Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2023 Intel Corporation
9 */
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/netdevice.h>
14#include <linux/wireless.h>
15#include <linux/nl80211.h>
16#include <linux/etherdevice.h>
17#include <linux/crc32.h>
18#include <linux/bitfield.h>
19#include <net/arp.h>
20#include <net/cfg80211.h>
21#include <net/cfg80211-wext.h>
22#include <net/iw_handler.h>
23#include <kunit/visibility.h>
24#include "core.h"
25#include "nl80211.h"
26#include "wext-compat.h"
27#include "rdev-ops.h"
28
29/**
30 * DOC: BSS tree/list structure
31 *
32 * At the top level, the BSS list is kept in both a list in each
33 * registered device (@bss_list) as well as an RB-tree for faster
34 * lookup. In the RB-tree, entries can be looked up using their
35 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36 * for other BSSes.
37 *
38 * Due to the possibility of hidden SSIDs, there's a second level
39 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40 * The hidden_list connects all BSSes belonging to a single AP
41 * that has a hidden SSID, and connects beacon and probe response
42 * entries. For a probe response entry for a hidden SSID, the
43 * hidden_beacon_bss pointer points to the BSS struct holding the
44 * beacon's information.
45 *
46 * Reference counting is done for all these references except for
47 * the hidden_list, so that a beacon BSS struct that is otherwise
48 * not referenced has one reference for being on the bss_list and
49 * one for each probe response entry that points to it using the
50 * hidden_beacon_bss pointer. When a BSS struct that has such a
51 * pointer is get/put, the refcount update is also propagated to
52 * the referenced struct, this ensure that it cannot get removed
53 * while somebody is using the probe response version.
54 *
55 * Note that the hidden_beacon_bss pointer never changes, due to
56 * the reference counting. Therefore, no locking is needed for
57 * it.
58 *
59 * Also note that the hidden_beacon_bss pointer is only relevant
60 * if the driver uses something other than the IEs, e.g. private
61 * data stored in the BSS struct, since the beacon IEs are
62 * also linked into the probe response struct.
63 */
64
65/*
66 * Limit the number of BSS entries stored in mac80211. Each one is
67 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68 * If somebody wants to really attack this though, they'd likely
69 * use small beacons, and only one type of frame, limiting each of
70 * the entries to a much smaller size (in order to generate more
71 * entries in total, so overhead is bigger.)
72 */
73static int bss_entries_limit = 1000;
74module_param(bss_entries_limit, int, 0644);
75MODULE_PARM_DESC(bss_entries_limit,
76 "limit to number of scan BSS entries (per wiphy, default 1000)");
77
78#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
79
80/**
81 * struct cfg80211_colocated_ap - colocated AP information
82 *
83 * @list: linked list to all colocated aPS
84 * @bssid: BSSID of the reported AP
85 * @ssid: SSID of the reported AP
86 * @ssid_len: length of the ssid
87 * @center_freq: frequency the reported AP is on
88 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
89 * that operate in the same channel as the reported AP and that might be
90 * detected by a STA receiving this frame, are transmitting unsolicited
91 * Probe Response frames every 20 TUs
92 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
93 * @same_ssid: the reported AP has the same SSID as the reporting AP
94 * @multi_bss: the reported AP is part of a multiple BSSID set
95 * @transmitted_bssid: the reported AP is the transmitting BSSID
96 * @colocated_ess: all the APs that share the same ESS as the reported AP are
97 * colocated and can be discovered via legacy bands.
98 * @short_ssid_valid: short_ssid is valid and can be used
99 * @short_ssid: the short SSID for this SSID
100 * @psd_20: The 20MHz PSD EIRP of the primary 20MHz channel for the reported AP
101 */
102struct cfg80211_colocated_ap {
103 struct list_head list;
104 u8 bssid[ETH_ALEN];
105 u8 ssid[IEEE80211_MAX_SSID_LEN];
106 size_t ssid_len;
107 u32 short_ssid;
108 u32 center_freq;
109 u8 unsolicited_probe:1,
110 oct_recommended:1,
111 same_ssid:1,
112 multi_bss:1,
113 transmitted_bssid:1,
114 colocated_ess:1,
115 short_ssid_valid:1;
116 s8 psd_20;
117};
118
119static void bss_free(struct cfg80211_internal_bss *bss)
120{
121 struct cfg80211_bss_ies *ies;
122
123 if (WARN_ON(atomic_read(&bss->hold)))
124 return;
125
126 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
127 if (ies && !bss->pub.hidden_beacon_bss)
128 kfree_rcu(ies, rcu_head);
129 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
130 if (ies)
131 kfree_rcu(ies, rcu_head);
132
133 /*
134 * This happens when the module is removed, it doesn't
135 * really matter any more save for completeness
136 */
137 if (!list_empty(&bss->hidden_list))
138 list_del(&bss->hidden_list);
139
140 kfree(bss);
141}
142
143static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
144 struct cfg80211_internal_bss *bss)
145{
146 lockdep_assert_held(&rdev->bss_lock);
147
148 bss->refcount++;
149
150 if (bss->pub.hidden_beacon_bss)
151 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
152
153 if (bss->pub.transmitted_bss)
154 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
155}
156
157static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
158 struct cfg80211_internal_bss *bss)
159{
160 lockdep_assert_held(&rdev->bss_lock);
161
162 if (bss->pub.hidden_beacon_bss) {
163 struct cfg80211_internal_bss *hbss;
164
165 hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
166 hbss->refcount--;
167 if (hbss->refcount == 0)
168 bss_free(hbss);
169 }
170
171 if (bss->pub.transmitted_bss) {
172 struct cfg80211_internal_bss *tbss;
173
174 tbss = bss_from_pub(bss->pub.transmitted_bss);
175 tbss->refcount--;
176 if (tbss->refcount == 0)
177 bss_free(tbss);
178 }
179
180 bss->refcount--;
181 if (bss->refcount == 0)
182 bss_free(bss);
183}
184
185static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
186 struct cfg80211_internal_bss *bss)
187{
188 lockdep_assert_held(&rdev->bss_lock);
189
190 if (!list_empty(&bss->hidden_list)) {
191 /*
192 * don't remove the beacon entry if it has
193 * probe responses associated with it
194 */
195 if (!bss->pub.hidden_beacon_bss)
196 return false;
197 /*
198 * if it's a probe response entry break its
199 * link to the other entries in the group
200 */
201 list_del_init(&bss->hidden_list);
202 }
203
204 list_del_init(&bss->list);
205 list_del_init(&bss->pub.nontrans_list);
206 rb_erase(&bss->rbn, &rdev->bss_tree);
207 rdev->bss_entries--;
208 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
209 "rdev bss entries[%d]/list[empty:%d] corruption\n",
210 rdev->bss_entries, list_empty(&rdev->bss_list));
211 bss_ref_put(rdev, bss);
212 return true;
213}
214
215bool cfg80211_is_element_inherited(const struct element *elem,
216 const struct element *non_inherit_elem)
217{
218 u8 id_len, ext_id_len, i, loop_len, id;
219 const u8 *list;
220
221 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
222 return false;
223
224 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
225 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
226 return false;
227
228 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
229 return true;
230
231 /*
232 * non inheritance element format is:
233 * ext ID (56) | IDs list len | list | extension IDs list len | list
234 * Both lists are optional. Both lengths are mandatory.
235 * This means valid length is:
236 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
237 */
238 id_len = non_inherit_elem->data[1];
239 if (non_inherit_elem->datalen < 3 + id_len)
240 return true;
241
242 ext_id_len = non_inherit_elem->data[2 + id_len];
243 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
244 return true;
245
246 if (elem->id == WLAN_EID_EXTENSION) {
247 if (!ext_id_len)
248 return true;
249 loop_len = ext_id_len;
250 list = &non_inherit_elem->data[3 + id_len];
251 id = elem->data[0];
252 } else {
253 if (!id_len)
254 return true;
255 loop_len = id_len;
256 list = &non_inherit_elem->data[2];
257 id = elem->id;
258 }
259
260 for (i = 0; i < loop_len; i++) {
261 if (list[i] == id)
262 return false;
263 }
264
265 return true;
266}
267EXPORT_SYMBOL(cfg80211_is_element_inherited);
268
269static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
270 const u8 *ie, size_t ie_len,
271 u8 **pos, u8 *buf, size_t buf_len)
272{
273 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
274 elem->data + elem->datalen > ie + ie_len))
275 return 0;
276
277 if (elem->datalen + 2 > buf + buf_len - *pos)
278 return 0;
279
280 memcpy(*pos, elem, elem->datalen + 2);
281 *pos += elem->datalen + 2;
282
283 /* Finish if it is not fragmented */
284 if (elem->datalen != 255)
285 return *pos - buf;
286
287 ie_len = ie + ie_len - elem->data - elem->datalen;
288 ie = (const u8 *)elem->data + elem->datalen;
289
290 for_each_element(elem, ie, ie_len) {
291 if (elem->id != WLAN_EID_FRAGMENT)
292 break;
293
294 if (elem->datalen + 2 > buf + buf_len - *pos)
295 return 0;
296
297 memcpy(*pos, elem, elem->datalen + 2);
298 *pos += elem->datalen + 2;
299
300 if (elem->datalen != 255)
301 break;
302 }
303
304 return *pos - buf;
305}
306
307VISIBLE_IF_CFG80211_KUNIT size_t
308cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
309 const u8 *subie, size_t subie_len,
310 u8 *new_ie, size_t new_ie_len)
311{
312 const struct element *non_inherit_elem, *parent, *sub;
313 u8 *pos = new_ie;
314 u8 id, ext_id;
315 unsigned int match_len;
316
317 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
318 subie, subie_len);
319
320 /* We copy the elements one by one from the parent to the generated
321 * elements.
322 * If they are not inherited (included in subie or in the non
323 * inheritance element), then we copy all occurrences the first time
324 * we see this element type.
325 */
326 for_each_element(parent, ie, ielen) {
327 if (parent->id == WLAN_EID_FRAGMENT)
328 continue;
329
330 if (parent->id == WLAN_EID_EXTENSION) {
331 if (parent->datalen < 1)
332 continue;
333
334 id = WLAN_EID_EXTENSION;
335 ext_id = parent->data[0];
336 match_len = 1;
337 } else {
338 id = parent->id;
339 match_len = 0;
340 }
341
342 /* Find first occurrence in subie */
343 sub = cfg80211_find_elem_match(id, subie, subie_len,
344 &ext_id, match_len, 0);
345
346 /* Copy from parent if not in subie and inherited */
347 if (!sub &&
348 cfg80211_is_element_inherited(parent, non_inherit_elem)) {
349 if (!cfg80211_copy_elem_with_frags(parent,
350 ie, ielen,
351 &pos, new_ie,
352 new_ie_len))
353 return 0;
354
355 continue;
356 }
357
358 /* Already copied if an earlier element had the same type */
359 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
360 &ext_id, match_len, 0))
361 continue;
362
363 /* Not inheriting, copy all similar elements from subie */
364 while (sub) {
365 if (!cfg80211_copy_elem_with_frags(sub,
366 subie, subie_len,
367 &pos, new_ie,
368 new_ie_len))
369 return 0;
370
371 sub = cfg80211_find_elem_match(id,
372 sub->data + sub->datalen,
373 subie_len + subie -
374 (sub->data +
375 sub->datalen),
376 &ext_id, match_len, 0);
377 }
378 }
379
380 /* The above misses elements that are included in subie but not in the
381 * parent, so do a pass over subie and append those.
382 * Skip the non-tx BSSID caps and non-inheritance element.
383 */
384 for_each_element(sub, subie, subie_len) {
385 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
386 continue;
387
388 if (sub->id == WLAN_EID_FRAGMENT)
389 continue;
390
391 if (sub->id == WLAN_EID_EXTENSION) {
392 if (sub->datalen < 1)
393 continue;
394
395 id = WLAN_EID_EXTENSION;
396 ext_id = sub->data[0];
397 match_len = 1;
398
399 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
400 continue;
401 } else {
402 id = sub->id;
403 match_len = 0;
404 }
405
406 /* Processed if one was included in the parent */
407 if (cfg80211_find_elem_match(id, ie, ielen,
408 &ext_id, match_len, 0))
409 continue;
410
411 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
412 &pos, new_ie, new_ie_len))
413 return 0;
414 }
415
416 return pos - new_ie;
417}
418EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
419
420static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
421 const u8 *ssid, size_t ssid_len)
422{
423 const struct cfg80211_bss_ies *ies;
424 const struct element *ssid_elem;
425
426 if (bssid && !ether_addr_equal(a->bssid, bssid))
427 return false;
428
429 if (!ssid)
430 return true;
431
432 ies = rcu_access_pointer(a->ies);
433 if (!ies)
434 return false;
435 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
436 if (!ssid_elem)
437 return false;
438 if (ssid_elem->datalen != ssid_len)
439 return false;
440 return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
441}
442
443static int
444cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
445 struct cfg80211_bss *nontrans_bss)
446{
447 const struct element *ssid_elem;
448 struct cfg80211_bss *bss = NULL;
449
450 rcu_read_lock();
451 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
452 if (!ssid_elem) {
453 rcu_read_unlock();
454 return -EINVAL;
455 }
456
457 /* check if nontrans_bss is in the list */
458 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
459 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
460 ssid_elem->datalen)) {
461 rcu_read_unlock();
462 return 0;
463 }
464 }
465
466 rcu_read_unlock();
467
468 /*
469 * This is a bit weird - it's not on the list, but already on another
470 * one! The only way that could happen is if there's some BSSID/SSID
471 * shared by multiple APs in their multi-BSSID profiles, potentially
472 * with hidden SSID mixed in ... ignore it.
473 */
474 if (!list_empty(&nontrans_bss->nontrans_list))
475 return -EINVAL;
476
477 /* add to the list */
478 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
479 return 0;
480}
481
482static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
483 unsigned long expire_time)
484{
485 struct cfg80211_internal_bss *bss, *tmp;
486 bool expired = false;
487
488 lockdep_assert_held(&rdev->bss_lock);
489
490 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
491 if (atomic_read(&bss->hold))
492 continue;
493 if (!time_after(expire_time, bss->ts))
494 continue;
495
496 if (__cfg80211_unlink_bss(rdev, bss))
497 expired = true;
498 }
499
500 if (expired)
501 rdev->bss_generation++;
502}
503
504static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
505{
506 struct cfg80211_internal_bss *bss, *oldest = NULL;
507 bool ret;
508
509 lockdep_assert_held(&rdev->bss_lock);
510
511 list_for_each_entry(bss, &rdev->bss_list, list) {
512 if (atomic_read(&bss->hold))
513 continue;
514
515 if (!list_empty(&bss->hidden_list) &&
516 !bss->pub.hidden_beacon_bss)
517 continue;
518
519 if (oldest && time_before(oldest->ts, bss->ts))
520 continue;
521 oldest = bss;
522 }
523
524 if (WARN_ON(!oldest))
525 return false;
526
527 /*
528 * The callers make sure to increase rdev->bss_generation if anything
529 * gets removed (and a new entry added), so there's no need to also do
530 * it here.
531 */
532
533 ret = __cfg80211_unlink_bss(rdev, oldest);
534 WARN_ON(!ret);
535 return ret;
536}
537
538static u8 cfg80211_parse_bss_param(u8 data,
539 struct cfg80211_colocated_ap *coloc_ap)
540{
541 coloc_ap->oct_recommended =
542 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
543 coloc_ap->same_ssid =
544 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
545 coloc_ap->multi_bss =
546 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
547 coloc_ap->transmitted_bssid =
548 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
549 coloc_ap->unsolicited_probe =
550 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
551 coloc_ap->colocated_ess =
552 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
553
554 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
555}
556
557static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
558 const struct element **elem, u32 *s_ssid)
559{
560
561 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
562 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
563 return -EINVAL;
564
565 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
566 return 0;
567}
568
569static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
570{
571 struct cfg80211_colocated_ap *ap, *tmp_ap;
572
573 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
574 list_del(&ap->list);
575 kfree(ap);
576 }
577}
578
579static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
580 const u8 *pos, u8 length,
581 const struct element *ssid_elem,
582 u32 s_ssid_tmp)
583{
584 u8 bss_params;
585
586 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
587
588 /* The length is already verified by the caller to contain bss_params */
589 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
590 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
591
592 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
593 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
594 entry->short_ssid_valid = true;
595
596 bss_params = tbtt_info->bss_params;
597
598 /* Ignore disabled links */
599 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
600 if (le16_get_bits(tbtt_info->mld_params.params,
601 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
602 return -EINVAL;
603 }
604
605 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
606 psd_20))
607 entry->psd_20 = tbtt_info->psd_20;
608 } else {
609 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
610
611 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
612
613 bss_params = tbtt_info->bss_params;
614
615 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
616 psd_20))
617 entry->psd_20 = tbtt_info->psd_20;
618 }
619
620 /* ignore entries with invalid BSSID */
621 if (!is_valid_ether_addr(entry->bssid))
622 return -EINVAL;
623
624 /* skip non colocated APs */
625 if (!cfg80211_parse_bss_param(bss_params, entry))
626 return -EINVAL;
627
628 /* no information about the short ssid. Consider the entry valid
629 * for now. It would later be dropped in case there are explicit
630 * SSIDs that need to be matched
631 */
632 if (!entry->same_ssid && !entry->short_ssid_valid)
633 return 0;
634
635 if (entry->same_ssid) {
636 entry->short_ssid = s_ssid_tmp;
637 entry->short_ssid_valid = true;
638
639 /*
640 * This is safe because we validate datalen in
641 * cfg80211_parse_colocated_ap(), before calling this
642 * function.
643 */
644 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
645 entry->ssid_len = ssid_elem->datalen;
646 }
647
648 return 0;
649}
650
651static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
652 struct list_head *list)
653{
654 struct ieee80211_neighbor_ap_info *ap_info;
655 const struct element *elem, *ssid_elem;
656 const u8 *pos, *end;
657 u32 s_ssid_tmp;
658 int n_coloc = 0, ret;
659 LIST_HEAD(ap_list);
660
661 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
662 if (ret)
663 return 0;
664
665 for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
666 ies->data, ies->len) {
667 pos = elem->data;
668 end = elem->data + elem->datalen;
669
670 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
671 while (pos + sizeof(*ap_info) <= end) {
672 enum nl80211_band band;
673 int freq;
674 u8 length, i, count;
675
676 ap_info = (void *)pos;
677 count = u8_get_bits(ap_info->tbtt_info_hdr,
678 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
679 length = ap_info->tbtt_info_len;
680
681 pos += sizeof(*ap_info);
682
683 if (!ieee80211_operating_class_to_band(ap_info->op_class,
684 &band))
685 break;
686
687 freq = ieee80211_channel_to_frequency(ap_info->channel,
688 band);
689
690 if (end - pos < count * length)
691 break;
692
693 if (u8_get_bits(ap_info->tbtt_info_hdr,
694 IEEE80211_AP_INFO_TBTT_HDR_TYPE) !=
695 IEEE80211_TBTT_INFO_TYPE_TBTT) {
696 pos += count * length;
697 continue;
698 }
699
700 /* TBTT info must include bss param + BSSID +
701 * (short SSID or same_ssid bit to be set).
702 * ignore other options, and move to the
703 * next AP info
704 */
705 if (band != NL80211_BAND_6GHZ ||
706 !(length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
707 bss_params) ||
708 length == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
709 length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
710 bss_params))) {
711 pos += count * length;
712 continue;
713 }
714
715 for (i = 0; i < count; i++) {
716 struct cfg80211_colocated_ap *entry;
717
718 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
719 GFP_ATOMIC);
720
721 if (!entry)
722 goto error;
723
724 entry->center_freq = freq;
725
726 if (!cfg80211_parse_ap_info(entry, pos, length,
727 ssid_elem,
728 s_ssid_tmp)) {
729 n_coloc++;
730 list_add_tail(&entry->list, &ap_list);
731 } else {
732 kfree(entry);
733 }
734
735 pos += length;
736 }
737 }
738
739error:
740 if (pos != end) {
741 cfg80211_free_coloc_ap_list(&ap_list);
742 return 0;
743 }
744 }
745
746 list_splice_tail(&ap_list, list);
747 return n_coloc;
748}
749
750static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
751 struct ieee80211_channel *chan,
752 bool add_to_6ghz)
753{
754 int i;
755 u32 n_channels = request->n_channels;
756 struct cfg80211_scan_6ghz_params *params =
757 &request->scan_6ghz_params[request->n_6ghz_params];
758
759 for (i = 0; i < n_channels; i++) {
760 if (request->channels[i] == chan) {
761 if (add_to_6ghz)
762 params->channel_idx = i;
763 return;
764 }
765 }
766
767 request->channels[n_channels] = chan;
768 if (add_to_6ghz)
769 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
770 n_channels;
771
772 request->n_channels++;
773}
774
775static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
776 struct cfg80211_scan_request *request)
777{
778 int i;
779 u32 s_ssid;
780
781 for (i = 0; i < request->n_ssids; i++) {
782 /* wildcard ssid in the scan request */
783 if (!request->ssids[i].ssid_len) {
784 if (ap->multi_bss && !ap->transmitted_bssid)
785 continue;
786
787 return true;
788 }
789
790 if (ap->ssid_len &&
791 ap->ssid_len == request->ssids[i].ssid_len) {
792 if (!memcmp(request->ssids[i].ssid, ap->ssid,
793 ap->ssid_len))
794 return true;
795 } else if (ap->short_ssid_valid) {
796 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
797 request->ssids[i].ssid_len);
798
799 if (ap->short_ssid == s_ssid)
800 return true;
801 }
802 }
803
804 return false;
805}
806
807static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
808{
809 u8 i;
810 struct cfg80211_colocated_ap *ap;
811 int n_channels, count = 0, err;
812 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
813 LIST_HEAD(coloc_ap_list);
814 bool need_scan_psc = true;
815 const struct ieee80211_sband_iftype_data *iftd;
816
817 rdev_req->scan_6ghz = true;
818
819 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
820 return -EOPNOTSUPP;
821
822 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
823 rdev_req->wdev->iftype);
824 if (!iftd || !iftd->he_cap.has_he)
825 return -EOPNOTSUPP;
826
827 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
828
829 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
830 struct cfg80211_internal_bss *intbss;
831
832 spin_lock_bh(&rdev->bss_lock);
833 list_for_each_entry(intbss, &rdev->bss_list, list) {
834 struct cfg80211_bss *res = &intbss->pub;
835 const struct cfg80211_bss_ies *ies;
836 const struct element *ssid_elem;
837 struct cfg80211_colocated_ap *entry;
838 u32 s_ssid_tmp;
839 int ret;
840
841 ies = rcu_access_pointer(res->ies);
842 count += cfg80211_parse_colocated_ap(ies,
843 &coloc_ap_list);
844
845 /* In case the scan request specified a specific BSSID
846 * and the BSS is found and operating on 6GHz band then
847 * add this AP to the collocated APs list.
848 * This is relevant for ML probe requests when the lower
849 * band APs have not been discovered.
850 */
851 if (is_broadcast_ether_addr(rdev_req->bssid) ||
852 !ether_addr_equal(rdev_req->bssid, res->bssid) ||
853 res->channel->band != NL80211_BAND_6GHZ)
854 continue;
855
856 ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
857 &s_ssid_tmp);
858 if (ret)
859 continue;
860
861 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
862 GFP_ATOMIC);
863
864 if (!entry)
865 continue;
866
867 memcpy(entry->bssid, res->bssid, ETH_ALEN);
868 entry->short_ssid = s_ssid_tmp;
869 memcpy(entry->ssid, ssid_elem->data,
870 ssid_elem->datalen);
871 entry->ssid_len = ssid_elem->datalen;
872 entry->short_ssid_valid = true;
873 entry->center_freq = res->channel->center_freq;
874
875 list_add_tail(&entry->list, &coloc_ap_list);
876 count++;
877 }
878 spin_unlock_bh(&rdev->bss_lock);
879 }
880
881 request = kzalloc(struct_size(request, channels, n_channels) +
882 sizeof(*request->scan_6ghz_params) * count +
883 sizeof(*request->ssids) * rdev_req->n_ssids,
884 GFP_KERNEL);
885 if (!request) {
886 cfg80211_free_coloc_ap_list(&coloc_ap_list);
887 return -ENOMEM;
888 }
889
890 *request = *rdev_req;
891 request->n_channels = 0;
892 request->scan_6ghz_params =
893 (void *)&request->channels[n_channels];
894
895 /*
896 * PSC channels should not be scanned in case of direct scan with 1 SSID
897 * and at least one of the reported co-located APs with same SSID
898 * indicating that all APs in the same ESS are co-located
899 */
900 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
901 list_for_each_entry(ap, &coloc_ap_list, list) {
902 if (ap->colocated_ess &&
903 cfg80211_find_ssid_match(ap, request)) {
904 need_scan_psc = false;
905 break;
906 }
907 }
908 }
909
910 /*
911 * add to the scan request the channels that need to be scanned
912 * regardless of the collocated APs (PSC channels or all channels
913 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
914 */
915 for (i = 0; i < rdev_req->n_channels; i++) {
916 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
917 ((need_scan_psc &&
918 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
919 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
920 cfg80211_scan_req_add_chan(request,
921 rdev_req->channels[i],
922 false);
923 }
924 }
925
926 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
927 goto skip;
928
929 list_for_each_entry(ap, &coloc_ap_list, list) {
930 bool found = false;
931 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
932 &request->scan_6ghz_params[request->n_6ghz_params];
933 struct ieee80211_channel *chan =
934 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
935
936 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
937 continue;
938
939 for (i = 0; i < rdev_req->n_channels; i++) {
940 if (rdev_req->channels[i] == chan)
941 found = true;
942 }
943
944 if (!found)
945 continue;
946
947 if (request->n_ssids > 0 &&
948 !cfg80211_find_ssid_match(ap, request))
949 continue;
950
951 if (!is_broadcast_ether_addr(request->bssid) &&
952 !ether_addr_equal(request->bssid, ap->bssid))
953 continue;
954
955 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
956 continue;
957
958 cfg80211_scan_req_add_chan(request, chan, true);
959 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
960 scan_6ghz_params->short_ssid = ap->short_ssid;
961 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
962 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
963 scan_6ghz_params->psd_20 = ap->psd_20;
964
965 /*
966 * If a PSC channel is added to the scan and 'need_scan_psc' is
967 * set to false, then all the APs that the scan logic is
968 * interested with on the channel are collocated and thus there
969 * is no need to perform the initial PSC channel listen.
970 */
971 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
972 scan_6ghz_params->psc_no_listen = true;
973
974 request->n_6ghz_params++;
975 }
976
977skip:
978 cfg80211_free_coloc_ap_list(&coloc_ap_list);
979
980 if (request->n_channels) {
981 struct cfg80211_scan_request *old = rdev->int_scan_req;
982 rdev->int_scan_req = request;
983
984 /*
985 * Add the ssids from the parent scan request to the new scan
986 * request, so the driver would be able to use them in its
987 * probe requests to discover hidden APs on PSC channels.
988 */
989 request->ssids = (void *)&request->channels[request->n_channels];
990 request->n_ssids = rdev_req->n_ssids;
991 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
992 request->n_ssids);
993
994 /*
995 * If this scan follows a previous scan, save the scan start
996 * info from the first part of the scan
997 */
998 if (old)
999 rdev->int_scan_req->info = old->info;
1000
1001 err = rdev_scan(rdev, request);
1002 if (err) {
1003 rdev->int_scan_req = old;
1004 kfree(request);
1005 } else {
1006 kfree(old);
1007 }
1008
1009 return err;
1010 }
1011
1012 kfree(request);
1013 return -EINVAL;
1014}
1015
1016int cfg80211_scan(struct cfg80211_registered_device *rdev)
1017{
1018 struct cfg80211_scan_request *request;
1019 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1020 u32 n_channels = 0, idx, i;
1021
1022 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1023 return rdev_scan(rdev, rdev_req);
1024
1025 for (i = 0; i < rdev_req->n_channels; i++) {
1026 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1027 n_channels++;
1028 }
1029
1030 if (!n_channels)
1031 return cfg80211_scan_6ghz(rdev);
1032
1033 request = kzalloc(struct_size(request, channels, n_channels),
1034 GFP_KERNEL);
1035 if (!request)
1036 return -ENOMEM;
1037
1038 *request = *rdev_req;
1039 request->n_channels = n_channels;
1040
1041 for (i = idx = 0; i < rdev_req->n_channels; i++) {
1042 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1043 request->channels[idx++] = rdev_req->channels[i];
1044 }
1045
1046 rdev_req->scan_6ghz = false;
1047 rdev->int_scan_req = request;
1048 return rdev_scan(rdev, request);
1049}
1050
1051void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1052 bool send_message)
1053{
1054 struct cfg80211_scan_request *request, *rdev_req;
1055 struct wireless_dev *wdev;
1056 struct sk_buff *msg;
1057#ifdef CONFIG_CFG80211_WEXT
1058 union iwreq_data wrqu;
1059#endif
1060
1061 lockdep_assert_held(&rdev->wiphy.mtx);
1062
1063 if (rdev->scan_msg) {
1064 nl80211_send_scan_msg(rdev, rdev->scan_msg);
1065 rdev->scan_msg = NULL;
1066 return;
1067 }
1068
1069 rdev_req = rdev->scan_req;
1070 if (!rdev_req)
1071 return;
1072
1073 wdev = rdev_req->wdev;
1074 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1075
1076 if (wdev_running(wdev) &&
1077 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1078 !rdev_req->scan_6ghz && !request->info.aborted &&
1079 !cfg80211_scan_6ghz(rdev))
1080 return;
1081
1082 /*
1083 * This must be before sending the other events!
1084 * Otherwise, wpa_supplicant gets completely confused with
1085 * wext events.
1086 */
1087 if (wdev->netdev)
1088 cfg80211_sme_scan_done(wdev->netdev);
1089
1090 if (!request->info.aborted &&
1091 request->flags & NL80211_SCAN_FLAG_FLUSH) {
1092 /* flush entries from previous scans */
1093 spin_lock_bh(&rdev->bss_lock);
1094 __cfg80211_bss_expire(rdev, request->scan_start);
1095 spin_unlock_bh(&rdev->bss_lock);
1096 }
1097
1098 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1099
1100#ifdef CONFIG_CFG80211_WEXT
1101 if (wdev->netdev && !request->info.aborted) {
1102 memset(&wrqu, 0, sizeof(wrqu));
1103
1104 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1105 }
1106#endif
1107
1108 dev_put(wdev->netdev);
1109
1110 kfree(rdev->int_scan_req);
1111 rdev->int_scan_req = NULL;
1112
1113 kfree(rdev->scan_req);
1114 rdev->scan_req = NULL;
1115
1116 if (!send_message)
1117 rdev->scan_msg = msg;
1118 else
1119 nl80211_send_scan_msg(rdev, msg);
1120}
1121
1122void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1123{
1124 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1125}
1126
1127void cfg80211_scan_done(struct cfg80211_scan_request *request,
1128 struct cfg80211_scan_info *info)
1129{
1130 struct cfg80211_scan_info old_info = request->info;
1131
1132 trace_cfg80211_scan_done(request, info);
1133 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1134 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1135
1136 request->info = *info;
1137
1138 /*
1139 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1140 * be of the first part. In such a case old_info.scan_start_tsf should
1141 * be non zero.
1142 */
1143 if (request->scan_6ghz && old_info.scan_start_tsf) {
1144 request->info.scan_start_tsf = old_info.scan_start_tsf;
1145 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1146 sizeof(request->info.tsf_bssid));
1147 }
1148
1149 request->notified = true;
1150 wiphy_work_queue(request->wiphy,
1151 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1152}
1153EXPORT_SYMBOL(cfg80211_scan_done);
1154
1155void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1156 struct cfg80211_sched_scan_request *req)
1157{
1158 lockdep_assert_held(&rdev->wiphy.mtx);
1159
1160 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1161}
1162
1163static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1164 struct cfg80211_sched_scan_request *req)
1165{
1166 lockdep_assert_held(&rdev->wiphy.mtx);
1167
1168 list_del_rcu(&req->list);
1169 kfree_rcu(req, rcu_head);
1170}
1171
1172static struct cfg80211_sched_scan_request *
1173cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1174{
1175 struct cfg80211_sched_scan_request *pos;
1176
1177 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1178 lockdep_is_held(&rdev->wiphy.mtx)) {
1179 if (pos->reqid == reqid)
1180 return pos;
1181 }
1182 return NULL;
1183}
1184
1185/*
1186 * Determines if a scheduled scan request can be handled. When a legacy
1187 * scheduled scan is running no other scheduled scan is allowed regardless
1188 * whether the request is for legacy or multi-support scan. When a multi-support
1189 * scheduled scan is running a request for legacy scan is not allowed. In this
1190 * case a request for multi-support scan can be handled if resources are
1191 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1192 */
1193int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1194 bool want_multi)
1195{
1196 struct cfg80211_sched_scan_request *pos;
1197 int i = 0;
1198
1199 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1200 /* request id zero means legacy in progress */
1201 if (!i && !pos->reqid)
1202 return -EINPROGRESS;
1203 i++;
1204 }
1205
1206 if (i) {
1207 /* no legacy allowed when multi request(s) are active */
1208 if (!want_multi)
1209 return -EINPROGRESS;
1210
1211 /* resource limit reached */
1212 if (i == rdev->wiphy.max_sched_scan_reqs)
1213 return -ENOSPC;
1214 }
1215 return 0;
1216}
1217
1218void cfg80211_sched_scan_results_wk(struct work_struct *work)
1219{
1220 struct cfg80211_registered_device *rdev;
1221 struct cfg80211_sched_scan_request *req, *tmp;
1222
1223 rdev = container_of(work, struct cfg80211_registered_device,
1224 sched_scan_res_wk);
1225
1226 wiphy_lock(&rdev->wiphy);
1227 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1228 if (req->report_results) {
1229 req->report_results = false;
1230 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1231 /* flush entries from previous scans */
1232 spin_lock_bh(&rdev->bss_lock);
1233 __cfg80211_bss_expire(rdev, req->scan_start);
1234 spin_unlock_bh(&rdev->bss_lock);
1235 req->scan_start = jiffies;
1236 }
1237 nl80211_send_sched_scan(req,
1238 NL80211_CMD_SCHED_SCAN_RESULTS);
1239 }
1240 }
1241 wiphy_unlock(&rdev->wiphy);
1242}
1243
1244void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1245{
1246 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1247 struct cfg80211_sched_scan_request *request;
1248
1249 trace_cfg80211_sched_scan_results(wiphy, reqid);
1250 /* ignore if we're not scanning */
1251
1252 rcu_read_lock();
1253 request = cfg80211_find_sched_scan_req(rdev, reqid);
1254 if (request) {
1255 request->report_results = true;
1256 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1257 }
1258 rcu_read_unlock();
1259}
1260EXPORT_SYMBOL(cfg80211_sched_scan_results);
1261
1262void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1263{
1264 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1265
1266 lockdep_assert_held(&wiphy->mtx);
1267
1268 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1269
1270 __cfg80211_stop_sched_scan(rdev, reqid, true);
1271}
1272EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1273
1274void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1275{
1276 wiphy_lock(wiphy);
1277 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1278 wiphy_unlock(wiphy);
1279}
1280EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1281
1282int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1283 struct cfg80211_sched_scan_request *req,
1284 bool driver_initiated)
1285{
1286 lockdep_assert_held(&rdev->wiphy.mtx);
1287
1288 if (!driver_initiated) {
1289 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1290 if (err)
1291 return err;
1292 }
1293
1294 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1295
1296 cfg80211_del_sched_scan_req(rdev, req);
1297
1298 return 0;
1299}
1300
1301int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1302 u64 reqid, bool driver_initiated)
1303{
1304 struct cfg80211_sched_scan_request *sched_scan_req;
1305
1306 lockdep_assert_held(&rdev->wiphy.mtx);
1307
1308 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1309 if (!sched_scan_req)
1310 return -ENOENT;
1311
1312 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1313 driver_initiated);
1314}
1315
1316void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1317 unsigned long age_secs)
1318{
1319 struct cfg80211_internal_bss *bss;
1320 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1321
1322 spin_lock_bh(&rdev->bss_lock);
1323 list_for_each_entry(bss, &rdev->bss_list, list)
1324 bss->ts -= age_jiffies;
1325 spin_unlock_bh(&rdev->bss_lock);
1326}
1327
1328void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1329{
1330 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1331}
1332
1333void cfg80211_bss_flush(struct wiphy *wiphy)
1334{
1335 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1336
1337 spin_lock_bh(&rdev->bss_lock);
1338 __cfg80211_bss_expire(rdev, jiffies);
1339 spin_unlock_bh(&rdev->bss_lock);
1340}
1341EXPORT_SYMBOL(cfg80211_bss_flush);
1342
1343const struct element *
1344cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1345 const u8 *match, unsigned int match_len,
1346 unsigned int match_offset)
1347{
1348 const struct element *elem;
1349
1350 for_each_element_id(elem, eid, ies, len) {
1351 if (elem->datalen >= match_offset + match_len &&
1352 !memcmp(elem->data + match_offset, match, match_len))
1353 return elem;
1354 }
1355
1356 return NULL;
1357}
1358EXPORT_SYMBOL(cfg80211_find_elem_match);
1359
1360const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1361 const u8 *ies,
1362 unsigned int len)
1363{
1364 const struct element *elem;
1365 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1366 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1367
1368 if (WARN_ON(oui_type > 0xff))
1369 return NULL;
1370
1371 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1372 match, match_len, 0);
1373
1374 if (!elem || elem->datalen < 4)
1375 return NULL;
1376
1377 return elem;
1378}
1379EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1380
1381/**
1382 * enum bss_compare_mode - BSS compare mode
1383 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1384 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1385 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1386 */
1387enum bss_compare_mode {
1388 BSS_CMP_REGULAR,
1389 BSS_CMP_HIDE_ZLEN,
1390 BSS_CMP_HIDE_NUL,
1391};
1392
1393static int cmp_bss(struct cfg80211_bss *a,
1394 struct cfg80211_bss *b,
1395 enum bss_compare_mode mode)
1396{
1397 const struct cfg80211_bss_ies *a_ies, *b_ies;
1398 const u8 *ie1 = NULL;
1399 const u8 *ie2 = NULL;
1400 int i, r;
1401
1402 if (a->channel != b->channel)
1403 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1404 (a->channel->center_freq * 1000 + a->channel->freq_offset);
1405
1406 a_ies = rcu_access_pointer(a->ies);
1407 if (!a_ies)
1408 return -1;
1409 b_ies = rcu_access_pointer(b->ies);
1410 if (!b_ies)
1411 return 1;
1412
1413 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1414 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1415 a_ies->data, a_ies->len);
1416 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1417 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1418 b_ies->data, b_ies->len);
1419 if (ie1 && ie2) {
1420 int mesh_id_cmp;
1421
1422 if (ie1[1] == ie2[1])
1423 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1424 else
1425 mesh_id_cmp = ie2[1] - ie1[1];
1426
1427 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1428 a_ies->data, a_ies->len);
1429 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1430 b_ies->data, b_ies->len);
1431 if (ie1 && ie2) {
1432 if (mesh_id_cmp)
1433 return mesh_id_cmp;
1434 if (ie1[1] != ie2[1])
1435 return ie2[1] - ie1[1];
1436 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1437 }
1438 }
1439
1440 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1441 if (r)
1442 return r;
1443
1444 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1445 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1446
1447 if (!ie1 && !ie2)
1448 return 0;
1449
1450 /*
1451 * Note that with "hide_ssid", the function returns a match if
1452 * the already-present BSS ("b") is a hidden SSID beacon for
1453 * the new BSS ("a").
1454 */
1455
1456 /* sort missing IE before (left of) present IE */
1457 if (!ie1)
1458 return -1;
1459 if (!ie2)
1460 return 1;
1461
1462 switch (mode) {
1463 case BSS_CMP_HIDE_ZLEN:
1464 /*
1465 * In ZLEN mode we assume the BSS entry we're
1466 * looking for has a zero-length SSID. So if
1467 * the one we're looking at right now has that,
1468 * return 0. Otherwise, return the difference
1469 * in length, but since we're looking for the
1470 * 0-length it's really equivalent to returning
1471 * the length of the one we're looking at.
1472 *
1473 * No content comparison is needed as we assume
1474 * the content length is zero.
1475 */
1476 return ie2[1];
1477 case BSS_CMP_REGULAR:
1478 default:
1479 /* sort by length first, then by contents */
1480 if (ie1[1] != ie2[1])
1481 return ie2[1] - ie1[1];
1482 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1483 case BSS_CMP_HIDE_NUL:
1484 if (ie1[1] != ie2[1])
1485 return ie2[1] - ie1[1];
1486 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1487 for (i = 0; i < ie2[1]; i++)
1488 if (ie2[i + 2])
1489 return -1;
1490 return 0;
1491 }
1492}
1493
1494static bool cfg80211_bss_type_match(u16 capability,
1495 enum nl80211_band band,
1496 enum ieee80211_bss_type bss_type)
1497{
1498 bool ret = true;
1499 u16 mask, val;
1500
1501 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1502 return ret;
1503
1504 if (band == NL80211_BAND_60GHZ) {
1505 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1506 switch (bss_type) {
1507 case IEEE80211_BSS_TYPE_ESS:
1508 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1509 break;
1510 case IEEE80211_BSS_TYPE_PBSS:
1511 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1512 break;
1513 case IEEE80211_BSS_TYPE_IBSS:
1514 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1515 break;
1516 default:
1517 return false;
1518 }
1519 } else {
1520 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1521 switch (bss_type) {
1522 case IEEE80211_BSS_TYPE_ESS:
1523 val = WLAN_CAPABILITY_ESS;
1524 break;
1525 case IEEE80211_BSS_TYPE_IBSS:
1526 val = WLAN_CAPABILITY_IBSS;
1527 break;
1528 case IEEE80211_BSS_TYPE_MBSS:
1529 val = 0;
1530 break;
1531 default:
1532 return false;
1533 }
1534 }
1535
1536 ret = ((capability & mask) == val);
1537 return ret;
1538}
1539
1540/* Returned bss is reference counted and must be cleaned up appropriately. */
1541struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1542 struct ieee80211_channel *channel,
1543 const u8 *bssid,
1544 const u8 *ssid, size_t ssid_len,
1545 enum ieee80211_bss_type bss_type,
1546 enum ieee80211_privacy privacy,
1547 u32 use_for)
1548{
1549 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1550 struct cfg80211_internal_bss *bss, *res = NULL;
1551 unsigned long now = jiffies;
1552 int bss_privacy;
1553
1554 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1555 privacy);
1556
1557 spin_lock_bh(&rdev->bss_lock);
1558
1559 list_for_each_entry(bss, &rdev->bss_list, list) {
1560 if (!cfg80211_bss_type_match(bss->pub.capability,
1561 bss->pub.channel->band, bss_type))
1562 continue;
1563
1564 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1565 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1566 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1567 continue;
1568 if (channel && bss->pub.channel != channel)
1569 continue;
1570 if (!is_valid_ether_addr(bss->pub.bssid))
1571 continue;
1572 if ((bss->pub.use_for & use_for) != use_for)
1573 continue;
1574 /* Don't get expired BSS structs */
1575 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1576 !atomic_read(&bss->hold))
1577 continue;
1578 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1579 res = bss;
1580 bss_ref_get(rdev, res);
1581 break;
1582 }
1583 }
1584
1585 spin_unlock_bh(&rdev->bss_lock);
1586 if (!res)
1587 return NULL;
1588 trace_cfg80211_return_bss(&res->pub);
1589 return &res->pub;
1590}
1591EXPORT_SYMBOL(__cfg80211_get_bss);
1592
1593static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1594 struct cfg80211_internal_bss *bss)
1595{
1596 struct rb_node **p = &rdev->bss_tree.rb_node;
1597 struct rb_node *parent = NULL;
1598 struct cfg80211_internal_bss *tbss;
1599 int cmp;
1600
1601 while (*p) {
1602 parent = *p;
1603 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1604
1605 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1606
1607 if (WARN_ON(!cmp)) {
1608 /* will sort of leak this BSS */
1609 return;
1610 }
1611
1612 if (cmp < 0)
1613 p = &(*p)->rb_left;
1614 else
1615 p = &(*p)->rb_right;
1616 }
1617
1618 rb_link_node(&bss->rbn, parent, p);
1619 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1620}
1621
1622static struct cfg80211_internal_bss *
1623rb_find_bss(struct cfg80211_registered_device *rdev,
1624 struct cfg80211_internal_bss *res,
1625 enum bss_compare_mode mode)
1626{
1627 struct rb_node *n = rdev->bss_tree.rb_node;
1628 struct cfg80211_internal_bss *bss;
1629 int r;
1630
1631 while (n) {
1632 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1633 r = cmp_bss(&res->pub, &bss->pub, mode);
1634
1635 if (r == 0)
1636 return bss;
1637 else if (r < 0)
1638 n = n->rb_left;
1639 else
1640 n = n->rb_right;
1641 }
1642
1643 return NULL;
1644}
1645
1646static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1647 struct cfg80211_internal_bss *new)
1648{
1649 const struct cfg80211_bss_ies *ies;
1650 struct cfg80211_internal_bss *bss;
1651 const u8 *ie;
1652 int i, ssidlen;
1653 u8 fold = 0;
1654 u32 n_entries = 0;
1655
1656 ies = rcu_access_pointer(new->pub.beacon_ies);
1657 if (WARN_ON(!ies))
1658 return false;
1659
1660 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1661 if (!ie) {
1662 /* nothing to do */
1663 return true;
1664 }
1665
1666 ssidlen = ie[1];
1667 for (i = 0; i < ssidlen; i++)
1668 fold |= ie[2 + i];
1669
1670 if (fold) {
1671 /* not a hidden SSID */
1672 return true;
1673 }
1674
1675 /* This is the bad part ... */
1676
1677 list_for_each_entry(bss, &rdev->bss_list, list) {
1678 /*
1679 * we're iterating all the entries anyway, so take the
1680 * opportunity to validate the list length accounting
1681 */
1682 n_entries++;
1683
1684 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1685 continue;
1686 if (bss->pub.channel != new->pub.channel)
1687 continue;
1688 if (rcu_access_pointer(bss->pub.beacon_ies))
1689 continue;
1690 ies = rcu_access_pointer(bss->pub.ies);
1691 if (!ies)
1692 continue;
1693 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1694 if (!ie)
1695 continue;
1696 if (ssidlen && ie[1] != ssidlen)
1697 continue;
1698 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1699 continue;
1700 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1701 list_del(&bss->hidden_list);
1702 /* combine them */
1703 list_add(&bss->hidden_list, &new->hidden_list);
1704 bss->pub.hidden_beacon_bss = &new->pub;
1705 new->refcount += bss->refcount;
1706 rcu_assign_pointer(bss->pub.beacon_ies,
1707 new->pub.beacon_ies);
1708 }
1709
1710 WARN_ONCE(n_entries != rdev->bss_entries,
1711 "rdev bss entries[%d]/list[len:%d] corruption\n",
1712 rdev->bss_entries, n_entries);
1713
1714 return true;
1715}
1716
1717static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1718 const struct cfg80211_bss_ies *new_ies,
1719 const struct cfg80211_bss_ies *old_ies)
1720{
1721 struct cfg80211_internal_bss *bss;
1722
1723 /* Assign beacon IEs to all sub entries */
1724 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1725 const struct cfg80211_bss_ies *ies;
1726
1727 ies = rcu_access_pointer(bss->pub.beacon_ies);
1728 WARN_ON(ies != old_ies);
1729
1730 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1731 }
1732}
1733
1734static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1735 struct cfg80211_internal_bss *known,
1736 const struct cfg80211_bss_ies *old)
1737{
1738 const struct ieee80211_ext_chansw_ie *ecsa;
1739 const struct element *elem_new, *elem_old;
1740 const struct cfg80211_bss_ies *new, *bcn;
1741
1742 if (known->pub.proberesp_ecsa_stuck)
1743 return;
1744
1745 new = rcu_dereference_protected(known->pub.proberesp_ies,
1746 lockdep_is_held(&rdev->bss_lock));
1747 if (WARN_ON(!new))
1748 return;
1749
1750 if (new->tsf - old->tsf < USEC_PER_SEC)
1751 return;
1752
1753 elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1754 old->data, old->len);
1755 if (!elem_old)
1756 return;
1757
1758 elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1759 new->data, new->len);
1760 if (!elem_new)
1761 return;
1762
1763 bcn = rcu_dereference_protected(known->pub.beacon_ies,
1764 lockdep_is_held(&rdev->bss_lock));
1765 if (bcn &&
1766 cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1767 bcn->data, bcn->len))
1768 return;
1769
1770 if (elem_new->datalen != elem_old->datalen)
1771 return;
1772 if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1773 return;
1774 if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
1775 return;
1776
1777 ecsa = (void *)elem_new->data;
1778
1779 if (!ecsa->mode)
1780 return;
1781
1782 if (ecsa->new_ch_num !=
1783 ieee80211_frequency_to_channel(known->pub.channel->center_freq))
1784 return;
1785
1786 known->pub.proberesp_ecsa_stuck = 1;
1787}
1788
1789static bool
1790cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1791 struct cfg80211_internal_bss *known,
1792 struct cfg80211_internal_bss *new,
1793 bool signal_valid)
1794{
1795 lockdep_assert_held(&rdev->bss_lock);
1796
1797 /* Update IEs */
1798 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1799 const struct cfg80211_bss_ies *old;
1800
1801 old = rcu_access_pointer(known->pub.proberesp_ies);
1802
1803 rcu_assign_pointer(known->pub.proberesp_ies,
1804 new->pub.proberesp_ies);
1805 /* Override possible earlier Beacon frame IEs */
1806 rcu_assign_pointer(known->pub.ies,
1807 new->pub.proberesp_ies);
1808 if (old) {
1809 cfg80211_check_stuck_ecsa(rdev, known, old);
1810 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1811 }
1812 }
1813
1814 if (rcu_access_pointer(new->pub.beacon_ies)) {
1815 const struct cfg80211_bss_ies *old;
1816
1817 if (known->pub.hidden_beacon_bss &&
1818 !list_empty(&known->hidden_list)) {
1819 const struct cfg80211_bss_ies *f;
1820
1821 /* The known BSS struct is one of the probe
1822 * response members of a group, but we're
1823 * receiving a beacon (beacon_ies in the new
1824 * bss is used). This can only mean that the
1825 * AP changed its beacon from not having an
1826 * SSID to showing it, which is confusing so
1827 * drop this information.
1828 */
1829
1830 f = rcu_access_pointer(new->pub.beacon_ies);
1831 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1832 return false;
1833 }
1834
1835 old = rcu_access_pointer(known->pub.beacon_ies);
1836
1837 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1838
1839 /* Override IEs if they were from a beacon before */
1840 if (old == rcu_access_pointer(known->pub.ies))
1841 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1842
1843 cfg80211_update_hidden_bsses(known,
1844 rcu_access_pointer(new->pub.beacon_ies),
1845 old);
1846
1847 if (old)
1848 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1849 }
1850
1851 known->pub.beacon_interval = new->pub.beacon_interval;
1852
1853 /* don't update the signal if beacon was heard on
1854 * adjacent channel.
1855 */
1856 if (signal_valid)
1857 known->pub.signal = new->pub.signal;
1858 known->pub.capability = new->pub.capability;
1859 known->ts = new->ts;
1860 known->ts_boottime = new->ts_boottime;
1861 known->parent_tsf = new->parent_tsf;
1862 known->pub.chains = new->pub.chains;
1863 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1864 IEEE80211_MAX_CHAINS);
1865 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1866 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1867 known->pub.bssid_index = new->pub.bssid_index;
1868 known->pub.use_for &= new->pub.use_for;
1869 known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1870
1871 return true;
1872}
1873
1874/* Returned bss is reference counted and must be cleaned up appropriately. */
1875static struct cfg80211_internal_bss *
1876__cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1877 struct cfg80211_internal_bss *tmp,
1878 bool signal_valid, unsigned long ts)
1879{
1880 struct cfg80211_internal_bss *found = NULL;
1881 struct cfg80211_bss_ies *ies;
1882
1883 if (WARN_ON(!tmp->pub.channel))
1884 goto free_ies;
1885
1886 tmp->ts = ts;
1887
1888 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1889 goto free_ies;
1890
1891 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1892
1893 if (found) {
1894 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1895 return NULL;
1896 } else {
1897 struct cfg80211_internal_bss *new;
1898 struct cfg80211_internal_bss *hidden;
1899
1900 /*
1901 * create a copy -- the "res" variable that is passed in
1902 * is allocated on the stack since it's not needed in the
1903 * more common case of an update
1904 */
1905 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1906 GFP_ATOMIC);
1907 if (!new)
1908 goto free_ies;
1909 memcpy(new, tmp, sizeof(*new));
1910 new->refcount = 1;
1911 INIT_LIST_HEAD(&new->hidden_list);
1912 INIT_LIST_HEAD(&new->pub.nontrans_list);
1913 /* we'll set this later if it was non-NULL */
1914 new->pub.transmitted_bss = NULL;
1915
1916 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1917 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1918 if (!hidden)
1919 hidden = rb_find_bss(rdev, tmp,
1920 BSS_CMP_HIDE_NUL);
1921 if (hidden) {
1922 new->pub.hidden_beacon_bss = &hidden->pub;
1923 list_add(&new->hidden_list,
1924 &hidden->hidden_list);
1925 hidden->refcount++;
1926
1927 ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1928 rcu_assign_pointer(new->pub.beacon_ies,
1929 hidden->pub.beacon_ies);
1930 if (ies)
1931 kfree_rcu(ies, rcu_head);
1932 }
1933 } else {
1934 /*
1935 * Ok so we found a beacon, and don't have an entry. If
1936 * it's a beacon with hidden SSID, we might be in for an
1937 * expensive search for any probe responses that should
1938 * be grouped with this beacon for updates ...
1939 */
1940 if (!cfg80211_combine_bsses(rdev, new)) {
1941 bss_ref_put(rdev, new);
1942 return NULL;
1943 }
1944 }
1945
1946 if (rdev->bss_entries >= bss_entries_limit &&
1947 !cfg80211_bss_expire_oldest(rdev)) {
1948 bss_ref_put(rdev, new);
1949 return NULL;
1950 }
1951
1952 /* This must be before the call to bss_ref_get */
1953 if (tmp->pub.transmitted_bss) {
1954 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1955 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1956 }
1957
1958 list_add_tail(&new->list, &rdev->bss_list);
1959 rdev->bss_entries++;
1960 rb_insert_bss(rdev, new);
1961 found = new;
1962 }
1963
1964 rdev->bss_generation++;
1965 bss_ref_get(rdev, found);
1966
1967 return found;
1968
1969free_ies:
1970 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1971 if (ies)
1972 kfree_rcu(ies, rcu_head);
1973 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1974 if (ies)
1975 kfree_rcu(ies, rcu_head);
1976
1977 return NULL;
1978}
1979
1980struct cfg80211_internal_bss *
1981cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1982 struct cfg80211_internal_bss *tmp,
1983 bool signal_valid, unsigned long ts)
1984{
1985 struct cfg80211_internal_bss *res;
1986
1987 spin_lock_bh(&rdev->bss_lock);
1988 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
1989 spin_unlock_bh(&rdev->bss_lock);
1990
1991 return res;
1992}
1993
1994int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1995 enum nl80211_band band)
1996{
1997 const struct element *tmp;
1998
1999 if (band == NL80211_BAND_6GHZ) {
2000 struct ieee80211_he_operation *he_oper;
2001
2002 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
2003 ielen);
2004 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
2005 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
2006 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2007
2008 he_oper = (void *)&tmp->data[1];
2009
2010 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2011 if (!he_6ghz_oper)
2012 return -1;
2013
2014 return he_6ghz_oper->primary;
2015 }
2016 } else if (band == NL80211_BAND_S1GHZ) {
2017 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
2018 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
2019 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
2020
2021 return s1gop->oper_ch;
2022 }
2023 } else {
2024 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
2025 if (tmp && tmp->datalen == 1)
2026 return tmp->data[0];
2027
2028 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
2029 if (tmp &&
2030 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2031 struct ieee80211_ht_operation *htop = (void *)tmp->data;
2032
2033 return htop->primary_chan;
2034 }
2035 }
2036
2037 return -1;
2038}
2039EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2040
2041/*
2042 * Update RX channel information based on the available frame payload
2043 * information. This is mainly for the 2.4 GHz band where frames can be received
2044 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2045 * element to indicate the current (transmitting) channel, but this might also
2046 * be needed on other bands if RX frequency does not match with the actual
2047 * operating channel of a BSS, or if the AP reports a different primary channel.
2048 */
2049static struct ieee80211_channel *
2050cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2051 struct ieee80211_channel *channel)
2052{
2053 u32 freq;
2054 int channel_number;
2055 struct ieee80211_channel *alt_channel;
2056
2057 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2058 channel->band);
2059
2060 if (channel_number < 0) {
2061 /* No channel information in frame payload */
2062 return channel;
2063 }
2064
2065 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2066
2067 /*
2068 * Frame info (beacon/prob res) is the same as received channel,
2069 * no need for further processing.
2070 */
2071 if (freq == ieee80211_channel_to_khz(channel))
2072 return channel;
2073
2074 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2075 if (!alt_channel) {
2076 if (channel->band == NL80211_BAND_2GHZ ||
2077 channel->band == NL80211_BAND_6GHZ) {
2078 /*
2079 * Better not allow unexpected channels when that could
2080 * be going beyond the 1-11 range (e.g., discovering
2081 * BSS on channel 12 when radio is configured for
2082 * channel 11) or beyond the 6 GHz channel range.
2083 */
2084 return NULL;
2085 }
2086
2087 /* No match for the payload channel number - ignore it */
2088 return channel;
2089 }
2090
2091 /*
2092 * Use the channel determined through the payload channel number
2093 * instead of the RX channel reported by the driver.
2094 */
2095 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2096 return NULL;
2097 return alt_channel;
2098}
2099
2100struct cfg80211_inform_single_bss_data {
2101 struct cfg80211_inform_bss *drv_data;
2102 enum cfg80211_bss_frame_type ftype;
2103 struct ieee80211_channel *channel;
2104 u8 bssid[ETH_ALEN];
2105 u64 tsf;
2106 u16 capability;
2107 u16 beacon_interval;
2108 const u8 *ie;
2109 size_t ielen;
2110
2111 enum {
2112 BSS_SOURCE_DIRECT = 0,
2113 BSS_SOURCE_MBSSID,
2114 BSS_SOURCE_STA_PROFILE,
2115 } bss_source;
2116 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2117 struct cfg80211_bss *source_bss;
2118 u8 max_bssid_indicator;
2119 u8 bssid_index;
2120
2121 u8 use_for;
2122 u64 cannot_use_reasons;
2123};
2124
2125/* Returned bss is reference counted and must be cleaned up appropriately. */
2126static struct cfg80211_bss *
2127cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2128 struct cfg80211_inform_single_bss_data *data,
2129 gfp_t gfp)
2130{
2131 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2132 struct cfg80211_inform_bss *drv_data = data->drv_data;
2133 struct cfg80211_bss_ies *ies;
2134 struct ieee80211_channel *channel;
2135 struct cfg80211_internal_bss tmp = {}, *res;
2136 int bss_type;
2137 bool signal_valid;
2138 unsigned long ts;
2139
2140 if (WARN_ON(!wiphy))
2141 return NULL;
2142
2143 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2144 (drv_data->signal < 0 || drv_data->signal > 100)))
2145 return NULL;
2146
2147 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2148 return NULL;
2149
2150 channel = data->channel;
2151 if (!channel)
2152 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2153 drv_data->chan);
2154 if (!channel)
2155 return NULL;
2156
2157 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2158 tmp.pub.channel = channel;
2159 if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2160 tmp.pub.signal = drv_data->signal;
2161 else
2162 tmp.pub.signal = 0;
2163 tmp.pub.beacon_interval = data->beacon_interval;
2164 tmp.pub.capability = data->capability;
2165 tmp.ts_boottime = drv_data->boottime_ns;
2166 tmp.parent_tsf = drv_data->parent_tsf;
2167 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2168 tmp.pub.use_for = data->use_for;
2169 tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2170
2171 if (data->bss_source != BSS_SOURCE_DIRECT) {
2172 tmp.pub.transmitted_bss = data->source_bss;
2173 ts = bss_from_pub(data->source_bss)->ts;
2174 tmp.pub.bssid_index = data->bssid_index;
2175 tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2176 } else {
2177 ts = jiffies;
2178
2179 if (channel->band == NL80211_BAND_60GHZ) {
2180 bss_type = data->capability &
2181 WLAN_CAPABILITY_DMG_TYPE_MASK;
2182 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2183 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2184 regulatory_hint_found_beacon(wiphy, channel,
2185 gfp);
2186 } else {
2187 if (data->capability & WLAN_CAPABILITY_ESS)
2188 regulatory_hint_found_beacon(wiphy, channel,
2189 gfp);
2190 }
2191 }
2192
2193 /*
2194 * If we do not know here whether the IEs are from a Beacon or Probe
2195 * Response frame, we need to pick one of the options and only use it
2196 * with the driver that does not provide the full Beacon/Probe Response
2197 * frame. Use Beacon frame pointer to avoid indicating that this should
2198 * override the IEs pointer should we have received an earlier
2199 * indication of Probe Response data.
2200 */
2201 ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2202 if (!ies)
2203 return NULL;
2204 ies->len = data->ielen;
2205 ies->tsf = data->tsf;
2206 ies->from_beacon = false;
2207 memcpy(ies->data, data->ie, data->ielen);
2208
2209 switch (data->ftype) {
2210 case CFG80211_BSS_FTYPE_BEACON:
2211 ies->from_beacon = true;
2212 fallthrough;
2213 case CFG80211_BSS_FTYPE_UNKNOWN:
2214 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2215 break;
2216 case CFG80211_BSS_FTYPE_PRESP:
2217 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2218 break;
2219 }
2220 rcu_assign_pointer(tmp.pub.ies, ies);
2221
2222 signal_valid = drv_data->chan == channel;
2223 spin_lock_bh(&rdev->bss_lock);
2224 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2225 if (!res)
2226 goto drop;
2227
2228 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2229
2230 if (data->bss_source == BSS_SOURCE_MBSSID) {
2231 /* this is a nontransmitting bss, we need to add it to
2232 * transmitting bss' list if it is not there
2233 */
2234 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2235 if (__cfg80211_unlink_bss(rdev, res)) {
2236 rdev->bss_generation++;
2237 res = NULL;
2238 }
2239 }
2240
2241 if (!res)
2242 goto drop;
2243 }
2244 spin_unlock_bh(&rdev->bss_lock);
2245
2246 trace_cfg80211_return_bss(&res->pub);
2247 /* __cfg80211_bss_update gives us a referenced result */
2248 return &res->pub;
2249
2250drop:
2251 spin_unlock_bh(&rdev->bss_lock);
2252 return NULL;
2253}
2254
2255static const struct element
2256*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2257 const struct element *mbssid_elem,
2258 const struct element *sub_elem)
2259{
2260 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2261 const struct element *next_mbssid;
2262 const struct element *next_sub;
2263
2264 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2265 mbssid_end,
2266 ielen - (mbssid_end - ie));
2267
2268 /*
2269 * If it is not the last subelement in current MBSSID IE or there isn't
2270 * a next MBSSID IE - profile is complete.
2271 */
2272 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2273 !next_mbssid)
2274 return NULL;
2275
2276 /* For any length error, just return NULL */
2277
2278 if (next_mbssid->datalen < 4)
2279 return NULL;
2280
2281 next_sub = (void *)&next_mbssid->data[1];
2282
2283 if (next_mbssid->data + next_mbssid->datalen <
2284 next_sub->data + next_sub->datalen)
2285 return NULL;
2286
2287 if (next_sub->id != 0 || next_sub->datalen < 2)
2288 return NULL;
2289
2290 /*
2291 * Check if the first element in the next sub element is a start
2292 * of a new profile
2293 */
2294 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2295 NULL : next_mbssid;
2296}
2297
2298size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2299 const struct element *mbssid_elem,
2300 const struct element *sub_elem,
2301 u8 *merged_ie, size_t max_copy_len)
2302{
2303 size_t copied_len = sub_elem->datalen;
2304 const struct element *next_mbssid;
2305
2306 if (sub_elem->datalen > max_copy_len)
2307 return 0;
2308
2309 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2310
2311 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2312 mbssid_elem,
2313 sub_elem))) {
2314 const struct element *next_sub = (void *)&next_mbssid->data[1];
2315
2316 if (copied_len + next_sub->datalen > max_copy_len)
2317 break;
2318 memcpy(merged_ie + copied_len, next_sub->data,
2319 next_sub->datalen);
2320 copied_len += next_sub->datalen;
2321 }
2322
2323 return copied_len;
2324}
2325EXPORT_SYMBOL(cfg80211_merge_profile);
2326
2327static void
2328cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2329 struct cfg80211_inform_single_bss_data *tx_data,
2330 struct cfg80211_bss *source_bss,
2331 gfp_t gfp)
2332{
2333 struct cfg80211_inform_single_bss_data data = {
2334 .drv_data = tx_data->drv_data,
2335 .ftype = tx_data->ftype,
2336 .tsf = tx_data->tsf,
2337 .beacon_interval = tx_data->beacon_interval,
2338 .source_bss = source_bss,
2339 .bss_source = BSS_SOURCE_MBSSID,
2340 .use_for = tx_data->use_for,
2341 .cannot_use_reasons = tx_data->cannot_use_reasons,
2342 };
2343 const u8 *mbssid_index_ie;
2344 const struct element *elem, *sub;
2345 u8 *new_ie, *profile;
2346 u64 seen_indices = 0;
2347 struct cfg80211_bss *bss;
2348
2349 if (!source_bss)
2350 return;
2351 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2352 tx_data->ie, tx_data->ielen))
2353 return;
2354 if (!wiphy->support_mbssid)
2355 return;
2356 if (wiphy->support_only_he_mbssid &&
2357 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2358 tx_data->ie, tx_data->ielen))
2359 return;
2360
2361 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2362 if (!new_ie)
2363 return;
2364
2365 profile = kmalloc(tx_data->ielen, gfp);
2366 if (!profile)
2367 goto out;
2368
2369 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2370 tx_data->ie, tx_data->ielen) {
2371 if (elem->datalen < 4)
2372 continue;
2373 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2374 continue;
2375 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2376 u8 profile_len;
2377
2378 if (sub->id != 0 || sub->datalen < 4) {
2379 /* not a valid BSS profile */
2380 continue;
2381 }
2382
2383 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2384 sub->data[1] != 2) {
2385 /* The first element within the Nontransmitted
2386 * BSSID Profile is not the Nontransmitted
2387 * BSSID Capability element.
2388 */
2389 continue;
2390 }
2391
2392 memset(profile, 0, tx_data->ielen);
2393 profile_len = cfg80211_merge_profile(tx_data->ie,
2394 tx_data->ielen,
2395 elem,
2396 sub,
2397 profile,
2398 tx_data->ielen);
2399
2400 /* found a Nontransmitted BSSID Profile */
2401 mbssid_index_ie = cfg80211_find_ie
2402 (WLAN_EID_MULTI_BSSID_IDX,
2403 profile, profile_len);
2404 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2405 mbssid_index_ie[2] == 0 ||
2406 mbssid_index_ie[2] > 46) {
2407 /* No valid Multiple BSSID-Index element */
2408 continue;
2409 }
2410
2411 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2412 /* We don't support legacy split of a profile */
2413 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2414 mbssid_index_ie[2]);
2415
2416 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2417
2418 data.bssid_index = mbssid_index_ie[2];
2419 data.max_bssid_indicator = elem->data[0];
2420
2421 cfg80211_gen_new_bssid(tx_data->bssid,
2422 data.max_bssid_indicator,
2423 data.bssid_index,
2424 data.bssid);
2425
2426 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2427 data.ie = new_ie;
2428 data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2429 tx_data->ielen,
2430 profile,
2431 profile_len,
2432 new_ie,
2433 IEEE80211_MAX_DATA_LEN);
2434 if (!data.ielen)
2435 continue;
2436
2437 data.capability = get_unaligned_le16(profile + 2);
2438 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2439 if (!bss)
2440 break;
2441 cfg80211_put_bss(wiphy, bss);
2442 }
2443 }
2444
2445out:
2446 kfree(new_ie);
2447 kfree(profile);
2448}
2449
2450ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2451 size_t ieslen, u8 *data, size_t data_len,
2452 u8 frag_id)
2453{
2454 const struct element *next;
2455 ssize_t copied;
2456 u8 elem_datalen;
2457
2458 if (!elem)
2459 return -EINVAL;
2460
2461 /* elem might be invalid after the memmove */
2462 next = (void *)(elem->data + elem->datalen);
2463 elem_datalen = elem->datalen;
2464
2465 if (elem->id == WLAN_EID_EXTENSION) {
2466 copied = elem->datalen - 1;
2467 if (copied > data_len)
2468 return -ENOSPC;
2469
2470 memmove(data, elem->data + 1, copied);
2471 } else {
2472 copied = elem->datalen;
2473 if (copied > data_len)
2474 return -ENOSPC;
2475
2476 memmove(data, elem->data, copied);
2477 }
2478
2479 /* Fragmented elements must have 255 bytes */
2480 if (elem_datalen < 255)
2481 return copied;
2482
2483 for (elem = next;
2484 elem->data < ies + ieslen &&
2485 elem->data + elem->datalen <= ies + ieslen;
2486 elem = next) {
2487 /* elem might be invalid after the memmove */
2488 next = (void *)(elem->data + elem->datalen);
2489
2490 if (elem->id != frag_id)
2491 break;
2492
2493 elem_datalen = elem->datalen;
2494
2495 if (copied + elem_datalen > data_len)
2496 return -ENOSPC;
2497
2498 memmove(data + copied, elem->data, elem_datalen);
2499 copied += elem_datalen;
2500
2501 /* Only the last fragment may be short */
2502 if (elem_datalen != 255)
2503 break;
2504 }
2505
2506 return copied;
2507}
2508EXPORT_SYMBOL(cfg80211_defragment_element);
2509
2510struct cfg80211_mle {
2511 struct ieee80211_multi_link_elem *mle;
2512 struct ieee80211_mle_per_sta_profile
2513 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2514 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2515
2516 u8 data[];
2517};
2518
2519static struct cfg80211_mle *
2520cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2521 gfp_t gfp)
2522{
2523 const struct element *elem;
2524 struct cfg80211_mle *res;
2525 size_t buf_len;
2526 ssize_t mle_len;
2527 u8 common_size, idx;
2528
2529 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2530 return NULL;
2531
2532 /* Required length for first defragmentation */
2533 buf_len = mle->datalen - 1;
2534 for_each_element(elem, mle->data + mle->datalen,
2535 ielen - sizeof(*mle) + mle->datalen) {
2536 if (elem->id != WLAN_EID_FRAGMENT)
2537 break;
2538
2539 buf_len += elem->datalen;
2540 }
2541
2542 res = kzalloc(struct_size(res, data, buf_len), gfp);
2543 if (!res)
2544 return NULL;
2545
2546 mle_len = cfg80211_defragment_element(mle, ie, ielen,
2547 res->data, buf_len,
2548 WLAN_EID_FRAGMENT);
2549 if (mle_len < 0)
2550 goto error;
2551
2552 res->mle = (void *)res->data;
2553
2554 /* Find the sub-element area in the buffer */
2555 common_size = ieee80211_mle_common_size((u8 *)res->mle);
2556 ie = res->data + common_size;
2557 ielen = mle_len - common_size;
2558
2559 idx = 0;
2560 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2561 ie, ielen) {
2562 res->sta_prof[idx] = (void *)elem->data;
2563 res->sta_prof_len[idx] = elem->datalen;
2564
2565 idx++;
2566 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2567 break;
2568 }
2569 if (!for_each_element_completed(elem, ie, ielen))
2570 goto error;
2571
2572 /* Defragment sta_info in-place */
2573 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2574 idx++) {
2575 if (res->sta_prof_len[idx] < 255)
2576 continue;
2577
2578 elem = (void *)res->sta_prof[idx] - 2;
2579
2580 if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2581 res->sta_prof[idx + 1])
2582 buf_len = (u8 *)res->sta_prof[idx + 1] -
2583 (u8 *)res->sta_prof[idx];
2584 else
2585 buf_len = ielen + ie - (u8 *)elem;
2586
2587 res->sta_prof_len[idx] =
2588 cfg80211_defragment_element(elem,
2589 (u8 *)elem, buf_len,
2590 (u8 *)res->sta_prof[idx],
2591 buf_len,
2592 IEEE80211_MLE_SUBELEM_FRAGMENT);
2593 if (res->sta_prof_len[idx] < 0)
2594 goto error;
2595 }
2596
2597 return res;
2598
2599error:
2600 kfree(res);
2601 return NULL;
2602}
2603
2604static u8
2605cfg80211_tbtt_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2606 const struct ieee80211_neighbor_ap_info **ap_info,
2607 const u8 **tbtt_info)
2608{
2609 const struct ieee80211_neighbor_ap_info *info;
2610 const struct element *rnr;
2611 const u8 *pos, *end;
2612
2613 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) {
2614 pos = rnr->data;
2615 end = rnr->data + rnr->datalen;
2616
2617 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
2618 while (sizeof(*info) <= end - pos) {
2619 const struct ieee80211_rnr_mld_params *mld_params;
2620 u16 params;
2621 u8 length, i, count, mld_params_offset;
2622 u8 type, lid;
2623 u32 use_for;
2624
2625 info = (void *)pos;
2626 count = u8_get_bits(info->tbtt_info_hdr,
2627 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
2628 length = info->tbtt_info_len;
2629
2630 pos += sizeof(*info);
2631
2632 if (count * length > end - pos)
2633 return 0;
2634
2635 type = u8_get_bits(info->tbtt_info_hdr,
2636 IEEE80211_AP_INFO_TBTT_HDR_TYPE);
2637
2638 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2639 length >=
2640 offsetofend(struct ieee80211_tbtt_info_ge_11,
2641 mld_params)) {
2642 mld_params_offset =
2643 offsetof(struct ieee80211_tbtt_info_ge_11, mld_params);
2644 use_for = NL80211_BSS_USE_FOR_ALL;
2645 } else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2646 length >= sizeof(struct ieee80211_rnr_mld_params)) {
2647 mld_params_offset = 0;
2648 use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2649 } else {
2650 pos += count * length;
2651 continue;
2652 }
2653
2654 for (i = 0; i < count; i++) {
2655 mld_params = (void *)pos + mld_params_offset;
2656 params = le16_to_cpu(mld_params->params);
2657
2658 lid = u16_get_bits(params,
2659 IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2660
2661 if (mld_id == mld_params->mld_id &&
2662 link_id == lid) {
2663 *ap_info = info;
2664 *tbtt_info = pos;
2665
2666 return use_for;
2667 }
2668
2669 pos += length;
2670 }
2671 }
2672 }
2673
2674 return 0;
2675}
2676
2677static void
2678cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2679 struct cfg80211_inform_single_bss_data *tx_data,
2680 struct cfg80211_bss *source_bss,
2681 const struct element *elem,
2682 gfp_t gfp)
2683{
2684 struct cfg80211_inform_single_bss_data data = {
2685 .drv_data = tx_data->drv_data,
2686 .ftype = tx_data->ftype,
2687 .source_bss = source_bss,
2688 .bss_source = BSS_SOURCE_STA_PROFILE,
2689 };
2690 struct ieee80211_multi_link_elem *ml_elem;
2691 struct cfg80211_mle *mle;
2692 u16 control;
2693 u8 ml_common_len;
2694 u8 *new_ie;
2695 struct cfg80211_bss *bss;
2696 int mld_id;
2697 u16 seen_links = 0;
2698 const u8 *pos;
2699 u8 i;
2700
2701 if (!ieee80211_mle_size_ok(elem->data + 1, elem->datalen - 1))
2702 return;
2703
2704 ml_elem = (void *)elem->data + 1;
2705 control = le16_to_cpu(ml_elem->control);
2706 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) !=
2707 IEEE80211_ML_CONTROL_TYPE_BASIC)
2708 return;
2709
2710 /* Must be present when transmitted by an AP (in a probe response) */
2711 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2712 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2713 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2714 return;
2715
2716 ml_common_len = ml_elem->variable[0];
2717
2718 /* length + MLD MAC address + link ID info + BSS Params Change Count */
2719 pos = ml_elem->variable + 1 + 6 + 1 + 1;
2720
2721 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
2722 pos += 2;
2723 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_EML_CAPA))
2724 pos += 2;
2725
2726 /* MLD capabilities and operations */
2727 pos += 2;
2728
2729 /*
2730 * The MLD ID of the reporting AP is always zero. It is set if the AP
2731 * is part of an MBSSID set and will be non-zero for ML Elements
2732 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2733 * Draft P802.11be_D3.2, 35.3.4.2)
2734 */
2735 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) {
2736 mld_id = *pos;
2737 pos += 1;
2738 } else {
2739 mld_id = 0;
2740 }
2741
2742 /* Extended MLD capabilities and operations */
2743 pos += 2;
2744
2745 /* Fully defrag the ML element for sta information/profile iteration */
2746 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2747 if (!mle)
2748 return;
2749
2750 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2751 if (!new_ie)
2752 goto out;
2753
2754 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2755 const struct ieee80211_neighbor_ap_info *ap_info;
2756 enum nl80211_band band;
2757 u32 freq;
2758 const u8 *profile;
2759 const u8 *tbtt_info;
2760 ssize_t profile_len;
2761 u8 link_id, use_for;
2762
2763 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2764 mle->sta_prof_len[i]))
2765 continue;
2766
2767 control = le16_to_cpu(mle->sta_prof[i]->control);
2768
2769 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2770 continue;
2771
2772 link_id = u16_get_bits(control,
2773 IEEE80211_MLE_STA_CONTROL_LINK_ID);
2774 if (seen_links & BIT(link_id))
2775 break;
2776 seen_links |= BIT(link_id);
2777
2778 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2779 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2780 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2781 continue;
2782
2783 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
2784 data.beacon_interval =
2785 get_unaligned_le16(mle->sta_prof[i]->variable + 6);
2786 data.tsf = tx_data->tsf +
2787 get_unaligned_le64(mle->sta_prof[i]->variable + 8);
2788
2789 /* sta_info_len counts itself */
2790 profile = mle->sta_prof[i]->variable +
2791 mle->sta_prof[i]->sta_info_len - 1;
2792 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
2793 profile;
2794
2795 if (profile_len < 2)
2796 continue;
2797
2798 data.capability = get_unaligned_le16(profile);
2799 profile += 2;
2800 profile_len -= 2;
2801
2802 /* Find in RNR to look up channel information */
2803 use_for = cfg80211_tbtt_info_for_mld_ap(tx_data->ie,
2804 tx_data->ielen,
2805 mld_id, link_id,
2806 &ap_info, &tbtt_info);
2807 if (!use_for)
2808 continue;
2809
2810 /* We could sanity check the BSSID is included */
2811
2812 if (!ieee80211_operating_class_to_band(ap_info->op_class,
2813 &band))
2814 continue;
2815
2816 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
2817 data.channel = ieee80211_get_channel_khz(wiphy, freq);
2818
2819 if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
2820 !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
2821 use_for = 0;
2822 data.cannot_use_reasons =
2823 NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
2824 }
2825 data.use_for = use_for;
2826
2827 /* Generate new elements */
2828 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2829 data.ie = new_ie;
2830 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
2831 profile, profile_len,
2832 new_ie,
2833 IEEE80211_MAX_DATA_LEN);
2834 if (!data.ielen)
2835 continue;
2836
2837 /* The generated elements do not contain:
2838 * - Basic ML element
2839 * - A TBTT entry in the RNR for the transmitting AP
2840 *
2841 * This information is needed both internally and in userspace
2842 * as such, we should append it here.
2843 */
2844 if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
2845 IEEE80211_MAX_DATA_LEN)
2846 continue;
2847
2848 /* Copy the Basic Multi-Link element including the common
2849 * information, and then fix up the link ID.
2850 * Note that the ML element length has been verified and we
2851 * also checked that it contains the link ID.
2852 */
2853 new_ie[data.ielen++] = WLAN_EID_EXTENSION;
2854 new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
2855 new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
2856 memcpy(new_ie + data.ielen, ml_elem,
2857 sizeof(*ml_elem) + ml_common_len);
2858
2859 new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
2860
2861 data.ielen += sizeof(*ml_elem) + ml_common_len;
2862
2863 /* TODO: Add an RNR containing only the reporting AP */
2864
2865 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2866 if (!bss)
2867 break;
2868 cfg80211_put_bss(wiphy, bss);
2869 }
2870
2871out:
2872 kfree(new_ie);
2873 kfree(mle);
2874}
2875
2876static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
2877 struct cfg80211_inform_single_bss_data *tx_data,
2878 struct cfg80211_bss *source_bss,
2879 gfp_t gfp)
2880{
2881 const struct element *elem;
2882
2883 if (!source_bss)
2884 return;
2885
2886 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
2887 return;
2888
2889 for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
2890 tx_data->ie, tx_data->ielen)
2891 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
2892 elem, gfp);
2893}
2894
2895struct cfg80211_bss *
2896cfg80211_inform_bss_data(struct wiphy *wiphy,
2897 struct cfg80211_inform_bss *data,
2898 enum cfg80211_bss_frame_type ftype,
2899 const u8 *bssid, u64 tsf, u16 capability,
2900 u16 beacon_interval, const u8 *ie, size_t ielen,
2901 gfp_t gfp)
2902{
2903 struct cfg80211_inform_single_bss_data inform_data = {
2904 .drv_data = data,
2905 .ftype = ftype,
2906 .tsf = tsf,
2907 .capability = capability,
2908 .beacon_interval = beacon_interval,
2909 .ie = ie,
2910 .ielen = ielen,
2911 .use_for = data->restrict_use ?
2912 data->use_for :
2913 NL80211_BSS_USE_FOR_ALL,
2914 .cannot_use_reasons = data->cannot_use_reasons,
2915 };
2916 struct cfg80211_bss *res;
2917
2918 memcpy(inform_data.bssid, bssid, ETH_ALEN);
2919
2920 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
2921 if (!res)
2922 return NULL;
2923
2924 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
2925
2926 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
2927
2928 return res;
2929}
2930EXPORT_SYMBOL(cfg80211_inform_bss_data);
2931
2932static bool cfg80211_uhb_power_type_valid(const u8 *ie,
2933 size_t ielen,
2934 const u32 flags)
2935{
2936 const struct element *tmp;
2937 struct ieee80211_he_operation *he_oper;
2938
2939 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, ielen);
2940 if (tmp && tmp->datalen >= sizeof(*he_oper) + 1) {
2941 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2942
2943 he_oper = (void *)&tmp->data[1];
2944 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2945
2946 if (!he_6ghz_oper)
2947 return false;
2948
2949 switch (u8_get_bits(he_6ghz_oper->control,
2950 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
2951 case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
2952 return true;
2953 case IEEE80211_6GHZ_CTRL_REG_SP_AP:
2954 return !(flags & IEEE80211_CHAN_NO_UHB_AFC_CLIENT);
2955 case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
2956 return !(flags & IEEE80211_CHAN_NO_UHB_VLP_CLIENT);
2957 }
2958 }
2959 return false;
2960}
2961
2962/* cfg80211_inform_bss_width_frame helper */
2963static struct cfg80211_bss *
2964cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2965 struct cfg80211_inform_bss *data,
2966 struct ieee80211_mgmt *mgmt, size_t len,
2967 gfp_t gfp)
2968{
2969 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2970 struct cfg80211_internal_bss tmp = {}, *res;
2971 struct cfg80211_bss_ies *ies;
2972 struct ieee80211_channel *channel;
2973 bool signal_valid;
2974 struct ieee80211_ext *ext = NULL;
2975 u8 *bssid, *variable;
2976 u16 capability, beacon_int;
2977 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2978 u.probe_resp.variable);
2979 int bss_type;
2980
2981 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2982 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2983
2984 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2985
2986 if (WARN_ON(!mgmt))
2987 return NULL;
2988
2989 if (WARN_ON(!wiphy))
2990 return NULL;
2991
2992 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2993 (data->signal < 0 || data->signal > 100)))
2994 return NULL;
2995
2996 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2997 ext = (void *) mgmt;
2998 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2999 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3000 min_hdr_len = offsetof(struct ieee80211_ext,
3001 u.s1g_short_beacon.variable);
3002 }
3003
3004 if (WARN_ON(len < min_hdr_len))
3005 return NULL;
3006
3007 ielen = len - min_hdr_len;
3008 variable = mgmt->u.probe_resp.variable;
3009 if (ext) {
3010 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3011 variable = ext->u.s1g_short_beacon.variable;
3012 else
3013 variable = ext->u.s1g_beacon.variable;
3014 }
3015
3016 channel = cfg80211_get_bss_channel(wiphy, variable, ielen, data->chan);
3017 if (!channel)
3018 return NULL;
3019
3020 if (channel->band == NL80211_BAND_6GHZ &&
3021 !cfg80211_uhb_power_type_valid(variable, ielen, channel->flags)) {
3022 data->restrict_use = 1;
3023 data->use_for = 0;
3024 data->cannot_use_reasons =
3025 NL80211_BSS_CANNOT_USE_UHB_PWR_MISMATCH;
3026 }
3027
3028 if (ext) {
3029 const struct ieee80211_s1g_bcn_compat_ie *compat;
3030 const struct element *elem;
3031
3032 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
3033 variable, ielen);
3034 if (!elem)
3035 return NULL;
3036 if (elem->datalen < sizeof(*compat))
3037 return NULL;
3038 compat = (void *)elem->data;
3039 bssid = ext->u.s1g_beacon.sa;
3040 capability = le16_to_cpu(compat->compat_info);
3041 beacon_int = le16_to_cpu(compat->beacon_int);
3042 } else {
3043 bssid = mgmt->bssid;
3044 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3045 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3046 }
3047
3048 if (channel->band == NL80211_BAND_60GHZ) {
3049 bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
3050 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
3051 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
3052 regulatory_hint_found_beacon(wiphy, channel, gfp);
3053 } else {
3054 if (capability & WLAN_CAPABILITY_ESS)
3055 regulatory_hint_found_beacon(wiphy, channel, gfp);
3056 }
3057
3058 ies = kzalloc(sizeof(*ies) + ielen, gfp);
3059 if (!ies)
3060 return NULL;
3061 ies->len = ielen;
3062 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3063 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
3064 ieee80211_is_s1g_beacon(mgmt->frame_control);
3065 memcpy(ies->data, variable, ielen);
3066
3067 if (ieee80211_is_probe_resp(mgmt->frame_control))
3068 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
3069 else
3070 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
3071 rcu_assign_pointer(tmp.pub.ies, ies);
3072
3073 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
3074 tmp.pub.beacon_interval = beacon_int;
3075 tmp.pub.capability = capability;
3076 tmp.pub.channel = channel;
3077 tmp.pub.signal = data->signal;
3078 tmp.ts_boottime = data->boottime_ns;
3079 tmp.parent_tsf = data->parent_tsf;
3080 tmp.pub.chains = data->chains;
3081 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
3082 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
3083 tmp.pub.use_for = data->restrict_use ?
3084 data->use_for :
3085 NL80211_BSS_USE_FOR_ALL;
3086 tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
3087
3088 signal_valid = data->chan == channel;
3089 spin_lock_bh(&rdev->bss_lock);
3090 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, jiffies);
3091 if (!res)
3092 goto drop;
3093
3094 rdev_inform_bss(rdev, &res->pub, ies, data->drv_data);
3095
3096 spin_unlock_bh(&rdev->bss_lock);
3097
3098 trace_cfg80211_return_bss(&res->pub);
3099 /* __cfg80211_bss_update gives us a referenced result */
3100 return &res->pub;
3101
3102drop:
3103 spin_unlock_bh(&rdev->bss_lock);
3104 return NULL;
3105}
3106
3107struct cfg80211_bss *
3108cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3109 struct cfg80211_inform_bss *data,
3110 struct ieee80211_mgmt *mgmt, size_t len,
3111 gfp_t gfp)
3112{
3113 struct cfg80211_inform_single_bss_data inform_data = {
3114 .drv_data = data,
3115 .ie = mgmt->u.probe_resp.variable,
3116 .ielen = len - offsetof(struct ieee80211_mgmt,
3117 u.probe_resp.variable),
3118 .use_for = data->restrict_use ?
3119 data->use_for :
3120 NL80211_BSS_USE_FOR_ALL,
3121 .cannot_use_reasons = data->cannot_use_reasons,
3122 };
3123 struct cfg80211_bss *res;
3124
3125 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
3126 len, gfp);
3127 if (!res)
3128 return NULL;
3129
3130 /* don't do any further MBSSID/ML handling for S1G */
3131 if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3132 return res;
3133
3134 inform_data.ftype = ieee80211_is_beacon(mgmt->frame_control) ?
3135 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
3136 memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN);
3137 inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3138 inform_data.beacon_interval =
3139 le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3140
3141 /* process each non-transmitting bss */
3142 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3143
3144 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3145
3146 return res;
3147}
3148EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3149
3150void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3151{
3152 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3153
3154 if (!pub)
3155 return;
3156
3157 spin_lock_bh(&rdev->bss_lock);
3158 bss_ref_get(rdev, bss_from_pub(pub));
3159 spin_unlock_bh(&rdev->bss_lock);
3160}
3161EXPORT_SYMBOL(cfg80211_ref_bss);
3162
3163void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3164{
3165 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3166
3167 if (!pub)
3168 return;
3169
3170 spin_lock_bh(&rdev->bss_lock);
3171 bss_ref_put(rdev, bss_from_pub(pub));
3172 spin_unlock_bh(&rdev->bss_lock);
3173}
3174EXPORT_SYMBOL(cfg80211_put_bss);
3175
3176void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3177{
3178 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3179 struct cfg80211_internal_bss *bss, *tmp1;
3180 struct cfg80211_bss *nontrans_bss, *tmp;
3181
3182 if (WARN_ON(!pub))
3183 return;
3184
3185 bss = bss_from_pub(pub);
3186
3187 spin_lock_bh(&rdev->bss_lock);
3188 if (list_empty(&bss->list))
3189 goto out;
3190
3191 list_for_each_entry_safe(nontrans_bss, tmp,
3192 &pub->nontrans_list,
3193 nontrans_list) {
3194 tmp1 = bss_from_pub(nontrans_bss);
3195 if (__cfg80211_unlink_bss(rdev, tmp1))
3196 rdev->bss_generation++;
3197 }
3198
3199 if (__cfg80211_unlink_bss(rdev, bss))
3200 rdev->bss_generation++;
3201out:
3202 spin_unlock_bh(&rdev->bss_lock);
3203}
3204EXPORT_SYMBOL(cfg80211_unlink_bss);
3205
3206void cfg80211_bss_iter(struct wiphy *wiphy,
3207 struct cfg80211_chan_def *chandef,
3208 void (*iter)(struct wiphy *wiphy,
3209 struct cfg80211_bss *bss,
3210 void *data),
3211 void *iter_data)
3212{
3213 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3214 struct cfg80211_internal_bss *bss;
3215
3216 spin_lock_bh(&rdev->bss_lock);
3217
3218 list_for_each_entry(bss, &rdev->bss_list, list) {
3219 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3220 false))
3221 iter(wiphy, &bss->pub, iter_data);
3222 }
3223
3224 spin_unlock_bh(&rdev->bss_lock);
3225}
3226EXPORT_SYMBOL(cfg80211_bss_iter);
3227
3228void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3229 unsigned int link_id,
3230 struct ieee80211_channel *chan)
3231{
3232 struct wiphy *wiphy = wdev->wiphy;
3233 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3234 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3235 struct cfg80211_internal_bss *new = NULL;
3236 struct cfg80211_internal_bss *bss;
3237 struct cfg80211_bss *nontrans_bss;
3238 struct cfg80211_bss *tmp;
3239
3240 spin_lock_bh(&rdev->bss_lock);
3241
3242 /*
3243 * Some APs use CSA also for bandwidth changes, i.e., without actually
3244 * changing the control channel, so no need to update in such a case.
3245 */
3246 if (cbss->pub.channel == chan)
3247 goto done;
3248
3249 /* use transmitting bss */
3250 if (cbss->pub.transmitted_bss)
3251 cbss = bss_from_pub(cbss->pub.transmitted_bss);
3252
3253 cbss->pub.channel = chan;
3254
3255 list_for_each_entry(bss, &rdev->bss_list, list) {
3256 if (!cfg80211_bss_type_match(bss->pub.capability,
3257 bss->pub.channel->band,
3258 wdev->conn_bss_type))
3259 continue;
3260
3261 if (bss == cbss)
3262 continue;
3263
3264 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3265 new = bss;
3266 break;
3267 }
3268 }
3269
3270 if (new) {
3271 /* to save time, update IEs for transmitting bss only */
3272 cfg80211_update_known_bss(rdev, cbss, new, false);
3273 new->pub.proberesp_ies = NULL;
3274 new->pub.beacon_ies = NULL;
3275
3276 list_for_each_entry_safe(nontrans_bss, tmp,
3277 &new->pub.nontrans_list,
3278 nontrans_list) {
3279 bss = bss_from_pub(nontrans_bss);
3280 if (__cfg80211_unlink_bss(rdev, bss))
3281 rdev->bss_generation++;
3282 }
3283
3284 WARN_ON(atomic_read(&new->hold));
3285 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3286 rdev->bss_generation++;
3287 }
3288
3289 rb_erase(&cbss->rbn, &rdev->bss_tree);
3290 rb_insert_bss(rdev, cbss);
3291 rdev->bss_generation++;
3292
3293 list_for_each_entry_safe(nontrans_bss, tmp,
3294 &cbss->pub.nontrans_list,
3295 nontrans_list) {
3296 bss = bss_from_pub(nontrans_bss);
3297 bss->pub.channel = chan;
3298 rb_erase(&bss->rbn, &rdev->bss_tree);
3299 rb_insert_bss(rdev, bss);
3300 rdev->bss_generation++;
3301 }
3302
3303done:
3304 spin_unlock_bh(&rdev->bss_lock);
3305}
3306
3307#ifdef CONFIG_CFG80211_WEXT
3308static struct cfg80211_registered_device *
3309cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3310{
3311 struct cfg80211_registered_device *rdev;
3312 struct net_device *dev;
3313
3314 ASSERT_RTNL();
3315
3316 dev = dev_get_by_index(net, ifindex);
3317 if (!dev)
3318 return ERR_PTR(-ENODEV);
3319 if (dev->ieee80211_ptr)
3320 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3321 else
3322 rdev = ERR_PTR(-ENODEV);
3323 dev_put(dev);
3324 return rdev;
3325}
3326
3327int cfg80211_wext_siwscan(struct net_device *dev,
3328 struct iw_request_info *info,
3329 union iwreq_data *wrqu, char *extra)
3330{
3331 struct cfg80211_registered_device *rdev;
3332 struct wiphy *wiphy;
3333 struct iw_scan_req *wreq = NULL;
3334 struct cfg80211_scan_request *creq;
3335 int i, err, n_channels = 0;
3336 enum nl80211_band band;
3337
3338 if (!netif_running(dev))
3339 return -ENETDOWN;
3340
3341 if (wrqu->data.length == sizeof(struct iw_scan_req))
3342 wreq = (struct iw_scan_req *)extra;
3343
3344 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3345
3346 if (IS_ERR(rdev))
3347 return PTR_ERR(rdev);
3348
3349 if (rdev->scan_req || rdev->scan_msg)
3350 return -EBUSY;
3351
3352 wiphy = &rdev->wiphy;
3353
3354 /* Determine number of channels, needed to allocate creq */
3355 if (wreq && wreq->num_channels)
3356 n_channels = wreq->num_channels;
3357 else
3358 n_channels = ieee80211_get_num_supported_channels(wiphy);
3359
3360 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
3361 n_channels * sizeof(void *),
3362 GFP_ATOMIC);
3363 if (!creq)
3364 return -ENOMEM;
3365
3366 creq->wiphy = wiphy;
3367 creq->wdev = dev->ieee80211_ptr;
3368 /* SSIDs come after channels */
3369 creq->ssids = (void *)&creq->channels[n_channels];
3370 creq->n_channels = n_channels;
3371 creq->n_ssids = 1;
3372 creq->scan_start = jiffies;
3373
3374 /* translate "Scan on frequencies" request */
3375 i = 0;
3376 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3377 int j;
3378
3379 if (!wiphy->bands[band])
3380 continue;
3381
3382 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3383 /* ignore disabled channels */
3384 if (wiphy->bands[band]->channels[j].flags &
3385 IEEE80211_CHAN_DISABLED)
3386 continue;
3387
3388 /* If we have a wireless request structure and the
3389 * wireless request specifies frequencies, then search
3390 * for the matching hardware channel.
3391 */
3392 if (wreq && wreq->num_channels) {
3393 int k;
3394 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3395 for (k = 0; k < wreq->num_channels; k++) {
3396 struct iw_freq *freq =
3397 &wreq->channel_list[k];
3398 int wext_freq =
3399 cfg80211_wext_freq(freq);
3400
3401 if (wext_freq == wiphy_freq)
3402 goto wext_freq_found;
3403 }
3404 goto wext_freq_not_found;
3405 }
3406
3407 wext_freq_found:
3408 creq->channels[i] = &wiphy->bands[band]->channels[j];
3409 i++;
3410 wext_freq_not_found: ;
3411 }
3412 }
3413 /* No channels found? */
3414 if (!i) {
3415 err = -EINVAL;
3416 goto out;
3417 }
3418
3419 /* Set real number of channels specified in creq->channels[] */
3420 creq->n_channels = i;
3421
3422 /* translate "Scan for SSID" request */
3423 if (wreq) {
3424 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3425 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3426 err = -EINVAL;
3427 goto out;
3428 }
3429 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3430 creq->ssids[0].ssid_len = wreq->essid_len;
3431 }
3432 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
3433 creq->n_ssids = 0;
3434 }
3435
3436 for (i = 0; i < NUM_NL80211_BANDS; i++)
3437 if (wiphy->bands[i])
3438 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3439
3440 eth_broadcast_addr(creq->bssid);
3441
3442 wiphy_lock(&rdev->wiphy);
3443
3444 rdev->scan_req = creq;
3445 err = rdev_scan(rdev, creq);
3446 if (err) {
3447 rdev->scan_req = NULL;
3448 /* creq will be freed below */
3449 } else {
3450 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3451 /* creq now owned by driver */
3452 creq = NULL;
3453 dev_hold(dev);
3454 }
3455 wiphy_unlock(&rdev->wiphy);
3456 out:
3457 kfree(creq);
3458 return err;
3459}
3460EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3461
3462static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3463 const struct cfg80211_bss_ies *ies,
3464 char *current_ev, char *end_buf)
3465{
3466 const u8 *pos, *end, *next;
3467 struct iw_event iwe;
3468
3469 if (!ies)
3470 return current_ev;
3471
3472 /*
3473 * If needed, fragment the IEs buffer (at IE boundaries) into short
3474 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3475 */
3476 pos = ies->data;
3477 end = pos + ies->len;
3478
3479 while (end - pos > IW_GENERIC_IE_MAX) {
3480 next = pos + 2 + pos[1];
3481 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3482 next = next + 2 + next[1];
3483
3484 memset(&iwe, 0, sizeof(iwe));
3485 iwe.cmd = IWEVGENIE;
3486 iwe.u.data.length = next - pos;
3487 current_ev = iwe_stream_add_point_check(info, current_ev,
3488 end_buf, &iwe,
3489 (void *)pos);
3490 if (IS_ERR(current_ev))
3491 return current_ev;
3492 pos = next;
3493 }
3494
3495 if (end > pos) {
3496 memset(&iwe, 0, sizeof(iwe));
3497 iwe.cmd = IWEVGENIE;
3498 iwe.u.data.length = end - pos;
3499 current_ev = iwe_stream_add_point_check(info, current_ev,
3500 end_buf, &iwe,
3501 (void *)pos);
3502 if (IS_ERR(current_ev))
3503 return current_ev;
3504 }
3505
3506 return current_ev;
3507}
3508
3509static char *
3510ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3511 struct cfg80211_internal_bss *bss, char *current_ev,
3512 char *end_buf)
3513{
3514 const struct cfg80211_bss_ies *ies;
3515 struct iw_event iwe;
3516 const u8 *ie;
3517 u8 buf[50];
3518 u8 *cfg, *p, *tmp;
3519 int rem, i, sig;
3520 bool ismesh = false;
3521
3522 memset(&iwe, 0, sizeof(iwe));
3523 iwe.cmd = SIOCGIWAP;
3524 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3525 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3526 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3527 IW_EV_ADDR_LEN);
3528 if (IS_ERR(current_ev))
3529 return current_ev;
3530
3531 memset(&iwe, 0, sizeof(iwe));
3532 iwe.cmd = SIOCGIWFREQ;
3533 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3534 iwe.u.freq.e = 0;
3535 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3536 IW_EV_FREQ_LEN);
3537 if (IS_ERR(current_ev))
3538 return current_ev;
3539
3540 memset(&iwe, 0, sizeof(iwe));
3541 iwe.cmd = SIOCGIWFREQ;
3542 iwe.u.freq.m = bss->pub.channel->center_freq;
3543 iwe.u.freq.e = 6;
3544 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3545 IW_EV_FREQ_LEN);
3546 if (IS_ERR(current_ev))
3547 return current_ev;
3548
3549 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3550 memset(&iwe, 0, sizeof(iwe));
3551 iwe.cmd = IWEVQUAL;
3552 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3553 IW_QUAL_NOISE_INVALID |
3554 IW_QUAL_QUAL_UPDATED;
3555 switch (wiphy->signal_type) {
3556 case CFG80211_SIGNAL_TYPE_MBM:
3557 sig = bss->pub.signal / 100;
3558 iwe.u.qual.level = sig;
3559 iwe.u.qual.updated |= IW_QUAL_DBM;
3560 if (sig < -110) /* rather bad */
3561 sig = -110;
3562 else if (sig > -40) /* perfect */
3563 sig = -40;
3564 /* will give a range of 0 .. 70 */
3565 iwe.u.qual.qual = sig + 110;
3566 break;
3567 case CFG80211_SIGNAL_TYPE_UNSPEC:
3568 iwe.u.qual.level = bss->pub.signal;
3569 /* will give range 0 .. 100 */
3570 iwe.u.qual.qual = bss->pub.signal;
3571 break;
3572 default:
3573 /* not reached */
3574 break;
3575 }
3576 current_ev = iwe_stream_add_event_check(info, current_ev,
3577 end_buf, &iwe,
3578 IW_EV_QUAL_LEN);
3579 if (IS_ERR(current_ev))
3580 return current_ev;
3581 }
3582
3583 memset(&iwe, 0, sizeof(iwe));
3584 iwe.cmd = SIOCGIWENCODE;
3585 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3586 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3587 else
3588 iwe.u.data.flags = IW_ENCODE_DISABLED;
3589 iwe.u.data.length = 0;
3590 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3591 &iwe, "");
3592 if (IS_ERR(current_ev))
3593 return current_ev;
3594
3595 rcu_read_lock();
3596 ies = rcu_dereference(bss->pub.ies);
3597 rem = ies->len;
3598 ie = ies->data;
3599
3600 while (rem >= 2) {
3601 /* invalid data */
3602 if (ie[1] > rem - 2)
3603 break;
3604
3605 switch (ie[0]) {
3606 case WLAN_EID_SSID:
3607 memset(&iwe, 0, sizeof(iwe));
3608 iwe.cmd = SIOCGIWESSID;
3609 iwe.u.data.length = ie[1];
3610 iwe.u.data.flags = 1;
3611 current_ev = iwe_stream_add_point_check(info,
3612 current_ev,
3613 end_buf, &iwe,
3614 (u8 *)ie + 2);
3615 if (IS_ERR(current_ev))
3616 goto unlock;
3617 break;
3618 case WLAN_EID_MESH_ID:
3619 memset(&iwe, 0, sizeof(iwe));
3620 iwe.cmd = SIOCGIWESSID;
3621 iwe.u.data.length = ie[1];
3622 iwe.u.data.flags = 1;
3623 current_ev = iwe_stream_add_point_check(info,
3624 current_ev,
3625 end_buf, &iwe,
3626 (u8 *)ie + 2);
3627 if (IS_ERR(current_ev))
3628 goto unlock;
3629 break;
3630 case WLAN_EID_MESH_CONFIG:
3631 ismesh = true;
3632 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3633 break;
3634 cfg = (u8 *)ie + 2;
3635 memset(&iwe, 0, sizeof(iwe));
3636 iwe.cmd = IWEVCUSTOM;
3637 iwe.u.data.length = sprintf(buf,
3638 "Mesh Network Path Selection Protocol ID: 0x%02X",
3639 cfg[0]);
3640 current_ev = iwe_stream_add_point_check(info,
3641 current_ev,
3642 end_buf,
3643 &iwe, buf);
3644 if (IS_ERR(current_ev))
3645 goto unlock;
3646 iwe.u.data.length = sprintf(buf,
3647 "Path Selection Metric ID: 0x%02X",
3648 cfg[1]);
3649 current_ev = iwe_stream_add_point_check(info,
3650 current_ev,
3651 end_buf,
3652 &iwe, buf);
3653 if (IS_ERR(current_ev))
3654 goto unlock;
3655 iwe.u.data.length = sprintf(buf,
3656 "Congestion Control Mode ID: 0x%02X",
3657 cfg[2]);
3658 current_ev = iwe_stream_add_point_check(info,
3659 current_ev,
3660 end_buf,
3661 &iwe, buf);
3662 if (IS_ERR(current_ev))
3663 goto unlock;
3664 iwe.u.data.length = sprintf(buf,
3665 "Synchronization ID: 0x%02X",
3666 cfg[3]);
3667 current_ev = iwe_stream_add_point_check(info,
3668 current_ev,
3669 end_buf,
3670 &iwe, buf);
3671 if (IS_ERR(current_ev))
3672 goto unlock;
3673 iwe.u.data.length = sprintf(buf,
3674 "Authentication ID: 0x%02X",
3675 cfg[4]);
3676 current_ev = iwe_stream_add_point_check(info,
3677 current_ev,
3678 end_buf,
3679 &iwe, buf);
3680 if (IS_ERR(current_ev))
3681 goto unlock;
3682 iwe.u.data.length = sprintf(buf,
3683 "Formation Info: 0x%02X",
3684 cfg[5]);
3685 current_ev = iwe_stream_add_point_check(info,
3686 current_ev,
3687 end_buf,
3688 &iwe, buf);
3689 if (IS_ERR(current_ev))
3690 goto unlock;
3691 iwe.u.data.length = sprintf(buf,
3692 "Capabilities: 0x%02X",
3693 cfg[6]);
3694 current_ev = iwe_stream_add_point_check(info,
3695 current_ev,
3696 end_buf,
3697 &iwe, buf);
3698 if (IS_ERR(current_ev))
3699 goto unlock;
3700 break;
3701 case WLAN_EID_SUPP_RATES:
3702 case WLAN_EID_EXT_SUPP_RATES:
3703 /* display all supported rates in readable format */
3704 p = current_ev + iwe_stream_lcp_len(info);
3705
3706 memset(&iwe, 0, sizeof(iwe));
3707 iwe.cmd = SIOCGIWRATE;
3708 /* Those two flags are ignored... */
3709 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3710
3711 for (i = 0; i < ie[1]; i++) {
3712 iwe.u.bitrate.value =
3713 ((ie[i + 2] & 0x7f) * 500000);
3714 tmp = p;
3715 p = iwe_stream_add_value(info, current_ev, p,
3716 end_buf, &iwe,
3717 IW_EV_PARAM_LEN);
3718 if (p == tmp) {
3719 current_ev = ERR_PTR(-E2BIG);
3720 goto unlock;
3721 }
3722 }
3723 current_ev = p;
3724 break;
3725 }
3726 rem -= ie[1] + 2;
3727 ie += ie[1] + 2;
3728 }
3729
3730 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3731 ismesh) {
3732 memset(&iwe, 0, sizeof(iwe));
3733 iwe.cmd = SIOCGIWMODE;
3734 if (ismesh)
3735 iwe.u.mode = IW_MODE_MESH;
3736 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3737 iwe.u.mode = IW_MODE_MASTER;
3738 else
3739 iwe.u.mode = IW_MODE_ADHOC;
3740 current_ev = iwe_stream_add_event_check(info, current_ev,
3741 end_buf, &iwe,
3742 IW_EV_UINT_LEN);
3743 if (IS_ERR(current_ev))
3744 goto unlock;
3745 }
3746
3747 memset(&iwe, 0, sizeof(iwe));
3748 iwe.cmd = IWEVCUSTOM;
3749 iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3750 (unsigned long long)(ies->tsf));
3751 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3752 &iwe, buf);
3753 if (IS_ERR(current_ev))
3754 goto unlock;
3755 memset(&iwe, 0, sizeof(iwe));
3756 iwe.cmd = IWEVCUSTOM;
3757 iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3758 elapsed_jiffies_msecs(bss->ts));
3759 current_ev = iwe_stream_add_point_check(info, current_ev,
3760 end_buf, &iwe, buf);
3761 if (IS_ERR(current_ev))
3762 goto unlock;
3763
3764 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3765
3766 unlock:
3767 rcu_read_unlock();
3768 return current_ev;
3769}
3770
3771
3772static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3773 struct iw_request_info *info,
3774 char *buf, size_t len)
3775{
3776 char *current_ev = buf;
3777 char *end_buf = buf + len;
3778 struct cfg80211_internal_bss *bss;
3779 int err = 0;
3780
3781 spin_lock_bh(&rdev->bss_lock);
3782 cfg80211_bss_expire(rdev);
3783
3784 list_for_each_entry(bss, &rdev->bss_list, list) {
3785 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3786 err = -E2BIG;
3787 break;
3788 }
3789 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3790 current_ev, end_buf);
3791 if (IS_ERR(current_ev)) {
3792 err = PTR_ERR(current_ev);
3793 break;
3794 }
3795 }
3796 spin_unlock_bh(&rdev->bss_lock);
3797
3798 if (err)
3799 return err;
3800 return current_ev - buf;
3801}
3802
3803
3804int cfg80211_wext_giwscan(struct net_device *dev,
3805 struct iw_request_info *info,
3806 union iwreq_data *wrqu, char *extra)
3807{
3808 struct iw_point *data = &wrqu->data;
3809 struct cfg80211_registered_device *rdev;
3810 int res;
3811
3812 if (!netif_running(dev))
3813 return -ENETDOWN;
3814
3815 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3816
3817 if (IS_ERR(rdev))
3818 return PTR_ERR(rdev);
3819
3820 if (rdev->scan_req || rdev->scan_msg)
3821 return -EAGAIN;
3822
3823 res = ieee80211_scan_results(rdev, info, extra, data->length);
3824 data->length = 0;
3825 if (res >= 0) {
3826 data->length = res;
3827 res = 0;
3828 }
3829
3830 return res;
3831}
3832EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3833#endif
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2021 Intel Corporation
9 */
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/netdevice.h>
14#include <linux/wireless.h>
15#include <linux/nl80211.h>
16#include <linux/etherdevice.h>
17#include <linux/crc32.h>
18#include <linux/bitfield.h>
19#include <net/arp.h>
20#include <net/cfg80211.h>
21#include <net/cfg80211-wext.h>
22#include <net/iw_handler.h>
23#include "core.h"
24#include "nl80211.h"
25#include "wext-compat.h"
26#include "rdev-ops.h"
27
28/**
29 * DOC: BSS tree/list structure
30 *
31 * At the top level, the BSS list is kept in both a list in each
32 * registered device (@bss_list) as well as an RB-tree for faster
33 * lookup. In the RB-tree, entries can be looked up using their
34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35 * for other BSSes.
36 *
37 * Due to the possibility of hidden SSIDs, there's a second level
38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39 * The hidden_list connects all BSSes belonging to a single AP
40 * that has a hidden SSID, and connects beacon and probe response
41 * entries. For a probe response entry for a hidden SSID, the
42 * hidden_beacon_bss pointer points to the BSS struct holding the
43 * beacon's information.
44 *
45 * Reference counting is done for all these references except for
46 * the hidden_list, so that a beacon BSS struct that is otherwise
47 * not referenced has one reference for being on the bss_list and
48 * one for each probe response entry that points to it using the
49 * hidden_beacon_bss pointer. When a BSS struct that has such a
50 * pointer is get/put, the refcount update is also propagated to
51 * the referenced struct, this ensure that it cannot get removed
52 * while somebody is using the probe response version.
53 *
54 * Note that the hidden_beacon_bss pointer never changes, due to
55 * the reference counting. Therefore, no locking is needed for
56 * it.
57 *
58 * Also note that the hidden_beacon_bss pointer is only relevant
59 * if the driver uses something other than the IEs, e.g. private
60 * data stored in the BSS struct, since the beacon IEs are
61 * also linked into the probe response struct.
62 */
63
64/*
65 * Limit the number of BSS entries stored in mac80211. Each one is
66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67 * If somebody wants to really attack this though, they'd likely
68 * use small beacons, and only one type of frame, limiting each of
69 * the entries to a much smaller size (in order to generate more
70 * entries in total, so overhead is bigger.)
71 */
72static int bss_entries_limit = 1000;
73module_param(bss_entries_limit, int, 0644);
74MODULE_PARM_DESC(bss_entries_limit,
75 "limit to number of scan BSS entries (per wiphy, default 1000)");
76
77#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
78
79/**
80 * struct cfg80211_colocated_ap - colocated AP information
81 *
82 * @list: linked list to all colocated aPS
83 * @bssid: BSSID of the reported AP
84 * @ssid: SSID of the reported AP
85 * @ssid_len: length of the ssid
86 * @center_freq: frequency the reported AP is on
87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88 * that operate in the same channel as the reported AP and that might be
89 * detected by a STA receiving this frame, are transmitting unsolicited
90 * Probe Response frames every 20 TUs
91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92 * @same_ssid: the reported AP has the same SSID as the reporting AP
93 * @multi_bss: the reported AP is part of a multiple BSSID set
94 * @transmitted_bssid: the reported AP is the transmitting BSSID
95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
96 * colocated and can be discovered via legacy bands.
97 * @short_ssid_valid: short_ssid is valid and can be used
98 * @short_ssid: the short SSID for this SSID
99 */
100struct cfg80211_colocated_ap {
101 struct list_head list;
102 u8 bssid[ETH_ALEN];
103 u8 ssid[IEEE80211_MAX_SSID_LEN];
104 size_t ssid_len;
105 u32 short_ssid;
106 u32 center_freq;
107 u8 unsolicited_probe:1,
108 oct_recommended:1,
109 same_ssid:1,
110 multi_bss:1,
111 transmitted_bssid:1,
112 colocated_ess:1,
113 short_ssid_valid:1;
114};
115
116static void bss_free(struct cfg80211_internal_bss *bss)
117{
118 struct cfg80211_bss_ies *ies;
119
120 if (WARN_ON(atomic_read(&bss->hold)))
121 return;
122
123 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124 if (ies && !bss->pub.hidden_beacon_bss)
125 kfree_rcu(ies, rcu_head);
126 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127 if (ies)
128 kfree_rcu(ies, rcu_head);
129
130 /*
131 * This happens when the module is removed, it doesn't
132 * really matter any more save for completeness
133 */
134 if (!list_empty(&bss->hidden_list))
135 list_del(&bss->hidden_list);
136
137 kfree(bss);
138}
139
140static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141 struct cfg80211_internal_bss *bss)
142{
143 lockdep_assert_held(&rdev->bss_lock);
144
145 bss->refcount++;
146 if (bss->pub.hidden_beacon_bss) {
147 bss = container_of(bss->pub.hidden_beacon_bss,
148 struct cfg80211_internal_bss,
149 pub);
150 bss->refcount++;
151 }
152 if (bss->pub.transmitted_bss) {
153 bss = container_of(bss->pub.transmitted_bss,
154 struct cfg80211_internal_bss,
155 pub);
156 bss->refcount++;
157 }
158}
159
160static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
161 struct cfg80211_internal_bss *bss)
162{
163 lockdep_assert_held(&rdev->bss_lock);
164
165 if (bss->pub.hidden_beacon_bss) {
166 struct cfg80211_internal_bss *hbss;
167 hbss = container_of(bss->pub.hidden_beacon_bss,
168 struct cfg80211_internal_bss,
169 pub);
170 hbss->refcount--;
171 if (hbss->refcount == 0)
172 bss_free(hbss);
173 }
174
175 if (bss->pub.transmitted_bss) {
176 struct cfg80211_internal_bss *tbss;
177
178 tbss = container_of(bss->pub.transmitted_bss,
179 struct cfg80211_internal_bss,
180 pub);
181 tbss->refcount--;
182 if (tbss->refcount == 0)
183 bss_free(tbss);
184 }
185
186 bss->refcount--;
187 if (bss->refcount == 0)
188 bss_free(bss);
189}
190
191static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
192 struct cfg80211_internal_bss *bss)
193{
194 lockdep_assert_held(&rdev->bss_lock);
195
196 if (!list_empty(&bss->hidden_list)) {
197 /*
198 * don't remove the beacon entry if it has
199 * probe responses associated with it
200 */
201 if (!bss->pub.hidden_beacon_bss)
202 return false;
203 /*
204 * if it's a probe response entry break its
205 * link to the other entries in the group
206 */
207 list_del_init(&bss->hidden_list);
208 }
209
210 list_del_init(&bss->list);
211 list_del_init(&bss->pub.nontrans_list);
212 rb_erase(&bss->rbn, &rdev->bss_tree);
213 rdev->bss_entries--;
214 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
215 "rdev bss entries[%d]/list[empty:%d] corruption\n",
216 rdev->bss_entries, list_empty(&rdev->bss_list));
217 bss_ref_put(rdev, bss);
218 return true;
219}
220
221bool cfg80211_is_element_inherited(const struct element *elem,
222 const struct element *non_inherit_elem)
223{
224 u8 id_len, ext_id_len, i, loop_len, id;
225 const u8 *list;
226
227 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
228 return false;
229
230 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
231 return true;
232
233 /*
234 * non inheritance element format is:
235 * ext ID (56) | IDs list len | list | extension IDs list len | list
236 * Both lists are optional. Both lengths are mandatory.
237 * This means valid length is:
238 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
239 */
240 id_len = non_inherit_elem->data[1];
241 if (non_inherit_elem->datalen < 3 + id_len)
242 return true;
243
244 ext_id_len = non_inherit_elem->data[2 + id_len];
245 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
246 return true;
247
248 if (elem->id == WLAN_EID_EXTENSION) {
249 if (!ext_id_len)
250 return true;
251 loop_len = ext_id_len;
252 list = &non_inherit_elem->data[3 + id_len];
253 id = elem->data[0];
254 } else {
255 if (!id_len)
256 return true;
257 loop_len = id_len;
258 list = &non_inherit_elem->data[2];
259 id = elem->id;
260 }
261
262 for (i = 0; i < loop_len; i++) {
263 if (list[i] == id)
264 return false;
265 }
266
267 return true;
268}
269EXPORT_SYMBOL(cfg80211_is_element_inherited);
270
271static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
272 const u8 *subelement, size_t subie_len,
273 u8 *new_ie, gfp_t gfp)
274{
275 u8 *pos, *tmp;
276 const u8 *tmp_old, *tmp_new;
277 const struct element *non_inherit_elem;
278 u8 *sub_copy;
279
280 /* copy subelement as we need to change its content to
281 * mark an ie after it is processed.
282 */
283 sub_copy = kmemdup(subelement, subie_len, gfp);
284 if (!sub_copy)
285 return 0;
286
287 pos = &new_ie[0];
288
289 /* set new ssid */
290 tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
291 if (tmp_new) {
292 memcpy(pos, tmp_new, tmp_new[1] + 2);
293 pos += (tmp_new[1] + 2);
294 }
295
296 /* get non inheritance list if exists */
297 non_inherit_elem =
298 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
299 sub_copy, subie_len);
300
301 /* go through IEs in ie (skip SSID) and subelement,
302 * merge them into new_ie
303 */
304 tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
305 tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
306
307 while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
308 if (tmp_old[0] == 0) {
309 tmp_old++;
310 continue;
311 }
312
313 if (tmp_old[0] == WLAN_EID_EXTENSION)
314 tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
315 subie_len);
316 else
317 tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
318 subie_len);
319
320 if (!tmp) {
321 const struct element *old_elem = (void *)tmp_old;
322
323 /* ie in old ie but not in subelement */
324 if (cfg80211_is_element_inherited(old_elem,
325 non_inherit_elem)) {
326 memcpy(pos, tmp_old, tmp_old[1] + 2);
327 pos += tmp_old[1] + 2;
328 }
329 } else {
330 /* ie in transmitting ie also in subelement,
331 * copy from subelement and flag the ie in subelement
332 * as copied (by setting eid field to WLAN_EID_SSID,
333 * which is skipped anyway).
334 * For vendor ie, compare OUI + type + subType to
335 * determine if they are the same ie.
336 */
337 if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
338 if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
339 /* same vendor ie, copy from
340 * subelement
341 */
342 memcpy(pos, tmp, tmp[1] + 2);
343 pos += tmp[1] + 2;
344 tmp[0] = WLAN_EID_SSID;
345 } else {
346 memcpy(pos, tmp_old, tmp_old[1] + 2);
347 pos += tmp_old[1] + 2;
348 }
349 } else {
350 /* copy ie from subelement into new ie */
351 memcpy(pos, tmp, tmp[1] + 2);
352 pos += tmp[1] + 2;
353 tmp[0] = WLAN_EID_SSID;
354 }
355 }
356
357 if (tmp_old + tmp_old[1] + 2 - ie == ielen)
358 break;
359
360 tmp_old += tmp_old[1] + 2;
361 }
362
363 /* go through subelement again to check if there is any ie not
364 * copied to new ie, skip ssid, capability, bssid-index ie
365 */
366 tmp_new = sub_copy;
367 while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
368 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
369 tmp_new[0] == WLAN_EID_SSID)) {
370 memcpy(pos, tmp_new, tmp_new[1] + 2);
371 pos += tmp_new[1] + 2;
372 }
373 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
374 break;
375 tmp_new += tmp_new[1] + 2;
376 }
377
378 kfree(sub_copy);
379 return pos - new_ie;
380}
381
382static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
383 const u8 *ssid, size_t ssid_len)
384{
385 const struct cfg80211_bss_ies *ies;
386 const u8 *ssidie;
387
388 if (bssid && !ether_addr_equal(a->bssid, bssid))
389 return false;
390
391 if (!ssid)
392 return true;
393
394 ies = rcu_access_pointer(a->ies);
395 if (!ies)
396 return false;
397 ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
398 if (!ssidie)
399 return false;
400 if (ssidie[1] != ssid_len)
401 return false;
402 return memcmp(ssidie + 2, ssid, ssid_len) == 0;
403}
404
405static int
406cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
407 struct cfg80211_bss *nontrans_bss)
408{
409 const u8 *ssid;
410 size_t ssid_len;
411 struct cfg80211_bss *bss = NULL;
412
413 rcu_read_lock();
414 ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
415 if (!ssid) {
416 rcu_read_unlock();
417 return -EINVAL;
418 }
419 ssid_len = ssid[1];
420 ssid = ssid + 2;
421 rcu_read_unlock();
422
423 /* check if nontrans_bss is in the list */
424 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
425 if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len))
426 return 0;
427 }
428
429 /* add to the list */
430 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
431 return 0;
432}
433
434static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
435 unsigned long expire_time)
436{
437 struct cfg80211_internal_bss *bss, *tmp;
438 bool expired = false;
439
440 lockdep_assert_held(&rdev->bss_lock);
441
442 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
443 if (atomic_read(&bss->hold))
444 continue;
445 if (!time_after(expire_time, bss->ts))
446 continue;
447
448 if (__cfg80211_unlink_bss(rdev, bss))
449 expired = true;
450 }
451
452 if (expired)
453 rdev->bss_generation++;
454}
455
456static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
457{
458 struct cfg80211_internal_bss *bss, *oldest = NULL;
459 bool ret;
460
461 lockdep_assert_held(&rdev->bss_lock);
462
463 list_for_each_entry(bss, &rdev->bss_list, list) {
464 if (atomic_read(&bss->hold))
465 continue;
466
467 if (!list_empty(&bss->hidden_list) &&
468 !bss->pub.hidden_beacon_bss)
469 continue;
470
471 if (oldest && time_before(oldest->ts, bss->ts))
472 continue;
473 oldest = bss;
474 }
475
476 if (WARN_ON(!oldest))
477 return false;
478
479 /*
480 * The callers make sure to increase rdev->bss_generation if anything
481 * gets removed (and a new entry added), so there's no need to also do
482 * it here.
483 */
484
485 ret = __cfg80211_unlink_bss(rdev, oldest);
486 WARN_ON(!ret);
487 return ret;
488}
489
490static u8 cfg80211_parse_bss_param(u8 data,
491 struct cfg80211_colocated_ap *coloc_ap)
492{
493 coloc_ap->oct_recommended =
494 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
495 coloc_ap->same_ssid =
496 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
497 coloc_ap->multi_bss =
498 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
499 coloc_ap->transmitted_bssid =
500 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
501 coloc_ap->unsolicited_probe =
502 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
503 coloc_ap->colocated_ess =
504 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
505
506 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
507}
508
509static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
510 const struct element **elem, u32 *s_ssid)
511{
512
513 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
514 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
515 return -EINVAL;
516
517 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
518 return 0;
519}
520
521static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
522{
523 struct cfg80211_colocated_ap *ap, *tmp_ap;
524
525 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
526 list_del(&ap->list);
527 kfree(ap);
528 }
529}
530
531static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
532 const u8 *pos, u8 length,
533 const struct element *ssid_elem,
534 int s_ssid_tmp)
535{
536 /* skip the TBTT offset */
537 pos++;
538
539 memcpy(entry->bssid, pos, ETH_ALEN);
540 pos += ETH_ALEN;
541
542 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
543 memcpy(&entry->short_ssid, pos,
544 sizeof(entry->short_ssid));
545 entry->short_ssid_valid = true;
546 pos += 4;
547 }
548
549 /* skip non colocated APs */
550 if (!cfg80211_parse_bss_param(*pos, entry))
551 return -EINVAL;
552 pos++;
553
554 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
555 /*
556 * no information about the short ssid. Consider the entry valid
557 * for now. It would later be dropped in case there are explicit
558 * SSIDs that need to be matched
559 */
560 if (!entry->same_ssid)
561 return 0;
562 }
563
564 if (entry->same_ssid) {
565 entry->short_ssid = s_ssid_tmp;
566 entry->short_ssid_valid = true;
567
568 /*
569 * This is safe because we validate datalen in
570 * cfg80211_parse_colocated_ap(), before calling this
571 * function.
572 */
573 memcpy(&entry->ssid, &ssid_elem->data,
574 ssid_elem->datalen);
575 entry->ssid_len = ssid_elem->datalen;
576 }
577 return 0;
578}
579
580static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
581 struct list_head *list)
582{
583 struct ieee80211_neighbor_ap_info *ap_info;
584 const struct element *elem, *ssid_elem;
585 const u8 *pos, *end;
586 u32 s_ssid_tmp;
587 int n_coloc = 0, ret;
588 LIST_HEAD(ap_list);
589
590 elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
591 ies->len);
592 if (!elem)
593 return 0;
594
595 pos = elem->data;
596 end = pos + elem->datalen;
597
598 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
599 if (ret)
600 return ret;
601
602 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
603 while (pos + sizeof(*ap_info) <= end) {
604 enum nl80211_band band;
605 int freq;
606 u8 length, i, count;
607
608 ap_info = (void *)pos;
609 count = u8_get_bits(ap_info->tbtt_info_hdr,
610 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
611 length = ap_info->tbtt_info_len;
612
613 pos += sizeof(*ap_info);
614
615 if (!ieee80211_operating_class_to_band(ap_info->op_class,
616 &band))
617 break;
618
619 freq = ieee80211_channel_to_frequency(ap_info->channel, band);
620
621 if (end - pos < count * length)
622 break;
623
624 /*
625 * TBTT info must include bss param + BSSID +
626 * (short SSID or same_ssid bit to be set).
627 * ignore other options, and move to the
628 * next AP info
629 */
630 if (band != NL80211_BAND_6GHZ ||
631 (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
632 length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
633 pos += count * length;
634 continue;
635 }
636
637 for (i = 0; i < count; i++) {
638 struct cfg80211_colocated_ap *entry;
639
640 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
641 GFP_ATOMIC);
642
643 if (!entry)
644 break;
645
646 entry->center_freq = freq;
647
648 if (!cfg80211_parse_ap_info(entry, pos, length,
649 ssid_elem, s_ssid_tmp)) {
650 n_coloc++;
651 list_add_tail(&entry->list, &ap_list);
652 } else {
653 kfree(entry);
654 }
655
656 pos += length;
657 }
658 }
659
660 if (pos != end) {
661 cfg80211_free_coloc_ap_list(&ap_list);
662 return 0;
663 }
664
665 list_splice_tail(&ap_list, list);
666 return n_coloc;
667}
668
669static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
670 struct ieee80211_channel *chan,
671 bool add_to_6ghz)
672{
673 int i;
674 u32 n_channels = request->n_channels;
675 struct cfg80211_scan_6ghz_params *params =
676 &request->scan_6ghz_params[request->n_6ghz_params];
677
678 for (i = 0; i < n_channels; i++) {
679 if (request->channels[i] == chan) {
680 if (add_to_6ghz)
681 params->channel_idx = i;
682 return;
683 }
684 }
685
686 request->channels[n_channels] = chan;
687 if (add_to_6ghz)
688 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
689 n_channels;
690
691 request->n_channels++;
692}
693
694static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
695 struct cfg80211_scan_request *request)
696{
697 int i;
698 u32 s_ssid;
699
700 for (i = 0; i < request->n_ssids; i++) {
701 /* wildcard ssid in the scan request */
702 if (!request->ssids[i].ssid_len)
703 return true;
704
705 if (ap->ssid_len &&
706 ap->ssid_len == request->ssids[i].ssid_len) {
707 if (!memcmp(request->ssids[i].ssid, ap->ssid,
708 ap->ssid_len))
709 return true;
710 } else if (ap->short_ssid_valid) {
711 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
712 request->ssids[i].ssid_len);
713
714 if (ap->short_ssid == s_ssid)
715 return true;
716 }
717 }
718
719 return false;
720}
721
722static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
723{
724 u8 i;
725 struct cfg80211_colocated_ap *ap;
726 int n_channels, count = 0, err;
727 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
728 LIST_HEAD(coloc_ap_list);
729 bool need_scan_psc = true;
730 const struct ieee80211_sband_iftype_data *iftd;
731
732 rdev_req->scan_6ghz = true;
733
734 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
735 return -EOPNOTSUPP;
736
737 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
738 rdev_req->wdev->iftype);
739 if (!iftd || !iftd->he_cap.has_he)
740 return -EOPNOTSUPP;
741
742 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
743
744 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
745 struct cfg80211_internal_bss *intbss;
746
747 spin_lock_bh(&rdev->bss_lock);
748 list_for_each_entry(intbss, &rdev->bss_list, list) {
749 struct cfg80211_bss *res = &intbss->pub;
750 const struct cfg80211_bss_ies *ies;
751
752 ies = rcu_access_pointer(res->ies);
753 count += cfg80211_parse_colocated_ap(ies,
754 &coloc_ap_list);
755 }
756 spin_unlock_bh(&rdev->bss_lock);
757 }
758
759 request = kzalloc(struct_size(request, channels, n_channels) +
760 sizeof(*request->scan_6ghz_params) * count +
761 sizeof(*request->ssids) * rdev_req->n_ssids,
762 GFP_KERNEL);
763 if (!request) {
764 cfg80211_free_coloc_ap_list(&coloc_ap_list);
765 return -ENOMEM;
766 }
767
768 *request = *rdev_req;
769 request->n_channels = 0;
770 request->scan_6ghz_params =
771 (void *)&request->channels[n_channels];
772
773 /*
774 * PSC channels should not be scanned in case of direct scan with 1 SSID
775 * and at least one of the reported co-located APs with same SSID
776 * indicating that all APs in the same ESS are co-located
777 */
778 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
779 list_for_each_entry(ap, &coloc_ap_list, list) {
780 if (ap->colocated_ess &&
781 cfg80211_find_ssid_match(ap, request)) {
782 need_scan_psc = false;
783 break;
784 }
785 }
786 }
787
788 /*
789 * add to the scan request the channels that need to be scanned
790 * regardless of the collocated APs (PSC channels or all channels
791 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
792 */
793 for (i = 0; i < rdev_req->n_channels; i++) {
794 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
795 ((need_scan_psc &&
796 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
797 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
798 cfg80211_scan_req_add_chan(request,
799 rdev_req->channels[i],
800 false);
801 }
802 }
803
804 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
805 goto skip;
806
807 list_for_each_entry(ap, &coloc_ap_list, list) {
808 bool found = false;
809 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
810 &request->scan_6ghz_params[request->n_6ghz_params];
811 struct ieee80211_channel *chan =
812 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
813
814 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
815 continue;
816
817 for (i = 0; i < rdev_req->n_channels; i++) {
818 if (rdev_req->channels[i] == chan)
819 found = true;
820 }
821
822 if (!found)
823 continue;
824
825 if (request->n_ssids > 0 &&
826 !cfg80211_find_ssid_match(ap, request))
827 continue;
828
829 cfg80211_scan_req_add_chan(request, chan, true);
830 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
831 scan_6ghz_params->short_ssid = ap->short_ssid;
832 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
833 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
834
835 /*
836 * If a PSC channel is added to the scan and 'need_scan_psc' is
837 * set to false, then all the APs that the scan logic is
838 * interested with on the channel are collocated and thus there
839 * is no need to perform the initial PSC channel listen.
840 */
841 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
842 scan_6ghz_params->psc_no_listen = true;
843
844 request->n_6ghz_params++;
845 }
846
847skip:
848 cfg80211_free_coloc_ap_list(&coloc_ap_list);
849
850 if (request->n_channels) {
851 struct cfg80211_scan_request *old = rdev->int_scan_req;
852 rdev->int_scan_req = request;
853
854 /*
855 * Add the ssids from the parent scan request to the new scan
856 * request, so the driver would be able to use them in its
857 * probe requests to discover hidden APs on PSC channels.
858 */
859 request->ssids = (void *)&request->channels[request->n_channels];
860 request->n_ssids = rdev_req->n_ssids;
861 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
862 request->n_ssids);
863
864 /*
865 * If this scan follows a previous scan, save the scan start
866 * info from the first part of the scan
867 */
868 if (old)
869 rdev->int_scan_req->info = old->info;
870
871 err = rdev_scan(rdev, request);
872 if (err) {
873 rdev->int_scan_req = old;
874 kfree(request);
875 } else {
876 kfree(old);
877 }
878
879 return err;
880 }
881
882 kfree(request);
883 return -EINVAL;
884}
885
886int cfg80211_scan(struct cfg80211_registered_device *rdev)
887{
888 struct cfg80211_scan_request *request;
889 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
890 u32 n_channels = 0, idx, i;
891
892 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
893 return rdev_scan(rdev, rdev_req);
894
895 for (i = 0; i < rdev_req->n_channels; i++) {
896 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
897 n_channels++;
898 }
899
900 if (!n_channels)
901 return cfg80211_scan_6ghz(rdev);
902
903 request = kzalloc(struct_size(request, channels, n_channels),
904 GFP_KERNEL);
905 if (!request)
906 return -ENOMEM;
907
908 *request = *rdev_req;
909 request->n_channels = n_channels;
910
911 for (i = idx = 0; i < rdev_req->n_channels; i++) {
912 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
913 request->channels[idx++] = rdev_req->channels[i];
914 }
915
916 rdev_req->scan_6ghz = false;
917 rdev->int_scan_req = request;
918 return rdev_scan(rdev, request);
919}
920
921void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
922 bool send_message)
923{
924 struct cfg80211_scan_request *request, *rdev_req;
925 struct wireless_dev *wdev;
926 struct sk_buff *msg;
927#ifdef CONFIG_CFG80211_WEXT
928 union iwreq_data wrqu;
929#endif
930
931 lockdep_assert_held(&rdev->wiphy.mtx);
932
933 if (rdev->scan_msg) {
934 nl80211_send_scan_msg(rdev, rdev->scan_msg);
935 rdev->scan_msg = NULL;
936 return;
937 }
938
939 rdev_req = rdev->scan_req;
940 if (!rdev_req)
941 return;
942
943 wdev = rdev_req->wdev;
944 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
945
946 if (wdev_running(wdev) &&
947 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
948 !rdev_req->scan_6ghz && !request->info.aborted &&
949 !cfg80211_scan_6ghz(rdev))
950 return;
951
952 /*
953 * This must be before sending the other events!
954 * Otherwise, wpa_supplicant gets completely confused with
955 * wext events.
956 */
957 if (wdev->netdev)
958 cfg80211_sme_scan_done(wdev->netdev);
959
960 if (!request->info.aborted &&
961 request->flags & NL80211_SCAN_FLAG_FLUSH) {
962 /* flush entries from previous scans */
963 spin_lock_bh(&rdev->bss_lock);
964 __cfg80211_bss_expire(rdev, request->scan_start);
965 spin_unlock_bh(&rdev->bss_lock);
966 }
967
968 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
969
970#ifdef CONFIG_CFG80211_WEXT
971 if (wdev->netdev && !request->info.aborted) {
972 memset(&wrqu, 0, sizeof(wrqu));
973
974 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
975 }
976#endif
977
978 if (wdev->netdev)
979 dev_put(wdev->netdev);
980
981 kfree(rdev->int_scan_req);
982 rdev->int_scan_req = NULL;
983
984 kfree(rdev->scan_req);
985 rdev->scan_req = NULL;
986
987 if (!send_message)
988 rdev->scan_msg = msg;
989 else
990 nl80211_send_scan_msg(rdev, msg);
991}
992
993void __cfg80211_scan_done(struct work_struct *wk)
994{
995 struct cfg80211_registered_device *rdev;
996
997 rdev = container_of(wk, struct cfg80211_registered_device,
998 scan_done_wk);
999
1000 wiphy_lock(&rdev->wiphy);
1001 ___cfg80211_scan_done(rdev, true);
1002 wiphy_unlock(&rdev->wiphy);
1003}
1004
1005void cfg80211_scan_done(struct cfg80211_scan_request *request,
1006 struct cfg80211_scan_info *info)
1007{
1008 struct cfg80211_scan_info old_info = request->info;
1009
1010 trace_cfg80211_scan_done(request, info);
1011 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1012 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1013
1014 request->info = *info;
1015
1016 /*
1017 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1018 * be of the first part. In such a case old_info.scan_start_tsf should
1019 * be non zero.
1020 */
1021 if (request->scan_6ghz && old_info.scan_start_tsf) {
1022 request->info.scan_start_tsf = old_info.scan_start_tsf;
1023 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1024 sizeof(request->info.tsf_bssid));
1025 }
1026
1027 request->notified = true;
1028 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1029}
1030EXPORT_SYMBOL(cfg80211_scan_done);
1031
1032void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1033 struct cfg80211_sched_scan_request *req)
1034{
1035 lockdep_assert_held(&rdev->wiphy.mtx);
1036
1037 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1038}
1039
1040static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1041 struct cfg80211_sched_scan_request *req)
1042{
1043 lockdep_assert_held(&rdev->wiphy.mtx);
1044
1045 list_del_rcu(&req->list);
1046 kfree_rcu(req, rcu_head);
1047}
1048
1049static struct cfg80211_sched_scan_request *
1050cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1051{
1052 struct cfg80211_sched_scan_request *pos;
1053
1054 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1055 lockdep_is_held(&rdev->wiphy.mtx)) {
1056 if (pos->reqid == reqid)
1057 return pos;
1058 }
1059 return NULL;
1060}
1061
1062/*
1063 * Determines if a scheduled scan request can be handled. When a legacy
1064 * scheduled scan is running no other scheduled scan is allowed regardless
1065 * whether the request is for legacy or multi-support scan. When a multi-support
1066 * scheduled scan is running a request for legacy scan is not allowed. In this
1067 * case a request for multi-support scan can be handled if resources are
1068 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1069 */
1070int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1071 bool want_multi)
1072{
1073 struct cfg80211_sched_scan_request *pos;
1074 int i = 0;
1075
1076 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1077 /* request id zero means legacy in progress */
1078 if (!i && !pos->reqid)
1079 return -EINPROGRESS;
1080 i++;
1081 }
1082
1083 if (i) {
1084 /* no legacy allowed when multi request(s) are active */
1085 if (!want_multi)
1086 return -EINPROGRESS;
1087
1088 /* resource limit reached */
1089 if (i == rdev->wiphy.max_sched_scan_reqs)
1090 return -ENOSPC;
1091 }
1092 return 0;
1093}
1094
1095void cfg80211_sched_scan_results_wk(struct work_struct *work)
1096{
1097 struct cfg80211_registered_device *rdev;
1098 struct cfg80211_sched_scan_request *req, *tmp;
1099
1100 rdev = container_of(work, struct cfg80211_registered_device,
1101 sched_scan_res_wk);
1102
1103 wiphy_lock(&rdev->wiphy);
1104 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1105 if (req->report_results) {
1106 req->report_results = false;
1107 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1108 /* flush entries from previous scans */
1109 spin_lock_bh(&rdev->bss_lock);
1110 __cfg80211_bss_expire(rdev, req->scan_start);
1111 spin_unlock_bh(&rdev->bss_lock);
1112 req->scan_start = jiffies;
1113 }
1114 nl80211_send_sched_scan(req,
1115 NL80211_CMD_SCHED_SCAN_RESULTS);
1116 }
1117 }
1118 wiphy_unlock(&rdev->wiphy);
1119}
1120
1121void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1122{
1123 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1124 struct cfg80211_sched_scan_request *request;
1125
1126 trace_cfg80211_sched_scan_results(wiphy, reqid);
1127 /* ignore if we're not scanning */
1128
1129 rcu_read_lock();
1130 request = cfg80211_find_sched_scan_req(rdev, reqid);
1131 if (request) {
1132 request->report_results = true;
1133 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1134 }
1135 rcu_read_unlock();
1136}
1137EXPORT_SYMBOL(cfg80211_sched_scan_results);
1138
1139void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1140{
1141 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1142
1143 lockdep_assert_held(&wiphy->mtx);
1144
1145 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1146
1147 __cfg80211_stop_sched_scan(rdev, reqid, true);
1148}
1149EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1150
1151void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1152{
1153 wiphy_lock(wiphy);
1154 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1155 wiphy_unlock(wiphy);
1156}
1157EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1158
1159int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1160 struct cfg80211_sched_scan_request *req,
1161 bool driver_initiated)
1162{
1163 lockdep_assert_held(&rdev->wiphy.mtx);
1164
1165 if (!driver_initiated) {
1166 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1167 if (err)
1168 return err;
1169 }
1170
1171 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1172
1173 cfg80211_del_sched_scan_req(rdev, req);
1174
1175 return 0;
1176}
1177
1178int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1179 u64 reqid, bool driver_initiated)
1180{
1181 struct cfg80211_sched_scan_request *sched_scan_req;
1182
1183 lockdep_assert_held(&rdev->wiphy.mtx);
1184
1185 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1186 if (!sched_scan_req)
1187 return -ENOENT;
1188
1189 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1190 driver_initiated);
1191}
1192
1193void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1194 unsigned long age_secs)
1195{
1196 struct cfg80211_internal_bss *bss;
1197 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1198
1199 spin_lock_bh(&rdev->bss_lock);
1200 list_for_each_entry(bss, &rdev->bss_list, list)
1201 bss->ts -= age_jiffies;
1202 spin_unlock_bh(&rdev->bss_lock);
1203}
1204
1205void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1206{
1207 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1208}
1209
1210void cfg80211_bss_flush(struct wiphy *wiphy)
1211{
1212 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1213
1214 spin_lock_bh(&rdev->bss_lock);
1215 __cfg80211_bss_expire(rdev, jiffies);
1216 spin_unlock_bh(&rdev->bss_lock);
1217}
1218EXPORT_SYMBOL(cfg80211_bss_flush);
1219
1220const struct element *
1221cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1222 const u8 *match, unsigned int match_len,
1223 unsigned int match_offset)
1224{
1225 const struct element *elem;
1226
1227 for_each_element_id(elem, eid, ies, len) {
1228 if (elem->datalen >= match_offset + match_len &&
1229 !memcmp(elem->data + match_offset, match, match_len))
1230 return elem;
1231 }
1232
1233 return NULL;
1234}
1235EXPORT_SYMBOL(cfg80211_find_elem_match);
1236
1237const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1238 const u8 *ies,
1239 unsigned int len)
1240{
1241 const struct element *elem;
1242 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1243 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1244
1245 if (WARN_ON(oui_type > 0xff))
1246 return NULL;
1247
1248 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1249 match, match_len, 0);
1250
1251 if (!elem || elem->datalen < 4)
1252 return NULL;
1253
1254 return elem;
1255}
1256EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1257
1258/**
1259 * enum bss_compare_mode - BSS compare mode
1260 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1261 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1262 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1263 */
1264enum bss_compare_mode {
1265 BSS_CMP_REGULAR,
1266 BSS_CMP_HIDE_ZLEN,
1267 BSS_CMP_HIDE_NUL,
1268};
1269
1270static int cmp_bss(struct cfg80211_bss *a,
1271 struct cfg80211_bss *b,
1272 enum bss_compare_mode mode)
1273{
1274 const struct cfg80211_bss_ies *a_ies, *b_ies;
1275 const u8 *ie1 = NULL;
1276 const u8 *ie2 = NULL;
1277 int i, r;
1278
1279 if (a->channel != b->channel)
1280 return b->channel->center_freq - a->channel->center_freq;
1281
1282 a_ies = rcu_access_pointer(a->ies);
1283 if (!a_ies)
1284 return -1;
1285 b_ies = rcu_access_pointer(b->ies);
1286 if (!b_ies)
1287 return 1;
1288
1289 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1290 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1291 a_ies->data, a_ies->len);
1292 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1293 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1294 b_ies->data, b_ies->len);
1295 if (ie1 && ie2) {
1296 int mesh_id_cmp;
1297
1298 if (ie1[1] == ie2[1])
1299 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1300 else
1301 mesh_id_cmp = ie2[1] - ie1[1];
1302
1303 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1304 a_ies->data, a_ies->len);
1305 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1306 b_ies->data, b_ies->len);
1307 if (ie1 && ie2) {
1308 if (mesh_id_cmp)
1309 return mesh_id_cmp;
1310 if (ie1[1] != ie2[1])
1311 return ie2[1] - ie1[1];
1312 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1313 }
1314 }
1315
1316 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1317 if (r)
1318 return r;
1319
1320 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1321 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1322
1323 if (!ie1 && !ie2)
1324 return 0;
1325
1326 /*
1327 * Note that with "hide_ssid", the function returns a match if
1328 * the already-present BSS ("b") is a hidden SSID beacon for
1329 * the new BSS ("a").
1330 */
1331
1332 /* sort missing IE before (left of) present IE */
1333 if (!ie1)
1334 return -1;
1335 if (!ie2)
1336 return 1;
1337
1338 switch (mode) {
1339 case BSS_CMP_HIDE_ZLEN:
1340 /*
1341 * In ZLEN mode we assume the BSS entry we're
1342 * looking for has a zero-length SSID. So if
1343 * the one we're looking at right now has that,
1344 * return 0. Otherwise, return the difference
1345 * in length, but since we're looking for the
1346 * 0-length it's really equivalent to returning
1347 * the length of the one we're looking at.
1348 *
1349 * No content comparison is needed as we assume
1350 * the content length is zero.
1351 */
1352 return ie2[1];
1353 case BSS_CMP_REGULAR:
1354 default:
1355 /* sort by length first, then by contents */
1356 if (ie1[1] != ie2[1])
1357 return ie2[1] - ie1[1];
1358 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1359 case BSS_CMP_HIDE_NUL:
1360 if (ie1[1] != ie2[1])
1361 return ie2[1] - ie1[1];
1362 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1363 for (i = 0; i < ie2[1]; i++)
1364 if (ie2[i + 2])
1365 return -1;
1366 return 0;
1367 }
1368}
1369
1370static bool cfg80211_bss_type_match(u16 capability,
1371 enum nl80211_band band,
1372 enum ieee80211_bss_type bss_type)
1373{
1374 bool ret = true;
1375 u16 mask, val;
1376
1377 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1378 return ret;
1379
1380 if (band == NL80211_BAND_60GHZ) {
1381 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1382 switch (bss_type) {
1383 case IEEE80211_BSS_TYPE_ESS:
1384 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1385 break;
1386 case IEEE80211_BSS_TYPE_PBSS:
1387 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1388 break;
1389 case IEEE80211_BSS_TYPE_IBSS:
1390 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1391 break;
1392 default:
1393 return false;
1394 }
1395 } else {
1396 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1397 switch (bss_type) {
1398 case IEEE80211_BSS_TYPE_ESS:
1399 val = WLAN_CAPABILITY_ESS;
1400 break;
1401 case IEEE80211_BSS_TYPE_IBSS:
1402 val = WLAN_CAPABILITY_IBSS;
1403 break;
1404 case IEEE80211_BSS_TYPE_MBSS:
1405 val = 0;
1406 break;
1407 default:
1408 return false;
1409 }
1410 }
1411
1412 ret = ((capability & mask) == val);
1413 return ret;
1414}
1415
1416/* Returned bss is reference counted and must be cleaned up appropriately. */
1417struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1418 struct ieee80211_channel *channel,
1419 const u8 *bssid,
1420 const u8 *ssid, size_t ssid_len,
1421 enum ieee80211_bss_type bss_type,
1422 enum ieee80211_privacy privacy)
1423{
1424 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1425 struct cfg80211_internal_bss *bss, *res = NULL;
1426 unsigned long now = jiffies;
1427 int bss_privacy;
1428
1429 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1430 privacy);
1431
1432 spin_lock_bh(&rdev->bss_lock);
1433
1434 list_for_each_entry(bss, &rdev->bss_list, list) {
1435 if (!cfg80211_bss_type_match(bss->pub.capability,
1436 bss->pub.channel->band, bss_type))
1437 continue;
1438
1439 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1440 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1441 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1442 continue;
1443 if (channel && bss->pub.channel != channel)
1444 continue;
1445 if (!is_valid_ether_addr(bss->pub.bssid))
1446 continue;
1447 /* Don't get expired BSS structs */
1448 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1449 !atomic_read(&bss->hold))
1450 continue;
1451 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1452 res = bss;
1453 bss_ref_get(rdev, res);
1454 break;
1455 }
1456 }
1457
1458 spin_unlock_bh(&rdev->bss_lock);
1459 if (!res)
1460 return NULL;
1461 trace_cfg80211_return_bss(&res->pub);
1462 return &res->pub;
1463}
1464EXPORT_SYMBOL(cfg80211_get_bss);
1465
1466static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1467 struct cfg80211_internal_bss *bss)
1468{
1469 struct rb_node **p = &rdev->bss_tree.rb_node;
1470 struct rb_node *parent = NULL;
1471 struct cfg80211_internal_bss *tbss;
1472 int cmp;
1473
1474 while (*p) {
1475 parent = *p;
1476 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1477
1478 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1479
1480 if (WARN_ON(!cmp)) {
1481 /* will sort of leak this BSS */
1482 return;
1483 }
1484
1485 if (cmp < 0)
1486 p = &(*p)->rb_left;
1487 else
1488 p = &(*p)->rb_right;
1489 }
1490
1491 rb_link_node(&bss->rbn, parent, p);
1492 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1493}
1494
1495static struct cfg80211_internal_bss *
1496rb_find_bss(struct cfg80211_registered_device *rdev,
1497 struct cfg80211_internal_bss *res,
1498 enum bss_compare_mode mode)
1499{
1500 struct rb_node *n = rdev->bss_tree.rb_node;
1501 struct cfg80211_internal_bss *bss;
1502 int r;
1503
1504 while (n) {
1505 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1506 r = cmp_bss(&res->pub, &bss->pub, mode);
1507
1508 if (r == 0)
1509 return bss;
1510 else if (r < 0)
1511 n = n->rb_left;
1512 else
1513 n = n->rb_right;
1514 }
1515
1516 return NULL;
1517}
1518
1519static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1520 struct cfg80211_internal_bss *new)
1521{
1522 const struct cfg80211_bss_ies *ies;
1523 struct cfg80211_internal_bss *bss;
1524 const u8 *ie;
1525 int i, ssidlen;
1526 u8 fold = 0;
1527 u32 n_entries = 0;
1528
1529 ies = rcu_access_pointer(new->pub.beacon_ies);
1530 if (WARN_ON(!ies))
1531 return false;
1532
1533 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1534 if (!ie) {
1535 /* nothing to do */
1536 return true;
1537 }
1538
1539 ssidlen = ie[1];
1540 for (i = 0; i < ssidlen; i++)
1541 fold |= ie[2 + i];
1542
1543 if (fold) {
1544 /* not a hidden SSID */
1545 return true;
1546 }
1547
1548 /* This is the bad part ... */
1549
1550 list_for_each_entry(bss, &rdev->bss_list, list) {
1551 /*
1552 * we're iterating all the entries anyway, so take the
1553 * opportunity to validate the list length accounting
1554 */
1555 n_entries++;
1556
1557 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1558 continue;
1559 if (bss->pub.channel != new->pub.channel)
1560 continue;
1561 if (bss->pub.scan_width != new->pub.scan_width)
1562 continue;
1563 if (rcu_access_pointer(bss->pub.beacon_ies))
1564 continue;
1565 ies = rcu_access_pointer(bss->pub.ies);
1566 if (!ies)
1567 continue;
1568 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1569 if (!ie)
1570 continue;
1571 if (ssidlen && ie[1] != ssidlen)
1572 continue;
1573 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1574 continue;
1575 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1576 list_del(&bss->hidden_list);
1577 /* combine them */
1578 list_add(&bss->hidden_list, &new->hidden_list);
1579 bss->pub.hidden_beacon_bss = &new->pub;
1580 new->refcount += bss->refcount;
1581 rcu_assign_pointer(bss->pub.beacon_ies,
1582 new->pub.beacon_ies);
1583 }
1584
1585 WARN_ONCE(n_entries != rdev->bss_entries,
1586 "rdev bss entries[%d]/list[len:%d] corruption\n",
1587 rdev->bss_entries, n_entries);
1588
1589 return true;
1590}
1591
1592struct cfg80211_non_tx_bss {
1593 struct cfg80211_bss *tx_bss;
1594 u8 max_bssid_indicator;
1595 u8 bssid_index;
1596};
1597
1598static bool
1599cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1600 struct cfg80211_internal_bss *known,
1601 struct cfg80211_internal_bss *new,
1602 bool signal_valid)
1603{
1604 lockdep_assert_held(&rdev->bss_lock);
1605
1606 /* Update IEs */
1607 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1608 const struct cfg80211_bss_ies *old;
1609
1610 old = rcu_access_pointer(known->pub.proberesp_ies);
1611
1612 rcu_assign_pointer(known->pub.proberesp_ies,
1613 new->pub.proberesp_ies);
1614 /* Override possible earlier Beacon frame IEs */
1615 rcu_assign_pointer(known->pub.ies,
1616 new->pub.proberesp_ies);
1617 if (old)
1618 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1619 } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1620 const struct cfg80211_bss_ies *old;
1621 struct cfg80211_internal_bss *bss;
1622
1623 if (known->pub.hidden_beacon_bss &&
1624 !list_empty(&known->hidden_list)) {
1625 const struct cfg80211_bss_ies *f;
1626
1627 /* The known BSS struct is one of the probe
1628 * response members of a group, but we're
1629 * receiving a beacon (beacon_ies in the new
1630 * bss is used). This can only mean that the
1631 * AP changed its beacon from not having an
1632 * SSID to showing it, which is confusing so
1633 * drop this information.
1634 */
1635
1636 f = rcu_access_pointer(new->pub.beacon_ies);
1637 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1638 return false;
1639 }
1640
1641 old = rcu_access_pointer(known->pub.beacon_ies);
1642
1643 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1644
1645 /* Override IEs if they were from a beacon before */
1646 if (old == rcu_access_pointer(known->pub.ies))
1647 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1648
1649 /* Assign beacon IEs to all sub entries */
1650 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1651 const struct cfg80211_bss_ies *ies;
1652
1653 ies = rcu_access_pointer(bss->pub.beacon_ies);
1654 WARN_ON(ies != old);
1655
1656 rcu_assign_pointer(bss->pub.beacon_ies,
1657 new->pub.beacon_ies);
1658 }
1659
1660 if (old)
1661 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1662 }
1663
1664 known->pub.beacon_interval = new->pub.beacon_interval;
1665
1666 /* don't update the signal if beacon was heard on
1667 * adjacent channel.
1668 */
1669 if (signal_valid)
1670 known->pub.signal = new->pub.signal;
1671 known->pub.capability = new->pub.capability;
1672 known->ts = new->ts;
1673 known->ts_boottime = new->ts_boottime;
1674 known->parent_tsf = new->parent_tsf;
1675 known->pub.chains = new->pub.chains;
1676 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1677 IEEE80211_MAX_CHAINS);
1678 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1679 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1680 known->pub.bssid_index = new->pub.bssid_index;
1681
1682 return true;
1683}
1684
1685/* Returned bss is reference counted and must be cleaned up appropriately. */
1686struct cfg80211_internal_bss *
1687cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1688 struct cfg80211_internal_bss *tmp,
1689 bool signal_valid, unsigned long ts)
1690{
1691 struct cfg80211_internal_bss *found = NULL;
1692
1693 if (WARN_ON(!tmp->pub.channel))
1694 return NULL;
1695
1696 tmp->ts = ts;
1697
1698 spin_lock_bh(&rdev->bss_lock);
1699
1700 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1701 spin_unlock_bh(&rdev->bss_lock);
1702 return NULL;
1703 }
1704
1705 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1706
1707 if (found) {
1708 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1709 goto drop;
1710 } else {
1711 struct cfg80211_internal_bss *new;
1712 struct cfg80211_internal_bss *hidden;
1713 struct cfg80211_bss_ies *ies;
1714
1715 /*
1716 * create a copy -- the "res" variable that is passed in
1717 * is allocated on the stack since it's not needed in the
1718 * more common case of an update
1719 */
1720 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1721 GFP_ATOMIC);
1722 if (!new) {
1723 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1724 if (ies)
1725 kfree_rcu(ies, rcu_head);
1726 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1727 if (ies)
1728 kfree_rcu(ies, rcu_head);
1729 goto drop;
1730 }
1731 memcpy(new, tmp, sizeof(*new));
1732 new->refcount = 1;
1733 INIT_LIST_HEAD(&new->hidden_list);
1734 INIT_LIST_HEAD(&new->pub.nontrans_list);
1735
1736 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1737 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1738 if (!hidden)
1739 hidden = rb_find_bss(rdev, tmp,
1740 BSS_CMP_HIDE_NUL);
1741 if (hidden) {
1742 new->pub.hidden_beacon_bss = &hidden->pub;
1743 list_add(&new->hidden_list,
1744 &hidden->hidden_list);
1745 hidden->refcount++;
1746 rcu_assign_pointer(new->pub.beacon_ies,
1747 hidden->pub.beacon_ies);
1748 }
1749 } else {
1750 /*
1751 * Ok so we found a beacon, and don't have an entry. If
1752 * it's a beacon with hidden SSID, we might be in for an
1753 * expensive search for any probe responses that should
1754 * be grouped with this beacon for updates ...
1755 */
1756 if (!cfg80211_combine_bsses(rdev, new)) {
1757 bss_ref_put(rdev, new);
1758 goto drop;
1759 }
1760 }
1761
1762 if (rdev->bss_entries >= bss_entries_limit &&
1763 !cfg80211_bss_expire_oldest(rdev)) {
1764 bss_ref_put(rdev, new);
1765 goto drop;
1766 }
1767
1768 /* This must be before the call to bss_ref_get */
1769 if (tmp->pub.transmitted_bss) {
1770 struct cfg80211_internal_bss *pbss =
1771 container_of(tmp->pub.transmitted_bss,
1772 struct cfg80211_internal_bss,
1773 pub);
1774
1775 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1776 bss_ref_get(rdev, pbss);
1777 }
1778
1779 list_add_tail(&new->list, &rdev->bss_list);
1780 rdev->bss_entries++;
1781 rb_insert_bss(rdev, new);
1782 found = new;
1783 }
1784
1785 rdev->bss_generation++;
1786 bss_ref_get(rdev, found);
1787 spin_unlock_bh(&rdev->bss_lock);
1788
1789 return found;
1790 drop:
1791 spin_unlock_bh(&rdev->bss_lock);
1792 return NULL;
1793}
1794
1795/*
1796 * Update RX channel information based on the available frame payload
1797 * information. This is mainly for the 2.4 GHz band where frames can be received
1798 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1799 * element to indicate the current (transmitting) channel, but this might also
1800 * be needed on other bands if RX frequency does not match with the actual
1801 * operating channel of a BSS.
1802 */
1803static struct ieee80211_channel *
1804cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1805 struct ieee80211_channel *channel,
1806 enum nl80211_bss_scan_width scan_width)
1807{
1808 const u8 *tmp;
1809 u32 freq;
1810 int channel_number = -1;
1811 struct ieee80211_channel *alt_channel;
1812
1813 if (channel->band == NL80211_BAND_S1GHZ) {
1814 tmp = cfg80211_find_ie(WLAN_EID_S1G_OPERATION, ie, ielen);
1815 if (tmp && tmp[1] >= sizeof(struct ieee80211_s1g_oper_ie)) {
1816 struct ieee80211_s1g_oper_ie *s1gop = (void *)(tmp + 2);
1817
1818 channel_number = s1gop->primary_ch;
1819 }
1820 } else {
1821 tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1822 if (tmp && tmp[1] == 1) {
1823 channel_number = tmp[2];
1824 } else {
1825 tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1826 if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1827 struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1828
1829 channel_number = htop->primary_chan;
1830 }
1831 }
1832 }
1833
1834 if (channel_number < 0) {
1835 /* No channel information in frame payload */
1836 return channel;
1837 }
1838
1839 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1840 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1841 if (!alt_channel) {
1842 if (channel->band == NL80211_BAND_2GHZ) {
1843 /*
1844 * Better not allow unexpected channels when that could
1845 * be going beyond the 1-11 range (e.g., discovering
1846 * BSS on channel 12 when radio is configured for
1847 * channel 11.
1848 */
1849 return NULL;
1850 }
1851
1852 /* No match for the payload channel number - ignore it */
1853 return channel;
1854 }
1855
1856 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1857 scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1858 /*
1859 * Ignore channel number in 5 and 10 MHz channels where there
1860 * may not be an n:1 or 1:n mapping between frequencies and
1861 * channel numbers.
1862 */
1863 return channel;
1864 }
1865
1866 /*
1867 * Use the channel determined through the payload channel number
1868 * instead of the RX channel reported by the driver.
1869 */
1870 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1871 return NULL;
1872 return alt_channel;
1873}
1874
1875/* Returned bss is reference counted and must be cleaned up appropriately. */
1876static struct cfg80211_bss *
1877cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1878 struct cfg80211_inform_bss *data,
1879 enum cfg80211_bss_frame_type ftype,
1880 const u8 *bssid, u64 tsf, u16 capability,
1881 u16 beacon_interval, const u8 *ie, size_t ielen,
1882 struct cfg80211_non_tx_bss *non_tx_data,
1883 gfp_t gfp)
1884{
1885 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1886 struct cfg80211_bss_ies *ies;
1887 struct ieee80211_channel *channel;
1888 struct cfg80211_internal_bss tmp = {}, *res;
1889 int bss_type;
1890 bool signal_valid;
1891 unsigned long ts;
1892
1893 if (WARN_ON(!wiphy))
1894 return NULL;
1895
1896 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1897 (data->signal < 0 || data->signal > 100)))
1898 return NULL;
1899
1900 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1901 data->scan_width);
1902 if (!channel)
1903 return NULL;
1904
1905 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1906 tmp.pub.channel = channel;
1907 tmp.pub.scan_width = data->scan_width;
1908 tmp.pub.signal = data->signal;
1909 tmp.pub.beacon_interval = beacon_interval;
1910 tmp.pub.capability = capability;
1911 tmp.ts_boottime = data->boottime_ns;
1912 tmp.parent_tsf = data->parent_tsf;
1913 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1914
1915 if (non_tx_data) {
1916 tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1917 ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1918 tmp.pub.bssid_index = non_tx_data->bssid_index;
1919 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1920 } else {
1921 ts = jiffies;
1922 }
1923
1924 /*
1925 * If we do not know here whether the IEs are from a Beacon or Probe
1926 * Response frame, we need to pick one of the options and only use it
1927 * with the driver that does not provide the full Beacon/Probe Response
1928 * frame. Use Beacon frame pointer to avoid indicating that this should
1929 * override the IEs pointer should we have received an earlier
1930 * indication of Probe Response data.
1931 */
1932 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1933 if (!ies)
1934 return NULL;
1935 ies->len = ielen;
1936 ies->tsf = tsf;
1937 ies->from_beacon = false;
1938 memcpy(ies->data, ie, ielen);
1939
1940 switch (ftype) {
1941 case CFG80211_BSS_FTYPE_BEACON:
1942 ies->from_beacon = true;
1943 fallthrough;
1944 case CFG80211_BSS_FTYPE_UNKNOWN:
1945 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1946 break;
1947 case CFG80211_BSS_FTYPE_PRESP:
1948 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1949 break;
1950 }
1951 rcu_assign_pointer(tmp.pub.ies, ies);
1952
1953 signal_valid = data->chan == channel;
1954 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
1955 if (!res)
1956 return NULL;
1957
1958 if (channel->band == NL80211_BAND_60GHZ) {
1959 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1960 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1961 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1962 regulatory_hint_found_beacon(wiphy, channel, gfp);
1963 } else {
1964 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1965 regulatory_hint_found_beacon(wiphy, channel, gfp);
1966 }
1967
1968 if (non_tx_data) {
1969 /* this is a nontransmitting bss, we need to add it to
1970 * transmitting bss' list if it is not there
1971 */
1972 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1973 &res->pub)) {
1974 if (__cfg80211_unlink_bss(rdev, res))
1975 rdev->bss_generation++;
1976 }
1977 }
1978
1979 trace_cfg80211_return_bss(&res->pub);
1980 /* cfg80211_bss_update gives us a referenced result */
1981 return &res->pub;
1982}
1983
1984static const struct element
1985*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
1986 const struct element *mbssid_elem,
1987 const struct element *sub_elem)
1988{
1989 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
1990 const struct element *next_mbssid;
1991 const struct element *next_sub;
1992
1993 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
1994 mbssid_end,
1995 ielen - (mbssid_end - ie));
1996
1997 /*
1998 * If it is not the last subelement in current MBSSID IE or there isn't
1999 * a next MBSSID IE - profile is complete.
2000 */
2001 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2002 !next_mbssid)
2003 return NULL;
2004
2005 /* For any length error, just return NULL */
2006
2007 if (next_mbssid->datalen < 4)
2008 return NULL;
2009
2010 next_sub = (void *)&next_mbssid->data[1];
2011
2012 if (next_mbssid->data + next_mbssid->datalen <
2013 next_sub->data + next_sub->datalen)
2014 return NULL;
2015
2016 if (next_sub->id != 0 || next_sub->datalen < 2)
2017 return NULL;
2018
2019 /*
2020 * Check if the first element in the next sub element is a start
2021 * of a new profile
2022 */
2023 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2024 NULL : next_mbssid;
2025}
2026
2027size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2028 const struct element *mbssid_elem,
2029 const struct element *sub_elem,
2030 u8 *merged_ie, size_t max_copy_len)
2031{
2032 size_t copied_len = sub_elem->datalen;
2033 const struct element *next_mbssid;
2034
2035 if (sub_elem->datalen > max_copy_len)
2036 return 0;
2037
2038 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2039
2040 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2041 mbssid_elem,
2042 sub_elem))) {
2043 const struct element *next_sub = (void *)&next_mbssid->data[1];
2044
2045 if (copied_len + next_sub->datalen > max_copy_len)
2046 break;
2047 memcpy(merged_ie + copied_len, next_sub->data,
2048 next_sub->datalen);
2049 copied_len += next_sub->datalen;
2050 }
2051
2052 return copied_len;
2053}
2054EXPORT_SYMBOL(cfg80211_merge_profile);
2055
2056static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2057 struct cfg80211_inform_bss *data,
2058 enum cfg80211_bss_frame_type ftype,
2059 const u8 *bssid, u64 tsf,
2060 u16 beacon_interval, const u8 *ie,
2061 size_t ielen,
2062 struct cfg80211_non_tx_bss *non_tx_data,
2063 gfp_t gfp)
2064{
2065 const u8 *mbssid_index_ie;
2066 const struct element *elem, *sub;
2067 size_t new_ie_len;
2068 u8 new_bssid[ETH_ALEN];
2069 u8 *new_ie, *profile;
2070 u64 seen_indices = 0;
2071 u16 capability;
2072 struct cfg80211_bss *bss;
2073
2074 if (!non_tx_data)
2075 return;
2076 if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2077 return;
2078 if (!wiphy->support_mbssid)
2079 return;
2080 if (wiphy->support_only_he_mbssid &&
2081 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2082 return;
2083
2084 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2085 if (!new_ie)
2086 return;
2087
2088 profile = kmalloc(ielen, gfp);
2089 if (!profile)
2090 goto out;
2091
2092 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2093 if (elem->datalen < 4)
2094 continue;
2095 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2096 u8 profile_len;
2097
2098 if (sub->id != 0 || sub->datalen < 4) {
2099 /* not a valid BSS profile */
2100 continue;
2101 }
2102
2103 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2104 sub->data[1] != 2) {
2105 /* The first element within the Nontransmitted
2106 * BSSID Profile is not the Nontransmitted
2107 * BSSID Capability element.
2108 */
2109 continue;
2110 }
2111
2112 memset(profile, 0, ielen);
2113 profile_len = cfg80211_merge_profile(ie, ielen,
2114 elem,
2115 sub,
2116 profile,
2117 ielen);
2118
2119 /* found a Nontransmitted BSSID Profile */
2120 mbssid_index_ie = cfg80211_find_ie
2121 (WLAN_EID_MULTI_BSSID_IDX,
2122 profile, profile_len);
2123 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2124 mbssid_index_ie[2] == 0 ||
2125 mbssid_index_ie[2] > 46) {
2126 /* No valid Multiple BSSID-Index element */
2127 continue;
2128 }
2129
2130 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2131 /* We don't support legacy split of a profile */
2132 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2133 mbssid_index_ie[2]);
2134
2135 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2136
2137 non_tx_data->bssid_index = mbssid_index_ie[2];
2138 non_tx_data->max_bssid_indicator = elem->data[0];
2139
2140 cfg80211_gen_new_bssid(bssid,
2141 non_tx_data->max_bssid_indicator,
2142 non_tx_data->bssid_index,
2143 new_bssid);
2144 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2145 new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2146 profile,
2147 profile_len, new_ie,
2148 gfp);
2149 if (!new_ie_len)
2150 continue;
2151
2152 capability = get_unaligned_le16(profile + 2);
2153 bss = cfg80211_inform_single_bss_data(wiphy, data,
2154 ftype,
2155 new_bssid, tsf,
2156 capability,
2157 beacon_interval,
2158 new_ie,
2159 new_ie_len,
2160 non_tx_data,
2161 gfp);
2162 if (!bss)
2163 break;
2164 cfg80211_put_bss(wiphy, bss);
2165 }
2166 }
2167
2168out:
2169 kfree(new_ie);
2170 kfree(profile);
2171}
2172
2173struct cfg80211_bss *
2174cfg80211_inform_bss_data(struct wiphy *wiphy,
2175 struct cfg80211_inform_bss *data,
2176 enum cfg80211_bss_frame_type ftype,
2177 const u8 *bssid, u64 tsf, u16 capability,
2178 u16 beacon_interval, const u8 *ie, size_t ielen,
2179 gfp_t gfp)
2180{
2181 struct cfg80211_bss *res;
2182 struct cfg80211_non_tx_bss non_tx_data;
2183
2184 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2185 capability, beacon_interval, ie,
2186 ielen, NULL, gfp);
2187 if (!res)
2188 return NULL;
2189 non_tx_data.tx_bss = res;
2190 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2191 beacon_interval, ie, ielen, &non_tx_data,
2192 gfp);
2193 return res;
2194}
2195EXPORT_SYMBOL(cfg80211_inform_bss_data);
2196
2197static void
2198cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2199 struct cfg80211_inform_bss *data,
2200 struct ieee80211_mgmt *mgmt, size_t len,
2201 struct cfg80211_non_tx_bss *non_tx_data,
2202 gfp_t gfp)
2203{
2204 enum cfg80211_bss_frame_type ftype;
2205 const u8 *ie = mgmt->u.probe_resp.variable;
2206 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2207 u.probe_resp.variable);
2208
2209 ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2210 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2211
2212 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2213 le64_to_cpu(mgmt->u.probe_resp.timestamp),
2214 le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2215 ie, ielen, non_tx_data, gfp);
2216}
2217
2218static void
2219cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2220 struct cfg80211_bss *nontrans_bss,
2221 struct ieee80211_mgmt *mgmt, size_t len)
2222{
2223 u8 *ie, *new_ie, *pos;
2224 const u8 *nontrans_ssid, *trans_ssid, *mbssid;
2225 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2226 u.probe_resp.variable);
2227 size_t new_ie_len;
2228 struct cfg80211_bss_ies *new_ies;
2229 const struct cfg80211_bss_ies *old;
2230 u8 cpy_len;
2231
2232 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2233
2234 ie = mgmt->u.probe_resp.variable;
2235
2236 new_ie_len = ielen;
2237 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2238 if (!trans_ssid)
2239 return;
2240 new_ie_len -= trans_ssid[1];
2241 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2242 /*
2243 * It's not valid to have the MBSSID element before SSID
2244 * ignore if that happens - the code below assumes it is
2245 * after (while copying things inbetween).
2246 */
2247 if (!mbssid || mbssid < trans_ssid)
2248 return;
2249 new_ie_len -= mbssid[1];
2250
2251 nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
2252 if (!nontrans_ssid)
2253 return;
2254
2255 new_ie_len += nontrans_ssid[1];
2256
2257 /* generate new ie for nontrans BSS
2258 * 1. replace SSID with nontrans BSS' SSID
2259 * 2. skip MBSSID IE
2260 */
2261 new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2262 if (!new_ie)
2263 return;
2264
2265 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2266 if (!new_ies)
2267 goto out_free;
2268
2269 pos = new_ie;
2270
2271 /* copy the nontransmitted SSID */
2272 cpy_len = nontrans_ssid[1] + 2;
2273 memcpy(pos, nontrans_ssid, cpy_len);
2274 pos += cpy_len;
2275 /* copy the IEs between SSID and MBSSID */
2276 cpy_len = trans_ssid[1] + 2;
2277 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2278 pos += (mbssid - (trans_ssid + cpy_len));
2279 /* copy the IEs after MBSSID */
2280 cpy_len = mbssid[1] + 2;
2281 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2282
2283 /* update ie */
2284 new_ies->len = new_ie_len;
2285 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2286 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2287 memcpy(new_ies->data, new_ie, new_ie_len);
2288 if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2289 old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2290 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2291 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2292 if (old)
2293 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2294 } else {
2295 old = rcu_access_pointer(nontrans_bss->beacon_ies);
2296 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2297 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2298 if (old)
2299 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2300 }
2301
2302out_free:
2303 kfree(new_ie);
2304}
2305
2306/* cfg80211_inform_bss_width_frame helper */
2307static struct cfg80211_bss *
2308cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2309 struct cfg80211_inform_bss *data,
2310 struct ieee80211_mgmt *mgmt, size_t len,
2311 gfp_t gfp)
2312{
2313 struct cfg80211_internal_bss tmp = {}, *res;
2314 struct cfg80211_bss_ies *ies;
2315 struct ieee80211_channel *channel;
2316 bool signal_valid;
2317 struct ieee80211_ext *ext = NULL;
2318 u8 *bssid, *variable;
2319 u16 capability, beacon_int;
2320 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2321 u.probe_resp.variable);
2322 int bss_type;
2323
2324 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2325 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2326
2327 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2328
2329 if (WARN_ON(!mgmt))
2330 return NULL;
2331
2332 if (WARN_ON(!wiphy))
2333 return NULL;
2334
2335 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2336 (data->signal < 0 || data->signal > 100)))
2337 return NULL;
2338
2339 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2340 ext = (void *) mgmt;
2341 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2342 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2343 min_hdr_len = offsetof(struct ieee80211_ext,
2344 u.s1g_short_beacon.variable);
2345 }
2346
2347 if (WARN_ON(len < min_hdr_len))
2348 return NULL;
2349
2350 ielen = len - min_hdr_len;
2351 variable = mgmt->u.probe_resp.variable;
2352 if (ext) {
2353 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2354 variable = ext->u.s1g_short_beacon.variable;
2355 else
2356 variable = ext->u.s1g_beacon.variable;
2357 }
2358
2359 channel = cfg80211_get_bss_channel(wiphy, variable,
2360 ielen, data->chan, data->scan_width);
2361 if (!channel)
2362 return NULL;
2363
2364 if (ext) {
2365 const struct ieee80211_s1g_bcn_compat_ie *compat;
2366 const struct element *elem;
2367
2368 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2369 variable, ielen);
2370 if (!elem)
2371 return NULL;
2372 if (elem->datalen < sizeof(*compat))
2373 return NULL;
2374 compat = (void *)elem->data;
2375 bssid = ext->u.s1g_beacon.sa;
2376 capability = le16_to_cpu(compat->compat_info);
2377 beacon_int = le16_to_cpu(compat->beacon_int);
2378 } else {
2379 bssid = mgmt->bssid;
2380 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2381 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2382 }
2383
2384 ies = kzalloc(sizeof(*ies) + ielen, gfp);
2385 if (!ies)
2386 return NULL;
2387 ies->len = ielen;
2388 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2389 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2390 ieee80211_is_s1g_beacon(mgmt->frame_control);
2391 memcpy(ies->data, variable, ielen);
2392
2393 if (ieee80211_is_probe_resp(mgmt->frame_control))
2394 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2395 else
2396 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2397 rcu_assign_pointer(tmp.pub.ies, ies);
2398
2399 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2400 tmp.pub.beacon_interval = beacon_int;
2401 tmp.pub.capability = capability;
2402 tmp.pub.channel = channel;
2403 tmp.pub.scan_width = data->scan_width;
2404 tmp.pub.signal = data->signal;
2405 tmp.ts_boottime = data->boottime_ns;
2406 tmp.parent_tsf = data->parent_tsf;
2407 tmp.pub.chains = data->chains;
2408 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2409 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2410
2411 signal_valid = data->chan == channel;
2412 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2413 jiffies);
2414 if (!res)
2415 return NULL;
2416
2417 if (channel->band == NL80211_BAND_60GHZ) {
2418 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2419 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2420 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2421 regulatory_hint_found_beacon(wiphy, channel, gfp);
2422 } else {
2423 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2424 regulatory_hint_found_beacon(wiphy, channel, gfp);
2425 }
2426
2427 trace_cfg80211_return_bss(&res->pub);
2428 /* cfg80211_bss_update gives us a referenced result */
2429 return &res->pub;
2430}
2431
2432struct cfg80211_bss *
2433cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2434 struct cfg80211_inform_bss *data,
2435 struct ieee80211_mgmt *mgmt, size_t len,
2436 gfp_t gfp)
2437{
2438 struct cfg80211_bss *res, *tmp_bss;
2439 const u8 *ie = mgmt->u.probe_resp.variable;
2440 const struct cfg80211_bss_ies *ies1, *ies2;
2441 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2442 u.probe_resp.variable);
2443 struct cfg80211_non_tx_bss non_tx_data;
2444
2445 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2446 len, gfp);
2447 if (!res || !wiphy->support_mbssid ||
2448 !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2449 return res;
2450 if (wiphy->support_only_he_mbssid &&
2451 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2452 return res;
2453
2454 non_tx_data.tx_bss = res;
2455 /* process each non-transmitting bss */
2456 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2457 &non_tx_data, gfp);
2458
2459 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2460
2461 /* check if the res has other nontransmitting bss which is not
2462 * in MBSSID IE
2463 */
2464 ies1 = rcu_access_pointer(res->ies);
2465
2466 /* go through nontrans_list, if the timestamp of the BSS is
2467 * earlier than the timestamp of the transmitting BSS then
2468 * update it
2469 */
2470 list_for_each_entry(tmp_bss, &res->nontrans_list,
2471 nontrans_list) {
2472 ies2 = rcu_access_pointer(tmp_bss->ies);
2473 if (ies2->tsf < ies1->tsf)
2474 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2475 mgmt, len);
2476 }
2477 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2478
2479 return res;
2480}
2481EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2482
2483void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2484{
2485 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2486 struct cfg80211_internal_bss *bss;
2487
2488 if (!pub)
2489 return;
2490
2491 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2492
2493 spin_lock_bh(&rdev->bss_lock);
2494 bss_ref_get(rdev, bss);
2495 spin_unlock_bh(&rdev->bss_lock);
2496}
2497EXPORT_SYMBOL(cfg80211_ref_bss);
2498
2499void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2500{
2501 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2502 struct cfg80211_internal_bss *bss;
2503
2504 if (!pub)
2505 return;
2506
2507 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2508
2509 spin_lock_bh(&rdev->bss_lock);
2510 bss_ref_put(rdev, bss);
2511 spin_unlock_bh(&rdev->bss_lock);
2512}
2513EXPORT_SYMBOL(cfg80211_put_bss);
2514
2515void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2516{
2517 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2518 struct cfg80211_internal_bss *bss, *tmp1;
2519 struct cfg80211_bss *nontrans_bss, *tmp;
2520
2521 if (WARN_ON(!pub))
2522 return;
2523
2524 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2525
2526 spin_lock_bh(&rdev->bss_lock);
2527 if (list_empty(&bss->list))
2528 goto out;
2529
2530 list_for_each_entry_safe(nontrans_bss, tmp,
2531 &pub->nontrans_list,
2532 nontrans_list) {
2533 tmp1 = container_of(nontrans_bss,
2534 struct cfg80211_internal_bss, pub);
2535 if (__cfg80211_unlink_bss(rdev, tmp1))
2536 rdev->bss_generation++;
2537 }
2538
2539 if (__cfg80211_unlink_bss(rdev, bss))
2540 rdev->bss_generation++;
2541out:
2542 spin_unlock_bh(&rdev->bss_lock);
2543}
2544EXPORT_SYMBOL(cfg80211_unlink_bss);
2545
2546void cfg80211_bss_iter(struct wiphy *wiphy,
2547 struct cfg80211_chan_def *chandef,
2548 void (*iter)(struct wiphy *wiphy,
2549 struct cfg80211_bss *bss,
2550 void *data),
2551 void *iter_data)
2552{
2553 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2554 struct cfg80211_internal_bss *bss;
2555
2556 spin_lock_bh(&rdev->bss_lock);
2557
2558 list_for_each_entry(bss, &rdev->bss_list, list) {
2559 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
2560 iter(wiphy, &bss->pub, iter_data);
2561 }
2562
2563 spin_unlock_bh(&rdev->bss_lock);
2564}
2565EXPORT_SYMBOL(cfg80211_bss_iter);
2566
2567void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2568 struct ieee80211_channel *chan)
2569{
2570 struct wiphy *wiphy = wdev->wiphy;
2571 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2572 struct cfg80211_internal_bss *cbss = wdev->current_bss;
2573 struct cfg80211_internal_bss *new = NULL;
2574 struct cfg80211_internal_bss *bss;
2575 struct cfg80211_bss *nontrans_bss;
2576 struct cfg80211_bss *tmp;
2577
2578 spin_lock_bh(&rdev->bss_lock);
2579
2580 /*
2581 * Some APs use CSA also for bandwidth changes, i.e., without actually
2582 * changing the control channel, so no need to update in such a case.
2583 */
2584 if (cbss->pub.channel == chan)
2585 goto done;
2586
2587 /* use transmitting bss */
2588 if (cbss->pub.transmitted_bss)
2589 cbss = container_of(cbss->pub.transmitted_bss,
2590 struct cfg80211_internal_bss,
2591 pub);
2592
2593 cbss->pub.channel = chan;
2594
2595 list_for_each_entry(bss, &rdev->bss_list, list) {
2596 if (!cfg80211_bss_type_match(bss->pub.capability,
2597 bss->pub.channel->band,
2598 wdev->conn_bss_type))
2599 continue;
2600
2601 if (bss == cbss)
2602 continue;
2603
2604 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2605 new = bss;
2606 break;
2607 }
2608 }
2609
2610 if (new) {
2611 /* to save time, update IEs for transmitting bss only */
2612 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2613 new->pub.proberesp_ies = NULL;
2614 new->pub.beacon_ies = NULL;
2615 }
2616
2617 list_for_each_entry_safe(nontrans_bss, tmp,
2618 &new->pub.nontrans_list,
2619 nontrans_list) {
2620 bss = container_of(nontrans_bss,
2621 struct cfg80211_internal_bss, pub);
2622 if (__cfg80211_unlink_bss(rdev, bss))
2623 rdev->bss_generation++;
2624 }
2625
2626 WARN_ON(atomic_read(&new->hold));
2627 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2628 rdev->bss_generation++;
2629 }
2630
2631 rb_erase(&cbss->rbn, &rdev->bss_tree);
2632 rb_insert_bss(rdev, cbss);
2633 rdev->bss_generation++;
2634
2635 list_for_each_entry_safe(nontrans_bss, tmp,
2636 &cbss->pub.nontrans_list,
2637 nontrans_list) {
2638 bss = container_of(nontrans_bss,
2639 struct cfg80211_internal_bss, pub);
2640 bss->pub.channel = chan;
2641 rb_erase(&bss->rbn, &rdev->bss_tree);
2642 rb_insert_bss(rdev, bss);
2643 rdev->bss_generation++;
2644 }
2645
2646done:
2647 spin_unlock_bh(&rdev->bss_lock);
2648}
2649
2650#ifdef CONFIG_CFG80211_WEXT
2651static struct cfg80211_registered_device *
2652cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2653{
2654 struct cfg80211_registered_device *rdev;
2655 struct net_device *dev;
2656
2657 ASSERT_RTNL();
2658
2659 dev = dev_get_by_index(net, ifindex);
2660 if (!dev)
2661 return ERR_PTR(-ENODEV);
2662 if (dev->ieee80211_ptr)
2663 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2664 else
2665 rdev = ERR_PTR(-ENODEV);
2666 dev_put(dev);
2667 return rdev;
2668}
2669
2670int cfg80211_wext_siwscan(struct net_device *dev,
2671 struct iw_request_info *info,
2672 union iwreq_data *wrqu, char *extra)
2673{
2674 struct cfg80211_registered_device *rdev;
2675 struct wiphy *wiphy;
2676 struct iw_scan_req *wreq = NULL;
2677 struct cfg80211_scan_request *creq = NULL;
2678 int i, err, n_channels = 0;
2679 enum nl80211_band band;
2680
2681 if (!netif_running(dev))
2682 return -ENETDOWN;
2683
2684 if (wrqu->data.length == sizeof(struct iw_scan_req))
2685 wreq = (struct iw_scan_req *)extra;
2686
2687 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2688
2689 if (IS_ERR(rdev))
2690 return PTR_ERR(rdev);
2691
2692 if (rdev->scan_req || rdev->scan_msg) {
2693 err = -EBUSY;
2694 goto out;
2695 }
2696
2697 wiphy = &rdev->wiphy;
2698
2699 /* Determine number of channels, needed to allocate creq */
2700 if (wreq && wreq->num_channels)
2701 n_channels = wreq->num_channels;
2702 else
2703 n_channels = ieee80211_get_num_supported_channels(wiphy);
2704
2705 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2706 n_channels * sizeof(void *),
2707 GFP_ATOMIC);
2708 if (!creq) {
2709 err = -ENOMEM;
2710 goto out;
2711 }
2712
2713 creq->wiphy = wiphy;
2714 creq->wdev = dev->ieee80211_ptr;
2715 /* SSIDs come after channels */
2716 creq->ssids = (void *)&creq->channels[n_channels];
2717 creq->n_channels = n_channels;
2718 creq->n_ssids = 1;
2719 creq->scan_start = jiffies;
2720
2721 /* translate "Scan on frequencies" request */
2722 i = 0;
2723 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2724 int j;
2725
2726 if (!wiphy->bands[band])
2727 continue;
2728
2729 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2730 /* ignore disabled channels */
2731 if (wiphy->bands[band]->channels[j].flags &
2732 IEEE80211_CHAN_DISABLED)
2733 continue;
2734
2735 /* If we have a wireless request structure and the
2736 * wireless request specifies frequencies, then search
2737 * for the matching hardware channel.
2738 */
2739 if (wreq && wreq->num_channels) {
2740 int k;
2741 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2742 for (k = 0; k < wreq->num_channels; k++) {
2743 struct iw_freq *freq =
2744 &wreq->channel_list[k];
2745 int wext_freq =
2746 cfg80211_wext_freq(freq);
2747
2748 if (wext_freq == wiphy_freq)
2749 goto wext_freq_found;
2750 }
2751 goto wext_freq_not_found;
2752 }
2753
2754 wext_freq_found:
2755 creq->channels[i] = &wiphy->bands[band]->channels[j];
2756 i++;
2757 wext_freq_not_found: ;
2758 }
2759 }
2760 /* No channels found? */
2761 if (!i) {
2762 err = -EINVAL;
2763 goto out;
2764 }
2765
2766 /* Set real number of channels specified in creq->channels[] */
2767 creq->n_channels = i;
2768
2769 /* translate "Scan for SSID" request */
2770 if (wreq) {
2771 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2772 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2773 err = -EINVAL;
2774 goto out;
2775 }
2776 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2777 creq->ssids[0].ssid_len = wreq->essid_len;
2778 }
2779 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2780 creq->n_ssids = 0;
2781 }
2782
2783 for (i = 0; i < NUM_NL80211_BANDS; i++)
2784 if (wiphy->bands[i])
2785 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2786
2787 eth_broadcast_addr(creq->bssid);
2788
2789 wiphy_lock(&rdev->wiphy);
2790
2791 rdev->scan_req = creq;
2792 err = rdev_scan(rdev, creq);
2793 if (err) {
2794 rdev->scan_req = NULL;
2795 /* creq will be freed below */
2796 } else {
2797 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2798 /* creq now owned by driver */
2799 creq = NULL;
2800 dev_hold(dev);
2801 }
2802 wiphy_unlock(&rdev->wiphy);
2803 out:
2804 kfree(creq);
2805 return err;
2806}
2807EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2808
2809static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2810 const struct cfg80211_bss_ies *ies,
2811 char *current_ev, char *end_buf)
2812{
2813 const u8 *pos, *end, *next;
2814 struct iw_event iwe;
2815
2816 if (!ies)
2817 return current_ev;
2818
2819 /*
2820 * If needed, fragment the IEs buffer (at IE boundaries) into short
2821 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2822 */
2823 pos = ies->data;
2824 end = pos + ies->len;
2825
2826 while (end - pos > IW_GENERIC_IE_MAX) {
2827 next = pos + 2 + pos[1];
2828 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2829 next = next + 2 + next[1];
2830
2831 memset(&iwe, 0, sizeof(iwe));
2832 iwe.cmd = IWEVGENIE;
2833 iwe.u.data.length = next - pos;
2834 current_ev = iwe_stream_add_point_check(info, current_ev,
2835 end_buf, &iwe,
2836 (void *)pos);
2837 if (IS_ERR(current_ev))
2838 return current_ev;
2839 pos = next;
2840 }
2841
2842 if (end > pos) {
2843 memset(&iwe, 0, sizeof(iwe));
2844 iwe.cmd = IWEVGENIE;
2845 iwe.u.data.length = end - pos;
2846 current_ev = iwe_stream_add_point_check(info, current_ev,
2847 end_buf, &iwe,
2848 (void *)pos);
2849 if (IS_ERR(current_ev))
2850 return current_ev;
2851 }
2852
2853 return current_ev;
2854}
2855
2856static char *
2857ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2858 struct cfg80211_internal_bss *bss, char *current_ev,
2859 char *end_buf)
2860{
2861 const struct cfg80211_bss_ies *ies;
2862 struct iw_event iwe;
2863 const u8 *ie;
2864 u8 buf[50];
2865 u8 *cfg, *p, *tmp;
2866 int rem, i, sig;
2867 bool ismesh = false;
2868
2869 memset(&iwe, 0, sizeof(iwe));
2870 iwe.cmd = SIOCGIWAP;
2871 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2872 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2873 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2874 IW_EV_ADDR_LEN);
2875 if (IS_ERR(current_ev))
2876 return current_ev;
2877
2878 memset(&iwe, 0, sizeof(iwe));
2879 iwe.cmd = SIOCGIWFREQ;
2880 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2881 iwe.u.freq.e = 0;
2882 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2883 IW_EV_FREQ_LEN);
2884 if (IS_ERR(current_ev))
2885 return current_ev;
2886
2887 memset(&iwe, 0, sizeof(iwe));
2888 iwe.cmd = SIOCGIWFREQ;
2889 iwe.u.freq.m = bss->pub.channel->center_freq;
2890 iwe.u.freq.e = 6;
2891 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2892 IW_EV_FREQ_LEN);
2893 if (IS_ERR(current_ev))
2894 return current_ev;
2895
2896 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2897 memset(&iwe, 0, sizeof(iwe));
2898 iwe.cmd = IWEVQUAL;
2899 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2900 IW_QUAL_NOISE_INVALID |
2901 IW_QUAL_QUAL_UPDATED;
2902 switch (wiphy->signal_type) {
2903 case CFG80211_SIGNAL_TYPE_MBM:
2904 sig = bss->pub.signal / 100;
2905 iwe.u.qual.level = sig;
2906 iwe.u.qual.updated |= IW_QUAL_DBM;
2907 if (sig < -110) /* rather bad */
2908 sig = -110;
2909 else if (sig > -40) /* perfect */
2910 sig = -40;
2911 /* will give a range of 0 .. 70 */
2912 iwe.u.qual.qual = sig + 110;
2913 break;
2914 case CFG80211_SIGNAL_TYPE_UNSPEC:
2915 iwe.u.qual.level = bss->pub.signal;
2916 /* will give range 0 .. 100 */
2917 iwe.u.qual.qual = bss->pub.signal;
2918 break;
2919 default:
2920 /* not reached */
2921 break;
2922 }
2923 current_ev = iwe_stream_add_event_check(info, current_ev,
2924 end_buf, &iwe,
2925 IW_EV_QUAL_LEN);
2926 if (IS_ERR(current_ev))
2927 return current_ev;
2928 }
2929
2930 memset(&iwe, 0, sizeof(iwe));
2931 iwe.cmd = SIOCGIWENCODE;
2932 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2933 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2934 else
2935 iwe.u.data.flags = IW_ENCODE_DISABLED;
2936 iwe.u.data.length = 0;
2937 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2938 &iwe, "");
2939 if (IS_ERR(current_ev))
2940 return current_ev;
2941
2942 rcu_read_lock();
2943 ies = rcu_dereference(bss->pub.ies);
2944 rem = ies->len;
2945 ie = ies->data;
2946
2947 while (rem >= 2) {
2948 /* invalid data */
2949 if (ie[1] > rem - 2)
2950 break;
2951
2952 switch (ie[0]) {
2953 case WLAN_EID_SSID:
2954 memset(&iwe, 0, sizeof(iwe));
2955 iwe.cmd = SIOCGIWESSID;
2956 iwe.u.data.length = ie[1];
2957 iwe.u.data.flags = 1;
2958 current_ev = iwe_stream_add_point_check(info,
2959 current_ev,
2960 end_buf, &iwe,
2961 (u8 *)ie + 2);
2962 if (IS_ERR(current_ev))
2963 goto unlock;
2964 break;
2965 case WLAN_EID_MESH_ID:
2966 memset(&iwe, 0, sizeof(iwe));
2967 iwe.cmd = SIOCGIWESSID;
2968 iwe.u.data.length = ie[1];
2969 iwe.u.data.flags = 1;
2970 current_ev = iwe_stream_add_point_check(info,
2971 current_ev,
2972 end_buf, &iwe,
2973 (u8 *)ie + 2);
2974 if (IS_ERR(current_ev))
2975 goto unlock;
2976 break;
2977 case WLAN_EID_MESH_CONFIG:
2978 ismesh = true;
2979 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2980 break;
2981 cfg = (u8 *)ie + 2;
2982 memset(&iwe, 0, sizeof(iwe));
2983 iwe.cmd = IWEVCUSTOM;
2984 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2985 "0x%02X", cfg[0]);
2986 iwe.u.data.length = strlen(buf);
2987 current_ev = iwe_stream_add_point_check(info,
2988 current_ev,
2989 end_buf,
2990 &iwe, buf);
2991 if (IS_ERR(current_ev))
2992 goto unlock;
2993 sprintf(buf, "Path Selection Metric ID: 0x%02X",
2994 cfg[1]);
2995 iwe.u.data.length = strlen(buf);
2996 current_ev = iwe_stream_add_point_check(info,
2997 current_ev,
2998 end_buf,
2999 &iwe, buf);
3000 if (IS_ERR(current_ev))
3001 goto unlock;
3002 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3003 cfg[2]);
3004 iwe.u.data.length = strlen(buf);
3005 current_ev = iwe_stream_add_point_check(info,
3006 current_ev,
3007 end_buf,
3008 &iwe, buf);
3009 if (IS_ERR(current_ev))
3010 goto unlock;
3011 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3012 iwe.u.data.length = strlen(buf);
3013 current_ev = iwe_stream_add_point_check(info,
3014 current_ev,
3015 end_buf,
3016 &iwe, buf);
3017 if (IS_ERR(current_ev))
3018 goto unlock;
3019 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3020 iwe.u.data.length = strlen(buf);
3021 current_ev = iwe_stream_add_point_check(info,
3022 current_ev,
3023 end_buf,
3024 &iwe, buf);
3025 if (IS_ERR(current_ev))
3026 goto unlock;
3027 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3028 iwe.u.data.length = strlen(buf);
3029 current_ev = iwe_stream_add_point_check(info,
3030 current_ev,
3031 end_buf,
3032 &iwe, buf);
3033 if (IS_ERR(current_ev))
3034 goto unlock;
3035 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3036 iwe.u.data.length = strlen(buf);
3037 current_ev = iwe_stream_add_point_check(info,
3038 current_ev,
3039 end_buf,
3040 &iwe, buf);
3041 if (IS_ERR(current_ev))
3042 goto unlock;
3043 break;
3044 case WLAN_EID_SUPP_RATES:
3045 case WLAN_EID_EXT_SUPP_RATES:
3046 /* display all supported rates in readable format */
3047 p = current_ev + iwe_stream_lcp_len(info);
3048
3049 memset(&iwe, 0, sizeof(iwe));
3050 iwe.cmd = SIOCGIWRATE;
3051 /* Those two flags are ignored... */
3052 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3053
3054 for (i = 0; i < ie[1]; i++) {
3055 iwe.u.bitrate.value =
3056 ((ie[i + 2] & 0x7f) * 500000);
3057 tmp = p;
3058 p = iwe_stream_add_value(info, current_ev, p,
3059 end_buf, &iwe,
3060 IW_EV_PARAM_LEN);
3061 if (p == tmp) {
3062 current_ev = ERR_PTR(-E2BIG);
3063 goto unlock;
3064 }
3065 }
3066 current_ev = p;
3067 break;
3068 }
3069 rem -= ie[1] + 2;
3070 ie += ie[1] + 2;
3071 }
3072
3073 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3074 ismesh) {
3075 memset(&iwe, 0, sizeof(iwe));
3076 iwe.cmd = SIOCGIWMODE;
3077 if (ismesh)
3078 iwe.u.mode = IW_MODE_MESH;
3079 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3080 iwe.u.mode = IW_MODE_MASTER;
3081 else
3082 iwe.u.mode = IW_MODE_ADHOC;
3083 current_ev = iwe_stream_add_event_check(info, current_ev,
3084 end_buf, &iwe,
3085 IW_EV_UINT_LEN);
3086 if (IS_ERR(current_ev))
3087 goto unlock;
3088 }
3089
3090 memset(&iwe, 0, sizeof(iwe));
3091 iwe.cmd = IWEVCUSTOM;
3092 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3093 iwe.u.data.length = strlen(buf);
3094 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3095 &iwe, buf);
3096 if (IS_ERR(current_ev))
3097 goto unlock;
3098 memset(&iwe, 0, sizeof(iwe));
3099 iwe.cmd = IWEVCUSTOM;
3100 sprintf(buf, " Last beacon: %ums ago",
3101 elapsed_jiffies_msecs(bss->ts));
3102 iwe.u.data.length = strlen(buf);
3103 current_ev = iwe_stream_add_point_check(info, current_ev,
3104 end_buf, &iwe, buf);
3105 if (IS_ERR(current_ev))
3106 goto unlock;
3107
3108 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3109
3110 unlock:
3111 rcu_read_unlock();
3112 return current_ev;
3113}
3114
3115
3116static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3117 struct iw_request_info *info,
3118 char *buf, size_t len)
3119{
3120 char *current_ev = buf;
3121 char *end_buf = buf + len;
3122 struct cfg80211_internal_bss *bss;
3123 int err = 0;
3124
3125 spin_lock_bh(&rdev->bss_lock);
3126 cfg80211_bss_expire(rdev);
3127
3128 list_for_each_entry(bss, &rdev->bss_list, list) {
3129 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3130 err = -E2BIG;
3131 break;
3132 }
3133 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3134 current_ev, end_buf);
3135 if (IS_ERR(current_ev)) {
3136 err = PTR_ERR(current_ev);
3137 break;
3138 }
3139 }
3140 spin_unlock_bh(&rdev->bss_lock);
3141
3142 if (err)
3143 return err;
3144 return current_ev - buf;
3145}
3146
3147
3148int cfg80211_wext_giwscan(struct net_device *dev,
3149 struct iw_request_info *info,
3150 struct iw_point *data, char *extra)
3151{
3152 struct cfg80211_registered_device *rdev;
3153 int res;
3154
3155 if (!netif_running(dev))
3156 return -ENETDOWN;
3157
3158 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3159
3160 if (IS_ERR(rdev))
3161 return PTR_ERR(rdev);
3162
3163 if (rdev->scan_req || rdev->scan_msg)
3164 return -EAGAIN;
3165
3166 res = ieee80211_scan_results(rdev, info, extra, data->length);
3167 data->length = 0;
3168 if (res >= 0) {
3169 data->length = res;
3170 res = 0;
3171 }
3172
3173 return res;
3174}
3175EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3176#endif