIX "cache"
  23
  24DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
  25	"A percentage of time allocated for copying to and/or from cache");
  26
  27/*----------------------------------------------------------------*/
  28
  29/*
  30 * Glossary:
  31 *
  32 * oblock: index of an origin block
  33 * cblock: index of a cache block
  34 * promotion: movement of a block from origin to cache
  35 * demotion: movement of a block from cache to origin
  36 * migration: movement of a block between the origin and cache device,
  37 *	      either direction
  38 */
  39
  40/*----------------------------------------------------------------*/
  41
  42struct io_tracker {
  43	spinlock_t lock;
  44
  45	/*
  46	 * Sectors of in-flight IO.
  47	 */
  48	sector_t in_flight;
  49
  50	/*
  51	 * The time, in jiffies, when this device became idle (if it is
  52	 * indeed idle).
  53	 */
  54	unsigned long idle_time;
  55	unsigned long last_update_time;
  56};
  57
  58static void iot_init(struct io_tracker *iot)
  59{
  60	spin_lock_init(&iot->lock);
  61	iot->in_flight = 0ul;
  62	iot->idle_time = 0ul;
  63	iot->last_update_time = jiffies;
  64}
  65
  66static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  67{
  68	if (iot->in_flight)
  69		return false;
  70
  71	return time_after(jiffies, iot->idle_time + jifs);
  72}
  73
  74static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  75{
  76	bool r;
  77	unsigned long flags;
  78
  79	spin_lock_irqsave(&iot->lock, flags);
  80	r = __iot_idle_for(iot, jifs);
  81	spin_unlock_irqrestore(&iot->lock, flags);
  82
  83	return r;
  84}
  85
  86static void iot_io_begin(struct io_tracker *iot, sector_t len)
  87{
  88	unsigned long flags;
  89
  90	spin_lock_irqsave(&iot->lock, flags);
  91	iot->in_flight += len;
  92	spin_unlock_irqrestore(&iot->lock, flags);
  93}
  94
  95static void __iot_io_end(struct io_tracker *iot, sector_t len)
  96{
  97	if (!len)
  98		return;
  99
 100	iot->in_flight -= len;
 101	if (!iot->in_flight)
 102		iot->idle_time = jiffies;
 103}
 104
 105static void iot_io_end(struct io_tracker *iot, sector_t len)
 106{
 107	unsigned long flags;
 108
 109	spin_lock_irqsave(&iot->lock, flags);
 110	__iot_io_end(iot, len);
 111	spin_unlock_irqrestore(&iot->lock, flags);
 112}
 113
 114/*----------------------------------------------------------------*/
 115
 116/*
 117 * Represents a chunk of future work.  'input' allows continuations to pass
 118 * values between themselves, typically error values.
 119 */
 120struct continuation {
 121	struct work_struct ws;
 122	blk_status_t input;
 123};
 124
 125static inline void init_continuation(struct continuation *k,
 126				     void (*fn)(struct work_struct *))
 127{
 128	INIT_WORK(&k->ws, fn);
 129	k->input = 0;
 130}
 131
 132static inline void queue_continuation(struct workqueue_struct *wq,
 133				      struct continuation *k)
 134{
 135	queue_work(wq, &k->ws);
 136}
 137
 138/*----------------------------------------------------------------*/
 139
 140/*
 141 * The batcher collects together pieces of work that need a particular
 142 * operation to occur before they can proceed (typically a commit).
 143 */
 144struct batcher {
 145	/*
 146	 * The operation that everyone is waiting for.
 147	 */
 148	blk_status_t (*commit_op)(void *context);
 149	void *commit_context;
 150
 151	/*
 152	 * This is how bios should be issued once the commit op is complete
 153	 * (accounted_request).
 154	 */
 155	void (*issue_op)(struct bio *bio, void *context);
 156	void *issue_context;
 157
 158	/*
 159	 * Queued work gets put on here after commit.
 160	 */
 161	struct workqueue_struct *wq;
 162
 163	spinlock_t lock;
 164	struct list_head work_items;
 165	struct bio_list bios;
 166	struct work_struct commit_work;
 167
 168	bool commit_scheduled;
 169};
 170
 171static void __commit(struct work_struct *_ws)
 172{
 173	struct batcher *b = container_of(_ws, struct batcher, commit_work);
 174	blk_status_t r;
 175	unsigned long flags;
 176	struct list_head work_items;
 177	struct work_struct *ws, *tmp;
 178	struct continuation *k;
 179	struct bio *bio;
 180	struct bio_list bios;
 181
 182	INIT_LIST_HEAD(&work_items);
 183	bio_list_init(&bios);
 184
 185	/*
 186	 * We have to grab these before the commit_op to avoid a race
 187	 * condition.
 188	 */
 189	spin_lock_irqsave(&b->lock, flags);
 190	list_splice_init(&b->work_items, &work_items);
 191	bio_list_merge(&bios, &b->bios);
 192	bio_list_init(&b->bios);
 193	b->commit_scheduled = false;
 194	spin_unlock_irqrestore(&b->lock, flags);
 195
 196	r = b->commit_op(b->commit_context);
 197
 198	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
 199		k = container_of(ws, struct continuation, ws);
 200		k->input = r;
 201		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
 202		queue_work(b->wq, ws);
 203	}
 204
 205	while ((bio = bio_list_pop(&bios))) {
 206		if (r) {
 207			bio->bi_status = r;
 208			bio_endio(bio);
 209		} else
 210			b->issue_op(bio, b->issue_context);
 211	}
 212}
 213
 214static void batcher_init(struct batcher *b,
 215			 blk_status_t (*commit_op)(void *),
 216			 void *commit_context,
 217			 void (*issue_op)(struct bio *bio, void *),
 218			 void *issue_context,
 219			 struct workqueue_struct *wq)
 220{
 221	b->commit_op = commit_op;
 222	b->commit_context = commit_context;
 223	b->issue_op = issue_op;
 224	b->issue_context = issue_context;
 225	b->wq = wq;
 226
 227	spin_lock_init(&b->lock);
 228	INIT_LIST_HEAD(&b->work_items);
 229	bio_list_init(&b->bios);
 230	INIT_WORK(&b->commit_work, __commit);
 231	b->commit_scheduled = false;
 232}
 233
 234static void async_commit(struct batcher *b)
 235{
 236	queue_work(b->wq, &b->commit_work);
 237}
 238
 239static void continue_after_commit(struct batcher *b, struct continuation *k)
 240{
 241	unsigned long flags;
 242	bool commit_scheduled;
 243
 244	spin_lock_irqsave(&b->lock, flags);
 245	commit_scheduled = b->commit_scheduled;
 246	list_add_tail(&k->ws.entry, &b->work_items);
 247	spin_unlock_irqrestore(&b->lock, flags);
 248
 249	if (commit_scheduled)
 250		async_commit(b);
 251}
 252
 253/*
 254 * Bios are errored if commit failed.
 255 */
 256static void issue_after_commit(struct batcher *b, struct bio *bio)
 257{
 258       unsigned long flags;
 259       bool commit_scheduled;
 260
 261       spin_lock_irqsave(&b->lock, flags);
 262       commit_scheduled = b->commit_scheduled;
 263       bio_list_add(&b->bios, bio);
 264       spin_unlock_irqrestore(&b->lock, flags);
 265
 266       if (commit_scheduled)
 267	       async_commit(b);
 268}
 269
 270/*
 271 * Call this if some urgent work is waiting for the commit to complete.
 272 */
 273static void schedule_commit(struct batcher *b)
 274{
 275	bool immediate;
 276	unsigned long flags;
 277
 278	spin_lock_irqsave(&b->lock, flags);
 279	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
 280	b->commit_scheduled = true;
 281	spin_unlock_irqrestore(&b->lock, flags);
 282
 283	if (immediate)
 284		async_commit(b);
 285}
 286
 287/*
 288 * There are a couple of places where we let a bio run, but want to do some
 289 * work before calling its endio function.  We do this by temporarily
 290 * changing the endio fn.
 291 */
 292struct dm_hook_info {
 293	bio_end_io_t *bi_end_io;
 294};
 295
 296static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
 297			bio_end_io_t *bi_end_io, void *bi_private)
 298{
 299	h->bi_end_io = bio->bi_end_io;
 300
 301	bio->bi_end_io = bi_end_io;
 302	bio->bi_private = bi_private;
 303}
 304
 305static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
 306{
 307	bio->bi_end_io = h->bi_end_io;
 308}
 309
 310/*----------------------------------------------------------------*/
 311
 312#define MIGRATION_POOL_SIZE 128
 313#define COMMIT_PERIOD HZ
 314#define MIGRATION_COUNT_WINDOW 10
 315
 316/*
 317 * The block size of the device holding cache data must be
 318 * between 32KB and 1GB.
 319 */
 320#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
 321#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
 322
 323enum cache_metadata_mode {
 324	CM_WRITE,		/* metadata may be changed */
 325	CM_READ_ONLY,		/* metadata may not be changed */
 326	CM_FAIL
 327};
 328
 329enum cache_io_mode {
 330	/*
 331	 * Data is written to cached blocks only.  These blocks are marked
 332	 * dirty.  If you lose the cache device you will lose data.
 333	 * Potential performance increase for both reads and writes.
 334	 */
 335	CM_IO_WRITEBACK,
 336
 337	/*
 338	 * Data is written to both cache and origin.  Blocks are never
 339	 * dirty.  Potential performance benfit for reads only.
 340	 */
 341	CM_IO_WRITETHROUGH,
 342
 343	/*
 344	 * A degraded mode useful for various cache coherency situations
 345	 * (eg, rolling back snapshots).  Reads and writes always go to the
 346	 * origin.  If a write goes to a cached oblock, then the cache
 347	 * block is invalidated.
 348	 */
 349	CM_IO_PASSTHROUGH
 350};
 351
 352struct cache_features {
 353	enum cache_metadata_mode mode;
 354	enum cache_io_mode io_mode;
 355	unsigned metadata_version;
 356	bool discard_passdown:1;
 357};
 358
 359struct cache_stats {
 360	atomic_t read_hit;
 361	atomic_t read_miss;
 362	atomic_t write_hit;
 363	atomic_t write_miss;
 364	atomic_t demotion;
 365	atomic_t promotion;
 366	atomic_t writeback;
 367	atomic_t copies_avoided;
 368	atomic_t cache_cell_clash;
 369	atomic_t commit_count;
 370	atomic_t discard_count;
 371};
 372
 373struct cache {
 374	struct dm_target *ti;
 375	spinlock_t lock;
 376
 377	/*
 378	 * Fields for converting from sectors to blocks.
 379	 */
 380	int sectors_per_block_shift;
 381	sector_t sectors_per_block;
 382
 383	struct dm_cache_metadata *cmd;
 384
 385	/*
 386	 * Metadata is written to this device.
 387	 */
 388	struct dm_dev *metadata_dev;
 389
 390	/*
 391	 * The slower of the two data devices.  Typically a spindle.
 392	 */
 393	struct dm_dev *origin_dev;
 394
 395	/*
 396	 * The faster of the two data devices.  Typically an SSD.
 397	 */
 398	struct dm_dev *cache_dev;
 399
 400	/*
 401	 * Size of the origin device in _complete_ blocks and native sectors.
 402	 */
 403	dm_oblock_t origin_blocks;
 404	sector_t origin_sectors;
 405
 406	/*
 407	 * Size of the cache device in blocks.
 408	 */
 409	dm_cblock_t cache_size;
 410
 411	/*
 412	 * Invalidation fields.
 413	 */
 414	spinlock_t invalidation_lock;
 415	struct list_head invalidation_requests;
 416
 417	sector_t migration_threshold;
 418	wait_queue_head_t migration_wait;
 419	atomic_t nr_allocated_migrations;
 420
 421	/*
 422	 * The number of in flight migrations that are performing
 423	 * background io. eg, promotion, writeback.
 424	 */
 425	atomic_t nr_io_migrations;
 426
 427	struct bio_list deferred_bios;
 428
 429	struct rw_semaphore quiesce_lock;
 430
 431	struct dm_target_callbacks callbacks;
 432
 433	/*
 434	 * origin_blocks entries, discarded if set.
 435	 */
 436	dm_dblock_t discard_nr_blocks;
 437	unsigned long *discard_bitset;
 438	uint32_t discard_block_size; /* a power of 2 times sectors per block */
 439
 440	/*
 441	 * Rather than reconstructing the table line for the status we just
 442	 * save it and regurgitate.
 443	 */
 444	unsigned nr_ctr_args;
 445	const char **ctr_args;
 446
 447	struct dm_kcopyd_client *copier;
 448	struct work_struct deferred_bio_worker;
 449	struct work_struct migration_worker;
 450	struct workqueue_struct *wq;
 451	struct delayed_work waker;
 452	struct dm_bio_prison_v2 *prison;
 453
 454	/*
 455	 * cache_size entries, dirty if set
 456	 */
 457	unsigned long *dirty_bitset;
 458	atomic_t nr_dirty;
 459
 460	unsigned policy_nr_args;
 461	struct dm_cache_policy *policy;
 462
 463	/*
 464	 * Cache features such as write-through.
 465	 */
 466	struct cache_features features;
 467
 468	struct cache_stats stats;
 469
 470	bool need_tick_bio:1;
 471	bool sized:1;
 472	bool invalidate:1;
 473	bool commit_requested:1;
 474	bool loaded_mappings:1;
 475	bool loaded_discards:1;
 476
 477	struct rw_semaphore background_work_lock;
 478
 479	struct batcher committer;
 480	struct work_struct commit_ws;
 481
 482	struct io_tracker tracker;
 483
 484	mempool_t migration_pool;
 485
 486	struct bio_set bs;
 487};
 488
 489struct per_bio_data {
 490	bool tick:1;
 491	unsigned req_nr:2;
 492	struct dm_bio_prison_cell_v2 *cell;
 493	struct dm_hook_info hook_info;
 494	sector_t len;
 495};
 496
 497struct dm_cache_migration {
 498	struct continuation k;
 499	struct cache *cache;
 500
 501	struct policy_work *op;
 502	struct bio *overwrite_bio;
 503	struct dm_bio_prison_cell_v2 *cell;
 504
 505	dm_cblock_t invalidate_cblock;
 506	dm_oblock_t invalidate_oblock;
 507};
 508
 509/*----------------------------------------------------------------*/
 510
 511static bool writethrough_mode(struct cache *cache)
 512{
 513	return cache->features.io_mode == CM_IO_WRITETHROUGH;
 514}
 515
 516static bool writeback_mode(struct cache *cache)
 517{
 518	return cache->features.io_mode == CM_IO_WRITEBACK;
 519}
 520
 521static inline bool passthrough_mode(struct cache *cache)
 522{
 523	return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
 524}
 525
 526/*----------------------------------------------------------------*/
 527
 528static void wake_deferred_bio_worker(struct cache *cache)
 529{
 530	queue_work(cache->wq, &cache->deferred_bio_worker);
 531}
 532
 533static void wake_migration_worker(struct cache *cache)
 534{
 535	if (passthrough_mode(cache))
 536		return;
 537
 538	queue_work(cache->wq, &cache->migration_worker);
 539}
 540
 541/*----------------------------------------------------------------*/
 542
 543static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
 544{
 545	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
 546}
 547
 548static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
 549{
 550	dm_bio_prison_free_cell_v2(cache->prison, cell);
 551}
 552
 553static struct dm_cache_migration *alloc_migration(struct cache *cache)
 554{
 555	struct dm_cache_migration *mg;
 556
 557	mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
 558
 559	memset(mg, 0, sizeof(*mg));
 560
 561	mg->cache = cache;
 562	atomic_inc(&cache->nr_allocated_migrations);
 563
 564	return mg;
 565}
 566
 567static void free_migration(struct dm_cache_migration *mg)
 568{
 569	struct cache *cache = mg->cache;
 570
 571	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
 572		wake_up(&cache->migration_wait);
 573
 574	mempool_free(mg, &cache->migration_pool);
 575}
 576
 577/*----------------------------------------------------------------*/
 578
 579static inline dm_oblock_t oblock_succ(dm_oblock_t b)
 580{
 581	return to_oblock(from_oblock(b) + 1ull);
 582}
 583
 584static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
 585{
 586	key->virtual = 0;
 587	key->dev = 0;
 588	key->block_begin = from_oblock(begin);
 589	key->block_end = from_oblock(end);
 590}
 591
 592/*
 593 * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
 594 * level 1 which prevents *both* READs and WRITEs.
 595 */
 596#define WRITE_LOCK_LEVEL 0
 597#define READ_WRITE_LOCK_LEVEL 1
 598
 599static unsigned lock_level(struct bio *bio)
 600{
 601	return bio_data_dir(bio) == WRITE ?
 602		WRITE_LOCK_LEVEL :
 603		READ_WRITE_LOCK_LEVEL;
 604}
 605
 606/*----------------------------------------------------------------
 
 607 * Per bio data
 608 *--------------------------------------------------------------*/
 
 609
 610static struct per_bio_data *get_per_bio_data(struct bio *bio)
 611{
 612	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
 
 613	BUG_ON(!pb);
 614	return pb;
 615}
 616
 617static struct per_bio_data *init_per_bio_data(struct bio *bio)
 618{
 619	struct per_bio_data *pb = get_per_bio_data(bio);
 620
 621	pb->tick = false;
 622	pb->req_nr = dm_bio_get_target_bio_nr(bio);
 623	pb->cell = NULL;
 624	pb->len = 0;
 625
 626	return pb;
 627}
 628
 629/*----------------------------------------------------------------*/
 630
 631static void defer_bio(struct cache *cache, struct bio *bio)
 632{
 633	unsigned long flags;
 634
 635	spin_lock_irqsave(&cache->lock, flags);
 636	bio_list_add(&cache->deferred_bios, bio);
 637	spin_unlock_irqrestore(&cache->lock, flags);
 638
 639	wake_deferred_bio_worker(cache);
 640}
 641
 642static void defer_bios(struct cache *cache, struct bio_list *bios)
 643{
 644	unsigned long flags;
 645
 646	spin_lock_irqsave(&cache->lock, flags);
 647	bio_list_merge(&cache->deferred_bios, bios);
 648	bio_list_init(bios);
 649	spin_unlock_irqrestore(&cache->lock, flags);
 650
 651	wake_deferred_bio_worker(cache);
 652}
 653
 654/*----------------------------------------------------------------*/
 655
 656static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
 657{
 658	bool r;
 659	struct per_bio_data *pb;
 660	struct dm_cell_key_v2 key;
 661	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
 662	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
 663
 664	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
 665
 666	build_key(oblock, end, &key);
 667	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
 668	if (!r) {
 669		/*
 670		 * Failed to get the lock.
 671		 */
 672		free_prison_cell(cache, cell_prealloc);
 673		return r;
 674	}
 675
 676	if (cell != cell_prealloc)
 677		free_prison_cell(cache, cell_prealloc);
 678
 679	pb = get_per_bio_data(bio);
 680	pb->cell = cell;
 681
 682	return r;
 683}
 684
 685/*----------------------------------------------------------------*/
 686
 687static bool is_dirty(struct cache *cache, dm_cblock_t b)
 688{
 689	return test_bit(from_cblock(b), cache->dirty_bitset);
 690}
 691
 692static void set_dirty(struct cache *cache, dm_cblock_t cblock)
 693{
 694	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
 695		atomic_inc(&cache->nr_dirty);
 696		policy_set_dirty(cache->policy, cblock);
 697	}
 698}
 699
 700/*
 701 * These two are called when setting after migrations to force the policy
 702 * and dirty bitset to be in sync.
 703 */
 704static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
 705{
 706	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
 707		atomic_inc(&cache->nr_dirty);
 708	policy_set_dirty(cache->policy, cblock);
 709}
 710
 711static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
 712{
 713	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
 714		if (atomic_dec_return(&cache->nr_dirty) == 0)
 715			dm_table_event(cache->ti->table);
 716	}
 717
 718	policy_clear_dirty(cache->policy, cblock);
 719}
 720
 721/*----------------------------------------------------------------*/
 722
 723static bool block_size_is_power_of_two(struct cache *cache)
 724{
 725	return cache->sectors_per_block_shift >= 0;
 726}
 727
 728/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
 729#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
 730__always_inline
 731#endif
 732static dm_block_t block_div(dm_block_t b, uint32_t n)
 733{
 734	do_div(b, n);
 735
 736	return b;
 737}
 738
 739static dm_block_t oblocks_per_dblock(struct cache *cache)
 740{
 741	dm_block_t oblocks = cache->discard_block_size;
 742
 743	if (block_size_is_power_of_two(cache))
 744		oblocks >>= cache->sectors_per_block_shift;
 745	else
 746		oblocks = block_div(oblocks, cache->sectors_per_block);
 747
 748	return oblocks;
 749}
 750
 751static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
 752{
 753	return to_dblock(block_div(from_oblock(oblock),
 754				   oblocks_per_dblock(cache)));
 755}
 756
 757static void set_discard(struct cache *cache, dm_dblock_t b)
 758{
 759	unsigned long flags;
 760
 761	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
 762	atomic_inc(&cache->stats.discard_count);
 763
 764	spin_lock_irqsave(&cache->lock, flags);
 765	set_bit(from_dblock(b), cache->discard_bitset);
 766	spin_unlock_irqrestore(&cache->lock, flags);
 767}
 768
 769static void clear_discard(struct cache *cache, dm_dblock_t b)
 770{
 771	unsigned long flags;
 772
 773	spin_lock_irqsave(&cache->lock, flags);
 774	clear_bit(from_dblock(b), cache->discard_bitset);
 775	spin_unlock_irqrestore(&cache->lock, flags);
 776}
 777
 778static bool is_discarded(struct cache *cache, dm_dblock_t b)
 779{
 780	int r;
 781	unsigned long flags;
 782
 783	spin_lock_irqsave(&cache->lock, flags);
 784	r = test_bit(from_dblock(b), cache->discard_bitset);
 785	spin_unlock_irqrestore(&cache->lock, flags);
 786
 787	return r;
 788}
 789
 790static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
 791{
 792	int r;
 793	unsigned long flags;
 794
 795	spin_lock_irqsave(&cache->lock, flags);
 796	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
 797		     cache->discard_bitset);
 798	spin_unlock_irqrestore(&cache->lock, flags);
 799
 800	return r;
 801}
 802
 803/*----------------------------------------------------------------
 
 804 * Remapping
 805 *--------------------------------------------------------------*/
 
 806static void remap_to_origin(struct cache *cache, struct bio *bio)
 807{
 808	bio_set_dev(bio, cache->origin_dev->bdev);
 809}
 810
 811static void remap_to_cache(struct cache *cache, struct bio *bio,
 812			   dm_cblock_t cblock)
 813{
 814	sector_t bi_sector = bio->bi_iter.bi_sector;
 815	sector_t block = from_cblock(cblock);
 816
 817	bio_set_dev(bio, cache->cache_dev->bdev);
 818	if (!block_size_is_power_of_two(cache))
 819		bio->bi_iter.bi_sector =
 820			(block * cache->sectors_per_block) +
 821			sector_div(bi_sector, cache->sectors_per_block);
 822	else
 823		bio->bi_iter.bi_sector =
 824			(block << cache->sectors_per_block_shift) |
 825			(bi_sector & (cache->sectors_per_block - 1));
 826}
 827
 828static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
 829{
 830	unsigned long flags;
 831	struct per_bio_data *pb;
 832
 833	spin_lock_irqsave(&cache->lock, flags);
 834	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
 835	    bio_op(bio) != REQ_OP_DISCARD) {
 836		pb = get_per_bio_data(bio);
 837		pb->tick = true;
 838		cache->need_tick_bio = false;
 839	}
 840	spin_unlock_irqrestore(&cache->lock, flags);
 841}
 842
 843static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 844					    dm_oblock_t oblock, bool bio_has_pbd)
 845{
 846	if (bio_has_pbd)
 847		check_if_tick_bio_needed(cache, bio);
 848	remap_to_origin(cache, bio);
 849	if (bio_data_dir(bio) == WRITE)
 850		clear_discard(cache, oblock_to_dblock(cache, oblock));
 851}
 852
 853static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 854					  dm_oblock_t oblock)
 855{
 856	// FIXME: check_if_tick_bio_needed() is called way too much through this interface
 857	__remap_to_origin_clear_discard(cache, bio, oblock, true);
 858}
 859
 860static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
 861				 dm_oblock_t oblock, dm_cblock_t cblock)
 862{
 863	check_if_tick_bio_needed(cache, bio);
 864	remap_to_cache(cache, bio, cblock);
 865	if (bio_data_dir(bio) == WRITE) {
 866		set_dirty(cache, cblock);
 867		clear_discard(cache, oblock_to_dblock(cache, oblock));
 868	}
 869}
 870
 871static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
 872{
 873	sector_t block_nr = bio->bi_iter.bi_sector;
 874
 875	if (!block_size_is_power_of_two(cache))
 876		(void) sector_div(block_nr, cache->sectors_per_block);
 877	else
 878		block_nr >>= cache->sectors_per_block_shift;
 879
 880	return to_oblock(block_nr);
 881}
 882
 883static bool accountable_bio(struct cache *cache, struct bio *bio)
 884{
 885	return bio_op(bio) != REQ_OP_DISCARD;
 886}
 887
 888static void accounted_begin(struct cache *cache, struct bio *bio)
 889{
 890	struct per_bio_data *pb;
 891
 892	if (accountable_bio(cache, bio)) {
 893		pb = get_per_bio_data(bio);
 894		pb->len = bio_sectors(bio);
 895		iot_io_begin(&cache->tracker, pb->len);
 896	}
 897}
 898
 899static void accounted_complete(struct cache *cache, struct bio *bio)
 900{
 901	struct per_bio_data *pb = get_per_bio_data(bio);
 902
 903	iot_io_end(&cache->tracker, pb->len);
 904}
 905
 906static void accounted_request(struct cache *cache, struct bio *bio)
 907{
 908	accounted_begin(cache, bio);
 909	generic_make_request(bio);
 910}
 911
 912static void issue_op(struct bio *bio, void *context)
 913{
 914	struct cache *cache = context;
 
 915	accounted_request(cache, bio);
 916}
 917
 918/*
 919 * When running in writethrough mode we need to send writes to clean blocks
 920 * to both the cache and origin devices.  Clone the bio and send them in parallel.
 921 */
 922static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
 923				      dm_oblock_t oblock, dm_cblock_t cblock)
 924{
 925	struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs);
 
 926
 927	BUG_ON(!origin_bio);
 928
 929	bio_chain(origin_bio, bio);
 930	/*
 931	 * Passing false to __remap_to_origin_clear_discard() skips
 932	 * all code that might use per_bio_data (since clone doesn't have it)
 933	 */
 934	__remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
 935	submit_bio(origin_bio);
 936
 937	remap_to_cache(cache, bio, cblock);
 938}
 939
 940/*----------------------------------------------------------------
 
 941 * Failure modes
 942 *--------------------------------------------------------------*/
 
 943static enum cache_metadata_mode get_cache_mode(struct cache *cache)
 944{
 945	return cache->features.mode;
 946}
 947
 948static const char *cache_device_name(struct cache *cache)
 949{
 950	return dm_device_name(dm_table_get_md(cache->ti->table));
 951}
 952
 953static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
 954{
 955	const char *descs[] = {
 956		"write",
 957		"read-only",
 958		"fail"
 959	};
 960
 961	dm_table_event(cache->ti->table);
 962	DMINFO("%s: switching cache to %s mode",
 963	       cache_device_name(cache), descs[(int)mode]);
 964}
 965
 966static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
 967{
 968	bool needs_check;
 969	enum cache_metadata_mode old_mode = get_cache_mode(cache);
 970
 971	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
 972		DMERR("%s: unable to read needs_check flag, setting failure mode.",
 973		      cache_device_name(cache));
 974		new_mode = CM_FAIL;
 975	}
 976
 977	if (new_mode == CM_WRITE && needs_check) {
 978		DMERR("%s: unable to switch cache to write mode until repaired.",
 979		      cache_device_name(cache));
 980		if (old_mode != new_mode)
 981			new_mode = old_mode;
 982		else
 983			new_mode = CM_READ_ONLY;
 984	}
 985
 986	/* Never move out of fail mode */
 987	if (old_mode == CM_FAIL)
 988		new_mode = CM_FAIL;
 989
 990	switch (new_mode) {
 991	case CM_FAIL:
 992	case CM_READ_ONLY:
 993		dm_cache_metadata_set_read_only(cache->cmd);
 994		break;
 995
 996	case CM_WRITE:
 997		dm_cache_metadata_set_read_write(cache->cmd);
 998		break;
 999	}
1000
1001	cache->features.mode = new_mode;
1002
1003	if (new_mode != old_mode)
1004		notify_mode_switch(cache, new_mode);
1005}
1006
1007static void abort_transaction(struct cache *cache)
1008{
1009	const char *dev_name = cache_device_name(cache);
1010
1011	if (get_cache_mode(cache) >= CM_READ_ONLY)
1012		return;
1013
1014	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1015		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
 
1016		set_cache_mode(cache, CM_FAIL);
1017	}
1018
1019	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1020	if (dm_cache_metadata_abort(cache->cmd)) {
1021		DMERR("%s: failed to abort metadata transaction", dev_name);
1022		set_cache_mode(cache, CM_FAIL);
1023	}
1024}
1025
1026static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1027{
1028	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1029		    cache_device_name(cache), op, r);
1030	abort_transaction(cache);
1031	set_cache_mode(cache, CM_READ_ONLY);
1032}
1033
1034/*----------------------------------------------------------------*/
1035
1036static void load_stats(struct cache *cache)
1037{
1038	struct dm_cache_statistics stats;
1039
1040	dm_cache_metadata_get_stats(cache->cmd, &stats);
1041	atomic_set(&cache->stats.read_hit, stats.read_hits);
1042	atomic_set(&cache->stats.read_miss, stats.read_misses);
1043	atomic_set(&cache->stats.write_hit, stats.write_hits);
1044	atomic_set(&cache->stats.write_miss, stats.write_misses);
1045}
1046
1047static void save_stats(struct cache *cache)
1048{
1049	struct dm_cache_statistics stats;
1050
1051	if (get_cache_mode(cache) >= CM_READ_ONLY)
1052		return;
1053
1054	stats.read_hits = atomic_read(&cache->stats.read_hit);
1055	stats.read_misses = atomic_read(&cache->stats.read_miss);
1056	stats.write_hits = atomic_read(&cache->stats.write_hit);
1057	stats.write_misses = atomic_read(&cache->stats.write_miss);
1058
1059	dm_cache_metadata_set_stats(cache->cmd, &stats);
1060}
1061
1062static void update_stats(struct cache_stats *stats, enum policy_operation op)
1063{
1064	switch (op) {
1065	case POLICY_PROMOTE:
1066		atomic_inc(&stats->promotion);
1067		break;
1068
1069	case POLICY_DEMOTE:
1070		atomic_inc(&stats->demotion);
1071		break;
1072
1073	case POLICY_WRITEBACK:
1074		atomic_inc(&stats->writeback);
1075		break;
1076	}
1077}
1078
1079/*----------------------------------------------------------------
 
1080 * Migration processing
1081 *
1082 * Migration covers moving data from the origin device to the cache, or
1083 * vice versa.
1084 *--------------------------------------------------------------*/
1085
1086static void inc_io_migrations(struct cache *cache)
1087{
1088	atomic_inc(&cache->nr_io_migrations);
1089}
1090
1091static void dec_io_migrations(struct cache *cache)
1092{
1093	atomic_dec(&cache->nr_io_migrations);
1094}
1095
1096static bool discard_or_flush(struct bio *bio)
1097{
1098	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1099}
1100
1101static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1102				     dm_dblock_t *b, dm_dblock_t *e)
1103{
1104	sector_t sb = bio->bi_iter.bi_sector;
1105	sector_t se = bio_end_sector(bio);
1106
1107	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1108
1109	if (se - sb < cache->discard_block_size)
1110		*e = *b;
1111	else
1112		*e = to_dblock(block_div(se, cache->discard_block_size));
1113}
1114
1115/*----------------------------------------------------------------*/
1116
1117static void prevent_background_work(struct cache *cache)
1118{
1119	lockdep_off();
1120	down_write(&cache->background_work_lock);
1121	lockdep_on();
1122}
1123
1124static void allow_background_work(struct cache *cache)
1125{
1126	lockdep_off();
1127	up_write(&cache->background_work_lock);
1128	lockdep_on();
1129}
1130
1131static bool background_work_begin(struct cache *cache)
1132{
1133	bool r;
1134
1135	lockdep_off();
1136	r = down_read_trylock(&cache->background_work_lock);
1137	lockdep_on();
1138
1139	return r;
1140}
1141
1142static void background_work_end(struct cache *cache)
1143{
1144	lockdep_off();
1145	up_read(&cache->background_work_lock);
1146	lockdep_on();
1147}
1148
1149/*----------------------------------------------------------------*/
1150
1151static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1152{
1153	return (bio_data_dir(bio) == WRITE) &&
1154		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1155}
1156
1157static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1158{
1159	return writeback_mode(cache) &&
1160		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1161}
1162
1163static void quiesce(struct dm_cache_migration *mg,
1164		    void (*continuation)(struct work_struct *))
1165{
1166	init_continuation(&mg->k, continuation);
1167	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1168}
1169
1170static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1171{
1172	struct continuation *k = container_of(ws, struct continuation, ws);
 
1173	return container_of(k, struct dm_cache_migration, k);
1174}
1175
1176static void copy_complete(int read_err, unsigned long write_err, void *context)
1177{
1178	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1179
1180	if (read_err || write_err)
1181		mg->k.input = BLK_STS_IOERR;
1182
1183	queue_continuation(mg->cache->wq, &mg->k);
1184}
1185
1186static void copy(struct dm_cache_migration *mg, bool promote)
1187{
1188	struct dm_io_region o_region, c_region;
1189	struct cache *cache = mg->cache;
1190
1191	o_region.bdev = cache->origin_dev->bdev;
1192	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1193	o_region.count = cache->sectors_per_block;
1194
1195	c_region.bdev = cache->cache_dev->bdev;
1196	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1197	c_region.count = cache->sectors_per_block;
1198
1199	if (promote)
1200		dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1201	else
1202		dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1203}
1204
1205static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1206{
1207	struct per_bio_data *pb = get_per_bio_data(bio);
1208
1209	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1210		free_prison_cell(cache, pb->cell);
1211	pb->cell = NULL;
1212}
1213
1214static void overwrite_endio(struct bio *bio)
1215{
1216	struct dm_cache_migration *mg = bio->bi_private;
1217	struct cache *cache = mg->cache;
1218	struct per_bio_data *pb = get_per_bio_data(bio);
1219
1220	dm_unhook_bio(&pb->hook_info, bio);
1221
1222	if (bio->bi_status)
1223		mg->k.input = bio->bi_status;
1224
1225	queue_continuation(cache->wq, &mg->k);
1226}
1227
1228static void overwrite(struct dm_cache_migration *mg,
1229		      void (*continuation)(struct work_struct *))
1230{
1231	struct bio *bio = mg->overwrite_bio;
1232	struct per_bio_data *pb = get_per_bio_data(bio);
1233
1234	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1235
1236	/*
1237	 * The overwrite bio is part of the copy operation, as such it does
1238	 * not set/clear discard or dirty flags.
1239	 */
1240	if (mg->op->op == POLICY_PROMOTE)
1241		remap_to_cache(mg->cache, bio, mg->op->cblock);
1242	else
1243		remap_to_origin(mg->cache, bio);
1244
1245	init_continuation(&mg->k, continuation);
1246	accounted_request(mg->cache, bio);
1247}
1248
1249/*
1250 * Migration steps:
1251 *
1252 * 1) exclusive lock preventing WRITEs
1253 * 2) quiesce
1254 * 3) copy or issue overwrite bio
1255 * 4) upgrade to exclusive lock preventing READs and WRITEs
1256 * 5) quiesce
1257 * 6) update metadata and commit
1258 * 7) unlock
1259 */
1260static void mg_complete(struct dm_cache_migration *mg, bool success)
1261{
1262	struct bio_list bios;
1263	struct cache *cache = mg->cache;
1264	struct policy_work *op = mg->op;
1265	dm_cblock_t cblock = op->cblock;
1266
1267	if (success)
1268		update_stats(&cache->stats, op->op);
1269
1270	switch (op->op) {
1271	case POLICY_PROMOTE:
1272		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1273		policy_complete_background_work(cache->policy, op, success);
1274
1275		if (mg->overwrite_bio) {
1276			if (success)
1277				force_set_dirty(cache, cblock);
1278			else if (mg->k.input)
1279				mg->overwrite_bio->bi_status = mg->k.input;
1280			else
1281				mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1282			bio_endio(mg->overwrite_bio);
1283		} else {
1284			if (success)
1285				force_clear_dirty(cache, cblock);
1286			dec_io_migrations(cache);
1287		}
1288		break;
1289
1290	case POLICY_DEMOTE:
1291		/*
1292		 * We clear dirty here to update the nr_dirty counter.
1293		 */
1294		if (success)
1295			force_clear_dirty(cache, cblock);
1296		policy_complete_background_work(cache->policy, op, success);
1297		dec_io_migrations(cache);
1298		break;
1299
1300	case POLICY_WRITEBACK:
1301		if (success)
1302			force_clear_dirty(cache, cblock);
1303		policy_complete_background_work(cache->policy, op, success);
1304		dec_io_migrations(cache);
1305		break;
1306	}
1307
1308	bio_list_init(&bios);
1309	if (mg->cell) {
1310		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1311			free_prison_cell(cache, mg->cell);
1312	}
1313
1314	free_migration(mg);
1315	defer_bios(cache, &bios);
1316	wake_migration_worker(cache);
1317
1318	background_work_end(cache);
1319}
1320
1321static void mg_success(struct work_struct *ws)
1322{
1323	struct dm_cache_migration *mg = ws_to_mg(ws);
 
1324	mg_complete(mg, mg->k.input == 0);
1325}
1326
1327static void mg_update_metadata(struct work_struct *ws)
1328{
1329	int r;
1330	struct dm_cache_migration *mg = ws_to_mg(ws);
1331	struct cache *cache = mg->cache;
1332	struct policy_work *op = mg->op;
1333
1334	switch (op->op) {
1335	case POLICY_PROMOTE:
1336		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1337		if (r) {
1338			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1339				    cache_device_name(cache));
1340			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1341
1342			mg_complete(mg, false);
1343			return;
1344		}
1345		mg_complete(mg, true);
1346		break;
1347
1348	case POLICY_DEMOTE:
1349		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1350		if (r) {
1351			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1352				    cache_device_name(cache));
1353			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1354
1355			mg_complete(mg, false);
1356			return;
1357		}
1358
1359		/*
1360		 * It would be nice if we only had to commit when a REQ_FLUSH
1361		 * comes through.  But there's one scenario that we have to
1362		 * look out for:
1363		 *
1364		 * - vblock x in a cache block
1365		 * - domotion occurs
1366		 * - cache block gets reallocated and over written
1367		 * - crash
1368		 *
1369		 * When we recover, because there was no commit the cache will
1370		 * rollback to having the data for vblock x in the cache block.
1371		 * But the cache block has since been overwritten, so it'll end
1372		 * up pointing to data that was never in 'x' during the history
1373		 * of the device.
1374		 *
1375		 * To avoid this issue we require a commit as part of the
1376		 * demotion operation.
1377		 */
1378		init_continuation(&mg->k, mg_success);
1379		continue_after_commit(&cache->committer, &mg->k);
1380		schedule_commit(&cache->committer);
1381		break;
1382
1383	case POLICY_WRITEBACK:
1384		mg_complete(mg, true);
1385		break;
1386	}
1387}
1388
1389static void mg_update_metadata_after_copy(struct work_struct *ws)
1390{
1391	struct dm_cache_migration *mg = ws_to_mg(ws);
1392
1393	/*
1394	 * Did the copy succeed?
1395	 */
1396	if (mg->k.input)
1397		mg_complete(mg, false);
1398	else
1399		mg_update_metadata(ws);
1400}
1401
1402static void mg_upgrade_lock(struct work_struct *ws)
1403{
1404	int r;
1405	struct dm_cache_migration *mg = ws_to_mg(ws);
1406
1407	/*
1408	 * Did the copy succeed?
1409	 */
1410	if (mg->k.input)
1411		mg_complete(mg, false);
1412
1413	else {
1414		/*
1415		 * Now we want the lock to prevent both reads and writes.
1416		 */
1417		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1418					    READ_WRITE_LOCK_LEVEL);
1419		if (r < 0)
1420			mg_complete(mg, false);
1421
1422		else if (r)
1423			quiesce(mg, mg_update_metadata);
1424
1425		else
1426			mg_update_metadata(ws);
1427	}
1428}
1429
1430static void mg_full_copy(struct work_struct *ws)
1431{
1432	struct dm_cache_migration *mg = ws_to_mg(ws);
1433	struct cache *cache = mg->cache;
1434	struct policy_work *op = mg->op;
1435	bool is_policy_promote = (op->op == POLICY_PROMOTE);
1436
1437	if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1438	    is_discarded_oblock(cache, op->oblock)) {
1439		mg_upgrade_lock(ws);
1440		return;
1441	}
1442
1443	init_continuation(&mg->k, mg_upgrade_lock);
1444	copy(mg, is_policy_promote);
1445}
1446
1447static void mg_copy(struct work_struct *ws)
1448{
1449	struct dm_cache_migration *mg = ws_to_mg(ws);
1450
1451	if (mg->overwrite_bio) {
1452		/*
1453		 * No exclusive lock was held when we last checked if the bio
1454		 * was optimisable.  So we have to check again in case things
1455		 * have changed (eg, the block may no longer be discarded).
1456		 */
1457		if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1458			/*
1459			 * Fallback to a real full copy after doing some tidying up.
1460			 */
1461			bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
 
1462			BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1463			mg->overwrite_bio = NULL;
1464			inc_io_migrations(mg->cache);
1465			mg_full_copy(ws);
1466			return;
1467		}
1468
1469		/*
1470		 * It's safe to do this here, even though it's new data
1471		 * because all IO has been locked out of the block.
1472		 *
1473		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1474		 * so _not_ using mg_upgrade_lock() as continutation.
1475		 */
1476		overwrite(mg, mg_update_metadata_after_copy);
1477
1478	} else
1479		mg_full_copy(ws);
1480}
1481
1482static int mg_lock_writes(struct dm_cache_migration *mg)
1483{
1484	int r;
1485	struct dm_cell_key_v2 key;
1486	struct cache *cache = mg->cache;
1487	struct dm_bio_prison_cell_v2 *prealloc;
1488
1489	prealloc = alloc_prison_cell(cache);
1490
1491	/*
1492	 * Prevent writes to the block, but allow reads to continue.
1493	 * Unless we're using an overwrite bio, in which case we lock
1494	 * everything.
1495	 */
1496	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1497	r = dm_cell_lock_v2(cache->prison, &key,
1498			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1499			    prealloc, &mg->cell);
1500	if (r < 0) {
1501		free_prison_cell(cache, prealloc);
1502		mg_complete(mg, false);
1503		return r;
1504	}
1505
1506	if (mg->cell != prealloc)
1507		free_prison_cell(cache, prealloc);
1508
1509	if (r == 0)
1510		mg_copy(&mg->k.ws);
1511	else
1512		quiesce(mg, mg_copy);
1513
1514	return 0;
1515}
1516
1517static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1518{
1519	struct dm_cache_migration *mg;
1520
1521	if (!background_work_begin(cache)) {
1522		policy_complete_background_work(cache->policy, op, false);
1523		return -EPERM;
1524	}
1525
1526	mg = alloc_migration(cache);
1527
1528	mg->op = op;
1529	mg->overwrite_bio = bio;
1530
1531	if (!bio)
1532		inc_io_migrations(cache);
1533
1534	return mg_lock_writes(mg);
1535}
1536
1537/*----------------------------------------------------------------
 
1538 * invalidation processing
1539 *--------------------------------------------------------------*/
 
1540
1541static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1542{
1543	struct bio_list bios;
1544	struct cache *cache = mg->cache;
1545
1546	bio_list_init(&bios);
1547	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1548		free_prison_cell(cache, mg->cell);
1549
1550	if (!success && mg->overwrite_bio)
1551		bio_io_error(mg->overwrite_bio);
1552
1553	free_migration(mg);
1554	defer_bios(cache, &bios);
1555
1556	background_work_end(cache);
1557}
1558
1559static void invalidate_completed(struct work_struct *ws)
1560{
1561	struct dm_cache_migration *mg = ws_to_mg(ws);
 
1562	invalidate_complete(mg, !mg->k.input);
1563}
1564
1565static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1566{
1567	int r = policy_invalidate_mapping(cache->policy, cblock);
 
 
1568	if (!r) {
1569		r = dm_cache_remove_mapping(cache->cmd, cblock);
1570		if (r) {
1571			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1572				    cache_device_name(cache));
1573			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1574		}
1575
1576	} else if (r == -ENODATA) {
1577		/*
1578		 * Harmless, already unmapped.
1579		 */
1580		r = 0;
1581
1582	} else
1583		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1584
1585	return r;
1586}
1587
1588static void invalidate_remove(struct work_struct *ws)
1589{
1590	int r;
1591	struct dm_cache_migration *mg = ws_to_mg(ws);
1592	struct cache *cache = mg->cache;
1593
1594	r = invalidate_cblock(cache, mg->invalidate_cblock);
1595	if (r) {
1596		invalidate_complete(mg, false);
1597		return;
1598	}
1599
1600	init_continuation(&mg->k, invalidate_completed);
1601	continue_after_commit(&cache->committer, &mg->k);
1602	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1603	mg->overwrite_bio = NULL;
1604	schedule_commit(&cache->committer);
1605}
1606
1607static int invalidate_lock(struct dm_cache_migration *mg)
1608{
1609	int r;
1610	struct dm_cell_key_v2 key;
1611	struct cache *cache = mg->cache;
1612	struct dm_bio_prison_cell_v2 *prealloc;
1613
1614	prealloc = alloc_prison_cell(cache);
1615
1616	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1617	r = dm_cell_lock_v2(cache->prison, &key,
1618			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1619	if (r < 0) {
1620		free_prison_cell(cache, prealloc);
1621		invalidate_complete(mg, false);
1622		return r;
1623	}
1624
1625	if (mg->cell != prealloc)
1626		free_prison_cell(cache, prealloc);
1627
1628	if (r)
1629		quiesce(mg, invalidate_remove);
1630
1631	else {
1632		/*
1633		 * We can't call invalidate_remove() directly here because we
1634		 * might still be in request context.
1635		 */
1636		init_continuation(&mg->k, invalidate_remove);
1637		queue_work(cache->wq, &mg->k.ws);
1638	}
1639
1640	return 0;
1641}
1642
1643static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1644			    dm_oblock_t oblock, struct bio *bio)
1645{
1646	struct dm_cache_migration *mg;
1647
1648	if (!background_work_begin(cache))
1649		return -EPERM;
1650
1651	mg = alloc_migration(cache);
1652
1653	mg->overwrite_bio = bio;
1654	mg->invalidate_cblock = cblock;
1655	mg->invalidate_oblock = oblock;
1656
1657	return invalidate_lock(mg);
1658}
1659
1660/*----------------------------------------------------------------
 
1661 * bio processing
1662 *--------------------------------------------------------------*/
 
1663
1664enum busy {
1665	IDLE,
1666	BUSY
1667};
1668
1669static enum busy spare_migration_bandwidth(struct cache *cache)
1670{
1671	bool idle = iot_idle_for(&cache->tracker, HZ);
1672	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1673		cache->sectors_per_block;
1674
1675	if (idle && current_volume <= cache->migration_threshold)
1676		return IDLE;
1677	else
1678		return BUSY;
1679}
1680
1681static void inc_hit_counter(struct cache *cache, struct bio *bio)
1682{
1683	atomic_inc(bio_data_dir(bio) == READ ?
1684		   &cache->stats.read_hit : &cache->stats.write_hit);
1685}
1686
1687static void inc_miss_counter(struct cache *cache, struct bio *bio)
1688{
1689	atomic_inc(bio_data_dir(bio) == READ ?
1690		   &cache->stats.read_miss : &cache->stats.write_miss);
1691}
1692
1693/*----------------------------------------------------------------*/
1694
1695static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1696		   bool *commit_needed)
1697{
1698	int r, data_dir;
1699	bool rb, background_queued;
1700	dm_cblock_t cblock;
1701
1702	*commit_needed = false;
1703
1704	rb = bio_detain_shared(cache, block, bio);
1705	if (!rb) {
1706		/*
1707		 * An exclusive lock is held for this block, so we have to
1708		 * wait.  We set the commit_needed flag so the current
1709		 * transaction will be committed asap, allowing this lock
1710		 * to be dropped.
1711		 */
1712		*commit_needed = true;
1713		return DM_MAPIO_SUBMITTED;
1714	}
1715
1716	data_dir = bio_data_dir(bio);
1717
1718	if (optimisable_bio(cache, bio, block)) {
1719		struct policy_work *op = NULL;
1720
1721		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1722		if (unlikely(r && r != -ENOENT)) {
1723			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1724				    cache_device_name(cache), r);
1725			bio_io_error(bio);
1726			return DM_MAPIO_SUBMITTED;
1727		}
1728
1729		if (r == -ENOENT && op) {
1730			bio_drop_shared_lock(cache, bio);
1731			BUG_ON(op->op != POLICY_PROMOTE);
1732			mg_start(cache, op, bio);
1733			return DM_MAPIO_SUBMITTED;
1734		}
1735	} else {
1736		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1737		if (unlikely(r && r != -ENOENT)) {
1738			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1739				    cache_device_name(cache), r);
1740			bio_io_error(bio);
1741			return DM_MAPIO_SUBMITTED;
1742		}
1743
1744		if (background_queued)
1745			wake_migration_worker(cache);
1746	}
1747
1748	if (r == -ENOENT) {
1749		struct per_bio_data *pb = get_per_bio_data(bio);
1750
1751		/*
1752		 * Miss.
1753		 */
1754		inc_miss_counter(cache, bio);
1755		if (pb->req_nr == 0) {
1756			accounted_begin(cache, bio);
1757			remap_to_origin_clear_discard(cache, bio, block);
1758		} else {
1759			/*
1760			 * This is a duplicate writethrough io that is no
1761			 * longer needed because the block has been demoted.
1762			 */
1763			bio_endio(bio);
1764			return DM_MAPIO_SUBMITTED;
1765		}
1766	} else {
1767		/*
1768		 * Hit.
1769		 */
1770		inc_hit_counter(cache, bio);
1771
1772		/*
1773		 * Passthrough always maps to the origin, invalidating any
1774		 * cache blocks that are written to.
1775		 */
1776		if (passthrough_mode(cache)) {
1777			if (bio_data_dir(bio) == WRITE) {
1778				bio_drop_shared_lock(cache, bio);
1779				atomic_inc(&cache->stats.demotion);
1780				invalidate_start(cache, cblock, block, bio);
1781			} else
1782				remap_to_origin_clear_discard(cache, bio, block);
1783		} else {
1784			if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1785			    !is_dirty(cache, cblock)) {
1786				remap_to_origin_and_cache(cache, bio, block, cblock);
1787				accounted_begin(cache, bio);
1788			} else
1789				remap_to_cache_dirty(cache, bio, block, cblock);
1790		}
1791	}
1792
1793	/*
1794	 * dm core turns FUA requests into a separate payload and FLUSH req.
1795	 */
1796	if (bio->bi_opf & REQ_FUA) {
1797		/*
1798		 * issue_after_commit will call accounted_begin a second time.  So
1799		 * we call accounted_complete() to avoid double accounting.
1800		 */
1801		accounted_complete(cache, bio);
1802		issue_after_commit(&cache->committer, bio);
1803		*commit_needed = true;
1804		return DM_MAPIO_SUBMITTED;
1805	}
1806
1807	return DM_MAPIO_REMAPPED;
1808}
1809
1810static bool process_bio(struct cache *cache, struct bio *bio)
1811{
1812	bool commit_needed;
1813
1814	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1815		generic_make_request(bio);
1816
1817	return commit_needed;
1818}
1819
1820/*
1821 * A non-zero return indicates read_only or fail_io mode.
1822 */
1823static int commit(struct cache *cache, bool clean_shutdown)
1824{
1825	int r;
1826
1827	if (get_cache_mode(cache) >= CM_READ_ONLY)
1828		return -EINVAL;
1829
1830	atomic_inc(&cache->stats.commit_count);
1831	r = dm_cache_commit(cache->cmd, clean_shutdown);
1832	if (r)
1833		metadata_operation_failed(cache, "dm_cache_commit", r);
1834
1835	return r;
1836}
1837
1838/*
1839 * Used by the batcher.
1840 */
1841static blk_status_t commit_op(void *context)
1842{
1843	struct cache *cache = context;
1844
1845	if (dm_cache_changed_this_transaction(cache->cmd))
1846		return errno_to_blk_status(commit(cache, false));
1847
1848	return 0;
1849}
1850
1851/*----------------------------------------------------------------*/
1852
1853static bool process_flush_bio(struct cache *cache, struct bio *bio)
1854{
1855	struct per_bio_data *pb = get_per_bio_data(bio);
1856
1857	if (!pb->req_nr)
1858		remap_to_origin(cache, bio);
1859	else
1860		remap_to_cache(cache, bio, 0);
1861
1862	issue_after_commit(&cache->committer, bio);
1863	return true;
1864}
1865
1866static bool process_discard_bio(struct cache *cache, struct bio *bio)
1867{
1868	dm_dblock_t b, e;
1869
1870	// FIXME: do we need to lock the region?  Or can we just assume the
1871	// user wont be so foolish as to issue discard concurrently with
1872	// other IO?
 
 
1873	calc_discard_block_range(cache, bio, &b, &e);
1874	while (b != e) {
1875		set_discard(cache, b);
1876		b = to_dblock(from_dblock(b) + 1);
1877	}
1878
1879	if (cache->features.discard_passdown) {
1880		remap_to_origin(cache, bio);
1881		generic_make_request(bio);
1882	} else
1883		bio_endio(bio);
1884
1885	return false;
1886}
1887
1888static void process_deferred_bios(struct work_struct *ws)
1889{
1890	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1891
1892	unsigned long flags;
1893	bool commit_needed = false;
1894	struct bio_list bios;
1895	struct bio *bio;
1896
1897	bio_list_init(&bios);
1898
1899	spin_lock_irqsave(&cache->lock, flags);
1900	bio_list_merge(&bios, &cache->deferred_bios);
1901	bio_list_init(&cache->deferred_bios);
1902	spin_unlock_irqrestore(&cache->lock, flags);
1903
1904	while ((bio = bio_list_pop(&bios))) {
1905		if (bio->bi_opf & REQ_PREFLUSH)
1906			commit_needed = process_flush_bio(cache, bio) || commit_needed;
1907
1908		else if (bio_op(bio) == REQ_OP_DISCARD)
1909			commit_needed = process_discard_bio(cache, bio) || commit_needed;
1910
1911		else
1912			commit_needed = process_bio(cache, bio) || commit_needed;
 
1913	}
1914
1915	if (commit_needed)
1916		schedule_commit(&cache->committer);
1917}
1918
1919/*----------------------------------------------------------------
 
1920 * Main worker loop
1921 *--------------------------------------------------------------*/
1922
1923static void requeue_deferred_bios(struct cache *cache)
1924{
1925	struct bio *bio;
1926	struct bio_list bios;
1927
1928	bio_list_init(&bios);
1929	bio_list_merge(&bios, &cache->deferred_bios);
1930	bio_list_init(&cache->deferred_bios);
1931
1932	while ((bio = bio_list_pop(&bios))) {
1933		bio->bi_status = BLK_STS_DM_REQUEUE;
1934		bio_endio(bio);
 
1935	}
1936}
1937
1938/*
1939 * We want to commit periodically so that not too much
1940 * unwritten metadata builds up.
1941 */
1942static void do_waker(struct work_struct *ws)
1943{
1944	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1945
1946	policy_tick(cache->policy, true);
1947	wake_migration_worker(cache);
1948	schedule_commit(&cache->committer);
1949	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1950}
1951
1952static void check_migrations(struct work_struct *ws)
1953{
1954	int r;
1955	struct policy_work *op;
1956	struct cache *cache = container_of(ws, struct cache, migration_worker);
1957	enum busy b;
1958
1959	for (;;) {
1960		b = spare_migration_bandwidth(cache);
1961
1962		r = policy_get_background_work(cache->policy, b == IDLE, &op);
1963		if (r == -ENODATA)
1964			break;
1965
1966		if (r) {
1967			DMERR_LIMIT("%s: policy_background_work failed",
1968				    cache_device_name(cache));
1969			break;
1970		}
1971
1972		r = mg_start(cache, op, NULL);
1973		if (r)
1974			break;
 
 
1975	}
1976}
1977
1978/*----------------------------------------------------------------
 
1979 * Target methods
1980 *--------------------------------------------------------------*/
 
1981
1982/*
1983 * This function gets called on the error paths of the constructor, so we
1984 * have to cope with a partially initialised struct.
1985 */
1986static void destroy(struct cache *cache)
1987{
1988	unsigned i;
1989
1990	mempool_exit(&cache->migration_pool);
1991
1992	if (cache->prison)
1993		dm_bio_prison_destroy_v2(cache->prison);
1994
 
1995	if (cache->wq)
1996		destroy_workqueue(cache->wq);
1997
1998	if (cache->dirty_bitset)
1999		free_bitset(cache->dirty_bitset);
2000
2001	if (cache->discard_bitset)
2002		free_bitset(cache->discard_bitset);
2003
2004	if (cache->copier)
2005		dm_kcopyd_client_destroy(cache->copier);
2006
2007	if (cache->cmd)
2008		dm_cache_metadata_close(cache->cmd);
2009
2010	if (cache->metadata_dev)
2011		dm_put_device(cache->ti, cache->metadata_dev);
2012
2013	if (cache->origin_dev)
2014		dm_put_device(cache->ti, cache->origin_dev);
2015
2016	if (cache->cache_dev)
2017		dm_put_device(cache->ti, cache->cache_dev);
2018
2019	if (cache->policy)
2020		dm_cache_policy_destroy(cache->policy);
2021
2022	for (i = 0; i < cache->nr_ctr_args ; i++)
2023		kfree(cache->ctr_args[i]);
2024	kfree(cache->ctr_args);
2025
2026	bioset_exit(&cache->bs);
2027
2028	kfree(cache);
2029}
2030
2031static void cache_dtr(struct dm_target *ti)
2032{
2033	struct cache *cache = ti->private;
2034
2035	destroy(cache);
2036}
2037
2038static sector_t get_dev_size(struct dm_dev *dev)
2039{
2040	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2041}
2042
2043/*----------------------------------------------------------------*/
2044
2045/*
2046 * Construct a cache device mapping.
2047 *
2048 * cache <metadata dev> <cache dev> <origin dev> <block size>
2049 *       <#feature args> [<feature arg>]*
2050 *       <policy> <#policy args> [<policy arg>]*
2051 *
2052 * metadata dev    : fast device holding the persistent metadata
2053 * cache dev	   : fast device holding cached data blocks
2054 * origin dev	   : slow device holding original data blocks
2055 * block size	   : cache unit size in sectors
2056 *
2057 * #feature args   : number of feature arguments passed
2058 * feature args    : writethrough.  (The default is writeback.)
2059 *
2060 * policy	   : the replacement policy to use
2061 * #policy args    : an even number of policy arguments corresponding
2062 *		     to key/value pairs passed to the policy
2063 * policy args	   : key/value pairs passed to the policy
2064 *		     E.g. 'sequential_threshold 1024'
2065 *		     See cache-policies.txt for details.
2066 *
2067 * Optional feature arguments are:
2068 *   writethrough  : write through caching that prohibits cache block
2069 *		     content from being different from origin block content.
2070 *		     Without this argument, the default behaviour is to write
2071 *		     back cache block contents later for performance reasons,
2072 *		     so they may differ from the corresponding origin blocks.
2073 */
2074struct cache_args {
2075	struct dm_target *ti;
2076
2077	struct dm_dev *metadata_dev;
2078
2079	struct dm_dev *cache_dev;
2080	sector_t cache_sectors;
2081
2082	struct dm_dev *origin_dev;
2083	sector_t origin_sectors;
2084
2085	uint32_t block_size;
2086
2087	const char *policy_name;
2088	int policy_argc;
2089	const char **policy_argv;
2090
2091	struct cache_features features;
2092};
2093
2094static void destroy_cache_args(struct cache_args *ca)
2095{
2096	if (ca->metadata_dev)
2097		dm_put_device(ca->ti, ca->metadata_dev);
2098
2099	if (ca->cache_dev)
2100		dm_put_device(ca->ti, ca->cache_dev);
2101
2102	if (ca->origin_dev)
2103		dm_put_device(ca->ti, ca->origin_dev);
2104
2105	kfree(ca);
2106}
2107
2108static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2109{
2110	if (!as->argc) {
2111		*error = "Insufficient args";
2112		return false;
2113	}
2114
2115	return true;
2116}
2117
2118static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2119			      char **error)
2120{
2121	int r;
2122	sector_t metadata_dev_size;
2123	char b[BDEVNAME_SIZE];
2124
2125	if (!at_least_one_arg(as, error))
2126		return -EINVAL;
2127
2128	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2129			  &ca->metadata_dev);
2130	if (r) {
2131		*error = "Error opening metadata device";
2132		return r;
2133	}
2134
2135	metadata_dev_size = get_dev_size(ca->metadata_dev);
2136	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2137		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2138		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2139
2140	return 0;
2141}
2142
2143static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2144			   char **error)
2145{
2146	int r;
2147
2148	if (!at_least_one_arg(as, error))
2149		return -EINVAL;
2150
2151	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2152			  &ca->cache_dev);
2153	if (r) {
2154		*error = "Error opening cache device";
2155		return r;
2156	}
2157	ca->cache_sectors = get_dev_size(ca->cache_dev);
2158
2159	return 0;
2160}
2161
2162static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2163			    char **error)
2164{
2165	int r;
2166
2167	if (!at_least_one_arg(as, error))
2168		return -EINVAL;
2169
2170	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2171			  &ca->origin_dev);
2172	if (r) {
2173		*error = "Error opening origin device";
2174		return r;
2175	}
2176
2177	ca->origin_sectors = get_dev_size(ca->origin_dev);
2178	if (ca->ti->len > ca->origin_sectors) {
2179		*error = "Device size larger than cached device";
2180		return -EINVAL;
2181	}
2182
2183	return 0;
2184}
2185
2186static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2187			    char **error)
2188{
2189	unsigned long block_size;
2190
2191	if (!at_least_one_arg(as, error))
2192		return -EINVAL;
2193
2194	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2195	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2196	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2197	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2198		*error = "Invalid data block size";
2199		return -EINVAL;
2200	}
2201
2202	if (block_size > ca->cache_sectors) {
2203		*error = "Data block size is larger than the cache device";
2204		return -EINVAL;
2205	}
2206
2207	ca->block_size = block_size;
2208
2209	return 0;
2210}
2211
2212static void init_features(struct cache_features *cf)
2213{
2214	cf->mode = CM_WRITE;
2215	cf->io_mode = CM_IO_WRITEBACK;
2216	cf->metadata_version = 1;
2217	cf->discard_passdown = true;
2218}
2219
2220static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2221			  char **error)
2222{
2223	static const struct dm_arg _args[] = {
2224		{0, 3, "Invalid number of cache feature arguments"},
2225	};
2226
2227	int r, mode_ctr = 0;
2228	unsigned argc;
2229	const char *arg;
2230	struct cache_features *cf = &ca->features;
2231
2232	init_features(cf);
2233
2234	r = dm_read_arg_group(_args, as, &argc, error);
2235	if (r)
2236		return -EINVAL;
2237
2238	while (argc--) {
2239		arg = dm_shift_arg(as);
2240
2241		if (!strcasecmp(arg, "writeback")) {
2242			cf->io_mode = CM_IO_WRITEBACK;
2243			mode_ctr++;
2244		}
2245
2246		else if (!strcasecmp(arg, "writethrough")) {
2247			cf->io_mode = CM_IO_WRITETHROUGH;
2248			mode_ctr++;
2249		}
2250
2251		else if (!strcasecmp(arg, "passthrough")) {
2252			cf->io_mode = CM_IO_PASSTHROUGH;
2253			mode_ctr++;
2254		}
2255
2256		else if (!strcasecmp(arg, "metadata2"))
2257			cf->metadata_version = 2;
2258
2259		else if (!strcasecmp(arg, "no_discard_passdown"))
2260			cf->discard_passdown = false;
2261
2262		else {
2263			*error = "Unrecognised cache feature requested";
2264			return -EINVAL;
2265		}
2266	}
2267
2268	if (mode_ctr > 1) {
2269		*error = "Duplicate cache io_mode features requested";
2270		return -EINVAL;
2271	}
2272
2273	return 0;
2274}
2275
2276static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2277			char **error)
2278{
2279	static const struct dm_arg _args[] = {
2280		{0, 1024, "Invalid number of policy arguments"},
2281	};
2282
2283	int r;
2284
2285	if (!at_least_one_arg(as, error))
2286		return -EINVAL;
2287
2288	ca->policy_name = dm_shift_arg(as);
2289
2290	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2291	if (r)
2292		return -EINVAL;
2293
2294	ca->policy_argv = (const char **)as->argv;
2295	dm_consume_args(as, ca->policy_argc);
2296
2297	return 0;
2298}
2299
2300static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2301			    char **error)
2302{
2303	int r;
2304	struct dm_arg_set as;
2305
2306	as.argc = argc;
2307	as.argv = argv;
2308
2309	r = parse_metadata_dev(ca, &as, error);
2310	if (r)
2311		return r;
2312
2313	r = parse_cache_dev(ca, &as, error);
2314	if (r)
2315		return r;
2316
2317	r = parse_origin_dev(ca, &as, error);
2318	if (r)
2319		return r;
2320
2321	r = parse_block_size(ca, &as, error);
2322	if (r)
2323		return r;
2324
2325	r = parse_features(ca, &as, error);
2326	if (r)
2327		return r;
2328
2329	r = parse_policy(ca, &as, error);
2330	if (r)
2331		return r;
2332
2333	return 0;
2334}
2335
2336/*----------------------------------------------------------------*/
2337
2338static struct kmem_cache *migration_cache;
2339
2340#define NOT_CORE_OPTION 1
2341
2342static int process_config_option(struct cache *cache, const char *key, const char *value)
2343{
2344	unsigned long tmp;
2345
2346	if (!strcasecmp(key, "migration_threshold")) {
2347		if (kstrtoul(value, 10, &tmp))
2348			return -EINVAL;
2349
2350		cache->migration_threshold = tmp;
2351		return 0;
2352	}
2353
2354	return NOT_CORE_OPTION;
2355}
2356
2357static int set_config_value(struct cache *cache, const char *key, const char *value)
2358{
2359	int r = process_config_option(cache, key, value);
2360
2361	if (r == NOT_CORE_OPTION)
2362		r = policy_set_config_value(cache->policy, key, value);
2363
2364	if (r)
2365		DMWARN("bad config value for %s: %s", key, value);
2366
2367	return r;
2368}
2369
2370static int set_config_values(struct cache *cache, int argc, const char **argv)
2371{
2372	int r = 0;
2373
2374	if (argc & 1) {
2375		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2376		return -EINVAL;
2377	}
2378
2379	while (argc) {
2380		r = set_config_value(cache, argv[0], argv[1]);
2381		if (r)
2382			break;
2383
2384		argc -= 2;
2385		argv += 2;
2386	}
2387
2388	return r;
2389}
2390
2391static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2392			       char **error)
2393{
2394	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2395							   cache->cache_size,
2396							   cache->origin_sectors,
2397							   cache->sectors_per_block);
2398	if (IS_ERR(p)) {
2399		*error = "Error creating cache's policy";
2400		return PTR_ERR(p);
2401	}
2402	cache->policy = p;
2403	BUG_ON(!cache->policy);
2404
2405	return 0;
2406}
2407
2408/*
2409 * We want the discard block size to be at least the size of the cache
2410 * block size and have no more than 2^14 discard blocks across the origin.
2411 */
2412#define MAX_DISCARD_BLOCKS (1 << 14)
2413
2414static bool too_many_discard_blocks(sector_t discard_block_size,
2415				    sector_t origin_size)
2416{
2417	(void) sector_div(origin_size, discard_block_size);
2418
2419	return origin_size > MAX_DISCARD_BLOCKS;
2420}
2421
2422static sector_t calculate_discard_block_size(sector_t cache_block_size,
2423					     sector_t origin_size)
2424{
2425	sector_t discard_block_size = cache_block_size;
2426
2427	if (origin_size)
2428		while (too_many_discard_blocks(discard_block_size, origin_size))
2429			discard_block_size *= 2;
2430
2431	return discard_block_size;
2432}
2433
2434static void set_cache_size(struct cache *cache, dm_cblock_t size)
2435{
2436	dm_block_t nr_blocks = from_cblock(size);
2437
2438	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2439		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2440			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2441			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2442			     (unsigned long long) nr_blocks);
2443
2444	cache->cache_size = size;
2445}
2446
2447static int is_congested(struct dm_dev *dev, int bdi_bits)
2448{
2449	struct request_queue *q = bdev_get_queue(dev->bdev);
2450	return bdi_congested(q->backing_dev_info, bdi_bits);
2451}
2452
2453static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2454{
2455	struct cache *cache = container_of(cb, struct cache, callbacks);
2456
2457	return is_congested(cache->origin_dev, bdi_bits) ||
2458		is_congested(cache->cache_dev, bdi_bits);
2459}
2460
2461#define DEFAULT_MIGRATION_THRESHOLD 2048
2462
2463static int cache_create(struct cache_args *ca, struct cache **result)
2464{
2465	int r = 0;
2466	char **error = &ca->ti->error;
2467	struct cache *cache;
2468	struct dm_target *ti = ca->ti;
2469	dm_block_t origin_blocks;
2470	struct dm_cache_metadata *cmd;
2471	bool may_format = ca->features.mode == CM_WRITE;
2472
2473	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2474	if (!cache)
2475		return -ENOMEM;
2476
2477	cache->ti = ca->ti;
2478	ti->private = cache;
 
2479	ti->num_flush_bios = 2;
2480	ti->flush_supported = true;
2481
2482	ti->num_discard_bios = 1;
2483	ti->discards_supported = true;
2484
2485	ti->per_io_data_size = sizeof(struct per_bio_data);
2486
2487	cache->features = ca->features;
2488	if (writethrough_mode(cache)) {
2489		/* Create bioset for writethrough bios issued to origin */
2490		r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2491		if (r)
2492			goto bad;
2493	}
2494
2495	cache->callbacks.congested_fn = cache_is_congested;
2496	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2497
2498	cache->metadata_dev = ca->metadata_dev;
2499	cache->origin_dev = ca->origin_dev;
2500	cache->cache_dev = ca->cache_dev;
2501
2502	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2503
2504	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2505	origin_blocks = block_div(origin_blocks, ca->block_size);
2506	cache->origin_blocks = to_oblock(origin_blocks);
2507
2508	cache->sectors_per_block = ca->block_size;
2509	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2510		r = -EINVAL;
2511		goto bad;
2512	}
2513
2514	if (ca->block_size & (ca->block_size - 1)) {
2515		dm_block_t cache_size = ca->cache_sectors;
2516
2517		cache->sectors_per_block_shift = -1;
2518		cache_size = block_div(cache_size, ca->block_size);
2519		set_cache_size(cache, to_cblock(cache_size));
2520	} else {
2521		cache->sectors_per_block_shift = __ffs(ca->block_size);
2522		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2523	}
2524
2525	r = create_cache_policy(cache, ca, error);
2526	if (r)
2527		goto bad;
2528
2529	cache->policy_nr_args = ca->policy_argc;
2530	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2531
2532	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2533	if (r) {
2534		*error = "Error setting cache policy's config values";
2535		goto bad;
2536	}
2537
2538	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2539				     ca->block_size, may_format,
2540				     dm_cache_policy_get_hint_size(cache->policy),
2541				     ca->features.metadata_version);
2542	if (IS_ERR(cmd)) {
2543		*error = "Error creating metadata object";
2544		r = PTR_ERR(cmd);
2545		goto bad;
2546	}
2547	cache->cmd = cmd;
2548	set_cache_mode(cache, CM_WRITE);
2549	if (get_cache_mode(cache) != CM_WRITE) {
2550		*error = "Unable to get write access to metadata, please check/repair metadata.";
2551		r = -EINVAL;
2552		goto bad;
2553	}
2554
2555	if (passthrough_mode(cache)) {
2556		bool all_clean;
2557
2558		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2559		if (r) {
2560			*error = "dm_cache_metadata_all_clean() failed";
2561			goto bad;
2562		}
2563
2564		if (!all_clean) {
2565			*error = "Cannot enter passthrough mode unless all blocks are clean";
2566			r = -EINVAL;
2567			goto bad;
2568		}
2569
2570		policy_allow_migrations(cache->policy, false);
2571	}
2572
2573	spin_lock_init(&cache->lock);
2574	bio_list_init(&cache->deferred_bios);
2575	atomic_set(&cache->nr_allocated_migrations, 0);
2576	atomic_set(&cache->nr_io_migrations, 0);
2577	init_waitqueue_head(&cache->migration_wait);
2578
2579	r = -ENOMEM;
2580	atomic_set(&cache->nr_dirty, 0);
2581	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2582	if (!cache->dirty_bitset) {
2583		*error = "could not allocate dirty bitset";
2584		goto bad;
2585	}
2586	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2587
2588	cache->discard_block_size =
2589		calculate_discard_block_size(cache->sectors_per_block,
2590					     cache->origin_sectors);
2591	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2592							      cache->discard_block_size));
2593	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2594	if (!cache->discard_bitset) {
2595		*error = "could not allocate discard bitset";
2596		goto bad;
2597	}
2598	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2599
2600	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2601	if (IS_ERR(cache->copier)) {
2602		*error = "could not create kcopyd client";
2603		r = PTR_ERR(cache->copier);
2604		goto bad;
2605	}
2606
2607	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2608	if (!cache->wq) {
2609		*error = "could not create workqueue for metadata object";
2610		goto bad;
2611	}
2612	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2613	INIT_WORK(&cache->migration_worker, check_migrations);
2614	INIT_DELAYED_WORK(&cache->waker, do_waker);
2615
2616	cache->prison = dm_bio_prison_create_v2(cache->wq);
2617	if (!cache->prison) {
2618		*error = "could not create bio prison";
2619		goto bad;
2620	}
2621
2622	r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2623				   migration_cache);
2624	if (r) {
2625		*error = "Error creating cache's migration mempool";
2626		goto bad;
2627	}
2628
2629	cache->need_tick_bio = true;
2630	cache->sized = false;
2631	cache->invalidate = false;
2632	cache->commit_requested = false;
2633	cache->loaded_mappings = false;
2634	cache->loaded_discards = false;
2635
2636	load_stats(cache);
2637
2638	atomic_set(&cache->stats.demotion, 0);
2639	atomic_set(&cache->stats.promotion, 0);
2640	atomic_set(&cache->stats.copies_avoided, 0);
2641	atomic_set(&cache->stats.cache_cell_clash, 0);
2642	atomic_set(&cache->stats.commit_count, 0);
2643	atomic_set(&cache->stats.discard_count, 0);
2644
2645	spin_lock_init(&cache->invalidation_lock);
2646	INIT_LIST_HEAD(&cache->invalidation_requests);
2647
2648	batcher_init(&cache->committer, commit_op, cache,
2649		     issue_op, cache, cache->wq);
2650	iot_init(&cache->tracker);
2651
2652	init_rwsem(&cache->background_work_lock);
2653	prevent_background_work(cache);
2654
2655	*result = cache;
2656	return 0;
2657bad:
2658	destroy(cache);
2659	return r;
2660}
2661
2662static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2663{
2664	unsigned i;
2665	const char **copy;
2666
2667	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2668	if (!copy)
2669		return -ENOMEM;
2670	for (i = 0; i < argc; i++) {
2671		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2672		if (!copy[i]) {
2673			while (i--)
2674				kfree(copy[i]);
2675			kfree(copy);
2676			return -ENOMEM;
2677		}
2678	}
2679
2680	cache->nr_ctr_args = argc;
2681	cache->ctr_args = copy;
2682
2683	return 0;
2684}
2685
2686static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2687{
2688	int r = -EINVAL;
2689	struct cache_args *ca;
2690	struct cache *cache = NULL;
2691
2692	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2693	if (!ca) {
2694		ti->error = "Error allocating memory for cache";
2695		return -ENOMEM;
2696	}
2697	ca->ti = ti;
2698
2699	r = parse_cache_args(ca, argc, argv, &ti->error);
2700	if (r)
2701		goto out;
2702
2703	r = cache_create(ca, &cache);
2704	if (r)
2705		goto out;
2706
2707	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2708	if (r) {
2709		destroy(cache);
2710		goto out;
2711	}
2712
2713	ti->private = cache;
2714out:
2715	destroy_cache_args(ca);
2716	return r;
2717}
2718
2719/*----------------------------------------------------------------*/
2720
2721static int cache_map(struct dm_target *ti, struct bio *bio)
2722{
2723	struct cache *cache = ti->private;
2724
2725	int r;
2726	bool commit_needed;
2727	dm_oblock_t block = get_bio_block(cache, bio);
2728
2729	init_per_bio_data(bio);
2730	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2731		/*
2732		 * This can only occur if the io goes to a partial block at
2733		 * the end of the origin device.  We don't cache these.
2734		 * Just remap to the origin and carry on.
2735		 */
2736		remap_to_origin(cache, bio);
2737		accounted_begin(cache, bio);
2738		return DM_MAPIO_REMAPPED;
2739	}
2740
2741	if (discard_or_flush(bio)) {
2742		defer_bio(cache, bio);
2743		return DM_MAPIO_SUBMITTED;
2744	}
2745
2746	r = map_bio(cache, bio, block, &commit_needed);
2747	if (commit_needed)
2748		schedule_commit(&cache->committer);
2749
2750	return r;
2751}
2752
2753static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2754{
2755	struct cache *cache = ti->private;
2756	unsigned long flags;
2757	struct per_bio_data *pb = get_per_bio_data(bio);
2758
2759	if (pb->tick) {
2760		policy_tick(cache->policy, false);
2761
2762		spin_lock_irqsave(&cache->lock, flags);
2763		cache->need_tick_bio = true;
2764		spin_unlock_irqrestore(&cache->lock, flags);
2765	}
2766
2767	bio_drop_shared_lock(cache, bio);
2768	accounted_complete(cache, bio);
2769
2770	return DM_ENDIO_DONE;
2771}
2772
2773static int write_dirty_bitset(struct cache *cache)
2774{
2775	int r;
2776
2777	if (get_cache_mode(cache) >= CM_READ_ONLY)
2778		return -EINVAL;
2779
2780	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2781	if (r)
2782		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2783
2784	return r;
2785}
2786
2787static int write_discard_bitset(struct cache *cache)
2788{
2789	unsigned i, r;
2790
2791	if (get_cache_mode(cache) >= CM_READ_ONLY)
2792		return -EINVAL;
2793
2794	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2795					   cache->discard_nr_blocks);
2796	if (r) {
2797		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2798		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2799		return r;
2800	}
2801
2802	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2803		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2804					 is_discarded(cache, to_dblock(i)));
2805		if (r) {
2806			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2807			return r;
2808		}
2809	}
2810
2811	return 0;
2812}
2813
2814static int write_hints(struct cache *cache)
2815{
2816	int r;
2817
2818	if (get_cache_mode(cache) >= CM_READ_ONLY)
2819		return -EINVAL;
2820
2821	r = dm_cache_write_hints(cache->cmd, cache->policy);
2822	if (r) {
2823		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2824		return r;
2825	}
2826
2827	return 0;
2828}
2829
2830/*
2831 * returns true on success
2832 */
2833static bool sync_metadata(struct cache *cache)
2834{
2835	int r1, r2, r3, r4;
2836
2837	r1 = write_dirty_bitset(cache);
2838	if (r1)
2839		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2840
2841	r2 = write_discard_bitset(cache);
2842	if (r2)
2843		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2844
2845	save_stats(cache);
2846
2847	r3 = write_hints(cache);
2848	if (r3)
2849		DMERR("%s: could not write hints", cache_device_name(cache));
2850
2851	/*
2852	 * If writing the above metadata failed, we still commit, but don't
2853	 * set the clean shutdown flag.  This will effectively force every
2854	 * dirty bit to be set on reload.
2855	 */
2856	r4 = commit(cache, !r1 && !r2 && !r3);
2857	if (r4)
2858		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2859
2860	return !r1 && !r2 && !r3 && !r4;
2861}
2862
2863static void cache_postsuspend(struct dm_target *ti)
2864{
2865	struct cache *cache = ti->private;
2866
2867	prevent_background_work(cache);
2868	BUG_ON(atomic_read(&cache->nr_io_migrations));
2869
2870	cancel_delayed_work(&cache->waker);
2871	flush_workqueue(cache->wq);
2872	WARN_ON(cache->tracker.in_flight);
2873
2874	/*
2875	 * If it's a flush suspend there won't be any deferred bios, so this
2876	 * call is harmless.
2877	 */
2878	requeue_deferred_bios(cache);
2879
2880	if (get_cache_mode(cache) == CM_WRITE)
2881		(void) sync_metadata(cache);
2882}
2883
2884static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2885			bool dirty, uint32_t hint, bool hint_valid)
2886{
2887	int r;
2888	struct cache *cache = context;
2889
2890	if (dirty) {
2891		set_bit(from_cblock(cblock), cache->dirty_bitset);
2892		atomic_inc(&cache->nr_dirty);
2893	} else
2894		clear_bit(from_cblock(cblock), cache->dirty_bitset);
2895
2896	r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2897	if (r)
2898		return r;
2899
2900	return 0;
2901}
2902
2903/*
2904 * The discard block size in the on disk metadata is not
2905 * neccessarily the same as we're currently using.  So we have to
2906 * be careful to only set the discarded attribute if we know it
2907 * covers a complete block of the new size.
2908 */
2909struct discard_load_info {
2910	struct cache *cache;
2911
2912	/*
2913	 * These blocks are sized using the on disk dblock size, rather
2914	 * than the current one.
2915	 */
2916	dm_block_t block_size;
2917	dm_block_t discard_begin, discard_end;
2918};
2919
2920static void discard_load_info_init(struct cache *cache,
2921				   struct discard_load_info *li)
2922{
2923	li->cache = cache;
2924	li->discard_begin = li->discard_end = 0;
2925}
2926
2927static void set_discard_range(struct discard_load_info *li)
2928{
2929	sector_t b, e;
2930
2931	if (li->discard_begin == li->discard_end)
2932		return;
2933
2934	/*
2935	 * Convert to sectors.
2936	 */
2937	b = li->discard_begin * li->block_size;
2938	e = li->discard_end * li->block_size;
2939
2940	/*
2941	 * Then convert back to the current dblock size.
2942	 */
2943	b = dm_sector_div_up(b, li->cache->discard_block_size);
2944	sector_div(e, li->cache->discard_block_size);
2945
2946	/*
2947	 * The origin may have shrunk, so we need to check we're still in
2948	 * bounds.
2949	 */
2950	if (e > from_dblock(li->cache->discard_nr_blocks))
2951		e = from_dblock(li->cache->discard_nr_blocks);
2952
2953	for (; b < e; b++)
2954		set_discard(li->cache, to_dblock(b));
2955}
2956
2957static int load_discard(void *context, sector_t discard_block_size,
2958			dm_dblock_t dblock, bool discard)
2959{
2960	struct discard_load_info *li = context;
2961
2962	li->block_size = discard_block_size;
2963
2964	if (discard) {
2965		if (from_dblock(dblock) == li->discard_end)
2966			/*
2967			 * We're already in a discard range, just extend it.
2968			 */
2969			li->discard_end = li->discard_end + 1ULL;
2970
2971		else {
2972			/*
2973			 * Emit the old range and start a new one.
2974			 */
2975			set_discard_range(li);
2976			li->discard_begin = from_dblock(dblock);
2977			li->discard_end = li->discard_begin + 1ULL;
2978		}
2979	} else {
2980		set_discard_range(li);
2981		li->discard_begin = li->discard_end = 0;
2982	}
2983
2984	return 0;
2985}
2986
2987static dm_cblock_t get_cache_dev_size(struct cache *cache)
2988{
2989	sector_t size = get_dev_size(cache->cache_dev);
2990	(void) sector_div(size, cache->sectors_per_block);
2991	return to_cblock(size);
2992}
2993
2994static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2995{
2996	if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2997		if (cache->sized) {
2998			DMERR("%s: unable to extend cache due to missing cache table reload",
2999			      cache_device_name(cache));
3000			return false;
3001		}
3002	}
3003
3004	/*
3005	 * We can't drop a dirty block when shrinking the cache.
3006	 */
3007	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3008		new_size = to_cblock(from_cblock(new_size) + 1);
3009		if (is_dirty(cache, new_size)) {
3010			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3011			      cache_device_name(cache),
3012			      (unsigned long long) from_cblock(new_size));
3013			return false;
3014		}
3015	}
3016
3017	return true;
3018}
3019
3020static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3021{
3022	int r;
3023
3024	r = dm_cache_resize(cache->cmd, new_size);
3025	if (r) {
3026		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3027		metadata_operation_failed(cache, "dm_cache_resize", r);
3028		return r;
3029	}
3030
3031	set_cache_size(cache, new_size);
3032
3033	return 0;
3034}
3035
3036static int cache_preresume(struct dm_target *ti)
3037{
3038	int r = 0;
3039	struct cache *cache = ti->private;
3040	dm_cblock_t csize = get_cache_dev_size(cache);
3041
3042	/*
3043	 * Check to see if the cache has resized.
3044	 */
3045	if (!cache->sized) {
3046		r = resize_cache_dev(cache, csize);
3047		if (r)
3048			return r;
3049
3050		cache->sized = true;
3051
3052	} else if (csize != cache->cache_size) {
3053		if (!can_resize(cache, csize))
3054			return -EINVAL;
3055
3056		r = resize_cache_dev(cache, csize);
3057		if (r)
3058			return r;
3059	}
3060
3061	if (!cache->loaded_mappings) {
3062		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3063					   load_mapping, cache);
3064		if (r) {
3065			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3066			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3067			return r;
3068		}
3069
3070		cache->loaded_mappings = true;
3071	}
3072
3073	if (!cache->loaded_discards) {
3074		struct discard_load_info li;
3075
3076		/*
3077		 * The discard bitset could have been resized, or the
3078		 * discard block size changed.  To be safe we start by
3079		 * setting every dblock to not discarded.
3080		 */
3081		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3082
3083		discard_load_info_init(cache, &li);
3084		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3085		if (r) {
3086			DMERR("%s: could not load origin discards", cache_device_name(cache));
3087			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3088			return r;
3089		}
3090		set_discard_range(&li);
3091
3092		cache->loaded_discards = true;
3093	}
3094
3095	return r;
3096}
3097
3098static void cache_resume(struct dm_target *ti)
3099{
3100	struct cache *cache = ti->private;
3101
3102	cache->need_tick_bio = true;
3103	allow_background_work(cache);
3104	do_waker(&cache->waker.work);
3105}
3106
3107static void emit_flags(struct cache *cache, char *result,
3108		       unsigned maxlen, ssize_t *sz_ptr)
3109{
3110	ssize_t sz = *sz_ptr;
3111	struct cache_features *cf = &cache->features;
3112	unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
3113
3114	DMEMIT("%u ", count);
3115
3116	if (cf->metadata_version == 2)
3117		DMEMIT("metadata2 ");
3118
3119	if (writethrough_mode(cache))
3120		DMEMIT("writethrough ");
3121
3122	else if (passthrough_mode(cache))
3123		DMEMIT("passthrough ");
3124
3125	else if (writeback_mode(cache))
3126		DMEMIT("writeback ");
3127
3128	else {
3129		DMEMIT("unknown ");
3130		DMERR("%s: internal error: unknown io mode: %d",
3131		      cache_device_name(cache), (int) cf->io_mode);
3132	}
3133
3134	if (!cf->discard_passdown)
3135		DMEMIT("no_discard_passdown ");
3136
3137	*sz_ptr = sz;
3138}
3139
3140/*
3141 * Status format:
3142 *
3143 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3144 * <cache block size> <#used cache blocks>/<#total cache blocks>
3145 * <#read hits> <#read misses> <#write hits> <#write misses>
3146 * <#demotions> <#promotions> <#dirty>
3147 * <#features> <features>*
3148 * <#core args> <core args>
3149 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3150 */
3151static void cache_status(struct dm_target *ti, status_type_t type,
3152			 unsigned status_flags, char *result, unsigned maxlen)
3153{
3154	int r = 0;
3155	unsigned i;
3156	ssize_t sz = 0;
3157	dm_block_t nr_free_blocks_metadata = 0;
3158	dm_block_t nr_blocks_metadata = 0;
3159	char buf[BDEVNAME_SIZE];
3160	struct cache *cache = ti->private;
3161	dm_cblock_t residency;
3162	bool needs_check;
3163
3164	switch (type) {
3165	case STATUSTYPE_INFO:
3166		if (get_cache_mode(cache) == CM_FAIL) {
3167			DMEMIT("Fail");
3168			break;
3169		}
3170
3171		/* Commit to ensure statistics aren't out-of-date */
3172		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3173			(void) commit(cache, false);
3174
3175		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3176		if (r) {
3177			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3178			      cache_device_name(cache), r);
3179			goto err;
3180		}
3181
3182		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3183		if (r) {
3184			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3185			      cache_device_name(cache), r);
3186			goto err;
3187		}
3188
3189		residency = policy_residency(cache->policy);
3190
3191		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3192		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3193		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3194		       (unsigned long long)nr_blocks_metadata,
3195		       (unsigned long long)cache->sectors_per_block,
3196		       (unsigned long long) from_cblock(residency),
3197		       (unsigned long long) from_cblock(cache->cache_size),
3198		       (unsigned) atomic_read(&cache->stats.read_hit),
3199		       (unsigned) atomic_read(&cache->stats.read_miss),
3200		       (unsigned) atomic_read(&cache->stats.write_hit),
3201		       (unsigned) atomic_read(&cache->stats.write_miss),
3202		       (unsigned) atomic_read(&cache->stats.demotion),
3203		       (unsigned) atomic_read(&cache->stats.promotion),
3204		       (unsigned long) atomic_read(&cache->nr_dirty));
3205
3206		emit_flags(cache, result, maxlen, &sz);
3207
3208		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3209
3210		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3211		if (sz < maxlen) {
3212			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3213			if (r)
3214				DMERR("%s: policy_emit_config_values returned %d",
3215				      cache_device_name(cache), r);
3216		}
3217
3218		if (get_cache_mode(cache) == CM_READ_ONLY)
3219			DMEMIT("ro ");
3220		else
3221			DMEMIT("rw ");
3222
3223		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3224
3225		if (r || needs_check)
3226			DMEMIT("needs_check ");
3227		else
3228			DMEMIT("- ");
3229
3230		break;
3231
3232	case STATUSTYPE_TABLE:
3233		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3234		DMEMIT("%s ", buf);
3235		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3236		DMEMIT("%s ", buf);
3237		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3238		DMEMIT("%s", buf);
3239
3240		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3241			DMEMIT(" %s", cache->ctr_args[i]);
3242		if (cache->nr_ctr_args)
3243			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3244	}
3245
3246	return;
3247
3248err:
3249	DMEMIT("Error");
3250}
3251
3252/*
3253 * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3254 * the one-past-the-end value.
3255 */
3256struct cblock_range {
3257	dm_cblock_t begin;
3258	dm_cblock_t end;
3259};
3260
3261/*
3262 * A cache block range can take two forms:
3263 *
3264 * i) A single cblock, eg. '3456'
3265 * ii) A begin and end cblock with a dash between, eg. 123-234
3266 */
3267static int parse_cblock_range(struct cache *cache, const char *str,
3268			      struct cblock_range *result)
3269{
3270	char dummy;
3271	uint64_t b, e;
3272	int r;
3273
3274	/*
3275	 * Try and parse form (ii) first.
3276	 */
3277	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3278	if (r < 0)
3279		return r;
3280
3281	if (r == 2) {
3282		result->begin = to_cblock(b);
3283		result->end = to_cblock(e);
3284		return 0;
3285	}
3286
3287	/*
3288	 * That didn't work, try form (i).
3289	 */
3290	r = sscanf(str, "%llu%c", &b, &dummy);
3291	if (r < 0)
3292		return r;
3293
3294	if (r == 1) {
3295		result->begin = to_cblock(b);
3296		result->end = to_cblock(from_cblock(result->begin) + 1u);
3297		return 0;
3298	}
3299
3300	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3301	return -EINVAL;
3302}
3303
3304static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3305{
3306	uint64_t b = from_cblock(range->begin);
3307	uint64_t e = from_cblock(range->end);
3308	uint64_t n = from_cblock(cache->cache_size);
3309
3310	if (b >= n) {
3311		DMERR("%s: begin cblock out of range: %llu >= %llu",
3312		      cache_device_name(cache), b, n);
3313		return -EINVAL;
3314	}
3315
3316	if (e > n) {
3317		DMERR("%s: end cblock out of range: %llu > %llu",
3318		      cache_device_name(cache), e, n);
3319		return -EINVAL;
3320	}
3321
3322	if (b >= e) {
3323		DMERR("%s: invalid cblock range: %llu >= %llu",
3324		      cache_device_name(cache), b, e);
3325		return -EINVAL;
3326	}
3327
3328	return 0;
3329}
3330
3331static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3332{
3333	return to_cblock(from_cblock(b) + 1);
3334}
3335
3336static int request_invalidation(struct cache *cache, struct cblock_range *range)
3337{
3338	int r = 0;
3339
3340	/*
3341	 * We don't need to do any locking here because we know we're in
3342	 * passthrough mode.  There's is potential for a race between an
3343	 * invalidation triggered by an io and an invalidation message.  This
3344	 * is harmless, we must not worry if the policy call fails.
3345	 */
3346	while (range->begin != range->end) {
3347		r = invalidate_cblock(cache, range->begin);
3348		if (r)
3349			return r;
3350
3351		range->begin = cblock_succ(range->begin);
3352	}
3353
3354	cache->commit_requested = true;
3355	return r;
3356}
3357
3358static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3359					      const char **cblock_ranges)
3360{
3361	int r = 0;
3362	unsigned i;
3363	struct cblock_range range;
3364
3365	if (!passthrough_mode(cache)) {
3366		DMERR("%s: cache has to be in passthrough mode for invalidation",
3367		      cache_device_name(cache));
3368		return -EPERM;
3369	}
3370
3371	for (i = 0; i < count; i++) {
3372		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3373		if (r)
3374			break;
3375
3376		r = validate_cblock_range(cache, &range);
3377		if (r)
3378			break;
3379
3380		/*
3381		 * Pass begin and end origin blocks to the worker and wake it.
3382		 */
3383		r = request_invalidation(cache, &range);
3384		if (r)
3385			break;
3386	}
3387
3388	return r;
3389}
3390
3391/*
3392 * Supports
3393 *	"<key> <value>"
3394 * and
3395 *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3396 *
3397 * The key migration_threshold is supported by the cache target core.
3398 */
3399static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3400			 char *result, unsigned maxlen)
3401{
3402	struct cache *cache = ti->private;
3403
3404	if (!argc)
3405		return -EINVAL;
3406
3407	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3408		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3409		      cache_device_name(cache));
3410		return -EOPNOTSUPP;
3411	}
3412
3413	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3414		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3415
3416	if (argc != 2)
3417		return -EINVAL;
3418
3419	return set_config_value(cache, argv[0], argv[1]);
3420}
3421
3422static int cache_iterate_devices(struct dm_target *ti,
3423				 iterate_devices_callout_fn fn, void *data)
3424{
3425	int r = 0;
3426	struct cache *cache = ti->private;
3427
3428	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3429	if (!r)
3430		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3431
3432	return r;
3433}
3434
3435static bool origin_dev_supports_discard(struct block_device *origin_bdev)
3436{
3437	struct request_queue *q = bdev_get_queue(origin_bdev);
3438
3439	return q && blk_queue_discard(q);
3440}
3441
3442/*
3443 * If discard_passdown was enabled verify that the origin device
3444 * supports discards.  Disable discard_passdown if not.
3445 */
3446static void disable_passdown_if_not_supported(struct cache *cache)
3447{
3448	struct block_device *origin_bdev = cache->origin_dev->bdev;
3449	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3450	const char *reason = NULL;
3451	char buf[BDEVNAME_SIZE];
3452
3453	if (!cache->features.discard_passdown)
3454		return;
3455
3456	if (!origin_dev_supports_discard(origin_bdev))
3457		reason = "discard unsupported";
3458
3459	else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3460		reason = "max discard sectors smaller than a block";
3461
3462	if (reason) {
3463		DMWARN("Origin device (%s) %s: Disabling discard passdown.",
3464		       bdevname(origin_bdev, buf), reason);
3465		cache->features.discard_passdown = false;
3466	}
3467}
3468
3469static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3470{
3471	struct block_device *origin_bdev = cache->origin_dev->bdev;
3472	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3473
3474	if (!cache->features.discard_passdown) {
3475		/* No passdown is done so setting own virtual limits */
3476		limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3477						    cache->origin_sectors);
3478		limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3479		return;
3480	}
3481
3482	/*
3483	 * cache_iterate_devices() is stacking both origin and fast device limits
3484	 * but discards aren't passed to fast device, so inherit origin's limits.
3485	 */
3486	limits->max_discard_sectors = origin_limits->max_discard_sectors;
3487	limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3488	limits->discard_granularity = origin_limits->discard_granularity;
3489	limits->discard_alignment = origin_limits->discard_alignment;
3490	limits->discard_misaligned = origin_limits->discard_misaligned;
3491}
3492
3493static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3494{
3495	struct cache *cache = ti->private;
3496	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3497
3498	/*
3499	 * If the system-determined stacked limits are compatible with the
3500	 * cache's blocksize (io_opt is a factor) do not override them.
3501	 */
3502	if (io_opt_sectors < cache->sectors_per_block ||
3503	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3504		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3505		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3506	}
3507
3508	disable_passdown_if_not_supported(cache);
3509	set_discard_limits(cache, limits);
3510}
3511
3512/*----------------------------------------------------------------*/
3513
3514static struct target_type cache_target = {
3515	.name = "cache",
3516	.version = {2, 1, 0},
3517	.module = THIS_MODULE,
3518	.ctr = cache_ctr,
3519	.dtr = cache_dtr,
3520	.map = cache_map,
3521	.end_io = cache_end_io,
3522	.postsuspend = cache_postsuspend,
3523	.preresume = cache_preresume,
3524	.resume = cache_resume,
3525	.status = cache_status,
3526	.message = cache_message,
3527	.iterate_devices = cache_iterate_devices,
3528	.io_hints = cache_io_hints,
3529};
3530
3531static int __init dm_cache_init(void)
3532{
3533	int r;
3534
3535	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3536	if (!migration_cache)
3537		return -ENOMEM;
3538
3539	r = dm_register_target(&cache_target);
3540	if (r) {
3541		DMERR("cache target registration failed: %d", r);
3542		kmem_cache_destroy(migration_cache);
3543		return r;
3544	}
3545
3546	return 0;
3547}
3548
3549static void __exit dm_cache_exit(void)
3550{
3551	dm_unregister_target(&cache_target);
3552	kmem_cache_destroy(migration_cache);
3553}
3554
3555module_init(dm_cache_init);
3556module_exit(dm_cache_exit);
3557
3558MODULE_DESCRIPTION(DM_NAME " cache target");
3559MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3560MODULE_LICENSE("GPL");