Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 Red Hat. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
   9#include "dm-bio-prison-v2.h"
  10#include "dm-bio-record.h"
  11#include "dm-cache-metadata.h"
  12#include "dm-io-tracker.h"
  13
  14#include <linux/dm-io.h>
  15#include <linux/dm-kcopyd.h>
  16#include <linux/jiffies.h>
  17#include <linux/init.h>
  18#include <linux/mempool.h>
  19#include <linux/module.h>
  20#include <linux/rwsem.h>
  21#include <linux/slab.h>
  22#include <linux/vmalloc.h>
  23
  24#define DM_MSG_PREFIX "cache"
  25
  26DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
  27	"A percentage of time allocated for copying to and/or from cache");
  28
  29/*----------------------------------------------------------------*/
  30
  31/*
  32 * Glossary:
  33 *
  34 * oblock: index of an origin block
  35 * cblock: index of a cache block
  36 * promotion: movement of a block from origin to cache
  37 * demotion: movement of a block from cache to origin
  38 * migration: movement of a block between the origin and cache device,
  39 *	      either direction
  40 */
  41
  42/*----------------------------------------------------------------*/
  43
  44/*
  45 * Represents a chunk of future work.  'input' allows continuations to pass
  46 * values between themselves, typically error values.
  47 */
  48struct continuation {
  49	struct work_struct ws;
  50	blk_status_t input;
  51};
  52
  53static inline void init_continuation(struct continuation *k,
  54				     void (*fn)(struct work_struct *))
  55{
  56	INIT_WORK(&k->ws, fn);
  57	k->input = 0;
  58}
  59
  60static inline void queue_continuation(struct workqueue_struct *wq,
  61				      struct continuation *k)
  62{
  63	queue_work(wq, &k->ws);
  64}
  65
  66/*----------------------------------------------------------------*/
  67
  68/*
  69 * The batcher collects together pieces of work that need a particular
  70 * operation to occur before they can proceed (typically a commit).
  71 */
  72struct batcher {
  73	/*
  74	 * The operation that everyone is waiting for.
  75	 */
  76	blk_status_t (*commit_op)(void *context);
  77	void *commit_context;
  78
  79	/*
  80	 * This is how bios should be issued once the commit op is complete
  81	 * (accounted_request).
  82	 */
  83	void (*issue_op)(struct bio *bio, void *context);
  84	void *issue_context;
  85
  86	/*
  87	 * Queued work gets put on here after commit.
  88	 */
  89	struct workqueue_struct *wq;
  90
  91	spinlock_t lock;
  92	struct list_head work_items;
  93	struct bio_list bios;
  94	struct work_struct commit_work;
  95
  96	bool commit_scheduled;
  97};
  98
  99static void __commit(struct work_struct *_ws)
 100{
 101	struct batcher *b = container_of(_ws, struct batcher, commit_work);
 102	blk_status_t r;
 103	struct list_head work_items;
 104	struct work_struct *ws, *tmp;
 105	struct continuation *k;
 106	struct bio *bio;
 107	struct bio_list bios;
 108
 109	INIT_LIST_HEAD(&work_items);
 110	bio_list_init(&bios);
 111
 112	/*
 113	 * We have to grab these before the commit_op to avoid a race
 114	 * condition.
 115	 */
 116	spin_lock_irq(&b->lock);
 117	list_splice_init(&b->work_items, &work_items);
 118	bio_list_merge(&bios, &b->bios);
 119	bio_list_init(&b->bios);
 120	b->commit_scheduled = false;
 121	spin_unlock_irq(&b->lock);
 122
 123	r = b->commit_op(b->commit_context);
 124
 125	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
 126		k = container_of(ws, struct continuation, ws);
 127		k->input = r;
 128		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
 129		queue_work(b->wq, ws);
 130	}
 131
 132	while ((bio = bio_list_pop(&bios))) {
 133		if (r) {
 134			bio->bi_status = r;
 135			bio_endio(bio);
 136		} else
 137			b->issue_op(bio, b->issue_context);
 138	}
 139}
 140
 141static void batcher_init(struct batcher *b,
 142			 blk_status_t (*commit_op)(void *),
 143			 void *commit_context,
 144			 void (*issue_op)(struct bio *bio, void *),
 145			 void *issue_context,
 146			 struct workqueue_struct *wq)
 147{
 148	b->commit_op = commit_op;
 149	b->commit_context = commit_context;
 150	b->issue_op = issue_op;
 151	b->issue_context = issue_context;
 152	b->wq = wq;
 153
 154	spin_lock_init(&b->lock);
 155	INIT_LIST_HEAD(&b->work_items);
 156	bio_list_init(&b->bios);
 157	INIT_WORK(&b->commit_work, __commit);
 158	b->commit_scheduled = false;
 159}
 160
 161static void async_commit(struct batcher *b)
 162{
 163	queue_work(b->wq, &b->commit_work);
 
 164}
 165
 166static void continue_after_commit(struct batcher *b, struct continuation *k)
 167{
 168	bool commit_scheduled;
 169
 170	spin_lock_irq(&b->lock);
 171	commit_scheduled = b->commit_scheduled;
 172	list_add_tail(&k->ws.entry, &b->work_items);
 173	spin_unlock_irq(&b->lock);
 174
 175	if (commit_scheduled)
 176		async_commit(b);
 177}
 178
 179/*
 180 * Bios are errored if commit failed.
 181 */
 182static void issue_after_commit(struct batcher *b, struct bio *bio)
 183{
 184	bool commit_scheduled;
 185
 186	spin_lock_irq(&b->lock);
 187	commit_scheduled = b->commit_scheduled;
 188	bio_list_add(&b->bios, bio);
 189	spin_unlock_irq(&b->lock);
 190
 191	if (commit_scheduled)
 192		async_commit(b);
 193}
 194
 195/*
 196 * Call this if some urgent work is waiting for the commit to complete.
 197 */
 198static void schedule_commit(struct batcher *b)
 199{
 200	bool immediate;
 201
 202	spin_lock_irq(&b->lock);
 203	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
 204	b->commit_scheduled = true;
 205	spin_unlock_irq(&b->lock);
 206
 207	if (immediate)
 208		async_commit(b);
 209}
 210
 211/*
 212 * There are a couple of places where we let a bio run, but want to do some
 213 * work before calling its endio function.  We do this by temporarily
 214 * changing the endio fn.
 215 */
 216struct dm_hook_info {
 217	bio_end_io_t *bi_end_io;
 
 218};
 219
 220static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
 221			bio_end_io_t *bi_end_io, void *bi_private)
 222{
 223	h->bi_end_io = bio->bi_end_io;
 
 224
 225	bio->bi_end_io = bi_end_io;
 226	bio->bi_private = bi_private;
 227}
 228
 229static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
 230{
 231	bio->bi_end_io = h->bi_end_io;
 
 
 
 
 
 
 
 232}
 233
 234/*----------------------------------------------------------------*/
 235
 
 236#define MIGRATION_POOL_SIZE 128
 237#define COMMIT_PERIOD HZ
 238#define MIGRATION_COUNT_WINDOW 10
 239
 240/*
 241 * The block size of the device holding cache data must be
 242 * between 32KB and 1GB.
 243 */
 244#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
 245#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
 246
 
 
 
 247enum cache_metadata_mode {
 248	CM_WRITE,		/* metadata may be changed */
 249	CM_READ_ONLY,		/* metadata may not be changed */
 250	CM_FAIL
 251};
 252
 253enum cache_io_mode {
 254	/*
 255	 * Data is written to cached blocks only.  These blocks are marked
 256	 * dirty.  If you lose the cache device you will lose data.
 257	 * Potential performance increase for both reads and writes.
 258	 */
 259	CM_IO_WRITEBACK,
 260
 261	/*
 262	 * Data is written to both cache and origin.  Blocks are never
 263	 * dirty.  Potential performance benfit for reads only.
 264	 */
 265	CM_IO_WRITETHROUGH,
 266
 267	/*
 268	 * A degraded mode useful for various cache coherency situations
 269	 * (eg, rolling back snapshots).  Reads and writes always go to the
 270	 * origin.  If a write goes to a cached oblock, then the cache
 271	 * block is invalidated.
 272	 */
 273	CM_IO_PASSTHROUGH
 274};
 275
 276struct cache_features {
 277	enum cache_metadata_mode mode;
 278	enum cache_io_mode io_mode;
 279	unsigned int metadata_version;
 280	bool discard_passdown:1;
 281};
 282
 283struct cache_stats {
 284	atomic_t read_hit;
 285	atomic_t read_miss;
 286	atomic_t write_hit;
 287	atomic_t write_miss;
 288	atomic_t demotion;
 289	atomic_t promotion;
 290	atomic_t writeback;
 291	atomic_t copies_avoided;
 292	atomic_t cache_cell_clash;
 293	atomic_t commit_count;
 294	atomic_t discard_count;
 295};
 296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 297struct cache {
 298	struct dm_target *ti;
 299	spinlock_t lock;
 300
 301	/*
 302	 * Fields for converting from sectors to blocks.
 303	 */
 304	int sectors_per_block_shift;
 305	sector_t sectors_per_block;
 306
 307	struct dm_cache_metadata *cmd;
 308
 309	/*
 310	 * Metadata is written to this device.
 311	 */
 312	struct dm_dev *metadata_dev;
 313
 314	/*
 315	 * The slower of the two data devices.  Typically a spindle.
 316	 */
 317	struct dm_dev *origin_dev;
 318
 319	/*
 320	 * The faster of the two data devices.  Typically an SSD.
 321	 */
 322	struct dm_dev *cache_dev;
 323
 324	/*
 325	 * Size of the origin device in _complete_ blocks and native sectors.
 326	 */
 327	dm_oblock_t origin_blocks;
 328	sector_t origin_sectors;
 329
 330	/*
 331	 * Size of the cache device in blocks.
 332	 */
 333	dm_cblock_t cache_size;
 334
 335	/*
 336	 * Invalidation fields.
 337	 */
 338	spinlock_t invalidation_lock;
 339	struct list_head invalidation_requests;
 340
 
 
 
 
 
 
 
 341	sector_t migration_threshold;
 342	wait_queue_head_t migration_wait;
 343	atomic_t nr_allocated_migrations;
 
 
 
 
 344
 345	/*
 346	 * The number of in flight migrations that are performing
 347	 * background io. eg, promotion, writeback.
 348	 */
 349	atomic_t nr_io_migrations;
 350
 351	struct bio_list deferred_bios;
 352
 353	struct rw_semaphore quiesce_lock;
 354
 355	/*
 356	 * origin_blocks entries, discarded if set.
 357	 */
 358	dm_dblock_t discard_nr_blocks;
 359	unsigned long *discard_bitset;
 360	uint32_t discard_block_size; /* a power of 2 times sectors per block */
 361
 362	/*
 363	 * Rather than reconstructing the table line for the status we just
 364	 * save it and regurgitate.
 365	 */
 366	unsigned int nr_ctr_args;
 367	const char **ctr_args;
 368
 369	struct dm_kcopyd_client *copier;
 370	struct work_struct deferred_bio_worker;
 371	struct work_struct migration_worker;
 372	struct workqueue_struct *wq;
 373	struct delayed_work waker;
 374	struct dm_bio_prison_v2 *prison;
 375
 376	/*
 377	 * cache_size entries, dirty if set
 378	 */
 379	unsigned long *dirty_bitset;
 380	atomic_t nr_dirty;
 381
 382	unsigned int policy_nr_args;
 383	struct dm_cache_policy *policy;
 384
 385	/*
 386	 * Cache features such as write-through.
 387	 */
 388	struct cache_features features;
 389
 390	struct cache_stats stats;
 
 391
 392	bool need_tick_bio:1;
 393	bool sized:1;
 394	bool invalidate:1;
 395	bool commit_requested:1;
 396	bool loaded_mappings:1;
 397	bool loaded_discards:1;
 398
 399	struct rw_semaphore background_work_lock;
 400
 401	struct batcher committer;
 402	struct work_struct commit_ws;
 403
 404	struct dm_io_tracker tracker;
 405
 406	mempool_t migration_pool;
 407
 408	struct bio_set bs;
 
 
 
 
 409};
 410
 411struct per_bio_data {
 412	bool tick:1;
 413	unsigned int req_nr:2;
 414	struct dm_bio_prison_cell_v2 *cell;
 415	struct dm_hook_info hook_info;
 416	sector_t len;
 417};
 418
 419struct dm_cache_migration {
 420	struct continuation k;
 
 
 
 421	struct cache *cache;
 422
 423	struct policy_work *op;
 424	struct bio *overwrite_bio;
 425	struct dm_bio_prison_cell_v2 *cell;
 426
 427	dm_cblock_t invalidate_cblock;
 428	dm_oblock_t invalidate_oblock;
 429};
 430
 431/*----------------------------------------------------------------*/
 432
 433static bool writethrough_mode(struct cache *cache)
 434{
 435	return cache->features.io_mode == CM_IO_WRITETHROUGH;
 436}
 437
 438static bool writeback_mode(struct cache *cache)
 439{
 440	return cache->features.io_mode == CM_IO_WRITEBACK;
 441}
 442
 443static inline bool passthrough_mode(struct cache *cache)
 444{
 445	return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
 446}
 
 
 447
 448/*----------------------------------------------------------------*/
 
 
 449
 450static void wake_deferred_bio_worker(struct cache *cache)
 451{
 452	queue_work(cache->wq, &cache->deferred_bio_worker);
 453}
 
 
 
 
 
 
 454
 455static void wake_migration_worker(struct cache *cache)
 456{
 457	if (passthrough_mode(cache))
 458		return;
 459
 460	queue_work(cache->wq, &cache->migration_worker);
 461}
 462
 463/*----------------------------------------------------------------*/
 464
 465static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
 466{
 467	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
 
 468}
 469
 470static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
 471{
 472	dm_bio_prison_free_cell_v2(cache->prison, cell);
 473}
 474
 475static struct dm_cache_migration *alloc_migration(struct cache *cache)
 476{
 477	struct dm_cache_migration *mg;
 478
 479	mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
 
 
 480
 481	memset(mg, 0, sizeof(*mg));
 
 
 
 
 482
 483	mg->cache = cache;
 484	atomic_inc(&cache->nr_allocated_migrations);
 
 
 
 485
 486	return mg;
 487}
 488
 489static void free_migration(struct dm_cache_migration *mg)
 490{
 491	struct cache *cache = mg->cache;
 
 492
 493	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
 494		wake_up(&cache->migration_wait);
 495
 496	mempool_free(mg, &cache->migration_pool);
 
 497}
 498
 499/*----------------------------------------------------------------*/
 500
 501static inline dm_oblock_t oblock_succ(dm_oblock_t b)
 502{
 503	return to_oblock(from_oblock(b) + 1ull);
 504}
 505
 506static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
 507{
 508	key->virtual = 0;
 509	key->dev = 0;
 510	key->block_begin = from_oblock(begin);
 511	key->block_end = from_oblock(end);
 512}
 513
 514/*
 515 * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
 516 * level 1 which prevents *both* READs and WRITEs.
 517 */
 518#define WRITE_LOCK_LEVEL 0
 519#define READ_WRITE_LOCK_LEVEL 1
 520
 521static unsigned int lock_level(struct bio *bio)
 522{
 523	return bio_data_dir(bio) == WRITE ?
 524		WRITE_LOCK_LEVEL :
 525		READ_WRITE_LOCK_LEVEL;
 526}
 527
 528/*
 529 *--------------------------------------------------------------
 530 * Per bio data
 531 *--------------------------------------------------------------
 532 */
 533
 534static struct per_bio_data *get_per_bio_data(struct bio *bio)
 535{
 536	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
 
 
 537
 538	BUG_ON(!pb);
 539	return pb;
 540}
 541
 542static struct per_bio_data *init_per_bio_data(struct bio *bio)
 
 
 
 
 543{
 544	struct per_bio_data *pb = get_per_bio_data(bio);
 
 545
 546	pb->tick = false;
 547	pb->req_nr = dm_bio_get_target_bio_nr(bio);
 548	pb->cell = NULL;
 549	pb->len = 0;
 550
 551	return pb;
 
 552}
 553
 554/*----------------------------------------------------------------*/
 555
 556static void defer_bio(struct cache *cache, struct bio *bio)
 557{
 558	spin_lock_irq(&cache->lock);
 559	bio_list_add(&cache->deferred_bios, bio);
 560	spin_unlock_irq(&cache->lock);
 561
 562	wake_deferred_bio_worker(cache);
 563}
 564
 565static void defer_bios(struct cache *cache, struct bio_list *bios)
 
 
 
 
 
 
 
 
 
 
 566{
 567	spin_lock_irq(&cache->lock);
 568	bio_list_merge(&cache->deferred_bios, bios);
 569	bio_list_init(bios);
 570	spin_unlock_irq(&cache->lock);
 571
 572	wake_deferred_bio_worker(cache);
 573}
 
 
 574
 575/*----------------------------------------------------------------*/
 
 576
 577static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
 
 
 
 578{
 579	bool r;
 580	struct per_bio_data *pb;
 581	struct dm_cell_key_v2 key;
 582	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
 583	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
 584
 585	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
 586
 587	build_key(oblock, end, &key);
 588	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
 589	if (!r) {
 590		/*
 591		 * Failed to get the lock.
 592		 */
 593		free_prison_cell(cache, cell_prealloc);
 594		return r;
 595	}
 596
 597	if (cell != cell_prealloc)
 598		free_prison_cell(cache, cell_prealloc);
 599
 600	pb = get_per_bio_data(bio);
 601	pb->cell = cell;
 
 
 602
 603	return r;
 604}
 605
 606/*----------------------------------------------------------------*/
 607
 608static bool is_dirty(struct cache *cache, dm_cblock_t b)
 609{
 610	return test_bit(from_cblock(b), cache->dirty_bitset);
 611}
 612
 613static void set_dirty(struct cache *cache, dm_cblock_t cblock)
 614{
 615	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
 616		atomic_inc(&cache->nr_dirty);
 617		policy_set_dirty(cache->policy, cblock);
 618	}
 619}
 620
 621/*
 622 * These two are called when setting after migrations to force the policy
 623 * and dirty bitset to be in sync.
 624 */
 625static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
 626{
 627	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
 628		atomic_inc(&cache->nr_dirty);
 629	policy_set_dirty(cache->policy, cblock);
 630}
 631
 632static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
 633{
 634	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
 635		if (atomic_dec_return(&cache->nr_dirty) == 0)
 
 
 636			dm_table_event(cache->ti->table);
 637	}
 638
 639	policy_clear_dirty(cache->policy, cblock);
 640}
 641
 642/*----------------------------------------------------------------*/
 643
 644static bool block_size_is_power_of_two(struct cache *cache)
 645{
 646	return cache->sectors_per_block_shift >= 0;
 647}
 648
 
 
 
 
 649static dm_block_t block_div(dm_block_t b, uint32_t n)
 650{
 651	do_div(b, n);
 652
 653	return b;
 654}
 655
 656static dm_block_t oblocks_per_dblock(struct cache *cache)
 657{
 658	dm_block_t oblocks = cache->discard_block_size;
 659
 660	if (block_size_is_power_of_two(cache))
 661		oblocks >>= cache->sectors_per_block_shift;
 662	else
 663		oblocks = block_div(oblocks, cache->sectors_per_block);
 664
 665	return oblocks;
 
 
 666}
 667
 668static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
 669{
 670	return to_dblock(block_div(from_oblock(oblock),
 671				   oblocks_per_dblock(cache)));
 
 
 
 672}
 673
 674static void set_discard(struct cache *cache, dm_dblock_t b)
 675{
 676	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
 677	atomic_inc(&cache->stats.discard_count);
 678
 679	spin_lock_irq(&cache->lock);
 680	set_bit(from_dblock(b), cache->discard_bitset);
 681	spin_unlock_irq(&cache->lock);
 682}
 683
 684static void clear_discard(struct cache *cache, dm_dblock_t b)
 685{
 686	spin_lock_irq(&cache->lock);
 687	clear_bit(from_dblock(b), cache->discard_bitset);
 688	spin_unlock_irq(&cache->lock);
 689}
 690
 691static bool is_discarded(struct cache *cache, dm_dblock_t b)
 692{
 693	int r;
 
 694
 695	spin_lock_irq(&cache->lock);
 696	r = test_bit(from_dblock(b), cache->discard_bitset);
 697	spin_unlock_irq(&cache->lock);
 698
 699	return r;
 700}
 701
 702static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
 
 
 703{
 704	int r;
 705
 706	spin_lock_irq(&cache->lock);
 707	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
 708		     cache->discard_bitset);
 709	spin_unlock_irq(&cache->lock);
 
 
 710
 711	return r;
 
 
 
 
 
 
 
 
 
 712}
 713
 
 
 
 
 714/*
 715 * -------------------------------------------------------------
 716 * Remapping
 717 *--------------------------------------------------------------
 718 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719static void remap_to_origin(struct cache *cache, struct bio *bio)
 720{
 721	bio_set_dev(bio, cache->origin_dev->bdev);
 722}
 723
 724static void remap_to_cache(struct cache *cache, struct bio *bio,
 725			   dm_cblock_t cblock)
 726{
 727	sector_t bi_sector = bio->bi_iter.bi_sector;
 728	sector_t block = from_cblock(cblock);
 729
 730	bio_set_dev(bio, cache->cache_dev->bdev);
 731	if (!block_size_is_power_of_two(cache))
 732		bio->bi_iter.bi_sector =
 733			(block * cache->sectors_per_block) +
 734			sector_div(bi_sector, cache->sectors_per_block);
 735	else
 736		bio->bi_iter.bi_sector =
 737			(block << cache->sectors_per_block_shift) |
 738			(bi_sector & (cache->sectors_per_block - 1));
 739}
 740
 741static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
 742{
 743	struct per_bio_data *pb;
 
 
 744
 745	spin_lock_irq(&cache->lock);
 746	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
 747	    bio_op(bio) != REQ_OP_DISCARD) {
 748		pb = get_per_bio_data(bio);
 749		pb->tick = true;
 750		cache->need_tick_bio = false;
 751	}
 752	spin_unlock_irq(&cache->lock);
 753}
 754
 755static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 756					  dm_oblock_t oblock)
 757{
 758	// FIXME: check_if_tick_bio_needed() is called way too much through this interface
 759	check_if_tick_bio_needed(cache, bio);
 760	remap_to_origin(cache, bio);
 761	if (bio_data_dir(bio) == WRITE)
 762		clear_discard(cache, oblock_to_dblock(cache, oblock));
 763}
 764
 765static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
 766				 dm_oblock_t oblock, dm_cblock_t cblock)
 767{
 768	check_if_tick_bio_needed(cache, bio);
 769	remap_to_cache(cache, bio, cblock);
 770	if (bio_data_dir(bio) == WRITE) {
 771		set_dirty(cache, cblock);
 772		clear_discard(cache, oblock_to_dblock(cache, oblock));
 773	}
 774}
 775
 776static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
 777{
 778	sector_t block_nr = bio->bi_iter.bi_sector;
 779
 780	if (!block_size_is_power_of_two(cache))
 781		(void) sector_div(block_nr, cache->sectors_per_block);
 782	else
 783		block_nr >>= cache->sectors_per_block_shift;
 784
 785	return to_oblock(block_nr);
 786}
 787
 788static bool accountable_bio(struct cache *cache, struct bio *bio)
 789{
 790	return bio_op(bio) != REQ_OP_DISCARD;
 791}
 792
 793static void accounted_begin(struct cache *cache, struct bio *bio)
 794{
 795	struct per_bio_data *pb;
 796
 797	if (accountable_bio(cache, bio)) {
 798		pb = get_per_bio_data(bio);
 799		pb->len = bio_sectors(bio);
 800		dm_iot_io_begin(&cache->tracker, pb->len);
 801	}
 
 
 
 
 
 
 
 
 
 802}
 803
 804static void accounted_complete(struct cache *cache, struct bio *bio)
 805{
 806	struct per_bio_data *pb = get_per_bio_data(bio);
 807
 808	dm_iot_io_end(&cache->tracker, pb->len);
 809}
 
 810
 811static void accounted_request(struct cache *cache, struct bio *bio)
 812{
 813	accounted_begin(cache, bio);
 814	dm_submit_bio_remap(bio, NULL);
 815}
 816
 817static void issue_op(struct bio *bio, void *context)
 818{
 819	struct cache *cache = context;
 
 
 
 
 
 
 
 820
 821	accounted_request(cache, bio);
 
 
 
 
 
 
 
 
 822}
 823
 824/*
 825 * When running in writethrough mode we need to send writes to clean blocks
 826 * to both the cache and origin devices.  Clone the bio and send them in parallel.
 
 
 827 */
 828static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
 829				      dm_oblock_t oblock, dm_cblock_t cblock)
 830{
 831	struct bio *origin_bio = bio_alloc_clone(cache->origin_dev->bdev, bio,
 832						 GFP_NOIO, &cache->bs);
 833
 834	BUG_ON(!origin_bio);
 
 
 
 835
 836	bio_chain(origin_bio, bio);
 
 837
 838	if (bio_data_dir(origin_bio) == WRITE)
 839		clear_discard(cache, oblock_to_dblock(cache, oblock));
 840	submit_bio(origin_bio);
 
 
 
 
 
 
 
 841
 842	remap_to_cache(cache, bio, cblock);
 
 
 843}
 844
 845/*
 846 *--------------------------------------------------------------
 847 * Failure modes
 848 *--------------------------------------------------------------
 849 */
 850static enum cache_metadata_mode get_cache_mode(struct cache *cache)
 851{
 852	return cache->features.mode;
 
 
 
 
 
 853}
 854
 855static const char *cache_device_name(struct cache *cache)
 
 856{
 857	return dm_table_device_name(cache->ti->table);
 
 
 858}
 859
 860static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
 
 861{
 862	static const char *descs[] = {
 863		"write",
 864		"read-only",
 865		"fail"
 866	};
 867
 868	dm_table_event(cache->ti->table);
 869	DMINFO("%s: switching cache to %s mode",
 870	       cache_device_name(cache), descs[(int)mode]);
 871}
 872
 873static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
 874{
 875	bool needs_check;
 876	enum cache_metadata_mode old_mode = get_cache_mode(cache);
 
 
 877
 878	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
 879		DMERR("%s: unable to read needs_check flag, setting failure mode.",
 880		      cache_device_name(cache));
 881		new_mode = CM_FAIL;
 882	}
 883
 884	if (new_mode == CM_WRITE && needs_check) {
 885		DMERR("%s: unable to switch cache to write mode until repaired.",
 886		      cache_device_name(cache));
 887		if (old_mode != new_mode)
 888			new_mode = old_mode;
 889		else
 890			new_mode = CM_READ_ONLY;
 
 
 
 
 
 
 
 
 
 891	}
 892
 893	/* Never move out of fail mode */
 894	if (old_mode == CM_FAIL)
 895		new_mode = CM_FAIL;
 896
 897	switch (new_mode) {
 898	case CM_FAIL:
 899	case CM_READ_ONLY:
 900		dm_cache_metadata_set_read_only(cache->cmd);
 901		break;
 902
 903	case CM_WRITE:
 904		dm_cache_metadata_set_read_write(cache->cmd);
 905		break;
 906	}
 
 907
 908	cache->features.mode = new_mode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 909
 910	if (new_mode != old_mode)
 911		notify_mode_switch(cache, new_mode);
 
 
 912}
 913
 914static void abort_transaction(struct cache *cache)
 915{
 916	const char *dev_name = cache_device_name(cache);
 
 917
 918	if (get_cache_mode(cache) >= CM_READ_ONLY)
 
 919		return;
 920
 921	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
 922	if (dm_cache_metadata_abort(cache->cmd)) {
 923		DMERR("%s: failed to abort metadata transaction", dev_name);
 924		set_cache_mode(cache, CM_FAIL);
 925	}
 
 
 
 
 
 
 
 
 
 
 926
 927	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
 928		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
 929		set_cache_mode(cache, CM_FAIL);
 
 
 
 
 
 
 930	}
 931}
 932
 933static void metadata_operation_failed(struct cache *cache, const char *op, int r)
 934{
 935	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
 936		    cache_device_name(cache), op, r);
 937	abort_transaction(cache);
 938	set_cache_mode(cache, CM_READ_ONLY);
 939}
 940
 941/*----------------------------------------------------------------*/
 
 942
 943static void load_stats(struct cache *cache)
 944{
 945	struct dm_cache_statistics stats;
 946
 947	dm_cache_metadata_get_stats(cache->cmd, &stats);
 948	atomic_set(&cache->stats.read_hit, stats.read_hits);
 949	atomic_set(&cache->stats.read_miss, stats.read_misses);
 950	atomic_set(&cache->stats.write_hit, stats.write_hits);
 951	atomic_set(&cache->stats.write_miss, stats.write_misses);
 952}
 953
 954static void save_stats(struct cache *cache)
 955{
 956	struct dm_cache_statistics stats;
 
 
 
 957
 958	if (get_cache_mode(cache) >= CM_READ_ONLY)
 959		return;
 960
 961	stats.read_hits = atomic_read(&cache->stats.read_hit);
 962	stats.read_misses = atomic_read(&cache->stats.read_miss);
 963	stats.write_hits = atomic_read(&cache->stats.write_hit);
 964	stats.write_misses = atomic_read(&cache->stats.write_miss);
 965
 966	dm_cache_metadata_set_stats(cache->cmd, &stats);
 
 
 
 
 
 
 
 
 
 
 
 
 
 967}
 968
 969static void update_stats(struct cache_stats *stats, enum policy_operation op)
 970{
 971	switch (op) {
 972	case POLICY_PROMOTE:
 973		atomic_inc(&stats->promotion);
 974		break;
 
 975
 976	case POLICY_DEMOTE:
 977		atomic_inc(&stats->demotion);
 978		break;
 979
 980	case POLICY_WRITEBACK:
 981		atomic_inc(&stats->writeback);
 982		break;
 983	}
 
 
 
 
 
 
 984}
 985
 986/*
 987 *---------------------------------------------------------------------
 988 * Migration processing
 989 *
 990 * Migration covers moving data from the origin device to the cache, or
 991 * vice versa.
 992 *---------------------------------------------------------------------
 993 */
 994static void inc_io_migrations(struct cache *cache)
 995{
 996	atomic_inc(&cache->nr_io_migrations);
 
 
 
 
 
 997}
 998
 999static void dec_io_migrations(struct cache *cache)
1000{
1001	atomic_dec(&cache->nr_io_migrations);
 
1002}
1003
1004static bool discard_or_flush(struct bio *bio)
1005{
1006	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
 
1007}
1008
1009static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1010				     dm_dblock_t *b, dm_dblock_t *e)
1011{
1012	sector_t sb = bio->bi_iter.bi_sector;
1013	sector_t se = bio_end_sector(bio);
1014
1015	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
 
 
 
 
1016
1017	if (se - sb < cache->discard_block_size)
1018		*e = *b;
1019	else
1020		*e = to_dblock(block_div(se, cache->discard_block_size));
1021}
1022
1023/*----------------------------------------------------------------*/
 
 
 
 
1024
1025static void prevent_background_work(struct cache *cache)
1026{
1027	lockdep_off();
1028	down_write(&cache->background_work_lock);
1029	lockdep_on();
1030}
1031
1032static void allow_background_work(struct cache *cache)
1033{
1034	lockdep_off();
1035	up_write(&cache->background_work_lock);
1036	lockdep_on();
 
1037}
1038
1039static bool background_work_begin(struct cache *cache)
 
1040{
1041	bool r;
 
 
1042
1043	lockdep_off();
1044	r = down_read_trylock(&cache->background_work_lock);
1045	lockdep_on();
 
1046
1047	return r;
 
1048}
1049
1050static void background_work_end(struct cache *cache)
1051{
1052	lockdep_off();
1053	up_read(&cache->background_work_lock);
1054	lockdep_on();
1055}
1056
1057/*----------------------------------------------------------------*/
1058
1059static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1060{
1061	return (bio_data_dir(bio) == WRITE) &&
1062		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1063}
1064
1065static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1066{
1067	return writeback_mode(cache) &&
1068		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1069}
1070
1071static void quiesce(struct dm_cache_migration *mg,
1072		    void (*continuation)(struct work_struct *))
1073{
1074	init_continuation(&mg->k, continuation);
1075	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1076}
1077
1078static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1079{
1080	struct continuation *k = container_of(ws, struct continuation, ws);
 
 
 
 
 
 
1081
1082	return container_of(k, struct dm_cache_migration, k);
1083}
1084
1085static void copy_complete(int read_err, unsigned long write_err, void *context)
 
1086{
1087	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1088
1089	if (read_err || write_err)
1090		mg->k.input = BLK_STS_IOERR;
 
 
 
 
1091
1092	queue_continuation(mg->cache->wq, &mg->k);
 
1093}
1094
1095static void copy(struct dm_cache_migration *mg, bool promote)
1096{
1097	struct dm_io_region o_region, c_region;
1098	struct cache *cache = mg->cache;
 
1099
1100	o_region.bdev = cache->origin_dev->bdev;
1101	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1102	o_region.count = cache->sectors_per_block;
 
 
1103
1104	c_region.bdev = cache->cache_dev->bdev;
1105	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1106	c_region.count = cache->sectors_per_block;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1107
1108	if (promote)
1109		dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1110	else
1111		dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1112}
1113
1114static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
 
 
 
 
 
 
1115{
1116	struct per_bio_data *pb = get_per_bio_data(bio);
1117
1118	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1119		free_prison_cell(cache, pb->cell);
1120	pb->cell = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
1121}
1122
1123static void overwrite_endio(struct bio *bio)
 
 
 
1124{
1125	struct dm_cache_migration *mg = bio->bi_private;
1126	struct cache *cache = mg->cache;
1127	struct per_bio_data *pb = get_per_bio_data(bio);
1128
1129	dm_unhook_bio(&pb->hook_info, bio);
1130
1131	if (bio->bi_status)
1132		mg->k.input = bio->bi_status;
 
1133
1134	queue_continuation(cache->wq, &mg->k);
1135}
1136
1137static void overwrite(struct dm_cache_migration *mg,
1138		      void (*continuation)(struct work_struct *))
1139{
1140	struct bio *bio = mg->overwrite_bio;
1141	struct per_bio_data *pb = get_per_bio_data(bio);
1142
1143	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1144
1145	/*
1146	 * The overwrite bio is part of the copy operation, as such it does
1147	 * not set/clear discard or dirty flags.
1148	 */
1149	if (mg->op->op == POLICY_PROMOTE)
1150		remap_to_cache(mg->cache, bio, mg->op->cblock);
1151	else
1152		remap_to_origin(mg->cache, bio);
1153
1154	init_continuation(&mg->k, continuation);
1155	accounted_request(mg->cache, bio);
1156}
1157
1158/*
1159 * Migration steps:
 
 
 
1160 *
1161 * 1) exclusive lock preventing WRITEs
1162 * 2) quiesce
1163 * 3) copy or issue overwrite bio
1164 * 4) upgrade to exclusive lock preventing READs and WRITEs
1165 * 5) quiesce
1166 * 6) update metadata and commit
1167 * 7) unlock
1168 */
1169static void mg_complete(struct dm_cache_migration *mg, bool success)
1170{
1171	struct bio_list bios;
1172	struct cache *cache = mg->cache;
1173	struct policy_work *op = mg->op;
1174	dm_cblock_t cblock = op->cblock;
1175
1176	if (success)
1177		update_stats(&cache->stats, op->op);
1178
1179	switch (op->op) {
1180	case POLICY_PROMOTE:
1181		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1182		policy_complete_background_work(cache->policy, op, success);
1183
1184		if (mg->overwrite_bio) {
1185			if (success)
1186				force_set_dirty(cache, cblock);
1187			else if (mg->k.input)
1188				mg->overwrite_bio->bi_status = mg->k.input;
1189			else
1190				mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1191			bio_endio(mg->overwrite_bio);
1192		} else {
1193			if (success)
1194				force_clear_dirty(cache, cblock);
1195			dec_io_migrations(cache);
1196		}
1197		break;
1198
1199	case POLICY_DEMOTE:
1200		/*
1201		 * We clear dirty here to update the nr_dirty counter.
1202		 */
1203		if (success)
1204			force_clear_dirty(cache, cblock);
1205		policy_complete_background_work(cache->policy, op, success);
1206		dec_io_migrations(cache);
1207		break;
1208
1209	case POLICY_WRITEBACK:
1210		if (success)
1211			force_clear_dirty(cache, cblock);
1212		policy_complete_background_work(cache->policy, op, success);
1213		dec_io_migrations(cache);
1214		break;
1215	}
1216
1217	bio_list_init(&bios);
1218	if (mg->cell) {
1219		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1220			free_prison_cell(cache, mg->cell);
1221	}
1222
1223	free_migration(mg);
1224	defer_bios(cache, &bios);
1225	wake_migration_worker(cache);
 
 
 
1226
1227	background_work_end(cache);
 
 
 
1228}
1229
1230static void mg_success(struct work_struct *ws)
1231{
1232	struct dm_cache_migration *mg = ws_to_mg(ws);
 
 
1233
1234	mg_complete(mg, mg->k.input == 0);
 
 
 
 
 
 
1235}
1236
1237static void mg_update_metadata(struct work_struct *ws)
 
1238{
1239	int r;
1240	struct dm_cache_migration *mg = ws_to_mg(ws);
1241	struct cache *cache = mg->cache;
1242	struct policy_work *op = mg->op;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243
1244	switch (op->op) {
1245	case POLICY_PROMOTE:
1246		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1247		if (r) {
1248			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1249				    cache_device_name(cache));
1250			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1251
1252			mg_complete(mg, false);
1253			return;
1254		}
1255		mg_complete(mg, true);
1256		break;
 
 
 
1257
1258	case POLICY_DEMOTE:
1259		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1260		if (r) {
1261			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1262				    cache_device_name(cache));
1263			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1264
1265			mg_complete(mg, false);
1266			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1267		}
1268
1269		/*
1270		 * It would be nice if we only had to commit when a REQ_FLUSH
1271		 * comes through.  But there's one scenario that we have to
1272		 * look out for:
1273		 *
1274		 * - vblock x in a cache block
1275		 * - domotion occurs
1276		 * - cache block gets reallocated and over written
1277		 * - crash
1278		 *
1279		 * When we recover, because there was no commit the cache will
1280		 * rollback to having the data for vblock x in the cache block.
1281		 * But the cache block has since been overwritten, so it'll end
1282		 * up pointing to data that was never in 'x' during the history
1283		 * of the device.
1284		 *
1285		 * To avoid this issue we require a commit as part of the
1286		 * demotion operation.
1287		 */
1288		init_continuation(&mg->k, mg_success);
1289		continue_after_commit(&cache->committer, &mg->k);
1290		schedule_commit(&cache->committer);
1291		break;
1292
1293	case POLICY_WRITEBACK:
1294		mg_complete(mg, true);
 
 
 
1295		break;
1296	}
1297}
1298
1299static void mg_update_metadata_after_copy(struct work_struct *ws)
1300{
1301	struct dm_cache_migration *mg = ws_to_mg(ws);
1302
1303	/*
1304	 * Did the copy succeed?
1305	 */
1306	if (mg->k.input)
1307		mg_complete(mg, false);
1308	else
1309		mg_update_metadata(ws);
1310}
1311
1312static void mg_upgrade_lock(struct work_struct *ws)
1313{
1314	int r;
1315	struct dm_cache_migration *mg = ws_to_mg(ws);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1316
1317	/*
1318	 * Did the copy succeed?
1319	 */
1320	if (mg->k.input)
1321		mg_complete(mg, false);
1322
1323	else {
1324		/*
1325		 * Now we want the lock to prevent both reads and writes.
1326		 */
1327		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1328					    READ_WRITE_LOCK_LEVEL);
1329		if (r < 0)
1330			mg_complete(mg, false);
1331
1332		else if (r)
1333			quiesce(mg, mg_update_metadata);
 
1334
1335		else
1336			mg_update_metadata(ws);
1337	}
 
1338}
1339
1340static void mg_full_copy(struct work_struct *ws)
1341{
1342	struct dm_cache_migration *mg = ws_to_mg(ws);
1343	struct cache *cache = mg->cache;
1344	struct policy_work *op = mg->op;
1345	bool is_policy_promote = (op->op == POLICY_PROMOTE);
1346
1347	if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1348	    is_discarded_oblock(cache, op->oblock)) {
1349		mg_upgrade_lock(ws);
1350		return;
 
 
1351	}
1352
1353	init_continuation(&mg->k, mg_upgrade_lock);
1354	copy(mg, is_policy_promote);
1355}
1356
1357static void mg_copy(struct work_struct *ws)
1358{
1359	struct dm_cache_migration *mg = ws_to_mg(ws);
 
 
 
1360
1361	if (mg->overwrite_bio) {
1362		/*
1363		 * No exclusive lock was held when we last checked if the bio
1364		 * was optimisable.  So we have to check again in case things
1365		 * have changed (eg, the block may no longer be discarded).
1366		 */
1367		if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1368			/*
1369			 * Fallback to a real full copy after doing some tidying up.
1370			 */
1371			bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1372
1373			BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1374			mg->overwrite_bio = NULL;
1375			inc_io_migrations(mg->cache);
1376			mg_full_copy(ws);
1377			return;
1378		}
1379
 
1380		/*
1381		 * It's safe to do this here, even though it's new data
1382		 * because all IO has been locked out of the block.
1383		 *
1384		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1385		 * so _not_ using mg_upgrade_lock() as continutation.
1386		 */
1387		overwrite(mg, mg_update_metadata_after_copy);
1388
1389	} else
1390		mg_full_copy(ws);
1391}
1392
1393static int mg_lock_writes(struct dm_cache_migration *mg)
1394{
1395	int r;
1396	struct dm_cell_key_v2 key;
1397	struct cache *cache = mg->cache;
1398	struct dm_bio_prison_cell_v2 *prealloc;
1399
1400	prealloc = alloc_prison_cell(cache);
1401
1402	/*
1403	 * Prevent writes to the block, but allow reads to continue.
1404	 * Unless we're using an overwrite bio, in which case we lock
1405	 * everything.
1406	 */
1407	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1408	r = dm_cell_lock_v2(cache->prison, &key,
1409			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1410			    prealloc, &mg->cell);
1411	if (r < 0) {
1412		free_prison_cell(cache, prealloc);
1413		mg_complete(mg, false);
1414		return r;
1415	}
1416
1417	if (mg->cell != prealloc)
1418		free_prison_cell(cache, prealloc);
1419
1420	if (r == 0)
1421		mg_copy(&mg->k.ws);
1422	else
1423		quiesce(mg, mg_copy);
1424
1425	return 0;
1426}
1427
1428static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1429{
1430	struct dm_cache_migration *mg;
1431
1432	if (!background_work_begin(cache)) {
1433		policy_complete_background_work(cache->policy, op, false);
1434		return -EPERM;
1435	}
1436
1437	mg = alloc_migration(cache);
1438
1439	mg->op = op;
1440	mg->overwrite_bio = bio;
1441
1442	if (!bio)
1443		inc_io_migrations(cache);
 
 
1444
1445	return mg_lock_writes(mg);
 
1446}
1447
1448/*
1449 *--------------------------------------------------------------
1450 * invalidation processing
1451 *--------------------------------------------------------------
1452 */
1453
1454static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1455{
 
1456	struct bio_list bios;
1457	struct cache *cache = mg->cache;
1458
1459	bio_list_init(&bios);
1460	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1461		free_prison_cell(cache, mg->cell);
1462
1463	if (!success && mg->overwrite_bio)
1464		bio_io_error(mg->overwrite_bio);
1465
1466	free_migration(mg);
1467	defer_bios(cache, &bios);
 
 
1468
1469	background_work_end(cache);
 
1470}
1471
1472static void invalidate_completed(struct work_struct *ws)
1473{
1474	struct dm_cache_migration *mg = ws_to_mg(ws);
 
 
 
 
1475
1476	invalidate_complete(mg, !mg->k.input);
1477}
1478
1479static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1480{
1481	int r;
1482
1483	r = policy_invalidate_mapping(cache->policy, cblock);
1484	if (!r) {
1485		r = dm_cache_remove_mapping(cache->cmd, cblock);
 
 
1486		if (r) {
1487			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1488				    cache_device_name(cache));
1489			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1490		}
1491
1492	} else if (r == -ENODATA) {
1493		/*
1494		 * Harmless, already unmapped.
1495		 */
1496		r = 0;
1497
1498	} else
1499		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1500
1501	return r;
1502}
1503
1504static void invalidate_remove(struct work_struct *ws)
1505{
1506	int r;
1507	struct dm_cache_migration *mg = ws_to_mg(ws);
1508	struct cache *cache = mg->cache;
1509
1510	r = invalidate_cblock(cache, mg->invalidate_cblock);
1511	if (r) {
1512		invalidate_complete(mg, false);
1513		return;
1514	}
1515
1516	init_continuation(&mg->k, invalidate_completed);
1517	continue_after_commit(&cache->committer, &mg->k);
1518	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1519	mg->overwrite_bio = NULL;
1520	schedule_commit(&cache->committer);
1521}
1522
1523static int invalidate_lock(struct dm_cache_migration *mg)
1524{
1525	int r;
1526	struct dm_cell_key_v2 key;
1527	struct cache *cache = mg->cache;
1528	struct dm_bio_prison_cell_v2 *prealloc;
1529
1530	prealloc = alloc_prison_cell(cache);
1531
1532	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1533	r = dm_cell_lock_v2(cache->prison, &key,
1534			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1535	if (r < 0) {
1536		free_prison_cell(cache, prealloc);
1537		invalidate_complete(mg, false);
1538		return r;
1539	}
1540
1541	if (mg->cell != prealloc)
1542		free_prison_cell(cache, prealloc);
1543
1544	if (r)
1545		quiesce(mg, invalidate_remove);
1546
1547	else {
1548		/*
1549		 * We can't call invalidate_remove() directly here because we
1550		 * might still be in request context.
1551		 */
1552		init_continuation(&mg->k, invalidate_remove);
1553		queue_work(cache->wq, &mg->k.ws);
1554	}
1555
1556	return 0;
1557}
 
1558
1559static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1560			    dm_oblock_t oblock, struct bio *bio)
1561{
1562	struct dm_cache_migration *mg;
1563
1564	if (!background_work_begin(cache))
1565		return -EPERM;
1566
1567	mg = alloc_migration(cache);
1568
1569	mg->overwrite_bio = bio;
1570	mg->invalidate_cblock = cblock;
1571	mg->invalidate_oblock = oblock;
1572
1573	return invalidate_lock(mg);
1574}
1575
1576/*
1577 *--------------------------------------------------------------
1578 * bio processing
1579 *--------------------------------------------------------------
1580 */
1581
1582enum busy {
1583	IDLE,
1584	BUSY
1585};
1586
1587static enum busy spare_migration_bandwidth(struct cache *cache)
1588{
1589	bool idle = dm_iot_idle_for(&cache->tracker, HZ);
1590	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1591		cache->sectors_per_block;
1592
1593	if (idle && current_volume <= cache->migration_threshold)
1594		return IDLE;
1595	else
1596		return BUSY;
1597}
1598
1599static void inc_hit_counter(struct cache *cache, struct bio *bio)
1600{
1601	atomic_inc(bio_data_dir(bio) == READ ?
1602		   &cache->stats.read_hit : &cache->stats.write_hit);
1603}
1604
1605static void inc_miss_counter(struct cache *cache, struct bio *bio)
 
 
 
1606{
1607	atomic_inc(bio_data_dir(bio) == READ ?
1608		   &cache->stats.read_miss : &cache->stats.write_miss);
1609}
1610
1611/*----------------------------------------------------------------*/
1612
1613static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1614		   bool *commit_needed)
1615{
1616	int r, data_dir;
1617	bool rb, background_queued;
1618	dm_cblock_t cblock;
1619
1620	*commit_needed = false;
1621
1622	rb = bio_detain_shared(cache, block, bio);
1623	if (!rb) {
1624		/*
1625		 * An exclusive lock is held for this block, so we have to
1626		 * wait.  We set the commit_needed flag so the current
1627		 * transaction will be committed asap, allowing this lock
1628		 * to be dropped.
1629		 */
1630		*commit_needed = true;
1631		return DM_MAPIO_SUBMITTED;
1632	}
1633
1634	data_dir = bio_data_dir(bio);
1635
1636	if (optimisable_bio(cache, bio, block)) {
1637		struct policy_work *op = NULL;
1638
1639		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1640		if (unlikely(r && r != -ENOENT)) {
1641			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1642				    cache_device_name(cache), r);
1643			bio_io_error(bio);
1644			return DM_MAPIO_SUBMITTED;
1645		}
1646
1647		if (r == -ENOENT && op) {
1648			bio_drop_shared_lock(cache, bio);
1649			BUG_ON(op->op != POLICY_PROMOTE);
1650			mg_start(cache, op, bio);
1651			return DM_MAPIO_SUBMITTED;
1652		}
1653	} else {
1654		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1655		if (unlikely(r && r != -ENOENT)) {
1656			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1657				    cache_device_name(cache), r);
1658			bio_io_error(bio);
1659			return DM_MAPIO_SUBMITTED;
1660		}
1661
1662		if (background_queued)
1663			wake_migration_worker(cache);
1664	}
1665
1666	if (r == -ENOENT) {
1667		struct per_bio_data *pb = get_per_bio_data(bio);
1668
1669		/*
1670		 * Miss.
1671		 */
1672		inc_miss_counter(cache, bio);
1673		if (pb->req_nr == 0) {
1674			accounted_begin(cache, bio);
1675			remap_to_origin_clear_discard(cache, bio, block);
1676		} else {
1677			/*
1678			 * This is a duplicate writethrough io that is no
1679			 * longer needed because the block has been demoted.
1680			 */
1681			bio_endio(bio);
1682			return DM_MAPIO_SUBMITTED;
1683		}
1684	} else {
1685		/*
1686		 * Hit.
1687		 */
1688		inc_hit_counter(cache, bio);
1689
1690		/*
1691		 * Passthrough always maps to the origin, invalidating any
1692		 * cache blocks that are written to.
1693		 */
1694		if (passthrough_mode(cache)) {
1695			if (bio_data_dir(bio) == WRITE) {
1696				bio_drop_shared_lock(cache, bio);
1697				atomic_inc(&cache->stats.demotion);
1698				invalidate_start(cache, cblock, block, bio);
1699			} else
1700				remap_to_origin_clear_discard(cache, bio, block);
1701		} else {
1702			if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1703			    !is_dirty(cache, cblock)) {
1704				remap_to_origin_and_cache(cache, bio, block, cblock);
1705				accounted_begin(cache, bio);
1706			} else
1707				remap_to_cache_dirty(cache, bio, block, cblock);
1708		}
1709	}
1710
1711	/*
1712	 * dm core turns FUA requests into a separate payload and FLUSH req.
1713	 */
1714	if (bio->bi_opf & REQ_FUA) {
1715		/*
1716		 * issue_after_commit will call accounted_begin a second time.  So
1717		 * we call accounted_complete() to avoid double accounting.
1718		 */
1719		accounted_complete(cache, bio);
1720		issue_after_commit(&cache->committer, bio);
1721		*commit_needed = true;
1722		return DM_MAPIO_SUBMITTED;
1723	}
1724
1725	return DM_MAPIO_REMAPPED;
1726}
1727
1728static bool process_bio(struct cache *cache, struct bio *bio)
1729{
1730	bool commit_needed;
1731
1732	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1733		dm_submit_bio_remap(bio, NULL);
1734
1735	return commit_needed;
1736}
1737
1738/*
1739 * A non-zero return indicates read_only or fail_io mode.
1740 */
1741static int commit(struct cache *cache, bool clean_shutdown)
1742{
1743	int r;
1744
1745	if (get_cache_mode(cache) >= CM_READ_ONLY)
1746		return -EINVAL;
1747
1748	atomic_inc(&cache->stats.commit_count);
1749	r = dm_cache_commit(cache->cmd, clean_shutdown);
1750	if (r)
1751		metadata_operation_failed(cache, "dm_cache_commit", r);
1752
1753	return r;
1754}
1755
1756/*
1757 * Used by the batcher.
1758 */
1759static blk_status_t commit_op(void *context)
1760{
1761	struct cache *cache = context;
1762
1763	if (dm_cache_changed_this_transaction(cache->cmd))
1764		return errno_to_blk_status(commit(cache, false));
1765
1766	return 0;
1767}
1768
1769/*----------------------------------------------------------------*/
1770
1771static bool process_flush_bio(struct cache *cache, struct bio *bio)
1772{
1773	struct per_bio_data *pb = get_per_bio_data(bio);
1774
1775	if (!pb->req_nr)
1776		remap_to_origin(cache, bio);
1777	else
1778		remap_to_cache(cache, bio, 0);
1779
1780	issue_after_commit(&cache->committer, bio);
1781	return true;
1782}
1783
1784static bool process_discard_bio(struct cache *cache, struct bio *bio)
1785{
1786	dm_dblock_t b, e;
1787
1788	/*
1789	 * FIXME: do we need to lock the region?  Or can we just assume the
1790	 * user wont be so foolish as to issue discard concurrently with
1791	 * other IO?
1792	 */
1793	calc_discard_block_range(cache, bio, &b, &e);
1794	while (b != e) {
1795		set_discard(cache, b);
1796		b = to_dblock(from_dblock(b) + 1);
1797	}
1798
1799	if (cache->features.discard_passdown) {
1800		remap_to_origin(cache, bio);
1801		dm_submit_bio_remap(bio, NULL);
1802	} else
1803		bio_endio(bio);
1804
1805	return false;
1806}
1807
1808static void process_deferred_bios(struct work_struct *ws)
1809{
1810	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1811
1812	bool commit_needed = false;
1813	struct bio_list bios;
1814	struct bio *bio;
 
1815
1816	bio_list_init(&bios);
1817
1818	spin_lock_irq(&cache->lock);
1819	bio_list_merge(&bios, &cache->deferred_bios);
1820	bio_list_init(&cache->deferred_bios);
1821	spin_unlock_irq(&cache->lock);
1822
1823	while ((bio = bio_list_pop(&bios))) {
1824		if (bio->bi_opf & REQ_PREFLUSH)
1825			commit_needed = process_flush_bio(cache, bio) || commit_needed;
1826
1827		else if (bio_op(bio) == REQ_OP_DISCARD)
1828			commit_needed = process_discard_bio(cache, bio) || commit_needed;
1829
1830		else
1831			commit_needed = process_bio(cache, bio) || commit_needed;
1832		cond_resched();
1833	}
1834
1835	if (commit_needed)
1836		schedule_commit(&cache->committer);
 
 
 
 
 
 
 
 
 
 
 
 
1837}
1838
1839/*
1840 *--------------------------------------------------------------
1841 * Main worker loop
1842 *--------------------------------------------------------------
1843 */
1844static void requeue_deferred_bios(struct cache *cache)
1845{
1846	struct bio *bio;
1847	struct bio_list bios;
1848
1849	bio_list_init(&bios);
1850	bio_list_merge(&bios, &cache->deferred_bios);
1851	bio_list_init(&cache->deferred_bios);
 
 
 
 
1852
1853	while ((bio = bio_list_pop(&bios))) {
1854		bio->bi_status = BLK_STS_DM_REQUEUE;
1855		bio_endio(bio);
1856		cond_resched();
1857	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1858}
1859
1860/*
1861 * We want to commit periodically so that not too much
1862 * unwritten metadata builds up.
1863 */
1864static void do_waker(struct work_struct *ws)
1865{
1866	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1867
1868	policy_tick(cache->policy, true);
1869	wake_migration_worker(cache);
1870	schedule_commit(&cache->committer);
1871	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1872}
1873
1874static void check_migrations(struct work_struct *ws)
1875{
1876	int r;
1877	struct policy_work *op;
1878	struct cache *cache = container_of(ws, struct cache, migration_worker);
1879	enum busy b;
1880
1881	for (;;) {
1882		b = spare_migration_bandwidth(cache);
1883
1884		r = policy_get_background_work(cache->policy, b == IDLE, &op);
1885		if (r == -ENODATA)
1886			break;
1887
1888		if (r) {
1889			DMERR_LIMIT("%s: policy_background_work failed",
1890				    cache_device_name(cache));
1891			break;
1892		}
1893
1894		r = mg_start(cache, op, NULL);
1895		if (r)
1896			break;
1897
1898		cond_resched();
1899	}
1900}
1901
1902/*
1903 *--------------------------------------------------------------
1904 * Target methods
1905 *--------------------------------------------------------------
1906 */
1907
1908/*
1909 * This function gets called on the error paths of the constructor, so we
1910 * have to cope with a partially initialised struct.
1911 */
1912static void destroy(struct cache *cache)
1913{
1914	unsigned int i;
 
 
 
 
 
 
1915
1916	mempool_exit(&cache->migration_pool);
 
1917
1918	if (cache->prison)
1919		dm_bio_prison_destroy_v2(cache->prison);
1920
1921	cancel_delayed_work_sync(&cache->waker);
1922	if (cache->wq)
1923		destroy_workqueue(cache->wq);
1924
1925	if (cache->dirty_bitset)
1926		free_bitset(cache->dirty_bitset);
1927
1928	if (cache->discard_bitset)
1929		free_bitset(cache->discard_bitset);
1930
1931	if (cache->copier)
1932		dm_kcopyd_client_destroy(cache->copier);
1933
1934	if (cache->cmd)
1935		dm_cache_metadata_close(cache->cmd);
1936
1937	if (cache->metadata_dev)
1938		dm_put_device(cache->ti, cache->metadata_dev);
1939
1940	if (cache->origin_dev)
1941		dm_put_device(cache->ti, cache->origin_dev);
1942
1943	if (cache->cache_dev)
1944		dm_put_device(cache->ti, cache->cache_dev);
1945
1946	if (cache->policy)
1947		dm_cache_policy_destroy(cache->policy);
1948
1949	for (i = 0; i < cache->nr_ctr_args ; i++)
1950		kfree(cache->ctr_args[i]);
1951	kfree(cache->ctr_args);
1952
1953	bioset_exit(&cache->bs);
1954
1955	kfree(cache);
1956}
1957
1958static void cache_dtr(struct dm_target *ti)
1959{
1960	struct cache *cache = ti->private;
1961
1962	destroy(cache);
1963}
1964
1965static sector_t get_dev_size(struct dm_dev *dev)
1966{
1967	return bdev_nr_sectors(dev->bdev);
1968}
1969
1970/*----------------------------------------------------------------*/
1971
1972/*
1973 * Construct a cache device mapping.
1974 *
1975 * cache <metadata dev> <cache dev> <origin dev> <block size>
1976 *       <#feature args> [<feature arg>]*
1977 *       <policy> <#policy args> [<policy arg>]*
1978 *
1979 * metadata dev    : fast device holding the persistent metadata
1980 * cache dev	   : fast device holding cached data blocks
1981 * origin dev	   : slow device holding original data blocks
1982 * block size	   : cache unit size in sectors
1983 *
1984 * #feature args   : number of feature arguments passed
1985 * feature args    : writethrough.  (The default is writeback.)
1986 *
1987 * policy	   : the replacement policy to use
1988 * #policy args    : an even number of policy arguments corresponding
1989 *		     to key/value pairs passed to the policy
1990 * policy args	   : key/value pairs passed to the policy
1991 *		     E.g. 'sequential_threshold 1024'
1992 *		     See cache-policies.txt for details.
1993 *
1994 * Optional feature arguments are:
1995 *   writethrough  : write through caching that prohibits cache block
1996 *		     content from being different from origin block content.
1997 *		     Without this argument, the default behaviour is to write
1998 *		     back cache block contents later for performance reasons,
1999 *		     so they may differ from the corresponding origin blocks.
2000 */
2001struct cache_args {
2002	struct dm_target *ti;
2003
2004	struct dm_dev *metadata_dev;
2005
2006	struct dm_dev *cache_dev;
2007	sector_t cache_sectors;
2008
2009	struct dm_dev *origin_dev;
2010	sector_t origin_sectors;
2011
2012	uint32_t block_size;
2013
2014	const char *policy_name;
2015	int policy_argc;
2016	const char **policy_argv;
2017
2018	struct cache_features features;
2019};
2020
2021static void destroy_cache_args(struct cache_args *ca)
2022{
2023	if (ca->metadata_dev)
2024		dm_put_device(ca->ti, ca->metadata_dev);
2025
2026	if (ca->cache_dev)
2027		dm_put_device(ca->ti, ca->cache_dev);
2028
2029	if (ca->origin_dev)
2030		dm_put_device(ca->ti, ca->origin_dev);
2031
2032	kfree(ca);
2033}
2034
2035static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2036{
2037	if (!as->argc) {
2038		*error = "Insufficient args";
2039		return false;
2040	}
2041
2042	return true;
2043}
2044
2045static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2046			      char **error)
2047{
2048	int r;
2049	sector_t metadata_dev_size;
 
2050
2051	if (!at_least_one_arg(as, error))
2052		return -EINVAL;
2053
2054	r = dm_get_device(ca->ti, dm_shift_arg(as),
2055			  BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->metadata_dev);
2056	if (r) {
2057		*error = "Error opening metadata device";
2058		return r;
2059	}
2060
2061	metadata_dev_size = get_dev_size(ca->metadata_dev);
2062	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2063		DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
2064		       ca->metadata_dev->bdev, THIN_METADATA_MAX_SECTORS);
2065
2066	return 0;
2067}
2068
2069static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2070			   char **error)
2071{
2072	int r;
2073
2074	if (!at_least_one_arg(as, error))
2075		return -EINVAL;
2076
2077	r = dm_get_device(ca->ti, dm_shift_arg(as),
2078			  BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->cache_dev);
2079	if (r) {
2080		*error = "Error opening cache device";
2081		return r;
2082	}
2083	ca->cache_sectors = get_dev_size(ca->cache_dev);
2084
2085	return 0;
2086}
2087
2088static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2089			    char **error)
2090{
2091	int r;
2092
2093	if (!at_least_one_arg(as, error))
2094		return -EINVAL;
2095
2096	r = dm_get_device(ca->ti, dm_shift_arg(as),
2097			  BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->origin_dev);
2098	if (r) {
2099		*error = "Error opening origin device";
2100		return r;
2101	}
2102
2103	ca->origin_sectors = get_dev_size(ca->origin_dev);
2104	if (ca->ti->len > ca->origin_sectors) {
2105		*error = "Device size larger than cached device";
2106		return -EINVAL;
2107	}
2108
2109	return 0;
2110}
2111
2112static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2113			    char **error)
2114{
2115	unsigned long block_size;
2116
2117	if (!at_least_one_arg(as, error))
2118		return -EINVAL;
2119
2120	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2121	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2122	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2123	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2124		*error = "Invalid data block size";
2125		return -EINVAL;
2126	}
2127
2128	if (block_size > ca->cache_sectors) {
2129		*error = "Data block size is larger than the cache device";
2130		return -EINVAL;
2131	}
2132
2133	ca->block_size = block_size;
2134
2135	return 0;
2136}
2137
2138static void init_features(struct cache_features *cf)
2139{
2140	cf->mode = CM_WRITE;
2141	cf->io_mode = CM_IO_WRITEBACK;
2142	cf->metadata_version = 1;
2143	cf->discard_passdown = true;
2144}
2145
2146static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2147			  char **error)
2148{
2149	static const struct dm_arg _args[] = {
2150		{0, 3, "Invalid number of cache feature arguments"},
2151	};
2152
2153	int r, mode_ctr = 0;
2154	unsigned int argc;
2155	const char *arg;
2156	struct cache_features *cf = &ca->features;
2157
2158	init_features(cf);
2159
2160	r = dm_read_arg_group(_args, as, &argc, error);
2161	if (r)
2162		return -EINVAL;
2163
2164	while (argc--) {
2165		arg = dm_shift_arg(as);
2166
2167		if (!strcasecmp(arg, "writeback")) {
2168			cf->io_mode = CM_IO_WRITEBACK;
2169			mode_ctr++;
2170		}
2171
2172		else if (!strcasecmp(arg, "writethrough")) {
2173			cf->io_mode = CM_IO_WRITETHROUGH;
2174			mode_ctr++;
2175		}
2176
2177		else if (!strcasecmp(arg, "passthrough")) {
2178			cf->io_mode = CM_IO_PASSTHROUGH;
2179			mode_ctr++;
2180		}
2181
2182		else if (!strcasecmp(arg, "metadata2"))
2183			cf->metadata_version = 2;
2184
2185		else if (!strcasecmp(arg, "no_discard_passdown"))
2186			cf->discard_passdown = false;
2187
2188		else {
2189			*error = "Unrecognised cache feature requested";
2190			return -EINVAL;
2191		}
2192	}
2193
2194	if (mode_ctr > 1) {
2195		*error = "Duplicate cache io_mode features requested";
2196		return -EINVAL;
2197	}
2198
2199	return 0;
2200}
2201
2202static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2203			char **error)
2204{
2205	static const struct dm_arg _args[] = {
2206		{0, 1024, "Invalid number of policy arguments"},
2207	};
2208
2209	int r;
2210
2211	if (!at_least_one_arg(as, error))
2212		return -EINVAL;
2213
2214	ca->policy_name = dm_shift_arg(as);
2215
2216	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2217	if (r)
2218		return -EINVAL;
2219
2220	ca->policy_argv = (const char **)as->argv;
2221	dm_consume_args(as, ca->policy_argc);
2222
2223	return 0;
2224}
2225
2226static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2227			    char **error)
2228{
2229	int r;
2230	struct dm_arg_set as;
2231
2232	as.argc = argc;
2233	as.argv = argv;
2234
2235	r = parse_metadata_dev(ca, &as, error);
2236	if (r)
2237		return r;
2238
2239	r = parse_cache_dev(ca, &as, error);
2240	if (r)
2241		return r;
2242
2243	r = parse_origin_dev(ca, &as, error);
2244	if (r)
2245		return r;
2246
2247	r = parse_block_size(ca, &as, error);
2248	if (r)
2249		return r;
2250
2251	r = parse_features(ca, &as, error);
2252	if (r)
2253		return r;
2254
2255	r = parse_policy(ca, &as, error);
2256	if (r)
2257		return r;
2258
2259	return 0;
2260}
2261
2262/*----------------------------------------------------------------*/
2263
2264static struct kmem_cache *migration_cache;
2265
2266#define NOT_CORE_OPTION 1
2267
2268static int process_config_option(struct cache *cache, const char *key, const char *value)
2269{
2270	unsigned long tmp;
2271
2272	if (!strcasecmp(key, "migration_threshold")) {
2273		if (kstrtoul(value, 10, &tmp))
2274			return -EINVAL;
2275
2276		cache->migration_threshold = tmp;
2277		return 0;
2278	}
2279
2280	return NOT_CORE_OPTION;
2281}
2282
2283static int set_config_value(struct cache *cache, const char *key, const char *value)
2284{
2285	int r = process_config_option(cache, key, value);
2286
2287	if (r == NOT_CORE_OPTION)
2288		r = policy_set_config_value(cache->policy, key, value);
2289
2290	if (r)
2291		DMWARN("bad config value for %s: %s", key, value);
2292
2293	return r;
2294}
2295
2296static int set_config_values(struct cache *cache, int argc, const char **argv)
2297{
2298	int r = 0;
2299
2300	if (argc & 1) {
2301		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2302		return -EINVAL;
2303	}
2304
2305	while (argc) {
2306		r = set_config_value(cache, argv[0], argv[1]);
2307		if (r)
2308			break;
2309
2310		argc -= 2;
2311		argv += 2;
2312	}
2313
2314	return r;
2315}
2316
2317static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2318			       char **error)
2319{
2320	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2321							   cache->cache_size,
2322							   cache->origin_sectors,
2323							   cache->sectors_per_block);
2324	if (IS_ERR(p)) {
2325		*error = "Error creating cache's policy";
2326		return PTR_ERR(p);
2327	}
2328	cache->policy = p;
2329	BUG_ON(!cache->policy);
2330
2331	return 0;
2332}
2333
2334/*
2335 * We want the discard block size to be at least the size of the cache
2336 * block size and have no more than 2^14 discard blocks across the origin.
2337 */
2338#define MAX_DISCARD_BLOCKS (1 << 14)
2339
2340static bool too_many_discard_blocks(sector_t discard_block_size,
2341				    sector_t origin_size)
2342{
2343	(void) sector_div(origin_size, discard_block_size);
2344
2345	return origin_size > MAX_DISCARD_BLOCKS;
2346}
2347
2348static sector_t calculate_discard_block_size(sector_t cache_block_size,
2349					     sector_t origin_size)
2350{
2351	sector_t discard_block_size = cache_block_size;
2352
2353	if (origin_size)
2354		while (too_many_discard_blocks(discard_block_size, origin_size))
2355			discard_block_size *= 2;
2356
2357	return discard_block_size;
2358}
2359
2360static void set_cache_size(struct cache *cache, dm_cblock_t size)
2361{
2362	dm_block_t nr_blocks = from_cblock(size);
2363
2364	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2365		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2366			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2367			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2368			     (unsigned long long) nr_blocks);
2369
2370	cache->cache_size = size;
2371}
2372
2373#define DEFAULT_MIGRATION_THRESHOLD 2048
2374
2375static int cache_create(struct cache_args *ca, struct cache **result)
2376{
2377	int r = 0;
2378	char **error = &ca->ti->error;
2379	struct cache *cache;
2380	struct dm_target *ti = ca->ti;
2381	dm_block_t origin_blocks;
2382	struct dm_cache_metadata *cmd;
2383	bool may_format = ca->features.mode == CM_WRITE;
2384
2385	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2386	if (!cache)
2387		return -ENOMEM;
2388
2389	cache->ti = ca->ti;
2390	ti->private = cache;
2391	ti->accounts_remapped_io = true;
2392	ti->num_flush_bios = 2;
2393	ti->flush_supported = true;
2394
2395	ti->num_discard_bios = 1;
2396	ti->discards_supported = true;
2397
2398	ti->per_io_data_size = sizeof(struct per_bio_data);
 
2399
2400	cache->features = ca->features;
2401	if (writethrough_mode(cache)) {
2402		/* Create bioset for writethrough bios issued to origin */
2403		r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2404		if (r)
2405			goto bad;
2406	}
2407
2408	cache->metadata_dev = ca->metadata_dev;
2409	cache->origin_dev = ca->origin_dev;
2410	cache->cache_dev = ca->cache_dev;
2411
2412	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2413
 
2414	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2415	origin_blocks = block_div(origin_blocks, ca->block_size);
2416	cache->origin_blocks = to_oblock(origin_blocks);
2417
2418	cache->sectors_per_block = ca->block_size;
2419	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2420		r = -EINVAL;
2421		goto bad;
2422	}
2423
2424	if (ca->block_size & (ca->block_size - 1)) {
2425		dm_block_t cache_size = ca->cache_sectors;
2426
2427		cache->sectors_per_block_shift = -1;
2428		cache_size = block_div(cache_size, ca->block_size);
2429		set_cache_size(cache, to_cblock(cache_size));
2430	} else {
2431		cache->sectors_per_block_shift = __ffs(ca->block_size);
2432		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2433	}
2434
2435	r = create_cache_policy(cache, ca, error);
2436	if (r)
2437		goto bad;
2438
2439	cache->policy_nr_args = ca->policy_argc;
2440	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2441
2442	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2443	if (r) {
2444		*error = "Error setting cache policy's config values";
2445		goto bad;
2446	}
2447
2448	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2449				     ca->block_size, may_format,
2450				     dm_cache_policy_get_hint_size(cache->policy),
2451				     ca->features.metadata_version);
2452	if (IS_ERR(cmd)) {
2453		*error = "Error creating metadata object";
2454		r = PTR_ERR(cmd);
2455		goto bad;
2456	}
2457	cache->cmd = cmd;
2458	set_cache_mode(cache, CM_WRITE);
2459	if (get_cache_mode(cache) != CM_WRITE) {
2460		*error = "Unable to get write access to metadata, please check/repair metadata.";
2461		r = -EINVAL;
2462		goto bad;
2463	}
2464
2465	if (passthrough_mode(cache)) {
2466		bool all_clean;
2467
2468		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2469		if (r) {
2470			*error = "dm_cache_metadata_all_clean() failed";
2471			goto bad;
2472		}
2473
2474		if (!all_clean) {
2475			*error = "Cannot enter passthrough mode unless all blocks are clean";
2476			r = -EINVAL;
2477			goto bad;
2478		}
2479
2480		policy_allow_migrations(cache->policy, false);
2481	}
2482
2483	spin_lock_init(&cache->lock);
2484	bio_list_init(&cache->deferred_bios);
2485	atomic_set(&cache->nr_allocated_migrations, 0);
2486	atomic_set(&cache->nr_io_migrations, 0);
 
 
 
 
2487	init_waitqueue_head(&cache->migration_wait);
2488
 
 
 
 
2489	r = -ENOMEM;
2490	atomic_set(&cache->nr_dirty, 0);
2491	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2492	if (!cache->dirty_bitset) {
2493		*error = "could not allocate dirty bitset";
2494		goto bad;
2495	}
2496	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2497
2498	cache->discard_block_size =
2499		calculate_discard_block_size(cache->sectors_per_block,
2500					     cache->origin_sectors);
2501	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2502							      cache->discard_block_size));
2503	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2504	if (!cache->discard_bitset) {
2505		*error = "could not allocate discard bitset";
2506		goto bad;
2507	}
2508	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2509
2510	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2511	if (IS_ERR(cache->copier)) {
2512		*error = "could not create kcopyd client";
2513		r = PTR_ERR(cache->copier);
2514		goto bad;
2515	}
2516
2517	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2518	if (!cache->wq) {
2519		*error = "could not create workqueue for metadata object";
2520		goto bad;
2521	}
2522	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2523	INIT_WORK(&cache->migration_worker, check_migrations);
2524	INIT_DELAYED_WORK(&cache->waker, do_waker);
 
2525
2526	cache->prison = dm_bio_prison_create_v2(cache->wq);
2527	if (!cache->prison) {
2528		*error = "could not create bio prison";
2529		goto bad;
2530	}
2531
2532	r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2533				   migration_cache);
2534	if (r) {
 
 
 
 
 
 
2535		*error = "Error creating cache's migration mempool";
2536		goto bad;
2537	}
2538
 
 
2539	cache->need_tick_bio = true;
2540	cache->sized = false;
2541	cache->invalidate = false;
2542	cache->commit_requested = false;
2543	cache->loaded_mappings = false;
2544	cache->loaded_discards = false;
2545
2546	load_stats(cache);
2547
2548	atomic_set(&cache->stats.demotion, 0);
2549	atomic_set(&cache->stats.promotion, 0);
2550	atomic_set(&cache->stats.copies_avoided, 0);
2551	atomic_set(&cache->stats.cache_cell_clash, 0);
2552	atomic_set(&cache->stats.commit_count, 0);
2553	atomic_set(&cache->stats.discard_count, 0);
2554
2555	spin_lock_init(&cache->invalidation_lock);
2556	INIT_LIST_HEAD(&cache->invalidation_requests);
2557
2558	batcher_init(&cache->committer, commit_op, cache,
2559		     issue_op, cache, cache->wq);
2560	dm_iot_init(&cache->tracker);
2561
2562	init_rwsem(&cache->background_work_lock);
2563	prevent_background_work(cache);
2564
2565	*result = cache;
2566	return 0;
 
2567bad:
2568	destroy(cache);
2569	return r;
2570}
2571
2572static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2573{
2574	unsigned int i;
2575	const char **copy;
2576
2577	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2578	if (!copy)
2579		return -ENOMEM;
2580	for (i = 0; i < argc; i++) {
2581		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2582		if (!copy[i]) {
2583			while (i--)
2584				kfree(copy[i]);
2585			kfree(copy);
2586			return -ENOMEM;
2587		}
2588	}
2589
2590	cache->nr_ctr_args = argc;
2591	cache->ctr_args = copy;
2592
2593	return 0;
2594}
2595
2596static int cache_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2597{
2598	int r = -EINVAL;
2599	struct cache_args *ca;
2600	struct cache *cache = NULL;
2601
2602	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2603	if (!ca) {
2604		ti->error = "Error allocating memory for cache";
2605		return -ENOMEM;
2606	}
2607	ca->ti = ti;
2608
2609	r = parse_cache_args(ca, argc, argv, &ti->error);
2610	if (r)
2611		goto out;
2612
2613	r = cache_create(ca, &cache);
2614	if (r)
2615		goto out;
2616
2617	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2618	if (r) {
2619		destroy(cache);
2620		goto out;
2621	}
2622
2623	ti->private = cache;
 
2624out:
2625	destroy_cache_args(ca);
2626	return r;
2627}
2628
2629/*----------------------------------------------------------------*/
2630
2631static int cache_map(struct dm_target *ti, struct bio *bio)
2632{
2633	struct cache *cache = ti->private;
2634
2635	int r;
2636	bool commit_needed;
2637	dm_oblock_t block = get_bio_block(cache, bio);
 
 
 
 
 
 
2638
2639	init_per_bio_data(bio);
2640	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2641		/*
2642		 * This can only occur if the io goes to a partial block at
2643		 * the end of the origin device.  We don't cache these.
2644		 * Just remap to the origin and carry on.
2645		 */
2646		remap_to_origin(cache, bio);
2647		accounted_begin(cache, bio);
2648		return DM_MAPIO_REMAPPED;
2649	}
2650
2651	if (discard_or_flush(bio)) {
2652		defer_bio(cache, bio);
2653		return DM_MAPIO_SUBMITTED;
2654	}
2655
2656	r = map_bio(cache, bio, block, &commit_needed);
2657	if (commit_needed)
2658		schedule_commit(&cache->committer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2659
2660	return r;
2661}
2662
2663static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2664{
2665	struct cache *cache = ti->private;
2666	unsigned long flags;
2667	struct per_bio_data *pb = get_per_bio_data(bio);
 
2668
2669	if (pb->tick) {
2670		policy_tick(cache->policy, false);
2671
2672		spin_lock_irqsave(&cache->lock, flags);
2673		cache->need_tick_bio = true;
2674		spin_unlock_irqrestore(&cache->lock, flags);
2675	}
2676
2677	bio_drop_shared_lock(cache, bio);
2678	accounted_complete(cache, bio);
2679
2680	return DM_ENDIO_DONE;
2681}
2682
2683static int write_dirty_bitset(struct cache *cache)
2684{
2685	int r;
2686
2687	if (get_cache_mode(cache) >= CM_READ_ONLY)
2688		return -EINVAL;
2689
2690	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2691	if (r)
2692		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
 
 
 
2693
2694	return r;
2695}
2696
2697static int write_discard_bitset(struct cache *cache)
2698{
2699	unsigned int i, r;
2700
2701	if (get_cache_mode(cache) >= CM_READ_ONLY)
2702		return -EINVAL;
2703
2704	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2705					   cache->discard_nr_blocks);
2706	if (r) {
2707		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2708		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2709		return r;
2710	}
2711
2712	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2713		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2714					 is_discarded(cache, to_dblock(i)));
2715		if (r) {
2716			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2717			return r;
2718		}
2719	}
2720
2721	return 0;
2722}
2723
2724static int write_hints(struct cache *cache)
2725{
2726	int r;
2727
2728	if (get_cache_mode(cache) >= CM_READ_ONLY)
2729		return -EINVAL;
2730
2731	r = dm_cache_write_hints(cache->cmd, cache->policy);
2732	if (r) {
2733		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2734		return r;
2735	}
2736
2737	return 0;
2738}
2739
2740/*
2741 * returns true on success
2742 */
2743static bool sync_metadata(struct cache *cache)
2744{
2745	int r1, r2, r3, r4;
2746
2747	r1 = write_dirty_bitset(cache);
2748	if (r1)
2749		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2750
2751	r2 = write_discard_bitset(cache);
2752	if (r2)
2753		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2754
2755	save_stats(cache);
2756
2757	r3 = write_hints(cache);
2758	if (r3)
2759		DMERR("%s: could not write hints", cache_device_name(cache));
2760
2761	/*
2762	 * If writing the above metadata failed, we still commit, but don't
2763	 * set the clean shutdown flag.  This will effectively force every
2764	 * dirty bit to be set on reload.
2765	 */
2766	r4 = commit(cache, !r1 && !r2 && !r3);
2767	if (r4)
2768		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2769
2770	return !r1 && !r2 && !r3 && !r4;
2771}
2772
2773static void cache_postsuspend(struct dm_target *ti)
2774{
2775	struct cache *cache = ti->private;
2776
2777	prevent_background_work(cache);
2778	BUG_ON(atomic_read(&cache->nr_io_migrations));
2779
2780	cancel_delayed_work_sync(&cache->waker);
2781	drain_workqueue(cache->wq);
2782	WARN_ON(cache->tracker.in_flight);
2783
2784	/*
2785	 * If it's a flush suspend there won't be any deferred bios, so this
2786	 * call is harmless.
2787	 */
2788	requeue_deferred_bios(cache);
2789
2790	if (get_cache_mode(cache) == CM_WRITE)
2791		(void) sync_metadata(cache);
2792}
2793
2794static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2795			bool dirty, uint32_t hint, bool hint_valid)
2796{
 
2797	struct cache *cache = context;
2798
2799	if (dirty) {
2800		set_bit(from_cblock(cblock), cache->dirty_bitset);
2801		atomic_inc(&cache->nr_dirty);
2802	} else
2803		clear_bit(from_cblock(cblock), cache->dirty_bitset);
2804
2805	return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2806}
2807
2808/*
2809 * The discard block size in the on disk metadata is not
2810 * necessarily the same as we're currently using.  So we have to
2811 * be careful to only set the discarded attribute if we know it
2812 * covers a complete block of the new size.
2813 */
2814struct discard_load_info {
2815	struct cache *cache;
2816
2817	/*
2818	 * These blocks are sized using the on disk dblock size, rather
2819	 * than the current one.
2820	 */
2821	dm_block_t block_size;
2822	dm_block_t discard_begin, discard_end;
2823};
2824
2825static void discard_load_info_init(struct cache *cache,
2826				   struct discard_load_info *li)
2827{
2828	li->cache = cache;
2829	li->discard_begin = li->discard_end = 0;
2830}
2831
2832static void set_discard_range(struct discard_load_info *li)
2833{
2834	sector_t b, e;
2835
2836	if (li->discard_begin == li->discard_end)
2837		return;
2838
2839	/*
2840	 * Convert to sectors.
2841	 */
2842	b = li->discard_begin * li->block_size;
2843	e = li->discard_end * li->block_size;
2844
2845	/*
2846	 * Then convert back to the current dblock size.
2847	 */
2848	b = dm_sector_div_up(b, li->cache->discard_block_size);
2849	sector_div(e, li->cache->discard_block_size);
2850
2851	/*
2852	 * The origin may have shrunk, so we need to check we're still in
2853	 * bounds.
2854	 */
2855	if (e > from_dblock(li->cache->discard_nr_blocks))
2856		e = from_dblock(li->cache->discard_nr_blocks);
2857
2858	for (; b < e; b++)
2859		set_discard(li->cache, to_dblock(b));
2860}
2861
2862static int load_discard(void *context, sector_t discard_block_size,
2863			dm_dblock_t dblock, bool discard)
2864{
2865	struct discard_load_info *li = context;
2866
2867	li->block_size = discard_block_size;
2868
2869	if (discard) {
2870		if (from_dblock(dblock) == li->discard_end)
2871			/*
2872			 * We're already in a discard range, just extend it.
2873			 */
2874			li->discard_end = li->discard_end + 1ULL;
2875
2876		else {
2877			/*
2878			 * Emit the old range and start a new one.
2879			 */
2880			set_discard_range(li);
2881			li->discard_begin = from_dblock(dblock);
2882			li->discard_end = li->discard_begin + 1ULL;
2883		}
2884	} else {
2885		set_discard_range(li);
2886		li->discard_begin = li->discard_end = 0;
2887	}
2888
2889	return 0;
2890}
2891
2892static dm_cblock_t get_cache_dev_size(struct cache *cache)
2893{
2894	sector_t size = get_dev_size(cache->cache_dev);
2895	(void) sector_div(size, cache->sectors_per_block);
2896	return to_cblock(size);
2897}
2898
2899static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2900{
2901	if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2902		if (cache->sized) {
2903			DMERR("%s: unable to extend cache due to missing cache table reload",
2904			      cache_device_name(cache));
2905			return false;
2906		}
2907	}
2908
2909	/*
2910	 * We can't drop a dirty block when shrinking the cache.
2911	 */
2912	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2913		new_size = to_cblock(from_cblock(new_size) + 1);
2914		if (is_dirty(cache, new_size)) {
2915			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2916			      cache_device_name(cache),
2917			      (unsigned long long) from_cblock(new_size));
2918			return false;
2919		}
2920	}
2921
2922	return true;
2923}
2924
2925static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2926{
2927	int r;
2928
2929	r = dm_cache_resize(cache->cmd, new_size);
2930	if (r) {
2931		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2932		metadata_operation_failed(cache, "dm_cache_resize", r);
2933		return r;
2934	}
2935
2936	set_cache_size(cache, new_size);
2937
2938	return 0;
2939}
2940
2941static int cache_preresume(struct dm_target *ti)
2942{
2943	int r = 0;
2944	struct cache *cache = ti->private;
2945	dm_cblock_t csize = get_cache_dev_size(cache);
2946
2947	/*
2948	 * Check to see if the cache has resized.
2949	 */
2950	if (!cache->sized) {
2951		r = resize_cache_dev(cache, csize);
2952		if (r)
2953			return r;
2954
2955		cache->sized = true;
2956
2957	} else if (csize != cache->cache_size) {
2958		if (!can_resize(cache, csize))
2959			return -EINVAL;
2960
2961		r = resize_cache_dev(cache, csize);
2962		if (r)
2963			return r;
2964	}
2965
2966	if (!cache->loaded_mappings) {
2967		r = dm_cache_load_mappings(cache->cmd, cache->policy,
2968					   load_mapping, cache);
2969		if (r) {
2970			DMERR("%s: could not load cache mappings", cache_device_name(cache));
2971			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
2972			return r;
2973		}
2974
2975		cache->loaded_mappings = true;
2976	}
2977
2978	if (!cache->loaded_discards) {
2979		struct discard_load_info li;
2980
2981		/*
2982		 * The discard bitset could have been resized, or the
2983		 * discard block size changed.  To be safe we start by
2984		 * setting every dblock to not discarded.
2985		 */
2986		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2987
2988		discard_load_info_init(cache, &li);
2989		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
2990		if (r) {
2991			DMERR("%s: could not load origin discards", cache_device_name(cache));
2992			metadata_operation_failed(cache, "dm_cache_load_discards", r);
2993			return r;
2994		}
2995		set_discard_range(&li);
2996
2997		cache->loaded_discards = true;
2998	}
2999
3000	return r;
3001}
3002
3003static void cache_resume(struct dm_target *ti)
3004{
3005	struct cache *cache = ti->private;
3006
3007	cache->need_tick_bio = true;
3008	allow_background_work(cache);
3009	do_waker(&cache->waker.work);
3010}
3011
3012static void emit_flags(struct cache *cache, char *result,
3013		       unsigned int maxlen, ssize_t *sz_ptr)
3014{
3015	ssize_t sz = *sz_ptr;
3016	struct cache_features *cf = &cache->features;
3017	unsigned int count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
3018
3019	DMEMIT("%u ", count);
3020
3021	if (cf->metadata_version == 2)
3022		DMEMIT("metadata2 ");
3023
3024	if (writethrough_mode(cache))
3025		DMEMIT("writethrough ");
3026
3027	else if (passthrough_mode(cache))
3028		DMEMIT("passthrough ");
3029
3030	else if (writeback_mode(cache))
3031		DMEMIT("writeback ");
3032
3033	else {
3034		DMEMIT("unknown ");
3035		DMERR("%s: internal error: unknown io mode: %d",
3036		      cache_device_name(cache), (int) cf->io_mode);
3037	}
3038
3039	if (!cf->discard_passdown)
3040		DMEMIT("no_discard_passdown ");
3041
3042	*sz_ptr = sz;
3043}
3044
3045/*
3046 * Status format:
3047 *
3048 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3049 * <cache block size> <#used cache blocks>/<#total cache blocks>
3050 * <#read hits> <#read misses> <#write hits> <#write misses>
3051 * <#demotions> <#promotions> <#dirty>
3052 * <#features> <features>*
3053 * <#core args> <core args>
3054 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3055 */
3056static void cache_status(struct dm_target *ti, status_type_t type,
3057			 unsigned int status_flags, char *result, unsigned int maxlen)
3058{
3059	int r = 0;
3060	unsigned int i;
3061	ssize_t sz = 0;
3062	dm_block_t nr_free_blocks_metadata = 0;
3063	dm_block_t nr_blocks_metadata = 0;
3064	char buf[BDEVNAME_SIZE];
3065	struct cache *cache = ti->private;
3066	dm_cblock_t residency;
3067	bool needs_check;
3068
3069	switch (type) {
3070	case STATUSTYPE_INFO:
3071		if (get_cache_mode(cache) == CM_FAIL) {
3072			DMEMIT("Fail");
3073			break;
3074		}
3075
3076		/* Commit to ensure statistics aren't out-of-date */
3077		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3078			(void) commit(cache, false);
 
 
 
3079
3080		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
 
3081		if (r) {
3082			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3083			      cache_device_name(cache), r);
3084			goto err;
3085		}
3086
3087		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3088		if (r) {
3089			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3090			      cache_device_name(cache), r);
3091			goto err;
3092		}
3093
3094		residency = policy_residency(cache->policy);
3095
3096		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3097		       (unsigned int)DM_CACHE_METADATA_BLOCK_SIZE,
3098		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3099		       (unsigned long long)nr_blocks_metadata,
3100		       (unsigned long long)cache->sectors_per_block,
3101		       (unsigned long long) from_cblock(residency),
3102		       (unsigned long long) from_cblock(cache->cache_size),
3103		       (unsigned int) atomic_read(&cache->stats.read_hit),
3104		       (unsigned int) atomic_read(&cache->stats.read_miss),
3105		       (unsigned int) atomic_read(&cache->stats.write_hit),
3106		       (unsigned int) atomic_read(&cache->stats.write_miss),
3107		       (unsigned int) atomic_read(&cache->stats.demotion),
3108		       (unsigned int) atomic_read(&cache->stats.promotion),
3109		       (unsigned long) atomic_read(&cache->nr_dirty));
 
 
 
3110
3111		emit_flags(cache, result, maxlen, &sz);
 
 
 
 
 
 
 
 
 
3112
3113		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3114
3115		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3116		if (sz < maxlen) {
3117			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3118			if (r)
3119				DMERR("%s: policy_emit_config_values returned %d",
3120				      cache_device_name(cache), r);
3121		}
3122
3123		if (get_cache_mode(cache) == CM_READ_ONLY)
3124			DMEMIT("ro ");
3125		else
3126			DMEMIT("rw ");
3127
3128		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3129
3130		if (r || needs_check)
3131			DMEMIT("needs_check ");
3132		else
3133			DMEMIT("- ");
3134
3135		break;
3136
3137	case STATUSTYPE_TABLE:
3138		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3139		DMEMIT("%s ", buf);
3140		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3141		DMEMIT("%s ", buf);
3142		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3143		DMEMIT("%s", buf);
3144
3145		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3146			DMEMIT(" %s", cache->ctr_args[i]);
3147		if (cache->nr_ctr_args)
3148			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3149		break;
3150
3151	case STATUSTYPE_IMA:
3152		DMEMIT_TARGET_NAME_VERSION(ti->type);
3153		if (get_cache_mode(cache) == CM_FAIL)
3154			DMEMIT(",metadata_mode=fail");
3155		else if (get_cache_mode(cache) == CM_READ_ONLY)
3156			DMEMIT(",metadata_mode=ro");
3157		else
3158			DMEMIT(",metadata_mode=rw");
3159
3160		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3161		DMEMIT(",cache_metadata_device=%s", buf);
3162		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3163		DMEMIT(",cache_device=%s", buf);
3164		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3165		DMEMIT(",cache_origin_device=%s", buf);
3166		DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n');
3167		DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n');
3168		DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n');
3169		DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n');
3170		DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y');
3171		DMEMIT(";");
3172		break;
3173	}
3174
3175	return;
3176
3177err:
3178	DMEMIT("Error");
3179}
3180
3181/*
3182 * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3183 * the one-past-the-end value.
3184 */
3185struct cblock_range {
3186	dm_cblock_t begin;
3187	dm_cblock_t end;
3188};
3189
3190/*
3191 * A cache block range can take two forms:
3192 *
3193 * i) A single cblock, eg. '3456'
3194 * ii) A begin and end cblock with a dash between, eg. 123-234
3195 */
3196static int parse_cblock_range(struct cache *cache, const char *str,
3197			      struct cblock_range *result)
3198{
3199	char dummy;
3200	uint64_t b, e;
3201	int r;
3202
3203	/*
3204	 * Try and parse form (ii) first.
3205	 */
3206	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3207	if (r < 0)
3208		return r;
3209
3210	if (r == 2) {
3211		result->begin = to_cblock(b);
3212		result->end = to_cblock(e);
3213		return 0;
3214	}
3215
3216	/*
3217	 * That didn't work, try form (i).
3218	 */
3219	r = sscanf(str, "%llu%c", &b, &dummy);
3220	if (r < 0)
3221		return r;
3222
3223	if (r == 1) {
3224		result->begin = to_cblock(b);
3225		result->end = to_cblock(from_cblock(result->begin) + 1u);
3226		return 0;
3227	}
3228
3229	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3230	return -EINVAL;
3231}
3232
3233static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3234{
3235	uint64_t b = from_cblock(range->begin);
3236	uint64_t e = from_cblock(range->end);
3237	uint64_t n = from_cblock(cache->cache_size);
3238
3239	if (b >= n) {
3240		DMERR("%s: begin cblock out of range: %llu >= %llu",
3241		      cache_device_name(cache), b, n);
3242		return -EINVAL;
3243	}
3244
3245	if (e > n) {
3246		DMERR("%s: end cblock out of range: %llu > %llu",
3247		      cache_device_name(cache), e, n);
3248		return -EINVAL;
3249	}
3250
3251	if (b >= e) {
3252		DMERR("%s: invalid cblock range: %llu >= %llu",
3253		      cache_device_name(cache), b, e);
3254		return -EINVAL;
3255	}
3256
3257	return 0;
3258}
3259
3260static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3261{
3262	return to_cblock(from_cblock(b) + 1);
3263}
3264
3265static int request_invalidation(struct cache *cache, struct cblock_range *range)
3266{
3267	int r = 0;
3268
3269	/*
3270	 * We don't need to do any locking here because we know we're in
3271	 * passthrough mode.  There's is potential for a race between an
3272	 * invalidation triggered by an io and an invalidation message.  This
3273	 * is harmless, we must not worry if the policy call fails.
3274	 */
3275	while (range->begin != range->end) {
3276		r = invalidate_cblock(cache, range->begin);
3277		if (r)
3278			return r;
3279
3280		range->begin = cblock_succ(range->begin);
3281	}
 
 
3282
3283	cache->commit_requested = true;
3284	return r;
3285}
3286
3287static int process_invalidate_cblocks_message(struct cache *cache, unsigned int count,
3288					      const char **cblock_ranges)
3289{
3290	int r = 0;
3291	unsigned int i;
3292	struct cblock_range range;
3293
3294	if (!passthrough_mode(cache)) {
3295		DMERR("%s: cache has to be in passthrough mode for invalidation",
3296		      cache_device_name(cache));
3297		return -EPERM;
3298	}
3299
3300	for (i = 0; i < count; i++) {
3301		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3302		if (r)
3303			break;
3304
3305		r = validate_cblock_range(cache, &range);
3306		if (r)
3307			break;
3308
3309		/*
3310		 * Pass begin and end origin blocks to the worker and wake it.
3311		 */
3312		r = request_invalidation(cache, &range);
3313		if (r)
3314			break;
3315	}
3316
3317	return r;
3318}
3319
3320/*
3321 * Supports
3322 *	"<key> <value>"
3323 * and
3324 *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3325 *
3326 * The key migration_threshold is supported by the cache target core.
3327 */
3328static int cache_message(struct dm_target *ti, unsigned int argc, char **argv,
3329			 char *result, unsigned int maxlen)
3330{
3331	struct cache *cache = ti->private;
3332
3333	if (!argc)
3334		return -EINVAL;
3335
3336	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3337		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3338		      cache_device_name(cache));
3339		return -EOPNOTSUPP;
3340	}
3341
3342	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3343		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3344
3345	if (argc != 2)
3346		return -EINVAL;
3347
3348	return set_config_value(cache, argv[0], argv[1]);
3349}
3350
3351static int cache_iterate_devices(struct dm_target *ti,
3352				 iterate_devices_callout_fn fn, void *data)
3353{
3354	int r = 0;
3355	struct cache *cache = ti->private;
3356
3357	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3358	if (!r)
3359		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3360
3361	return r;
3362}
3363
3364/*
3365 * If discard_passdown was enabled verify that the origin device
3366 * supports discards.  Disable discard_passdown if not.
3367 */
3368static void disable_passdown_if_not_supported(struct cache *cache)
 
 
 
 
3369{
3370	struct block_device *origin_bdev = cache->origin_dev->bdev;
3371	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3372	const char *reason = NULL;
3373
3374	if (!cache->features.discard_passdown)
3375		return;
3376
3377	if (!bdev_max_discard_sectors(origin_bdev))
3378		reason = "discard unsupported";
3379
3380	else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3381		reason = "max discard sectors smaller than a block";
3382
3383	if (reason) {
3384		DMWARN("Origin device (%pg) %s: Disabling discard passdown.",
3385		       origin_bdev, reason);
3386		cache->features.discard_passdown = false;
3387	}
3388}
3389
3390static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3391{
3392	struct block_device *origin_bdev = cache->origin_dev->bdev;
3393	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3394
3395	if (!cache->features.discard_passdown) {
3396		/* No passdown is done so setting own virtual limits */
3397		limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3398						    cache->origin_sectors);
3399		limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3400		return;
3401	}
3402
3403	/*
3404	 * cache_iterate_devices() is stacking both origin and fast device limits
3405	 * but discards aren't passed to fast device, so inherit origin's limits.
3406	 */
3407	limits->max_discard_sectors = origin_limits->max_discard_sectors;
3408	limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3409	limits->discard_granularity = origin_limits->discard_granularity;
3410	limits->discard_alignment = origin_limits->discard_alignment;
3411	limits->discard_misaligned = origin_limits->discard_misaligned;
3412}
3413
3414static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3415{
3416	struct cache *cache = ti->private;
3417	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3418
3419	/*
3420	 * If the system-determined stacked limits are compatible with the
3421	 * cache's blocksize (io_opt is a factor) do not override them.
3422	 */
3423	if (io_opt_sectors < cache->sectors_per_block ||
3424	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3425		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3426		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3427	}
3428
3429	disable_passdown_if_not_supported(cache);
3430	set_discard_limits(cache, limits);
3431}
3432
3433/*----------------------------------------------------------------*/
3434
3435static struct target_type cache_target = {
3436	.name = "cache",
3437	.version = {2, 2, 0},
3438	.module = THIS_MODULE,
3439	.ctr = cache_ctr,
3440	.dtr = cache_dtr,
3441	.map = cache_map,
3442	.end_io = cache_end_io,
3443	.postsuspend = cache_postsuspend,
3444	.preresume = cache_preresume,
3445	.resume = cache_resume,
3446	.status = cache_status,
3447	.message = cache_message,
3448	.iterate_devices = cache_iterate_devices,
 
3449	.io_hints = cache_io_hints,
3450};
3451
3452static int __init dm_cache_init(void)
3453{
3454	int r;
3455
3456	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3457	if (!migration_cache)
3458		return -ENOMEM;
3459
3460	r = dm_register_target(&cache_target);
3461	if (r) {
3462		kmem_cache_destroy(migration_cache);
3463		return r;
 
 
 
 
 
 
3464	}
3465
3466	return 0;
3467}
3468
3469static void __exit dm_cache_exit(void)
3470{
3471	dm_unregister_target(&cache_target);
3472	kmem_cache_destroy(migration_cache);
3473}
3474
3475module_init(dm_cache_init);
3476module_exit(dm_cache_exit);
3477
3478MODULE_DESCRIPTION(DM_NAME " cache target");
3479MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3480MODULE_LICENSE("GPL");
v3.15
 
   1/*
   2 * Copyright (C) 2012 Red Hat. All rights reserved.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm.h"
   8#include "dm-bio-prison.h"
   9#include "dm-bio-record.h"
  10#include "dm-cache-metadata.h"
 
  11
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
 
  14#include <linux/init.h>
  15#include <linux/mempool.h>
  16#include <linux/module.h>
 
  17#include <linux/slab.h>
  18#include <linux/vmalloc.h>
  19
  20#define DM_MSG_PREFIX "cache"
  21
  22DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
  23	"A percentage of time allocated for copying to and/or from cache");
  24
  25/*----------------------------------------------------------------*/
  26
  27/*
  28 * Glossary:
  29 *
  30 * oblock: index of an origin block
  31 * cblock: index of a cache block
  32 * promotion: movement of a block from origin to cache
  33 * demotion: movement of a block from cache to origin
  34 * migration: movement of a block between the origin and cache device,
  35 *	      either direction
  36 */
  37
  38/*----------------------------------------------------------------*/
  39
  40static size_t bitset_size_in_bytes(unsigned nr_entries)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  41{
  42	return sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG);
 
 
 
 
 
 
 
 
 
 
  43}
  44
  45static unsigned long *alloc_bitset(unsigned nr_entries)
  46{
  47	size_t s = bitset_size_in_bytes(nr_entries);
  48	return vzalloc(s);
  49}
  50
  51static void clear_bitset(void *bitset, unsigned nr_entries)
  52{
  53	size_t s = bitset_size_in_bytes(nr_entries);
  54	memset(bitset, 0, s);
 
 
 
 
 
 
 
  55}
  56
  57static void free_bitset(unsigned long *bits)
 
 
 
  58{
  59	vfree(bits);
 
 
 
 
 
 
 
 
  60}
  61
  62/*----------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63
  64/*
  65 * There are a couple of places where we let a bio run, but want to do some
  66 * work before calling its endio function.  We do this by temporarily
  67 * changing the endio fn.
  68 */
  69struct dm_hook_info {
  70	bio_end_io_t *bi_end_io;
  71	void *bi_private;
  72};
  73
  74static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
  75			bio_end_io_t *bi_end_io, void *bi_private)
  76{
  77	h->bi_end_io = bio->bi_end_io;
  78	h->bi_private = bio->bi_private;
  79
  80	bio->bi_end_io = bi_end_io;
  81	bio->bi_private = bi_private;
  82}
  83
  84static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
  85{
  86	bio->bi_end_io = h->bi_end_io;
  87	bio->bi_private = h->bi_private;
  88
  89	/*
  90	 * Must bump bi_remaining to allow bio to complete with
  91	 * restored bi_end_io.
  92	 */
  93	atomic_inc(&bio->bi_remaining);
  94}
  95
  96/*----------------------------------------------------------------*/
  97
  98#define PRISON_CELLS 1024
  99#define MIGRATION_POOL_SIZE 128
 100#define COMMIT_PERIOD HZ
 101#define MIGRATION_COUNT_WINDOW 10
 102
 103/*
 104 * The block size of the device holding cache data must be
 105 * between 32KB and 1GB.
 106 */
 107#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
 108#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
 109
 110/*
 111 * FIXME: the cache is read/write for the time being.
 112 */
 113enum cache_metadata_mode {
 114	CM_WRITE,		/* metadata may be changed */
 115	CM_READ_ONLY,		/* metadata may not be changed */
 
 116};
 117
 118enum cache_io_mode {
 119	/*
 120	 * Data is written to cached blocks only.  These blocks are marked
 121	 * dirty.  If you lose the cache device you will lose data.
 122	 * Potential performance increase for both reads and writes.
 123	 */
 124	CM_IO_WRITEBACK,
 125
 126	/*
 127	 * Data is written to both cache and origin.  Blocks are never
 128	 * dirty.  Potential performance benfit for reads only.
 129	 */
 130	CM_IO_WRITETHROUGH,
 131
 132	/*
 133	 * A degraded mode useful for various cache coherency situations
 134	 * (eg, rolling back snapshots).  Reads and writes always go to the
 135	 * origin.  If a write goes to a cached oblock, then the cache
 136	 * block is invalidated.
 137	 */
 138	CM_IO_PASSTHROUGH
 139};
 140
 141struct cache_features {
 142	enum cache_metadata_mode mode;
 143	enum cache_io_mode io_mode;
 
 
 144};
 145
 146struct cache_stats {
 147	atomic_t read_hit;
 148	atomic_t read_miss;
 149	atomic_t write_hit;
 150	atomic_t write_miss;
 151	atomic_t demotion;
 152	atomic_t promotion;
 
 153	atomic_t copies_avoided;
 154	atomic_t cache_cell_clash;
 155	atomic_t commit_count;
 156	atomic_t discard_count;
 157};
 158
 159/*
 160 * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
 161 * the one-past-the-end value.
 162 */
 163struct cblock_range {
 164	dm_cblock_t begin;
 165	dm_cblock_t end;
 166};
 167
 168struct invalidation_request {
 169	struct list_head list;
 170	struct cblock_range *cblocks;
 171
 172	atomic_t complete;
 173	int err;
 174
 175	wait_queue_head_t result_wait;
 176};
 177
 178struct cache {
 179	struct dm_target *ti;
 180	struct dm_target_callbacks callbacks;
 
 
 
 
 
 
 181
 182	struct dm_cache_metadata *cmd;
 183
 184	/*
 185	 * Metadata is written to this device.
 186	 */
 187	struct dm_dev *metadata_dev;
 188
 189	/*
 190	 * The slower of the two data devices.  Typically a spindle.
 191	 */
 192	struct dm_dev *origin_dev;
 193
 194	/*
 195	 * The faster of the two data devices.  Typically an SSD.
 196	 */
 197	struct dm_dev *cache_dev;
 198
 199	/*
 200	 * Size of the origin device in _complete_ blocks and native sectors.
 201	 */
 202	dm_oblock_t origin_blocks;
 203	sector_t origin_sectors;
 204
 205	/*
 206	 * Size of the cache device in blocks.
 207	 */
 208	dm_cblock_t cache_size;
 209
 210	/*
 211	 * Fields for converting from sectors to blocks.
 212	 */
 213	uint32_t sectors_per_block;
 214	int sectors_per_block_shift;
 215
 216	spinlock_t lock;
 217	struct bio_list deferred_bios;
 218	struct bio_list deferred_flush_bios;
 219	struct bio_list deferred_writethrough_bios;
 220	struct list_head quiesced_migrations;
 221	struct list_head completed_migrations;
 222	struct list_head need_commit_migrations;
 223	sector_t migration_threshold;
 224	wait_queue_head_t migration_wait;
 225	atomic_t nr_migrations;
 226
 227	wait_queue_head_t quiescing_wait;
 228	atomic_t quiescing;
 229	atomic_t quiescing_ack;
 230
 231	/*
 232	 * cache_size entries, dirty if set
 
 233	 */
 234	dm_cblock_t nr_dirty;
 235	unsigned long *dirty_bitset;
 
 
 
 236
 237	/*
 238	 * origin_blocks entries, discarded if set.
 239	 */
 240	dm_oblock_t discard_nr_blocks;
 241	unsigned long *discard_bitset;
 
 242
 243	/*
 244	 * Rather than reconstructing the table line for the status we just
 245	 * save it and regurgitate.
 246	 */
 247	unsigned nr_ctr_args;
 248	const char **ctr_args;
 249
 250	struct dm_kcopyd_client *copier;
 
 
 251	struct workqueue_struct *wq;
 252	struct work_struct worker;
 
 253
 254	struct delayed_work waker;
 255	unsigned long last_commit_jiffies;
 
 
 
 256
 257	struct dm_bio_prison *prison;
 258	struct dm_deferred_set *all_io_ds;
 259
 260	mempool_t *migration_pool;
 261	struct dm_cache_migration *next_migration;
 
 
 262
 263	struct dm_cache_policy *policy;
 264	unsigned policy_nr_args;
 265
 266	bool need_tick_bio:1;
 267	bool sized:1;
 268	bool invalidate:1;
 269	bool commit_requested:1;
 270	bool loaded_mappings:1;
 271	bool loaded_discards:1;
 272
 273	/*
 274	 * Cache features such as write-through.
 275	 */
 276	struct cache_features features;
 
 
 277
 278	struct cache_stats stats;
 279
 280	/*
 281	 * Invalidation fields.
 282	 */
 283	spinlock_t invalidation_lock;
 284	struct list_head invalidation_requests;
 285};
 286
 287struct per_bio_data {
 288	bool tick:1;
 289	unsigned req_nr:2;
 290	struct dm_deferred_entry *all_io_entry;
 291	struct dm_hook_info hook_info;
 
 
 292
 293	/*
 294	 * writethrough fields.  These MUST remain at the end of this
 295	 * structure and the 'cache' member must be the first as it
 296	 * is used to determine the offset of the writethrough fields.
 297	 */
 298	struct cache *cache;
 299	dm_cblock_t cblock;
 300	struct dm_bio_details bio_details;
 
 
 
 
 
 301};
 302
 303struct dm_cache_migration {
 304	struct list_head list;
 305	struct cache *cache;
 
 
 
 306
 307	unsigned long start_jiffies;
 308	dm_oblock_t old_oblock;
 309	dm_oblock_t new_oblock;
 310	dm_cblock_t cblock;
 311
 312	bool err:1;
 313	bool writeback:1;
 314	bool demote:1;
 315	bool promote:1;
 316	bool requeue_holder:1;
 317	bool invalidate:1;
 318
 319	struct dm_bio_prison_cell *old_ocell;
 320	struct dm_bio_prison_cell *new_ocell;
 321};
 322
 323/*
 324 * Processing a bio in the worker thread may require these memory
 325 * allocations.  We prealloc to avoid deadlocks (the same worker thread
 326 * frees them back to the mempool).
 327 */
 328struct prealloc {
 329	struct dm_cache_migration *mg;
 330	struct dm_bio_prison_cell *cell1;
 331	struct dm_bio_prison_cell *cell2;
 332};
 333
 334static void wake_worker(struct cache *cache)
 335{
 336	queue_work(cache->wq, &cache->worker);
 
 
 
 337}
 338
 339/*----------------------------------------------------------------*/
 340
 341static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
 342{
 343	/* FIXME: change to use a local slab. */
 344	return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
 345}
 346
 347static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
 348{
 349	dm_bio_prison_free_cell(cache->prison, cell);
 350}
 351
 352static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
 353{
 354	if (!p->mg) {
 355		p->mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
 356		if (!p->mg)
 357			return -ENOMEM;
 358	}
 359
 360	if (!p->cell1) {
 361		p->cell1 = alloc_prison_cell(cache);
 362		if (!p->cell1)
 363			return -ENOMEM;
 364	}
 365
 366	if (!p->cell2) {
 367		p->cell2 = alloc_prison_cell(cache);
 368		if (!p->cell2)
 369			return -ENOMEM;
 370	}
 371
 372	return 0;
 373}
 374
 375static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
 376{
 377	if (p->cell2)
 378		free_prison_cell(cache, p->cell2);
 379
 380	if (p->cell1)
 381		free_prison_cell(cache, p->cell1);
 382
 383	if (p->mg)
 384		mempool_free(p->mg, cache->migration_pool);
 385}
 386
 387static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
 
 
 388{
 389	struct dm_cache_migration *mg = p->mg;
 
 390
 391	BUG_ON(!mg);
 392	p->mg = NULL;
 393
 394	return mg;
 
 
 395}
 396
 397/*
 398 * You must have a cell within the prealloc struct to return.  If not this
 399 * function will BUG() rather than returning NULL.
 400 */
 401static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
 
 
 
 402{
 403	struct dm_bio_prison_cell *r = NULL;
 
 
 
 404
 405	if (p->cell1) {
 406		r = p->cell1;
 407		p->cell1 = NULL;
 
 
 408
 409	} else if (p->cell2) {
 410		r = p->cell2;
 411		p->cell2 = NULL;
 412	} else
 413		BUG();
 414
 415	return r;
 
 416}
 417
 418/*
 419 * You can't have more than two cells in a prealloc struct.  BUG() will be
 420 * called if you try and overfill.
 421 */
 422static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
 423{
 424	if (!p->cell2)
 425		p->cell2 = cell;
 426
 427	else if (!p->cell1)
 428		p->cell1 = cell;
 
 
 429
 430	else
 431		BUG();
 432}
 433
 434/*----------------------------------------------------------------*/
 435
 436static void build_key(dm_oblock_t oblock, struct dm_cell_key *key)
 437{
 438	key->virtual = 0;
 439	key->dev = 0;
 440	key->block = from_oblock(oblock);
 
 
 441}
 442
 443/*
 444 * The caller hands in a preallocated cell, and a free function for it.
 445 * The cell will be freed if there's an error, or if it wasn't used because
 446 * a cell with that key already exists.
 447 */
 448typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
 449
 450static int bio_detain(struct cache *cache, dm_oblock_t oblock,
 451		      struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
 452		      cell_free_fn free_fn, void *free_context,
 453		      struct dm_bio_prison_cell **cell_result)
 454{
 455	int r;
 456	struct dm_cell_key key;
 
 
 457
 458	build_key(oblock, &key);
 459	r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
 460	if (r)
 461		free_fn(free_context, cell_prealloc);
 462
 463	return r;
 464}
 465
 466static int get_cell(struct cache *cache,
 467		    dm_oblock_t oblock,
 468		    struct prealloc *structs,
 469		    struct dm_bio_prison_cell **cell_result)
 470{
 471	int r;
 472	struct dm_cell_key key;
 473	struct dm_bio_prison_cell *cell_prealloc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 474
 475	cell_prealloc = prealloc_get_cell(structs);
 
 476
 477	build_key(oblock, &key);
 478	r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
 479	if (r)
 480		prealloc_put_cell(structs, cell_prealloc);
 481
 482	return r;
 483}
 484
 485/*----------------------------------------------------------------*/
 486
 487static bool is_dirty(struct cache *cache, dm_cblock_t b)
 488{
 489	return test_bit(from_cblock(b), cache->dirty_bitset);
 490}
 491
 492static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
 493{
 494	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
 495		cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) + 1);
 496		policy_set_dirty(cache->policy, oblock);
 497	}
 498}
 499
 500static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
 
 
 
 
 
 
 
 
 
 
 
 501{
 502	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
 503		policy_clear_dirty(cache->policy, oblock);
 504		cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) - 1);
 505		if (!from_cblock(cache->nr_dirty))
 506			dm_table_event(cache->ti->table);
 507	}
 
 
 508}
 509
 510/*----------------------------------------------------------------*/
 511
 512static bool block_size_is_power_of_two(struct cache *cache)
 513{
 514	return cache->sectors_per_block_shift >= 0;
 515}
 516
 517/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
 518#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
 519__always_inline
 520#endif
 521static dm_block_t block_div(dm_block_t b, uint32_t n)
 522{
 523	do_div(b, n);
 524
 525	return b;
 526}
 527
 528static void set_discard(struct cache *cache, dm_oblock_t b)
 529{
 530	unsigned long flags;
 531
 532	atomic_inc(&cache->stats.discard_count);
 
 
 
 533
 534	spin_lock_irqsave(&cache->lock, flags);
 535	set_bit(from_oblock(b), cache->discard_bitset);
 536	spin_unlock_irqrestore(&cache->lock, flags);
 537}
 538
 539static void clear_discard(struct cache *cache, dm_oblock_t b)
 540{
 541	unsigned long flags;
 542
 543	spin_lock_irqsave(&cache->lock, flags);
 544	clear_bit(from_oblock(b), cache->discard_bitset);
 545	spin_unlock_irqrestore(&cache->lock, flags);
 546}
 547
 548static bool is_discarded(struct cache *cache, dm_oblock_t b)
 549{
 550	int r;
 551	unsigned long flags;
 552
 553	spin_lock_irqsave(&cache->lock, flags);
 554	r = test_bit(from_oblock(b), cache->discard_bitset);
 555	spin_unlock_irqrestore(&cache->lock, flags);
 
 556
 557	return r;
 
 
 
 
 558}
 559
 560static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
 561{
 562	int r;
 563	unsigned long flags;
 564
 565	spin_lock_irqsave(&cache->lock, flags);
 566	r = test_bit(from_oblock(b), cache->discard_bitset);
 567	spin_unlock_irqrestore(&cache->lock, flags);
 568
 569	return r;
 570}
 571
 572/*----------------------------------------------------------------*/
 573
 574static void load_stats(struct cache *cache)
 575{
 576	struct dm_cache_statistics stats;
 577
 578	dm_cache_metadata_get_stats(cache->cmd, &stats);
 579	atomic_set(&cache->stats.read_hit, stats.read_hits);
 580	atomic_set(&cache->stats.read_miss, stats.read_misses);
 581	atomic_set(&cache->stats.write_hit, stats.write_hits);
 582	atomic_set(&cache->stats.write_miss, stats.write_misses);
 583}
 584
 585static void save_stats(struct cache *cache)
 586{
 587	struct dm_cache_statistics stats;
 588
 589	stats.read_hits = atomic_read(&cache->stats.read_hit);
 590	stats.read_misses = atomic_read(&cache->stats.read_miss);
 591	stats.write_hits = atomic_read(&cache->stats.write_hit);
 592	stats.write_misses = atomic_read(&cache->stats.write_miss);
 593
 594	dm_cache_metadata_set_stats(cache->cmd, &stats);
 595}
 596
 597/*----------------------------------------------------------------
 598 * Per bio data
 599 *--------------------------------------------------------------*/
 600
 601/*
 602 * If using writeback, leave out struct per_bio_data's writethrough fields.
 
 
 603 */
 604#define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
 605#define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
 606
 607static bool writethrough_mode(struct cache_features *f)
 608{
 609	return f->io_mode == CM_IO_WRITETHROUGH;
 610}
 611
 612static bool writeback_mode(struct cache_features *f)
 613{
 614	return f->io_mode == CM_IO_WRITEBACK;
 615}
 616
 617static bool passthrough_mode(struct cache_features *f)
 618{
 619	return f->io_mode == CM_IO_PASSTHROUGH;
 620}
 621
 622static size_t get_per_bio_data_size(struct cache *cache)
 623{
 624	return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
 625}
 626
 627static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
 628{
 629	struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
 630	BUG_ON(!pb);
 631	return pb;
 632}
 633
 634static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
 635{
 636	struct per_bio_data *pb = get_per_bio_data(bio, data_size);
 637
 638	pb->tick = false;
 639	pb->req_nr = dm_bio_get_target_bio_nr(bio);
 640	pb->all_io_entry = NULL;
 641
 642	return pb;
 643}
 644
 645/*----------------------------------------------------------------
 646 * Remapping
 647 *--------------------------------------------------------------*/
 648static void remap_to_origin(struct cache *cache, struct bio *bio)
 649{
 650	bio->bi_bdev = cache->origin_dev->bdev;
 651}
 652
 653static void remap_to_cache(struct cache *cache, struct bio *bio,
 654			   dm_cblock_t cblock)
 655{
 656	sector_t bi_sector = bio->bi_iter.bi_sector;
 657	sector_t block = from_cblock(cblock);
 658
 659	bio->bi_bdev = cache->cache_dev->bdev;
 660	if (!block_size_is_power_of_two(cache))
 661		bio->bi_iter.bi_sector =
 662			(block * cache->sectors_per_block) +
 663			sector_div(bi_sector, cache->sectors_per_block);
 664	else
 665		bio->bi_iter.bi_sector =
 666			(block << cache->sectors_per_block_shift) |
 667			(bi_sector & (cache->sectors_per_block - 1));
 668}
 669
 670static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
 671{
 672	unsigned long flags;
 673	size_t pb_data_size = get_per_bio_data_size(cache);
 674	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 675
 676	spin_lock_irqsave(&cache->lock, flags);
 677	if (cache->need_tick_bio &&
 678	    !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
 
 679		pb->tick = true;
 680		cache->need_tick_bio = false;
 681	}
 682	spin_unlock_irqrestore(&cache->lock, flags);
 683}
 684
 685static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 686				  dm_oblock_t oblock)
 687{
 
 688	check_if_tick_bio_needed(cache, bio);
 689	remap_to_origin(cache, bio);
 690	if (bio_data_dir(bio) == WRITE)
 691		clear_discard(cache, oblock);
 692}
 693
 694static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
 695				 dm_oblock_t oblock, dm_cblock_t cblock)
 696{
 697	check_if_tick_bio_needed(cache, bio);
 698	remap_to_cache(cache, bio, cblock);
 699	if (bio_data_dir(bio) == WRITE) {
 700		set_dirty(cache, oblock, cblock);
 701		clear_discard(cache, oblock);
 702	}
 703}
 704
 705static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
 706{
 707	sector_t block_nr = bio->bi_iter.bi_sector;
 708
 709	if (!block_size_is_power_of_two(cache))
 710		(void) sector_div(block_nr, cache->sectors_per_block);
 711	else
 712		block_nr >>= cache->sectors_per_block_shift;
 713
 714	return to_oblock(block_nr);
 715}
 716
 717static int bio_triggers_commit(struct cache *cache, struct bio *bio)
 718{
 719	return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
 720}
 721
 722static void issue(struct cache *cache, struct bio *bio)
 723{
 724	unsigned long flags;
 725
 726	if (!bio_triggers_commit(cache, bio)) {
 727		generic_make_request(bio);
 728		return;
 
 729	}
 730
 731	/*
 732	 * Batch together any bios that trigger commits and then issue a
 733	 * single commit for them in do_worker().
 734	 */
 735	spin_lock_irqsave(&cache->lock, flags);
 736	cache->commit_requested = true;
 737	bio_list_add(&cache->deferred_flush_bios, bio);
 738	spin_unlock_irqrestore(&cache->lock, flags);
 739}
 740
 741static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
 742{
 743	unsigned long flags;
 744
 745	spin_lock_irqsave(&cache->lock, flags);
 746	bio_list_add(&cache->deferred_writethrough_bios, bio);
 747	spin_unlock_irqrestore(&cache->lock, flags);
 748
 749	wake_worker(cache);
 
 
 
 750}
 751
 752static void writethrough_endio(struct bio *bio, int err)
 753{
 754	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
 755
 756	dm_unhook_bio(&pb->hook_info, bio);
 757
 758	if (err) {
 759		bio_endio(bio, err);
 760		return;
 761	}
 762
 763	dm_bio_restore(&pb->bio_details, bio);
 764	remap_to_cache(pb->cache, bio, pb->cblock);
 765
 766	/*
 767	 * We can't issue this bio directly, since we're in interrupt
 768	 * context.  So it gets put on a bio list for processing by the
 769	 * worker thread.
 770	 */
 771	defer_writethrough_bio(pb->cache, bio);
 772}
 773
 774/*
 775 * When running in writethrough mode we need to send writes to clean blocks
 776 * to both the cache and origin devices.  In future we'd like to clone the
 777 * bio and send them in parallel, but for now we're doing them in
 778 * series as this is easier.
 779 */
 780static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
 781				       dm_oblock_t oblock, dm_cblock_t cblock)
 782{
 783	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
 
 784
 785	pb->cache = cache;
 786	pb->cblock = cblock;
 787	dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
 788	dm_bio_record(&pb->bio_details, bio);
 789
 790	remap_to_origin_clear_discard(pb->cache, bio, oblock);
 791}
 792
 793/*----------------------------------------------------------------
 794 * Migration processing
 795 *
 796 * Migration covers moving data from the origin device to the cache, or
 797 * vice versa.
 798 *--------------------------------------------------------------*/
 799static void free_migration(struct dm_cache_migration *mg)
 800{
 801	mempool_free(mg, mg->cache->migration_pool);
 802}
 803
 804static void inc_nr_migrations(struct cache *cache)
 805{
 806	atomic_inc(&cache->nr_migrations);
 807}
 808
 809static void dec_nr_migrations(struct cache *cache)
 
 
 
 
 
 810{
 811	atomic_dec(&cache->nr_migrations);
 812
 813	/*
 814	 * Wake the worker in case we're suspending the target.
 815	 */
 816	wake_up(&cache->migration_wait);
 817}
 818
 819static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
 820			 bool holder)
 821{
 822	(holder ? dm_cell_release : dm_cell_release_no_holder)
 823		(cache->prison, cell, &cache->deferred_bios);
 824	free_prison_cell(cache, cell);
 825}
 826
 827static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
 828		       bool holder)
 829{
 830	unsigned long flags;
 831
 832	spin_lock_irqsave(&cache->lock, flags);
 833	__cell_defer(cache, cell, holder);
 834	spin_unlock_irqrestore(&cache->lock, flags);
 835
 836	wake_worker(cache);
 
 
 837}
 838
 839static void cleanup_migration(struct dm_cache_migration *mg)
 840{
 841	struct cache *cache = mg->cache;
 842	free_migration(mg);
 843	dec_nr_migrations(cache);
 844}
 845
 846static void migration_failure(struct dm_cache_migration *mg)
 847{
 848	struct cache *cache = mg->cache;
 
 
 849
 850	if (mg->writeback) {
 851		DMWARN_LIMIT("writeback failed; couldn't copy block");
 852		set_dirty(cache, mg->old_oblock, mg->cblock);
 853		cell_defer(cache, mg->old_ocell, false);
 854
 855	} else if (mg->demote) {
 856		DMWARN_LIMIT("demotion failed; couldn't copy block");
 857		policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
 858
 859		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
 860		if (mg->promote)
 861			cell_defer(cache, mg->new_ocell, true);
 862	} else {
 863		DMWARN_LIMIT("promotion failed; couldn't copy block");
 864		policy_remove_mapping(cache->policy, mg->new_oblock);
 865		cell_defer(cache, mg->new_ocell, true);
 866	}
 867
 868	cleanup_migration(mg);
 869}
 
 870
 871static void migration_success_pre_commit(struct dm_cache_migration *mg)
 872{
 873	unsigned long flags;
 874	struct cache *cache = mg->cache;
 
 875
 876	if (mg->writeback) {
 877		cell_defer(cache, mg->old_ocell, false);
 878		clear_dirty(cache, mg->old_oblock, mg->cblock);
 879		cleanup_migration(mg);
 880		return;
 881
 882	} else if (mg->demote) {
 883		if (dm_cache_remove_mapping(cache->cmd, mg->cblock)) {
 884			DMWARN_LIMIT("demotion failed; couldn't update on disk metadata");
 885			policy_force_mapping(cache->policy, mg->new_oblock,
 886					     mg->old_oblock);
 887			if (mg->promote)
 888				cell_defer(cache, mg->new_ocell, true);
 889			cleanup_migration(mg);
 890			return;
 891		}
 892	} else {
 893		if (dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock)) {
 894			DMWARN_LIMIT("promotion failed; couldn't update on disk metadata");
 895			policy_remove_mapping(cache->policy, mg->new_oblock);
 896			cleanup_migration(mg);
 897			return;
 898		}
 899	}
 900
 901	spin_lock_irqsave(&cache->lock, flags);
 902	list_add_tail(&mg->list, &cache->need_commit_migrations);
 903	cache->commit_requested = true;
 904	spin_unlock_irqrestore(&cache->lock, flags);
 905}
 906
 907static void migration_success_post_commit(struct dm_cache_migration *mg)
 908{
 909	unsigned long flags;
 910	struct cache *cache = mg->cache;
 911
 912	if (mg->writeback) {
 913		DMWARN("writeback unexpectedly triggered commit");
 914		return;
 915
 916	} else if (mg->demote) {
 917		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
 918
 919		if (mg->promote) {
 920			mg->demote = false;
 921
 922			spin_lock_irqsave(&cache->lock, flags);
 923			list_add_tail(&mg->list, &cache->quiesced_migrations);
 924			spin_unlock_irqrestore(&cache->lock, flags);
 925
 926		} else {
 927			if (mg->invalidate)
 928				policy_remove_mapping(cache->policy, mg->old_oblock);
 929			cleanup_migration(mg);
 930		}
 931
 932	} else {
 933		if (mg->requeue_holder)
 934			cell_defer(cache, mg->new_ocell, true);
 935		else {
 936			bio_endio(mg->new_ocell->holder, 0);
 937			cell_defer(cache, mg->new_ocell, false);
 938		}
 939		clear_dirty(cache, mg->new_oblock, mg->cblock);
 940		cleanup_migration(mg);
 941	}
 942}
 943
 944static void copy_complete(int read_err, unsigned long write_err, void *context)
 945{
 946	unsigned long flags;
 947	struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
 948	struct cache *cache = mg->cache;
 
 
 949
 950	if (read_err || write_err)
 951		mg->err = true;
 952
 953	spin_lock_irqsave(&cache->lock, flags);
 954	list_add_tail(&mg->list, &cache->completed_migrations);
 955	spin_unlock_irqrestore(&cache->lock, flags);
 956
 957	wake_worker(cache);
 
 
 
 
 958}
 959
 960static void issue_copy_real(struct dm_cache_migration *mg)
 961{
 962	int r;
 963	struct dm_io_region o_region, c_region;
 964	struct cache *cache = mg->cache;
 965	sector_t cblock = from_cblock(mg->cblock);
 966
 967	o_region.bdev = cache->origin_dev->bdev;
 968	o_region.count = cache->sectors_per_block;
 969
 970	c_region.bdev = cache->cache_dev->bdev;
 971	c_region.sector = cblock * cache->sectors_per_block;
 972	c_region.count = cache->sectors_per_block;
 
 973
 974	if (mg->writeback || mg->demote) {
 975		/* demote */
 976		o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
 977		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
 978	} else {
 979		/* promote */
 980		o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
 981		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
 982	}
 983
 984	if (r < 0) {
 985		DMERR_LIMIT("issuing migration failed");
 986		migration_failure(mg);
 987	}
 988}
 989
 990static void overwrite_endio(struct bio *bio, int err)
 991{
 992	struct dm_cache_migration *mg = bio->bi_private;
 993	struct cache *cache = mg->cache;
 994	size_t pb_data_size = get_per_bio_data_size(cache);
 995	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 996	unsigned long flags;
 997
 998	dm_unhook_bio(&pb->hook_info, bio);
 
 
 999
1000	if (err)
1001		mg->err = true;
1002
1003	mg->requeue_holder = false;
1004
1005	spin_lock_irqsave(&cache->lock, flags);
1006	list_add_tail(&mg->list, &cache->completed_migrations);
1007	spin_unlock_irqrestore(&cache->lock, flags);
1008
1009	wake_worker(cache);
1010}
1011
1012static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
 
 
 
 
 
 
 
 
1013{
1014	size_t pb_data_size = get_per_bio_data_size(mg->cache);
1015	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1016
1017	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1018	remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1019	generic_make_request(bio);
1020}
1021
1022static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1023{
1024	return (bio_data_dir(bio) == WRITE) &&
1025		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1026}
1027
1028static void avoid_copy(struct dm_cache_migration *mg)
1029{
1030	atomic_inc(&mg->cache->stats.copies_avoided);
1031	migration_success_pre_commit(mg);
1032}
1033
1034static void issue_copy(struct dm_cache_migration *mg)
 
1035{
1036	bool avoid;
1037	struct cache *cache = mg->cache;
1038
1039	if (mg->writeback || mg->demote)
1040		avoid = !is_dirty(cache, mg->cblock) ||
1041			is_discarded_oblock(cache, mg->old_oblock);
1042	else {
1043		struct bio *bio = mg->new_ocell->holder;
1044
1045		avoid = is_discarded_oblock(cache, mg->new_oblock);
 
 
 
 
1046
1047		if (!avoid && bio_writes_complete_block(cache, bio)) {
1048			issue_overwrite(mg, bio);
1049			return;
1050		}
1051	}
1052
1053	avoid ? avoid_copy(mg) : issue_copy_real(mg);
 
 
 
 
1054}
1055
1056static void complete_migration(struct dm_cache_migration *mg)
1057{
1058	if (mg->err)
1059		migration_failure(mg);
1060	else
1061		migration_success_pre_commit(mg);
1062}
1063
1064static void process_migrations(struct cache *cache, struct list_head *head,
1065			       void (*fn)(struct dm_cache_migration *))
1066{
1067	unsigned long flags;
1068	struct list_head list;
1069	struct dm_cache_migration *mg, *tmp;
1070
1071	INIT_LIST_HEAD(&list);
1072	spin_lock_irqsave(&cache->lock, flags);
1073	list_splice_init(head, &list);
1074	spin_unlock_irqrestore(&cache->lock, flags);
1075
1076	list_for_each_entry_safe(mg, tmp, &list, list)
1077		fn(mg);
1078}
1079
1080static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1081{
1082	list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
 
 
1083}
1084
1085static void queue_quiesced_migration(struct dm_cache_migration *mg)
 
 
1086{
1087	unsigned long flags;
1088	struct cache *cache = mg->cache;
 
1089
1090	spin_lock_irqsave(&cache->lock, flags);
1091	__queue_quiesced_migration(mg);
1092	spin_unlock_irqrestore(&cache->lock, flags);
 
 
1093
1094	wake_worker(cache);
 
 
 
 
1095}
1096
1097static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1098{
1099	unsigned long flags;
1100	struct dm_cache_migration *mg, *tmp;
1101
1102	spin_lock_irqsave(&cache->lock, flags);
1103	list_for_each_entry_safe(mg, tmp, work, list)
1104		__queue_quiesced_migration(mg);
1105	spin_unlock_irqrestore(&cache->lock, flags);
1106
1107	wake_worker(cache);
1108}
1109
1110static void check_for_quiesced_migrations(struct cache *cache,
1111					  struct per_bio_data *pb)
1112{
1113	struct list_head work;
1114
1115	if (!pb->all_io_entry)
1116		return;
1117
1118	INIT_LIST_HEAD(&work);
1119	if (pb->all_io_entry)
1120		dm_deferred_entry_dec(pb->all_io_entry, &work);
1121
1122	if (!list_empty(&work))
1123		queue_quiesced_migrations(cache, &work);
1124}
1125
1126static void quiesce_migration(struct dm_cache_migration *mg)
1127{
1128	if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1129		queue_quiesced_migration(mg);
1130}
1131
1132static void promote(struct cache *cache, struct prealloc *structs,
1133		    dm_oblock_t oblock, dm_cblock_t cblock,
1134		    struct dm_bio_prison_cell *cell)
1135{
1136	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1137
1138	mg->err = false;
1139	mg->writeback = false;
1140	mg->demote = false;
1141	mg->promote = true;
1142	mg->requeue_holder = true;
1143	mg->invalidate = false;
1144	mg->cache = cache;
1145	mg->new_oblock = oblock;
1146	mg->cblock = cblock;
1147	mg->old_ocell = NULL;
1148	mg->new_ocell = cell;
1149	mg->start_jiffies = jiffies;
1150
1151	inc_nr_migrations(cache);
1152	quiesce_migration(mg);
1153}
1154
1155static void writeback(struct cache *cache, struct prealloc *structs,
1156		      dm_oblock_t oblock, dm_cblock_t cblock,
1157		      struct dm_bio_prison_cell *cell)
1158{
1159	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1160
1161	mg->err = false;
1162	mg->writeback = true;
1163	mg->demote = false;
1164	mg->promote = false;
1165	mg->requeue_holder = true;
1166	mg->invalidate = false;
1167	mg->cache = cache;
1168	mg->old_oblock = oblock;
1169	mg->cblock = cblock;
1170	mg->old_ocell = cell;
1171	mg->new_ocell = NULL;
1172	mg->start_jiffies = jiffies;
1173
1174	inc_nr_migrations(cache);
1175	quiesce_migration(mg);
1176}
1177
1178static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1179				dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1180				dm_cblock_t cblock,
1181				struct dm_bio_prison_cell *old_ocell,
1182				struct dm_bio_prison_cell *new_ocell)
1183{
1184	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1185
1186	mg->err = false;
1187	mg->writeback = false;
1188	mg->demote = true;
1189	mg->promote = true;
1190	mg->requeue_holder = true;
1191	mg->invalidate = false;
1192	mg->cache = cache;
1193	mg->old_oblock = old_oblock;
1194	mg->new_oblock = new_oblock;
1195	mg->cblock = cblock;
1196	mg->old_ocell = old_ocell;
1197	mg->new_ocell = new_ocell;
1198	mg->start_jiffies = jiffies;
1199
1200	inc_nr_migrations(cache);
1201	quiesce_migration(mg);
 
 
1202}
1203
1204/*
1205 * Invalidate a cache entry.  No writeback occurs; any changes in the cache
1206 * block are thrown away.
1207 */
1208static void invalidate(struct cache *cache, struct prealloc *structs,
1209		       dm_oblock_t oblock, dm_cblock_t cblock,
1210		       struct dm_bio_prison_cell *cell)
1211{
1212	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1213
1214	mg->err = false;
1215	mg->writeback = false;
1216	mg->demote = true;
1217	mg->promote = false;
1218	mg->requeue_holder = true;
1219	mg->invalidate = true;
1220	mg->cache = cache;
1221	mg->old_oblock = oblock;
1222	mg->cblock = cblock;
1223	mg->old_ocell = cell;
1224	mg->new_ocell = NULL;
1225	mg->start_jiffies = jiffies;
1226
1227	inc_nr_migrations(cache);
1228	quiesce_migration(mg);
1229}
1230
1231/*----------------------------------------------------------------
1232 * bio processing
1233 *--------------------------------------------------------------*/
1234static void defer_bio(struct cache *cache, struct bio *bio)
1235{
1236	unsigned long flags;
 
 
 
 
1237
1238	spin_lock_irqsave(&cache->lock, flags);
1239	bio_list_add(&cache->deferred_bios, bio);
1240	spin_unlock_irqrestore(&cache->lock, flags);
1241
1242	wake_worker(cache);
1243}
1244
1245static void process_flush_bio(struct cache *cache, struct bio *bio)
 
1246{
1247	size_t pb_data_size = get_per_bio_data_size(cache);
1248	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 
 
1249
1250	BUG_ON(bio->bi_iter.bi_size);
1251	if (!pb->req_nr)
1252		remap_to_origin(cache, bio);
 
 
 
1253	else
1254		remap_to_cache(cache, bio, 0);
1255
1256	issue(cache, bio);
 
1257}
1258
1259/*
1260 * People generally discard large parts of a device, eg, the whole device
1261 * when formatting.  Splitting these large discards up into cache block
1262 * sized ios and then quiescing (always neccessary for discard) takes too
1263 * long.
1264 *
1265 * We keep it simple, and allow any size of discard to come in, and just
1266 * mark off blocks on the discard bitset.  No passdown occurs!
1267 *
1268 * To implement passdown we need to change the bio_prison such that a cell
1269 * can have a key that spans many blocks.
 
 
1270 */
1271static void process_discard_bio(struct cache *cache, struct bio *bio)
1272{
1273	dm_block_t start_block = dm_sector_div_up(bio->bi_iter.bi_sector,
1274						  cache->sectors_per_block);
1275	dm_block_t end_block = bio_end_sector(bio);
1276	dm_block_t b;
1277
1278	end_block = block_div(end_block, cache->sectors_per_block);
 
1279
1280	for (b = start_block; b < end_block; b++)
1281		set_discard(cache, to_oblock(b));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1282
1283	bio_endio(bio, 0);
1284}
 
 
 
 
 
 
 
 
 
 
 
1285
1286static bool spare_migration_bandwidth(struct cache *cache)
1287{
1288	sector_t current_volume = (atomic_read(&cache->nr_migrations) + 1) *
1289		cache->sectors_per_block;
1290	return current_volume < cache->migration_threshold;
1291}
1292
1293static void inc_hit_counter(struct cache *cache, struct bio *bio)
1294{
1295	atomic_inc(bio_data_dir(bio) == READ ?
1296		   &cache->stats.read_hit : &cache->stats.write_hit);
1297}
1298
1299static void inc_miss_counter(struct cache *cache, struct bio *bio)
1300{
1301	atomic_inc(bio_data_dir(bio) == READ ?
1302		   &cache->stats.read_miss : &cache->stats.write_miss);
1303}
1304
1305static void issue_cache_bio(struct cache *cache, struct bio *bio,
1306			    struct per_bio_data *pb,
1307			    dm_oblock_t oblock, dm_cblock_t cblock)
1308{
1309	pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1310	remap_to_cache_dirty(cache, bio, oblock, cblock);
1311	issue(cache, bio);
1312}
1313
1314static void process_bio(struct cache *cache, struct prealloc *structs,
1315			struct bio *bio)
1316{
1317	int r;
1318	bool release_cell = true;
1319	dm_oblock_t block = get_bio_block(cache, bio);
1320	struct dm_bio_prison_cell *cell_prealloc, *old_ocell, *new_ocell;
1321	struct policy_result lookup_result;
1322	size_t pb_data_size = get_per_bio_data_size(cache);
1323	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1324	bool discarded_block = is_discarded_oblock(cache, block);
1325	bool passthrough = passthrough_mode(&cache->features);
1326	bool can_migrate = !passthrough && (discarded_block || spare_migration_bandwidth(cache));
1327
1328	/*
1329	 * Check to see if that block is currently migrating.
1330	 */
1331	cell_prealloc = prealloc_get_cell(structs);
1332	r = bio_detain(cache, block, bio, cell_prealloc,
1333		       (cell_free_fn) prealloc_put_cell,
1334		       structs, &new_ocell);
1335	if (r > 0)
1336		return;
1337
1338	r = policy_map(cache->policy, block, true, can_migrate, discarded_block,
1339		       bio, &lookup_result);
 
 
 
 
 
1340
1341	if (r == -EWOULDBLOCK)
1342		/* migration has been denied */
1343		lookup_result.op = POLICY_MISS;
1344
1345	switch (lookup_result.op) {
1346	case POLICY_HIT:
1347		if (passthrough) {
1348			inc_miss_counter(cache, bio);
1349
1350			/*
1351			 * Passthrough always maps to the origin,
1352			 * invalidating any cache blocks that are written
1353			 * to.
1354			 */
 
1355
1356			if (bio_data_dir(bio) == WRITE) {
1357				atomic_inc(&cache->stats.demotion);
1358				invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1359				release_cell = false;
1360
1361			} else {
1362				/* FIXME: factor out issue_origin() */
1363				pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1364				remap_to_origin_clear_discard(cache, bio, block);
1365				issue(cache, bio);
1366			}
1367		} else {
1368			inc_hit_counter(cache, bio);
1369
1370			if (bio_data_dir(bio) == WRITE &&
1371			    writethrough_mode(&cache->features) &&
1372			    !is_dirty(cache, lookup_result.cblock)) {
1373				pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1374				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1375				issue(cache, bio);
1376			} else
1377				issue_cache_bio(cache, bio, pb, block, lookup_result.cblock);
1378		}
1379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1380		break;
1381
1382	case POLICY_MISS:
1383		inc_miss_counter(cache, bio);
1384		pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1385		remap_to_origin_clear_discard(cache, bio, block);
1386		issue(cache, bio);
1387		break;
 
 
 
 
 
 
1388
1389	case POLICY_NEW:
1390		atomic_inc(&cache->stats.promotion);
1391		promote(cache, structs, block, lookup_result.cblock, new_ocell);
1392		release_cell = false;
1393		break;
 
 
 
1394
1395	case POLICY_REPLACE:
1396		cell_prealloc = prealloc_get_cell(structs);
1397		r = bio_detain(cache, lookup_result.old_oblock, bio, cell_prealloc,
1398			       (cell_free_fn) prealloc_put_cell,
1399			       structs, &old_ocell);
1400		if (r > 0) {
1401			/*
1402			 * We have to be careful to avoid lock inversion of
1403			 * the cells.  So we back off, and wait for the
1404			 * old_ocell to become free.
1405			 */
1406			policy_force_mapping(cache->policy, block,
1407					     lookup_result.old_oblock);
1408			atomic_inc(&cache->stats.cache_cell_clash);
1409			break;
1410		}
1411		atomic_inc(&cache->stats.demotion);
1412		atomic_inc(&cache->stats.promotion);
1413
1414		demote_then_promote(cache, structs, lookup_result.old_oblock,
1415				    block, lookup_result.cblock,
1416				    old_ocell, new_ocell);
1417		release_cell = false;
1418		break;
1419
1420	default:
1421		DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__,
1422			    (unsigned) lookup_result.op);
1423		bio_io_error(bio);
1424	}
 
 
 
1425
1426	if (release_cell)
1427		cell_defer(cache, new_ocell, false);
1428}
1429
1430static int need_commit_due_to_time(struct cache *cache)
1431{
1432	return jiffies < cache->last_commit_jiffies ||
1433	       jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1434}
1435
1436static int commit_if_needed(struct cache *cache)
1437{
1438	int r = 0;
 
 
 
1439
1440	if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1441	    dm_cache_changed_this_transaction(cache->cmd)) {
1442		atomic_inc(&cache->stats.commit_count);
1443		cache->commit_requested = false;
1444		r = dm_cache_commit(cache->cmd, false);
1445		cache->last_commit_jiffies = jiffies;
1446	}
1447
1448	return r;
 
1449}
1450
1451static void process_deferred_bios(struct cache *cache)
1452{
1453	unsigned long flags;
1454	struct bio_list bios;
1455	struct bio *bio;
1456	struct prealloc structs;
1457
1458	memset(&structs, 0, sizeof(structs));
1459	bio_list_init(&bios);
 
 
 
 
 
 
 
 
 
1460
1461	spin_lock_irqsave(&cache->lock, flags);
1462	bio_list_merge(&bios, &cache->deferred_bios);
1463	bio_list_init(&cache->deferred_bios);
1464	spin_unlock_irqrestore(&cache->lock, flags);
 
 
1465
1466	while (!bio_list_empty(&bios)) {
1467		/*
1468		 * If we've got no free migration structs, and processing
1469		 * this bio might require one, we pause until there are some
1470		 * prepared mappings to process.
 
 
1471		 */
1472		if (prealloc_data_structs(cache, &structs)) {
1473			spin_lock_irqsave(&cache->lock, flags);
1474			bio_list_merge(&cache->deferred_bios, &bios);
1475			spin_unlock_irqrestore(&cache->lock, flags);
1476			break;
1477		}
 
 
 
 
 
 
1478
1479		bio = bio_list_pop(&bios);
1480
1481		if (bio->bi_rw & REQ_FLUSH)
1482			process_flush_bio(cache, bio);
1483		else if (bio->bi_rw & REQ_DISCARD)
1484			process_discard_bio(cache, bio);
1485		else
1486			process_bio(cache, &structs, bio);
 
 
 
 
 
 
 
1487	}
1488
1489	prealloc_free_structs(cache, &structs);
 
 
 
 
 
 
 
 
1490}
1491
1492static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
1493{
1494	unsigned long flags;
1495	struct bio_list bios;
1496	struct bio *bio;
 
 
 
 
 
1497
1498	bio_list_init(&bios);
 
1499
1500	spin_lock_irqsave(&cache->lock, flags);
1501	bio_list_merge(&bios, &cache->deferred_flush_bios);
1502	bio_list_init(&cache->deferred_flush_bios);
1503	spin_unlock_irqrestore(&cache->lock, flags);
1504
1505	while ((bio = bio_list_pop(&bios)))
1506		submit_bios ? generic_make_request(bio) : bio_io_error(bio);
1507}
1508
1509static void process_deferred_writethrough_bios(struct cache *cache)
 
 
 
 
 
 
1510{
1511	unsigned long flags;
1512	struct bio_list bios;
1513	struct bio *bio;
1514
1515	bio_list_init(&bios);
 
 
 
 
 
1516
1517	spin_lock_irqsave(&cache->lock, flags);
1518	bio_list_merge(&bios, &cache->deferred_writethrough_bios);
1519	bio_list_init(&cache->deferred_writethrough_bios);
1520	spin_unlock_irqrestore(&cache->lock, flags);
1521
1522	while ((bio = bio_list_pop(&bios)))
1523		generic_make_request(bio);
1524}
1525
1526static void writeback_some_dirty_blocks(struct cache *cache)
1527{
1528	int r = 0;
1529	dm_oblock_t oblock;
1530	dm_cblock_t cblock;
1531	struct prealloc structs;
1532	struct dm_bio_prison_cell *old_ocell;
1533
1534	memset(&structs, 0, sizeof(structs));
 
1535
1536	while (spare_migration_bandwidth(cache)) {
1537		if (prealloc_data_structs(cache, &structs))
1538			break;
1539
1540		r = policy_writeback_work(cache->policy, &oblock, &cblock);
1541		if (r)
1542			break;
1543
1544		r = get_cell(cache, oblock, &structs, &old_ocell);
1545		if (r) {
1546			policy_set_dirty(cache->policy, oblock);
1547			break;
 
1548		}
1549
1550		writeback(cache, &structs, oblock, cblock, old_ocell);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1551	}
1552
1553	prealloc_free_structs(cache, &structs);
 
 
 
 
1554}
1555
1556/*----------------------------------------------------------------
1557 * Invalidations.
1558 * Dropping something from the cache *without* writing back.
1559 *--------------------------------------------------------------*/
 
 
 
 
1560
1561static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
1562{
1563	int r = 0;
1564	uint64_t begin = from_cblock(req->cblocks->begin);
1565	uint64_t end = from_cblock(req->cblocks->end);
 
 
 
 
 
 
 
 
 
1566
1567	while (begin != end) {
1568		r = policy_remove_cblock(cache->policy, to_cblock(begin));
1569		if (!r) {
1570			r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
1571			if (r)
1572				break;
 
 
1573
1574		} else if (r == -ENODATA) {
1575			/* harmless, already unmapped */
1576			r = 0;
1577
1578		} else {
1579			DMERR("policy_remove_cblock failed");
1580			break;
1581		}
1582
1583		begin++;
1584        }
1585
1586	cache->commit_requested = true;
1587
1588	req->err = r;
1589	atomic_set(&req->complete, 1);
 
1590
1591	wake_up(&req->result_wait);
1592}
1593
1594static void process_invalidation_requests(struct cache *cache)
 
 
 
 
 
 
 
 
 
 
 
1595{
1596	struct list_head list;
1597	struct invalidation_request *req, *tmp;
 
1598
1599	INIT_LIST_HEAD(&list);
1600	spin_lock(&cache->invalidation_lock);
1601	list_splice_init(&cache->invalidation_requests, &list);
1602	spin_unlock(&cache->invalidation_lock);
 
1603
1604	list_for_each_entry_safe (req, tmp, &list, list)
1605		process_invalidation_request(cache, req);
 
 
1606}
1607
1608/*----------------------------------------------------------------
1609 * Main worker loop
1610 *--------------------------------------------------------------*/
1611static bool is_quiescing(struct cache *cache)
1612{
1613	return atomic_read(&cache->quiescing);
 
1614}
1615
1616static void ack_quiescing(struct cache *cache)
 
 
 
1617{
1618	if (is_quiescing(cache)) {
1619		atomic_inc(&cache->quiescing_ack);
1620		wake_up(&cache->quiescing_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1621	}
 
 
1622}
1623
1624static void wait_for_quiescing_ack(struct cache *cache)
1625{
1626	wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
 
 
 
 
 
1627}
1628
1629static void start_quiescing(struct cache *cache)
 
 
 
1630{
1631	atomic_inc(&cache->quiescing);
1632	wait_for_quiescing_ack(cache);
 
 
 
 
 
 
 
 
 
1633}
1634
1635static void stop_quiescing(struct cache *cache)
 
 
 
1636{
1637	atomic_set(&cache->quiescing, 0);
1638	atomic_set(&cache->quiescing_ack, 0);
 
 
 
 
1639}
1640
1641static void wait_for_migrations(struct cache *cache)
 
 
1642{
1643	wait_event(cache->migration_wait, !atomic_read(&cache->nr_migrations));
 
 
 
 
 
 
 
 
1644}
1645
1646static void stop_worker(struct cache *cache)
1647{
1648	cancel_delayed_work(&cache->waker);
1649	flush_workqueue(cache->wq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1650}
1651
1652static void requeue_deferred_io(struct cache *cache)
1653{
 
 
 
 
1654	struct bio *bio;
1655	struct bio_list bios;
1656
1657	bio_list_init(&bios);
 
 
1658	bio_list_merge(&bios, &cache->deferred_bios);
1659	bio_list_init(&cache->deferred_bios);
 
1660
1661	while ((bio = bio_list_pop(&bios)))
1662		bio_endio(bio, DM_ENDIO_REQUEUE);
1663}
 
 
 
 
 
 
 
 
1664
1665static int more_work(struct cache *cache)
1666{
1667	if (is_quiescing(cache))
1668		return !list_empty(&cache->quiesced_migrations) ||
1669			!list_empty(&cache->completed_migrations) ||
1670			!list_empty(&cache->need_commit_migrations);
1671	else
1672		return !bio_list_empty(&cache->deferred_bios) ||
1673			!bio_list_empty(&cache->deferred_flush_bios) ||
1674			!bio_list_empty(&cache->deferred_writethrough_bios) ||
1675			!list_empty(&cache->quiesced_migrations) ||
1676			!list_empty(&cache->completed_migrations) ||
1677			!list_empty(&cache->need_commit_migrations) ||
1678			cache->invalidate;
1679}
1680
1681static void do_worker(struct work_struct *ws)
 
 
 
 
 
1682{
1683	struct cache *cache = container_of(ws, struct cache, worker);
 
1684
1685	do {
1686		if (!is_quiescing(cache)) {
1687			writeback_some_dirty_blocks(cache);
1688			process_deferred_writethrough_bios(cache);
1689			process_deferred_bios(cache);
1690			process_invalidation_requests(cache);
1691		}
1692
1693		process_migrations(cache, &cache->quiesced_migrations, issue_copy);
1694		process_migrations(cache, &cache->completed_migrations, complete_migration);
1695
1696		if (commit_if_needed(cache)) {
1697			process_deferred_flush_bios(cache, false);
1698
1699			/*
1700			 * FIXME: rollback metadata or just go into a
1701			 * failure mode and error everything
1702			 */
1703		} else {
1704			process_deferred_flush_bios(cache, true);
1705			process_migrations(cache, &cache->need_commit_migrations,
1706					   migration_success_post_commit);
1707		}
1708
1709		ack_quiescing(cache);
1710
1711	} while (more_work(cache));
1712}
1713
1714/*
1715 * We want to commit periodically so that not too much
1716 * unwritten metadata builds up.
1717 */
1718static void do_waker(struct work_struct *ws)
1719{
1720	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1721	policy_tick(cache->policy);
1722	wake_worker(cache);
 
 
1723	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1724}
1725
1726/*----------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
1727
1728static int is_congested(struct dm_dev *dev, int bdi_bits)
1729{
1730	struct request_queue *q = bdev_get_queue(dev->bdev);
1731	return bdi_congested(&q->backing_dev_info, bdi_bits);
1732}
1733
1734static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1735{
1736	struct cache *cache = container_of(cb, struct cache, callbacks);
1737
1738	return is_congested(cache->origin_dev, bdi_bits) ||
1739		is_congested(cache->cache_dev, bdi_bits);
1740}
1741
1742/*----------------------------------------------------------------
 
1743 * Target methods
1744 *--------------------------------------------------------------*/
 
1745
1746/*
1747 * This function gets called on the error paths of the constructor, so we
1748 * have to cope with a partially initialised struct.
1749 */
1750static void destroy(struct cache *cache)
1751{
1752	unsigned i;
1753
1754	if (cache->next_migration)
1755		mempool_free(cache->next_migration, cache->migration_pool);
1756
1757	if (cache->migration_pool)
1758		mempool_destroy(cache->migration_pool);
1759
1760	if (cache->all_io_ds)
1761		dm_deferred_set_destroy(cache->all_io_ds);
1762
1763	if (cache->prison)
1764		dm_bio_prison_destroy(cache->prison);
1765
 
1766	if (cache->wq)
1767		destroy_workqueue(cache->wq);
1768
1769	if (cache->dirty_bitset)
1770		free_bitset(cache->dirty_bitset);
1771
1772	if (cache->discard_bitset)
1773		free_bitset(cache->discard_bitset);
1774
1775	if (cache->copier)
1776		dm_kcopyd_client_destroy(cache->copier);
1777
1778	if (cache->cmd)
1779		dm_cache_metadata_close(cache->cmd);
1780
1781	if (cache->metadata_dev)
1782		dm_put_device(cache->ti, cache->metadata_dev);
1783
1784	if (cache->origin_dev)
1785		dm_put_device(cache->ti, cache->origin_dev);
1786
1787	if (cache->cache_dev)
1788		dm_put_device(cache->ti, cache->cache_dev);
1789
1790	if (cache->policy)
1791		dm_cache_policy_destroy(cache->policy);
1792
1793	for (i = 0; i < cache->nr_ctr_args ; i++)
1794		kfree(cache->ctr_args[i]);
1795	kfree(cache->ctr_args);
1796
 
 
1797	kfree(cache);
1798}
1799
1800static void cache_dtr(struct dm_target *ti)
1801{
1802	struct cache *cache = ti->private;
1803
1804	destroy(cache);
1805}
1806
1807static sector_t get_dev_size(struct dm_dev *dev)
1808{
1809	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1810}
1811
1812/*----------------------------------------------------------------*/
1813
1814/*
1815 * Construct a cache device mapping.
1816 *
1817 * cache <metadata dev> <cache dev> <origin dev> <block size>
1818 *       <#feature args> [<feature arg>]*
1819 *       <policy> <#policy args> [<policy arg>]*
1820 *
1821 * metadata dev    : fast device holding the persistent metadata
1822 * cache dev	   : fast device holding cached data blocks
1823 * origin dev	   : slow device holding original data blocks
1824 * block size	   : cache unit size in sectors
1825 *
1826 * #feature args   : number of feature arguments passed
1827 * feature args    : writethrough.  (The default is writeback.)
1828 *
1829 * policy	   : the replacement policy to use
1830 * #policy args    : an even number of policy arguments corresponding
1831 *		     to key/value pairs passed to the policy
1832 * policy args	   : key/value pairs passed to the policy
1833 *		     E.g. 'sequential_threshold 1024'
1834 *		     See cache-policies.txt for details.
1835 *
1836 * Optional feature arguments are:
1837 *   writethrough  : write through caching that prohibits cache block
1838 *		     content from being different from origin block content.
1839 *		     Without this argument, the default behaviour is to write
1840 *		     back cache block contents later for performance reasons,
1841 *		     so they may differ from the corresponding origin blocks.
1842 */
1843struct cache_args {
1844	struct dm_target *ti;
1845
1846	struct dm_dev *metadata_dev;
1847
1848	struct dm_dev *cache_dev;
1849	sector_t cache_sectors;
1850
1851	struct dm_dev *origin_dev;
1852	sector_t origin_sectors;
1853
1854	uint32_t block_size;
1855
1856	const char *policy_name;
1857	int policy_argc;
1858	const char **policy_argv;
1859
1860	struct cache_features features;
1861};
1862
1863static void destroy_cache_args(struct cache_args *ca)
1864{
1865	if (ca->metadata_dev)
1866		dm_put_device(ca->ti, ca->metadata_dev);
1867
1868	if (ca->cache_dev)
1869		dm_put_device(ca->ti, ca->cache_dev);
1870
1871	if (ca->origin_dev)
1872		dm_put_device(ca->ti, ca->origin_dev);
1873
1874	kfree(ca);
1875}
1876
1877static bool at_least_one_arg(struct dm_arg_set *as, char **error)
1878{
1879	if (!as->argc) {
1880		*error = "Insufficient args";
1881		return false;
1882	}
1883
1884	return true;
1885}
1886
1887static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
1888			      char **error)
1889{
1890	int r;
1891	sector_t metadata_dev_size;
1892	char b[BDEVNAME_SIZE];
1893
1894	if (!at_least_one_arg(as, error))
1895		return -EINVAL;
1896
1897	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1898			  &ca->metadata_dev);
1899	if (r) {
1900		*error = "Error opening metadata device";
1901		return r;
1902	}
1903
1904	metadata_dev_size = get_dev_size(ca->metadata_dev);
1905	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
1906		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1907		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1908
1909	return 0;
1910}
1911
1912static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
1913			   char **error)
1914{
1915	int r;
1916
1917	if (!at_least_one_arg(as, error))
1918		return -EINVAL;
1919
1920	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1921			  &ca->cache_dev);
1922	if (r) {
1923		*error = "Error opening cache device";
1924		return r;
1925	}
1926	ca->cache_sectors = get_dev_size(ca->cache_dev);
1927
1928	return 0;
1929}
1930
1931static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
1932			    char **error)
1933{
1934	int r;
1935
1936	if (!at_least_one_arg(as, error))
1937		return -EINVAL;
1938
1939	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1940			  &ca->origin_dev);
1941	if (r) {
1942		*error = "Error opening origin device";
1943		return r;
1944	}
1945
1946	ca->origin_sectors = get_dev_size(ca->origin_dev);
1947	if (ca->ti->len > ca->origin_sectors) {
1948		*error = "Device size larger than cached device";
1949		return -EINVAL;
1950	}
1951
1952	return 0;
1953}
1954
1955static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
1956			    char **error)
1957{
1958	unsigned long block_size;
1959
1960	if (!at_least_one_arg(as, error))
1961		return -EINVAL;
1962
1963	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
1964	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1965	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1966	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
1967		*error = "Invalid data block size";
1968		return -EINVAL;
1969	}
1970
1971	if (block_size > ca->cache_sectors) {
1972		*error = "Data block size is larger than the cache device";
1973		return -EINVAL;
1974	}
1975
1976	ca->block_size = block_size;
1977
1978	return 0;
1979}
1980
1981static void init_features(struct cache_features *cf)
1982{
1983	cf->mode = CM_WRITE;
1984	cf->io_mode = CM_IO_WRITEBACK;
 
 
1985}
1986
1987static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
1988			  char **error)
1989{
1990	static struct dm_arg _args[] = {
1991		{0, 1, "Invalid number of cache feature arguments"},
1992	};
1993
1994	int r;
1995	unsigned argc;
1996	const char *arg;
1997	struct cache_features *cf = &ca->features;
1998
1999	init_features(cf);
2000
2001	r = dm_read_arg_group(_args, as, &argc, error);
2002	if (r)
2003		return -EINVAL;
2004
2005	while (argc--) {
2006		arg = dm_shift_arg(as);
2007
2008		if (!strcasecmp(arg, "writeback"))
2009			cf->io_mode = CM_IO_WRITEBACK;
 
 
2010
2011		else if (!strcasecmp(arg, "writethrough"))
2012			cf->io_mode = CM_IO_WRITETHROUGH;
 
 
2013
2014		else if (!strcasecmp(arg, "passthrough"))
2015			cf->io_mode = CM_IO_PASSTHROUGH;
 
 
 
 
 
 
 
 
2016
2017		else {
2018			*error = "Unrecognised cache feature requested";
2019			return -EINVAL;
2020		}
2021	}
2022
 
 
 
 
 
2023	return 0;
2024}
2025
2026static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2027			char **error)
2028{
2029	static struct dm_arg _args[] = {
2030		{0, 1024, "Invalid number of policy arguments"},
2031	};
2032
2033	int r;
2034
2035	if (!at_least_one_arg(as, error))
2036		return -EINVAL;
2037
2038	ca->policy_name = dm_shift_arg(as);
2039
2040	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2041	if (r)
2042		return -EINVAL;
2043
2044	ca->policy_argv = (const char **)as->argv;
2045	dm_consume_args(as, ca->policy_argc);
2046
2047	return 0;
2048}
2049
2050static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2051			    char **error)
2052{
2053	int r;
2054	struct dm_arg_set as;
2055
2056	as.argc = argc;
2057	as.argv = argv;
2058
2059	r = parse_metadata_dev(ca, &as, error);
2060	if (r)
2061		return r;
2062
2063	r = parse_cache_dev(ca, &as, error);
2064	if (r)
2065		return r;
2066
2067	r = parse_origin_dev(ca, &as, error);
2068	if (r)
2069		return r;
2070
2071	r = parse_block_size(ca, &as, error);
2072	if (r)
2073		return r;
2074
2075	r = parse_features(ca, &as, error);
2076	if (r)
2077		return r;
2078
2079	r = parse_policy(ca, &as, error);
2080	if (r)
2081		return r;
2082
2083	return 0;
2084}
2085
2086/*----------------------------------------------------------------*/
2087
2088static struct kmem_cache *migration_cache;
2089
2090#define NOT_CORE_OPTION 1
2091
2092static int process_config_option(struct cache *cache, const char *key, const char *value)
2093{
2094	unsigned long tmp;
2095
2096	if (!strcasecmp(key, "migration_threshold")) {
2097		if (kstrtoul(value, 10, &tmp))
2098			return -EINVAL;
2099
2100		cache->migration_threshold = tmp;
2101		return 0;
2102	}
2103
2104	return NOT_CORE_OPTION;
2105}
2106
2107static int set_config_value(struct cache *cache, const char *key, const char *value)
2108{
2109	int r = process_config_option(cache, key, value);
2110
2111	if (r == NOT_CORE_OPTION)
2112		r = policy_set_config_value(cache->policy, key, value);
2113
2114	if (r)
2115		DMWARN("bad config value for %s: %s", key, value);
2116
2117	return r;
2118}
2119
2120static int set_config_values(struct cache *cache, int argc, const char **argv)
2121{
2122	int r = 0;
2123
2124	if (argc & 1) {
2125		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2126		return -EINVAL;
2127	}
2128
2129	while (argc) {
2130		r = set_config_value(cache, argv[0], argv[1]);
2131		if (r)
2132			break;
2133
2134		argc -= 2;
2135		argv += 2;
2136	}
2137
2138	return r;
2139}
2140
2141static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2142			       char **error)
2143{
2144	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2145							   cache->cache_size,
2146							   cache->origin_sectors,
2147							   cache->sectors_per_block);
2148	if (IS_ERR(p)) {
2149		*error = "Error creating cache's policy";
2150		return PTR_ERR(p);
2151	}
2152	cache->policy = p;
 
2153
2154	return 0;
2155}
2156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2157#define DEFAULT_MIGRATION_THRESHOLD 2048
2158
2159static int cache_create(struct cache_args *ca, struct cache **result)
2160{
2161	int r = 0;
2162	char **error = &ca->ti->error;
2163	struct cache *cache;
2164	struct dm_target *ti = ca->ti;
2165	dm_block_t origin_blocks;
2166	struct dm_cache_metadata *cmd;
2167	bool may_format = ca->features.mode == CM_WRITE;
2168
2169	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2170	if (!cache)
2171		return -ENOMEM;
2172
2173	cache->ti = ca->ti;
2174	ti->private = cache;
 
2175	ti->num_flush_bios = 2;
2176	ti->flush_supported = true;
2177
2178	ti->num_discard_bios = 1;
2179	ti->discards_supported = true;
2180	ti->discard_zeroes_data_unsupported = true;
2181	/* Discard bios must be split on a block boundary */
2182	ti->split_discard_bios = true;
2183
2184	cache->features = ca->features;
2185	ti->per_bio_data_size = get_per_bio_data_size(cache);
2186
2187	cache->callbacks.congested_fn = cache_is_congested;
2188	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
 
 
2189
2190	cache->metadata_dev = ca->metadata_dev;
2191	cache->origin_dev = ca->origin_dev;
2192	cache->cache_dev = ca->cache_dev;
2193
2194	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2195
2196	/* FIXME: factor out this whole section */
2197	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2198	origin_blocks = block_div(origin_blocks, ca->block_size);
2199	cache->origin_blocks = to_oblock(origin_blocks);
2200
2201	cache->sectors_per_block = ca->block_size;
2202	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2203		r = -EINVAL;
2204		goto bad;
2205	}
2206
2207	if (ca->block_size & (ca->block_size - 1)) {
2208		dm_block_t cache_size = ca->cache_sectors;
2209
2210		cache->sectors_per_block_shift = -1;
2211		cache_size = block_div(cache_size, ca->block_size);
2212		cache->cache_size = to_cblock(cache_size);
2213	} else {
2214		cache->sectors_per_block_shift = __ffs(ca->block_size);
2215		cache->cache_size = to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift);
2216	}
2217
2218	r = create_cache_policy(cache, ca, error);
2219	if (r)
2220		goto bad;
2221
2222	cache->policy_nr_args = ca->policy_argc;
2223	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2224
2225	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2226	if (r) {
2227		*error = "Error setting cache policy's config values";
2228		goto bad;
2229	}
2230
2231	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2232				     ca->block_size, may_format,
2233				     dm_cache_policy_get_hint_size(cache->policy));
 
2234	if (IS_ERR(cmd)) {
2235		*error = "Error creating metadata object";
2236		r = PTR_ERR(cmd);
2237		goto bad;
2238	}
2239	cache->cmd = cmd;
 
 
 
 
 
 
2240
2241	if (passthrough_mode(&cache->features)) {
2242		bool all_clean;
2243
2244		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2245		if (r) {
2246			*error = "dm_cache_metadata_all_clean() failed";
2247			goto bad;
2248		}
2249
2250		if (!all_clean) {
2251			*error = "Cannot enter passthrough mode unless all blocks are clean";
2252			r = -EINVAL;
2253			goto bad;
2254		}
 
 
2255	}
2256
2257	spin_lock_init(&cache->lock);
2258	bio_list_init(&cache->deferred_bios);
2259	bio_list_init(&cache->deferred_flush_bios);
2260	bio_list_init(&cache->deferred_writethrough_bios);
2261	INIT_LIST_HEAD(&cache->quiesced_migrations);
2262	INIT_LIST_HEAD(&cache->completed_migrations);
2263	INIT_LIST_HEAD(&cache->need_commit_migrations);
2264	atomic_set(&cache->nr_migrations, 0);
2265	init_waitqueue_head(&cache->migration_wait);
2266
2267	init_waitqueue_head(&cache->quiescing_wait);
2268	atomic_set(&cache->quiescing, 0);
2269	atomic_set(&cache->quiescing_ack, 0);
2270
2271	r = -ENOMEM;
2272	cache->nr_dirty = 0;
2273	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2274	if (!cache->dirty_bitset) {
2275		*error = "could not allocate dirty bitset";
2276		goto bad;
2277	}
2278	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2279
2280	cache->discard_nr_blocks = cache->origin_blocks;
2281	cache->discard_bitset = alloc_bitset(from_oblock(cache->discard_nr_blocks));
 
 
 
 
2282	if (!cache->discard_bitset) {
2283		*error = "could not allocate discard bitset";
2284		goto bad;
2285	}
2286	clear_bitset(cache->discard_bitset, from_oblock(cache->discard_nr_blocks));
2287
2288	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2289	if (IS_ERR(cache->copier)) {
2290		*error = "could not create kcopyd client";
2291		r = PTR_ERR(cache->copier);
2292		goto bad;
2293	}
2294
2295	cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2296	if (!cache->wq) {
2297		*error = "could not create workqueue for metadata object";
2298		goto bad;
2299	}
2300	INIT_WORK(&cache->worker, do_worker);
 
2301	INIT_DELAYED_WORK(&cache->waker, do_waker);
2302	cache->last_commit_jiffies = jiffies;
2303
2304	cache->prison = dm_bio_prison_create(PRISON_CELLS);
2305	if (!cache->prison) {
2306		*error = "could not create bio prison";
2307		goto bad;
2308	}
2309
2310	cache->all_io_ds = dm_deferred_set_create();
2311	if (!cache->all_io_ds) {
2312		*error = "could not create all_io deferred set";
2313		goto bad;
2314	}
2315
2316	cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2317							 migration_cache);
2318	if (!cache->migration_pool) {
2319		*error = "Error creating cache's migration mempool";
2320		goto bad;
2321	}
2322
2323	cache->next_migration = NULL;
2324
2325	cache->need_tick_bio = true;
2326	cache->sized = false;
2327	cache->invalidate = false;
2328	cache->commit_requested = false;
2329	cache->loaded_mappings = false;
2330	cache->loaded_discards = false;
2331
2332	load_stats(cache);
2333
2334	atomic_set(&cache->stats.demotion, 0);
2335	atomic_set(&cache->stats.promotion, 0);
2336	atomic_set(&cache->stats.copies_avoided, 0);
2337	atomic_set(&cache->stats.cache_cell_clash, 0);
2338	atomic_set(&cache->stats.commit_count, 0);
2339	atomic_set(&cache->stats.discard_count, 0);
2340
2341	spin_lock_init(&cache->invalidation_lock);
2342	INIT_LIST_HEAD(&cache->invalidation_requests);
2343
 
 
 
 
 
 
 
2344	*result = cache;
2345	return 0;
2346
2347bad:
2348	destroy(cache);
2349	return r;
2350}
2351
2352static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2353{
2354	unsigned i;
2355	const char **copy;
2356
2357	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2358	if (!copy)
2359		return -ENOMEM;
2360	for (i = 0; i < argc; i++) {
2361		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2362		if (!copy[i]) {
2363			while (i--)
2364				kfree(copy[i]);
2365			kfree(copy);
2366			return -ENOMEM;
2367		}
2368	}
2369
2370	cache->nr_ctr_args = argc;
2371	cache->ctr_args = copy;
2372
2373	return 0;
2374}
2375
2376static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2377{
2378	int r = -EINVAL;
2379	struct cache_args *ca;
2380	struct cache *cache = NULL;
2381
2382	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2383	if (!ca) {
2384		ti->error = "Error allocating memory for cache";
2385		return -ENOMEM;
2386	}
2387	ca->ti = ti;
2388
2389	r = parse_cache_args(ca, argc, argv, &ti->error);
2390	if (r)
2391		goto out;
2392
2393	r = cache_create(ca, &cache);
2394	if (r)
2395		goto out;
2396
2397	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2398	if (r) {
2399		destroy(cache);
2400		goto out;
2401	}
2402
2403	ti->private = cache;
2404
2405out:
2406	destroy_cache_args(ca);
2407	return r;
2408}
2409
 
 
2410static int cache_map(struct dm_target *ti, struct bio *bio)
2411{
2412	struct cache *cache = ti->private;
2413
2414	int r;
 
2415	dm_oblock_t block = get_bio_block(cache, bio);
2416	size_t pb_data_size = get_per_bio_data_size(cache);
2417	bool can_migrate = false;
2418	bool discarded_block;
2419	struct dm_bio_prison_cell *cell;
2420	struct policy_result lookup_result;
2421	struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
2422
 
2423	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2424		/*
2425		 * This can only occur if the io goes to a partial block at
2426		 * the end of the origin device.  We don't cache these.
2427		 * Just remap to the origin and carry on.
2428		 */
2429		remap_to_origin(cache, bio);
 
2430		return DM_MAPIO_REMAPPED;
2431	}
2432
2433	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD)) {
2434		defer_bio(cache, bio);
2435		return DM_MAPIO_SUBMITTED;
2436	}
2437
2438	/*
2439	 * Check to see if that block is currently migrating.
2440	 */
2441	cell = alloc_prison_cell(cache);
2442	if (!cell) {
2443		defer_bio(cache, bio);
2444		return DM_MAPIO_SUBMITTED;
2445	}
2446
2447	r = bio_detain(cache, block, bio, cell,
2448		       (cell_free_fn) free_prison_cell,
2449		       cache, &cell);
2450	if (r) {
2451		if (r < 0)
2452			defer_bio(cache, bio);
2453
2454		return DM_MAPIO_SUBMITTED;
2455	}
2456
2457	discarded_block = is_discarded_oblock(cache, block);
2458
2459	r = policy_map(cache->policy, block, false, can_migrate, discarded_block,
2460		       bio, &lookup_result);
2461	if (r == -EWOULDBLOCK) {
2462		cell_defer(cache, cell, true);
2463		return DM_MAPIO_SUBMITTED;
2464
2465	} else if (r) {
2466		DMERR_LIMIT("Unexpected return from cache replacement policy: %d", r);
2467		bio_io_error(bio);
2468		return DM_MAPIO_SUBMITTED;
2469	}
2470
2471	r = DM_MAPIO_REMAPPED;
2472	switch (lookup_result.op) {
2473	case POLICY_HIT:
2474		if (passthrough_mode(&cache->features)) {
2475			if (bio_data_dir(bio) == WRITE) {
2476				/*
2477				 * We need to invalidate this block, so
2478				 * defer for the worker thread.
2479				 */
2480				cell_defer(cache, cell, true);
2481				r = DM_MAPIO_SUBMITTED;
2482
2483			} else {
2484				pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2485				inc_miss_counter(cache, bio);
2486				remap_to_origin_clear_discard(cache, bio, block);
2487
2488				cell_defer(cache, cell, false);
2489			}
2490
2491		} else {
2492			inc_hit_counter(cache, bio);
2493			pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2494
2495			if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
2496			    !is_dirty(cache, lookup_result.cblock))
2497				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
2498			else
2499				remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
2500
2501			cell_defer(cache, cell, false);
2502		}
2503		break;
2504
2505	case POLICY_MISS:
2506		inc_miss_counter(cache, bio);
2507		pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2508
2509		if (pb->req_nr != 0) {
2510			/*
2511			 * This is a duplicate writethrough io that is no
2512			 * longer needed because the block has been demoted.
2513			 */
2514			bio_endio(bio, 0);
2515			cell_defer(cache, cell, false);
2516			return DM_MAPIO_SUBMITTED;
2517		} else {
2518			remap_to_origin_clear_discard(cache, bio, block);
2519			cell_defer(cache, cell, false);
2520		}
2521		break;
2522
2523	default:
2524		DMERR_LIMIT("%s: erroring bio: unknown policy op: %u", __func__,
2525			    (unsigned) lookup_result.op);
2526		bio_io_error(bio);
2527		r = DM_MAPIO_SUBMITTED;
2528	}
2529
2530	return r;
2531}
2532
2533static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
2534{
2535	struct cache *cache = ti->private;
2536	unsigned long flags;
2537	size_t pb_data_size = get_per_bio_data_size(cache);
2538	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
2539
2540	if (pb->tick) {
2541		policy_tick(cache->policy);
2542
2543		spin_lock_irqsave(&cache->lock, flags);
2544		cache->need_tick_bio = true;
2545		spin_unlock_irqrestore(&cache->lock, flags);
2546	}
2547
2548	check_for_quiesced_migrations(cache, pb);
 
2549
2550	return 0;
2551}
2552
2553static int write_dirty_bitset(struct cache *cache)
2554{
2555	unsigned i, r;
 
 
 
2556
2557	for (i = 0; i < from_cblock(cache->cache_size); i++) {
2558		r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
2559				       is_dirty(cache, to_cblock(i)));
2560		if (r)
2561			return r;
2562	}
2563
2564	return 0;
2565}
2566
2567static int write_discard_bitset(struct cache *cache)
2568{
2569	unsigned i, r;
 
 
 
2570
2571	r = dm_cache_discard_bitset_resize(cache->cmd, cache->sectors_per_block,
2572					   cache->origin_blocks);
2573	if (r) {
2574		DMERR("could not resize on-disk discard bitset");
 
2575		return r;
2576	}
2577
2578	for (i = 0; i < from_oblock(cache->discard_nr_blocks); i++) {
2579		r = dm_cache_set_discard(cache->cmd, to_oblock(i),
2580					 is_discarded(cache, to_oblock(i)));
2581		if (r)
 
2582			return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2583	}
2584
2585	return 0;
2586}
2587
2588/*
2589 * returns true on success
2590 */
2591static bool sync_metadata(struct cache *cache)
2592{
2593	int r1, r2, r3, r4;
2594
2595	r1 = write_dirty_bitset(cache);
2596	if (r1)
2597		DMERR("could not write dirty bitset");
2598
2599	r2 = write_discard_bitset(cache);
2600	if (r2)
2601		DMERR("could not write discard bitset");
2602
2603	save_stats(cache);
2604
2605	r3 = dm_cache_write_hints(cache->cmd, cache->policy);
2606	if (r3)
2607		DMERR("could not write hints");
2608
2609	/*
2610	 * If writing the above metadata failed, we still commit, but don't
2611	 * set the clean shutdown flag.  This will effectively force every
2612	 * dirty bit to be set on reload.
2613	 */
2614	r4 = dm_cache_commit(cache->cmd, !r1 && !r2 && !r3);
2615	if (r4)
2616		DMERR("could not write cache metadata.  Data loss may occur.");
2617
2618	return !r1 && !r2 && !r3 && !r4;
2619}
2620
2621static void cache_postsuspend(struct dm_target *ti)
2622{
2623	struct cache *cache = ti->private;
2624
2625	start_quiescing(cache);
2626	wait_for_migrations(cache);
2627	stop_worker(cache);
2628	requeue_deferred_io(cache);
2629	stop_quiescing(cache);
 
2630
2631	(void) sync_metadata(cache);
 
 
 
 
 
 
 
2632}
2633
2634static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2635			bool dirty, uint32_t hint, bool hint_valid)
2636{
2637	int r;
2638	struct cache *cache = context;
2639
2640	r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
2641	if (r)
2642		return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2643
2644	if (dirty)
2645		set_dirty(cache, oblock, cblock);
2646	else
2647		clear_dirty(cache, oblock, cblock);
 
 
2648
2649	return 0;
 
2650}
2651
2652static int load_discard(void *context, sector_t discard_block_size,
2653			dm_oblock_t oblock, bool discard)
2654{
2655	struct cache *cache = context;
 
 
 
 
 
 
 
 
 
2656
2657	if (discard)
2658		set_discard(cache, oblock);
2659	else
2660		clear_discard(cache, oblock);
 
 
 
 
 
 
 
 
2661
2662	return 0;
2663}
2664
2665static dm_cblock_t get_cache_dev_size(struct cache *cache)
2666{
2667	sector_t size = get_dev_size(cache->cache_dev);
2668	(void) sector_div(size, cache->sectors_per_block);
2669	return to_cblock(size);
2670}
2671
2672static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2673{
2674	if (from_cblock(new_size) > from_cblock(cache->cache_size))
2675		return true;
 
 
 
 
 
2676
2677	/*
2678	 * We can't drop a dirty block when shrinking the cache.
2679	 */
2680	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2681		new_size = to_cblock(from_cblock(new_size) + 1);
2682		if (is_dirty(cache, new_size)) {
2683			DMERR("unable to shrink cache; cache block %llu is dirty",
 
2684			      (unsigned long long) from_cblock(new_size));
2685			return false;
2686		}
2687	}
2688
2689	return true;
2690}
2691
2692static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2693{
2694	int r;
2695
2696	r = dm_cache_resize(cache->cmd, new_size);
2697	if (r) {
2698		DMERR("could not resize cache metadata");
 
2699		return r;
2700	}
2701
2702	cache->cache_size = new_size;
2703
2704	return 0;
2705}
2706
2707static int cache_preresume(struct dm_target *ti)
2708{
2709	int r = 0;
2710	struct cache *cache = ti->private;
2711	dm_cblock_t csize = get_cache_dev_size(cache);
2712
2713	/*
2714	 * Check to see if the cache has resized.
2715	 */
2716	if (!cache->sized) {
2717		r = resize_cache_dev(cache, csize);
2718		if (r)
2719			return r;
2720
2721		cache->sized = true;
2722
2723	} else if (csize != cache->cache_size) {
2724		if (!can_resize(cache, csize))
2725			return -EINVAL;
2726
2727		r = resize_cache_dev(cache, csize);
2728		if (r)
2729			return r;
2730	}
2731
2732	if (!cache->loaded_mappings) {
2733		r = dm_cache_load_mappings(cache->cmd, cache->policy,
2734					   load_mapping, cache);
2735		if (r) {
2736			DMERR("could not load cache mappings");
 
2737			return r;
2738		}
2739
2740		cache->loaded_mappings = true;
2741	}
2742
2743	if (!cache->loaded_discards) {
2744		r = dm_cache_load_discards(cache->cmd, load_discard, cache);
 
 
 
 
 
 
 
 
 
 
2745		if (r) {
2746			DMERR("could not load origin discards");
 
2747			return r;
2748		}
 
2749
2750		cache->loaded_discards = true;
2751	}
2752
2753	return r;
2754}
2755
2756static void cache_resume(struct dm_target *ti)
2757{
2758	struct cache *cache = ti->private;
2759
2760	cache->need_tick_bio = true;
 
2761	do_waker(&cache->waker.work);
2762}
2763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2764/*
2765 * Status format:
2766 *
2767 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
2768 * <cache block size> <#used cache blocks>/<#total cache blocks>
2769 * <#read hits> <#read misses> <#write hits> <#write misses>
2770 * <#demotions> <#promotions> <#dirty>
2771 * <#features> <features>*
2772 * <#core args> <core args>
2773 * <policy name> <#policy args> <policy args>*
2774 */
2775static void cache_status(struct dm_target *ti, status_type_t type,
2776			 unsigned status_flags, char *result, unsigned maxlen)
2777{
2778	int r = 0;
2779	unsigned i;
2780	ssize_t sz = 0;
2781	dm_block_t nr_free_blocks_metadata = 0;
2782	dm_block_t nr_blocks_metadata = 0;
2783	char buf[BDEVNAME_SIZE];
2784	struct cache *cache = ti->private;
2785	dm_cblock_t residency;
 
2786
2787	switch (type) {
2788	case STATUSTYPE_INFO:
 
 
 
 
 
2789		/* Commit to ensure statistics aren't out-of-date */
2790		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) {
2791			r = dm_cache_commit(cache->cmd, false);
2792			if (r)
2793				DMERR("could not commit metadata for accurate status");
2794		}
2795
2796		r = dm_cache_get_free_metadata_block_count(cache->cmd,
2797							   &nr_free_blocks_metadata);
2798		if (r) {
2799			DMERR("could not get metadata free block count");
 
2800			goto err;
2801		}
2802
2803		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
2804		if (r) {
2805			DMERR("could not get metadata device size");
 
2806			goto err;
2807		}
2808
2809		residency = policy_residency(cache->policy);
2810
2811		DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %llu ",
2812		       (unsigned)(DM_CACHE_METADATA_BLOCK_SIZE >> SECTOR_SHIFT),
2813		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2814		       (unsigned long long)nr_blocks_metadata,
2815		       cache->sectors_per_block,
2816		       (unsigned long long) from_cblock(residency),
2817		       (unsigned long long) from_cblock(cache->cache_size),
2818		       (unsigned) atomic_read(&cache->stats.read_hit),
2819		       (unsigned) atomic_read(&cache->stats.read_miss),
2820		       (unsigned) atomic_read(&cache->stats.write_hit),
2821		       (unsigned) atomic_read(&cache->stats.write_miss),
2822		       (unsigned) atomic_read(&cache->stats.demotion),
2823		       (unsigned) atomic_read(&cache->stats.promotion),
2824		       (unsigned long long) from_cblock(cache->nr_dirty));
2825
2826		if (writethrough_mode(&cache->features))
2827			DMEMIT("1 writethrough ");
2828
2829		else if (passthrough_mode(&cache->features))
2830			DMEMIT("1 passthrough ");
2831
2832		else if (writeback_mode(&cache->features))
2833			DMEMIT("1 writeback ");
2834
2835		else {
2836			DMERR("internal error: unknown io mode: %d", (int) cache->features.io_mode);
2837			goto err;
2838		}
2839
2840		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
2841
2842		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
2843		if (sz < maxlen) {
2844			r = policy_emit_config_values(cache->policy, result + sz, maxlen - sz);
2845			if (r)
2846				DMERR("policy_emit_config_values returned %d", r);
 
2847		}
2848
 
 
 
 
 
 
 
 
 
 
 
 
2849		break;
2850
2851	case STATUSTYPE_TABLE:
2852		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
2853		DMEMIT("%s ", buf);
2854		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
2855		DMEMIT("%s ", buf);
2856		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
2857		DMEMIT("%s", buf);
2858
2859		for (i = 0; i < cache->nr_ctr_args - 1; i++)
2860			DMEMIT(" %s", cache->ctr_args[i]);
2861		if (cache->nr_ctr_args)
2862			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2863	}
2864
2865	return;
2866
2867err:
2868	DMEMIT("Error");
2869}
2870
2871/*
 
 
 
 
 
 
 
 
 
2872 * A cache block range can take two forms:
2873 *
2874 * i) A single cblock, eg. '3456'
2875 * ii) A begin and end cblock with dots between, eg. 123-234
2876 */
2877static int parse_cblock_range(struct cache *cache, const char *str,
2878			      struct cblock_range *result)
2879{
2880	char dummy;
2881	uint64_t b, e;
2882	int r;
2883
2884	/*
2885	 * Try and parse form (ii) first.
2886	 */
2887	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
2888	if (r < 0)
2889		return r;
2890
2891	if (r == 2) {
2892		result->begin = to_cblock(b);
2893		result->end = to_cblock(e);
2894		return 0;
2895	}
2896
2897	/*
2898	 * That didn't work, try form (i).
2899	 */
2900	r = sscanf(str, "%llu%c", &b, &dummy);
2901	if (r < 0)
2902		return r;
2903
2904	if (r == 1) {
2905		result->begin = to_cblock(b);
2906		result->end = to_cblock(from_cblock(result->begin) + 1u);
2907		return 0;
2908	}
2909
2910	DMERR("invalid cblock range '%s'", str);
2911	return -EINVAL;
2912}
2913
2914static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
2915{
2916	uint64_t b = from_cblock(range->begin);
2917	uint64_t e = from_cblock(range->end);
2918	uint64_t n = from_cblock(cache->cache_size);
2919
2920	if (b >= n) {
2921		DMERR("begin cblock out of range: %llu >= %llu", b, n);
 
2922		return -EINVAL;
2923	}
2924
2925	if (e > n) {
2926		DMERR("end cblock out of range: %llu > %llu", e, n);
 
2927		return -EINVAL;
2928	}
2929
2930	if (b >= e) {
2931		DMERR("invalid cblock range: %llu >= %llu", b, e);
 
2932		return -EINVAL;
2933	}
2934
2935	return 0;
2936}
2937
 
 
 
 
 
2938static int request_invalidation(struct cache *cache, struct cblock_range *range)
2939{
2940	struct invalidation_request req;
2941
2942	INIT_LIST_HEAD(&req.list);
2943	req.cblocks = range;
2944	atomic_set(&req.complete, 0);
2945	req.err = 0;
2946	init_waitqueue_head(&req.result_wait);
 
 
 
 
 
2947
2948	spin_lock(&cache->invalidation_lock);
2949	list_add(&req.list, &cache->invalidation_requests);
2950	spin_unlock(&cache->invalidation_lock);
2951	wake_worker(cache);
2952
2953	wait_event(req.result_wait, atomic_read(&req.complete));
2954	return req.err;
2955}
2956
2957static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
2958					      const char **cblock_ranges)
2959{
2960	int r = 0;
2961	unsigned i;
2962	struct cblock_range range;
2963
2964	if (!passthrough_mode(&cache->features)) {
2965		DMERR("cache has to be in passthrough mode for invalidation");
 
2966		return -EPERM;
2967	}
2968
2969	for (i = 0; i < count; i++) {
2970		r = parse_cblock_range(cache, cblock_ranges[i], &range);
2971		if (r)
2972			break;
2973
2974		r = validate_cblock_range(cache, &range);
2975		if (r)
2976			break;
2977
2978		/*
2979		 * Pass begin and end origin blocks to the worker and wake it.
2980		 */
2981		r = request_invalidation(cache, &range);
2982		if (r)
2983			break;
2984	}
2985
2986	return r;
2987}
2988
2989/*
2990 * Supports
2991 *	"<key> <value>"
2992 * and
2993 *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
2994 *
2995 * The key migration_threshold is supported by the cache target core.
2996 */
2997static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
 
2998{
2999	struct cache *cache = ti->private;
3000
3001	if (!argc)
3002		return -EINVAL;
3003
 
 
 
 
 
 
3004	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3005		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3006
3007	if (argc != 2)
3008		return -EINVAL;
3009
3010	return set_config_value(cache, argv[0], argv[1]);
3011}
3012
3013static int cache_iterate_devices(struct dm_target *ti,
3014				 iterate_devices_callout_fn fn, void *data)
3015{
3016	int r = 0;
3017	struct cache *cache = ti->private;
3018
3019	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3020	if (!r)
3021		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3022
3023	return r;
3024}
3025
3026/*
3027 * We assume I/O is going to the origin (which is the volume
3028 * more likely to have restrictions e.g. by being striped).
3029 * (Looking up the exact location of the data would be expensive
3030 * and could always be out of date by the time the bio is submitted.)
3031 */
3032static int cache_bvec_merge(struct dm_target *ti,
3033			    struct bvec_merge_data *bvm,
3034			    struct bio_vec *biovec, int max_size)
3035{
3036	struct cache *cache = ti->private;
3037	struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev);
 
 
 
 
 
 
 
3038
3039	if (!q->merge_bvec_fn)
3040		return max_size;
3041
3042	bvm->bi_bdev = cache->origin_dev->bdev;
3043	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
 
 
 
3044}
3045
3046static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3047{
 
 
 
 
 
 
 
 
 
 
 
3048	/*
3049	 * FIXME: these limits may be incompatible with the cache device
 
3050	 */
3051	limits->max_discard_sectors = cache->sectors_per_block;
3052	limits->discard_granularity = cache->sectors_per_block << SECTOR_SHIFT;
 
 
 
3053}
3054
3055static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3056{
3057	struct cache *cache = ti->private;
3058	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3059
3060	/*
3061	 * If the system-determined stacked limits are compatible with the
3062	 * cache's blocksize (io_opt is a factor) do not override them.
3063	 */
3064	if (io_opt_sectors < cache->sectors_per_block ||
3065	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3066		blk_limits_io_min(limits, 0);
3067		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3068	}
 
 
3069	set_discard_limits(cache, limits);
3070}
3071
3072/*----------------------------------------------------------------*/
3073
3074static struct target_type cache_target = {
3075	.name = "cache",
3076	.version = {1, 4, 0},
3077	.module = THIS_MODULE,
3078	.ctr = cache_ctr,
3079	.dtr = cache_dtr,
3080	.map = cache_map,
3081	.end_io = cache_end_io,
3082	.postsuspend = cache_postsuspend,
3083	.preresume = cache_preresume,
3084	.resume = cache_resume,
3085	.status = cache_status,
3086	.message = cache_message,
3087	.iterate_devices = cache_iterate_devices,
3088	.merge = cache_bvec_merge,
3089	.io_hints = cache_io_hints,
3090};
3091
3092static int __init dm_cache_init(void)
3093{
3094	int r;
3095
 
 
 
 
3096	r = dm_register_target(&cache_target);
3097	if (r) {
3098		DMERR("cache target registration failed: %d", r);
3099		return r;
3100	}
3101
3102	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3103	if (!migration_cache) {
3104		dm_unregister_target(&cache_target);
3105		return -ENOMEM;
3106	}
3107
3108	return 0;
3109}
3110
3111static void __exit dm_cache_exit(void)
3112{
3113	dm_unregister_target(&cache_target);
3114	kmem_cache_destroy(migration_cache);
3115}
3116
3117module_init(dm_cache_init);
3118module_exit(dm_cache_exit);
3119
3120MODULE_DESCRIPTION(DM_NAME " cache target");
3121MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3122MODULE_LICENSE("GPL");