Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Glue code for SHA-256 implementation for SPE instructions (PPC) * * Based on generic implementation. The assembler module takes care * about the SPE registers so it can run from interrupt context. * * Copyright (c) 2015 Markus Stockhausen <stockhausen@collogia.de> */ #include <crypto/internal/hash.h> #include <linux/init.h> #include <linux/module.h> #include <linux/mm.h> #include <linux/types.h> #include <crypto/sha2.h> #include <crypto/sha256_base.h> #include <asm/byteorder.h> #include <asm/switch_to.h> #include <linux/hardirq.h> /* * MAX_BYTES defines the number of bytes that are allowed to be processed * between preempt_disable() and preempt_enable(). SHA256 takes ~2,000 * operations per 64 bytes. e500 cores can issue two arithmetic instructions * per clock cycle using one 32/64 bit unit (SU1) and one 32 bit unit (SU2). * Thus 1KB of input data will need an estimated maximum of 18,000 cycles. * Headroom for cache misses included. Even with the low end model clocked * at 667 MHz this equals to a critical time window of less than 27us. * */ #define MAX_BYTES 1024 extern void ppc_spe_sha256_transform(u32 *state, const u8 *src, u32 blocks); static void spe_begin(void) { /* We just start SPE operations and will save SPE registers later. */ preempt_disable(); enable_kernel_spe(); } static void spe_end(void) { disable_kernel_spe(); /* reenable preemption */ preempt_enable(); } static inline void ppc_sha256_clear_context(struct sha256_state *sctx) { int count = sizeof(struct sha256_state) >> 2; u32 *ptr = (u32 *)sctx; /* make sure we can clear the fast way */ BUILD_BUG_ON(sizeof(struct sha256_state) % 4); do { *ptr++ = 0; } while (--count); } static int ppc_spe_sha256_update(struct shash_desc *desc, const u8 *data, unsigned int len) { struct sha256_state *sctx = shash_desc_ctx(desc); const unsigned int offset = sctx->count & 0x3f; const unsigned int avail = 64 - offset; unsigned int bytes; const u8 *src = data; if (avail > len) { sctx->count += len; memcpy((char *)sctx->buf + offset, src, len); return 0; } sctx->count += len; if (offset) { memcpy((char *)sctx->buf + offset, src, avail); spe_begin(); ppc_spe_sha256_transform(sctx->state, (const u8 *)sctx->buf, 1); spe_end(); len -= avail; src += avail; } while (len > 63) { /* cut input data into smaller blocks */ bytes = (len > MAX_BYTES) ? MAX_BYTES : len; bytes = bytes & ~0x3f; spe_begin(); ppc_spe_sha256_transform(sctx->state, src, bytes >> 6); spe_end(); src += bytes; len -= bytes; } memcpy((char *)sctx->buf, src, len); return 0; } static int ppc_spe_sha256_final(struct shash_desc *desc, u8 *out) { struct sha256_state *sctx = shash_desc_ctx(desc); const unsigned int offset = sctx->count & 0x3f; char *p = (char *)sctx->buf + offset; int padlen; __be64 *pbits = (__be64 *)(((char *)&sctx->buf) + 56); __be32 *dst = (__be32 *)out; padlen = 55 - offset; *p++ = 0x80; spe_begin(); if (padlen < 0) { memset(p, 0x00, padlen + sizeof (u64)); ppc_spe_sha256_transform(sctx->state, sctx->buf, 1); p = (char *)sctx->buf; padlen = 56; } memset(p, 0, padlen); *pbits = cpu_to_be64(sctx->count << 3); ppc_spe_sha256_transform(sctx->state, sctx->buf, 1); spe_end(); dst[0] = cpu_to_be32(sctx->state[0]); dst[1] = cpu_to_be32(sctx->state[1]); dst[2] = cpu_to_be32(sctx->state[2]); dst[3] = cpu_to_be32(sctx->state[3]); dst[4] = cpu_to_be32(sctx->state[4]); dst[5] = cpu_to_be32(sctx->state[5]); dst[6] = cpu_to_be32(sctx->state[6]); dst[7] = cpu_to_be32(sctx->state[7]); ppc_sha256_clear_context(sctx); return 0; } static int ppc_spe_sha224_final(struct shash_desc *desc, u8 *out) { __be32 D[SHA256_DIGEST_SIZE >> 2]; __be32 *dst = (__be32 *)out; ppc_spe_sha256_final(desc, (u8 *)D); /* avoid bytewise memcpy */ dst[0] = D[0]; dst[1] = D[1]; dst[2] = D[2]; dst[3] = D[3]; dst[4] = D[4]; dst[5] = D[5]; dst[6] = D[6]; /* clear sensitive data */ memzero_explicit(D, SHA256_DIGEST_SIZE); return 0; } static int ppc_spe_sha256_export(struct shash_desc *desc, void *out) { struct sha256_state *sctx = shash_desc_ctx(desc); memcpy(out, sctx, sizeof(*sctx)); return 0; } static int ppc_spe_sha256_import(struct shash_desc *desc, const void *in) { struct sha256_state *sctx = shash_desc_ctx(desc); memcpy(sctx, in, sizeof(*sctx)); return 0; } static struct shash_alg algs[2] = { { .digestsize = SHA256_DIGEST_SIZE, .init = sha256_base_init, .update = ppc_spe_sha256_update, .final = ppc_spe_sha256_final, .export = ppc_spe_sha256_export, .import = ppc_spe_sha256_import, .descsize = sizeof(struct sha256_state), .statesize = sizeof(struct sha256_state), .base = { .cra_name = "sha256", .cra_driver_name= "sha256-ppc-spe", .cra_priority = 300, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_module = THIS_MODULE, } }, { .digestsize = SHA224_DIGEST_SIZE, .init = sha224_base_init, .update = ppc_spe_sha256_update, .final = ppc_spe_sha224_final, .export = ppc_spe_sha256_export, .import = ppc_spe_sha256_import, .descsize = sizeof(struct sha256_state), .statesize = sizeof(struct sha256_state), .base = { .cra_name = "sha224", .cra_driver_name= "sha224-ppc-spe", .cra_priority = 300, .cra_blocksize = SHA224_BLOCK_SIZE, .cra_module = THIS_MODULE, } } }; static int __init ppc_spe_sha256_mod_init(void) { return crypto_register_shashes(algs, ARRAY_SIZE(algs)); } static void __exit ppc_spe_sha256_mod_fini(void) { crypto_unregister_shashes(algs, ARRAY_SIZE(algs)); } module_init(ppc_spe_sha256_mod_init); module_exit(ppc_spe_sha256_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("SHA-224 and SHA-256 Secure Hash Algorithm, SPE optimized"); MODULE_ALIAS_CRYPTO("sha224"); MODULE_ALIAS_CRYPTO("sha224-ppc-spe"); MODULE_ALIAS_CRYPTO("sha256"); MODULE_ALIAS_CRYPTO("sha256-ppc-spe"); |