Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Glue code for SHA-256 implementation for SPE instructions (PPC)
  4 *
  5 * Based on generic implementation. The assembler module takes care 
  6 * about the SPE registers so it can run from interrupt context.
  7 *
  8 * Copyright (c) 2015 Markus Stockhausen <stockhausen@collogia.de>
  9 */
 10
 11#include <crypto/internal/hash.h>
 12#include <linux/init.h>
 13#include <linux/module.h>
 14#include <linux/mm.h>
 
 15#include <linux/types.h>
 16#include <crypto/sha2.h>
 17#include <crypto/sha256_base.h>
 18#include <asm/byteorder.h>
 19#include <asm/switch_to.h>
 20#include <linux/hardirq.h>
 21
 22/*
 23 * MAX_BYTES defines the number of bytes that are allowed to be processed
 24 * between preempt_disable() and preempt_enable(). SHA256 takes ~2,000
 25 * operations per 64 bytes. e500 cores can issue two arithmetic instructions
 26 * per clock cycle using one 32/64 bit unit (SU1) and one 32 bit unit (SU2).
 27 * Thus 1KB of input data will need an estimated maximum of 18,000 cycles.
 28 * Headroom for cache misses included. Even with the low end model clocked
 29 * at 667 MHz this equals to a critical time window of less than 27us.
 30 *
 31 */
 32#define MAX_BYTES 1024
 33
 34extern void ppc_spe_sha256_transform(u32 *state, const u8 *src, u32 blocks);
 35
 36static void spe_begin(void)
 37{
 38	/* We just start SPE operations and will save SPE registers later. */
 39	preempt_disable();
 40	enable_kernel_spe();
 41}
 42
 43static void spe_end(void)
 44{
 45	disable_kernel_spe();
 46	/* reenable preemption */
 47	preempt_enable();
 48}
 49
 50static inline void ppc_sha256_clear_context(struct sha256_state *sctx)
 51{
 52	int count = sizeof(struct sha256_state) >> 2;
 53	u32 *ptr = (u32 *)sctx;
 54
 55	/* make sure we can clear the fast way */
 56	BUILD_BUG_ON(sizeof(struct sha256_state) % 4);
 57	do { *ptr++ = 0; } while (--count);
 58}
 59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 60static int ppc_spe_sha256_update(struct shash_desc *desc, const u8 *data,
 61			unsigned int len)
 62{
 63	struct sha256_state *sctx = shash_desc_ctx(desc);
 64	const unsigned int offset = sctx->count & 0x3f;
 65	const unsigned int avail = 64 - offset;
 66	unsigned int bytes;
 67	const u8 *src = data;
 68
 69	if (avail > len) {
 70		sctx->count += len;
 71		memcpy((char *)sctx->buf + offset, src, len);
 72		return 0;
 73	}
 74
 75	sctx->count += len;
 76
 77	if (offset) {
 78		memcpy((char *)sctx->buf + offset, src, avail);
 79
 80		spe_begin();
 81		ppc_spe_sha256_transform(sctx->state, (const u8 *)sctx->buf, 1);
 82		spe_end();
 83
 84		len -= avail;
 85		src += avail;
 86	}
 87
 88	while (len > 63) {
 89		/* cut input data into smaller blocks */
 90		bytes = (len > MAX_BYTES) ? MAX_BYTES : len;
 91		bytes = bytes & ~0x3f;
 92
 93		spe_begin();
 94		ppc_spe_sha256_transform(sctx->state, src, bytes >> 6);
 95		spe_end();
 96
 97		src += bytes;
 98		len -= bytes;
 99	}
100
101	memcpy((char *)sctx->buf, src, len);
102	return 0;
103}
104
105static int ppc_spe_sha256_final(struct shash_desc *desc, u8 *out)
106{
107	struct sha256_state *sctx = shash_desc_ctx(desc);
108	const unsigned int offset = sctx->count & 0x3f;
109	char *p = (char *)sctx->buf + offset;
110	int padlen;
111	__be64 *pbits = (__be64 *)(((char *)&sctx->buf) + 56);
112	__be32 *dst = (__be32 *)out;
113
114	padlen = 55 - offset;
115	*p++ = 0x80;
116
117	spe_begin();
118
119	if (padlen < 0) {
120		memset(p, 0x00, padlen + sizeof (u64));
121		ppc_spe_sha256_transform(sctx->state, sctx->buf, 1);
122		p = (char *)sctx->buf;
123		padlen = 56;
124	}
125
126	memset(p, 0, padlen);
127	*pbits = cpu_to_be64(sctx->count << 3);
128	ppc_spe_sha256_transform(sctx->state, sctx->buf, 1);
129
130	spe_end();
131
132	dst[0] = cpu_to_be32(sctx->state[0]);
133	dst[1] = cpu_to_be32(sctx->state[1]);
134	dst[2] = cpu_to_be32(sctx->state[2]);
135	dst[3] = cpu_to_be32(sctx->state[3]);
136	dst[4] = cpu_to_be32(sctx->state[4]);
137	dst[5] = cpu_to_be32(sctx->state[5]);
138	dst[6] = cpu_to_be32(sctx->state[6]);
139	dst[7] = cpu_to_be32(sctx->state[7]);
140
141	ppc_sha256_clear_context(sctx);
142	return 0;
143}
144
145static int ppc_spe_sha224_final(struct shash_desc *desc, u8 *out)
146{
147	__be32 D[SHA256_DIGEST_SIZE >> 2];
148	__be32 *dst = (__be32 *)out;
149
150	ppc_spe_sha256_final(desc, (u8 *)D);
151
152	/* avoid bytewise memcpy */
153	dst[0] = D[0];
154	dst[1] = D[1];
155	dst[2] = D[2];
156	dst[3] = D[3];
157	dst[4] = D[4];
158	dst[5] = D[5];
159	dst[6] = D[6];
160
161	/* clear sensitive data */
162	memzero_explicit(D, SHA256_DIGEST_SIZE);
163	return 0;
164}
165
166static int ppc_spe_sha256_export(struct shash_desc *desc, void *out)
167{
168	struct sha256_state *sctx = shash_desc_ctx(desc);
169
170	memcpy(out, sctx, sizeof(*sctx));
171	return 0;
172}
173
174static int ppc_spe_sha256_import(struct shash_desc *desc, const void *in)
175{
176	struct sha256_state *sctx = shash_desc_ctx(desc);
177
178	memcpy(sctx, in, sizeof(*sctx));
179	return 0;
180}
181
182static struct shash_alg algs[2] = { {
183	.digestsize	=	SHA256_DIGEST_SIZE,
184	.init		=	sha256_base_init,
185	.update		=	ppc_spe_sha256_update,
186	.final		=	ppc_spe_sha256_final,
187	.export		=	ppc_spe_sha256_export,
188	.import		=	ppc_spe_sha256_import,
189	.descsize	=	sizeof(struct sha256_state),
190	.statesize	=	sizeof(struct sha256_state),
191	.base		=	{
192		.cra_name	=	"sha256",
193		.cra_driver_name=	"sha256-ppc-spe",
194		.cra_priority	=	300,
195		.cra_blocksize	=	SHA256_BLOCK_SIZE,
196		.cra_module	=	THIS_MODULE,
197	}
198}, {
199	.digestsize	=	SHA224_DIGEST_SIZE,
200	.init		=	sha224_base_init,
201	.update		=	ppc_spe_sha256_update,
202	.final		=	ppc_spe_sha224_final,
203	.export		=	ppc_spe_sha256_export,
204	.import		=	ppc_spe_sha256_import,
205	.descsize	=	sizeof(struct sha256_state),
206	.statesize	=	sizeof(struct sha256_state),
207	.base		=	{
208		.cra_name	=	"sha224",
209		.cra_driver_name=	"sha224-ppc-spe",
210		.cra_priority	=	300,
211		.cra_blocksize	=	SHA224_BLOCK_SIZE,
212		.cra_module	=	THIS_MODULE,
213	}
214} };
215
216static int __init ppc_spe_sha256_mod_init(void)
217{
218	return crypto_register_shashes(algs, ARRAY_SIZE(algs));
219}
220
221static void __exit ppc_spe_sha256_mod_fini(void)
222{
223	crypto_unregister_shashes(algs, ARRAY_SIZE(algs));
224}
225
226module_init(ppc_spe_sha256_mod_init);
227module_exit(ppc_spe_sha256_mod_fini);
228
229MODULE_LICENSE("GPL");
230MODULE_DESCRIPTION("SHA-224 and SHA-256 Secure Hash Algorithm, SPE optimized");
231
232MODULE_ALIAS_CRYPTO("sha224");
233MODULE_ALIAS_CRYPTO("sha224-ppc-spe");
234MODULE_ALIAS_CRYPTO("sha256");
235MODULE_ALIAS_CRYPTO("sha256-ppc-spe");
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Glue code for SHA-256 implementation for SPE instructions (PPC)
  4 *
  5 * Based on generic implementation. The assembler module takes care 
  6 * about the SPE registers so it can run from interrupt context.
  7 *
  8 * Copyright (c) 2015 Markus Stockhausen <stockhausen@collogia.de>
  9 */
 10
 11#include <crypto/internal/hash.h>
 12#include <linux/init.h>
 13#include <linux/module.h>
 14#include <linux/mm.h>
 15#include <linux/cryptohash.h>
 16#include <linux/types.h>
 17#include <crypto/sha.h>
 
 18#include <asm/byteorder.h>
 19#include <asm/switch_to.h>
 20#include <linux/hardirq.h>
 21
 22/*
 23 * MAX_BYTES defines the number of bytes that are allowed to be processed
 24 * between preempt_disable() and preempt_enable(). SHA256 takes ~2,000
 25 * operations per 64 bytes. e500 cores can issue two arithmetic instructions
 26 * per clock cycle using one 32/64 bit unit (SU1) and one 32 bit unit (SU2).
 27 * Thus 1KB of input data will need an estimated maximum of 18,000 cycles.
 28 * Headroom for cache misses included. Even with the low end model clocked
 29 * at 667 MHz this equals to a critical time window of less than 27us.
 30 *
 31 */
 32#define MAX_BYTES 1024
 33
 34extern void ppc_spe_sha256_transform(u32 *state, const u8 *src, u32 blocks);
 35
 36static void spe_begin(void)
 37{
 38	/* We just start SPE operations and will save SPE registers later. */
 39	preempt_disable();
 40	enable_kernel_spe();
 41}
 42
 43static void spe_end(void)
 44{
 45	disable_kernel_spe();
 46	/* reenable preemption */
 47	preempt_enable();
 48}
 49
 50static inline void ppc_sha256_clear_context(struct sha256_state *sctx)
 51{
 52	int count = sizeof(struct sha256_state) >> 2;
 53	u32 *ptr = (u32 *)sctx;
 54
 55	/* make sure we can clear the fast way */
 56	BUILD_BUG_ON(sizeof(struct sha256_state) % 4);
 57	do { *ptr++ = 0; } while (--count);
 58}
 59
 60static int ppc_spe_sha256_init(struct shash_desc *desc)
 61{
 62	struct sha256_state *sctx = shash_desc_ctx(desc);
 63
 64	sctx->state[0] = SHA256_H0;
 65	sctx->state[1] = SHA256_H1;
 66	sctx->state[2] = SHA256_H2;
 67	sctx->state[3] = SHA256_H3;
 68	sctx->state[4] = SHA256_H4;
 69	sctx->state[5] = SHA256_H5;
 70	sctx->state[6] = SHA256_H6;
 71	sctx->state[7] = SHA256_H7;
 72	sctx->count = 0;
 73
 74	return 0;
 75}
 76
 77static int ppc_spe_sha224_init(struct shash_desc *desc)
 78{
 79	struct sha256_state *sctx = shash_desc_ctx(desc);
 80
 81	sctx->state[0] = SHA224_H0;
 82	sctx->state[1] = SHA224_H1;
 83	sctx->state[2] = SHA224_H2;
 84	sctx->state[3] = SHA224_H3;
 85	sctx->state[4] = SHA224_H4;
 86	sctx->state[5] = SHA224_H5;
 87	sctx->state[6] = SHA224_H6;
 88	sctx->state[7] = SHA224_H7;
 89	sctx->count = 0;
 90
 91	return 0;
 92}
 93
 94static int ppc_spe_sha256_update(struct shash_desc *desc, const u8 *data,
 95			unsigned int len)
 96{
 97	struct sha256_state *sctx = shash_desc_ctx(desc);
 98	const unsigned int offset = sctx->count & 0x3f;
 99	const unsigned int avail = 64 - offset;
100	unsigned int bytes;
101	const u8 *src = data;
102
103	if (avail > len) {
104		sctx->count += len;
105		memcpy((char *)sctx->buf + offset, src, len);
106		return 0;
107	}
108
109	sctx->count += len;
110
111	if (offset) {
112		memcpy((char *)sctx->buf + offset, src, avail);
113
114		spe_begin();
115		ppc_spe_sha256_transform(sctx->state, (const u8 *)sctx->buf, 1);
116		spe_end();
117
118		len -= avail;
119		src += avail;
120	}
121
122	while (len > 63) {
123		/* cut input data into smaller blocks */
124		bytes = (len > MAX_BYTES) ? MAX_BYTES : len;
125		bytes = bytes & ~0x3f;
126
127		spe_begin();
128		ppc_spe_sha256_transform(sctx->state, src, bytes >> 6);
129		spe_end();
130
131		src += bytes;
132		len -= bytes;
133	};
134
135	memcpy((char *)sctx->buf, src, len);
136	return 0;
137}
138
139static int ppc_spe_sha256_final(struct shash_desc *desc, u8 *out)
140{
141	struct sha256_state *sctx = shash_desc_ctx(desc);
142	const unsigned int offset = sctx->count & 0x3f;
143	char *p = (char *)sctx->buf + offset;
144	int padlen;
145	__be64 *pbits = (__be64 *)(((char *)&sctx->buf) + 56);
146	__be32 *dst = (__be32 *)out;
147
148	padlen = 55 - offset;
149	*p++ = 0x80;
150
151	spe_begin();
152
153	if (padlen < 0) {
154		memset(p, 0x00, padlen + sizeof (u64));
155		ppc_spe_sha256_transform(sctx->state, sctx->buf, 1);
156		p = (char *)sctx->buf;
157		padlen = 56;
158	}
159
160	memset(p, 0, padlen);
161	*pbits = cpu_to_be64(sctx->count << 3);
162	ppc_spe_sha256_transform(sctx->state, sctx->buf, 1);
163
164	spe_end();
165
166	dst[0] = cpu_to_be32(sctx->state[0]);
167	dst[1] = cpu_to_be32(sctx->state[1]);
168	dst[2] = cpu_to_be32(sctx->state[2]);
169	dst[3] = cpu_to_be32(sctx->state[3]);
170	dst[4] = cpu_to_be32(sctx->state[4]);
171	dst[5] = cpu_to_be32(sctx->state[5]);
172	dst[6] = cpu_to_be32(sctx->state[6]);
173	dst[7] = cpu_to_be32(sctx->state[7]);
174
175	ppc_sha256_clear_context(sctx);
176	return 0;
177}
178
179static int ppc_spe_sha224_final(struct shash_desc *desc, u8 *out)
180{
181	u32 D[SHA256_DIGEST_SIZE >> 2];
182	__be32 *dst = (__be32 *)out;
183
184	ppc_spe_sha256_final(desc, (u8 *)D);
185
186	/* avoid bytewise memcpy */
187	dst[0] = D[0];
188	dst[1] = D[1];
189	dst[2] = D[2];
190	dst[3] = D[3];
191	dst[4] = D[4];
192	dst[5] = D[5];
193	dst[6] = D[6];
194
195	/* clear sensitive data */
196	memzero_explicit(D, SHA256_DIGEST_SIZE);
197	return 0;
198}
199
200static int ppc_spe_sha256_export(struct shash_desc *desc, void *out)
201{
202	struct sha256_state *sctx = shash_desc_ctx(desc);
203
204	memcpy(out, sctx, sizeof(*sctx));
205	return 0;
206}
207
208static int ppc_spe_sha256_import(struct shash_desc *desc, const void *in)
209{
210	struct sha256_state *sctx = shash_desc_ctx(desc);
211
212	memcpy(sctx, in, sizeof(*sctx));
213	return 0;
214}
215
216static struct shash_alg algs[2] = { {
217	.digestsize	=	SHA256_DIGEST_SIZE,
218	.init		=	ppc_spe_sha256_init,
219	.update		=	ppc_spe_sha256_update,
220	.final		=	ppc_spe_sha256_final,
221	.export		=	ppc_spe_sha256_export,
222	.import		=	ppc_spe_sha256_import,
223	.descsize	=	sizeof(struct sha256_state),
224	.statesize	=	sizeof(struct sha256_state),
225	.base		=	{
226		.cra_name	=	"sha256",
227		.cra_driver_name=	"sha256-ppc-spe",
228		.cra_priority	=	300,
229		.cra_blocksize	=	SHA256_BLOCK_SIZE,
230		.cra_module	=	THIS_MODULE,
231	}
232}, {
233	.digestsize	=	SHA224_DIGEST_SIZE,
234	.init		=	ppc_spe_sha224_init,
235	.update		=	ppc_spe_sha256_update,
236	.final		=	ppc_spe_sha224_final,
237	.export		=	ppc_spe_sha256_export,
238	.import		=	ppc_spe_sha256_import,
239	.descsize	=	sizeof(struct sha256_state),
240	.statesize	=	sizeof(struct sha256_state),
241	.base		=	{
242		.cra_name	=	"sha224",
243		.cra_driver_name=	"sha224-ppc-spe",
244		.cra_priority	=	300,
245		.cra_blocksize	=	SHA224_BLOCK_SIZE,
246		.cra_module	=	THIS_MODULE,
247	}
248} };
249
250static int __init ppc_spe_sha256_mod_init(void)
251{
252	return crypto_register_shashes(algs, ARRAY_SIZE(algs));
253}
254
255static void __exit ppc_spe_sha256_mod_fini(void)
256{
257	crypto_unregister_shashes(algs, ARRAY_SIZE(algs));
258}
259
260module_init(ppc_spe_sha256_mod_init);
261module_exit(ppc_spe_sha256_mod_fini);
262
263MODULE_LICENSE("GPL");
264MODULE_DESCRIPTION("SHA-224 and SHA-256 Secure Hash Algorithm, SPE optimized");
265
266MODULE_ALIAS_CRYPTO("sha224");
267MODULE_ALIAS_CRYPTO("sha224-ppc-spe");
268MODULE_ALIAS_CRYPTO("sha256");
269MODULE_ALIAS_CRYPTO("sha256-ppc-spe");